ORACLE"

Oracle® Fusion Middleware

Integrating Big Data with Oracle Data Integrator
12 ¢(12.2.1.2.6)

E79168-01

December 2016

Oracle Fusion Middleware Integrating Big Data with Oracle Data Integrator, 12 ¢ (12.2.1.2.6)
E79168-01

Copyright © 2016, 2016, Oracle and/or its affiliates. All rights reserved.

Primary Author: Aslam Khan

Contributing Authors: Alex Kotopoulis

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

PIEIACE ..ottt Xi
BN o < T <IN Xi
Documentation AcCeSSIDILILYcccvvviimiiiiiiiiiiiiiic s Xi
Related DOCUITIENES........eiiveeeieetieeeeeee ettt eetee et et e et eteeeeteeeteeeeaeesaesesteeesesensessrseeseessssesesenssenseeennseseeans Xi
COMVEIIEIONIS ..o eeeeieieeeeeee ettt e e et e e e eeaae e e e e s e aaseeeeessaasaseeeesansasseeesesnaatseessennssseeeessnssaseesessnnnseeessssnnrees Xii

1 Big Data Integration with Oracle Data Integrator

1.1 Overview of Hadoop Data Integration.............ccoceueieiiiiiiiiciiiice e 11
1.2 Big Data Knowledge Modules MatriXcccooiiiiiiiicieiiieccicci e 1-2

2 Hadoop Data Integration Concepts

2.1 Hadoop Data Integration with Oracle Data Integrator............cccooooireiiiiiinciniicc, 2-1
2.2 Generate Code in Different Languages with Oracle Data Integratorc..ccccoooevveininnne. 2-2
2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects.........cccccccevuvvvirrnenne. 2-2
2.4 Oozie Workflow EXecution MOdEs ..o 2-3
2.5 Lambda ArchiteCtUre... ..o 2-3
2.6 Spark CheckpOinting.........couoiiiiiiiiiic 2-4
2.7 Spark Windowing and Stateful Aggregationcccovivvviniiiiiiiiices 2-4
2.8 Spark Repartitioning and Caching...........cccccevvririiirriiiiiinrnecerree s 2-5
2.9 Kafka Integration with Oracle Data INtegratorcccooeveiiiniiiniiceccec, 2-5

3 Setting Up the Environment for Integrating Hadoop Data

3.1 Configuring Big Data technologies using the Big Data Configurations Wizard..................... 3-1
3.1.1 General SEttNGS........couiiiiuiieic 3-4
3.1.2 HDFS Data Server Definitioncccccvevvevieieieieieiieieestestestestest e eessessereere e sve e sse v s 3-4
3.1.3 HBase Data Server DefiNition........ccccuevierierieieieieieieeseerestessessesessessessesseseesessessessessessenns 3-4
3.1.4 Kafka Data Server Definition........cccccecieeierieieieinisieese ettt sseseesesseessese e ssessessenes 3-5
3.1.5 Kafka Data Server Properties..........cccoiiiiiiiiiiiiiiiccccccccccccnns 3-6

3.2 Creating and Initializing the Hadoop Data Server ... 3-6
3.2.1 Hadoop Data Server Definition..........cccccvviimiiiiiiiiiiiiiiiiicene 3-6
3.2.2 Hadoop Data Server Propertiescooiiiiiiiiiiiicecieecsccssseeeeesseeens 3-7

3.3 Creating a Hadoop Physical Schema...........ccooeviieiiiiiiiiiciiccc s 3-10

3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs...........c.ccceevenneen. 3-10
3.5 Configuring Oracle Loader for Hadoop.......cccceeuiuiiiririiiiiriccceceecreeeeeeeeeeeees 3-11
3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster.............ccccccvvuvuvirurunnnne. 3-11
3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

.. 3-15
4 Integrating Hadoop Data

4.1 Integrating HadoOp Data.........ccccciiiiiiiiiiiiiiicc e 4-2
4.2 Setting Up File Data SOUICES ..o 4-2
4.3 Setting Up HDFS Data SOUICES........coovuiiiiiiiiiiiiiiciccncn s 4-3
4.4 Setting Up Hive Data SOUTCES........ccoouiiiiiiiiii e 4-3
4.5 Setting Up HBase Data SOUICES.........ccooueiiiuiiiiiiccic 4-4
4.6 Setting Up Kafka Data SOUICES ... 4-5
4.7 Setting Up Cassandra Data SOUICES...........cccuoiiiiiiiiiiiiiicccccceeec e 4-6
4.8 Importing Hadoop Knowledge Modules.............cccooiiiiiiiiiiiiiiiiiiiccccce, 4-6

4.9 Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and
HDES MOGELS.......ooviiiiiiiiiiiiii st 4-7
4.9.1 Creating a Model.......cccooiiiiiiiiiiiic e 4-7
4.9.2 Reverse Engineering Hive Tablesc.c.cccoooiiiiiiiiiiiic, 4-7
4.9.3 Reverse Engineering HBase Tables.............cccoooiiiiiiiiiiiiic, 4-7
49.4 Reverse Engineering HDFS Tables ... 4-8
49.5 Reverse Engineering Cassandra Tables ..., 4-9
410 Loading Data from Files into HiVe.........ccccoiiiiiiiiiiiiiiiic e 4-9
411 Loading Data from Hive t0 Filesc.cocoooiiiiiiiii 4-9
4.12 Loading Data from HBase into Hiveccccooouiiiiiiriiiiiiic 4-10
413 Loading Data from Hive into Hbase.........ccoooiiiiiiiniii e 4-10
414 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP 4-10
415 Loading Data from an SQL Database into Hive using SQOOP............ccccocoeeiriiriininicnnnnn. 4-11
416 Loading Data from an SQL Database into File using SQOOPcccccoooreiiiiiiiriiiniinnen. 4-11
4.17 Loading Data from an SQL Database into HBase using SQOOPc.ccccoovniriniiriniinnnnnes 4-11
4.18 Validating and Transforming Data Within Hiveccccoiinncceeenee 4-12
4.19 Loading Data into an Oracle Database from Hive and Filecccccooviiinnnnnnnnnnne. 4-12
420 Loading Data into an SQL Database from Hbase, Hive and File using SQOOP 4-13
4.21 Loading Data from Kafka to Spark ..., 4-13

5 Executing Oozie Workflows

5.1 Executing Oozie Workflows with Oracle Data Integrator...........c.cccoooouorunirniicniicniicniccen, 5-1
5.2 Setting Up and Initializing the Oozie Runtime ENnginec.cccccocevvviiiiiiniiniiiicnn, 5-2
5.2.1 Oozie Runtime Engine Definition..........ccccooiiiiiiiiiiiiiiiicicccccccccccceenene 5-2
5.2.2 Oozie Runtime Engine Properties..........cccooiiiiiiiiiiiiiicccces 5-3
5.3 Creating a Logical Oozie ENGINecccoooiiiiiiiiiii 5-3
5.4 Executing or Deploying an Oozie WOrKfIOwWcccoveiiiiniiiiiiiniicccc e 5-4
5.5 Auditing Hadoop LOZScccveururuririiiiririeieccrreeeee e 5-4

5.6

Userlib jars support for running ODI Oozie WOrkflows..........cccceviiiiniiiiniiniiiiicn, 5-4

6 Spark Streaming Support

6.1
6.2

6.3

Enabling Streaming Support for Oracle Data Integratorc.ccccooeeviiiiicniiiciiicce 6-1
Enabling Streaming SUPPOTt........cccciuiiiiiiiiiieccececce e 6-1
6.2.1 Spark Streaming DataServer Properties............cccooveieiviiiiiiniininiiiceeccc, 6-2
6.2.2 Extra Spark Streaming Data Propertiescccocovvvvinniininnnninnnnins 6-3
Execute Mapping in Streaming Mode ..o 6-5

7 Using Query Processing Engines to Generate Code in Different Languages

7.1
7.2

7.3
7.4

7.5
7.6

77
7.8

Query Processing Engines Supported by Oracle Data Integrator-.............ccccevevviinieiiincnnan. 7-1
Setting Up Hive Data SEIVeT ...t 7-2
7.2.1 Hive Data Server Definition...........ccooviviiiiiiiiiniiiiiicc e 7-2
7.2.2 Hive Data Server Connection Details.............cccoeviviiniiiinniiiiiinninnne 7-2
Creating a Hive Physical Schema............ccoooiiiiiiii 7-3
Setting Up Pig Data SerVer ... 7-3
7.4.1 Pig Data Server Definitioncccovvririreriirirnirrreerreeeereeeeeeesee e 7-4
7.4.2 Pig Data Server Properties ... 7-4
Creating a Pig Physical Schema...........ccccooiiiiiiiiis 7-5
Setting Up Spark Data SErver ... 7-5
7.6.1 Spark Data Server Definition..........ccoocueiiiiiiiiiiiiiiiec e 7-5
7.6.2 Spark Data Server PrOperties. ... rrrrririreeeeserereeeeeeeee e 7-6
Creating a Spark Physical Schema ... 7-7
Generating Code in Different Languagesccccoiiiiiiiiiiiiiiiiicccces 7-8

8 Working with Unstructured Data

8.1

Working with Unstructured Data ... 8-1

9 Working with Complex files

A

9.1
9.2
9.3
94
9.5

HDEFS FOIMALS ...ttt 9-1
Working with Complex Files ... 9-2
Identifying, Adding and Removing Flattened Attributes..........cccccoovvviiiiininiinn, 9-3
Loading Data from HDFS File t0 HiVeccccocooiiiiiiiiiiiiicccccccccceeee 9-3
Loading Data from HDFS File t0 Spark ... 9-4

Hive Knowledge Modules

Al
A2
A3
A4
A5
A6
A7

LKM SQL t0 Hive SQOOPcvioueeierieieeteeieeeeete ettt steeaests et veesessseseesaeseessenseersanseenns A-2
LKM SQL to File SQOOP DiIECL.......ccveciierieiietieieeiecie ettt sie et te e ve s seeesesreesse s enseeseeseees A-4
LKM SQL to HBase SQOOP DIFECt......cceccveriieieriieienieeiereeteseetesteeseseessesssessesssessesssessessesssenses A-6
LKM File to SQL SQOODPccieiiriiieieieieieietesteeetesteeseesessessessessessessessessessessessessessssessessessessenes A-8
LKM Hive to SQL SQOODPccieiiiiiieieieieieieeeteteeeesteeressessessessesessessesessessessssssssesessessessensenes A-9
LKM HBase to SQL SQOIOP........cuiiiieietieieeieeteete ettt este et steeaesre e s eseesesseesesrsesesssesseesnas A-11
LKM HDEFS FIle t0 HIVE....cuiiuiiiiiiiiieieteeteceeteee ettt ettt a e ve s e sveesaesveenaessaenseennas A-12

B

Vi

A8

A9

A.10
All
A2
A13
Al4
A15
Al6
A17
A8
A.19
A20
A2l
A22
A.23
A24
A25
A26
A27
A28
A29
A.30
A3l

LKM HDES File t0 Hive (DIr€Ct)coccceverireririeineieenieeneeenteeseeeseeesteesreesresesresessesesseseeseneene A-13
TKM HIVE APPENA ...ttt A-13
IKM Hive Incremental Update ... A-14
LKM File to Hive LOAD DATA ..ottt A-14
LKM File to Hive LOAD DATA DIr€Chcueueotririeueiririeieieinirieieetseeieieseseeieresenes et seeieesenes A-16
LKM HBase to Hive HBASE-SERDEc.cccoeeirimiiiiininieietnnieicicenteienceenesteseseseneeneseensenenene A-17
LKM Hive to HBase Incremental Update HBASE-SERDE Direct.........cccoveveneeneniinincncnce. A-17
LKM HivVe t0 File DITECE.....coveuirieirieiriiiriiieeie ettt ettt s A-18
XM HIVE SOTt ..ttt sttt sttt et e bttt et s atesbe st e sbe et e sbeeabesbeenaesbeenseebeans A-18
LKM File to Oracle OLH-OSCHcoiiiiieiieeeet ettt ettt A-19
LKM File to Oracle OLH-OSCH DiIectcccoceeureriririeinieineericcnietnieeneeneeereeseseee e A-21
LKM Hive to Oracle OLH-OSCH........ccectriiiririirieirieisieeieteerteieste ettt ettt seene A-24
LKM Hive to Oracle OLH-OSCH DiTeCt.......ccccueeiriririeineinieriesieieiesiesieteteeeeeeseseessessessens A-27
REKIM HIVE 1ottt bttt bttt bbbt e et bene A-30
REIM HBASE ..ottt ettt ettt et ettt e at et e e sbeeabesbeesaesbeenbesbeens A-31
IKM File to Hive (Deprecated).........cccovrrreriririrrenirrreresse e A-32
LKM HBase to Hive (HBase-SerDe) [Deprecated]...........ccoiiiiiiiinininiiiicccceene. A-35
IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]c.ccccocevuennnee. A-35
IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]cccocovvivinininnnnnnnniiinen, A-36
IKM Hive Control Append (Deprecated)cococeueieiiiirieiiiiciiecc e A-38
CKM Hive (Deprecated)........cccovurrerireririririiririrrreresesr e A-38
IKM Hive Transform (Deprecated)...........coiiiiiiiiiiiiiiiicicceccc e A-39
IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]cccccoeuvnininininnninnininiiiiicne, A-41
IKM File-Hive to SQL (SQOOP) [Deprecated].........ccccovuvviniiiiininininiiiiiininicnen, A-44

Pig Knowledge Modules

B.1
B.2
B.3
B4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17

LKM File t0 Pig....cocviiiiiiiiiiiiiiiiiii s B-1
LKM Pig t0 File ..oviiiiiiiiiiiiiiiiic s B-3
LKM HBase t0 Pigcooveiviiiiiiiiiiiiii s B-5
LKM Pig t0 HBASEcooviii s B-6
LKM HiVE t0 Pig...cuiiiiiiiiiiicicicct st B-6
LKM Pig t0 HIVe ..ot s B-7
LKM SQL to Pig SQOOP........coviiiiiiiiiiiiciiiciicccccc s B-7
XKM Pig AGEIegatecccouviiuiiiiiiiiiiiiiccicc s B-9
XKM Pig DISHICE ..ttt B-9
XKM Pig EXPIESSION «...vvivitititiiititititiicectctctttt st B-9
XKM Pig FIIET .ottt B-9
XKM Pig FIAEIoucuviiiiiiiiiiiccs s B-9
XKM Pig JOIMN.oiiiiiiiiiiiiiccic s B-9
XKM Pig LOOKUP ...oviiiiiiiciiicc s B-10
XKM Pig PIVOL c.cviiiiiiiiiiiii st B-10
XKM PIg S€t .vviiiiiiciciiiic s B-10
XKM P SOttt s B-10

B8 XKIM Pig SPLit..orsssvvvvveeesessossserssesssssssssssesssssssssseess e B-10

B.19 XKM Pig SUDQUETY FIILETcooviiiiiiiicicicicccceee e B-10
B.20 XKM Pig Table FUNCLONc.cciviiiiiiriiiiiiiicciccc s B-10
B.21 XKM Pig UNPivOt.....ccociiiiiiiiiiiiiiiitciccen st B-11

C Spark Knowledge Modules

C.1 LKM File to Spark.....cccccciiiiiiiiiiiiiiiiiiiiicccc s C-2
C.2 LKM Spark t0 File ... e C-3
C.3 LKM Hive t0 SPark......ccccooeiiiiiiiiiiiiiicicicicccccc s C-3
Cid LKM SPark t0 HIVEcoueiiiiiiiririiiiciciiccce e C-3
C.5 LKM HDEFS t0 SPark.......cccccviriiiiiiiciiiriiiiiiiiiriric s C-4
C.6 LKM Spark t0 HDEFS........ccooiiiiiiiiiiiieiie et C-5
C.7 LKM KafKa t0 SParkooociiiiiii e C-6
C.8 LKM Spark to KafKaccooviiiiiiiiiiiiiiii s C-6
C.9 LKM SQL t0 SPATK....cceuiiiiiiiiiiririiiicicieirrececeeee e C-6
C.10 LKM Spark t0 SQL.....c.cooiiiieiiiiiciriiiceieritice ettt C-7
C.11 RKM CaSSANAIa. ...t C-7
C.12 XKM Spark AGgregate ...t e C-7
C.13 XKM Spark DISHICEcccviuiuiiiiiiiiiiiicciicc e C-8
C.14 XKM Spark EXPIeSSIOnccccvuiiiiiiriririiiiiciiiiciieicieeee s C-8
C.15 XKM SPark FIlteTcccouiiiiiiiiiiiiiiiiiiciniiiicicicrcc s C-8
C.16 XKM Spark Input Signature and Output Signatureccoooeviiiiiiiiiicce C-9
C.17 XKM SPark JOIN....oiuiuiiiiiicieiect ettt C-9
C.18 XKM SPark LOOKUP ...ccoviiiciiicicicicieece e C-9
C.19 XKM SPark PIVOLc.c.ccuiiiiiiiiiiiiiiiciiicciccecee e C-10
C.20 XKM SPark Stcccuviiiiiiiiiiiiiiieiii et C-10
C.21 XKM SPArk SOt ..ottt C-10
C.22 XKM SPark SPlit......cciieiiiiiiiiiiiciiiiiiciiiccie e C-10
C.23 XKM Spark Table FUNCHOMNc.c.cceuiuiiiiiiiiieieieicicceieieiecicieieieeeiete et nenenenes C-11
C.24 IKM Spark Table FUNCHON.........cccceuiiiiiiiiiiiiiciccccee e C-11
C.25 XKM Spark UNPivOtccccciiiiiiiiiiiiiiiiiiiiii st Cc-11

D Component Knowledge Modules

D.1 XKM Oracle FIAtteNccueeuiiiiriiieieiee ettt ettt sttt ettt ettt e st eseebeesesbesbesbessens D-1
D.2 XKM Oracle FIatten XMLc..cociirieieieieieieceitet ettt sttt sttt sttt ettt et ebesbesbe e sbesbesaens D-1
D.3 XKM Spark FIQtternccoviiiiiiiiiiiiiiiii s D-2
D4 XKM JAGZEA.....iiiiiiiiiiciiiiiiiciciceee s D-2

E Considerations, Limitations, and Issues

E.1 Considerations, Limitations, and ISSUESccoeviieiuiiiiieeieeie ettt E-1

Vii

viii

List of Tables

11
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8

3-9

3-10

3-11
4-1
4-2
4-3
5-1
5-2

6-1
6-2

7-1
7-2
7-3
7-4

7-6
9-1
9-2
A-1

A-3
A-4

A-6

A-7

A-8

A-9

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19

Big Data Knowledge Modules............ccoouoiiiiiiiiiiii s 1-2
General Settings OPtioNS..........cooocueiiiiiicieicc s 3-4
HDFS Data Server Definition...........ccccccrieiiniiieiiininieieiineeeineeiereeesaeseetseeseseseseeneneeeenes 3-4
HBase Data Server Definition.........cccccovviiiiiniiiiiiiiiic e, 3-5
Kafka Data Server Definition..........ccccoceviiiiiiiiiiiniiiiiiiics 3-5
Kafka Data Server Properties...........ccoviiiiiiiiiiiiiiiiiiiiiicciiciceeeeeeneee e 3-6
Hadoop Data Server Definition............ccccoiiiiiiiiiiiiiciiiccccneccceeeccceeeeens 3-6
Hadoop Data Server Properties Mandatory for Hadoop and Hive..........cccccooiiniinnann. 3-7
Hadoop Data Server Properties Mandatory for HBase (In addition to base Hadoop

and Hive Properties)........cocoviriiiciecie s 3-8
Hadoop Data Server Properties Mandatory for Oracle Loader for Hadoop (In addition

to base Hadoop and Hive properties)..........ccccoccuecuiiiiiiiiiiciieiiicccicicecieiccceeiceenennes 39
Hadoop Data Server Properties Mandatory for SQOOP (In addition to base Hadoop

and Hive properties).........ccviiiiiiiiniiiiiiii e 3-10
Kerberos Configuration for Dataserver...........ccoooiiiiicice 3-12
Integrating Hadoop Data..........ccccciiiiiiiiiiiiiiiicci 4-2
Knowledge Modules to load data into Oracle Database............cccccocvecuciiicccicicennne. 4-12
Knowledge Modules to load data into SQL Database...........cccccooerueiiiiiiiieiiiicie 4-13
Executing Oozie WOIKfIOWS...........coouiiiiiiiiicc 5-1
Oozie Runtime Engine Definition...........ccoccoiiiiiiiiiiiiiiiicccccccccccccceceennes 5-2
Oozie Runtime Engine Properties...........ccocovvviiiiiiiniii, 5-3
Enabling Streaming SUPPOTt........ccoviiiiioiiiiei e 6-1
Spark Streaming DataServer Properties............cooooiiiiiiiiiicicecc s 6-2
Extra Spark Streaming Properties...........cccococeiiiiiiiiiiiiceeeeceecieeeeeeee e enenenenas 6-3
Hive Data Server Definition..........cccoviiiiiiiiiiiiiiiiiiiiice s 7-2
Hive Data Server Connection Details...........cccooveiiiiiiiiiiniiiiccceccneeceees 7-3
Pig Data Server Definition. ... 7-4
Pig Data Server Properties...........ooiiiiiiicic 7-5
Spark Data Server Definition..........ccooiiuiiiiiii s 7-6
Spark Data Server Properties..........cccccciuiiiiiiiiiiiiiiiiiiiiiiiccccee s 7-6
HDES File FOIMaLS.......oiiiiiiiiiiiiiii s 9-1
COMPIEX TYPES...ouonieiiiiiict e 9-2
LKM SQL to Hive SQOOP.........ccoviiiiiiiieieiriiiiciestsie et A-2
LKM SQL to File SQOOP DIIECH.......cueouieuretieteectieteeteeeeete e ere et eeeeveeseeveeveeveeseeseesseeseeseens A-4
LKM SQL to HBase SQOOP DIT€Ct.......cccuevuieieriieieriieieseeieseeresteeveseeseessessesssessesssessesssesns A-6
LKM File to SQL SQOOP..........ccooiiiiiiiiiiiiieiicessie s A-8
LKM Hive to SQL SQOQOP.........ccooiiiieiiiieieeciee e A-9
LKM HBase to SQL SQOQOP........oooiieiiieeeeeree ettt ettt et e s vsesveessaeesreesaeeseessneenraenanas A-11
LKM HDEFS File t0 HiVe......coooiviiiiiiiiiiiiiis s A-13
LKM HDFS t0 HiVe (DAr€CE).....ccrueririeiriiieiiieieieienieertei ettt et ns A-13
TKM HiVe APPEN......oimiiiiiiiiiiiiiiccccceeeeecee et A-13
IKM Hive Incremental Update............cooiiiiiiiiiiiiiic e A-14
LKM File to Hive LOAD DATA......ccoiiiiiiiciie et A-14
LKM File to Hive LOAD DATA DIrecCt......ccoceeviiimiiiiiiieieiiceeeece s A-16
LKM Hive to HBase Incremental Update HBASE-SERDE Direct.........ccccooovviviiiniiiinnns A-18
LKM Hive t0 File DiIrect.......ccccoceiiiiiiiiiiiiiiiiiiiiiiiiciiii e A-18
XKM HIVE SOTt....oceiiiiiiiiiiiiiinciecre e A-18
LKM Hive to Oracle OLH-OSCH..........ccocouiiiiimiiiiiiiiiiecscsessenns A-19
LKM File to Oracle OLH-OSCH Direct........cccocoviiiiiiiiiiiiiiiiiiiiiiiiiiiiciciseeeeeseenennns A-22
LKM Hive to Oracle OLH-OSCH........ccccoeiiiiiiiiiiiciiiceeeereeee e A-25
LKM Hive to Oracle OLH-OSCH..........ccocoviiiiiiiiiiiiiiee s A-28

A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
B-1
B-2
B-3
B-4
B-5
B-6
B-7
B-8
B-9
B-10
B-11
B-12
C-1

C-3
C-4
C-5
C-6

C-8

C-9

C-10
C-11
C-12
C-13
C-14
C-15
C-16
C-17
C-18
C-19
C-20
C-21
C-22
C-23
D-1

D-3
D-4

RKM HBase OPHiOnS. ..o A-31

IKM File to Hive Options.........c.cooiiieiiiiiicieiect e A-32
LKM HBase to Hive (HBase-SerDe) Options............ccooiiiiiiiiiiiiiiiccccccnns A-35
IKM Hive to HBase Incremental Update (HBase-SerDe) Options.........cccccecvvuvuvurururunnnne A-35
IKM SQL to Hive-HBase-File (SQOOP) Options........c.cccccvvviriiiiiiniiiiiininiiiiiniccces A-36
IKM Hive Control Append Options.........cccouoiirieiiiiiicieiccie s A-38
CKM HivVe OPtiONS......ccoiiiiiiiiiiiiciiic s A-39
IKM Hive Transform OPtions.......c.ccccucucucucucuiuimiieieieieieieieieeieeneneeieeeereeseesesenesesenesenenenes A-39
IKM File - Hive to Oracle (OLH-OSCH).....ccccectrtriririerienienieriereteietet et A-42
IKM File-Hive to SQL (SQOOP).....c.cruiiiriiiciiriiiierriiecietsiscie s A-45
LKM File t0 Pig....cuoviiiiiiiiiiiciciciie s B-2
LKM Pig t0 File.....ciiiiiiiiiiiiiiiii s B-3
LKM HBaSe t0 Pig....c.cueviiiieieiiiiii s B-5
LKM Pig t0 HBaSe......cocvoiieii s B-6
LKM HiVe t0 Pig...ccvooiiiiiiiiiiiiiiiiiiiiici s B-7
LKM Pig t0 HIVe. ..o B-7
LKM File t0 Pig.....ccoiiiiiiiiiiiii e B-7
XKM Pig AGETegate........cccovviiiiiiiiiiiiiiiiiii s B-9
XKM Pig FIAtteN.....ovieieciii b B-9
XKM PIG JOIN ettt B-10
XKM Pig LOOKUP. c..ccuiiiiiiiiiiiiiicc e B-10
XKM Pig Table FUNCHON.......cccoiiiiiiiiic s B-11
LKM File t0 SPArK......c.ciiiuiieieiicici ettt C-2
LKM File to Spark for Streaming............cccccoceiiiiiiiiiiiiiiiccecccccceceeeennes C-2
LKM SPark t0 File........c.coiiiiiiiiiiiiiirrcee s C-3
LKM Spark to File for Streaming............ccccoeuririniniiicinicecece s C-3
LKM Spark to HIVE......ccccceiiiiiiiiiiiiiiiiiiiiiicciiii e C-4
LKM HDEFS t0 SPark.......cccucuiiiiiiiiiiiiceieeeeeeeeeieieee et C-4
LKM Spark to HDES.........cooiiiiiiiiicicc et C-5
LKM Kafka to Spark for streaming..............ccoooeueieiiiiioiiiiciccccc C-6
LKM Spark to Kafka.........cccoviiiiiiiiiiiiiiiiiiiiis s C-6
LKM SQL t0 SPark......c.ccucucuiuiiiiiieieeieieeiecceee et C-7
LKM Spark t0 SQL......c.oiiiiiii e C-7
XKM Spark Aggregate..........ccciiiiiiiiiiiiiiiiiiiiiise s C-7
XKM Spark Aggregate fOr Streaming...........cccooeiiiiiiiiiiiicceeccceeeeee s C-8
XKM Spark Filter ... C-8
XKM SPATK JOIN..ocuiuiiiiiictete ettt C-9
XKM SPark LOOKUP......cvvuiveiiiiieieiiciciete st C-9
XKM Spark Lookup for Streaming..........c.cccceeueueueueeiiiereeeieieeeceieeeeeeieeieneneneneeenenenenenens C-9
XKM SPark PivOt......ooooiiiiiici e C-10
XKM SPark SOTt....coiiiiiiiiiiiiiiiiinin s C-10
XKM SPATK SPLit. ..ot C-11
XKM Spark Table FUNCHON........cocooiiiiicic C-11
IKM Spark Table FUNCHON.ccooiiieicc e C-11
XKM SPpark UNPIVOt......ccccciiiiiiiiiiiiiiiiict st C-11
XKM Oracle FIQtten.........cccoviiiiiiiiiiiiiiiiics s D-1
XKM Oracle Flatten XIML..........ccccoviviiiiiiiiiiiiiiissssssssssssssssnsne D-1
XKM Spark FIatten........cccccocuiiiiiiiiiiiiiiiiiiiiieicc e D-2

XKM JAZGE. ...ttt D-3

Audience

Preface

This manual describes how to develop Big Data integration projects using Oracle Data
Integrator.

This preface contains the following topics:.
* Audience

* Documentation Accessibility

* Related Documents

e Conventions

This document is intended for anyone interested in using Oracle Data Integrator (ODI)
to develop Big Data integration projects. It provides conceptual information about the
Big Data related features and functionality of ODI and also explains how to use the
ODI graphical user interface to create integration projects.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. conl pl s/t opi ¢/ | ookup?
ct x=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. coni pl s/
t opi ¢/ | ookup?ct x=acc& d=i nfo orvisithttp://ww. oracl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=t r s if you are hearing impaired.

Related Documents

For more information, see the following documents in the Oracle Data Integrator
Library.

