
Oracle® Fusion Middleware
Migrating From Oracle Warehouse Builder to
Oracle Data Integrator

12c (12.2.1.2.6)
E81002-02
February 2018

Oracle Fusion Middleware Migrating From Oracle Warehouse Builder to Oracle Data Integrator, 12c
(12.2.1.2.6)

E81002-02

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Related Documents x

Conventions xi

1 Understanding the Migration Process

1.1 About Migration 1-1

1.2 About the Migration Utility 1-1

1.3 What Is and Is Not Migrated 1-1

1.3.1 Objects That Are Migrated 1-2

1.3.2 Objects That Are Not Migrated 1-3

1.4 Roadmap for Migration 1-4

2 Preparing to Migrate

2.1 Migration Requirements 2-1

2.2 Migration Utility Run on a Non-64-bit Operating System 2-2

2.3 Creating the Migration Utility Configuration File 2-3

2.3.1 To Create the Migration Utility Configuration File 2-3

2.3.2 Configuration File Parameters 2-3

2.3.3 Configuration File Example 2-10

3 Using the Migration Utility to Migrate

3.1 Migration Utility Syntax and Parameters 3-1

3.2 Migrating an OWB Workspace 3-2

3.3 Migrating Specific Objects in an OWB Workspace 3-2

3.4 Performing a Test Migration 3-4

iii

4 Reviewing Your Migration

4.1 Reviewing Log and Report Files 4-1

4.1.1 Reviewing the Migration Utility Log File 4-1

4.1.2 Reviewing the Migration Utility Exclusion Report 4-3

4.2 Verifying Your Migration 4-5

A Message Reference

B Reference to Migration Details

B.1 OWB Repositories B-1

B.1.1 OWB Workspace to ODI Work Repository B-1

B.1.2 OWB Platform to ODI Technology B-1

B.1.2.1 Data Type Mapping for OWB GENERIC Platform to ODI Generic
SQL Technology B-2

B.1.2.2 Data Type Mapping for OWB ORACLE Platform to ODI Oracle
Technology B-3

B.1.2.3 Data Type Mapping for OWB DB2UDB Platform to ODI IBM DB2
UDB Technology B-4

B.1.2.4 Data Type Mapping for OWB SQLSERVER Platform to ODI
Microsoft SQL Server Technology B-5

B.1.2.5 Data Type Mapping for OWB FILE Platform to ODI File
Technology B-6

B.1.2.6 Data Type Mapping for OWB SAP Platform to ODI SAP ABAP
Technology B-6

B.1.3 OWB Location to ODI Data Server B-7

B.1.3.1 Location Name to Data Server Name B-7

B.1.3.2 Location Properties to Data Server Properties B-7

B.1.3.3 Specific Location B-8

B.1.4 OWB Modules to ODI Models B-8

B.1.4.1 Module Name to Model Name B-8

B.1.4.2 Module Properties to Model Properties B-8

B.1.4.3 Additional Migration of OWB Modules to ODI Folders B-9

B.1.4.4 Physical Schema and Logical Schema B-9

B.1.5 OWB Projects to ODI Projects B-10

B.1.6 OWB Folders to ODI Folders B-10

B.2 OWB Data Objects B-10

B.2.1 OWB Table to ODI Datastore B-10

B.2.2 OWB View to ODI Datastore B-11

B.2.3 OWB Materialized View to ODI Datastore B-11

B.2.4 OWB External Table to ODI Datastore B-12

iv

B.2.5 OWB Flat File to ODI Datastore B-12

B.2.6 OWB Sequence to ODI Sequence B-13

B.2.7 OWB Dimensions Under Database Module to ODI Dimension Model B-13

B.2.8 Property Migration Mapping Tables B-13

B.2.9 OWB Dimensions to ODI Dimensions B-18

B.2.10 OWB Cubes to ODI Cubes B-22

B.3 OWB Mappings B-24

B.3.1 OWB Mapping Properties B-24

B.3.1.1 OWB Mapping Logical Properties B-24

B.3.1.2 OWB Mapping Physical Properties B-24

B.3.1.3 PLSQL Physical Properties B-25

B.3.1.4 SQL*LOADER Physical Properties B-26

B.3.1.5 ABAP Mapping Physical Properties B-28

B.3.1.6 SQLPLUS Mapping Physical Properties B-28

B.3.1.7 Code Template Mappings Physical Properties B-29

B.3.2 Multiple Target Mapping Migration B-30

B.3.2.1 Target Load Order B-30

B.3.2.2 Multiple Target Insert (MTI) B-30

B.3.3 Mapping Operator B-30

B.3.4 Mapping Attribute B-31

B.3.4.1 General Properties B-31

B.3.4.2 Data Type Information B-31

B.4 OWB Pluggable Mappings B-32

B.4.1 Pluggable Mapping Folder B-32

B.4.2 Properties of Pluggable Mapping B-32

B.4.3 Input Signature and Output Signature B-32

B.4.4 Join Operator in Pluggable Mapping B-33

C Migration Details for Operators

C.1 Common Properties C-2

C.2 Aggregate Operator C-2

C.2.1 Logical Properties of the Aggregate Operator C-2

C.2.2 Physical Properties of the Aggregate Operator C-2

C.2.3 Attribute Groups and Attributes of the Aggregate Operator C-2

C.3 Cube Operator C-2

C.4 Deduplicator Operator C-5

C.4.1 Properties of the Deduplicator Operator C-5

C.4.2 Attribute Groups and Attributes of the Deduplicator Operator C-5

C.5 Dimension Operator C-5

C.6 Expression Operator C-8

v

C.6.1 Properties of the Expression Operator C-8

C.6.2 Attribute Groups and Attributes of the Expression Operator C-8

C.7 External Table Operator C-9

C.7.1 Logical Properties of the External Table Operator C-9

C.7.1.1 General Properties C-9

C.7.1.2 Chunking C-9

C.7.1.3 Error Table C-9

C.7.1.4 SCD Updates C-9

C.7.1.5 Temp Stage Table C-9

C.7.2 Physical Properties of the External Table Operator C-9

C.7.2.1 General Properties C-10

C.7.2.2 Hints C-10

C.7.2.3 Partition Exchange Loading C-10

C.7.2.4 Constraint Management C-10

C.7.3 Migrating the External Table Operator C-10

C.8 Flat File Operator C-11

C.8.1 Logical Properties of the Flat File Operator C-11

C.8.2 Logical Properties of the Map Attribute Group of the Flat File Operator C-12

C.8.3 Logical Properties of the Map Attribute of the Flat File Operator C-13

C.9 Join Operator C-14

C.9.1 Properties of the Join Operator C-14

C.9.1.1 ANSI SQL syntax C-14

C.9.1.2 Join Condition C-14

C.9.1.3 Join Input Role C-14

C.9.2 Migrating an ANSI Join Operator C-15

C.9.2.1 Scenario 1: Two Input Groups with Standard Join C-15

C.9.2.2 Scenario 2: Two Input Groups with Outer Join Using (+) Style C-16

C.9.2.3 Scenario 3: Two Input Groups with Outer Join Using Join Input
Role C-17

C.9.2.4 Scenario 4: Two Input Groups with both (+) Style and Join Input
Role C-19

C.9.2.5 Scenario 5: Multiple Input Groups C-19

C.9.3 Migrating a Non-ANSI Join Operator C-23

C.9.4 Migrating a Self Join C-23

C.10 Lookup Operator C-24

C.11 Lookup Properties Migration C-33

C.12 Mapping Input Parameter Operator C-33

C.12.1 Properties of the Attributes of the Mapping Input Parameter Operator C-33

C.12.2 Migration Logic C-34

C.12.3 How the Default Value Is Used C-35

C.13 Materialized View Operator C-36

C.13.1 Logical Properties of the Materialized View Operator C-36

vi

C.13.1.1 General Properties C-36

C.13.1.2 Chunking C-37

C.13.1.3 Conditional Loading C-37

C.13.1.4 Data Rules C-37

C.13.1.5 Error Table C-37

C.13.1.6 SCD Updates C-37

C.13.1.7 Temp Stage Table C-37

C.13.2 Physical Properties of the Materialized View Operator C-37

C.13.3 Logical Properties of the Attributes of the Materialized View Operator C-37

C.13.4 Migrating an Unbound Materialized View Operator C-37

C.14 Pivot Operator C-37

C.14.1 Properties of the Pivot Operator C-37

C.14.1.1 General Properties C-38

C.14.1.2 Row Locator C-38

C.14.1.3 Pivot Transform C-38

C.14.2 Map Attribute Group and Map Attribute C-38

C.15 Pluggable Mapping Operator C-38

C.15.1 Properties of the Pluggable Mapping Operator C-38

C.15.2 Attribute Groups and Attributes of the Pluggable Mapping Operator C-38

C.15.3 Migrating an Unbound Pluggable Mapping Operator C-39

C.16 Post-Mapping Operator C-39

C.17 Pre-Mapping Operator C-40

C.18 Sequence Operator C-40

C.19 Set Operator C-40

C.19.1 Properties of the Set Operator C-40

C.19.1.1 Set Operation C-41

C.19.2 Attribute Groups and Attributes of the Set Operator C-41

C.20 Sorter Operator C-42

C.20.1 Logical Properties of the Sorter Operator C-42

C.20.2 Physical Properties of the Sorter Operator C-42

C.21 Splitter Operator C-42

C.21.1 Properties of the Splitter Operator C-42

C.21.1.1 Split Condition C-42

C.21.2 Attribute Groups and Attributes of the Splitter Operator C-42

C.22 Subquery Filter Operator C-42

C.22.1 Properties of the Subquery Filter Operator C-43

C.22.1.1 Name and Description C-43

C.22.1.2 Subquery Filter Condition C-43

C.22.1.3 Subquery Filter Input Role C-43

C.22.2 Map Attribute Groups C-43

C.22.3 Attributes C-44

vii

C.22.3.1 Expression for DRIVER_INPUT Connector Point C-45

C.22.3.2 Expression for SUBQUERY_FILTER_INPUT Connector Point C-45

C.23 Table Operator C-45

C.23.1 Logical Properties of the Table Operator C-45

C.23.1.1 General Properties C-45

C.23.1.2 Change Data Capture C-47

C.23.1.3 Chunking C-47

C.23.1.4 Conditional Loading C-48

C.23.1.5 Control CT C-48

C.23.1.6 Data Rules C-49

C.23.1.7 Error Table C-49

C.23.1.8 SCD Updates C-49

C.23.1.9 Temp Stage Table C-49

C.23.1.10 Partition DML C-49

C.23.2 Physical Properties of the Table Operator C-49

C.23.2.1 General Physical Properties C-50

C.23.2.2 Hints C-50

C.23.2.3 Partition Exchange Loading C-50

C.23.3 Logical Properties of the Attributes of the Table Operator C-50

C.23.3.1 Loading Properties C-50

C.23.3.2 Code Template Metadata Tags C-52

C.23.4 Migrating an Unbound Table Operator C-52

C.24 Table Function Operator C-53

C.24.1 Logical Properties of the Table Function Operator C-53

C.24.2 Logical Properties of the Map Attribute Group of the Table Function
Operator C-53