® Oracle Fusion Middleware Release Notes for Oracle Data Integrator
* Oracle Fusion Middleware Understanding Oracle Data Integrator

® Oracle Fusion Middleware Developing Integration Projects with Oracle Data Integrator

Xi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://docs.oracle.com/middleware/12212/odi/index.html
http://docs.oracle.com/middleware/12212/odi/index.html

® Oracle Fusion Middleware Administering Oracle Data Integrator

* Oracle Fusion Middleware Installing and Configuring Oracle Data Integrator

® Oracle Fusion Middleware Upgrading Oracle Data Integrator

* Oracle Fusion Middleware Application Adapters Guide for Oracle Data Integrator

® Oracle Fusion Middleware Developing Knowledge Modules with Oracle Data Integrator

® Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle Data
Integrator Developer’s Guide

* Oracle Fusion Middleware Oracle Data Integrator Tools Reference
® Oracle Fusion Middleware Data Services Java API Reference for Oracle Data Integrator
* Oracle Fusion Middleware Open Tools Java API Reference for Oracle Data Integrator

® Oracle Fusion Middleware Getting Started with SAP ABAP BW Adapter for Oracle Data
Integrator

® Oracle Fusion Middleware Java API Reference for Oracle Data Integrator

® Oracle Fusion Middleware Getting Started with SAP ABAP ERP Adapter for Oracle Data
Integrator

® Oracle Data Integrator 12c Online Help, which is available in ODI Studio through the
JDeveloper Help Center when you press F1 or from the main menu by selecting
Help, and then Search or Table of Contents.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xii

1

Big Data Integration with Oracle Data
Integrator

This chapter provides an overview of Big Data integration using Oracle Data
Integrator. It also provides a compatibility matrix of the supported Big Data
technologies.

This chapter includes the following sections:
¢ Overview of Hadoop Data Integration

¢ Big Data Knowledge Modules Matrix

1.1 Overview of Hadoop Data Integration

Apache Hadoop is designed to handle and process data that is typically from data
sources that are non-relational and data volumes that are beyond what is handled by
relational databases.

Oracle Data Integrator can be used to design the 'what' of an integration flow and
assign knowledge modules to define the 'how' of the flow in an extensible range of
mechanisms. The 'how' is whether it is Oracle, Teradata, Hive, Spark, Pig, etc.

Employing familiar and easy-to-use tools and pre-configured knowledge modules
(KMs), Oracle Data Integrator lets you to do the following:

* Load data into Hadoop directly from Files or SQL databases.

For more information, see Integrating Hadoop Data.

¢ Validate and transform data within Hadoop with the ability to make the data
available in various forms such as Hive, HBase, or HDFS.

For more information, see Validating and Transforming Data Within Hive.

* Load the processed data from Hadoop into Oracle database, SQL database, or Files.

For more information, see Integrating Hadoop Data.

¢ Execute integration projects as Oozie workflows on Hadoop.

For more information, see Executing Oozie Workflows with Oracle Data Integrator.

¢ Audit Oozie workflow execution logs from within Oracle Data Integrator.

For more information, see Auditing Hadoop Logs.

* Generate code in different languages for Hadoop, such as HiveQL, Pig Latin, or
Spark Python.

For more information, see Generating Code in Different Languages

Big Data Integration with Oracle Data Integrator 1-1

Big Data Knowledge Modules Matrix

1.2 Big Data Knowledge Modules Matrix

Depending on the source and target technologies, you can use the KMs shown in the
following table in your integration projects. You can also use a combination of these
KMs. For example, to read data from SQL into Spark, you can load the data first in
HDFS using LKM SQL to File Direct,and thenuse LKM File to Spark to
continue.

The Big Data knowledge modules that start with LKM File for example, LKM File to
SQL SQOOP support both OS File and HDEFS File, as described in this matrix. We
provide additional KMs, starting with LKM HDFS to Spark, LKM HDFS File to Hive.
These support HDFS files only, unlike the other KMs, however, they have additional
capabilities, for example, Complex Data can be described in an HDFS data store and
used in a mapping using the flatten component.

The following table shows the Big Data KMs that Oracle Data Integrator provides to
integrate data between different source and target technologies.

Table 1-1 Big Data Knowledge Modules
- - -]

Source Target Knowledge Module
OS File HDFS File NA
Hive LKM File to Hive LOAD DATA Direct
HBase NA
Pig LKM File to Pig
Spark LKM File to Spark
Generic HDFS File LKM SQL to File SQOOP Direct
Sk Hive LKM SQL to Hive SQOOP
HBase LKM SQL to HBase SQOOP Direct
Pig NA
Spark NA
Hadoop HBase RKM HBase
Hive RKM Hive
HDFS Kafka LKM Kafka to Spark
HDFS Spark LKM HDFS to Spark
HDFS File OS File NA
Generic LKM File to SQL SQOOP
SQL

Oracle SQL. LKM File to Oracle OLH-OSCH Direct

HDEFS File NA

1-2 Integrating Big Data with Oracle Data Integrator

Big Data Knowledge Modules Matrix

Table 1-1 (Cont.) Big Data Knowledge Modules
__|

Source Target Knowledge Module
Hive LKM File to Hive LOAD DATA Direct
LKM HDFS File to Hive
LKM HDFS File to Hive (Direct)
HBase NA
Pig LKM File to Pig
Spark LKM File to Spark
Hive OS File LKM Hive to File Direct
Generic LKM Hive to SQL SQOOP
SQL
Oracle SQL LKM Hive to Oracle OLH-OSCH Direct
HDFS File LKM Hive to File Direct
Hive IKM Hive Append
HBase LKM Hive to HBase Incremental Update HBASE-SERDE Direct
Pig LKM Hive to Pig
Spark LKM Hive to Spark
HBase OS File NA
Generic LKM HBase to SQL SQOOP
SQL
Oracle SQL NA
HDFS File NA
Hive LKM HBase to Hive HBASE-SERDE
HBase NA
Pig LKM HBase to Pig
Spark NA
Pig OS File LKM Pig to File
Generic LKM SQL to Pig SQOOP
SQL
Oracle SQL NA
HDFS File LKM Pig to File
Hive LKM Pig to Hive

Big Data Integration with Oracle Data Integrator 1-3

Big Data Knowledge Modules Matrix

Table 1-1 (Cont.) Big Data Knowledge Modules
__|

Source Target Knowledge Module
HBase LKM Pig to HBase
Pig NA
Spark NA

Spark OS File LKM Spark to File
Generic LKM Spark to SQL
SQL
Oracle SQL NA
HDFS File = LKM Spark to File

LKM Spark to HDFS

Hive LKM Spark to Hive
HBase NA
Pig NA
Spark LKM SQL to Spark
Kafka LKM Spark to Kafka

1-4 Integrating Big Data with Oracle Data Integrator

2

Hadoop Data Integration Concepts

The chapter provides an introduction to the basic concepts of Hadoop Data integration
using Oracle Data Integrator.

This chapter includes the following sections:

e Hadoop Data Integration with Oracle Data Integrator

* Generate Code in Different Languages with Oracle Data Integrator
* Leveraging Apache Oozie to execute Oracle Data Integrator Projects
* Oozie Workflow Execution Modes

¢ Lambda Architecture

¢ Spark Checkpointing

e Spark Windowing and Stateful Aggregation

® Spark Repartitioning and Caching

2.1 Hadoop Data Integration with Oracle Data Integrator

Typical processing in Hadoop includes data validation and transformations that are
programmed as MapReduce jobs. Designing and implementing a MapReduce job
requires expert programming knowledge. However, when you use Oracle Data
Integrator, you do not need to write MapReduce jobs. Oracle Data Integrator uses
Apache Hive and the Hive Query Language (HiveQL), a SQL-like language for
implementing MapReduce jobs.

When you implement a big data processing scenario, the first step is to load the data
into Hadoop. The data source is typically in Files or SQL databases.

After the data is loaded, you can validate and transform it by using HiveQL like you
use SQL. You can perform data validation (such as checking for NULLS and primary
keys), and transformations (such as filtering, aggregations, set operations, and derived
tables). You can also include customized procedural snippets (scripts) for processing
the data.

When the data has been aggregated, condensed, or processed into a smaller data set,
you can load it into an Oracle database, other relational database, HDFS, HBase, or
Hive for further processing and analysis. Oracle Loader for Hadoop is recommended
for optimal loading into an Oracle database.

For more information, see Integrating Hadoop Data .

Hadoop Data Integration Concepts 2-1

Generate Code in Different Languages with Oracle Data Integrator

2.2 Generate Code in Different Languages with Oracle Data Integrator

By default, Oracle Data Integrator (ODI) uses HiveQL to implement the mappings.
However, Oracle Data Integrator also lets you to implement the mappings using Pig
Latin and Spark Python. Once your mapping is designed, you can either implement it
using the default HiveQL, or choose to implement it using Pig Latin or Spark Python.

Support for Pig Latin and Spark Python in ODI is achieved through a set of
component KMs that are specific to these languages. These component KMs are used
only when a Pig data server or a Spark data server is used as the staging location for
your mapping.

For example, if you use a Pig data server as the staging location, the Pig related KMs
are used to implement the mapping and Pig Latin code is generated. Similarly, to
generate Spark Python code, you must use a Spark data server as the staging location
for your mapping.

Recommendation is to run Spark applications on yarn. Following this
recommendation ODI only supports yarn-client and yarn-cluster mode execution and
has introduced a runtime check.

In case you are using any other Spark deployment modes, which is not supported in
OD], the following dataserver property must be added to the Spark dataserver:

odi . spar k. enabl eUnsupport edSpar kMbdes = true

For more information about generating code in different languages and the Pig and
Spark component KMs, see the following;:

¢ Pig Knowledge Modules .
® Spark Knowledge Modules .

* Using Query Processing Engines to Generate Code in Different Languages.

2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects

Apache Oozie is a workflow scheduler system that helps you orchestrate actions in
Hadoop. It is a server-based Workflow Engine specialized in running workflow jobs
with actions that run Hadoop MapReduce jobs. Implementing and running Oozie
workflow requires in-depth knowledge of Oozie.

However, Oracle Data Integrator does not require you to be an Oozie expert. With
Oracle Data Integrator you can easily define and execute Oozie workflows.

Oracle Data Integrator allows you to automatically generate an Oozie workflow
definition by executing an integration project (package, procedure, mapping, or
scenario) on an Oozie engine. The generated Oozie workflow definition is deployed
and executed into an Oozie workflow system. You can also choose to only deploy the
Oozie workflow to validate its content or execute it at a later time.

Information from the Oozie logs is captured and stored in the ODI repository along
with links to the Oozie Uls. This information is available for viewing within ODI
Operator and Console.

For more information, see Executing Oozie Workflows.

2-2 Integrating Big Data with Oracle Data Integrator

Oozie Workflow Execution Modes

2.4 Oozie Workflow Execution Modes

ODI provides the following two modes for executing the Oozie workflows:

e TASK
Task mode generates an Oozie action for every ODI task. This is the default mode.

The task mode cannot handle the following;:

— KM s with scripting code that spans across multiple tasks.

— KMs with transactions.

— KMs with file system access that cannot span file access across tasks.
— ODI packages with looping constructs.

¢ SESSION
Session mode generates an Oozie action for the entire session.
ODI automatically uses this mode if any of the following conditions is true:
— Any task opens a transactional connection.
— Any task has scripting.

- A package contains loops.

Note that loops in a package are not supported by Oozie engines and may not
function properly in terms of execution and/or session log content retrieval,
even when running in SESSION mode.

Note:

This mode is recommended for most of the use cases.

By default, the Oozie Runtime Engines use the Task mode, that is, the default value of
the OOZI E_WF_CGEN_MAX_DETAI L property for the Oozie Runtime Engines is TASK.

You can configure an Oozie Runtime Engine to use Session mode, irrespective of
whether the conditions mentioned above are satisfied or not. To force an Oozie
Runtime Engine to generate session level Oozie workflows, set the

OQzI E_WF_GEN_NMAX_DETAI L property for the Oozie Runtime Engine to SESSION.

For more information, see Oozie Runtime Engine Properties.

2.5 Lambda Architecture

Lambda architecture is a data-processing architecture designed to handle massive
quantities of data by taking advantage of both batch and stream processing methods.

In Lambda architecture, the data structure model is used with different technologies.
For example, the data source for the batch implementation can be HDFES, whereas the
streaming implementation can read data from Kafka. In ODI this is represented by
using Generic Technologies like Generic File and Generic SQL.

Hadoop Data Integration Concepts 2-3

Spark Checkpointing

2.6 Spark Checkpointing

A streaming application must operate 24/7 and hence should be resilient to failures.
Spark Streaming needs to checkpoint information to a fault tolerant storage system so
that it can recover from failures.

Checkpointing is enabled for applications recovering from failures of the driver
running the application. Checkpointing only ensures that the Spark application will
restart from where it left if a checkpoint is found.

For additional information on checkpointing refer to Spark Streaming Programming
Guide.

2.7 Spark Windowing and Stateful Aggregation

Spark's Windowing feature allows aggregation (and other transformations) to be
applied not just to the current RDD, but also include data from a number of previous
RDDs (window duration).

The Spark KMs support batch as well as streaming transformations. While the Python
code for non-streaming operates on RDD objects, the streaming code works on
DStream objects. Aggregation in batch mode is simple: there is a single set of input
records (RDD), which are aggregated to form the output data, which is then written
into some target. In streaming mode the continuously incoming data is discretized into
a flow of RDDs. By default each RDD is aggregated independently.

Spark windowing works well for calculating things like running sum or running
averages. But it comes with two restrictions:

e QOlder RDDs must be retained

¢ Data falling into the window is recalculated for every new RDD.

This is the reason why windowing is not suitable for aggregation across an entire data
stream. This can only be achieved by stateful aggregation.

Windowing enabled KMs have the following optional KM Options:

¢ Window Duration: Time in seconds RDDs are combined to produce the RDDs of
the windowed DStream

¢ Sliding Interval: Interval at which the window operation is performed.
Windowing is supported by:

e XKM Spark Aggregation

e XKM Spark Join

For additional information, refer to Spark Streaming Programming Guide.

Stateful Aggregation

When data must be aggregated across all data of a stream, stateful aggregation is
required. In stateful aggregation Spark builds called state stream containing the
aggregated values for all keys. For every incoming RDD this state is updated, for
example aggregated sums are updated based on new incoming data.

By default a state stream will output all stored values for every incoming RDD. This is
useful in case the stream output is a file and the file is expected to always hold the
entire set of aggregate values.

2-4 Integrating Big Data with Oracle Data Integrator

http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
http://spark.apache.org/docs/latest/streaming-programming-guide.html#checkpointing
https://spark.apache.org/docs/1.6.3/streaming-programming-guide.html#window-operations

Spark Repartitioning and Caching

Stateful processing is supported by:
¢ XKM Spark Aggregate
e XKM Spark Lookup

2.8 Spark Repartitioning and Caching
Caching
In ODI, we leverage on the Spark caching mechanism by providing two additional

Spark base KM options.

* Cache data: If this option set to true a storage invocation is added to the generated
pyspark code of the component.

* Cache storage level: This option is hidden if cache data is set to false.
Repartitioning

The number of partitions initially determined by the data block and if the source is
HDFS file, the platform runs the Spark application has more available slots for
running tasks than number of partitions is loaded, then the platform resource is not
fully used.

The repartition can be done in any step of the whole process, it can be done
immediately after data is loaded from source or after processing of filter component.
In ODI there are Spark base KM options for you to decide whether and where to do
repartition.

¢ Repartition

: If this option set to true, repartition is applied after the transformation of
component.

e Level of Parallelism

: Number of partitions and the default is 0.

* Sort Partitions: If this option is set to true, partitions are sorted by key and the key
is defined by a Lambda function.

¢ Partitions Sort Order: Ascending or descending. Default is ascending.

* Partition Key Function: User defined key of partitions and the key definition must
be a comma separated column list.

¢ Partition Function: User defined partition Lambda function. Default value is a
pyspark defined hash function por t abl e_hash, which simple compute a hash
base on entire row of RDD.

2.9 Kafka Integration with Oracle Data Integrator

A Kafka cluster consists of one to many Kafka brokers handling and storing messages.
Messages are organized into topics and physically broken down into topic partitions.
Kafka producers connect to a cluster and feed messages into a topic. Kafka consumers
connect to a cluster and receive messages from a topic.

All messages on a specific topic need not have the same message format, it is good
practice to use only a single message format per topic. Kafka is integrated into ODI as
a new technology.

Hadoop Data Integration Concepts 2-5

Kafka Integration with Oracle Data Integrator

2-6 Integrating Big Data with Oracle Data Integrator

3

Setting Up the Environment for Integrating

Hadoop Data

This chapter provides information steps you need to perform to set up the
environment to integrate Hadoop data.

This chapter includes the following sections:

¢ Configuring Big Data technologies using the Big Data Configurations Wizard
¢ Creating and Initializing the Hadoop Data Server

* Creating a Hadoop Physical Schema

¢ Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs

* Configuring Oracle Loader for Hadoop

¢ Configuring Oracle Data Integrator to Connect to a Secure Cluster

¢ Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local
Agent

3.1 Configuring Big Data technologies using the Big Data Configurations

Wizard

The Big Data Configurations wizard provides a single entry point to set up multiple
Hadoop technologies. You can quickly create data servers, physical schema, logical
schema, and set a context for different Hadoop technologies such as Hadoop, HBase,
Oozie, Spark, Hive, Pig, etc.

The default metadata for different distributions, such as properties, host names, port
numbers, etc., and default values for environment variables are pre-populated for you.
This helps you to easily create the data servers along with the physical and logical
schema, without having in-depth knowledge about these technologies.

After all the technologies are configured, you can validate the settings against the data
servers to test the connection status.

Note:

If you do not want to use the Big Data Configurations wizard, you can set up
the data servers for the Big Data technologies manually using the information
mentioned in the subsequent sections.

To run the Big Data Configurations Wizard:

Setting Up the Environment for Integrating Hadoop Data 3-1

Configuring Big Data technologies using the Big Data Configurations Wizard

1. In ODI Studio, select File and click New... or
Select Topology tab — Topology Menu — Big Data Configurations.

2. In the New Gallery dialog, select Big Data Configurations and click OK.
The Big Data Configurations wizard appears.

3. In the General Settings panel of the wizard, specify the required options.
See General Settings for more information.

4. Click Next.

Data server panel for each of the technologies you selected in the General Settings
panel will be displayed.

5. In the Hadoop panel of the wizard, do the following:

® Specify the options required to create the Hadoop data server.

See Hadoop Data Server Definition for more information.
* In Properties section, click the + icon to add any data server properties.

e Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

6. Click Next.
7. In the HDFS panel of the wizard, do the following:

® Specify the options required to create the HDFS data server.

See HDFS Data Server Definition for more information.
* In the Properties section, click + icon to add any data server properties.

® Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

8. Click Next.
9. In the HBase panel of the wizard, do the following:

* Specify the options required to create the HBase data server.

See HBase Data Server Definition for more information.
¢ In the Properties section, click + icon to add any data server properties.

* Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

10. In the Spark panel of the wizard, do the following:

* Specify the options required to create the Spark data server.

See Spark Data Server Definition for more information.

¢ In the Properties section, click + icon to add any data server properties.

3-2 Integrating Big Data with Oracle Data Integrator

Configuring Big Data technologies using the Big Data Configurations Wizard

® Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

11. Click Next.
12.In the Kafka panel of the wizard, do the following:

® Specify the options required to create the Kafka data server.

See Kafka Data Server Definition for more information.
¢ In the Properties section, click + icon to add any data server properties.

® Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

13. Click Next.
14.In the Pig panel of the wizard, do the following:

* Specify the options required to create the Pig data server.

See Pig Data Server Definition for more information.
¢ In the Properties section, click + icon to add any data server properties.

® Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

15. Click Next.
16. In the Hive panel of the wizard, do the following:

* Specify the options required to create the Hive data server.

See Hive Data Server Definition for more information.
¢ In the Properties section, click + icon to add any data server properties.

® Select a logical schema, physical schema, and a context from the appropriate
drop-down lists.

17.Click Next.
18.In the Oozie panel of the wizard, do the following:

* Specify the options required to create the Oozie runtime engine.

See Oozie Runtime Engine Definition for more information.

¢ Under Properties section, review the data server properties that are listed.

Note: You cannot add new properties or remove listed properties. However, if
required, you can change the value of listed properties.

See Oozie Runtime Engine Properties for more information.
® Select a logical agent and a context from the appropriate drop-down lists.
19. Click Next.

20.In the Validate all the settings panel, click Test All Settings to validate the settings
against the data servers to ensure the connection status.

Setting Up the Environment for Integrating Hadoop Data 3-3

Configuring Big Data technologies using the Big Data Configurations Wizard

21.Click Finish.

3.1.1 General Settings

The following table describes the options that you need to set on the General Settings
panel of the Big Data Configurations wizard.

Table 3-1 General Settings Options
- __|

Option Description

Prefix Specify a prefix. This prefix is attached to the data server name,
logical schema name, and physical schema name.

Distribution Select a distribution, either Manual or CDH <version>.

Base Directory Specify the base directory. This base directory is automatically
populated in all other panels of the wizard.

Note: This option appears only if the distribution is other than

Manual.
Distribution Type Select a distribution type, either Normal or Kerberized.
Technologies Select the technologies that you want to configure.

Note: Data server creation panels only for the selected
technologies are displayed.

Configuring Big Data technologies using the Big Data Configurations Wizard.

3.1.2 HDFS Data Server Definition

The following table describes the options that you must specify to create a HDFS data
server.

Note: Only the fields required or specific for defining a HDFS data server are
described.

Table 3-2 HDFS Data Server Definition
|

Option Description

Name Type a name for the data server. This name appears in Oracle Data
Integrator.

User/Password User name with its password.

Hadoop Data Server = Hadoop data server that you want to associate with the HDFS data
server.

Additional Classpath Specify additional classpaths.

3.1.3 HBase Data Server Definition

The following table describes the options that you must specify to create an HBase
data server.

3-4 Integrating Big Data with Oracle Data Integrator

Configuring Big Data technologies using the Big Data Configurations Wizard

Note: Only the fields required or specific for defining a HBase data server are

described.

Table 3-3 HBase Data Server Definition

Option

Description

Name

HBase Quorum

User/Password

Hadoop Data Server

Additional Classpath

Type a name for the data server. This name appears in Oracle
Data Integrator.

Quorum of the HBase installation. For example, | ocal host :
2181.

User name with its password.

Hadoop data server that you want to associate with the HBase
data server.

By default, the following classpaths are added:
e /[usr/lib/hbase/*

e usr/lib/hbase/lib/*

Specify the additional classpaths, if required.

Configuring Big Data technologies using the Big Data Configurations Wizard.

3.1.4 Kafka Data Server Definition

The following table describes the options that you must specify to create a Kafka data

server.

Note: Only the fields required or specific for defining a Kafka data server are

described.

Table 3-4 Kafka Data Server Definition

Option Description

Name Type a name for the data server. This name appears in Oracle Data
Integrator.

User/Password User name with its password.

Hadoop Data Server =~ Hadoop data server that you want to associate with the Kafka data
server.

Additional Classpath The following additional classpaths are added by default:

e /opt/clouderalparcel s/COH |i b/ kaf ka/libs/*

e /opt/clouderal/parcel s/CDH |ib/base dir
basedir/1i b/ kaf ka/li bs/*

If required, you can add more additional classpaths.

Note: This field appears only when you are creating the Kafka Data
Server using the Big Data Configuration wizard.

Setting Up the Environment for Integrating Hadoop Data 3-5

Creating and Initializing the Hadoop Data Server

3.1.5 Kafka Data Server Properties

The following table describes the Kafka data server properties that you need to add on
the Properties tab when creating a new Kafka data server.

Table 3-5 Kafka Data Server Properties
|

Key Value

metadata.broker.l There are two values, PLAINTTEXT or SASL_PLAINTTEXT.

ist SASL_PLAINTTEXT is used for Kerberized Kafka server. Default value
is PLAINTTEXT.

oracle.odi.prefer.d Retrieves the topic and message from Kafka server. The address is
ataserver.package oracle.odi.
s

3.2 Creating and Initializing the Hadoop Data Server
To create and initialize the Hadoop data server:
1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hadoop and then
click New Data Server.

3. In the Definition tab, specify the details of the Hadoop data server.
See Hadoop Data Server Definition for more information.

4. In the Properties tab, specify the properties for the Hadoop data server.
See Hadoop Data Server Properties for more information.

5. Click Initialize to initialize the Hadoop data server.

Initializing the Hadoop data server creates the structure of the ODI Master
repository and Work repository in HDFS.

6. Click Test Connection to test the connection to the Hadoop data server.

3.2.1 Hadoop Data Server Definition

The following table describes the fields that you must specify on the Definition tab
when creating a new Hadoop data server.

Note: Only the fields required or specific for defining a Hadoop data server are
described.

Table 3-6 Hadoop Data Server Definition
- -]

Field Description
Name Name of the data server that appears in Oracle Data Integrator.
Data Server Physical name of the data server.

3-6 Integrating Big Data with Oracle Data Integrator

Creating and Initializing the Hadoop Data Server

Table 3-6 (Cont.) Hadoop Data Server Definition

Field

Description

User/Password

Authentication Method

HDFS Node Name URI
Resource Manager/Job
Tracker URI

ODI HDFS Root

Additional Class Path

Hadoop user with its password.

If password is not provided, only simple authentication is
performed using the username on HDFS and Oozie.

Select one of the following authentication methods:
e Simple Username Authentication

¢ Kerberos Principal Username/Password
e Kerberos Credential Cache

URI of the HDFS node name.
hdfs:/ /1 ocal host: 8020

URI of the resource manager or the job tracker.
| ocal host: 8032

Path of the ODI HDFS root directory.
/ user/ <l ogi n_user name>/ odi _hone.

Specify additional classpaths.

Add the following additional classpaths:
e /usr/lib/hadoop/*

e /usr/lib/hadoop/lib/*

e /usr/lib/hadoop-hdfs/*

e /usr/lib/hadoop- mapreduce/*
e /usr/lib/hadoop-yarn/*

e Jusr/lib/looziellibl/*

e /etc/hadoop/conf/

Creating and Initializing the Hadoop Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard.

3.2.2 Hadoop Data Server Properties

The following table describes the properties that you can configure in the Properties
tab when defining a new Hadoop data server.

Note: These properties can be inherited by other Hadoop technologies, such as Hive or
HDEFS. To inherit these properties, you must select the configured Hadoop data server
when creating data server for other Hadoop technologies.

Table 3-7 Hadoop Data Server Properties Mandatory for Hadoop and Hive

Property

Description/Value

HADOOP_HOME

HADOOP_CONF

Location of Hadoop dir. For
example, / usr/1i b/ hadoop

Location of Hadoop configuration files such
as core-default.xml, core-site.xml, and hdfs-
site.xml. For example, / horre/ shar ed/
hadoop- conf

Setting Up the Environment for Integrating Hadoop Data 3-7

Creating and Initializing the Hadoop Data Server

Table 3-7 (Cont.) Hadoop Data Server Properties Mandatory for Hadoop and Hive

Property Description/Value

HIVE_HOME Location of Hive dir. For
example, / usr/1i b/ hive

HIVE_CONF Location of Hive configuration files such as
hive-site.xml. For example, / horre/ shar ed/
hi ve- conf

HADOOP_CLASSPATH $HI VE_HOWE/ | i b/ hi ve- net ast or e-

*_ jar: $H VE_HOME/ 1 ib/1ibthrift-
* jar:$H VE_HOVE/ i b/ 1ibfb*.jar:
$HI VE_HOVE/ | i b/ hi ve- exec-*.j ar:
$H VE_CONF

HADOOP_CLIENT_OPTS - Dl og4j . debug -
Dhadoop. r oot . | ogger =I NFO, consol e
-Dlog4j.configuration=file:/etc/
hadoop/ conf. cl ouder a. yarn/
| og4j . properties

ODI_ADDITIONAL_CLASSPATH $H VE_HOWE/ | i b/ ' *' : $HADOOP_HOVE/
client/*: $HADOOP_CONF
HIVE_SESSION_JARS $H VE_HOWE/ | i b/ hi ve-contri b-
* jar:<CODl library directory>/
w hive.jar

e Actual path of W hi ve. j ar canbe
determined under ODI installation home.
¢ Include other JAR files as required, such
as custom SerDes JAR files. These JAR
files are added to every Hive JDBC
session and thus are added to every Hive
MapReduce job.
¢ List of JARs is separated by ":", wildcards
in file names must not evaluate to more
than one file.
¢ Follow the steps for Hadoop Security
models, such as Apache Sentry, to allow
the Hive ADD JAR call used inside ODI
Hive KMs:
— Define the environment variable
HIVE_SESSION_JARS as empty.
— Add all required jars for Hive in the
global Hive configuration hive-
site.xml.

Table 3-8 Hadoop Data Server Properties Mandatory for HBase (In addition to base
Hadoop and Hive Properties)

Property Decription/Value

HBASE_HOME Location of HBase dir. For
example, / usr/ | i b/ hbase

3-8 Integrating Big Data with Oracle Data Integrator

Creating and Initializing the Hadoop Data Server

Table 3-8 (Cont.) Hadoop Data Server Properties Mandatory for HBase (In addition

to base Hadoop and Hive Properties)

Property

Decription/Value

HADOOP_CLASSPATH

ODI_ADDITIONAL_CLASSPATH

HIVE_SESSION_JARS

$HBASE_HOWE/ | i b/ hbase-*.j ar:
$H VE_HOVE/ | i b/ hi ve- hbase-
handl er *. j ar : $HBASE_HOVE/
hbase. j ar

$HBASE_HOME/ hbase. j ar

$HBASE_HOWE/ hbase. j ar:
$HBASE_HOWE/ | i b/ hbase- sep- api -
*.jar: $HBASE_HOWE | i b/ hbase- sep-
i mpl -*hbase*.jar:/

$HBASE_HOVE/ | i b/ hbase- sep-i npl -
comon-*. j ar:/ $HBASE_HOVE/ | i b/
hbase-sep-tool s-*.jar:

$H VE_HOWE/ | i b/ hi ve- hbase-

handl er-*.jar

Note:

Follow the steps for Hadoop Security models,

such as Apache Sentry, to allow the Hive

ADD JAR call used inside ODI Hive KMs:

* Define the environment variable
HIVE_SESSION_JARS as empty.

* Add all required jars for Hive in the
global Hive configuration hive-site.xml.

Table 3-9 Hadoop Data Server Properties Mandatory for Oracle Loader for Hadoop
(In addition to base Hadoop and Hive properties)

Property Description/Value

OLH_HOME Location of OLH installation. For
example, / u01/ connect ors/ ol h

OLH_FILES usr/lib/hivellibl/hive-
contrib-1.1.0-cdh5.5.1.jar

ODCH_HOME Location of OSCH installation. For

HADOOP_CLASSPATH

example, / u01/ connect or s/ osch

$OLH_HOVE/ j | i b/ *: $OSCH_HOVE/
jlibl*

In order to work with OLH, the Hadoop jars
in the HADOOP_CLASSPATH have to be
manually resolved without wildcards.

Setting Up the Environment for Integrating Hadoop Data 3-9

Creating a Hadoop Physical Schema

Table 3-9 (Cont.) Hadoop Data Server Properties Mandatory for Oracle Loader for
Hadoop (In addition to base Hadoop and Hive properties)

Property Description/Value

OLH_JARS Comma-separated list of all JAR files
required for custom input formats, Hive,
Hive SerDes, and so forth, used by Oracle
Loader for Hadoop. All filenames have to be
expanded without wildcards.

For example:

$H VE_HOWE/ | i b/ hi ve-

met ast ore- 0. 10. 0-cdh4.5.0.j ar,
$H VE_HOVE/ l'i b/1ibthrift-0.9.0-
cdh4-1.jar, $H VE_HOVE/ | i b/

I'i bf b303-0.9.0.jar

OLH_SHAREDLIBS $OLH HOVE/ | i b/ l'i bol h12. so,
$OLH HOVE/ |i b/ I'i bel nt sh. so.
12. 1, $OLH HOVE/ i b/ 1'i bnnz12. so,
$OLH HOVE/ | i b/ l'i boci ei . so,
$OLH HOVE/ |i b/ l'i bcl ntshcore. so.
12. 1, $OLH HOVE/ i b/ 1 i bons. so

ODI_ADDITIONAL_CLASSPATH $OSCH_HOVE/ j i b/ *"

Table 3-10 Hadoop Data Server Properties Mandatory for SQOOP (In addition to
base Hadoop and Hive properties)

Property Description/Value

SQOOP_HOME Location of Sqoop dir. For
example, / usr/1i b/ sqoop

SQOOP_LIBJARS Location of the SQOOP library jars. For
example, usr/ | i b/ hive/li b/ hive-
contrib-1.1.0-cdh5.5.1.jar

Creating and Initializing the Hadoop Data Server

3.3 Creating a Hadoop Physical Schema

Create a Hadoop physical schema using the standard procedure, as described in
Creating a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs

You must configure the Oracle Data Integrator agent to execute Hadoop jobs.

To configure the Oracle Data Integrator agent:

1. Install Hadoop on your Oracle Data Integrator agent computer.

3-10 Integrating Big Data with Oracle Data Integrator

Configuring Oracle Loader for Hadoop

For Oracle Big Data Appliance, see Oracle Big Data Appliance Software User’s Guide
for instructions for setting up a remote Hadoop client.

2. Install Hive on your Oracle Data Integrator agent computer.
3. Install SQOOP on your Oracle Data Integrator agent computer.
4. Set the base properties for Hadoop and Hive on your ODI agent computer.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

5. If you plan to use HBase features, set the properties on your ODI agent computer.
Note that you need to set these properties in addition to the base Hadoop and Hive
properties.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

3.5 Configuring Oracle Loader for Hadoop

If you want to use Oracle Loader for Hadoop, you must install and configure Oracle
Loader for Hadoop on your Oracle Data Integrator agent computer.

To install and configure Oracle Loader for Hadoop:

1. Install Oracle Loader for Hadoop on your Oracle Data Integrator agent computer.
See Installing Oracle Loader for Hadoop in Oracle Big Data Connectors User’s Guide.

2. To use Oracle SQL Connector for HDFS (OLH_OQUTPUT _MODE=DP_OSCH or OSCH),
you must first install it.

See Oracle SQL Connector for Hadoop Distributed File System Setup in Oracle Big
Data Connectors User’s Guide.

3. Set the properties for Oracle Loader for Hadoop on your ODI agent computer.
Note that you must set these properties in addition to the base Hadoop and Hive
properties.

These properties must be added as Hadoop data server properties. For more
information, see Hadoop Data Server Properties.

3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster

To run the Oracle Data Integrator agent on a Hadoop cluster that is protected by
Kerberos authentication, you must configure a Kerberos-secured cluster.

To use a Kerberos-secured cluster:

1. Log in to the node04 of the Oracle Big Data Appliance, where the Oracle Data
Integrator agent runs.

2. Set the environment variables by using the following commands. Substitute the
appropriate values for your appliance:

$ export KRB5CCNAME=Ker beros-ticket-cache-directory
$ export KRB5_CONFI G=Ker beros-configuration-file

Setting Up the Environment for Integrating Hadoop Data 3-11

Configuring Oracle Data Integrator to Connect to a Secure Cluster

$ export HADOOP_OPTS="$HADOOP_OPTS -

D avax. xm . par sers. Docunent Bui | der Fact or y=com sun. or g. apache.
xerces.internal. jaxp.DocunentBuil derFactoryl npl -

Oy ava. security. krb5. conf =Ker ber os-confi gurati on-file"

In this example, the configuration files are named krb5* and are located in /tmp/
oracle_krb/:

$ export KRB5CCNAME=/t np/ oracl e_kr b/ krb5cc_1000
$ export KRB5_CONFI G=/t np/ or acl e_kr b/ kr b5. conf

$ export HADOOP_OPTS="$HADOOP_OPTS -D

j avax. xml . par sers. Docunent Bui | der Fact or y=com sun. or g. apache. x
erces.internal. jaxp.DocunmentBuil derFactorylmpl -D

j ava. security. krb5. conf=/tnp/oracl e_krb/krb5. conf"

3. Generate a new Kerberos ticket for the oracle user. Use the following command,
replacing realm with the actual Kerberos realm name.

$ kinit oracle@eal m

4. ODI Studio: To set the VM for ODI Studio , we need to add AddVmoption in
odi . conf in the same folder as odi . sh.

Kerberos configuration file location:

AddVMOpti on - Dj ava. security. krb5. conf =/ et ¢/ krb5. conf
AddVMOpti on - Dsun. security. krb5. debug=t r ueAddVMOpti on -
Dsun. security. krb5. princi pal =odi deno

5. Redefine the JDBC connection URL, using syntax like the following:

Table 3-11 Kerberos Configuration for Dataserver

Technolo Configuration Example
ay

Hadoop No specific configuration to be done, general settings
is sufficient.

3-12 Integrating Big Data with Oracle Data Integrator

Configuring Oracle Data Integrator to Connect to a Secure Cluster

Table 3-11 (Cont.) Kerberos Configuration for Dataserver

___|
Technolo Configuration

aqy

Example

Hive

HBase

$MW HOWE/ or acl e_common/ nodul es/
dat adi rect/ JDBCDr i ver Logi n. conf

export HBASE HOME=/ scrat ch/ shi xu/ et ¢/ hbase/
conf

export HBASE_CONF_DI R = $HBASE_HOME/ conf
export HBASE_OPTS ="-

Dj ava. security. auth.login. config=
$HBASE_CONF_DI R/ hbase-cl i ent. j aas"export
HBASE_MASTER OPTS ="-

Dj ava. security. auth.login. config=

$HBASE CONF_DI R/ hbase- server. j aas"

ODI Studio Configuration:

AddvVMDpti on -
Dj ava. security. auth.login.config=
$HBASE _CONF_DI R/ hbase-client.jaas"

Example of
configuration file

JDBC DRI VER 01 {

com sun. security. aut
h. modul e. Krb5Logi nvb
dul e required
debug=t rue

useTi cket Cache=true
ticket Cache="/t np/
krb5cc_500"

doNot Pronpt =t r ue

b

Example of Hive URL
j dbc: webl ogi c: hi
ve://

sl c05j vn. us. orac
| e.com

10000; Dat abaseNa
me=def aul t ; Aut he
nticati onMet hod=
ker ber os; Servi ce
Pri nci pal Name=hi
vel

sl c05j vn. us. orac
| e. com@US. ORACLE
. CoMm

Example of Hbase
configuration file:

hbase-client.jaas
Cient {

com sun. security. aut
h. modul e. Kr b5Logi nhVb
dul e required
useKeyTab=f al se
useTi cket Cache=t r ue;

b

Setting Up the Environment for Integrating Hadoop Data 3-13

Configuring Oracle Data Integrator to Connect to a Secure Cluster

Table 3-11 (Cont.) Kerberos Configuration for Dataserver
]

Technolo Configuration Example
ay
Spark Spark Kerberos configuration is done through spark ~ Example of spark-
submit parameters submit command:
--principal // define principle name spark-subnmit --
--keytab Il 1ocation of keytab file master yarn --py-
files [tnp/

pyspark_ext.py --
executor-nemory 1G

--driver-nenory
512M - - execut or -
cores 1 --driver-
cores 1 --num
executors 2 --
princi pal

shi xu@JS. ORACLE. com
--keytab /tnp/
shixu.tab --queue
default /tnp/
New_Mappi ng_Physi cal
- py

. I'bi n/ spar k- submi t
--class

org. apache. spark. exa
mpl es. SparkPi - -
mast er yarn-cl uster
--numexecutors 1 --
driver-nenory 512m
--execut or - menory
512m - - execut or -
cores 1 |ib/spark-
exanpl es*.jar 10

3-14 Integrating Big Data with Oracle Data Integrator

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

Table 3-11 (Cont.) Kerberos Configuration for Dataserver
]

Technolo Configuration Example

gy

Kafka Kafka Kerberos configuration is done through kafka- Example of Kafka
client.jaas file: The configuration file is placed in configuration file:

Kafka configuration folder.)
Kaf kaClient {

com sun. security. aut
h. modul e. Krb5Logi nvb
dule required
useKeyTab=f al se
useTi cket Cache=true
ti cket Cache="/t np/
krb5cc_1500"

servi ceNane="kaf ka";

b

The location of Kafka
configuration file is set
in ODI Studio VM
option

AddVMOpt i on -

Dj ava. security.a
ut h. 1 ogin.config

=/ scratch/
shi xu/ et ¢/ kaf ka-
j aas. conf"

Pig/ Pig and Ooize will extend the Kerberos configuration

Oozie of linked Hadoop data server and does not require

specific configuration.

See also, "HiveServer2 Security Configuration” in the CDH5 Security Guide at the
following URL:

http://ww. cl oudera. com cont ent/cl ouder a- cont ent/ cl ouder a-
docs/ CDH5/ | at est / CDH5- Secur i ty- Gui de/
cdh5sg_hi veserver2_security. htm

6. Renew the Kerberos ticket for the Oracle use on a regular basis to prevent
disruptions in service.

7. Download the unlimited strength JCE security jars.

See Oracle Big Data Appliance Software User’s Guide for instructions about managing
Kerberos on Oracle Big Data Appliance.

3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs
on the Local Agent

For executing Hadoop jobs on the local agent of an Oracle Data Integrator Studio
installation, follow the configuration steps in the Configuring the Oracle Data
Integrator Agent to Execute Hadoop Jobs with the following change: Copy JAR files
into the Oracle Data Integrator user | i b directory.

For example:

Setting Up the Environment for Integrating Hadoop Data 3-15

http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html
http://www.cloudera.com/content/cloudera-content/cloudera-docs/CDH5/latest/CDH5-Security-Guide/cdh5sg_hiveserver2_security.html

Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

Linux: $USER_HOME/ . odi / or acl edi / user| i b directory.

Windows: C: \ User s\ <USERNAME>\ AppDat a\ Roam ng\ odi \ oracl edi\userlib
directory

3-16 Integrating Big Data with Oracle Data Integrator

A

Integrating Hadoop Data

This chapter provides information about the steps you need to perform to integrate
Hadoop data.

This chapter includes the following sections:
¢ Integrating Hadoop Data

* Setting Up File Data Sources

* Setting Up HDFS Data Sources

e Setting Up Hive Data Sources

* Setting Up HBase Data Sources

* Setting Up Kafka Data Sources

* Setting Up Cassandra Data Sources

¢ Importing Hadoop Knowledge Modules

® Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase,
and HDFS Models

* Loading Data from Files into Hive

¢ Loading Data from Hive to Files

¢ Loading Data from HBase into Hive

¢ Loading Data from Hive into Hbase

* Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
¢ Loading Data from an SQL Database into Hive using SQOOP

* Loading Data from an SQL Database into File using SQOOP

* Loading Data from an SQL Database into HBase using SQOOP

¢ Validating and Transforming Data Within Hive

* Loading Data into an Oracle Database from Hive and File

* Loading Data into an SQL Database from Hbase, Hive and File using SQOOP

¢ Loading Data from Kafka to Spark

Integrating Hadoop Data 4-1

Integrating Hadoop Data

4.1 Integrating Hadoop Data

The following table summarizes the steps for integrating Hadoop data.

Table 4-1 Integrating Hadoop Data

Step

Description

Set Up Data Sources

Import Hadoop Knowledge
Modules

Create Oracle Data
Integrator Models

Integrate Hadoop Data

Set up the data sources to create the data source models. You
must set up File, Hive, HDFS, and HBase data sources.

See Setting Up File Data Sources

See Setting Up Hive Data Sources

See Setting Up HBase Data Sources

See Setting Up Kafka Data Sources

See Setting Up Cassandra Data Sources
See Setting Up HDFS Data Sources

Import the Hadoop KMs into Global Objects or a project.
See Importing Hadoop Knowledge Modules

Reverse-engineer the Hive and HBase models to create Oracle
Data Integrator models.

See Creating a Oracle Data Integrator Model from a Reverse-
Engineered Hive, HBase, and HDFS Models

Design mappings to load, validate, and transform Hadoop data.
See Loading Data from Files into Hive

See Loading Data from HBase into Hive

See Loading Data from Hive into Hbase

See Loading Data from an SQL Database into Hive, HBase, and
File using SQOOP

See Validating and Transforming Data Within Hive
See Loading Data into an Oracle Database from Hive and File

See Loading Data into an SQL Database from Hbase, Hive and
File using SQOOP

See Loading Data from Kafka to Spark

See Loading Data from HDFS File to Hive
See Loading Data from HDFS File to Spark
See Loading Data from Hive to Files

4.2 Setting Up File Data Sources

In the Hadoop context, there is a distinction between files in Hadoop Distributed File
System (HDFS) and local files (outside of HDES).

To define a data source:

1. Create a Data Server object under File technology.

2. Create a Physical Schema object for every directory to be accessed.

3. Create a Logical Schema object for every directory to be accessed.

4-2 Integrating Big Data with Oracle Data Integrator

Setting Up HDFS Data Sources

4. Create a Model for every Logical Schema.

5. Create one or more data stores for each different type of file and wildcard name
pattern.

6. For HDFS files, create a Data Server object under File technology by entering the
HDFS name node in the field JDBC URL and leave the JDBC Driver name empty.
For example:

hdfs: //bdalnode0l. exanpl e. com 8020

Test Connection is not supported for this Data Server configuration.

Note:
No dedicated technology is defined for HDFS files.

Integrating Hadoop Data

4.3 Setting Up HDFS Data Sources

This topic provides steps in Oracle Data Integrator that are required for connecting to
a HDFS system.

1. Create a Data Server object under HDFS technology.

Note: HDFS data server should reference an existing Hadoop data server.

2. Create a Physical Schema object for every directory to be accessed.
3. Create a Logical Schema object for every directory to be accessed.
4. Create a Model for every Logical Schema

5. Create one or more data stores for each different type of file.

The definition tab has a Resource Name field that allows you to specify which file
or files it represents. If wildcards are used, the files must have the same schema
and be of the same format (all JSON or all Avro).

6. Select the appropriate Storage Format and the Schema File.
The contents of the schema are displayed.

7. Select the Attributes Tab to either enter, or reverse engineer the Attributes from
the supplied schema.

4.4 Setting Up Hive Data Sources

The following steps in Oracle Data Integrator are required for connecting to a Hive
system. Oracle Data Integrator connects to Hive by using JDBC.

Prerequisites

The Hive technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in | NSERT_UPDATE mode from
the xnl - r ef er ence directory.

Integrating Hadoop Data 4-3

Setting Up HBase Data Sources

To set up a Hive data source:

1.

2.

8.

9.

Create a Data Server object under Hive technology.

Set the following locations under JDBC:
JDBC Driver: webl ogi c. j dbc. hi ve. Hi veDri ver

JDBC URL: j dbc: webl ogi c: hi ve: // <host >: <port >[;
property=value[;...]]

For example, j dbc: webl ogi c: hive://| ocal host :
10000; Dat abaseNane=def aul t ; User =def aul t ; Passwor d=def aul t

Note:

Usually User ID and Password are provided in the respective fields of an ODI
Data Server. In case where a Hive user is defined without password, you must
add passwor d=def aul t as part of the JDBC URL and the password field of
Data Server shall be left blank.

Set the following under on the definition tab of the data server:

Hive Metastore URIs: for example, t hri ft:// BDA: 10000
Ensure that the Hive server is up and running.
Test the connection to the Data Server.

Create a Physical Schema. Enter the name of the Hive schema in both schema
fields of the Physical Schema definition.

Create a Logical Schema object.
Import RKM Hive into Global Objects or a project.

Create a new model for Hive Technology pointing to the logical schema.

10. Perform a custom reverse-engineering operation using RKM Hive.

Reverse engineered Hive table populates the attribute and storage tabs of the data
store.

Integrating Hadoop Data

4.5 Setting Up HBase Data Sources

The following steps in Oracle Data Integrator are required for connecting to a HBase
system.

Prerequisites

The HBase technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in | NSERT_UPDATE mode from
the xml-reference directory.

To set up a HBase data source:

1.

Create a Data Server object under HBase technology.

4-4 Integrating Big Data with Oracle Data Integrator

Setting Up Kafka Data Sources

JDBC Driver and URL are not available for data servers of this technology.

2. Set the following under on the definition tab of the data server:

HBase Quorum: Quorum of the HBase installation. For example:
zkhost 1. mydonai n. com zkhost 2. mydonai n. com zkhost 3. nydomnai n. ¢
om

3. Ensure that the HBase server is up and running.

Note:

You cannot test the connection to the HBase Data Server.

4. Create a Physical Schema.

5. Create a Logical Schema object.

6. Import RKM HBase into Global Objects or a project.

7. Create a new model for HBase Technology pointing to the logical schema.

8. Perform a custom reverse-engineering operation using RKM HBase.

Note:

Ensure that the HBase tables contain some data before performing reverse-
engineering. The reverse-engineering operation does not work if the HBase
tables are empty.

At the end of this process, the HBase Data Model contains all the HBase tables with
their columns and data types.

Integrating Hadoop Data

4.6 Setting Up Kafka Data Sources

This topic provides steps in Oracle Data Integrator that are required for connecting to
a Kafka system.

The Kafka technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in | NSERT_UPDATE mode from
the xml-reference directory.

1. Create a Data Server object under Kafka technology.

2. Create a Physical Schema object.

3. Create a Logical Schema object.

4. Create a Model for every Logical Schema

5. Create one or more data stores for each different type of file.

Resource Name in the definition tab of data store indicates the Kafka topic . Kafka
topic name can be either entered by the user or selected from the list of available
Kafka topics in the Kafka cluster. There are two ways to load data from Kafka

Integrating Hadoop Data 4-5

Setting Up Cassandra Data Sources

topics which are receiver-based and direct and LKM Kafka to Spark supports both
approaches.

6. Test the connection to the Data Server.

For information on Kafka Integration, see Kafka Integration with Oracle Data
Integrator.

The Kafka data model contains all the Kafka tables with their columns and data types.

4.7 Setting Up Cassandra Data Sources

This topic provides steps in Oracle Data Integrator that are required for connecting to
a Cassandra system. Oracle Data Integrator connects to Cassandra by using JDBC.

The Cassandra technology must be included in the standard Oracle Data Integrator
technologies. If it is not, then import the technology in | NSERT_UPDATE mode from
the xml-reference directory.

You must add all Cassandra-specific flex fields.

1. Create a Data Server object under Cassandra technology.
2. Set the following locations under JDBC:

Add the Cassandra JDBC Driver to the Driver List.
JDBC Driver: webl ogi c. j dbc. cassandr a. Cassandr aDri ver

JDBC URL: j dbc: webl ogi c: cassandra: //
<host >: <port >[; property=value[:...]]

For example, j dbc: webl ogi c: cassandr a: // cassandr a. myconpany. com
9042; KeyspaceNane=mnmykeyspace

Note: Latest driver uses the binary protocol and hence uses default port 9042.

3. Ensure that the Cassandra server is up and running.

4. Test the connection to the Data Server.

5. Create a Physical Schema object.

6. Create a Logical Schema object.

7. Import RKM Cassandra into Global Objects or a project.
8. Create a Model for every Logical Schema

9. Perform a custom reverse-engineering operation using RKM Cassandra.

4.8 Importing Hadoop Knowledge Modules

Most of the Big Data Knowledge Modules are built-in the product. The exceptions are
the RKMs and CKMs, and these will need to be imported into your project or as global
objects before you use them.

e CKM Hive

e RKM Hive

4-6 Integrating Big Data with Oracle Data Integrator

Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models

e RKM HBase

e RKM Cassandra

Integrating Hadoop Data

4.9 Creating a Oracle Data Integrator Model from a Reverse-Engineered
Hive, HBase, and HDFS Models

You must create a ODI Model from a reverse-engineered Hive, HBase, and HDFS
Models. The reverse engineering process creates Hive and HBase data stores for the
corresponding Hive and HBase tables. You can use these data stores as source or
target in your mappings.

This section contains the following topics:
¢ Creating a Model

* Reverse Engineering Hive Tables

* Reverse Engineering HBase Tables

* Reverse Engineering HDFS Tables

4.9.1 Creating a Model

To create a model that is based on the technology hosting Hive, HBase, or HDFS and
on the logical schema created when you configured the Hive, HBase, HDFS or File
connection, follow the standard procedure described in Oracle Fusion Middleware
Developing Integration Projects with Oracle Data Integrator.

For backward compatibility, the Big Data LKMs reading from Files (LKM File to Hive
LOAD DATA), also support reading from HDFS, however the source data store must
be from a file model. If reading from HDFS, it is preferable to use KMs like the LKM
HDEFS to File LOAD DATA . In this case, the source data store must be from an HDFS
model.

4.9.2 Reverse Engineering Hive Tables

RKM Hive is used to reverse engineer Hive tables and views. To perform a
customized reverse-engineering of Hive tables with RKM Hive, follow the usual
procedures, as described in Oracle Fusion Middleware Developing Integration Projects with
Oracle Data Integrator. This topic details information specific to Hive tables.

The reverse-engineering process creates the data stores for the corresponding Hive
table or views. You can use the data stores as either a source or a target in a mapping.

For more information about RKM Hive, see RKM Hive.

A storage tab is added to the Hive data store and there is flexibility of how data is
stored and formatted within Hive. If the Hive table already exists, you can use the
Reverse Engineer process on the Hive model, using the custom Hive RKM to
populate the fields.

4.9.3 Reverse Engineering HBase Tables

RKM HBase is used to reverse engineer HBase tables. To perform a customized
reverse-engineering of HBase tables with RKM HBase, follow the usual procedures, as

Integrating Hadoop Data 4-7

Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models

described in Oracle Fusion Middleware Developing Integration Projects with Oracle Data
Integrator. This topic details information specific to HBase tables.

The reverse-engineering process creates the data stores for the corresponding HBase
table. You can use the data stores as either a source or a target in a mapping.

Note:

Ensure that the HBase tables contain some data before performing reverse-
engineering. The reverse-engineering operation does not work if the HBase
tables are empty.

For more information about RKM HBase, see RKM HBase.

4.9.4 Reverse Engineering HDFS Tables

HDFS files are used in reverse engineering. You can reverse engineer HDFS using file
technology or HDFS technology.

Reverse Engineering HDFS with File Technology

HDFS files can be reverse engineered like regular files. To reverse-engineer HDFS
files, you must copy them to your File System and follow the same process as that to
reverse-engineer regular files.

Note: If the file is large for your local File System, retrieve the first N records
from HDFS and place them in a local file.

Reverse Engineering HDFS with HDFS Technology

To reverse engineer an HDFS file, perform the following steps:
¢ Create a HDFS data store.

e From the Storage Tab, choose from the Storage Format field and corresponding
schema file must be specified in the Schema File field.

¢ Click Reverse Engineer operation from the Attributes Tab of the HDFS data store.

Note: There is no need to import an RKM into the project.

HDFS files are used in KMs such as File to Hive, File to Spark and this uses the ODI
file technology as a source. You can also use the HDFS LKMs (LKM HDFEFS File to
Hive) and these KMs use the ODI HDFS technology.

Depending on which KMs you want to use, you can select a different technology for
the files. Reverse Engineering HDFS will support the Avro, Json, Parquet and
delimited formats.

Refer to Reverse-engineer a File Model in Oracle Data Integrator Connectivity and
Knowledge Modules Guide for Oracle Data Integrator Developer’s Guide for more
information.

Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and
HDFS Models

4-8 Integrating Big Data with Oracle Data Integrator

Loading Data from Files into Hive

4.9.5 Reverse Engineering Cassandra Tables

RKM Cassandra is used to reverse engineer Cassandra tables. To perform a
customized reverse-engineering of Cassandra tables with RKM Cassandra, follow the
usual procedures, as described in Oracle Fusion Middleware Developing Integration
Projects with Oracle Data Integrator. This topic details information specific to Cassandra
tables.

The reverse-engineering process creates the data stores for the corresponding
Cassandra table. For more information about RKM Cassandra, see RKM Cassandra.

4.10 Loading Data from Files into Hive

The KMs support Loading Data from HDFS, however, the preferred way is to use the
HDFS KMs, as described in Loading Data from HDEFS into Hive.

1.

3.

Create the data stores for local files and HDFS files.

Refer to Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle
Data Integrator Developer’s Guide for information about reverse engineering and
configuring local file data sources.

Create a mapping using the file data store as the source and the corresponding
Hive table as the target.

Use the LKM File to Hive LOAD DATA or the LKM File to Hive LOAD DATA
Direct knowledge module specified in the physical diagram of the mapping.

These integration knowledge modules load data from flat files into Hive, replacing
or appending any existing data.

For more information about the KMs, see the following sections:

LKM File to Hive LOAD DATA

LKM File to Hive LOAD DATA Direct

4.11 Loading Data from Hive to Files

To load data from Hive tables to a local file system or a HDFS file:

1.

Create a data store for the Hive tables that you want to load in flat files.

Refer to "Setting Up Hive Data Sources" for information about reverse engineering
and configuring Hive data sources.

Create a mapping using the Hive data store as the source and the corresponding
File data source as the target.

Use the LKM Hive to File Direct knowledge module, specified in the physical
diagram of the mapping.

This integration knowledge module loads data from Hive into flat Files.

For more information about LKM Hive to File Direct, see LKM Hive to File Direct.

Integrating Hadoop Data 4-9

Loading Data from HBase into Hive

4.12 Loading Data from HBase into Hive

To load data from an HBase table into Hive:

1.

Create a data store for the HBase table that you want to load in Hive.

Refer to "Setting Up HBase Data Sources" for information about reverse
engineering and configuring HBase data sources.

Create a mapping using the HBase data store as the source and the corresponding
Hive table as the target.

Use the LKM HBase to Hive HBASE-SERDE knowledge module, specified in the
physical diagram of the mapping.

This knowledge module provides read access to an HBase table from Hive.

For more information about LKM HBase to Hive HBASE-SERDE, see LKM HBase to
Hive HBASE-SERDE.

4.13 Loading Data from Hive into Hbase

To load data from a Hive table into HBase:

1.

Create a data store for the Hive tables that you want to load in HBase.

Refer to "Setting Up Hive Data Sources" for information about reverse engineering
and configuring Hive data sources.

Create a mapping using the Hive data store as the source and the corresponding
HBase table as the target.

Use the LKM Hive to HBase Incremental Update HBASE-SERDE Direct knowledge
module, specified in the physical diagram of the mapping.