C.24.3 Logical Properties of the Map Attribute of the Table Function Operator C-54

C.24.4 Migrating the Table Function Operator C-54

C.24.4.1 Scenario 1: Table Function operator acts as source, no input
map attribute group, only return group (output attribute group). C-54

C.24.4.2 Scenario 2: Table Function Operator has one input attribute
group and one output attribute group, data type of input
attributes is scalar C-55

C.24.4.3 Scenario 3: Table Function operator has one input attribute
group and one output attribute group, some data types of input
attributes are REF_CURSOR C-56

C.25 Transformation Function Operator C-57

C.25.1 Properties of the Transformation Function Operator C-57

C.25.2 Logical Properties of the Transformation Function Operator C-58

C.25.3 Physical Properties of the Transformation Function Operator C-58

C.25.4 Properties of the Map Attribute Group of the Transformation Function
Operator C-59

viii

C.25.5 Properties of the Map Attribute of the Transformation Function
Operator C-59

C.26 Unpivot Operator C-59

C.26.1 Properties of the Unpivot Operator C-59

C.26.1.1 General Properties C-60

C.26.1.2 Row Locator C-60

C.26.2 Map Attribute Group and Map Attribute C-60

C.27 View Operator C-61

C.27.1 Logical Properties of the View Operator C-61

C.27.1.1 General Properties C-61

C.27.1.2 Change Data Capture C-62

C.27.1.3 Chunking C-62

C.27.1.4 Conditional Loading C-62

C.27.1.5 Data Rules C-62

C.27.1.6 Error Table C-62

C.27.1.7 SCD Updates C-62

C.27.1.8 Temp Stage Table C-62

C.27.2 Physical Properties of the View Operator C-63

C.27.3 Logical Properties of the Attributes of the View Operator C-63

C.27.4 Migrating an Unbound View Operator C-63

D Special Migration Cases

D.1 Tables with Multiple Primary Keys D-1

D.2 Special Cases for Mappings D-1

D.2.1 Two Operators Connected to Same Downstream Operator D-1

D.2.2 Multiple Operators Connected From and To Same Operator D-2

D.2.3 Lookup Operator Has a Constant as Input D-3

D.2.4 Lookup Operators Have No Driver Table (Mapping Is Invalid) D-4

D.2.5 Multiple Operators Connected to Same Operator, Some with No
Upstream Source D-5

D.2.6 Multiple Operators Connected to Same Operator, All with Different
Upstream Operator D-6

D.2.7 Pluggable Mapping Operator with only Constant as Input D-7

E Known Issues and Solutions

E.1 Known Issues and Solutions E-1

ix

Preface

This document describes migration from Oracle Warehouse Builder 11gR2 (11.2.0.4)
to Oracle Data Integrator 12c (12.2.1.2.6).

Audience
This document is intended for developers and administrators who will perform the
migration. Knowledge of data integration and Oracle Warehouse Builder is assumed.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents in Oracle Data Integrator Library

• Release Notes for Oracle Data Integrator Release Notes

• Understanding Oracle Data Integrator

• Developing Integration Projects with Oracle Data Integrator

• Installing and Configuring Oracle Data Integrator

• Upgrading Oracle Data Integrator

• Integrating Big Data with Oracle Data Integrator

• Application Adapters Guide for Oracle Data Integrator

• Developing Knowledge Modules with Oracle Data Integrator

• Connectivity and Knowledge Modules Guide for Oracle Data Integrator

• Migrating From Oracle Warehouse Builder to Oracle Data Integrator

• Oracle Data Integrator Tool Reference

• Data Services Java API Reference for Oracle Data Integrator

• Open Tools Java API Reference for Oracle Data Integrator

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/middleware/middleware.html

• Getting Started with SAP ABAP BW Adapter for Oracle Data Integrator

• Java API Reference for Oracle Data Integrator

• Getting Started with SAP ABAP ERP Adapter for Oracle Data Integrator

• Oracle Data Integrator 12c Online Help, which is available in ODI Studio through
the JDeveloper Help Center when you press F1 or from the main menu by
selecting Help, and then Search or Table of Contents.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xi

1
Understanding the Migration Process

Migration from Oracle Warehouse Builder (OWB) to Oracle Data Integrator (ODI) can
be done with the help of Migration utility, a command-line tool.
The following topics are addressed here.

1.1 About Migration
ODI is Oracle's strategic product for heterogeneous data integration. Because many
Oracle Database customers have significant investment in OWB, Oracle supports a
phased migration from OWB 11gR2 (11.2.0.4) to ODI 12c (12.2.1.2.6). The following
features are provided to make the transition to ODI easier:

• ODI 12c supports the execution and administration of OWB 11gR2 jobs directly
within ODI Studio and ODI Console, providing a single orchestration and
monitoring solution. This feature enables you to migrate OWB objects over a
longer period of time and in a way that makes sense for your business. For more
information about this feature, see OdiStartOwbJob in the Tools Reference Guide
for Oracle Data Integrator.

• ODI 12c supports an easier mapping between OWB 11gR2 concepts and objects
and their ODI 12c counterparts. A migration utility is provided that automatically
translates many OWB objects and mappings into their ODI equivalents. For more
information about the migration utility, see About the Migration Utility.

1.2 About the Migration Utility
The migration utility is a command-line tool that assists you to migrate design-time
metadata from OWB to ODI.

Runtime data and physical objects are not migrated.

The migration utility uses the settings in the migration utility configuration file to
perform the migration.

For information about obtaining the patch, see Migration Requirements.

1.3 What Is and Is Not Migrated
The migration utility is an aid to migration only, and not all types and variants of OWB
objects are migrated.

Manual effort should be expected including further modifications of the migrated
Mappings in ODI or extensive testing to verify the Mappings.

The following topics are addressed here:

• Objects That Are Migrated

• Objects That Are Not Migrated

1-1

1.3.1 Objects That Are Migrated
The following OWB objects are supported for migration when you run the migration
utility:

• projects

• modules (source and target)

• locations

• data objects

– table (columns, keys, indexes)

– view (columns, keys)

– materialized view (columns, keys, indexes)

– external table (columns)

– file (records, fields)

– sequence

• dimensional modeling metadata

• workspace

• mappings

– classic mappings

– Code Template mappings

– pluggable mappings

• mapping operators

– Aggregator

– Constant

– Cube

– Dimension

– Deduplicator

– Expression

– External Table

– Filter

– Flat File

– Joiner

– Key Lookup

– Mapping Input Parameter

– Materialized View

– Pivot

– Pre/Post Mapping Process

– Sequence

Chapter 1
What Is and Is Not Migrated

1-2

– Set

– Sorter

– Splitter

– Subquery

– Table

– Table Function

– Transformation

Note:

Transformation objects are actually not migrated, but transformation
operator in mapping is migrated as expression component in ODI, only
if the transformation object is present in ODI repository.

– Unpivot

– View

1.3.2 Objects That Are Not Migrated
The following OWB objects are not supported for migration when you run the migration
utility:

• data objects

– table (partitions, attribute sets, data rules)

– view (attribute sets, data rules)

– materialized view (partitions, attribute sets, data rules)

– external table (data rules, locations)

– sequence (columns)

• Oracle Discoverer metadata and derived Oracle Business Intelligence Suite
Enterprise Edition (OBI EE) metadata

• custom PL/SQL (procedure, package, and so on)

• queues, streams, CDC (Change Data Capture) configurations, user-defined types

• process flow

• data quality, data profiles, data auditors

• configuration details (security, user extensions, transportable modules, schedules/
collections, user folders)

• OWB Experts

• OMB*Plus scripts

• Internal variable, which is used by the OWB runtime during code generation, for
example, get_model_name

Chapter 1
What Is and Is Not Migrated

1-3

1.4 Roadmap for Migration
You can find out more information about the activities that are required in order to
migrate from OWB to ODI.
The activities to migrate from OWB to ODI would require considerable amount of
planning ahead and involve multiple teams and resources. An overall plan should be in
place and discussed with all involved parties before the actual activities are carried
out.

The overall plan should include the following suggested phases:

1. Pre-Migration phase

Helps to prepare the environment for migration.

2. Planning phase

Helps all parties involved to be familiar with the Migration Utility and learn about
what it can do and its limitation, and hence identify potential gaps that would
require alternate migration activities.

3. Using the Migration Utility phase

Actually does the migration using the utility but also identifies objects that cannot
be migrated.

4. Manual Migration phase

Handles alternate migration activities for objects that cannot be migrated by the
Migration Utility.

5. Post Migration Development phase

The migrated solution (using the Migration Utility or by manual) is reviewed, re-
examined, and compared with the OWB solution to ensure the same end results
are achieved. Note that additional changes or development are expected on the
migrated solution to achieve the same result.

6. Post Migration Testing/QA phase

The migrated solution (using the Migration Utility or by manual) is reviewed, re-
examined, and compared with the OWB solution to ensure the same end results
are achieved. Note that additional changes or development are expected on the
migrated solution to achieve the same result.

7. Rolling out the ODI Solution phase

The final phase when the ODI solution is rolled out. One should plan on gradually
cutting over from the original OWB instance to the new migrated ODI instance until
all the new jobs in ODI are working satisfactorily. That is, both systems would be
kept up and running in production until the last OWB job are moved over to ODI
and tested to work.

The following information provides a high-level summary of the steps to be performed
in each phase to migrate from OWB to ODI.

Pre-Migration Phase: The goal of this phase is to prepare the environment for
migration.

Chapter 1
Roadmap for Migration

1-4

Table 1-1 Pre-Migration Phase

Step Description Documentation

Back up existing OWB
repositories

Before running the migration
utility, backup your existing
OWB repositories.

See OWB Documentation.

Verify your system
environment

Before running the migration
utility, verify that your system
meets requirements and that
you are not connected to the
design repository.

See Migration Requirements

Planning Phase: The goal of this phase if to get familiar with the Migration Utility,
learn about what it does and its limitations, identify potential gaps that the Migration
Utility may not be able to assist with, plan the migration activities using the Migration
Utility and alternate migration activities without using the Migration Utility.

Table 1-2 Planning Phase:

Step Description Documentation

Review the entire Migration
Utility document, especially
the section on ”Supported and
Unsupported objects”.

Make sure you understand
what will and will not be
migrated.

See What Is and Is Not
Migrated

Edit the migration utility
configuration file for a test
migration.

Edit the migration utility
configuration file and make
sure the settings are correct
for your environment. The
configuration file contains
connection information and
other details required for
migration.

Set MIGRATION_MODE to
FAST_CHECK or DRY_RUN
to do a test run of the
Migration Utility.

See Creating the Migration
Utility Configuration File

Perform a test migration by
running the migration utility in
FAST_CHECK or DRY_RUN
mode

Run the migration utility to
migrate OWB objects to ODI
using the settings in the
migration utility configuration
file. Before running the
migration utility, verify that you
are not connected to the
design repository.

See Using the Migration Utility
to Migrate

Review the migration utility log
file

After migration is complete,
review the migration utility log
file. The file contains details
about objects that were
migrated, and error messages
if errors occurred.

See Reviewing the Migration
Utility Log File

Chapter 1
Roadmap for Migration

1-5

Table 1-2 (Cont.) Planning Phase:

Step Description Documentation

Review the migration utility
exclusion report

After test migration is
complete, review the migration
utility exclusion report.

The report provides a
summary of objects that can
be migrated, and lists whether
migration succeeded or failed
for each object.

For objects excluded from
migration, manual migration
steps will be needed.

See Reviewing the Migration
Utility Exclusion Report

Finalize migration plan Based on the test migration
run and the result, the objects
that will be migrated by the
migration utility and those that
cannot be migrated by the
migration utility will be known.

For those objects that cannot
be migrated, some manual
effort will be needed to
recreate these objects in ODI.
Create a list of all these
objects that will require a
manual migration.

Migration Phase: The goal of this phase is to actually perform the migration of objects
that can be migrated by the Migration Utility.

Table 1-3 Migrating Phase:

Step Description Documentation

Edit the migration utility
configuration file

Edit the migration utility
configuration file and make
sure the settings are correct
for your environment. The
configuration file contains
connection information and
other details required for
migration.

See Creating the Migration
Utility Configuration File

Run the migration utility to
perform the migration using
MIGRATION_MODE=RUN

Run the migration utility to
migrate OWB objects to ODI
using the settings in the
migration utility configuration
file. Before running the
migration utility, verify that you
are not connected to the
design repository.

See Using the Migration Utility
to Migrate

Chapter 1
Roadmap for Migration

1-6

Table 1-3 (Cont.) Migrating Phase:

Step Description Documentation

Review the migration utility log
file

After migration is complete,
review the migration utility log
file. The file contains details
about objects that were
migrated and error messages
if errors occurred.

See Reviewing the Migration
Utility Log File

Review the migration utility
exclusion report

After migration is complete,
review the migration utility
exclusion report. The report
provides a summary of objects
that were migrated, and lists
whether migration succeeded
or failed for each object.

See Reviewing the Migration
Utility Exclusion Report

Verify your migration In ODI Studio, connect to your
ODI environment and perform
post-migration testing to verify
your migration.

See Verifying Your Migration

Manual Configuration Phase: For the objects not migrated by the Migration Utility,
manual migration will be needed.

Table 1-4 Manual Configuration Phase

Step Description Documentation

Create objects in ODI
manually

For any objects not migrated
by the Migration Utility, some
manual effort will be needed to
recreate these objects in ODI.
The list of objects excluded
from migration by Migration
Utility is noted in the Planning
phase above.

-

Verify your migration In ODI Studio, connect to your
ODI environment and perform
post-migration testing to verify
your migration.

See Verifying Your Migration

Post-Migration Development Phase: After running the migration plans (either using
the Migration Utility or manual steps), the migrated repository should be examined,
reviewed and verified. This should be the most crucial and probably the biggest phase
of any migration project. It shall involve reviewing each migrated artifact, executing all
executable artifacts in ODI, as well as examining results. It is expected that the
behavior of migrated artifacts will not be the same as in OWB and modifications may
be needed to make the artifact behave as desired. Customers shall plan to invest
significant amount of time in this phase.

Chapter 1
Roadmap for Migration

1-7

Table 1-5 Post-Migration Development Phase

Step Description Documentation

Verify your migration In ODI Studio, connect to your
ODI environment and perform
post-migration testing to verify
your migration.

See Verifying Your Migration

Review gaps or differences,
re-create or re-implement
existing logic

For artifacts that do not
execute with the same results
as in OWB, review the OWB
artifacts and compare with the
corresponding ODI artifacts.
The ODI artifacts may need
tweaking or re-design for the
artifact to behave similar to the
OWB artifact. One may need
to re-create or re-implement
the OWB logic in ODI.

See Special Migration Cases

Post Migration Testing / QA Phase: After all the mappings have been migrated (by
the Migration Utility or manually created) and verified in the phases above, the
migrated ODI solution should be handed over to testing team for full QA testing.

Rolling out the ODI Solution Phase: Before cutting over to ODI, the migrated ODI
solution should run in concurrent with OWB until all the artifacts in ODI have been
reviewed, verified and stabilized. When the ODI solution is running as expected or
desired, the cut-over from OWB can be done.

Chapter 1
Roadmap for Migration

1-8

2
Preparing to Migrate

It is important to understand the migration requirements and how to create the
configuration file used for migration.
The following topics are addressed here.

2.1 Migration Requirements
Migration is supported on Linux and Windows 64-bit x86 systems only. Before
migrating, ensure that the following requirements are met:

• OWB 11.2.0.4 installed (plus Migration Patch applied. Note: Please contact Oracle
Support to get the latest Migration Patch to be applied to your environment.)

• ODI 12.2.1.2.6

• OWB workspace exists

• ODI repositories exist (When migration mode is FAST_CHECK, this pre-condition
is optional)

• ODI_HOME and JAVA_HOME environment variables set. The ODI_HOME variable should be
set to the ODI installation directory, such as /home/oracle/Middleware. The
JAVA_HOME variable should be set to the JDK installation directory, such as /java/
jdk<version>/.

Note: The JDK version should be 1.8 or later.

• Migration utility configuration file created

Also ensure that you have the following information:

• ODI master repository password (When migration mode is FAST_CHECK, this
pre-condition is optional)

• ODI user password (When migration mode is FAST_CHECK, this pre-condition is
optional)

• OWB workspace owner password

• Full path to the migration utility configuration file and the file name

Note:

Download the required patches from My Oracle Support (https://
support.oracle.com). Apply the patches using the instructions in the patch
readme files.

2-1

https://support.oracle.com
https://support.oracle.com

2.2 Migration Utility Run on a Non-64-bit Operating System
If your OWB repository resides on an environment other than Windows 64-bit or Linux
64-bit, you have to install both OWB and ODI clients on the same machine.

Set the ODI_HOME environment variable to point to the ODI home. The migration.config
file has to have all the parameters set correctly and pointing to the right location of the
repositories.

Migration Utility Run for Remote Repositories

You can have three different scenarios when the repositories are remote as shown in
the figures below:

Chapter 2
Migration Utility Run on a Non-64-bit Operating System

2-2

In the 1st case the repositories can reside on the same server and the same database.

In the 2nd case the repositories can reside on same server but different databases.

In the 3rd case the repositories can reside on different servers.

2.3 Creating the Migration Utility Configuration File
Before migrating, you must first create the configuration file used to perform the
migration.

The configuration file is a text-based properties file that contains connection
information and other details.

The following topics are addressed here:

2.3.1 To Create the Migration Utility Configuration File
A template file is provided to make creation of the migration utility configuration file
easier. Use this template as your starting point and edit the settings to fit your specific
environment and needs.

The template file is named migration.config and is located in the OWB_HOME/bin/

admin directory, where OWB_HOME is your OWB installation directory.

To create the migration utility configuration file:

1. Open the migration.config file in a text editor.

2. Edit the settings to fit your specific environment and needs. For more information
about each parameter, see Configuration File Parameters.

3. Save the file. The file can be named whatever you like and saved to the location of
your choice.

Make note of the file name and its path, because you will need this information
when you run the migration utility.