This integration knowledge module loads data from Hive into HBase and supports
inserting new rows as well as updating existing data.

For more information about LKM Hive to HBase Incremental Update HBASE-SERDE
Direct, see LKM Hive to HBase Incremental Update HBASE-SERDE Direct.

4.14 Loading Data from an SQL Database into Hive, HBase, and File using

SQOOP

To load data from an SQL Database into a Hive, HBase, and File target:

1.

Create a data store for the SQL source that you want to load into Hive, HBase, or
File target.

Refer to Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle
Data Integrator Developer’s Guide for information about reverse engineering and
configuring SQL data sources.

Create a mapping using the SQL source data store as the source and the
corresponding HBase table, Hive table, or HDFS files as the target.

4-10 Integrating Big Data with Oracle Data Integrator

Loading Data from an SQL Database into Hive using SQOOP

3. Use the IKM SQL to Hive-HBase-File (SQOOP) knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into Hive,
HBase, or Files target. It uses SQOOP to load the data into Hive, HBase, and File
targets. SQOOP uses parallel JDBC connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to
Hive-HBase-File (SQOOP) [Deprecated].

4.15 Loading Data from an SQL Database into Hive using SQOOP

To load data from an SQL Database into a Hive target:
1. Create a data store for the SQL source that you want to load into Hive target.

Refer to Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle
Data Integrator Developer’s Guide for information about reverse engineering and
configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding Hive table as the target.

3. Use the LKM SQL to Hive SQOOP knowledge module, specified in the physical
diagram of the mapping.

This KM loads data from a SQL source into Hive. It uses SQOOP to load the data
into Hive. SQOQOP uses parallel JDBC connections to load the data.

For more information about LKM SQL to Hive SQOOP, see LKM SQL to Hive
SQOOQOP.

4.16 Loading Data from an SQL Database into File using SQOOP

To load data from an SQL Database into a File target:
1. Create a data store for the SQL source that you want to load into File target.

Refer to Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle
Data Integrator Developer’s Guide for information about reverse engineering and
configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding HDFS files as the target.

3. Use the LKM SQL to File SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into Files target.
It uses SQOOP to load the data into File targets. SQOOP uses parallel JDBC
connections to load the data.

For more information about IKM SQL to Hive-HBase-File (SQOOP), see IKM SQL to
Hive-HBase-File (SQOOP) [Deprecated].

4.17 Loading Data from an SQL Database into HBase using SQOOP

To load data from an SQL Database into a HBase target:

Integrating Hadoop Data 4-11

Validating and Transforming Data Within Hive

1. Create a data store for the SQL source that you want to load into HBase target.

Refer to Oracle Data Integrator Connectivity and Knowledge Modules Guide for Oracle
Data Integrator Developer’s Guide for information about reverse engineering and
configuring SQL data sources.

2. Create a mapping using the SQL source data store as the source and the
corresponding HBase table as the target.

3. Use the LKM SQL to HBase SQOOP Direct knowledge module, specified in the
physical diagram of the mapping.

This integration knowledge module loads data from a SQL source into HBase
target. It uses SQOOP to load the data into HBase targets. SQOOP uses parallel
JDBC connections to load the data.

For more information about LKM SQL to HBase SQOOP Direct, see LKM SQL to
HBase SQOOP Direct.

4.18 Validating and Transforming Data Within Hive

After loading data into Hive, you can validate and transform the data using the
following knowledge modules.

e KM Hive Control Append
For more information, see IKM Hive Append.
¢ KM Hive Append
For more information, see IKM Hive Append.
e KM Hive Incremental Update
For more information, see IKM Hive Incremental Update.
¢ CKM Hive
For more information, see CKM Hive (Deprecated).

e JKM Hive Transform

For more information, see IKM Hive Transform (Deprecated).

4.19 Loading Data into an Oracle Database from Hive and File

Use the knowledge modules listed in the following table to load data from an HDFS
file or Hive source into an Oracle database target using Oracle Loader for Hadoop.

Table 4-2 Knowledge Modules to load data into Oracle Database
|

Knowledge Module Use To...
IKM File-Hive to Oracle Load data from an HDFS file or Hive source into an Oracle
(OLH-OSCH) database target using Oracle Loader for Hadoop.

For more information, see IKM File-Hive to Oracle (OLH-
OSCH) [Deprecated].

4-12 Integrating Big Data with Oracle Data Integrator

Loading Data into an SQL Database from Hbase, Hive and File using SQOOP

Table 4-2 (Cont.) Knowledge Modules to load data into Oracle Database
-

Knowledge Module

Use To...

LKM File to Oracle OLH-
OSCH

LKM File to Oracle OLH-
OSCH Direct

LKM Hive to Oracle OLH-
OSCH

LKM Hive to Oracle OLH-
OSCH Direct

Load data from an HDFS file into an Oracle staging table using
Oracle Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH.

Load data from an HDFS file into an Oracle database target
using Oracle Loader for Hadoop.

For more information, see LKM File to Oracle OLH-OSCH
Direct.

Load data from a Hive source into an Oracle staging table using
Oracle Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH.

Load data from a Hive source into an Oracle database target
using Oracle Loader for Hadoop.

For more information, see LKM Hive to Oracle OLH-OSCH
Direct.

4.20 Loading Data into an SQL
SQOOP

Database from Hbase, Hive and File using

Use the knowledge modules listed in the following table to load data from a HDFS
file, HBase source, or Hive source into an SQL database target using SQOOP.

Table 4-3 Knowledge Modules to load data into SQL Database
__|

Knowledge Module

Use To...

IKM File-Hive to SQL
(SQOO0P)

LKM HBase to SQL

SQOOP

LKM File to SQL SQOOP

LKM Hive to SQL SQOOP

Load data from an HDFS file or Hive source into an SQL
database target using SQOOP.

For more information, see IKM File-Hive to SQL (SQOOP)
[Deprecated].

Load data from an HBase source into an SQL database target
using SQOQOP.

For more information, see LKM HBase to SQL SQOQOP.

Load data from an HDFS file into an SQL database target using
SQOOP.

For more information, see LKM File to SQL SQOOP.

Load data from a Hive source into an SQL database target
using SQOOP.

For more information, see LKM Hive to SQL SQOOP.

4.21 Loading Data from Kafka to Spark

Loading data from Kafka to Spark.

Integrating Hadoop Data 4-13

Loading Data from Kafka to Spark

1. Create a data store for the Kafka tables that you want to load in Spark.
Refer to Setting Up Kafka Data Sources for configuring Kafka data sources.

2. Create a mapping using the Kafka data store as the source and the corresponding
Spark table as the target.

3. Use the LKM Kafka to Spark zookeeper . connect in case of receiver-based
connection or met adat a. br oker . I i st in case of direct connection knowledge
module, specified in the physical diagram of the mapping.

This integration knowledge module loads data from Kafka into Spark and supports
inserting new rows as well as updating existing data.

Note: Every Kafka source in an ODI mapping allocates a Spark executor. A
Spark Kafka mapping hangs if the number of available executors is low. The
number of executors must be atleast n+1 where n is the number of Kafka
sources in the mapping. For additional information, refer to Spark
Documentation.

For more information about LKM Kafka to Spark, see LKM Kafka to Spark.

4-14 Integrating Big Data with Oracle Data Integrator

https://spark.apache.org/documentation.html
https://spark.apache.org/documentation.html

5

Executing Oozie Workflows

This chapter provides information about how to set up the Oozie Engine and explains
how to execute Oozie Workflows using Oracle Data Integrator. It also tells you how to
audit Hadoop logs.

This chapter includes the following sections:

Executing Oozie Workflows with Oracle Data Integrator
Setting Up and Initializing the Oozie Runtime Engine
Creating a Logical Oozie Engine

Executing or Deploying an Oozie Workflow

Executing or Deploying an Oozie Workflow

Auditing Hadoop Logs

Userlib jars support for running ODI Oozie workflows

5.1 Executing Oozie Workflows with Oracle Data Integrator

The following table summarizes the steps you need to perform to execute Oozie
Workflows with Oracle Data Integrator.

Table 5-1 Executing Oozie Workflows

Step Description
Set up the Oozie runtime Set up the Oozie runtime engine to configure the connection to
engine the Hadoop data server where the Oozie engine is installed.

This Oozie runtime engine is used to execute ODI Design
Objects or Scenarios on the Oozie engine as Oozie workflows.

See Setting Up and Initializing the Oozie Runtime Engine .

Execute or deploy an Oozie Run the ODI Design Objects or Scenarios using the Oozie
workflow runtime engine created in the previous step to execute or

deploy an Oozie workflow.

See Executing or Deploying an Oozie Workflow.

Audit Hadoop Logs Audit the Hadoop Logs to monitor the execution of the Oozie

workflows from within Oracle Data Integrator.

See Auditing Hadoop Logs.

Executing Oozie Workflows 5-1

Setting Up and Initializing the Oozie Runtime Engine

5.2 Setting Up and Initializing the Oozie Runtime Engine

Before you set up the Oozie runtime engine, ensure that the Hadoop data server
where the Oozie engine is deployed is available in the topology. The Oozie engine
needs to be associated to this Hadoop data server.

To set up the Oozie runtime engine:

1. In the Topology Navigator, right-click the Oozie Runtime Engine node in the
Physical Architecture navigation tree and click New.

2. In the Definition tab, specify the values in the fields for the defining the Oozie
runtime engine.

See Oozie Runtime Engine Definition for the description of the fields.
3. In the Properties tab, specify the properties for the Oozie Runtime Engine.
See Oozie Runtime Engine Properties for the description of the properties.

4. Click Test to test the connections and configurations of the actual Oozie server and
the associated Hadoop data server.

5. Click Initialize to initialize the Oozie runtime engine.

Initializing the Oozie runtime engine deploys the log retrieval workflows and
coordinator workflows to the HDFS file system and starts the log retrieval
coordinator and workflow jobs on the actual Oozie server. The log retrieval flow
and coordinator for a repository and oozie engine will have the names

Qdi Retri eveLog_<Engi neName>_<Reposl| d>_Fand

Odi LogRet ri ever _<Engi neNane>_<Repos| d>_Crespectively.

It also deploys the ODI libraries and classes.

6. Click Save.

Executing Oozie Workflows with Oracle Data Integrator

5.2.1 Oozie Runtime Engine Definition

The following table describes the fields that you need to specify on the Definition tab
when defining a new Oozie runtime engine. An Oozie runtime engine models an
actual Oozie server in a Hadoop environment.

Table 5-2 Oozie Runtime Engine Definition
- - -]

Field Values

Name Name of the Oozie runtime engine that appears in Oracle Data
Integrator.

Host Name or IP address of the machine on which the Oozie runtime

agent has been launched.

Port Listening port used by the Oozie runtime engine. Default Oozie
port value is 11000.

5-2 Integrating Big Data with Oracle Data Integrator

Creating a Logical Oozie Engine

Table 5-2 (Cont.) Oozie Runtime Engine Definition
___|

Field Values

Web application context Name of the web application context. Type 00zi € as the value
of this field, as required by the Oozie service process running in
an Hadoop environment.

Protocol Protocol used for the connection. Possible values are ht t p or
ht t ps. Defaultis ht t p.

Hadoop Server Name of the Hadoop server where the oozie engine is installed.
This Hadoop server is associated with the oozie runtime
engine.

Poll Frequency Frequency at which the Hadoop audit logs are retrieved and

stored in ODI repository as session logs.

The poll frequency can be specified in seconds (s), minutes (m),
hours (h), days (d), and years (d). For example, 5m or 4h.

Lifespan Time period for which the Hadoop audit logs retrieval
coordinator stays enabled to schedule audit logs retrieval
workflows.

Lifespan can be specified in minutes (m), hours (h), days (d),
and years (d). For example, 4h or 2d.

Schedule Frequency Frequency at which the Hadoop audit logs retrieval workflow
is scheduled as an Oozie Coordinator Job.

Schedule workflow can be specified in minutes (m), hours (h),
days (d), and years (d). For example, 20m or 5h.

Setting Up and Initializing the Oozie Runtime Engine
Configuring Big Data technologies using the Big Data Configurations Wizard

5.2.2 Oozie Runtime Engine Properties

The following table describes the properties that you can configure on the Properties
tab when defining a new Oozie runtime engine.

Table 5-3 Oozie Runtime Engine Properties

Field Values

OOZIE_WF_GEN_MAX_ Limits the maximum detail (session level or fine-grained task
DETAIL level) allowed when generating ODI Oozie workflows for an
Oozie engine.

Set the value of this property to TASK to generate an Oozie
action for every ODI task or to SESSION to generate an Oozie
action for the entire session.

Setting Up and Initializing the Oozie Runtime Engine

Configuring Big Data technologies using the Big Data Configurations Wizard

5.3 Creating a Logical Oozie Engine

To create a logical oozie agent:

Executing Oozie Workflows 5-3

Executing or Deploying an Oozie Workflow

1. In Topology Navigator right-click the Oozie Runtime Engine node in the Logical
Architecture navigation tree.

2. Select New Logical Agent.
3. Fillin the Agent Name.

4. For each Context in the left column, select an existing Physical Agent in the right
column. This Physical Agent is automatically associated to the logical agent in this
context.

5. From the File menu, click Save.

Setting Up and Initializing the Oozie Runtime Engine

5.4 Executing or Deploying an Oozie Workflow

You can run an ODI design object or scenario using the Oozie runtime engine to
execute an Oozie Workflow on the Oozie engine. When running the ODI design object
or scenario, you can choose to only deploy the Oozie workflow without executing it.

To deploy or execute an ODI Oozie workflow:

1. From the Projects menu of the Designer navigator, right-click the mapping that you
want to execute as an Oozie workflow and click Run.

2. From the Run Using drop-down list, select the Oozie runtime engine.

3. Select Deploy Only check box to only deploy the Oozie workflow without
executing it.

4. Click OK.
The Information dialog appears.
5. Check if the session started and click OK on the Information dialog.

Executing Oozie Workflows with Oracle Data Integrator

5.5 Auditing Hadoop Logs

When the ODI Oozie workflows are executed, log information is retrieved and
captured according to the frequency properties on the Oozie runtime engine. This
information relates to the state, progress, and performance of the Oozie job.

You can retrieve the log data of an active Oozie session by clicking the Retrieve Log
Data in the Operator menu. Also, you can view information regarding the oozie
session in the oozie webconsole or the MapReduce webconsole by clicking the URL
available in the Definition tab of the Session Editor.

The Details tab in the Session Editor, Session Step Editor, and Session Task Editor
provides a summary of the oozie and MapReduce job.

Executing Oozie Workflows with Oracle Data Integrator

5.6 Userlib jars support for running ODI Oozie workflows

Support of userlib jars for ODI Oozie workflows allows a user to copy jar files into a
userlib HDFS directory, which is referenced by ODI Oozie workflows that are
generated and submitted with the oozi e. | i bpat h property.

5-4 Integrating Big Data with Oracle Data Integrator

Userlib jars support for running ODI Oozie workflows

This avoids replicating the | i bs/ j ar s in each of the workflow app's lib HDFS
directory. The userlib directory is located in HDFS in the following location:

<CDlI HDFS Root >/ odi _<version>/userlib

Executing Oozie Workflows with Oracle Data Integrator

Executing Oozie Workflows 5-5

Userlib jars support for running ODI Oozie workflows

5-6 Integrating Big Data with Oracle Data Integrator

6

Spark Streaming Support

This chapter provides information about streaming modes of operation on data sets. It
also provides information on Checkpointing.

This chapter includes the following sections:

Enabling Streaming Support for Oracle Data Integrator
Enabling Streaming Support

Spark Streaming DataServer Properties

Extra Spark Streaming Data Properties

Execute Mapping in Streaming Mode

6.1 Enabling Streaming Support for Oracle Data Integrator

Summarizes the steps you need to perform to enable streaming support for Oracle
Data Integrator.

Table 6-1 Enabling Streaming Support

Step Description

Enable When steaming mode is enabled, ODI generates the Spark code which
streaming performs the transformation to run the streaming function. See Enabling
support Streaming Support.

Spark Checkpointing ensures that the Spark application will restart from where it left,
execution if a checkpoint is found. See Execute Mapping in Streaming Mode.

and

Checkpoint

ing

For additional information, refer to Spark Documentation and Cassandra.

6.2 Enabling Streaming Support

This topic provides the steps to enable streaming support in ODL

1.

2.

Click the Topology tab.

In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

In the Definition tab, specify the details of the Spark data server.

See Spark Data Server Definition for more information.

Spark Streaming Support 6-1

https://spark.apache.org/documentation.html
http://cassandra.apache.org/

Enabling Streaming Support

4. In the Properties tab, specify the properties for the Spark data server.
See Spark Data Server Properties for more information.

5. Click Test Connection to test the connection to the Spark data server.

6. Enable the Streaming flag in the Physical design of a mapping.

ODI generates the Spark code which performs the transformation to run the
streaming function.

6.2.1 Spark Streaming DataServer Properties

Provides the streaming properties that are specific to Spark Technology that are added
to the Spark Execution Unit.

Table 6-2 Spark Streaming DataServer Properties
|

Key Value

spark.check This property defines the base directory and under this base directory every
pointingBas Spark EU will create a sub-directory with the name EU.
eDir Example: hdfs:/ /cluster-ns1/user/oracle/spark/checkpoints

spark.check Displays the time in seconds
pointingInt
erval

spark.restar ® If set to true, the Spark Streaming application will restart from an existing

tFromChec checkpoint.
kpoint e If set to false, the Spark Streaming application will ignore any existing
checkpoints.

¢ If there is no checkpoint, it will start normally.

spark.batch Displays the time in seconds and Spark batches up Stream input data.
Duration

spark.reme Displays the time in seconds and the sets the Spark Streaming context to
mberDurati remember RDDs.
on

spark.check Enables Spark checkpointing.
pointing

spark.strea Displays the time in seconds and the Spark waits before stopping a Streaming
ming.timeo applications.

ut Default is 60.

odi- * SYNCHRONOUS: Spark application is submitted and monitored through
execution- Qdi OSConmrand.

mode ¢ ASYNCHRONOUS: Spark application is submitted asynchronously

through Odi OSComrand and then monitored through Spark REST APIs.

spark.ui.en Enables the Spark Live REST APL
abled

Note: Set to true for asynchronous execution.

6-2 Integrating Big Data with Oracle Data Integrator

Enabling Streaming Support

Table 6-2 (Cont.) Spark Streaming DataServer Properties
-

Key Value

spark.event Enables Spark event logs. This allows the logs to be accessible by the Spark
Log.enable History Server.

d
Note: Set to true for asynchronous execution.
principal Kerberized User name.
keytab Kerberized Password.
odi.spark.e This check is introduced, as only yarn-client and yarn-cluster are supported.
nableUnsup
portedSpar
kModes

6.2.2 Extra Spark Streaming Data Properties

Provides the extra spark streaming properties that are specific to Spark technology
that are added to the asynchronous Spark execution unit.

Table 6-3 Extra Spark Streaming Properties
|

Key Value

spark- Maximum number of retries while waiting for the Spark WebUI to come-up.
webui-

startup-

polling-

retries

spark- Displays the time in seconds between retries.
webui-

startup-

polling-

interval

spark-
webui-
startup-
polling-
persist-
after-retries

spark- Timeout in second used for REST calls on Spark WebUI.
webui-rest-
timeout

spark- Time in seconds between two polls on the Spark WebUL
webui-

polling-

interval

Spark Streaming Support 6-3

Enabling Streaming Support

Table 6-3 (Cont.) Extra Spark Streaming Properties
|

Key Value

spark-
webui-
polling-
persist-
after-retries

spark- Timeout in seconds used for REST calls on Spark History Server.
history-

server-rest-

timeout

spark- Maximum number of retries while waiting for the Spark History Server to
history- make the Spark Event Logs available.

server-

polling-

retries

spark- Time in seconds between retries.
history-

server-

polling-

interval

spark-
history-
server-
polling-
persist-
after-retries

spark- Maximum number of retries while waiting for the spark-submit OS process to
submit- complete.

shutdown-

polling-

retries

spark- Time in seconds between retries.
submit-

shutdown-

polling-

interval

spark-
submit-
shutdown-
polling-
persist-
after-retries

6-4 Integrating Big Data with Oracle Data Integrator

Execute Mapping in Streaming Mode

6.3 Execute Mapping in Streaming Mode
This topic provides the steps to enable execute the mapping in the streaming mode.
Streaming needs checkpointing information for a fault-tolerant storage system to
recover from failures.

1.

2.

Click the Topology tab.

In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

In the Definition tab, specify the details of the Spark data server.

See Spark Data Server Definition for more information.

In the Properties tab, specify the properties for the Spark data server.
See Spark Data Server Properties for more information.

Create a mapping using the data store.

Enable the Streaming flag in the Physical design of a mapping.

Enable the spar k. checkpoi nti ng to set the Checkpointing directory.
Every mapping will have its unique checkpointing directory.

Execute the mapping and set the context for physical design.

Note: In the User Interface Designer by default, the Last execut ed
physi cal design in the mappi ng execution dial og is pre-
selected.

Spark Streaming Support 6-5

Execute Mapping in Streaming Mode

6-6 Integrating Big Data with Oracle Data Integrator

v

Using Query Processing Engines to

Generate Code in Different Languages

This chapter describes how to set up the query processing engines that are supported
by Oracle Data Integrator to generate code in different languages.

This chapter includes the following sections:

Query Processing Engines Supported by Oracle Data Integrator
Setting Up Hive Data Server

Creating a Hive Physical Schema

Setting Up Pig Data Server

Creating a Pig Physical Schema

Setting Up Spark Data Server

Creating a Spark Physical Schema

Generating Code in Different Languages

7.1 Query Processing Engines Supported by Oracle Data Integrator

Hadoop provides a framework for parallel data processing in a cluster. There are
different languages that provide a user front-end. Oracle Data Integrator supports the
following query processing engines to generate code in different languages:

Hive

The Apache Hive warehouse software facilitates querying and managing large
datasets residing in distributed storage. Hive provides a mechanism to project
structure onto this data and query the data using a SQL-like language called
HiveQL.

Pig

Pig is a high-level platform for creating MapReduce programs used with Hadoop.
The language for this platform is called Pig Latin.

Spark

Spark is a fast and general processing engine compatible with Hadoop data. It can
run in Hadoop clusters through YARN or Spark's standalone mode, and it can
process data in HDFS, HBase, Cassandra, Hive, and any Hadoop Input Format.

To generate code in these languages, you need to set up Hive, Pig, and Spark data
servers in Oracle Data Integrator. These data servers are to be used as the staging area
in your mappings to generate HiveQL, Pig Latin, or Spark code.

Using Query Processing Engines to Generate Code in Different Languages 7-1

Setting Up Hive Data Server

Generate Code in Different Languages with Oracle Data Integrator

7.2 Setting Up Hive Data Server
To set up the Hive data server:
1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Hive and then
click New Data Server.

3. In the Definition tab, specify the details of the Hive data server.
See Hive Data Server Definition for more information.

4. In the JDBC tab, specify the Hive data server connection details.
See Hive Data Server Connection Details for more information.

5. Click Test Connection to test the connection to the Hive data server.

7.2.1 Hive Data Server Definition

The following table describes the fields that you need to specify on the Definition tab
when creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

Table 7-1 Hive Data Server Definition
- - -~

Field Description

Name Name of the data server that appears in Oracle Data Integrator.
Data Server Physical name of the data server.

User/Password Hive user with its password.

Metastore URI Hive Metastore URIs: for example, t hri ft:// BDA: 10000.
Hadoop Data Server Hadoop data server that you want to associate with the Hive

data server.

Additional Classpath Additional classpaths.

Setting Up Hive Data Server
Configuring Big Data technologies using the Big Data Configurations Wizard

7.2.2 Hive Data Server Connection Details

The following table describes the fields that you need to specify on the JDBC tab when
creating a new Hive data server.

Note: Only the fields required or specific for defining a Hive data server are described.

7-2 Integrating Big Data with Oracle Data Integrator

Creating a Hive Physical Schema

Table 7-2 Hive Data Server Connection Details
- - - - - - -

Field

Description

JDBC Driver

JDBC URL

Dat aDi rect Apache Hive JDBC Dri ver

Use this JDBC driver to connect to the Hive Data Server. The
driver documentation is available at the following URL:

http:/ /media.datadirect.com/download/docs/jdbc/alljdbc/
help html#page/userguide/rfi1369069225784. html#

j dbc: webl ogi c¢: hi ve: //<host >: <port >[;
property=val ue[;...]]

For example, j dbc: webl ogi c: hi ve: //1 ocal host:

10000; Dat abaseNanme=def aul t ; User =def aul t ; Passwor
d=def aul t

Kerberized: j dbc: webl ogi c: hive: //
<host >: <port >; Dat abaseNane=<val ue>; Aut henti cati
onMet hod=ker ber os; Servi cePri nci pal Name=<val ue>

For example, j dbc: webl ogi c: hi ve://1 ocal host:
10000; Dat abaseNane=def aul t ; Aut henti cati onMet hod
=ker ber os; Servi cePri nci pal Nane=hi ve

Setting Up Hive Data Server

7.3 Creating a Hive Physical Schema

Create a Hive physical schema using the standard procedure, as described in Creating
a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Hive Data Server

7.4 Setting Up Pig Data Server

To set up the Pig data server:

1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Pig and then click

New Data Server.

3. In the Definition tab, specify the details of the Pig data server.

See Pig Data Server Definition for more information.

4. In the Properties tab, add the Pig data server properties.

See Pig Data Server Properties for more information.

5. Click Test Connection to test the connection to the Pig data server.

Using Query Processing Engines to Generate Code in Different Languages 7-3

http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/userguide/rfi1369069225784.html#
http://media.datadirect.com/download/docs/jdbc/alljdbc/help.html#page/userguide/rfi1369069225784.html#

Setting Up Pig Data Server

7.4.1 Pig Data Server Definition

The following table describes the fields that you need to specify on the Definition tab
when creating a new Pig data server.

Note: Only the fields required or specific for defining a Pig data server are described.

Table 7-3 Pig Data Server Definition
-]

Field Description

Name Name of the data server that will appear in Oracle Data
Integrator.

Data Server Physical name of the data server.

Process Type Choose one of the following:

¢ Local Mode
Select to run the job in local mode.

In this mode, pig scripts located in the local file system are
executed. MapReduce jobs are not created.

e MapReduce Mode
Select to run the job in MapReduce mode.

In this mode, pig scripts located in the HDFS are executed.
MapReduce jobs are created.

Note: If this option is selected, the Pig data server must be
associated with a Hadoop data server.

Hadoop Data Server Hadoop data sever that you want to associate with the Pig data
server.

Note: This field is displayed only when the MapReduce Mode
option is set to Process Type.

Additional Classpath Specify additional classpaths.

Add the following additional classpaths:

e Jusr/lib/pig/lib

e /usr/lib/pigl/pig-0.12.0-cdh<version>.jar
Replace <version> with the Cloudera version you have. For
example, / usr/1i b/ pi g/ pi g-0.12. 0-cdh5.3.0.j ar.

e /usr/lib/hivellib

e /usr/lib/hivelconf

For pig-hcatalog-hive, add the following classpath in addition

to the ones mentioned above:

/usr/1ib/hive-hcatal aog/ shar e/ hcat al og

User/Password Pig user with its password.

Setting Up Pig Data Server
Configuring Big Data technologies using the Big Data Configurations Wizard

7.4.2 Pig Data Server Properties

The following table describes the Pig data server properties that you need to add on
the Properties tab when creating a new Pig data server.

7-4 Integrating Big Data with Oracle Data Integrator

Creating a Pig Physical Schema

Table 7-4 Pig Data Server Properties
- -]

Key Value
hive.metastore.uris thrift://bigdatalite.| ocal domain: 9083
pig.additional.jars fusr/lib/hive-hcatal og/ share/ hcat al og/

*. jar:/usr/lib/hivel

hbase.defaults.for.version. Set to true to skip the hbase.defaults.for.version check. Set this
skip boolean to true to avoid seeing the RuntimException issue.

hbase.zookeeper.quorum Quorum of the HBase installation. For example, | ocal host :
2181.

Setting Up Pig Data Server

7.5 Creating a Pig Physical Schema

Create a Pig physical schema using the standard procedure, as described in Creating a
Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Pig Data Server

7.6 Setting Up Spark Data Server
To set up the Spark data server:
1. Click the Topology tab.

2. In the Physical Architecture tree, under Technologies, right-click Spark Python and
then click New Data Server.

3. In the Definition tab, specify the details of the Spark data server.
See Spark Data Server Definition for more information.

4. In the Properties tab, specify the properties for the Spark data server.
See Spark Data Server Properties for more information.

5. Click Test Connection to test the connection to the Spark data server.

7.6.1 Spark Data Server Definition

The following table describes the fields that you need to specify on the Definition tab
when creating a new Spark Python data server.

Note: Only the fields required or specific for defining a Spark Python data server are
described.

Using Query Processing Engines to Generate Code in Different Languages 7-5

Setting Up Spark Data Server

Table 7-5 Spark Data Server Definition
- - -]

Field Description

Name Name of the data server that will appear in Oracle Data
Integrator.

Master Cluster (Data Physical name of the master cluster or the data server.

Server)

User/Password Spark data server or master cluster user with its password.

Hadoop DataServer Hadoop data server that you want to associate with the Spark
data server.
Note: This field appears only when you are creating the Spark
Data Server using the Big Data Configurations wizard.