2.3.2 Configuration File Parameters
Table 2-1 lists the parameters in the migration utility configuration file.

Table 2-1 Migration Utility Configuration File Parameters

Parameter Mandatory Description

ODI_MASTER_USER=<user_name
>

Yes User name for the ODI master
repository connection.

It is not mandatory when
mode is set to
mode=fast_check.

Chapter 2
Creating the Migration Utility Configuration File

2-3

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

ODI_MASTER_URL=<JDBC_URL> Yes JDBC URL used to connect to
the ODI master repository.
This URL must be quoted if it
contains one of the following
characters:

• semicolon (;)
• backslash (\)
• double quote (")
• back quote (`)
• dollar sign ($)
• less than (<)
• greater than (>)
The default value is
jdbc:oracle:thin:@localhos
t:1521:mydb

It is not mandatory when
mode is set to
mode=fast_check.

ODI_MASTER_DRIVER=<JDBC_dr
iver_name>

Yes JDBC driver used to connect
to the ODI master repository.

The default value is
oracle.jdbc.OracleDriver

It is not mandatory when
mode is set to
mode=fast_check.

ODI_USERNAME=<user_name> Yes Supervisor user name for ODI.

The default value is
SUPERVISOR.

It is not mandatory when
mode is set to
mode=fast_check.

ODI_WORK_REPOSITORY_NAME=<
user_name>

Yes User name used to connect to
the ODI work repository.

The default value is WORKREP1.

It is not mandatory when
mode is set to
mode=fast_check.

OWB_WORKSPACE_OWNER=<works
pace_owner>

Yes OWB workspace owner.

OWB_URL=<URL> Yes URL used to connect to the
OWB workspace.

The default value is
localhost:1521:mydb

Chapter 2
Creating the Migration Utility Configuration File

2-4

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

OWB_WORKSPACE_NAME=<worksp
ace_name>

No Name of the OWB workspace
to connect to, specified in one
of the following formats:

• Workspace owner and
workspace name,
separated by a period.
For example, REP_1.WS1
or rep_1.ws1.

• Workspace name only.
For example, WS1 or ws1.

The migration utility can be
used to migrate just one
workspace at a time. Edit this
parameter (and others as
necessary) and run the
migration utility for each
workspace that you want to
migrate.

If the workspace owner owns
just one workspace, you do
not need to specify this
parameter.

If the workspace owner owns
multiple workspaces and no
value is specified for this
parameter, an error is
returned. If a workspace has
the same name as the
workspace owner, the
workspace is migrated.

If the specified workspace
does not exist, the connection
fails.

Chapter 2
Creating the Migration Utility Configuration File

2-5

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

MIGRATION_LOG_FILE=<path_t
o_log_file>

No Full path to the migration utility
log file, which is generated
when you run the migration
utility.

The migration utility exclusion
report is also generated, and
uses the same prefix as the
log file, with a .report
extension.

This parameter is used to
specify the name and location
for both the log file and the
report file. If no path is
specified, the log and report
files are generated in the
same directory from which the
migration utility was executed,
for example,
OWB_HOME/owb/bin/unix.
By default, the file names are
migration.log and
migration.report.

For more information about
these files, see Reviewing Log
and Report Files.

MIGRATION_REPORT_INCLUDE=<
PASSED|FAILED|ALL>

No Content to be included in the
migration utility exclusion
report. Options are:

• PASSED: Include only
objects that succeeded.

• FAILED: Include only
objects that failed.

• ALL: Include all objects.
The default value is ALL.

Chapter 2
Creating the Migration Utility Configuration File

2-6

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

MIGRATION_MODE=<FAST_CHECK
|DRY_RUN|RUN>

No Migration mode. Options are:

• FAST_CHECK: The
migration utility performs
a quick check for selected
objects and provides a
report that lists objects
that can and cannot be
migrated to the target ODI
repository. Use this mode
to quickly determine
which objects can and
cannot be migrated. This
mode can be used
without installing and
setting up the ODI
environment.

• DRY_RUN: The migration
utility checks whether the
specified objects can be
created in the target ODI
repository, and executes
the migration without
committing the objects to
the repository. This mode
can be used without
installing and setting up
the ODI environment.
Meanwhile, when ODI
related parameters invoke
migration.sh/
migration.bat(ODI_MAST
ER_USER,ODI_USERNA
ME,ODI_MASTER_PASS
WORD,ODI_USER_PAS
SWORD), it might not be
correct.

• RUN: The migration utility
executes the migration
and commits migrated
objects to the target ODI
repository. Use this mode
to perform the migration
from OWB to ODI.

The default value is RUN.

For more information about
using the FAST_CHECK and
DRY_RUN modes to perform a
test migration, see Performing
a Test Migration.

Chapter 2
Creating the Migration Utility Configuration File

2-7

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

MIGRATION_STRATEGY No Indicate whether migrating the
object or not when there is an
object with the same name
already existed in ODI
repository. This parameter has
two options, CREATE and
NODUP. The default value is
CREATE.

• CREATE always creates a
new object in ODI. If there
is an existing object with
the same name in the
repository, the new object
is created with a name
suffixed with _# where "#"
is a number.

• NODUP matches objects
existing in ODI repository
with the name, if exists,
the object is not migrated
and the existing one in
ODI repository is used.

MIGRATE_DEPENDENCIES=<TRUE
|FALSE>

No Controls whether dependent
objects are migrated with the
objects selected for migration.

The default value is FALSE
(dependent objects are not
migrated).

Recursive dependency is
supported when
MIGRATE_DEPENDENCIES is set
to TRUE. For example:

Mapping MAP_1 has a map
operator bound to table T_1,
and table T_1 has an FK
(foreign key) relationship with
table T_2. Both T_1 and T_2
are considered as
dependencies and are
migrated along with mapping
MAP_1.

STOP_ON_ERROR=<TRUE|FALSE> No Indicates whether to continue
the migration process or stop
when an error occurs.

When set to TRUE, the
migration process stops and
no objects are migrated. When
set to FALSE, the migration
process continues even if an
error occurs, and successful
objects are migrated.

The default value is FALSE.

Chapter 2
Creating the Migration Utility Configuration File

2-8

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

SPLIT_JOIN_FOR_ANSI_SYNTAX
=<TRUE|FALSE>

No Indicates whether to split the
join operator to binary join
when the property Use ANSI
Syntax of the OWB mapping is
set to TRUE.

The default value is TRUE (join
operator is split).

MIGRATE_UNBOUND_OPERATOR=<
TRUE|FALSE>

No Determines whether mappings
that contain unbound
operators (excluding Code
Template mappings) are
migrated. Unbound operators
include external table, table,
view, materialized view,
lookup, and pluggable
mapping.

When set to TRUE, mappings
that contain unbound
operators are migrated. For
unbound entity operators
(external table, table, view,
materialized view, and
lookup), an ODI datastore
corresponding to the unbound
operator is created in the ODI
model that is migrated from
the OWB module where the
OWB mapping exists. The
unbound operator is migrated
to an ODI mapping component
bound to the newly created
ODI datastore.

For an unbound pluggable
mapping operator, an ODI
reusable mapping is created in
an ODI folder named
STAND_ALONE. The unbound
pluggable mapping operator is
migrated to the ODI reusable
mapping component bound to
the newly created reusable
mapping.

The default value is FALSE,
which means any mappings
that contain unbound
operators are not migrated.

Chapter 2
Creating the Migration Utility Configuration File

2-9

Table 2-1 (Cont.) Migration Utility Configuration File Parameters

Parameter Mandatory Description

MIGRATION_OBJECTS=<objects
>

No Specifies the OWB objects to
be migrated.

The default value is the wild
card asterisk (*), which means
that all projects in the
designated OWB workspace
are migrated.

For more information about
migrating specific objects, see
Migrating Specific Objects in
an OWB Workspace.

FLUSH_BATCH_SIZE=<number_o
f_mappings>

No Indicates the number of
mappings to be processed or
migrated at a time.

Use this parameter to avoid
out of memory issues if the
OWB workspace has a very
large number of mappings.

The default value is 50.
Reduce this value if out of
memory issues occur.

2.3.3 Configuration File Example
Example 2-1 shows the values for a sample migration utility configuration file.

Example 2-1 Sample Migration Utility Configuration File

ODI_MASTER_USER=ODIREP
ODI_MASTER_URL=jdbc:oracle:thin:@localhost:1521:machine
ODI_MASTER_DRIVER=oracle.jdbc.OracleDriver
ODI_USERNAME=SUPERVISOR
ODI_WORK_REPOSITORY_NAME=WORK0
OWB_WORKSPACE_OWNER=rep_0
OWB_URL=localhost:1521:machine.example.com
OWB_WORKSPACE_NAME=REP_0_WS_0
MIGRATION_LOG_FILE=/tmp/migration.log
MIGRATION_REPORT_INCLUDE=ALL
MIGRATION_MODE=RUN
MIGRATION_STRATEGY=CREATE
MIGRATE_DEPENDENCIES=TRUE
STOP_ON_ERROR=FALSE
SPLIT_JOIN_FOR_ANSI_SYNTAX=TRUE
MIGRATE_UNBOUND_OPERATOR=TRUE
MIGRATION_OBJECTS=PROJECT.MY_PROJECT
FLUSH_BATCH_SIZE=50

Chapter 2
Creating the Migration Utility Configuration File

2-10

3
Using the Migration Utility to Migrate

The migration utility is the command-line tool to migrate objects from OWB to ODI .
Migration is performed using the settings specified in the migration utility configuration
file. For more information about this file, see Creating the Migration Utility
Configuration File.

Note:

The OWB workspace and the ODI repository should not be in use when you
run the migration utility and perform the migration.

The following topics are addressed here:

3.1 Migration Utility Syntax and Parameters
The migration utility is started from the command line and takes several parameters as
inputs to perform the migration.

On Linux, the migration utility file is named migration.sh and is executed from the
OWB_HOME/owb/bin/unix directory, where OWB_HOME is your OWB installation
directory.

On Windows, the migration utility file is named migration.bat and is executed from the
OWB_HOME/owb/bin/win directory, where OWB_HOME is your OWB installation
directory.

The syntax to run the migration utility and perform the migration is as follows:

./migration.sh <odi_master_password> <odi_user_password>
<owb_workspace_owner_password> <configuration_file>

For example:

./migration.sh odi_master supervisor migration /scratch/jsmith/Migration/
owb_migration.properties

The command parameters are as follows:

• odi_master_password: ODI master repository password (It is mandatory parameter.
When migration mode is set to FAST_CHECK, this password might not be the real
one)

• odi_user_password: ODI user password (It is mandatory parameter. When migration
mode is set to FAST_CHECK, this password might not be the real one)

• owb_workspace_owner_password: OWB workspace owner password

• configuration_file: Full path to the migration utility configuration file and the file
name

3-1

If you want migration.sh to refer to the ODI libraries you specified, you need to list all
the necessary ODI public SDK jars in a file and use the following syntax to start the
migration utility.

./migration.sh -Dodi.classpath= <odi_classpath_file> <odi_master_password>

<odi_user_password> <owb_workspace_owner_password> <configuration_file>

odi_classpath_file: Full path to the odi classpath file and the file name.

In the odi classpath file, you need to list the full path of the ODI jars line by line.

Note that -Dodi.classpath should be placed just after the migration.sh and before the
other parameters.

Note:

For more information about the migration modes used to test and perform the
migration, see MIGRATION_MODE in Configuration File Parameters.

After migration is complete, you are returned to the command prompt. You can then
review the migration utility log file and exclusion report for details about the migration.
For more information about these files, see Reviewing Log and Report Files.

3.2 Migrating an OWB Workspace
To migrate an entire OWB workspace, use the wild card asterisk (*) as the value for
the MIGRATION_OBJECTS parameter in the migration utility configuration file.

For example:

MIGRATION_OBJECTS=*

All projects and supported objects in the OWB workspace specified by the
OWB_WORKSPACE_NAME parameter in the configuration file will be migrated.

Note:

You can migrate just one workspace at a time. Edit the configuration file and
run the migration utility for each workspace that you want to migrate.

3.3 Migrating Specific Objects in an OWB Workspace
To migrate specific objects in an OWB workspace, configure the MIGRATION_OBJECTS
parameter in the migration utility configuration file to migrate just those objects.

You can specify a project, folder, or single non-folder object, or a set of objects that
share the same type and the same folder.

Use a string that concatenates the qualifying names of all objects included in the
object's path, from the top-level object to the leaf object. Qualifying names are
specified as OBJECT_TYPE.OBJECT_PHYSICAL_NAME, with a period (.)

Chapter 3
Migrating an OWB Workspace

3-2

separating the object type from its physical name. For example, to select table T_1 in
Oracle module MOD_1 in project PRO_1, set the value of the MIGRATION_OBJECTS parameter
to PROJECT.PRO_1.MODULE.MOD_1.TABLE.T_1.

The following values can be used for OBJECT_TYPE:

• CUBE

• DIMENSION

• EXTERNAL_TABLE

• FLAT_FILE_MODULE

• FLAT_FILE

• GENERIC_FOLDER

• GENERIC_MODULE

• LOCATION

• MODULE

• MAPPING

• MATERIALIZED_VIEW

• PLUGGABLE_MAPPING

• PLUGGABLE_MAPPING_FOLDER

• PROJECT

• SAP_MODULE

• SEQUENCE

• TABLE

• VIEW

Use a semicolon (;) to separate multiple items, for example:

MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.MOD_1.TABLE.T_1;PROJECT.PRO_2.MODULE.MOD_2;

Use a backslash (\) at the end of a line to improve readability of the configuration file if
there are multiple items, for example:

MIGRATION _OBJECTS=
PROJECT.OWB_MIGRATION.SAP_MODULE.MY_SAP_MOD;\
PROJECT.MY_PROJECT.MODULE.ORA_MOD;\
PROJECT.MY_PROJECT.MODULE.DB2_MOD

Use the wild card asterisk (*) at the end of a string instead of an object name to select
all objects of a specific type in a folder. The following example selects all tables in
module MOD_1:

MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.MOD_1.TABLE.*

Use the wild card asterisk (*) at the end of an object name to select all objects with
that name. The following example selects all tables in module MOD_1 with a name that
starts with MYTEST:

MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.MOD_1.TABLE.MYTEST*

The following uses are not supported:

Chapter 3
Migrating Specific Objects in an OWB Workspace

3-3

MIGRATION_OBJECTS=PROJECT.*.MODULE.MOD_1.TABLE.T_1;
MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.*.TABLE.T_1;
MIGRATION_OBJECTS=PROJECT.*.MODULE.*.TABLE.*;
MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.*.TABLE.MYT*;
MIGRATION_OBJECTS=PROJECT.PRO_1.MODULE.MYMOD*.TABLE.MYT_1;

When an invalid object is specified, an error is returned:

[ERROR][Migration][MU-1005] The selected object {0} does not exist or the
selection is invalid {invalid object name}. It will be skipped.

For more information about error messages that you might encounter when you run
the migration utility, see Message Reference.

Example 3-1 Migrating Specific Objects

This section provides additional examples of migrating specific objects.

The following example migrates Oracle Database module ORACLE_EBS_D in project SSAD:

MIGRATION_OBJECTS=PROJECT.SSAD.MODULE.ORACLE_EBS_D;

The following example migrates pluggable mapping DEBS_EDW_MAP1 in pluggable
mapping folder DWPR_SUB:

MIGRATION_OBJECTS=PROJECT.PROJ_DW.PLUGGABLE_MAPPING_FOLDER.DWPR_SUB.PLUGGABLE_MAPPING
.DEBS_EDW_MAP1;

The following example migrates standalone pluggable mapping PLUGGABLE_MAPPING_1 in
project SSA:

MIGRATION_OBJECTS=PROJECT.SSA.PLUGGABLE_MAPPING.PLUGGABLE_MAPPING_1

3.4 Performing a Test Migration
To test your migration before executing it, set the MIGRATION_MODE parameter in the
migration utility configuration file to FAST_CHECK or DRY_RUN.

The FAST_CHECK option checks which objects can and cannot be migrated. The DRY_RUN
option checks whether the specified objects can be created in the target ODI
repository, and executes the migration without committing the objects to the repository.
For more information about these options, see MIGRATION_MODE in Configuration File
Parameters.

After performing a test migration, review the migration utility log file and exclusion
report for details. You can use these files to identify objects that can and cannot be
migrated and to address any issues before performing the actual migration. For more
information about these files, see Reviewing Log and Report Files.

Chapter 3
Performing a Test Migration

3-4

4
Reviewing Your Migration

Reviewing your migration includes reviewing logs and report files.
The following topics are addressed here:

4.1 Reviewing Log and Report Files
You can use the log and report files to review, refine, and troubleshoot your migration.
Two files are created after migration is complete or after you perform a test migration.
By default, the files are named migration.log and migration.report. Use these files to
review, refine, and troubleshoot your migration.

By default, the files are saved in the same location as the migration utility configuration
file. You can specify a different file name and location using the MIGRATION_LOG_FILE
parameter in the configuration file. For more information about this parameter, see
MIGRATION_LOG_FILE in Configuration File Parameters.

The following topics are addressed here:

4.1.1 Reviewing the Migration Utility Log File
The migration utility log file contains details about objects that were migrated, rejected,
or skipped, and error messages if any errors occurred.

The log file is organized in the following sections:

• Log file header with migration mode, log file creation time, OWB and ODI details,
full path to the log file, and configuration options.

• Migration start time.

• Detailed information about the migration status of each object (whether migration
succeeded, was rejected, or skipped) and error messages if errors occurred. For
more information about informational, warning, and error messages that you might
encounter when you run the migration utility, see Message Reference.

• Summary information organized by object type, including the path to each object.

• Log file footer with total execution time and migration end time.

Example 4-1 Sample Migration Utility Log File

This example shows a sample migration utility log file, with MIGRATION_MODE set to RUN.

* Oracle Warehouse Builder - Migration Utility - Log
* Created: 9/26/16 7:42 PM
* Migration Report Style - RUN
*
* OWB Release:11.2.0.4.0 - OWB Repository:
OWB_REPO_MIG/machine.example.com:1521:orcl11204 - OWB Workspace:
OWB_REPO_MIG.OWB_REPO_WKSP1
*
* ODI Release:12.2.1.2.6 - ODI Master mig12c/jdbc:oracle:thin:@machine:

4-1

1521:orcl11203 - ODI User/Work Repository:SUPERVISOR/WORKREP1
*
* Log File: /tmp/migration.log
*
* Configuration Options
*

* MIGRATION_REPORT_INCLUDE=ALL
* MIGRATION_MODE=RUN
* MIGRATE_DEPENDENCIES=true
* STOP_ON_ERROR=true
* SPLIT_JOIN_FOR_ANSI_SYNTAX=true
* MIGRATE_UNBOUND_OPERATOR=true
* FLUSH_BATCH_SIZE=50
* MIGRATION_STRATEGY=NODUP
* MIGRATION_OBJECTS=PROJECT.DIM_PROJECT
**