Additional Classpath The following additional classpaths are added by default:

e /usr/lib/spark/*
e /usr/libl/spark/lib/*
If required, you can add more additional classpaths.

Note: This field appears only when you are creating the Spark
Data Server using the Big Data Configuration wizard.

Setting Up Spark Data Server

Configuring Big Data technologies using the Big Data Configurations Wizard

7.6.2 Spark Data Server Properties

The following table describes the properties that you can configure on the Properties
tab when defining a new Spark data server.

Note: Other than the properties listed in the following table, you can add Spark
configuration properties on the Properties tab. The configuration properties that you
add here are applied when mappings are executed. For more information about the
configuration properties, refer to the Spark documentation available at the following

URL:

http:/ /spark.apache.org/docs/latest/configuration.html

Table 7-6 Spark Data Server Properties
|

Property

Description

archives

deploy-mode

driver-class-path

driver-cores

driver-java-options

Comma separated list of archives to be extracted into the
working directory of each executor.

Whether to launch the driver program locally (client) or on one
of the worker machines inside the cluster (cluster).

Classpath entries to pass to the driver. Note that jars added
with --jars are automatically included in the classpath.

Number of cores used by the driver in Yarn Cluster mode.

Extra Java options to pass to the driver.

7-6 Integrating Big Data with Oracle Data Integrator

http://spark.apache.org/docs/latest/configuration.html

Creating a Spark Physical Schema

Table 7-6 (Cont.) Spark Data Server Properties
__|

Property Description

driver-library-path Extra library path entries to pass to the driver.

driver-memory Memory for driver, for example, 1000M, 2G. The default value
is 512M.

executor-cores Number of cores per executor. The default value is 1 in YARN

mode, or all available cores on the worker in standalone mode.

executor-memory Memory per executor, for example, 1000M, 2G. The default
value is 1G.
jars Comma-separated list of local jars to include on the driver and

executor classpaths.

num-executors Number of executors to launch. The default value is 2.
odi-execution-mode ODI execution mode, either SYNC or ASYNC.
properties-file Path to a file from which to load extra properties. If not

specified, this will look for conf / spar k- def aul t s. conf .

py-files Additional python file to execute.

queue The YARN queue to submit to. The default value is default.

spark-home-dir Home directory of Spark installation.

spark-web-port Web port of Spark Ul The default value is 1808.

spark-work-dir Working directory of ODI Spark mappings that stores the
generated python file.

supervise If configured, restarts the driver on failure (Spark Standalone
mode).

total-executor-cores Total cores for all executors (Spark Standalone mode).

yarn-web-port Web port of yarn, the default value is 8088.

principal Kerberized User name.

keytab Kerberized Password.

Setting Up Spark Data Server
Configuring Big Data technologies using the Big Data Configurations Wizard

7.7 Creating a Spark Physical Schema

Create a Spark physical schema using the standard procedure, as described in Creating
a Physical Schema in Administering Oracle Data Integrator.

Create for this physical schema a logical schema using the standard procedure, as
described in Creating a Logical Schema in Administering Oracle Data Integrator and
associate it in a given context.

Setting Up Spark Data Server

Using Query Processing Engines to Generate Code in Different Languages 7-7

Generating Code in Different Languages

7.8 Generating Code in Different Languages

By default, Oracle Data Integrator generates HiveQL code. To generate Pig Latin or
Spark code, you must use the Pig data server or the Spark data server as the staging
location for your mapping.

Before you generate code in these languages, ensure that the Hive, Pig, and Spark data
servers are set up.

For more information see the following sections:
Setting Up Hive Data Server

Setting Up Pig Data Server

Setting Up Spark Data Server

To generate code in different languages:
1. Open your mapping.

2. To generate HiveQL code, run the mapping with the default staging location
(Hive).

3. To generate Pig Latin or Spark code, go to the Physical diagram and do one of the
following:

a. To generate Pig Latin code, set the Execute On Hint option to use the Pig data
server as the staging location for your mapping.

b. To generate Spark code, set the Execute On Hint option to use the Spark data
server as the staging location for your mapping.

4. Execute the mapping.
Query Processing Engines Supported by Oracle Data Integrator

Generate Code in Different Languages with Oracle Data Integrator

7-8 Integrating Big Data with Oracle Data Integrator

8

Working with Unstructured Data

This chapters provides an overview of the Jagged component and the Flatten
component. These components help you to process unstructured data.

This chapter includes the following sections:

e Working with Unstructured Data

8.1 Working with Unstructured Data

Oracle Data Integrator provides a Jagged component that can process unstructured
data. Source data from sources such as social media or e-commerce businesses is
represented in a key-value free format. Using the jagged component, this data can be
transformed into structured entities that can be loaded into database tables.

For more information using the Jagged component and KMs associated with it, see the
following sections:

* Creating Jagged Components in Oracle Fusion Middleware Developing Integration
Projects with Oracle Data Integrator.

¢ XKM Jagged.

Working with Unstructured Data 8-1

Working with Unstructured Data

8-2 Integrating Big Data with Oracle Data Integrator

9

Working with Complex files

This chapters provides an overview of extended data format support and complex
type support.

This chapter includes the following sections:

e HDFS Formats

* Working with Complex Files

¢ Identifying, Adding and Removing Flattened Attributes
* Loading Data from HDEFS File to Hive

¢ Loading Data from HDFS File to Spark

9.1 HDFS Formats

HDFS file formats supported are Json, Avro and Parquet. The format is specified by
setting the storage format value which can be found on the storage tab of the Data
Store. For all files of HDEFS, the storage type (Json, Avro, Parquet) are defined in the
data store. JSON, Avro and Parquet formats contain complex data types, like array or
Object. During the Reverse Engineer phase, the schema definition for these types are
converted to Avro and stored in the data format column of the attribute with the
complex data type. This information is used when flattening this data in the
mappings.

For JSON, Avro and Parquet that each type requires the location of a schema file to be
entered. For Delimited, you will need to specify the Record and field separator
information, number of heading lines. If you are loading Avro files into Hive, then you
will need to copy the Avro Schema file (.avsc) into the same HDEFS location as the
HDFS files.

Table 9-1 HDFS File Formats

File Reverse Complex Load into Load into Write from Spark
Format Engineer Type Hive Spark
Support

Avro Yes (Schema Yes Yes (Schema Yes Yes

required) required)
Delimited No No Yes Yes Yes
JSON Yes (Schema Yes Yes Yes Yes

required)

Working with Complex files 9-1

Working with Complex Files

Table 9-1 (Cont.) HDFS File Formats
|

File Reverse Complex Load into Load into Write from Spark
Format Engineer Type Hive Spark
Support
Parquet Yes (Schema Yes Yes Yes Yes
required)

Separate KMs for each file format are not required. You can create just one or two KMs
for each target (a standard LKM and where appropriate a Direct Load LKM). The file
can either be delimited or fixed format. The new LKM HDFS File to Hive supports
loading only HDFS file into Hive, the file can be in the format of JSON, Avro, Parquet,
Delimited etc, with complex data.

Table 9-2 Complex Types

Avro Json Hive Parquet

Record Object Struct Record

enum NA NA enum
array array array array
map NA map map
union NA union union
fixed NA NA fixed

9.2 Working with Complex Files

Provides information on working with user defined metadata that drives the flatten
component.

Oracle Data Integrator provides a Flatten component that can process input data with
complex structure and produce flatten representation of the same data using standard
data types. The input data may be in a database, in an XML, or any other source.

There are three check-box properties which are Include Nulls, Collection, and
Structure. The collection check-box indicates whether the complex type attribute is a
collection such as an array. It is automatically assigned if the complex type attribute
has a data format defined. The structure check-box indicates whether the complex
type is an object, record, or structure, not just a collection of scalar types. The Include
Nulls check-box indicates whether null complex data should be processed. Some
technologies, particularly Spark, can drop records containing null complex attributes.

Working with Complex Files with Improved Flattening for HDFS

The complex type attribute is an upstream attribute, of a collection or object type, to be
flattened. Each flatten component can flatten only one complex type attribute, since
just a single property is used to specify it.

Complex type member attributes that comprise a collection or object are automatically
added to the flatten component when the complex type attribute is selected. The
complex type member attributes can be added, changed, or deleted manually as well.

9-2 Integrating Big Data with Oracle Data Integrator

Identifying, Adding and Removing Flattened Attributes

The complex type (CT) attribute can be accessed as a data store column, and the
collection or object attributes are determined from the data_format field.

Note: The flatten component is only supported with Spark 1.3 and above.

For more information using the Flatten component and the KMs associated with it, see
the following sections:

® Creating Flatten Components in Oracle Fusion Middleware Developing Integration
Projects with Oracle Data Integrator.

e XKM Oracle Flatten.

e XKM Jagged.

9.3 Identifying, Adding and Removing Flattened Attributes

Without complex type metadata, user input is required to add the flattened attributes.
With the addition of complex type metadata, the attributes can be added automatically
on definition of the complex type attribute.

The addition of new flattened attributes occurs when the Complex Type Attribute
property is set.

The new flattened attributes have null expressions, since they do not directly reference
upstream attributes, but are derived from an upstream attribute of a complex type.
The name of the flattened attribute can match the name of the complex type member.
However, if the flattened attribute receives a different name due to a name conflict
with another attribute, the attribute tag property is used to identify the complex type
member. If the flattened attribute name is changed manually, ensure that the tag
property is set to the name of the complex type member.

For example, consider a complex type attribute f ul | _name which contains member
attributes fi r st _nanme and | ast _name. When f ul | _nane is selected as the
complex type attribute, two new flattened attributes, f i r st _name and | ast _nane,
are created. If attribute | ast _narme is changed to | nane, its tag is set to | ast _narme
to identify the complex type member name to be used in code generation.

A user may not wish to flatten all the attributes of the collection of a complex type.
Extra attributes can be deleted.

9.4 Loading Data from HDFS File to Hive

Provides the steps to load data from HDFS file to Hive load data.

1. Create a HDFS Data Model.
2. Create a HDFS Data Store.

See HDFS Data Server Definition for additional information.
3. In the Storage panel, set the Storage Format.

A Schema is required for all except for delimited.

Note: If the Row format is set to Delimited, set the Fields Terminated By,
Collection Items Terminated By and Map Keys Terminated By.

Working with Complex files 9-3

Loading Data from HDFS File to Spark

4.

5.

Create a mapping with HDFS file as source and Hive file as target.

Use the LKM file HDFS to Hive Load Data and IKM Hive specified in the physical
diagram of the mapping.

Note: Refer to Reverse Engineering Hive Tables for information on Reverse
Engineering.

9.5 Loading Data from HDFS File to Spark

Provides the steps to load data from HDFS file to Spark.

1.

2.

Create a Data Model for complex file.

Create a HIVE table Data Store.

In the Storage panel, set the Storage Format.

Create a mapping with HDEFS file as source and target.

Use the LKM HDFS to Spark or LKM Spark to HDFS specified in the physical
diagram of the mapping.

Note: For AVRO format, you can specify the schema file location. Refer to
Reverse Engineering Hive Tables for information on Reverse Engineering.
There are two ways of loading Avro file to Spark either with AVSC file or
without AVSC file.

9-4 Integrating Big Data with Oracle Data Integrator

A

Hive Knowledge Modules

This appendix provides information about the Hive knowledge modules.

This chapter includes the following sections:

e LKM SQL to Hive SQOOP

e LKM SQL to File SQOOP Direct

e LKM SQL to HBase SQOOQOP Direct

e LKM File to SQL SQOOP

e LKM Hive to SQL SQOOP

e LKM HBase to SQL SQOOP

e KM Hive Append

e LKM File to Hive LOAD DATA

¢ LKM File to Hive LOAD DATA Direct

e LKM HBase to Hive HBASE-SERDE

¢ LKM Hive to HBase Incremental Update HBASE-SERDE Direct
e LKM Hive to File Direct

¢ XKM Hive Sort

e LKM File to Oracle OLH-OSCH

e LKM File to Oracle OLH-OSCH Direct

e LKM Hive to Oracle OLH-OSCH

¢ LKM Hive to Oracle OLH-OSCH Direct

e RKM Hive

e RKM HBase

e [KM File to Hive (Deprecated)

e KM HBase to Hive (HBase-SerDe) [Deprecated]

e KM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
e KM SQL to Hive-HBase-File (SQOOP) [Deprecated]

e KM Hive Control Append (Deprecated)

Hive Knowledge Modules A-1

LKM SQL to Hive SQOOP

e CKM Hive (Deprecated)

e KM Hive Transform (Deprecated)

e KM File-Hive to Oracle (OLH-OSCH) [Deprecated]
e IKM File-Hive to SQL (SQOOP) [Deprecated]

A.1 LKM SQL to Hive SQOOP

This KM integrates data from a JDBC data source into Hive.

1. Create a Hive staging table.

2. Create a SQOOP configuration file, which contains the upstream query.
3. Execute SQOOQOP to extract the source data and import into Hive

4. Drop the Hive staging table.

This is a direct load LKM and will ignore any of the target IKM.

The following table descriptions the options for LKM SQL to Hive SQOOP.
Table A-1 LKM SQL to Hive SQOOP

Option Description

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE
EMP is used. To avoid an extra full table scan the split column
should be backed by an index.

A-2 Integrating Big Data with Oracle Data Integrator

LKM SQL to Hive SQOOP

Table A-1 (Cont.) LKM SQL to Hive SQOOP
___|

Option

Description

BOUNDARY_QUERY

TEMP_DIR

MAPRED_OUTPUT_BASE
_DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONEF_
PROPERTIES

EXTRA_SQOOP_CONEF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for
parallel extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM <
%=odiRef.getObjectName(EMP")%>"

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Hive Knowledge Modules A-3

LKM SQL to File SQOOP Direct

A.2 LKM SQL to File SQOOP Direct

This KM extracts data from a JDBC data source into an HDFS file

It executes the following steps:
1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOP to extract the source data and store it as an HDFS file
This is a direct load LKM and must be used without any IKM.

Note:

The entire target directory will be removed prior to extraction.

The following table descriptions the options for LKM SQL to File SQOOP Direct.

Table A-2 LKM SQL to File SQOOP Direct

Option Description

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE
EMP is used. To avoid an extra full table scan the split column
should be backed by an index.

A-4 Integrating Big Data with Oracle Data Integrator

LKM SQL to File SQOOP Direct

Table A-2 (Cont.) LKM SQL to File SQOOP Direct
___|

Option

Description

BOUNDARY_QUERY

TEMP_DIR

MAPRED_OUTPUT_BASE
_DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONEF_
PROPERTIES

EXTRA_SQOOP_CONEF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for
parallel extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM <
%=odiRef.getObjectName(EMP")%>"

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Hive Knowledge Modules A-5

LKM SQL to HBase SQOOP Direct

A.3 LKM SQL to HBase SQOOP Direct

This KM extacts data from a JDBC data source and imports the data into HBase.

It executes the following steps:

1. Create a SQOOP configuration file, which contains the upstream query.

2. Execute SQOOQOP to extract the source data and import into HBase.

This is a direct load LKM and must be used without any IKM.

The following table descriptions the options for LKM SQL to HBase SQOOP Direct.
Table A-3 LKM SQL to HBase SQOOP Direct

Option Description

CREATE_TARG_TABLE Create target table?
Check this option, if you wish to create the target table.

TRUNCATE Replace existing target data?

Set this option to true, if you wish to replace any existing target
table content with the new data.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.
Default: true.

SQOOP_PARALLELISM Number of SQOOP parallel mappers

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

SPLIT_BY Target column name for splitting the source data.

Specifies the unqualified target column name to be used for
splitting the source data into n chunks for parallel extraction,
where n is SQOOP_PARALLELISM.

To achieve equally sized data chunks the split column should
contain homogeneously distributed values.

For calculating the data chunk boundaries a query similar to
SELECT MIN(EMPNO), MAX(EMPNO) from EMPLOYEE
EMP is used. To avoid an extra full table scan the split column
should be backed by an index.

A-6 Integrating Big Data with Oracle Data Integrator

LKM SQL to HBase SQOOP Direct

Table A-3 (Cont.) LKM SQL to HBase SQOOP Direct
___|

Option

Description

BOUNDARY_QUERY

TEMP_DIR

MAPRED_OUTPUT_BASE
_DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONEF_
PROPERTIES

EXTRA_SQOOP_CONEF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Query to retrieve min/max value for calculating data chunks
using SPLIT_BY column.

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLIT-BY). In certain situations this may
not be the best boundaries or not the most performant way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELISM chunks for
parallel extraction.

Example for hard-coded ranges for an Oracle source:
SELECT 1000, 2000 FROM DUAL

For preserving context independence regular table names
should be inserted through odiRef.getObjectName calls.

For example:

SELECT MIN(EMPNO), MAX(EMPNO) FROM <
%=o0diRef.getObjectName(EMP")%>"

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

Hive Knowledge Modules A-7

LKM File to SQL SQOOP

A.4 LKM File to SQL SQOOP

This KM integrates data from HDFS files into a JDBC target.

It executes the following steps:

1. Create a SQOOP configuration file

2. Load data using SQOOP into a work table on RDBMS

3. Drop the work table.

The following table descriptions the options for LKM File to SQL SQOOP.

Table A-4 LKM File to SQL SQOOP
. ___|

Option Description

SQOOP_PARALLELISM Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

WORK_TABLE_OPTIONS Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING

DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

TERADATA_WORK_TAB Teradata work table type.
LE_TYPE Use SET or MULTISET table for work table.

TERADATA_OUTPUT_M Teradata Load Method.

ETHOD Specifies the way the Teradata Connector will load the data.

Valid values are:

¢ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

¢ multiple.fastload: multiple FastLoad connections

¢ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more

details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A-8 Integrating Big Data with Oracle Data Integrator

LKM Hive to SQL SQOOP

Table A-4 (Cont.) LKM File to SQL SQOOP
|

Option

Description

MAPRED_OUTPUT_BASE
_DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONEF_
PROPERTIES

EXTRA_SQOOP_CONEF_P
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

Optional SQOOP properties.

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

A.5 LKM Hive to SQL SQOOP

This KM integrates data from Hive into a JDBC target.

It executes the following steps:

1. Unload data into HDFS

2. Create a SQOOP configuration file

3. Load data using SQOOP into a work table on RDBMS

4. Drop the work table

The following table descriptions the options for LKM Hive to SQL SQOOP.

Table A-5 LKM Hive to SQL SQOOP

Option

Description

DELETE_TEMPORARY_O
BJECTS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

Hive Knowledge Modules A-9

LKM Hive to SQL SQOOP

Table A-5 (Cont.) LKM Hive to SQL SQOOP
___|

Option

Description

SQOOP_PARALLELISM

WORK_TABLE_OPTIONS

TERADATA_WORK_TAB
LE_TYPE

TERADATA_OUTPUT_M
ETHOD

TEMP_DIR

MAPRED_OUTPUT_BASE
_DIR

USE_GENERIC_JDBC_CO
NNECTOR

EXTRA_HADOOP_CONEF_
PROPERTIES

Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.

When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING
DB2 UDB: NOT LOGGED INITIALLY

Teradata: no fallback, no before journal, no after journal

Teradata work table type.
Use SET or MULTISET table for work table.

Teradata Load Method.

Specifies the way the Teradata Connector will load the data.

Valid values are:

¢ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

¢ multiple.fastload: multiple FastLoad connections

¢ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more

details.

Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MapReduce Output Directory.

This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

Use SQOOP's generic JDBC connector?

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

Optional generic Hadoop properties.

Extra optional properties for SQOOP file: section Hadoop
properties.

A-10 Integrating Big Data with Oracle Data Integrator

LKM HBase to SQL SQOOP

Table A-5 (Cont.) LKM Hive to SQL SQOOP
___|

Option Description
EXTRA_SQOOP_CONEF_P Optional SQOOP properties.
ROPERTIES

EXTRA_SQOOP_CONNEC
TOR_CONF_PROPERTIES

Extra optional properties for SQOOP file: section SQOOP
properties.

Optional SQOOP connector properties.

Extra optional properties for SQOOP file: section SQOOP
connector properties.

A.6 LKM HBase to SQL SQOOP

This KM integrates data from HBase into a JDBC target.

It executes the following steps:

1. Create a SQOOP configuration file

2. Create a Hive table definition for the HBase table

3. Unload data from Hive (HBase) using SQOOP into a work table on RDBMS

4. Drop the work table.

The following table descriptions the options for LKM HBase to SQL SQOOP.

Table A-6 LKM HBase to SQL SQOOP
- - - - - - -]

Option

Description

DELETE_TEMPORARY_O
BJECTS

HIVE_STAGING_LSCHE

MA

SQOOP_PARALLELISM

WORK_TABLE_OPTIONS

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
Default: true.

Logical schema name for Hive-HBase-SerDe table.

The unloading from HBase data is done via Hive. This KM
option defines the Hive database, which will be used for
creating the Hive HBase-SerDe table for unloading the HBase
data.

Number of SQOOP parallel mappers.

Specifies the degree of parallelism. More precisely the number
of mappers.

Number of mapper processes used for extraction.
When SQOOP_PARALLELISM > 1, SPLIT_BY must be defined.

Work table options.

Use this option if you wish to override standard technology
specific work table options. When left blank, these options
values are used.

Oracle: NOLOGGING
DB2 UDB: NOT LOGGED INITIALLY
Teradata: no fallback, no before journal, no after journal

Hive Knowledge Modules A-11

LKM HDFS File to Hive

Table A-6 (Cont.) LKM HBase to SQL SQOOP
__|

Option Description

TERADATA_WORK_TAB Teradata work table type.
LE_TYPE Use SET or MULTISET table for work table.

TERADATA_OUTPUT_M Teradata Load Method.

ETHOD Specifies the way the Teradata Connector will load the data.

Valid values are:

¢ batch.insert: multiple JDBC connections using batched
prepared statements (simplest to start with)

¢ multiple.fastload: multiple FastLoad connections

¢ internal.fastload: single coordinated FastLoad connections
(most performant)

Please see Cloudera's Teradata Connectors User Guide for more

details.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

MAPRED_OUTPUT_BASE MapReduce Output Directory.

_DIR This option specifies an hdfs directory, where SQOOP will

create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

USE_GENERIC_JDBC_CO Use SQOOP's generic JDBC connector?

NNECTOR For certain technologies SQOOP provides specific connectors.

These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector may provide a solution.

EXTRA_HADOOP_CONE_ Optional generic Hadoop properties.

PROPERTIES Extra optional properties for SQOOP file: section Hadoop

properties.

EXTRA_SQOOP_CONF_P Optional SQOOP properties.

ROPERTIES Extra optional properties for SQOOP file: section SQOOP
properties.

EXTRA_SQOOP_CONNEC Optional SQOOP connector properties.

TOR_CONF_PROPERTIES gytra optional properties for SQOOP file: section SQOOP
connector properties.

A.7 LKM HDFS File to Hive

This KM will load data only from HDFS file into Hive. The file can be in the format of
JSON, Avro, Parquet, Delimited with complex data.

A-12 Integrating Big Data with Oracle Data Integrator

LKM HDFS File to Hive (Direct)

Table A-7 LKM HDFS File to Hive

Option

Description

STOP_ON_FILE_NO
T_FOUND

OVERRIDE_ROW_F
ORMAT

DELETE_TEMPORA
RY_OBJECTS

This checkbox option defines whether the KM should stop, if no input
file is found.

This option allows to override the entire Hive row format definition
of the staging table or the target table.

Set this option to No, if you want to retain the temporary objects
(tables, files and scripts) post integration.

A.8 LKM HDFS File to Hive (Direct)

This KM will load data only from HDFS file into Hive Data Direct directly into hive
target table, bypassing the staging table for better performance.

Table A-8 LKM HDFS to Hive (Direct)

Option

Description

STOP_ON_FILE_NO
T_FOUND

OVERRIDE_ROW_F
ORMAT

DELETE_TEMPORA
RY_OBJECTS

CREATE_TARG_TA
BLE

TRUNCATE

This checkbox option defines whether the KM should stop, if no input
file is found.

This option allows to override the entire Hive row format definition
of the staging table or the target table.

Set this option to No, if you want to retain the temporary objects
(tables, files and scripts) post integration.

Create target table?
Check this option, if you wish to create the target table.

Replace existing target data?

Set this option to true, if you wish to replace any existing target table
content with the new data.

A.9 IKM Hive Append

This KM integrates data into a Hive target table in append or replace (truncate) mode.

The following table descriptions the options for IKM Hive Append.

Table A-9 IKM Hive Append

Option

Description

CREATE_TARG_TABLE Create target table.

TRUNCATE

Check this option if you wish to create the target table.

Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

Hive Knowledge Modules A-13

IKM Hive Incremental Update

Note: If there is a column containing a Complex Type in the target Hive table,
this must not be left unmapped. Hive does not allow setting null values to
complex columns.

A.10 IKM Hive Incremental Update

This IKM integrates data incrementally into a Hive target table. The KM should be
assigned on Hive target node.

Target data store integration type needs to be defined as Incremental Update in order
to get this KM on the list of available KMs for assignment.

Table A-10 IKM Hive Incremental Update

Option Description

CREATE_TARG_ Create target table.

TABLE Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table content with
the new data.

A.11 LKM File to Hive LOAD DATA

Integration from a flat file staging area to Hive using Hive's LOAD DATA command.
This KM executes the following steps:

1. Create a flow table in Hive

2. Declare data files to Hive (LOAD DATA command)

3. Load data from Hive staging table into target table

The KM can handle filename wildcards (¥, ?).">

The following table describes the options for LKM File to Hive LOAD DATA.
Table A-11 LKM File to Hive LOAD DATA

Option Description

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.

A-14 Integrating Big Data with Oracle Data Integrator

LKM File to Hive LOAD DATA

Table A-11 (Cont.) LKM File to Hive LOAD DATA
__|

Option

Description

EXTERNAL_TABLE

FILE_IS_LOCAL

STOP_ON_FILE_NOT_FO
UND

OVERRIDE_ROW_FORM
AT

Preserve file in original location?

Defines whether to declare the target/staging table as
externally managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into
<hive.metastore.warehouse.dir>/<table_name>. For external
tables Hive does not move or delete any files. It will load data
from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will
be loaded. So any filename or wildcard information from the
source DataStore's resource name will be ignored.

The directory structure and file names must comply with Hives
directory organization for tables, e.g. for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS,
FILE_IS_LOCAL=false results in just a file rename and
therefore very fast operation. This option only applies, if
EXTERNAL_TABLE is set to false.

Stop if no input file was found?

This checkbox option defines whether the KM should stop, if no
input file has been found.

Custom row format clause.

This option allows to override the entire Hive row format
definition of the staging table (in case USE_STAGE_TABLE is
set to true) or the target table (in case USE_STAGE_TABLE is
set to false). It contains the text to be used for row format
definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" =
AT A T9) (N T GINNIMNNTPANND (A N INTANTAY) (-
[0-91%) (-170-97%) (\".*2\") (\".*2\") (\"*2\")"

Hive Knowledge Modules A-15

LKM File to Hive LOAD DATA Direct

A.12 LKM File to Hive LOAD DATA Direct

Direct integration from a flat file into Hive without any staging using Hive's LOAD
DATA command.

This is a direct load LKM and must be used without any IKM.
The KM can handle filename wildcards (*, ?).
The following table describes the options for LKM File to Hive LOAD DATA Direct.

Table A-12 LKM File to Hive LOAD DATA Direct
- - - - - -~ -~ - - - """

Option Description

CREATE_TARG_TABLE Create target table.
Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
EXTERNAL_TABLE Preserve file in original location?

Defines whether to declare the target/staging table as
externally managed.

Default: false

For non-external tables Hive manages all data files. That is, it
will *move* any data files into
<hive.metastore.warehouse.dir>/ <table_name>. For external
tables Hive does not move or delete any files. It will load data
from the location given by the ODI schema.

If EXTERNAL_TABLE is set to true:

All files in the directory given by the physical data schema will
be loaded. So any filename or wildcard information from the
source DataStore's resource name will be ignored.

The directory structure and file names must comply with Hives
directory organization for tables, e.g. for partitioning and
clustering.

The directory and its files must reside in HDFS.

No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

A-16 Integrating Big Data with Oracle Data Integrator

LKM HBase to Hive HBASE-SERDE

Table A-12 (Cont.) LKM File to Hive LOAD DATA Direct
__|

Option Description
FILE_IS_LOCAL Is this a local file?

Defines whether the source file is to be considered local (=
outside of the current Hadoop cluster).

Default: true

If FILE_IS_LOCAL is set to true, the data file(s) are copied into
the Hadoop cluster first.

If FILE_IS_LOCAL is set to false, the data file(s) are moved into
the Hadoop cluster and therefore will no longer be available at
their source location. If the source file is already in HDFS,
FILE_IS_LOCAL=false results in just a file rename and
therefore very fast operation. This option only applies, if
EXTERNAL_TABLE is set to false.

STOP_ON_FILE_NOT_FO Stop if no input file was found?

UND This checkbox option defines whether the KM should stop, if no

input file has been found.

OVERRIDE_ROW_FORM Custom row format clause.

AT This option allows to override the entire Hive row format

definition of the staging table (in case USE_STAGE_TABLE is
set to true) or the target table (in case USE_STAGE_TABLE is
set to false). It contains the text to be used for row format
definition.

Example for reading Apache Combined WebLog files:

ROW FORMAT SERDE
'org.apache.hadoop.hive.contrib.serde2.RegexSerDe'
<EOL>WITH SERDEPROPERTIES (<EOL> input.regex" =
"IN TN T T CINNIANNITINND (A NTINTANTAY) (-
[0-91%) (- 17T0-97%) (\".*2\") (\".*2\") (\".*2\")"

A.13 LKM HBase to Hive HBASE-SERDE

This LKM provides read access to a HBase table from the Hive.

This is achieved by defining a temporary load table definition on Hive which
represents all relevant columns of the HBase source table.

A.14 LKM Hive to HBase Incremental Update HBASE-SERDE Direct

This LKM loads data from Hive into HBase and supports inserting new rows as well
as updating existing data.

This is a direct load LKM and must be used without any IKM.

The following table describes the options for LKM Hive to HBase Incremental Update
HBASE-SERDE Direct.

Hive Knowledge Modules A-17

LKM Hive to File Direct

Table A-13 LKM Hive to HBase Incremental Update HBASE-SERDE Direct

Option Description

CREATE_TARG_TABLE Create target table.
Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

HBASE_WAL Disable Write-Ahead-Log.

HBase uses a Write-Ahead-Log to protect against data loss. For
better performance, WAL can be disabled. Please note that this
setting applies to all Hive commands executed later in this
session.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.

A.15 LKM Hive to File Direct
This LKM unloads data from Hive into flat files.
This is a direct load LKM and must be used without any IKM.
The following table describes the options for LKM Hive to File Direct.

Table A-14 LKM Hive to File Direct

|
Option Description
FILE_IS_LOCAL Is this a local file?

Defines whether the target file is to be considered local (outside
of the current Hadoop cluster).

STORED_AS File format.

Defines whether the target file is to be stored as plain text file
(TEXTFILE) or compressed (SEQUENCEFILE).

A.16 XKM Hive Sort

This XKM sorts data using an expression.

The following table describes the options for XKM Hive Sort.

Table A-15 XKM Hive Sort

Option Description

SORT_MODE Select the mode the SORT operator will generate code for.

A-18 Integrating Big Data with Oracle Data Integrator

LKM File to Oracle OLH-OSCH

A.17 LKM File to Oracle OLH-OSCH

This KM integrates data from an HDFS file into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The KM can handle filename wildcards (*, ?).
The following table describes the options for LKM File to Oracle OLH-OSCH.

Table A-16 LKM Hive to Oracle OLH-OSCH
- - - - - - - "~

Option

Description

DELETE_TEMPORARY_O
BJECTS

OLH_OUTPUT_MODE

REJECT_LIMIT

Delete temporary objects at end of mapping.

Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.

How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY | DP_OSCH, and
OSCH.

* JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

* OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading,
FLOW_TABLE_OPTIONS must explicitely specify
partitioning: e.g. PARTITION BY HASH(COL1)
PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

e DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

Hive Knowledge Modules A-19

LKM File to Oracle OLH-OSCH

Table A-16 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option Description

EXT_TAB_DIR_LOCATIO Directory for ext tab data files.

N File system path of the external table.

Note:

* Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

¢ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_* | OSCH: this path will
contain any external table log/bad/dsc files.

* ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.
This option may be left empty.

OVERRIDE_INPUTFORM Class name of InputFormat.

AT By default the InputFormat class is derived from the source

DataStore/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to
specify the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

A-20 Integrating Big Data with Oracle Data Integrator

LKM File to Oracle OLH-OSCH Direct

Table A-16 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option Description

EXTRA_OLH_CONF_PRO Optional extra OLH properties.
PERTIES Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are
provided in the OLH configuration file. This KM option allows
adding extra properties to the OLH configuration file. Default:
<empty>

Cannot be used with OLH_OUTPUT_MODE=0OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* T*) ([* 1) ([N 1) GINIIANIPND) (8 NPENTTANTAT)
(-170-91%) (-1710-91*) (\"*2\") (\"*2\") (\"*?\")</value>
<description>RegEx for Apache WebLog format</description>
</property>"

MAPRED_OUTPUT_BASE MapReduce Output Directory.

-DIR This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.18 LKM File to Oracle OLH-OSCH Direct

This KM integrates data from an HDFS file into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

The KM can handle filename wildcards (*, ?).
This is a direct load LKM (no staging) and must be used without any IKM.
The following table describes the options for LKM File to Oracle OLH-OSCH Direct.

Hive Knowledge Modules A-21

LKM File to Oracle OLH-OSCH Direct

Table A-17 LKM File to Oracle OLH-OSCH Direct
- - - - - - - -~ -~~~ -~~~

Option Description

CREATE_TARG_TABLE Create target table.
Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_ALL Delete all rows.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY | DP_OSCH, and
OSCH.

¢ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

¢ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading,
FLOW_TABLE_OPTIONS must explicitely specify
partitioning: e.g. PARTITION BY HASH(COL1)
PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

e DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

A-22 Integrating Big Data with Oracle Data Integrator

LKM File to Oracle OLH-OSCH Direct

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct
__|

Option

Description

EXT_TAB_DIR_LOCATIO
N

WORK_TABLE_OPTIONS

OVERRIDE_INPUTFORM
AT

Directory for ext tab data files.
File system path of the external table.
Note:

¢ Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

¢ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_* | OSCH: this path will
contain any external table log/bad/dsc files.

* ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.
This option may be left empty.

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to
specify the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0OSCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

Hive Knowledge Modules A-23

LKM Hive to Oracle OLH-OSCH

Table A-17 (Cont.) LKM File to Oracle OLH-OSCH Direct
__|

Option Description

EXTRA_OLH_CONF_PRO Optional extra OLH properties.
PERTIES Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are
provided in the OLH configuration file. This KM option allows
adding extra properties to the OLH configuration file. Default:
<empty>

Cannot be used with OLH_OUTPUT_MODE=0OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* I*) ([* 1) (N 1) GINIIANIPND) (8 NPENTTANTAT)
(-1710-91%) (-1710-91*) (\"*2\") (\"*2\") (\"*?\")</value>
<description>RegEx for Apache WebLog format</description>
</property>"

MAPRED_OUTPUT_BASE MapReduce Output Directory.

-DIR This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.19 LKM Hive to Oracle OLH-OSCH

This KM integrates data from a Hive query into an Oracle staging table using Oracle
Loader for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH).

The following table describes the options for LKM Hive to Oracle OLH-OSCH.

A-24 Integrating Big Data with Oracle Data Integrator

LKM Hive to Oracle OLH-OSCH

Table A-18 LKM Hive to Oracle OLH-OSCH
- - - - - - - "~

Option Description

USE_HIVE_STAGING_TA Use intermediate Hive staging table?

BLE By default the Hive source data is getting materialized in a

Hive staging table prior to extraction by OLH. If
USE_HIVE_STAGING_TABLE is set to false, OLH directly
accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these
conditions are true.

¢ Only a single source table

¢ No transformations, filters, joins.

* No datasets

e USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects

(tables, files and scripts) after integration. Useful for debugging.

OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY | DP_OSCH, and
OSCH.

¢ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

* OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading,
FLOW_TABLE_OPTIONS must explicitely specify
partitioning: e.g. PARTITION BY HASH(COL1)
PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

e DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

REJECT_LIMIT Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

Hive Knowledge Modules A-25

LKM Hive to Oracle OLH-OSCH

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option Description

EXT_TAB_DIR_LOCATIO Directory for ext tab data files.

N File system path of the external table.

Note:

* Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH

¢ For OLH_OUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

e For OLH_OUTPUT_MODE = DP_* | OSCH: this path will
contain any external table log/bad/dsc files.

* ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

WORK_TABLE_OPTIONS Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.
This option may be left empty.

OVERRIDE_INPUTFORM Class name of InputFormat.

AT By default the InputFormat class is derived from the source

DataStore/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to
specify the class name of a custom InputFormat.

Default: <empty>.

Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

A-26 Integrating Big Data with Oracle Data Integrator

LKM Hive to Oracle OLH-OSCH Direct

Table A-18 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option Description

EXTRA_OLH_CONF_PRO Optional extra OLH properties.
PERTIES Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are
provided in the OLH configuration file. This KM option allows
adding extra properties to the OLH configuration file. Default:
<empty>

Cannot be used with OLH_OUTPUT_MODE=0OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* T*) ([* 1) ([N 1) GINIIANIPND) (8 NPENTTANTAT)
(-170-91%) (-1710-91*) (\"*2\") (\"*2\") (\"*?\")</value>
<description>RegEx for Apache WebLog format</description>
</property>"

MAPRED_OUTPUT_BASE MapReduce Output Directory.

-DIR This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.20 LKM Hive to Oracle OLH-OSCH Direct

This KM integrates data from a Hive query into an Oracle target using Oracle Loader
for Hadoop (OLH) and/or Oracle SQL Connector for Hadoop (OSCH)

This is a direct load LKM and must be used without any IKM.
The following table describes the options for LKM Hive to Oracle OLH-OSCH.

Hive Knowledge Modules A-27

LKM Hive to Oracle OLH-OSCH Direct

Table A-19 LKM Hive to Oracle OLH-OSCH
- - - - - - - "~

Option Description

CREATE_TARG_TABLE Create target table.
Check this option if you wish to create the target table.

TRUNCATE Replace all target table data.

Set this option to true, if you wish to replace the target table
content with the new data.

DELETE_ALL Delete all rows.

Set this option to true, if you wish to replace the target table
content with the new data.

USE_HIVE_STAGING_TA Use intermediate Hive staging table?

BLE By default the Hive source data is getting materialized in a

Hive staging table prior to extraction by OLH. If
USE_HIVE_STAGING_TABLE is set to false, OLH directly
accesses the Hive source data.

USE_HIVE_STAGING_TABLE=0 is only possible, if all these
conditions are true.

* Only a single source table

¢ No transformations, filters, joins.

e No datasets

e USE_HIVE_STAGING_TABLE=0 provides better
performance by avoiding an extra data transfer step.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS Set this option to NO, if you wish to retain temporary objects
(tables, files and scripts) after integration. Useful for debugging.
OLH_OUTPUT_MODE How to transfer data into Oracle?

This option specifies how to load the Hadoop data into Oracle.
Permitted values are JDBC, OCI, DP_COPY | DP_OSCH, and
OSCH.

¢ JDBC output mode: The data is inserted using a number of
direct insert JDBC connections.

In very rare cases JDBC mode may result in duplicate
records in target table due to Hadoop trying to restart tasks.

¢ OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode.

For direct loading (no C$ table), the target table must be
partitioned. For standard loading,
FLOW_TABLE_OPTIONS must explicitely specify
partitioning: e.g. PARTITION BY HASH(COL1)
PARTITIONS 4".

In very rare cases OCI mode may result in duplicate records
in target table due to Hadoop trying to restart tasks.

e DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal" command to the local path
specified by EXT_TAB_DIR_LOCATION. - Please note that
the path must be accessible by the Oracle Database engine.
Once the copy job is complete.

A-28 Integrating Big Data with Oracle Data Integrator

LKM Hive to Oracle OLH-OSCH Direct

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option

Description

REJECT_LIMIT

EXT_TAB_DIR_LOCATIO
N

WORK_TABLE_OPTIONS

OVERRIDE_INPUTFORM
AT

Max number of errors for OLH/EXTTAB.

Enter the maximum number of errors allowed in the file.
Examples: UNLIMITED to except all errors. Integer value (10 to
allow 10 rejections).

This value is used in OLH job definitions as well as in external
table definitions.

Directory for ext tab data files.

File system path of the external table.

Note:

* Only applicable, if OLH_OUTPUT_MODE = DP_* or OSCH
e For OLH_OUTPUT_MODE = DP_*: this path must be

accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the
external directory object is the I$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will
use hadoop-fs command to copy dp files into this directory.

¢ For OLH_OUTPUT_MODE = DP_* | OSCH: this path will
contain any external table log/bad/dsc files.

e ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

Option for Flow table creation.

Use this option to specify the attributes for the integration table
at create time and used for increasing performance.

This option is set by default to NOLOGGING.
This option may be left empty.

Class name of InputFormat.

By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to
specify the class name of a custom InputFormat.

Default: <empty>.
Cannot be used with OLH_OUTPUT_MODE=0SCH.

For example, for reading custom file formats like web log files
the OLH RegexInputFormat can be used by assigning the value:
oracle.hadoop.loader.lib.input.RegexInputFormat

See KM option EXTRA_OLH_CONF_PROPERTIES for details
on how to specify the regular expression.

Hive Knowledge Modules A-29

RKM Hive

Table A-19 (Cont.) LKM Hive to Oracle OLH-OSCH
__|

Option Description

EXTRA_OLH_CONF_PRO Optional extra OLH properties.
PERTIES Allows adding extra parameters to OLH. E.g. for changing the
default OLH date format:

<property>
<name>oracle.hadoop.loader.defaultDateFormat</name>
<value>yyyy-MM-dd HH:mm:ss</value>

</property>

Particularly when using custom InputFormats (see KM option
OVERRIDE_INPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are
provided in the OLH configuration file. This KM option allows
adding extra properties to the OLH configuration file. Default:
<empty>

Cannot be used with OLH_OUTPUT_MODE=0OSCH

Example (loading apache weblog file format):

When OLH RegexInputFormat is used for reading custom file
formats, this KM option specified the regular expression and
other parsing details:

<property>
<name>oracle.hadoop.loader.input.regexPattern</name>
<value>([* T*) ([* 1) (N 1) GINIIANIPND) (8 NPENTTANTAT)
(-170-91%) (-1710-91*) (\"*2\") (\"*2\") (\"*?\")</value>
<description>RegEx for Apache WebLog format</description>
</property>"

MAPRED_OUTPUT_BASE MapReduce Output Directory.

-DIR This option specifies an hdfs directory, where SQOOP will
create subdirectories for temporary files. A subdirectory called
like the work table will be created here to hold the temporary
data.

TEMP_DIR Local directory for temporary files.

Directory used for storing temporary files like squoop script,
stdout, and stderr redirects.

Leave blank to use system's default temp dir (<?
=System.getProperty(java.io.tmp")?>)".

A.21 RKM Hive

RKM Hive reverses these metadata elements:

e Hive tables and views as data stores.

Specify the reverse mask in the Mask field, and then select the tables and views to
reverse. The Mask field in the Reverse Engineer tab filters reverse-engineered
objects based on their names. The Mask field cannot be empty and must contain at
least the percent sign (%).

¢ Hive columns as attributes with their data types.

A-30 Integrating Big Data with Oracle Data Integrator

RKM HBase

* Information about buckets, partitioning, clusters, and sort columns are set in the
respective flex fields in the data store or column metadata.

A.22 RKM HBase

RKM HBase reverses these metadata elements:

e HBase tables as data stores.

Specify the reverse mask in the Mask field, and then select the tables to reverse. The
Mask field in the Reverse Engineer tab filters reverse-engineered objects based on
their names. The Mask field cannot be empty and must contain at least the percent
sign (%).

* HBase columns as attributes with their data types.

¢ HBase unique row key as attribute called key.

Note:

This RKM uses the or acl e. odi . kmlogger for logging. You can enable
logging by changing log level for or acl e. odi . kmlogger to TRACE:16 in
ODI -1 oggi ng-confi g. xm as shown below:

<l ogger nanme="oracl e. odi . knt' |evel =" TRACE: 16" useParent Handl ers="true"/>
<l ogger name="oracl e. odi . studi 0. nessage. | ogger. proxy" |evel =" TRACE: 16"
usePar ent Handl ers="f al se"/>

For more information about logging configuration in ODI, please see Runtime
Logging for ODI components in Administering Oracle Data Integrator.

The following table describes the options for RKM HBase.

Table A-20 RKM HBase Options
__|

Option

Description

SCAN_NMAX_ROWS Specifies the maximum number of rows to be scanned during

reversing of a table. The default value is 10000.

SCAN_START_ROW Specifies the key of the row to start the scan on. By default the

scan will start on the first row. The row key is specified as a
Java expressions returning an instance of

org. apache. hadoop. hbase. uti | . Byt es. Example:
Byt es. t oByt es(?EMP0000017?) .

SCAN_STOP_ROW Specifies the key of the row to stop the scan on? By default the

scan will run to the last row of the table or up to
SCAN_MAX_ROWS is reached. The row key is specified as a Java
expressions returning an instance of

org. apache. hadoop. hbase. uti | . Byt es. Example:

Byt es. t oByt es(?EMP0009997) .

Only applies if SCAN_START_ROWis specified.

SCAN_ONLY_FAM LY Restricts the scan to column families, whose name match this

pattern. SQL-LIKE wildcards percentage (% and underscore
(L) can be used. By default all column families are scanned.

Hive Knowledge Modules A-31

IKM File to Hive (Deprecated)

A.23 IKM File to Hive (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.
IKM File to Hive (Load Data) supports:

* One or more input files. To load multiple source files, enter an asterisk or a
question mark as a wildcard character in the resource name of the file DataStore
(for example, webshop_*. | 0g).

¢ File formats:
- Fixed length
— Delimited
— Customized format
¢ Loading options:
— Immediate or deferred loading
— Opverwrite or append

— Hive external tables

The following table describes the options for IKM File to Hive (Load Data). See the
knowledge module for additional details.

Table A-21 IKM File to Hive Options

Option Description

CREATE_TARG_TABLE Check this option, if you wish to create the target table. In case
USE_STAG NG _TABLE s set to f al se, please note that data
will only be read correctly, if the target table definition,
particularly the row format and file format details, are correct.

TRUNCATE Set this option to true, if you wish to replace the target table/
partition content with the new data. Otherwise the new data
will be appended to the target table. If TRUNCATE and
USE_STAQ NG _TABLE are set to f al se, all source file names
must be unique and must not collide with any data files already
loaded into the target table.

FILE | S_LOCAL Defines whether the source file is to be considered local
(outside of the current Hadoop cluster). If this option is set to
t r ue, the data file(s) are copied into the Hadoop cluster first.
The file has to be accessible by the Hive server through the local
or shared file system. If this option is set to f al se, the data
file(s) are moved into the Hadoop cluster and therefore will no
longer be available at their source location. If the source file is
already in HDFS, setting this option is set to f al se results in
just a file rename, and therefore the operation is very fast.

This option only applies, if EXTERNAL_TABLE is set to f al se.

A-32 Integrating Big Data with Oracle Data Integrator

IKM File to Hive (Deprecated)

Table A-21 (Cont.) IKM File to Hive Options
__|

Option Description

EXTERNAL_TABLE Defines whether to declare the target/staging table as
externally managed. For non-external tables Hive manages all
data files. That is, it will move any data files into
<hi ve. net ast or e. war ehouse. di r >/ <t abl e_nane>. For
external tables Hive does not move or delete any files. It will
load data from the location given by the ODI schema.

If this option is set to t r ue:

* Allfiles in the directory given by the physical data schema
will be loaded. So any filename or wildcard information
from the source DataStore's resource name will be ignored.

¢ The directory structure and file names must comply with
Hives directory organization for tables, for example, for
partitioning and clustering.

* The directory and its files must reside in HDFS.

¢ No Hive LOAD-DATA-statements are submitted and thus
loading of files to a specific partition (using a target-side
expression) is not possible.

USE_STAG NG _TABLE Defines whether an intermediate staging table will be created.
A Hive staging table is required if:
* Target table is partitioned, but data spreads across
partitions
e Target table is clustered
e Target table (partition) is sorted, but input file is not

* Target table is already defined and target table definition
does not match the definition required by the KM

* Target column order does not match source file column
order

¢ There are any unmapped source columns

¢ There are any unmapped non-partition target columns

* The source is a fixed length file and the target has non-string
columns

In case none of the above is t r ue, this option can be turned off

for better performance.

DELETE_TEMPORARY_OBJ Removes temporary objects, such as tables, files, and scripts
ECTS after integration. Set this option to No if you want to retain the
temporary files, which might be useful for debugging.

Hive Knowledge Modules A-33

IKM File to Hive (Deprecated)

Table A-21 (Cont.) IKM File to Hive Options
__|

Option Description

DEFER_TARCGET_LOAD Defines whether the file(s), which have been declared to the
staging table should be loaded into the target table now or
during a later execution. Permitted values are START, NEXT,
END or <enpt y>.

This option only applies if USE_STAGE_TABLEis setto t r ue.

The typical use case for this option is when there are multiple
files and each of them requires data redistribution/sorting and
the files are gathered by calling the interface several times. For
example, the interface is used in a package, which retrieves
(many small) files from different locations and the location,
stored in an variable, is to be used in a target partition column.
In this case the first interface execution will have
DEFER_TARGET_LQAD set to START, the next interface
executions will have DEFER_TARGET_LQAD set to NEXT and set
to END for the last interface. The interfaces having DEFER
TARGET _LOADset to START/ NEXT will just load the data file
into HDFS (but not yet into the target table) and can be
executed in parallel to accelerate file upload to cluster.

OVERRI DE_ROW FORMAT Allows to override the entire Hive row format definition of the
staging table (in case USE_STAGE_TABLE is set to t r ue) or the
target table (in case USE_STAGE_TABLEissettof al se). It
contains the text to be used for row format definition.Example
for reading Apache Combined WebLog files:

ROW FORVAT SERDE

' org. apache. hadoop. hi ve. contrib. serde2. RegexSer
De' W TH SERDEPROPERTI ES ("input.regex" =
SO 1) (0 1) (0 1) CAINNDEMANTT\WT) (7
Vit Nty (-1 [0-91%) (-1[0-9]1F) (\'.*?
LD T W W TR (R WA W T

"output.format.string" = "%$s W$s YBPs %$s
9%$s Y6$s WPs YBSs %O$s %0$s") STORED AS
TEXTFI LE

The list of columns in the source DataStore must match the list
of input groups in the regular expression (same number of
columns and appropriate data types). If USE_STAGE_TABLE is
set to f al se, the number of target columns must match the
number of columns returned by the SerDe, in the above
example, the number of groups in the regular expression. The
number of source columns is ignored (At least one column
must be mapped to the target.). All source data is mapped into
the target table structure according to the column order, the
SerDe's first column is mapped to the first target column, the
SerDe's second column is mapped to the second target column,
and so on. If USE_STAGE_TABLE is set to t r ue, the source
DataStore must have as many columns as the SerDe returns
columns. Only data of mapped columns will be transferred.

STOP_ON_FI LE_NOT_FQU Defines whether the KM should stop, if input file is not found.
ND

A-34 Integrating Big Data with Oracle Data Integrator

LKM HBase to Hive (HBase-SerDe) [Deprecated]

Table A-21 (Cont.) IKM File to Hive Options

Option Description

HI VE_COWPATI BI LE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.
¢ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).
e 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

A.24 LKM HBase to Hive (HBase-SerDe) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

LKM HBase to Hive (HBase-SerDe) supports:

* A single source HBase table.

The following table describes the options for LKM HBase to Hive (HBase-SerDe). See

the knowledge module for additional details.

Table A-22 LKM HBase to Hive (HBase-SerDe) Options

Option Description

DELETE_TEMPORARY_OBJ Deletes temporary objects such as tables, files, and scripts post
ECTS data integration. Set this option to NOif you want to retain the
temporary objects, which might be useful for debugging.

A.25 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.
IKM Hive to HBase Incremental Update (HBase-SerDe) supports:

¢ Filters, Joins, Datasets, Transformations and Aggregations in Hive
¢ Inline views generated by IKM Hive Transform

¢ Inline views generated by IKM Hive Control Append

The following table describes the options for IKM Hive to HBase Incremental Update
(HBase-SerDe). See the knowledge module for additional details.

Table A-23 IKM Hive to HBase Incremental Update (HBase-SerDe) Options

Option Description

CREATE_TARG_TABLE Creates the HBase target table.

TRUNCATE Replaces the target table content with the new data. If this
option is set to f al se, the new data is appended to the target
table.

DELETE_TEMPORARY_(OBJ Deletes temporary objects such as tables, files, and scripts post
ECTS data integration. Set this option to NOif you want to retain the
temporary objects, which might be useful for debugging.

Hive Knowledge Modules A-35

IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Table A-23 (Cont.) IKM Hive to HBase Incremental Update (HBase-SerDe) Options
__|

Option Description

HBASE_WAL Enables or disables the Write-Ahead-Log (WAL) that HBase
uses to protect against data loss. For better performance, WAL
can be disabled.

A.26 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.
IKM SQL to Hive-HBase-File (SQOOP) supports:

* Mappings on staging

* Joins on staging

¢ Filter expressions on staging
¢ Datasets

e Lookups

e Derived tables

The following table describes the options for IKM SQL to Hive-HBase-File (SQOOP).
See the knowledge module for additional details.

Table A-24 IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

CREATE_TARG_TABLE Creates the target table. This option is applicable only if the
target is Hive or HBase.

TRUNCATE Replaces any existing target table content with the new data.
For Hive and HBase targets, the target data is truncated. For
File targets, the target directory is removed. For File targets, this
option must be set to t r ue.

SQOOP_PARALLELI SM Specifies the degree of parallelism. More precisely the number
of mapper processes used for extraction.

If SQOOP_PARALLELI SMoption is set to greater than 1,
SPLI T_BY option must be defined.

SPLI T_BY Specifies the target column to be used for splitting the source
data into n chunks for parallel extraction, where n is
SQOCOP_PARALLELI SM To achieve equally sized data chunks
the split column should contain homogeneously distributed
values. For calculating the data chunk boundaries a query
similar to SELECT M N(EMP. EMPNO), MAX(EMP. EMPNO)
from EMPLOYEE EMP is used. To avoid an extra full table scan
the split column should be backed by an index.

A-36 Integrating Big Data with Oracle Data Integrator

IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option

Description

BOUNDARY_QUERY

For splitting the source data into chunks for parallel extraction
the minimum and maximum value of the split column is
retrieved (KM option SPLI T- BY). In certain situations this may
not be the best boundaries or not the most optimized way to
retrieve the boundaries. In such cases this KM option can be set
to a SQL query returning one row with two columns, lowest
value and highest value to be used for split-column. This range
will be divided into SQOOP_PARALLELI SMchunks for parallel
extraction. Example for hard-coded ranges for an Oracle source:

SELECT 1000, 2000 FROM DUAL

For preserving context independence, regular table names
should be inserted through odi Ref . get Obj ect Nane calls.
For example:

SELECT M N(EMPNO), MAX(EMPNO) FROM <
% odi Ref . get Obj ect Name(" EMP") %

TEMP_DI R

Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option
blank to use system's default temp directory:

<?=System get Property("java.io.tnp")?>

MAPRED_OUTPUT_BASE_D
IR

Specifies an hdfs directory, where SQOOP creates
subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

DELETE_TEMPORARY_(OBJ
ECTS

Deletes temporary objects such as tables, files, and scripts after
data integration. Set this option to NOif you want to retain the
temporary objects, which might be useful for debugging.

USE_H VE_STAG NG _TAB
LE

Loads data into the Hive work table before loading into the
Hive target table. Set this option to f al se to load data directly
into the target table.

Setting this option to f al se is only possible, if all these
conditions are true:

e All target columns are mapped

¢ Existing Hive table uses standard hive row separators (\n)
and column delimiter (\01)

Setting this option to f al se provides better performance by
avoiding an extra data transfer step.

This option is applicable only if the target technology is Hive.

USE_GENERI C_JDBC_CON
NECTOR

Specifies whether to use the generic JDBC connector if a
connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

EXTRA_HADOOP_CONF_PR
OPERTI ES

Optional generic Hadoop properties.

Hive Knowledge Modules A-37

IKM Hive Control Append (Deprecated)

Table A-24 (Cont.) IKM SQL to Hive-HBase-File (SQOOP) Options

Option Description

EXTRA_SQOOP_CONF_PRO Optional SQOOP properties.
PERTI ES

EXTRA_SQOOP_CONNECTO Optional SQOOP connector properties.
R_CONF_PROPERTI ES

A.27 IKM Hive Control Append (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.

This knowledge module validates and controls the data, and integrates it into a Hive
target table in truncate/insert (append) mode. Invalid data is isolated in an error table
and can be recycled. IKM Hive Control Append supports inline view mappings that
use either this knowledge module or IKM Hive Transform.

The following table describes the options for IKM Hive Control Append.

Table A-25 IKM Hive Control Append Options
. ___|

Option Description

FLOW CONTROL Activates flow control.

RECYCLE_ERRORS Recycles data rejected from a previous control.

STATI C_CONTROL Controls the target table after having inserted or updated target
data.

CREATE_TARG _TABLE Creates the target table.

TRUNCATE Replaces the target table content with the new data. Setting this

option to t r ue provides better performance.

DELETE_TEMPORARY_CBJ Removes the temporary objects, such as tables, files, and scripts
ECTS after data integration. Set this option to NOif you want to retain
the temporary objects, which might be useful for debugging.

HI VE_COWPATI BI LE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.
¢ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).
e 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

A.28 CKM Hive (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.

This knowledge module checks data integrity for Hive tables. It verifies the validity of
the constraints of a Hive data store and diverts the invalid records to an error table.
You can use CKM Hive for static control and flow control. You must also define these
constraints on the stored data.

The following table describes the options for this check knowledge module.