Migration started at 9/26/16 7:42 PM Pacific Standard Time

**
----START MIGRATE LOCATION REP_TARGET.
----SUCCESSFULLY MIGRATED REP_TARGET.
----START MIGRATE PROJECT DIM_PROJECT.FLUSH OdiDataServer[1] COST(MS):1178
-------START MIGRATE MODULE_FOR_LOGICALSCHEMA DIM_MOD.
-------SUCCESSFULLY MIGRATED DIM_MOD.
----START MIGRATE MODULE DIM_MOD.FLUSH OdiLogicalSchema[1] COST(MS):744
-------START MIGRATE TABLE AT_009_DIM_LEV1.
-------SUCCESSFULLY MIGRATED AT_009_DIM_LEV1.
-------START MIGRATE TABLE AT_009_DIM_LEV2.
-------SUCCESSFULLY MIGRATED AT_009_DIM_LEV2.
-------START MIGRATE TABLE AT_009_DIM_LEV3.
-------SUCCESSFULLY MIGRATED AT_009_DIM_LEV3.
-------START MIGRATE TABLE AT_009_SRC_LEV1.
-------SUCCESSFULLY MIGRATED AT_009_SRC_LEV1.
-------START MIGRATE TABLE AT_009_SRC_LEV2.
-------SUCCESSFULLY MIGRATED AT_009_SRC_LEV2.
-------START MIGRATE TABLE AT_009_SRC_LEV3.
----SUCCESSFULLY MIGRATED AT_009_SRC_LEV3.
----START MIGRATE SEQUENCE AT_009_SEQ_SCD1.FLUSH OdiDataStore[6] COST(MS):2084
----SUCCESSFULLY MIGRATED AT_009_SEQ_SCD1.
----SUCCESSFULLY MIGRATED DIM_MOD.
----START SECOND PASS FOR TABLE.
--------FOREIGN KEY CREATED: AT_009_DIM_LEV2.LEV2_FOREIGN_KEY -->
AT_009_DIM_LEV1.LEV1_ID
--------FOREIGN KEY CREATED: AT_009_DIM_LEV3.LEV3_FOREIGN_KEY2 -->
AT_009_DIM_LEV2.LEV2_ID
----END SECOND PASS.
----START MIGRATE DIMENSION_MODULE DIM_MOD.
----START MIGRATE STAGE_TABLE LEVEL3_AT_009_DIM_STG.FLUSH OdiDimensionalModel[1]
COST(MS):455
----SUCCESSFULLY MIGRATED LEVEL3_AT_009_DIM_STG.
--------START MIGRATE STAGE_TABLE LEVEL1_AT_009_DIM_STG.
--------SUCCESSFULLY MIGRATED LEVEL1_AT_009_DIM_STG.
--------START MIGRATE STAGE_TABLE LEVEL2_AT_009_DIM_STG.
----SUCCESSFULLY MIGRATED LEVEL2_AT_009_DIM_STG.
----START MIGRATE DIMENSION AT_009_DIM.FLUSH OdiDataStore[2] COST(MS):1888
----SUCCESSFULLY MIGRATED AT_009_DIM.
----SUCCESSFULLY MIGRATED DIM_MOD.
----START MIGRATE CUBE_MODULE DIM_MOD.
---------[INFO][Migration][MU-1010]DIM_MOD is skipped because it already exists.

Chapter 4
Reviewing Log and Report Files

4-2

----END MIGRATE DIM_MOD.
----START MIGRATE MAPPING_MODULE DIM_MOD.
----START MIGRATE MAPPING AT_009_MAP_TEMP_SCD1.FLUSH MAPPING, MIGRATED 0 COST(MS):181
----SUCCESSFULLY MIGRATED AT_009_MAP_TEMP_SCD1
----SUCCESSFULLY MIGRATED DIM_MOD.SUCCESSFULLY MIGRATED DIM_PROJECT.

**

----LOCATION[TOTAL:1 MIGRATED:1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[PUBLIC_PROJECT].LOCATION[REP_TARGET].PROJECT[TOTAL:1 MIGRATED:
1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[TOTAL:1 MIGRATED:1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].
----MODULE_FOR_LOGICALSCHEMA[TOTAL:1 MIGRATED:1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[TOTAL:6 MIGRATED:6 REJECTED:
0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_DIM_LEV1].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_DIM_LEV2].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_DIM_LEV3].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_SRC_LEV1].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_SRC_LEV2].
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].TABLE[AT_009_SRC_LEV3].SEQUENCE[TOTAL:1
MIGRATED:1 REJECTED:0 SKIPPED:0].
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].SEQUENCE[AT_009_SEQ_SCD1].DIMENSION_MODULE[TOTAL
:1 MIGRATED:1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].DIMENSION[TOTAL:1 MIGRATED:1
REJECTED:0 SKIPPED:0].
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].DIMENSION[AT_009_DIM].STAGE_TABLE[TOTAL:3
MIGRATED:3 REJECTED:0 SKIPPED:0].
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].DIMENSION[AT_009_DIM].LEVEL[LEVEL1_AT_009_DIM_ST
G]:98267.
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].DIMENSION[AT_009_DIM].LEVEL[LEVEL2_AT_009_DIM_ST
G]:98271.
------PASSED:
PROJECT[DIM_PROJECT].MODULE[DIM_MOD].DIMENSION[AT_009_DIM].LEVEL[LEVEL3_AT_009_DIM_ST
G]:98276.CUBE_MODULE[TOTAL:1 MIGRATED:0 REJECTED:0 SKIPPED:1].
------SKIPPED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].MAPPING_MODULE[TOTAL:1 MIGRATED:
1 REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].MAPPING[TOTAL:1 MIGRATED:1
REJECTED:0 SKIPPED:0].
------PASSED: PROJECT[DIM_PROJECT].MODULE[DIM_MOD].MAPPING[AT_009_MAP_TEMP_SCD1].

Migration ended at 9/26/16 7:43 PM Pacific Standard Time

Total migration time (hh:mm:ss): 00:00:51

4.1.2 Reviewing the Migration Utility Exclusion Report
The migration utility exclusion report contains a summary of the objects migrated, and
lists whether migration succeeded, was rejected, or skipped for each object.

The exclusion report is organized in the following sections:

Chapter 4
Reviewing Log and Report Files

4-3

• Exclusion report header with migration mode, report creation time, OWB and ODI
details, full path to the report file, and configuration options.

• Migration start time.

• Migration statistics including how many projects were migrated, and total number
of objects migrated for each project.

• Detailed migration status for each selected object (whether migration succeeded,
was rejected, or skipped).

• Exclusion report footer with total execution time and migration end time.

Example 4-2 Sample Migration Utility Exclusion Report

This example shows a sample migration utility exclusion report, with MIGRATION_MODE
set to RUN.

*Oracle Warehouse Builder - Migration Utility - Summary Report
*Created: 10/10/16 1:00 AM
*Migration Report Style - RUN
*
*OWB Release:11.2.0.4.0 - OWB Repository:
OWB_REPO_MIG/machine.example.com:1521:orcl11204 - OWB Workspace:
OWB_REPO_MIG.OWB_REPO_WKSP1
*
*ODI Release:12.2.1.2.6 - ODI Master Repository:
mig12c/jdbc:oracle:thin:@machine:1521:orcl11204 - ODI User/Work Repository:
SUPERVISOR/WORKREP1
*
*Report File: /tmp/migration.report
*
Configuration Options

*MIGRATION_REPORT_INCLUDE=ALL
*MIGRATION_MODE=RUN
*MIGRATE_DEPENDENCIES=true
*STOP_ON_ERROR=true
*SSPLIT_JOIN_FOR_ANSI_SYNTAX=true
*MIGRATE_UNBOUND_OPERATOR=true
*FLUSH_BATCH_SIZE=50
*MIGRATION_STRATEGY=NODUP
*MIGRATION_OBJECTS=PROJECT.DIM_PROJECT.MODULE.DIM_MOD.MAPPING.AT_009_MAP_TEMP_SCD1
**

Migration started at 10/10/16 1:00 AM Pacific Standard Time

Statistics

Total Projects Migrated: 2

**
PROJECT: PUBLIC_PROJECT
Object Types Migrated Rejected Skipped
-------------------------- --------- --------- --------
MODULE: 1 0 0
MODULE_FOR_LOGICALSCHEMA: 1 0 0
TABLE: 6 0 0
SEQUENCE: 1 0 0
 DIMENSION_MODULE: 1 0 0

Chapter 4
Reviewing Log and Report Files

4-4

DIMENSION: 1 0 0
STAGE_TABLE: 3 0 0
CUBE_MODULE: 0 0 1
MAPPING_MODULE: 1 0 0
MAPPING: 1 0 0

Details

**
PROJECT: PUBLIC_PROJECT

Object Types Status
--------------------------- -------
LOCATION REP_TARGET SUCCESS

**
PROJECT: DIM_PROJECT

Object Types Status
--------------------------- -------
MODULE
 DIM_MOD SUCCESS
MODULE_FOR_LOGICALSCHEMA
 DIM_MOD SUCCESS
TABLE
 AT_009_DIM_LEV1 SUCCESS
 AT_009_DIM_LEV2 SUCCESS
 AT_009_DIM_LEV3 SUCCESS
 AT_009_SRC_LEV1 SUCCESS
 AT_009_SRC_LEV2 SUCCESS
 AT_009_SRC_LEV3 SUCCESS
SEQUENCE
 AT_009_SEQ_SCD1 SUCCESS
DIMENSION_MODULE
 DIM_MOD SUCCESS
DIMENSION
 AT_009_DIM SUCCESS
STAGE_TABLE
 LEVEL1_AT_009_DIM_STG SUCCESS
 LEVEL2_AT_009_DIM_STG SUCCESS
 LEVEL3_AT_009_DIM_STG SUCCESS
CUBE_MODULE
 DIM_MOD [INFO][Migration][MU-1010]DIM_MOD is skipped because it
already exists.
MAPPING_MODULE
 DIM_MOD SUCCESS
MAPPING
 AT_009_MAP_TEMP_SCD1 SUCCESS

Migration ended at 10/10/16 1:00 AM Pacific Standard Time

Total migration time (hh:mm:ss): 00:00:33

4.2 Verifying Your Migration
Follow these steps to verify that the mappings that were migrated from OWB.
When migration is complete, perform the following steps in ODI to verify the mappings
that were migrated from OWB:

Chapter 4
Verifying Your Migration

4-5

• Use ODI Studio to connect to the ODI environment. See Connecting to a Work
Repository in the Administrator’s Guide for Oracle Data Integrator.