A-38 Integrating Big Data with Oracle Data Integrator

IKM Hive Transform (Deprecated)

Table A-26 CKM Hive Options

Option Description

DROP_ERROR_TABLE Drops error table before execution. When this option is set to
YES, the error table will be dropped each time a control is
performed on the target table. This means that any rejected
records, identified and stored during previous control
operations, will be lost. Otherwise previous rejects will be
preserved. In addition to the error table, any table called
<error tabl e>_t np will also be dropped.

HI VE_COWPATI BI LE Specifies the Hive version compatibility. The values permitted
for this option are 0.7 and 0.8.
¢ 0.7: Simulates the append behavior. Must be used for Hive
0.7 (CDH3).
¢ 0.8: Uses Hive's append feature, which provides better
performance. Requires Hive 0.8 (CDH4) or later.

A.29 IKM Hive Transform (Deprecated)

Note: This KM is deprecated and only used for backward compatibility.

This knowledge module performs transformations. It uses a shell script to transform
the data, and then integrates it into a Hive target table using replace mode. The
knowledge module supports inline view mappings and can be used as an inline-view
for IKM Hive Control Append.

The transformation script must read the input columns in the order defined by the
source data store. Only mapped source columns are streamed into the
transformations. The transformation script must provide the output columns in the
order defined by the target data store.

The following table describes the options for this integration knowledge module.

Table A-27 IKM Hive Transform Options

Option Description

CREATE_TARG_TABLE Creates the target table.

DELETE_TEMPORARY_CBJ Removes the temporary objects, such as tables, files, and scripts
ECTS post data integration. Set this option to NOif you want to retain
the temporary objects, which might be useful for debugging.

Hive Knowledge Modules A-39

IKM Hive Transform (Deprecated)

Table A-27 (Cont.) IKM Hive Transform Options
__|

Option Description

TRANSFORM_SCRI PT_NAM Defines the file name of the transformation script. This

E transformation script is used to transform the input data into
the output structure. Both local and HDFES paths are supported,
for example:

Local script location: fi l e:///tnp/ odi/script1.pl

HDEFS script location: hdf s: / / namenode: nnPor t/t np/ odi /
scriptl. pl

Ensure that the following requirements are met:

* The path/file must be accessible by both the ODI agent and
the Hive server. Read access for the Hive server is required
as it is the Hive server, which executes the resulting MR job
invoking the script.

e If TRANSFORM SCRI PT is set (ODI creates the script file
during mapping execution), the path/file must be writable
for the ODI agent, as it is the ODI agent, which writes the
script file using the HDFS Java APL

When the KM option TRANSFORM_SCRI PT is set, the following

paragraphs provide some configuration help:

¢ For HDFS script locations:

The script file created is owned by the ODI agent user and
receives the group of the owning directory. See Hadoop Hdfs
Permissions Guide for more details. The standard
configuration to cover the above two requirements for
HDFS scripts is to ensure that the group of the HDEFS script
directory includes the ODI agent user (let's assume oracle)
as well as the Hive server user (let's assume hive).
Assuming that the group hadoop includes oracle and hive,
the sample command below adjusts the ownership of the
HDFS script directory:

| ogon as hdfs user hdfs dfs -chown
oracl e: hadoop /tnp/odi/nyscriptdir

¢ For local script locations:

The script file created is owned by the ODI agent user and
receives the ODI agent user's default group, unless SGID
has been set on the script directory. If the sticky group bit
has been set, the file will be owned by the group of the
script directory instead. The standard configuration to cover
the above two requirements for local scripts is similar to the
HDEFS configuration by using the SGID:

chown oracl e: hadoop /tnp/odi/nyscriptdir
chnod g+s /tnp/odi/nyscriptdir

A-40 Integrating Big Data with Oracle Data Integrator

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Table A-27 (Cont.) IKM Hive Transform Options
__|

Option Description

TRANSFORM_SCRI PT Defines the transformation script content. This transformation
script is then used to transform the input data into the output
structure. If left blank, the file given in
TRANSFORM_SCRI PT_NAME must already exist. If not blank,
the script file is created.

Script example (1-to-1 transformation): #! /usr/bi n/ csh -f
cat

All mapped source columns are spooled as tab separated data
into this script via stdin. This unix script then transforms the
data and writes out the data as tab separated data on stdout.
The script must provide as many output columns as there are
target columns.

TRANSFORM_SCRI PT_MOD Unix/HDFS file permissions for script file in octal notation with
E leading zero. For example, full permissions for owner and
group: 0770.
Warning: Using wider permissions like 0777 poses a security
risk.
See also KM option description for TRANSFORM_SCRI PT_NAVME
for details on directory permissions.

PRE_TRANSFORM DI STRI Provides an optional, comma-separated list of source column
BUTE names, which enables the knowledge module to distribute the
data before the transformation script is applied.

PRE_TRANSFORM_SORT Provide an optional, comma-separated list of source column
names, which enables the knowledge module to sort the data
before the transformation script is applied.

POST_TRANSFORM DI STR Provides an optional, comma-separated list of target column
| BUTE names, which enables the knowledge module to distribute the
data after the transformation script is applied.

POST_TRANSFORM _SORT Provides an optional, comma-separated list of target column
names, which enables the knowledge module to sort the data
after the transformation script is applied.

A.30 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.

IKM File-Hive to Oracle (OLH-OSCH) integrates data from an HDFS file or Hive
source into an Oracle database target using . Using the mapping configuration and the
selected options, the knowledge module generates an appropriate Oracle Database
target instance. Hive and Hadoop versions must follow the requirements.

Hive Knowledge Modules A-41

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

See Also:

e "Oracle Loader for Hadoop Setup" in for the required versions of Hadoop and
Hive

¢ "Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs" for
required environment variable settings

The following table describes the options for this integration knowledge module.

Table A-28 IKM File - Hive to Oracle (OLH-OSCH)

Option Description

OLH_OUTPUT_MODE Specifies how to load the Hadoop data into Oracle. Permitted
values are JDBC, OCI, DP_COPY, DP_OSCH, and OSCH.

* JDBC output mode: The data is inserted using a number of
direct insert JDBC connections. In very rare cases JDBC
mode may result in duplicate records in target table due to
Hadoop trying to restart tasks.

* OCI output mode: The data is inserted using a number of
direct insert OCI connections in direct path mode. If
USE_ORACLE_STAG NGis set to f al se, target table must be
partitioned. If USE_ORACLE_STAG NGis settot r ue,
FLOW TABLE_OPTI ONS must explicitly specify
partitioning, for example, " PARTI TI ON BY HASH(COL1)
PARTI TI ONS 4" . In very rare cases OCI mode may result
in duplicate records in target table due to Hadoop trying to
restart tasks.

¢ DP_COPY output mode: OLH creates a number of
DataPump export files. These files are transferred by a
"Hadoop fs -copyToLocal "command to the local path
specified by EXT_TAB_DI R_LOCATI ON. Please note that the
path must be accessible by the Oracle Database engine.
Once the copy job is complete, an external table is defined in
the target database, which accesses the files from
EXT_TAB_DI R_LOCATI ON.

e DP_OSCH output mode: OLH creates a number of
DataPump export files. After the export phase an external
table is created on the target database, which accesses these
output files directly via OSCH. Please note that the path
must be accessible by the Oracle Database engine. Once the
copy job is complete, an external table is defined in the
target database, which accesses the files from
EXT_TAB_DI R_LOCATI ON.

¢ OSCH output mode: In OSCH mode loading, OLH is
bypassed. ODI creates an external table on the target
database, which accesses the input files through OSCH.
Please note that only delimited and fixed length files can be
read. No support for loading from Hive or custom Input
Formats such as RegexInputFormat, as there is no OLH pre-
processing.

REJECT_LIMT Specifies the maximum number of errors for and external table.
Examples: UNLI M TED to except all errors. Integer value (10 to
allow 10 rejections) This value is used in job definitions as well
as in external table definitions.

A-42 Integrating Big Data with Oracle Data Integrator

IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)
___|

Option

Description

CREATE_TARG TABLE

Creates the target table.

TRUNCATE

Replaces the target table content with the new data.

DELETE_ALL

Deletes all the data in target table.

USE_HI VE_STAG NG TAB
LE

Materializes Hive source data before extraction by . If this
option is set to f al se, directly accesses the Hive source data.
Setting this option to f al se is only possible, if all these
conditions are true:

* Only a single source table

¢ No transformations, filters, joins

e No datasets

Setting this option to f al se provides better performance by
avoiding an extra data transfer step.

This option is applicable only if the source technology is Hive.

USE_ORACLE_STAG NG_T
ABLE

Uses an intermediate Oracle database staging table.

The extracted data is made available to Oracle by an external
table. If USE_ORACLE_STAG NG TABLEissettotrue
(default), the external table is created as a temporary (I$) table.
This I$ table data is then inserted into the target table. Setting
this option to f al se is only possible, if all these conditions are
true:

e (OLH QUTPUT_MODE is set to JDBC or OCl

e All source columns are mapped

¢ All target columns are mapped

¢ No target-side mapping expressions

Setting this option to f al se provides better performance by
avoiding an extra data transfer step, but may lead to partial
data being loaded into the target table, as loads data in multiple
transactions.

EXT_TAB_DI R_LOCATI ON

Specifies the file system path of the external table. Please note

the following:

¢ Only applicable, if OLH_OUTPUT_MODE = DP_*| OSCH

e For OLH_QUTPUT_MODE = DP_*: this path must be
accessible both from the ODI agent and from the target
database engine.

e For OLH_OUTPUT_MODE = DP_*: the name of the external
directory object is the I$ table name.

e For OLH_OUTPUT_MODE = DP_COPY: ODI agent will use
hadoop- f s command to copy dp files into this directory.

e For OLH_QUTPUT_MCDE = DP_* | OSCH: this path will
contain any external table log/bad/dsc files.

¢ ODI agent will remove any files from this directory during
clean up before launching OLH/OSCH.

TEMP_DI R

Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option
blank to use system's default temp directory:

<?=System get Property("java.io.tnmp")?>

Hive Knowledge Modules A-43

IKM File-Hive to SQL (SQOOP) [Deprecated]

Table A-28 (Cont.) IKM File - Hive to Oracle (OLH-OSCH)
___|

Option Description

MAPRED _OUTPUT_BASE D Specifies an HDFS directory, where the job will create
IR subdirectories for temporary files/datapump output files.

FLOW TABLE_OPTI ONS Specifies the attributes for the integration table at create time
and used for increasing performance. This option is set by
default to NOLOGA NG This option may be left empty.

DELETE_TEMPORARY_OBJ Removes temporary objects, such as tables, files, and scripts
ECTS post data integration. Set this option to NOif you want to retain
the temporary objects, which might be useful for debugging.

OVERRI DE_| NPUTFORVAT By default the InputFormat class is derived from the source
DataStore/Technology (DelimitedTextInputFormat or
HiveToAvrolnputFormat). This option allows the user to
specify the class name of a custom InputFormat. Cannot be
used with OLH_OUTPUT_MODE=0CSCH.

Example, for reading custom file formats like web log files the
OLH RegexInputFormat can be used by assigning the value:
oracl e. hadoop. | oader . | i b. i nput. Regex| nput For nat
See KM option EXTRA_OLH_CONEF_PROPERTIES for details
on how to specify the regular expression.

EXTRA_OLH_CONF_PROPE Particularly when using custom InputFormats (see KM option

RTI ES OVERRI DE_| NPUTFORMAT for details) the InputFormat may
require additional configuration parameters. These are
provided in the OLH configuration file. This KM option allows
adding extra properties to the OLH configuration file. Cannot
be used with OLH_OUTPUT_MODE=OSCH.

Example, (loading apache weblog file format): When OLH
RegexInputFormat is used for reading custom file formats, this
KM option specifies the regular expression and other parsing
details:

<property>

<nanme>or acl e. hadoop. | oader . i nput . regexPatt er n</
name> <val ue>([~]*) ([~]*) ([" 1*) (-I\[["
VITEN]) (O NN vty (-1 [0-91%) (-]
[0-9]*) (\".*2A") (\".*2A") (\".*?2\")</val ue>
<descri pti on>RegEx for Apache WebLog for mat </
description> </property>

A.31 IKM File-Hive to SQL (SQOOP) [Deprecated]

Note: This KM is deprecated and only used for backward compatibility.
IKM File-Hive to SQL (SQOOP) supports:

¢ Filters, Joins, Datasets, Transformations and Aggregations in Hive
¢ Inline views generated by IKM Hive Control Append
¢ Inline views generated by IKM Hive Transform

¢ Hive-HBase source tables using LKM HBase to Hive (HBase SerDe)

A-44 Integrating Big Data with Oracle Data Integrator

IKM File-Hive to SQL (SQOOP) [Deprecated]

¢ File source data (delimited file format only)

The following table describes the options for this integration knowledge module.

Table A-29 IKM File-Hive to SQL (SQOOP)

Option

Description

CREATE_TARG TABLE

Creates the target table.

TRUNCATE Replaces the target datastore content with new data. If this
option is set to f al se, the new data is appended to the target
datastore.

DELETE_ALL Deletes all the rows in the target datastore.

SQOOP_PARALLELI SM

Specifies the degree of parallelism. More precisely the number
of mappers used during SQOOP export and therefore the
number of parallel JDBC connections.

USE_TARGET_STAG NG T
ABLE

By default the source data is staged into a target-side staging
table, before it is moved into the target table. If this option is set
to f al se, SQOOP loads the source data directly into the target
table, which provides better performance and less need for
tablespace in target RDBMS by avoiding an extra data transfer
step.

For File sources setting this option to f al se is only possible, if

all these conditions are met:

¢ All source columns must be mapped

* Source and target columns have same order

¢ First file column must map to first target column

* no mapping gaps

¢ only 1-to-1 mappings (no expressions)

Please note the following:

* SQOOP uses multiple writers, each having their own JDBC
connection to the target. Every writer uses multiple
transactions for inserting the data. This means that in case
USE_TARCET_STAG NG_TABLE is set to f al se, changes to
the target table are no longer atomic and writer failures can
lead to partially updated target tables.

* The Teradata Connector for SQOOP always creates an extra
staging table during load. This connector staging table is
independent of the KM option.

USE_GENERI C_JDBC_CON
NECTOR

Specifies whether to use the generic JDBC connector if a
connector for the target technology is not available.

For certain technologies SQOOP provides specific connectors.
These connectors take care of SQL-dialects and optimize
performance. When there is a connector for the respective target
technology, this connector should be used. If not, the generic
JDBC connector can be used.

Hive Knowledge Modules A-45

IKM File-Hive to SQL (SQOOP) [Deprecated]

Table A-29 (Cont.) IKM File-Hive to SQL (SQOOP)

Option Description

FLOW TABLE_OPTI ONS When creating the target-side work table, RDBMS-specific table
options can improve performance. By default this option is
empty and the knowledge module will use the following table
options:
¢ For Oracle: NOLOGG NG
e For DB2: NOT LOGGED I NI TIALLY

e For Teradata: no fall back, no before journal, no
after journal

Any explicit value overrides these defaults.

TEMP_DIR Specifies the directory used for storing temporary files, such as
sqoop script, stdout and stderr redirects. Leave this option
blank to use system's default temp directory:

<?=System get Property("java.io.tnmp")?>

MAPRED _QUTPUT_BASE D Specifies an HDFS directory, where SQOOP creates
IR subdirectories for temporary files. A subdirectory called like the
work table will be created here to hold the temporary data.

DELETE_TEMPORARY_OBJ Deletes temporary objects such as tables, files, and scripts after
ECTS data integration. Set this option to NOif you want to retain the
temporary objects, which might be useful for debugging.

TERADATA PRI MARY_I ND Primary index for the target table. Teradata uses the primary

EX index to spread data across AMPs. It is important that the
chosen primary index has a high cardinality (many distinct
values) to ensure evenly spread data to allow maximum
processing performance. Please follow Teradata's
recommendation on choosing a primary index.

This option is applicable only to Teradata targets.

TERADATA FLOW TABLE_ Type of the Teradata flow table, either SET or MULTISET.

TYPE This option is applicable only to Teradata targets.

TERADATA _OUTPUT_METH Specifies the way the Teradata Connector will load the data.
oD Valid values are:

e batch.insert:multiple JDBC connections using batched
prepared statements (simplest to start with)
e multiple.fastl oad: multiple FastLoad connections

e internal.fastl oad:single coordinated FastLoad
connections (most performant)

This option is applicable only to Teradata targets.

EXTRA_HADOOP_CONF_PR Optional generic Hadoop properties.
OPERTI ES

EXTRA_SQOOP_CONF_PRO Optional SQOOP properties.
PERTI ES

EXTRA_SQOOP_CONNECTO Optional SQOOP connector properties.
R_CONF_PROPERTI ES

A-46 Integrating Big Data with Oracle Data Integrator

B

Pig Knowledge Modules

This appendix provides information about the Pig knowledge modules.

This chapter includes the following sections:

LKM File to Pig

LKM Pig to File

LKM HBase to Pig

LKM Pig to HBase

LKM Hive to Pig

LKM Pig to Hive

LKM SQL to Pig SQOOP
XKM Pig Aggregate
XKM Pig Distinct

XKM Pig Expression
XKM Pig Filter

XKM Pig Flatten

XKM Pig Join

XKM Pig Lookup

XKM Pig Pivot

XKM Pig Set

XKM Pig Sort

XKM Pig Split

XKM Pig Subquery Filter
XKM Pig Table Function

XKM Pig Unpivot

B.1 LKM File to Pig

This KM loads data from a file into Pig.

Pig Knowledge Modules B-1

LKM File to Pig

The supported data formats are:

¢ Delimited
¢ JSON

¢ Pig Binary
e Text

e Avro

* Trevni

e Custom

Data can be loaded and written to local file system or HDFS.

The following table describes the options for LKM File to Pig.

Table B-1 LKM File to Pig

Option

Description

Storage Function

Schema for Complex Fields

Function Class

Function Parameters

The storage function to be used to load data.

Select the storage function to be used to load data.

The pig schema for simple/complex fields separated by comma
0)-

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example:
PO_NO:int,PO_TOTAL:long MOVIE_RATING:
{(RATING:double,INFO:chararray)}, where the names of the
fields defined here should match with the attributes names of
the datastore.

Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

The parameters required for the custom function.
Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

B-2 Integrating Big Data with Oracle Data Integrator

LKM Pig to File

Table B-1 (Cont.) LKM File to Pig
___|

Option

Description

Options

Jars

Storage Convertor

Additional options required for the storage function
Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

B.2 LKM Pig to File

This KM unloads data to file from pig.

The supported data formats are:

e Delimited
e JSON

¢ DPig Binary
o Text

e Avro

* Trevni

e Custom

Data can be stored in local file system or in HDFS.

The following table describes the options for LKM Pig to File.

Table B-2 LKM Pig to File

Option

Description

Storage Function

Store Schema

The storage function to be used to load data.

Select the storage function to be used to load data.

If selected, stores the schema of the relation using a hidden
JSON file.

Pig Knowledge Modules B-3

LKM Pig to File

Table B-2 (Cont.) LKM Pig to File
__|

Option Description
Record Name The Avro record name to be assigned to the bag of tuples being
stored.

Specify a name to be assigned to the bag of tuples being stored.

Namespace The namespace to be assigned to Avro/Trevni records, while
storing data.

Specify a namespace for the bag of tuples being stored.

Delete Target File Delete target file before Pig writes to the file.

If selected, the target file is deleted before storing data. This
option effectively enables the target file to be overwritten.

Function Class Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

Function Parameters The parameters required for the custom function.
Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function
Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

Jars The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

B-4 Integrating Big Data with Oracle Data Integrator

LKM HBase to Pig

B.3 LKM HBase to Pig

This KM loads data from a hbase table into Pig using HBaseStorage function.

The following table describes the options for LKM HBase to Pig.

Table B-3 LKM HBase to Pig

Option

Description

Storage Function

Load Row Key

Greater Than Min Key

Less Than Min Key

Greater Than Or Equal Min
Key

Less Than Or Equal Min
Key

Limit Rows

Cached Rows

Storage Convertor

Column Delimiter

The storage function to be used to load data.

HBaseStorage is used to load from a hbase table into pig.

Load the row key as the first value in every tuple returned from
HBase.

If selected, Loads the row key as the first value in every tuple
returned from HBase. The row key is mapped to the 'key’
column of the HBase data store in ODI.

Loads rows with key greater than the key specified for this
option.

Specify the key value to load rows with key greater than the
specified key value.

Loads rows with row key less than the value specified for this
option.

Specify the key value to load rows with key less than the
specified key value.

Loads rows with key greater than or equal to the key specified
for this option.

Specify the key value to load rows with key greater than or
equal to the specified key value.

Loads rows with row key less than or equal to the value
specified for this option.

Specify the key value to load rows with key less than or equal
to the specified key value.

Maximum number of row to retrieve per region

Specify the maximum number of rows to retrieve per region.

Number of rows to cache.

Specify the number of rows to cache.

The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the
default is whitespace.

Pig Knowledge Modules B-5

LKM Pig to HBase

Table B-3 (Cont.) LKM HBase to Pig
__|

Option Description
Timestamp Return cell values that have a creation timestamp equal to this
value.

Specify a timestamp to return cell values that have a creation
timestamp equal to the specified value.

Min Timestamp Return cell values that have a creation timestamp less than to
this value.

Specify a timestamp to return cell values that have a creation
timestamp less than to the specified value.

Max Timestamp Return cell values that have a creation timestamp less than this
value.

Specify a timestamp to return cell values that have a creation
timestamp greater than or equal to the specified value.

B.4 LKM Pig to HBase

This KM stores data into a hbase table using HBaseStorage function.
The following table describes the options for LKM Pig to HBase.

Table B-4 LKM Pig to HBase

Option Description

Storage Function The storage function to be used to store data. This is a read-only
option, which can not be changed.

HBaseStore function is used to load data into hbase table.

Storage Convertor The name of Caster to use to convert values.

Specify the class name of Caster to use to convert values. The
supported values are HBaseBinaryConverter and
Utf8StorageConverter. If unspecified, the default value is
Utf8StorageConverter.

Column Delimiter The delimiter to be used to separate columns in the columns list
of HBaseStorage function.

Specify the delimiter to be used to separate columns in the
columns list of HBaseStorage function. If unspecified, the
default is whitespace.

Disable Write Ahead Log If it is true, write ahead log is set to false for faster loading into
HBase.

If selected, write ahead log is set to false for faster loading into
HBase. This must be used in extreme caution, since this could
result in data loss. Default value is false.

B.5 LKM Hive to Pig

This KM loads data from a hive table into Pig using HCatalog.
The following table describes the options for LKM Hive to Pig.

B-6 Integrating Big Data with Oracle Data Integrator

LKM Pig to Hive

Table B-5 LKM Hive to Pig

Option Description

Storage Function The storage function to be used to load data. This is a read-only

option, which can not be changed.
HCatLoader is used to load data from a hive table.

B.6 LKM Pig to Hive

This KM stores data into a hive table using HCatalog.

The following table describes the options for LKM Pig to Hive.

Table B-6 LKM Pig to Hive

Option Description

Storage Function The storage function to be used to load data. This is a read-only

option, which can not be changed.

HCatStorer is used to store data into a hive table.

Partition The new partition to be created.

Represents key/value pairs for partition. This is a mandatory
argument when you are writing to a partitioned table and the
partition column is not in the output column. The values for
partition keys should NOT be quoted.

B.7 LKM SQL to Pig SQOOP

This KM integrates data from a JDBC data source into Pig.

It executes the following steps:

1.

2.

3.

4.

Create a SQOOP configuration file, which contains the upstream query.

Execute SQOOP to extract the source data and import into Staging file in csv
format.

Runs LKM File To Pig KM to load the Staging file into PIG.

Drop the Staging file.

The following table describes the options for LKM SQL to Pig SQOOP.

Table B-7 LKM File to Pig

Option Description

STAGING_FILE_DELIMIT Sqoop uses this delimiter to create the temporary file. If not

ER

specified, \ \t will be used.

Storage Function The storage function to be used to load data.

Select the storage function to be used to load data.

Pig Knowledge Modules B-7

LKM SQL to Pig SQOOP

Table B-7 (Cont.) LKM File to Pig
___|

Option Description

Schema for Complex Fields The pig schema for simple/complex fields separated by comma
).

Redefine the datatypes of the fields in pig schema format. This
option primarily allows to overwrite the default datatypes
conversion for data store attributes, for example:
PO_NO:int,PO_TOTAL:long MOVIE_RATING:
{(RATING:double,INFO:chararray)}, where the names of the
fields defined here should match with the attributes names of
the datastore.

Function Class Fully qualified name of the class to be used as storage function
to load data.

Specify the fully qualified name of the class to be used as
storage function to load data.

Function Parameters The parameters required for the custom function.
Specify the parameters that the loader function expects.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

Here the first three arguments are parameters, which can be
specified as -rootElement MovieStore -tableName movie -
schema

where,
MusicStore - the root element of the xml

movie - The element that wraps the child elements such as id,
name, etc.

Third Argument is the representation of data in pig schema.

The names of the parameters are arbitrary and there can be any
number of parameters.

Options Additional options required for the storage function.
Specify additional options required for the storage function.

For example, the XMLLoader function may look like
XMLLoader('MusicStore', 'movie', 'id:double, name:chararray,
director:chararry', options)

The last argument options can be specified as -namespace
com.imdb -encoding utf8

Jars The jar containing the storage function class and dependant
libraries separated by colon (:).

Specify the jar containing the storage function class and
dependant libraries separated by colon (:).

Storage Convertor The converter that provides functions to cast from bytearray to
each of Pig's internal types.

Specify the converter that provides functions to cast from
bytearray to each of Pig's internal types.

The supported converter is Utf8StorageConverter.

B-8 Integrating Big Data with Oracle Data Integrator

XKM Pig Aggregate

B.8 XKM Pig Aggregate

Summarize rows, for example using SUM and GROUP BY.
The following table describes the options for XKM Pig Aggregate.

Table B-8 XKM Pig Aggregate

]
Option Description

USING_ALGORITHM Aggregation type; collected or merge.
PARTITION_BY Specify the Hadoop partitioner.
PARTITIONER_JAR Increase the parallelism of this job.
PARALLEL_NUMBER Increase the parallelism of this job.

Note: When mapping has Pig staging, i.e when processing is done with Pig,
and there is aggregator component in the Pig staging area, the clause needs to
be set differently than in regular mappings for SQL based technologies.

B.9 XKM Pig Distinct

Eliminates duplicates in data.

B.10 XKM Pig Expression

Define expressions to be reused across a single mapping.

B.11 XKM Pig Filter

Produce a subset of data by a filter condition.

B.12 XKM Pig Flatten

Un-nest the complex data according to the given options.

The following table describes the options for XKM Pig Flatten.

Table B-9 XKM Pig Flatten

Option Description

Default Expression Default expression for null nested table objects, e.g.
rating_table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null
nested table object.

B.13 XKM Pig Join

Joins more than one input sources based on the join condition.

The following table describes the options for XKM Pig Join.

Pig Knowledge Modules B-9

XKM Pig Lookup

Table B-10 XKM Pig Join

Option Description

USING_ALGORITHM Join type; replicated or skewed or merge.

PARTITION_BY Specify the Hadoop partitioner.

PARTITIONER_JAR Increase the parallelism of this job.

PARALLEL_NUMBER Increase the parallelism of this job.
B.14 XKM Pig Lookup

Lookup data for a driving data source.

The following table describes the options for XKM Pig Lookup.

Table B-11 XKM Pig Lookup

Option Description

Jars The jar containing the Used Defined Function classes and
dependant libraries separated by colon (:).

B.15 XKM Pig Pivot

Takes data in separate rows, aggregates it, and converts it into columns.

B.16 XKM Pig Set

Perform UNION, MINUS or other set operations.

B.17 XKM Pig Sort

Sort data using an expression.

B.18 XKM Pig Split

Split data into multiple paths with multiple conditions.

B.19 XKM Pig Subquery Filter

Filter rows based on the results of a subquery.

B.20 XKM Pig Table Function

Pig table function access.

The following table descriptions the options for XKM Pig Table Function.

B-10 Integrating Big Data with Oracle Data Integrator

XKM Pig Unpivot

Table B-12 XKM Pig Table Function
|

Option Description

PIG_SCRIPT_CONTENT User specified pig script content.

B.21 XKM Pig Unpivot

Transform a single row of attributes into multiple rows in an efficient manner.

Pig Knowledge Modules B-11

XKM Pig Unpivot

B-12 Integrating Big Data with Oracle Data Integrator

C

Spark Knowledge Modules

This appendix provides information about the Spark knowledge modules.

This chapter includes the following sections:

LKM File to Spark
LKM Spark to File
LKM Hive to Spark
LKM Spark to Hive
LKM HDEFS to Spark
LKM Spark to HDFS
LKM Kafka to Spark
LKM Spark to Kafka
LKM SQL to Spark
LKM Spark to SQL
RKM Cassandra

XKM Spark Aggregate
XKM Spark Distinct
XKM Spark Expression
XKM Spark Filter
XKM Spark Flatten
XKM Spark Input Signature and Output Signature
XKM Spark Join

XKM Spark Lookup
XKM Spark Pivot
XKM Spark Set

XKM Spark Sort

XKM Spark Split

XKM Spark Table Function

Spark Knowledge Modules C-1

LKM File to Spark

¢ IKM Spark Table Function

e XKM Spark Unpivot

C.1 LKM File to Spark

This KM will load data from a file into a Spark Python variable and can be defined on
the AP between the execution units, source technology File, target technology Spark
Python.

The following tables describes the options for LKM File to Spark.

Table C-1 LKM File to Spark

Option Description

Storage Function The storage function to be used to load/store data.
CACHE_DATA Persist the data with the default storage level.
InputFormatClass Classname of Hadoop InputFormat.

For example,
org.apache.hadoop.mapreduce lib.input.TextInputFormat.

KeyClass Fully qualified classname of key Writable class.
For example, org.apache. hadoop.io.Text.

ValueClass Fully qualified classname of value Writable class.
For example, org.apache. hadoop.io.LongWritable.

KeyConverter Fully qualified classname of key converter class.
ValueConverter Fully qualified classname of value converter class.
Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST",
'hbase.mapreduce.inputtable': TAB'}

This LKM uses StreamingContext.textFileStream() method to transfer file context as
data stream. The directory is monitored while the Spark application is running. Any
files copied from other locations into this directory is detected.

Table C-2 LKM File to Spark for Streaming
__|

Option Description

STREAMI This option indicates whether the mapping should be executed in streaming
NG_MOD mode.

E Default is FALSE.
Storage If STREAMING_MODE is set to true, the load function is changed to
Function textFileStream automatically.

Default is textFile.
Source Source data store is a directory and field separator should be defined.
Data store

C-2 Integrating Big Data with Oracle Data Integrator

LKM Spark to File

C.2 LKM Spark to File

This KM will store data into a file from a Spark Python variable and can be defined on
the AP between the execution units, source technology Spark Python, target
technology File.

The following tables describes the options for LKM Spark to File.

Table C-3 LKM Spark to File
- __|

Option Description
Storage Function The storage function to be used to load/store data.
InputFormatClass Classname of Hadoop InputFormat.

For example,
org.apache.hadoop.mapreduce lib.input.TextInputFormat.

KeyClass Fully qualified classname of key Writable class.
For example, org.apache.hadoop.io.Text.

ValueClass Fully qualified classname of value Writable class.

For example, org.apache. hadoop.io.LongWritable.

KeyConverter Fully qualified classname of key converter class.
ValueConverter Fully qualified classname of value converter class.
Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST",
'hbase.mapreduce.inputtable: " TAB'}

Table C-4 LKM Spark to File for streaming
- -]

Option Description
Storage If STREAMING_MODE is set to true, the load function is changed to
Function textFileStream automatically.

Default is textFile.

C.3 LKM Hive to Spark

This KM will load data from a Hive table into a Spark Python variable and can be
defined on the AP between the execution units, source technology Hive, target
technology Spark Python.

C.4 LKM Spark to Hive

This KM will store data into a Hive table from a Spark Python variable and can be
defined on the AP between the execution units, source technology Spark, target
technology Hive.

The following tables describes the options for LKM Spark to Hive.

Spark Knowledge Modules C-3

LKM HDFS to Spark

Table C-5 LKM Spark to Hive
- __|

Option Description

CREATE_TARGET_TABLE Create the target table.

OVERWRITE_TARGET_T Overwrite the target table.
ABLE

C.5 LKM HDFS to Spark

This KM will load data from HDFS file to Spark.

Table C-6 LKM HDFS to Spark
__|

Option Description

Storage Function The storage function is used to load or store data.
streamingContext Name of the Streaming context.
InputFormatClass Classname of Hadoop InputFormat.

For example,
org.apache.hadoop.mapreduce lib.input.TextInputFormat.

KeyClass Fully qualified classname of key Writable class.

For example, org.apache.hadoop.io.Text.

ValueClass Fully qualified classname of value Writable class.

For example, org.apache. hadoop.io.LongWritable.

KeyConverter Fully qualified classname of key converter class.
ValueConverter Fully qualified classname of value converter class.
Job Configuration Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST",
'hbase.mapreduce.inputtable': TAB'}

Delete Spark Mapping Delete temporary objects at the end of mapping.

Files

Cache Cache RDD across operations after computation.

Storage Level The storage level is used to cache data.

Repartition Repartiton the RDD after transformation of this component.
Level of Parallelism Number of partitions.

Sort Partitions Sort partitions by a key function when you repartition RDD.
Partition Sort Order Sort partition order

Partition Key Function Define keys of partition.

C-4 Integrating Big Data with Oracle Data Integrator

LKM Spark to HDFS

Table C-6

(Cont.) LKM HDFS to Spark

Option

Description

Partition Function

Customized partitioning function.

C.6 LKM Spark to HDFS

This KM will load data from Spark to HDFS file.

Table C-7 LKM Spark to HDFS
___|

Option

Description

Storage Function
OutputFormatClass

KeyClass

ValueClass

KeyConverter
ValueConverter

Job Configuration

DELETE_TEMPOR
ARY_OBJECTS

Delete Spark
Mapping Files

Cache

Storage Level
Repartition

Level of Parallelism
Sort Partitions
Partition Sort Order

Partition Key
Function

Partition Function

The storage function is used to load or store data.
Class name of Hadoop Input Format.

Fully qualified classname of key Writable class.

For example, org.apache.hadoop.io.Text.

Fully qualified classname of value Writable class.

For example, org.apache. hadoop.io.LongWritable.
Fully qualified classname of key converter class.
Fully qualified classname of value converter class.

Hadoop configuration.

For example, {'hbase.zookeeper.quorum': 'HOST",
'hbase.mapreduce.inputtable': ' TAB'}

Delete temporary objects at the end of mapping.

Delete temporary objects at the end of mapping.

Cache RDD across operations after computation.

The storage level is used to cache data.

Repartiton the RDD after transformation of this component.
Number of partitions.

Sort partitions by a key function when you repartition RDD.
Sort partition order

Define keys of partition.

Customized partitioning function.

Spark Knowledge Modules C-5

LKM Kafka to Spark

C.7 LKM Kafka to Spark

This KM will load data with Kafka source and Spark target and can be defined on the
AP node that exist in Spark execution unit and have Kafka upstream node.

Table C-8 LKM Kafka to Spark for streaming

Option Description
Storage If STREAMING_MODE is set to true, the load function is changed to
Function textFileStream automatically.

Default is createStream.

Key Decodes the message key.

Decoder Default is empty.

Value Decodes the message value.

Decoder Default is empty.

Group Id Receiver group id parameter used to call the KafkaUtils.createStream.

Note: Ina group of receivers (all receivers having the same Group Id) every
message will be received by a single receiver only.

Kakfa Parameter used to call KafkaUitls.createStream.
Params

storageLeve Storage level is used for storing the received objects.

1 Default is StorageLevel MEMORY_AND_DISK_2.

Number of Number of partition each thread gets data from Kafka

Partitions

From Parameter used in conjunction with createDirectStream function.
Offsets

C.8 LKM Spark to Kafka

LKM Spark to Kafka works in both streaming and batch mode and can be defined on
the AP between the execution units and have Kafka downstream node.

Table C-9 LKM Spark to Kafka
__|

Option Description

value.serial ~org.apache kafka.common.serialization.StringSerializer
izer

C.9 LKM SQL to Spark

This KM is designed to load data from Cassandra into Spark, but it can work with
other JDBC sources. It can be defined on the AP node that have SQL source and Spark
target.

C-6 Integrating Big Data with Oracle Data Integrator

LKM Spark to SQL

Table C-10 LKM SQL to Spark
|

Option Description

PARTITIO Column used for partitioning.
N_COLUM

N

LOWER_B Lower bound of the partition column.
OUND

UPPER_BO Upper bound of the partition column.
UND

NUMBER_ Number of partitions.

PARTITIO

NS

PREDICAT List of predicates.
ES

C.10 LKM Spark to SQL

This KM will load data from Spark into a Cassandra table and can be defined on the
AP node that have Spark source and SQL target. It can work with other JDBC targets.

Table C-11 LKM Spark to SQL
|

Option Description
CREATE_T Create target table.
ARG_TABL

E

C.11 RKM Cassandra

RKM Cassandra reverses these metadata elements:

e (Cassandra tables as data stores.

The Mask field in the Reverse Engineer tab filters reverse-engineered objects based
on their names. The Mask field cannot be empty and must contain at least the
percent sign (%).

¢ (Cassandra columns as attributes with their data types.

C.12 XKM Spark Aggregate

Summarize rows, for example, using SUM and GROUP BY.
The following tables describes the options for XKM Spark Aggregate.

Table C-12 XKM Spark Aggregate
- __|

Option Description

CACHE_DATA Persist the data with the default storage level.

Spark Knowledge Modules C-7

XKM Spark Distinct

Table C-12 (Cont.) XKM Spark Aggregate

Option Description

NUMBER_OF_TASKS Task number.

Table C-13 XKM Spark Aggregate for streaming

Option Description

WINDOW_ Enable window aggregation.
AGGREGA
TION

WINDOW_ Number of batch intervals.
LENGTH

SLIDING_I The interval at which the window operation is performed.
NTERVAL

STATEFUL Enables stateful aggregation.
_AGGREG
ATION

STATE_RE Time in seconds to retain a key or value aggregate in the Spark state object.
TENTION_
PERIOD

FORWARD Modified aggregate values forwarded to downstream components.
_ONLY_UP

DATED_R

OWS

C.13 XKM Spark Distinct

Eliminates duplicates in data and functionality is identical to the existing batch
processing.

C.14 XKM Spark Expression

Define expressions to be reused across a single mapping.

C.15 XKM Spark Filter

Produce a subset of data by a filter condition.

The following tables describes the options for XKM Spark Filter.

Table C-14 XKM Spark Filter
___|

Option Description

CACHE_DATA Persist the data with the default storage level.

C-8 Integrating Big Data with Oracle Data Integrator

XKM Spark Input Signature and Output Signature

C.16 XKM Spark Input Signature and Output Signature

Supports code generation for reusable mapping.

C.17 XKM Spark Join

Joins more than one input sources based on the join condition.

The following tables describes the options for XKM Spark Join.

Table C-15 XKM Spark Join

Option Description
CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

C.18 XKM Spark Lookup

Lookup data for a driving data source.

The following tables describes the options for XKM Spark Lookup.

Table C-16 XKM Spark Lookup

Option Description

CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

MAP_SIDE

Defines whether the KM will do a map-side lookup or a reduce-
side lookup and significantly impacts lookup performance.

KEY_BASED_LOOKUP Only data corresponding to the lookup keys are retrieved.

Table C-17 XKM Spark Lookup for streaming

Option Description

MAP_SIDE MAP_SIDE=true : Suitable for small lookup data sets fitting into memory. This
setting provides better performance by broadcasting the lookup data to all

Spark tasks.
KEY_BASE For any incoming lookup key a Spark cache is checked.
I]:))—LOOKU ¢ If the lookup record is present and not expired, the lookup data is served

from the cache.

e If the lookup record is missing or expired, the data is re-loaded from the

SQL source.

Spark Knowledge Modules C-9

XKM Spark Pivot

Table C-17 (Cont.) XKM Spark Lookup for streaming
___|

Option Description

CACHE_R This option defines when the lookup source data is loaded and refreshed and
ELOAD here are the corresponding values:
¢ NO_RELOAD: The lookup source data is loaded once on Spark application
startup.
¢ RELOAD_EVERY_BATCH: The lookup source data is reloaded for every
new Spark batch.
¢ RELOAD_BASE_ON_TIME: The lookup source data is loaded on Spark
application startup and refreshed after the time interval provided by KM
option CacheReloadInterval.

CACHE_R Defines the time data to be retained in the Spark cache. After this time the
ELOAD_IN expired data or records are removed from cache.
TERVAL

C.19 XKM Spark Pivot

Take data in separate rows, aggregates it and converts it into columns.

The following tables describes the options for XKM Spark Pivot.

Table C-18 XKM Spark Pivot
|

Option Description

CACHE_DATA Persist the data with the default storage level.

Note: XKM Spark Pivot does not support streaming.

C.20 XKM Spark Set

Perform UNION, MINUS or other set operations.

C.21 XKM Spark Sort

Sort data using an expression.

The following tables describes the options for XKM Spark Sort.

Table C-19 XKM Spark Sort
- ___|

Option Description
CACHE_DATA Persist the data with the default storage level.
NUMBER_OF_TASKS Task number.

C.22 XKM Spark Split

Split data into multiple paths with multiple conditions.
The following tables describes the options for XKM Spark Split.

C-10 Integrating Big Data with Oracle Data Integrator

XKM Spark Table Function

Table C-20 XKM Spark Split
- __|

Option Description

CACHE_DATA Persist the data with the default storage level.

C.23 XKM Spark Table Function

Spark table function access.

The following tables describes the options for XKM Spark Table Function.

Table C-21 XKM Spark Table Function

Option Description
SPARK_SCRIPT_FILE User specifies the path of spark script file.
CACHE_DATA Persist the data with the default storage level.

C.24 IKM Spark Table Function

Spark table function as target.

The following tables describes the options for IKM Spark Table Function.

Table C-22 IKM Spark Table Function
- __|

Option Description
SPARK_SCRIPT_FILE User specifies the path of spark script file.
CACHE_DATA Persist the data with the default storage level.

C.25 XKM Spark Unpivot

Transform a single row of attributes into multiple rows in an efficient manner.

The following tables describes the options for XKM Spark Pivot.

Table C-23 XKM Spark Unpivot
|

Option Description

CACHE_DATA Persist the data with the default storage level.

Note: XKM Spark Unpivot does not support streaming.

Spark Knowledge Modules C-11

XKM Spark Unpivot

C-12 Integrating Big Data with Oracle Data Integrator

D

Component Knowledge Modules

This appendix provides information about the knowledge modules for the Flatten and
the Jagged component.

This chapter includes the following sections:
¢ XKM Oracle Flatten

¢ XKM Oracle Flatten XML

e XKM Spark Flatten

e XKM Jagged

D.1 XKM Oracle Flatten

Un-nest the complex data according to the given options.

Note: Flatten component is supported only with Spark 1.3.

The following tables describes the options for XKM Oracle Flatten.

Table D-1 XKM Oracle Flatten

Option Description

NESTED_TABLE_ALIAS Alias used for nested table expression.
Default is NST.

DEFAULT_EXPRESSION Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

D.2 XKM Oracle Flatten XML

Un-nest the complex data in an XML file according to the given options.

The following tables describes the options for XKM Oracle Flatten XML.

Table D-2 XKM Oracle Flatten XML

Option Description

XML_XPATH Specify XML path for XMLTABLE function. For example, '/
ratings/rating’.

XML_IS_ATTRIBUTE Set to True when data is stored as attribute values of record tag.
For example, <row attributel=..." />"

Component Knowledge Modules D-1

XKM Spark Flatten

Table D-2 (Cont.) XKM Oracle Flatten XML
___|

Option Description
XML_TABLE_ALIAS Alias used for XMLTABLE expression.
Default is XMLT.

DEFAULT_EXPRESSION Default expression for null XMLTYPE objects. For example,
<row> < attributel/><row />

This is used to return a row with default values for each null
XMLTYPE object.

D.3 XKM Spark Flatten

Un-nest the complex data according to the given options.

The following tables describes the options for XKM Spark Flatten.

Table D-3 XKM Spark Flatten

Option Description

Default Expression Default expression for null nested table objects. For example,
rating_table(obj_rating('-1', 'Unknown')).

This is used to return a row with default values for each null
nested table object.

CACHE_DATA When set to TRUE, persist the results with Spark default
storage level.

Default is FALSE.

D.4 XKM Jagged

Jagged component KMs process unstructured data using meta pivoting. Source data,
represented as key-value free format, will be transformed into more structured entities
in order to be loaded into database tables or file structures. Jagged component has one
input group and one or multiple output groups based on the configuration of the
component. Input group is connected to a source component, which has e key-value or
id-key-value structure. Output groups are connected to the target components where
data is stored in more structured way, i.e. keys become column names and values are
stored as table rows. Jagged KM is parsing the source data and is looking for key data
matching the output group attributes. Once the relevant keys are identified the
corresponding data is stored into a row. In case of key-value source each incoming
record is delimited by a key marked as End of Data Indicator. In case of id-key-value
source incoming records are delimited by a new value of the sequence defined as id.
Target records can be consolidated by removing duplicates based on Unique Index
attribute property. Some attributes can be labelled as required, meaning no new
record is stored if any of the required keys is missing. Default values can be defined
for some missing keys.

The following tables describes the options for XKM Jagged.

D-2 Integrating Big Data with Oracle Data Integrator

XKM Jagged

Table D-4 XKM Jagged

Option

Description

TMP_DIR

FIELD_DELIMITER

Directory for temporary files.

Field delimiter for temporary files.

DELETE_TEMPORARY_O Delete temporary objects at end of mapping.

BJECTS

Component Knowledge Modules D-3

XKM Jagged

D-4 Integrating Big Data with Oracle Data Integrator

E

Considerations, Limitations, and Issues

This appendix lists the considerations, limitations, and issues that you must be aware
of while working on Big Data integration projects in ODI.

This appendix includes the following sections:

Considerations, Limitations, and Issues

E.1 Considerations, Limitations, and Issues

Please note the following when working on Big Data integration projects:

Before ODI 12¢ (12.2.1.1) any Groovy, Jython, Beanshell code in ODI Procedures/
Custom KMs were not able to access Hadoop /Pig classes, unless these JARs were
added to ODI class path.

Starting with ODI 12¢ (12.2.1.1), the ODI Procedures/Custom KMs can access
Hadoop/Pig classes as long as they exist in the paths configured on Hadoop/Pig
data servers.

A new property or acl e. odi . pref er. dat aser ver. packages is exposed on
Hadoop and Pig data servers, as well as Hive data servers. This property lets you
specify which packages are loaded child-first rather than parent-first.

Note: Upgraded repositories will not show this property on upgraded Hadoop/Pig
data servers. Only new data servers will show this property.

In JEE environment, Agent application may be redeployed. However due to Pig's
shutdown hook, Logging leak, and other undiscovered leaks, the execution
classloader created will not get GC'd. Hence, in ODI 12¢ (12.2.1), if using Big Data
features, the JEE Agent application must not be re-deployed, instead a server
restart is required.

Any package filter applied to a data server must be as specific as possible. Do not
try to make things easier by specifying the widest possible filter. For example, if
you specify or g. apache as a filter element, you will get ClassCastException on
Beanshell instantiation, XML parsers instantiation, and so on. This happens
because according to Java Language Specification two class instances are castable
only if they are same type declaration and are loaded by the same classloader. In
this example, your interface will be under some sub-package of or g. apache, for
example, or g. apache. uti | .| Myl nt er f ace. The interface class loaded by the
Studio classloader/web application classloader is the casting target. When the
implementation class is instantiated via reflection, the instance class's interface
class is also loaded by the execution classloader. When JNIEnv code does the
checking to see if the caster and castee share a same type declaration, it will turn
out to be false since the LHS has Studio/web-application classloader and RHS has
execution classloader.

Considerations, Limitations, and Issues E-1

Considerations, Limitations, and Issues

* Execution classloader instances are cached. Changing the data server package filter
or data server classpath results in the creation of a new classloader instance. The
old classloader may not be GC'd immediately (or even ever). This can lead to
running out of heap space. The only solution is a JVM restart.

* When using SDK to create Pig, Hadoop, or any other data server having package
filtering property set on it, adding more data server properties requires attention to
one detail. You must retrieve the current set of properties, add your properties to it
and then set it on the data server. Otherwise, the filtering property will be lost.

E-2 Integrating Big Data with Oracle Data Integrator

D

data integrity checking, A-38
data transformations, A-39
data validation in Oracle Data Integrator, A-39
DataServer objects
creating for Oracle Data Integrator, 4-3
directories
accessible by Oracle Data Integrator, 4-2
for Oracle Loader for Hadoop output, A-46
drivers

JDBC, 4-4

F

file formats for Oracle Data Integrator, A-32

H

Hive data source for Oracle Data Integrator, 4-3, 4-4
Hive tables
loading data into (Oracle Data Integrator), 4-10
reverse engineering, 4-7
reverse engineering in Oracle Data Integrator, 4-7

IKM Hive Control Append, A-38, A-39
IKM Hive Transform, A-38
INSERT_UPDATE mode, 4-3, 4-4

Index

J

JDBC drivers, 4-4

L

loading data files into Hive, 4-10
loading options for Oracle Data Integrator, A-32

O

Oracle Data Integrator Application Adapter for
Hadoop
creating models, 4-7
loading options, A-32

R

reverse engineering in Hive, 4-7
reverse-engineering Hive tables, 4-8
RKM Hive, 4-7

w

wildcard characters
in resource names, A-32
setting up data sources in ODI using, 4-3

X

xml-reference directory, 4-3, 4-4

Index-1

Index-2

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Big Data Integration with Oracle Data Integrator
	1.1 Overview of Hadoop Data Integration
	1.2 Big Data Knowledge Modules Matrix

	2 Hadoop Data Integration Concepts
	2.1 Hadoop Data Integration with Oracle Data Integrator
	2.2 Generate Code in Different Languages with Oracle Data Integrator
	2.3 Leveraging Apache Oozie to execute Oracle Data Integrator Projects
	2.4 Oozie Workflow Execution Modes
	2.5 Lambda Architecture
	2.6 Spark Checkpointing
	2.7 Spark Windowing and Stateful Aggregation
	2.8 Spark Repartitioning and Caching
	2.9 Kafka Integration with Oracle Data Integrator

	3 Setting Up the Environment for Integrating Hadoop Data
	3.1 Configuring Big Data technologies using the Big Data Configurations Wizard
	3.1.1 General Settings
	3.1.2 HDFS Data Server Definition
	3.1.3 HBase Data Server Definition
	3.1.4 Kafka Data Server Definition
	3.1.5 Kafka Data Server Properties

	3.2 Creating and Initializing the Hadoop Data Server
	3.2.1 Hadoop Data Server Definition
	3.2.2 Hadoop Data Server Properties

	3.3 Creating a Hadoop Physical Schema
	3.4 Configuring the Oracle Data Integrator Agent to Execute Hadoop Jobs
	3.5 Configuring Oracle Loader for Hadoop
	3.6 Configuring Oracle Data Integrator to Connect to a Secure Cluster
	3.7 Configuring Oracle Data Integrator Studio for Executing Hadoop Jobs on the Local Agent

	4 Integrating Hadoop Data
	4.1 Integrating Hadoop Data
	4.2 Setting Up File Data Sources
	4.3 Setting Up HDFS Data Sources
	4.4 Setting Up Hive Data Sources
	4.5 Setting Up HBase Data Sources
	4.6 Setting Up Kafka Data Sources
	4.7 Setting Up Cassandra Data Sources
	4.8 Importing Hadoop Knowledge Modules
	4.9 Creating a Oracle Data Integrator Model from a Reverse-Engineered Hive, HBase, and HDFS Models
	4.9.1 Creating a Model
	4.9.2 Reverse Engineering Hive Tables
	4.9.3 Reverse Engineering HBase Tables
	4.9.4 Reverse Engineering HDFS Tables
	4.9.5 Reverse Engineering Cassandra Tables

	4.10 Loading Data from Files into Hive
	4.11 Loading Data from Hive to Files
	4.12 Loading Data from HBase into Hive
	4.13 Loading Data from Hive into Hbase
	4.14 Loading Data from an SQL Database into Hive, HBase, and File using SQOOP
	4.15 Loading Data from an SQL Database into Hive using SQOOP
	4.16 Loading Data from an SQL Database into File using SQOOP
	4.17 Loading Data from an SQL Database into HBase using SQOOP
	4.18 Validating and Transforming Data Within Hive
	4.19 Loading Data into an Oracle Database from Hive and File
	4.20 Loading Data into an SQL Database from Hbase, Hive and File using SQOOP
	4.21 Loading Data from Kafka to Spark

	5 Executing Oozie Workflows
	5.1 Executing Oozie Workflows with Oracle Data Integrator
	5.2 Setting Up and Initializing the Oozie Runtime Engine
	5.2.1 Oozie Runtime Engine Definition
	5.2.2 Oozie Runtime Engine Properties

	5.3 Creating a Logical Oozie Engine
	5.4 Executing or Deploying an Oozie Workflow
	5.5 Auditing Hadoop Logs
	5.6 Userlib jars support for running ODI Oozie workflows

	6 Spark Streaming Support
	6.1 Enabling Streaming Support for Oracle Data Integrator
	6.2 Enabling Streaming Support
	6.2.1 Spark Streaming DataServer Properties
	6.2.2 Extra Spark Streaming Data Properties

	6.3 Execute Mapping in Streaming Mode

	7 Using Query Processing Engines to Generate Code in Different Languages
	7.1 Query Processing Engines Supported by Oracle Data Integrator
	7.2 Setting Up Hive Data Server
	7.2.1 Hive Data Server Definition
	7.2.2 Hive Data Server Connection Details

	7.3 Creating a Hive Physical Schema
	7.4 Setting Up Pig Data Server
	7.4.1 Pig Data Server Definition
	7.4.2 Pig Data Server Properties

	7.5 Creating a Pig Physical Schema
	7.6 Setting Up Spark Data Server
	7.6.1 Spark Data Server Definition
	7.6.2 Spark Data Server Properties

	7.7 Creating a Spark Physical Schema
	7.8 Generating Code in Different Languages

	8 Working with Unstructured Data
	8.1 Working with Unstructured Data

	9 Working with Complex files
	9.1 HDFS Formats
	9.2 Working with Complex Files
	9.3 Identifying, Adding and Removing Flattened Attributes
	9.4 Loading Data from HDFS File to Hive
	9.5 Loading Data from HDFS File to Spark

	A Hive Knowledge Modules
	A.1 LKM SQL to Hive SQOOP
	A.2 LKM SQL to File SQOOP Direct
	A.3 LKM SQL to HBase SQOOP Direct
	A.4 LKM File to SQL SQOOP
	A.5 LKM Hive to SQL SQOOP
	A.6 LKM HBase to SQL SQOOP
	A.7 LKM HDFS File to Hive
	A.8 LKM HDFS File to Hive (Direct)
	A.9 IKM Hive Append
	A.10 IKM Hive Incremental Update
	A.11 LKM File to Hive LOAD DATA
	A.12 LKM File to Hive LOAD DATA Direct
	A.13 LKM HBase to Hive HBASE-SERDE
	A.14 LKM Hive to HBase Incremental Update HBASE-SERDE Direct
	A.15 LKM Hive to File Direct
	A.16 XKM Hive Sort
	A.17 LKM File to Oracle OLH-OSCH
	A.18 LKM File to Oracle OLH-OSCH Direct
	A.19 LKM Hive to Oracle OLH-OSCH
	A.20 LKM Hive to Oracle OLH-OSCH Direct
	A.21 RKM Hive
	A.22 RKM HBase
	A.23 IKM File to Hive (Deprecated)
	A.24 LKM HBase to Hive (HBase-SerDe) [Deprecated]
	A.25 IKM Hive to HBase Incremental Update (HBase-SerDe) [Deprecated]
	A.26 IKM SQL to Hive-HBase-File (SQOOP) [Deprecated]
	A.27 IKM Hive Control Append (Deprecated)
	A.28 CKM Hive (Deprecated)
	A.29 IKM Hive Transform (Deprecated)
	A.30 IKM File-Hive to Oracle (OLH-OSCH) [Deprecated]
	A.31 IKM File-Hive to SQL (SQOOP) [Deprecated]

	B Pig Knowledge Modules
	B.1 LKM File to Pig
	B.2 LKM Pig to File
	B.3 LKM HBase to Pig
	B.4 LKM Pig to HBase
	B.5 LKM Hive to Pig
	B.6 LKM Pig to Hive
	B.7 LKM SQL to Pig SQOOP
	B.8 XKM Pig Aggregate
	B.9 XKM Pig Distinct
	B.10 XKM Pig Expression
	B.11 XKM Pig Filter
	B.12 XKM Pig Flatten
	B.13 XKM Pig Join
	B.14 XKM Pig Lookup
	B.15 XKM Pig Pivot
	B.16 XKM Pig Set
	B.17 XKM Pig Sort
	B.18 XKM Pig Split
	B.19 XKM Pig Subquery Filter
	B.20 XKM Pig Table Function
	B.21 XKM Pig Unpivot

	C Spark Knowledge Modules
	C.1 LKM File to Spark
	C.2 LKM Spark to File
	C.3 LKM Hive to Spark
	C.4 LKM Spark to Hive
	C.5 LKM HDFS to Spark
	C.6 LKM Spark to HDFS
	C.7 LKM Kafka to Spark
	C.8 LKM Spark to Kafka
	C.9 LKM SQL to Spark
	C.10 LKM Spark to SQL
	C.11 RKM Cassandra
	C.12 XKM Spark Aggregate
	C.13 XKM Spark Distinct
	C.14 XKM Spark Expression
	C.15 XKM Spark Filter
	C.16 XKM Spark Input Signature and Output Signature
	C.17 XKM Spark Join
	C.18 XKM Spark Lookup
	C.19 XKM Spark Pivot
	C.20 XKM Spark Set
	C.21 XKM Spark Sort
	C.22 XKM Spark Split
	C.23 XKM Spark Table Function
	C.24 IKM Spark Table Function
	C.25 XKM Spark Unpivot

	D Component Knowledge Modules
	D.1 XKM Oracle Flatten
	D.2 XKM Oracle Flatten XML
	D.3 XKM Spark Flatten
	D.4 XKM Jagged

	E Considerations, Limitations, and Issues
	E.1 Considerations, Limitations, and Issues

	Index