• Navigate to Topology Navigator and review the data server settings. You may
need to edit some of the information such as user names, passwords, or JDBC
URLs depending on your environment. Test each connection to make sure that
each migrated data server is correctly configured. See Setting Up a Topology in
the Administrator’s Guide for Oracle Data Integrator.

• Navigate to Designer Navigator and review the migrated models and datastores in
the Models panel. See Creating and Using Data Models and Datastores in the
Developer's Guide for Oracle Data Integrator.

• Navigate to Designer Navigator and verify the migrated mappings in the Projects
panel by running the mappings. See Creating and Using Mappings in the
Developer's Guide for Oracle Data Integrator.

Note:

Using the Migration Utility to migrate OWB objects to ODI is one of the many
phases of migration. Please refer to the roadmap of migration as described in
Understanding the Migration Process chapter for follow-up phases after the
migration utility is run. Also, please note in all circumstances, manual work to
fix up migrated artifacts in ODI shall be expected.

Chapter 4
Verifying Your Migration

4-6

A
Message Reference

Messages, prompt, and warnings are displayed when you run the migration utility.
They are displayed to help you through the migration.
If objects cannot be migrated, informational messages appear.

If objects are migrated with warnings, warning messages appear.

If the objects cannot be migrated due unexpected errors, error messages appear.

The informational, warning, and error messages are written to the migration utility log
in the following formats:

• [ERROR|WARN|INFO][Migration][MU-XXXX]: Indicates the message is coming from the
migration utility (XXXX is the message ID).

• [ERROR|WARN][Migration][ODI]: Indicates the message is coming from ODI.

• [ERROR|WARN][Migration][OWB]: Indicates the message is coming from OWB.

For more information about the migration utility log file, see Reviewing Log and Report
Files.

Table A-1 provides example OWB and ODI error and warning messages. The
message text is as it appears in the message.

Table A-1 Example OWB and ODI Error and Warning Messages

Message Cause Action

[ERROR][Migration][OWB] Unable to
connect to OWB workspace! Details:
{0}

The connection to the OWB
workspace cannot be established.
The credential information used to
connect to the OWB workspace may
be invalid.

Verify the following parameters in the
migration utility configuration file
when running the migration utility
(migration.sh):

• OWB_WORKSPACE_OWNER

• OWB_URL

• OWB_WORKSPACE_NAME

For more information about these
parameters, see Configuration File
Parameters.

Also verify the password for the
OWB workspace owner.

A-1

Table A-1 (Cont.) Example OWB and ODI Error and Warning Messages

Message Cause Action

[ERROR][Migration][ODI] Unable to
connect to ODI repository! Details:
{0}

The connection to the ODI repository
cannot be established. The
credential information used to
connect to the ODI repository may
be invalid.

Verify the following parameters in the
migration utility configuration file
when running the migration utility
(migration.sh):

• ODI_MASTER_USER

• ODI_MASTER_URL

• ODI_MASTER_DRIVER

• ODI_USERNAME

• ODI_WORK_REPOSITORY_NAME

For more information about these
parameters, see Configuration File
Parameters.

Also verify the passwords for the ODI
master repository and the ODI user.

Table A-2 lists migration utility error and warning messages. Messages are listed in
numeric order by message ID. The message text is as it appears in the message.

Table A-2 Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-1001] Invalid number of
parameters. You have to provide 4
parameters: password for ODI
master repository, password for ODI
user, password for OWB, full path for
settings file.

Required parameters were not
supplied when running the migration
utility (migration.sh).

Provide the required parameters
when running the migration utility
(migration.sh).

For more information about the
correct syntax, see Migration Utility
Syntax and Parameters.

[ERROR] [Migration] [OWB] Unable
to connect to OWB workspace!
Details: {0}

The connection to OWB workspace
cannot be established. The
credential information used to
connect to OWB workspace may be
invalid.

Verify the following parameters in the
migration utility configuration file
when running the migration utility
(migration.sh):

• OWB_WORKSPACE_OWNER

• OWB_URL

• OWB_WORKSPACE_NAME

[ERROR] [Migration] [ODI] Unable to
connect to ODI repository! Details:
{0}

The connection to ODI repository
cannot be established. The
credential information used to
connect to ODI repository may be
invalid.

Verify the following parameters in the
migration utility configuration file
when running the migration utility
(migration.sh):

• ODI_MASTER_USER

• ODI_MASTER_URL

• ODI_MASTER_DRIVER

• ODI_USERNAME

• ODI_WORK_REPOSITORY_NAME

Appendix A

A-2

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-1004] Unable to load
configuration file {0}. Details:{1}

The migration utility configuration file
does not exist or is not readable or
accessible.

Make sure the migration utility
configuration file exists and is
readable and accessible. Specify the
full path to the configuration file and
the file name.

For more information about the
configuration file, see Creating the
Migration Utility Configuration File.

[MU-1005] The selected object {0}
does not exist or the selection is
invalid. It will be skipped.

An invalid or nonexistent object is
specified for the MIGRATION_OBJECTS
parameter in the migration utility
configuration file.

Verify the value specified for the
MIGRATION_OBJECTS parameter in the
migration utility configuration file.

For more information about this
parameter, see MIGRATION_OBJECTS
in Configuration File Parameters.
Also see Migrating Specific Objects
in an OWB Workspace.

[MU-1006] Invalid object name {0} in
selection {1}, the selection will be
skipped.

An invalid object name is specified
for the MIGRATION_OBJECTS
parameter in the migration utility
configuration file.

Verify the value specified for the
MIGRATION_OBJECTS parameter in the
migration utility configuration file.

For more information about this
parameter, see MIGRATION_OBJECTS
in Configuration File Parameters.
Also see Migrating Specific Objects
in an OWB Workspace.

[MU-1007] Migration failed. Details:
{0}

As described in the message. Review the message to determine
the cause of the problem and take
appropriate action.

[MU-1008] Unable to write to log or
report file {0}. Details:{1}

The log or report file is not
accessible to the migration utility.

Verify the path specified for the
MIGRATION_LOG_FILE parameter in
the migration utility configuration file.
Make sure the specified location
permits new files to be created and
that enough disk space exists to
write the files.

For more information about this
parameter, see MIGRATION_LOG_FILE
in Configuration File Parameters.

[MU-1009] Invalid configuration
option {0}. It will be ignored.

An invalid parameter is specified in
the migration utility configuration file.

Verify the parameters in the
migration utility configuration file,
make sure they are correct.

[MU-1010] {0} is skipped because it
already exists.

The parameter MIGRATION_STRATEGY
in the migration utility configuration
file is specifies to NODUP. When
MIGRATION_STRATEGY is set to NODUP,
migration utility will match with
objects existing in ODI repository
with the name, if exists, the object
will not be migrated and the existing
one in ODI repository is used.

No action.

Appendix A

A-3

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-2001] Migration of location {0} in
platform {1} is not supported.

The location for this platform is not
supported for migration.

No action.

[MU-2002] Migration of location {0}
with no associated platform is not
supported.

The location is not associated with a
platform.

No action.

[MU-3001] Unable to load file {0}.
Details: {1}.

The file
PlatformMappingsForMigration.xml
does not exist in the
OWB_HOME/owb/bin/admin
directory or the directory is not
accessible to the migration utility.

Verify that the file
PlatformMappingsForMigration.xml
exists in the OWB_HOME/owb/bin/
admin directory and that the directory
is accessible to the migration utility
(OWB_HOME is your OWB
installation directory).

This file contains the mappings
between OWB platforms and ODI
technologies. For more information
about this file, see OWB Platform to
ODI Technology.

[MU-3002] Unable to find ODI
technology corresponding to the
OWB platform: {0}.

The mapping of the specified OWB
platform to any ODI technology is
missing in the file
PlatformMappingsForMigration.xml
.

Add the mapping of the specified
OWB platform to one ODI technology
in the file
PlatformMappingsForMigration.xml
.

This file contains the mappings
between OWB platforms and ODI
technologies. For more information
about this file, see OWB Platform to
ODI Technology.

[MU-3003] Unable to find technology:
{0} in ODI.

The specified technology is not
defined in the ODI repository.

Define the specified technology in
ODI, or modify the file
PlatformMappingsForMigration.xml
to refer to a correct ODI technology.

This file contains the mappings
between OWB platforms and ODI
technologies. For more information
about this file and these mappings,
see OWB Platform to ODI
Technology.

[MU-4001] Migration of {0}:{1} is not
supported because unsupported
data type {3} is used in column {2}.

The data type used by the specified
column is not supported for
migration.

Change the data type in OWB if
possible.

For more information about data
types supported for migration, see
Reference to Migration Details.

[MU-4002] {0}:{1} has multiple
primary keys. Only one primary key
is allowed in ODI, the redundant
primary keys will be migrated as
alternate keys.

An OWB table can be defined with
several primary keys, but an ODI
data store can have just one primary
key. Only one of the primary keys in
OWB will be migrated as the primary
key in ODI. The rest will be migrated
as alternate keys.

No action.

Appendix A

A-4

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-4003] {0}:{1} is not migrated
because it has multiple columns with
the same name {2}.

An OWB table may have duplicate
columns due to previous OWB
issues.

Check the OWB table, and rename
the columns. Make sure the name of
the column is unique in the table.

[MU-5001] Migration of mapping with
mapping operator {0}:{1} is not
supported.

The specified mapping operator is
not supported for migration.

No action.

[MU-5002] Migration of mapping with
mapping operator {0}:{1} which
contains multiple return attributes is
not supported.

Function operators with multiple
return attributes are not migrated.

No action.

[MU-5003] Migration of mapping with
mapping operator {0}:{1} which
contains OUT parameter {2} is not
supported.

Function operators with OUT
parameters are not migrated.

No action.

[MU-5004]Migration of mapping with
mapping operator {0}:{1} which
contains INOUT parameter {2} is not
supported.

Function operators with INOUT
parameters are not migrated.

No action.

[MU-5005] Migration of mapping with
complex data type {2} used in
attribute {3} in mapping operator {0}:
{1} is not supported}.

Mapping operators with complex
data types used in mapping
attributes are not migrated.

No action.

[MU-5006] Migration of mapping with
mapping operator {0}:{1} that does
not define return attribute is not
supported.

Function operators with no return
attribute are not migrated.

No action.

[MU-5007] Mapping is not migrated
because the function name of the
mapping operator {0}:{1} cannot be
determined.

The property FUNCTION_NAME on the
function operator is not defined.

Set the value for the property
FUNCTION_NAME on the function
operator.

[MU-5008] Unable to set Extract
Knowledge Module on physical node
{0} in ODI. Details: {1}

As described in the message. Review the message to determine
the cause of the problem and take
appropriate action.

[MU-5009] Mapping is not migrated
because the bound object of the
mapping operator {0}:{1} is not being
migrated.

The bound object of a mapping
operator is not migrated.

Check the migration utility log to
determine why the bound object was
not migrated.

[MU-5010]Mapping is not migrated
because the mapping operator{0}:{1}
has no output attribute group.

The Lookup operator has no output
attribute group.

Modify the Lookup operator in OWB,
and add the output attribute group for
it.

[MU-5011] mapping is not migrated
because the output attribute group
{1} in Lookup {0} is unbound. Use the
configuration option of migration
utility
"MIGRATE_UNBOUND_OPERATO
R" or fix the mapping with unbound
output attribute groups.

The output attribute group of the
Lookup operator is unbound.

Bind the output attribute group of the
Lookup operator or set the
MIGRATE_UNBOUND_OPERATOR
parameter in the migration utility
configuration file to TRUE.

For more information about this
parameter, see
MIGRATE_UNBOUND_OPERATOR in
Configuration File Parameters.

Appendix A

A-5

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-5012] Mapping is not migrated
because the bound object of the
mapping operator {0}:{1} for output
attribute group {2} is not being
migrated.

The bound object of the output
attribute group of the Lookup
operator is not migrated.

Check the migration utility log to
determine why the bound object was
not migrated.

[MU-5013] Mapping is not migrated
because the input attribute group is
not defined for output attribute group
{1} in Lookup {0}.

The output attribute group of the
Lookup operator has no
corresponding input attribute group.

Modify the Lookup operator, and add
the input attribute group for each
output attribute group.

[MU-5018] Mapping is not migrated
because unsupported data type {3} is
used in attribute {2} in mapping
operator {0}:{1}.

Data type {3} set on the mapping
attribute is not supported for
migration.

Change the data type of the mapping
attribute to a supported data type if
possible.

For more information about data
types supported for migration, see
Reference to Migration Details.

[MU-5019] Unable to set expression
[{1}] on attribute {0}. Details: {2}.

As described in the message. Review the message to determine
the cause of the problem and take
appropriate action.

[MU-5020] Unable to split mapping
joiner operator {0} into binary joins
due to {1}.

The join condition of the join operator
cannot be parsed successfully.

Check the join condition and modify
it if possible.

[MU-5021] The mapping joiner
operator {0} will be split into binary
joins after migration because some
input group(s) have role set to
"Outer", even though the mapping
property "ANSI SQL Syntax" is set to
false or the configuration option for
migration utility
"SPLIT_JOIN_FOR_ANSI_SYNTAX"
is set to false.

The role is set to Outer for some
input groups of the joiner operator.
The joiner operator will be split to
binary joins. The value for the
SPLIT_JOIN_FOR_ANSI_SYNTAX
parameter in the migration utility
configuration file will be ignored.

For more information about this
parameter, see
SPLIT_JOIN_FOR_ANSI_SYNTAX in
Configuration File Parameters.

No action.

[MU-5022] Unable to find
corresponding integration type in
ODI according to the loading type {0}
in OWB for operator {1}:{2}. Default
integration type {3} is used.

ODI does not support integration
types such as delete.

No action.

[MU-5023] Mapping is not migrated
because the mapping operator {0}:
{1} is unbound. Use the configuration
option of migration utility
"MIGRATE_UNBOUND_OPERATO
R" or fix the mapping with unbound
operators.

A mapping operator is unbound. Configure the
MIGRATE_UNBOUND_OPERATOR
parameter in the migration utility
configuration file or fix the mapping
with unbound operators.

For more information about this
parameter, see
MIGRATE_UNBOUND_OPERATOR in
Configuration File Parameters.

[MU-5024] Migration of mapping
operator {0}:{1} with data rules is not
supported.

A mapping operator with data rules
set is not supported for migration.

No action.

Appendix A

A-6

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[MU-5025] The bound object of
mapping operator {0}:{1} is not
selected.

The bound object of the mapping
operator is not selected for migration.

Check whether the bound object is
explicitly selected using the
MIGRATION_OBJECTS parameter in the
migration utility configuration file, or
whether the MIGRATE_DEPENDENCIES
parameter is set to TRUE.

For more information about these
parameters, see Configuration File
Parameters.

[MU-5026] Unable to generate ODI
ExternalTable access parameter
option for operator {0}:{1}. Details:
{2}.

As described in the message. Review the message to determine
the cause of the problem and take
appropriate action.

[MU-5027] Unable to migrate
mapping with operator {0} because
no {1} DataStore component hold the
generated {2} for it.

The given mapping has no source
data store component to hold the
generated BEGIN_MAPPING_SQL or
has no target data store component
to hold the generated
END_MAPPING_SQL.

The Pre/Post mapping operator is
migrated to BEGIN/END_MAPPING_SQL
in ODI, but these two options rely on
the source/target data store
component. An exception is raised if
the source/target data store
component is not found.

No action.

[MU-5028] Unable to migrate
mapping with operator {0} when
store generated {1} into {2} Datastore
component raised error: {3}.

Storing the generated BEGIN/
END_MAPPING_SQL into a given ODI
data store's KM option raised an
unknown problem (for example, an
illegal expression).

No action.

[WARN] [Migration] [MU-5030] The
value of the property {0} set on
operator {1}:{2} is different from the
value set on the bound object of {2}.
This property is not being migrated.

The property such as Orphan
Management Setting on dimension/
cube is different from the setting on
dimension/cube operator. Only the
setting on dimension/cube is
migrated.

Manually change the orphan
management setting on dimension/
cube after migration if needed.

[WARN] [Migration] [MU-5031] The
value of the property {0} set on map
attribute {1} of operator {2}:{3} is
different from the value set on the
bound object of {1}. This property is
not being migrated.

The property such as Default Value
setting on dimension operator
attribute is different from the value
set on the dimension level attribute.
Only the value set on dimension
level attribute is migrated.

Manually change the property value
on dimension level attribute after
migration if needed.

[INFO] [Migration] [MU-5032]
Mapping is not migrated because
operator {0}:{1} is used as a source
in mapping. This is not supported for
migration.

Mapping with Dimension or Cube
operator as a source is not
supported for migration.

No Action.

Appendix A

A-7

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[INFO] [Migration] [MU-5033]
Mapping is not migrated because the
mapping operator{0}:{1} is bound to
a dimension level. This is not
supported for migration.

Mapping containing any map
operator that is bound to a dimension
level is not migrated.

No Action.

[INFO] [Migration] [MU-5034]
Mapping post processor operator:{0}
cannot be migrated because there is
one or more other post process
operators bound to a different
location; technology:{1} schema:{2}

Multiple post processor operators
found in an OWB mapping that are
not associated with the same
location.

Change the mapping in OWB if
possible, to make sure the post
processor operators are associated
with the same location.

[INFO] [Migration] [MU-5035]
Mapping pre processor operator:{0}
cannot be migrated because there is
one or more other pre process
operators bound to a different
location; technology:{1} schema:{2}

Multiple pre processor operators
found in an OWB mapping that are
not associated with the same
location.

Change the mapping in OWB if
possible to make sure the pre
processor operators are associated
with the same location.

[WARN] [Migration] The bound
object {0}:{1} of {2}:{3} is not selected
for migration. The bound object of
the dimension or cube is not selected
for migration

The bound object of the dimension or
cube is not selected for migration.

Check whether the bound object is
explicitly selected using the
MIGRATION_OBJECTS parameter in
the migration utility configuration file,
or whether the
MIGRATE_DEPENDENCIES parameter is
set to TRUE . For more information
about these parameters, see
Configuration File Parameters.

[INFO] [Migration] [MU-6002] {0}:{1}
will not be migrated because the
bound object {2}:{3} was not
migrated due to other reasons.

The bound object of a dimension or a
cube failed to be migrated.

Check the migration utility log to
determine why the bound object was
not migrated.

[INFO] [Migration] [MU-6004] {0} will
not be migrated because level
attribute {1} is not related to a
dimension attribute.

A level attribute does not refer to a
dimension attribute.

Specify a dimension attribute for
each level attribute.

[WARN] [Migration] [MU-6005] The
referenced object {0}:{1} of {2}:{3} is
not selected for migration.

The dimension referenced by cube is
not selected for migration.

Check whether the referenced object
is explicitly selected using the
MIGRATION_OBJECTS parameter in
the migration utility configuration file,
or whether the
MIGRATE_DEPENDENCIES parameter is
set to TRUE.

For more information about these
parameters, see Configuration File
Parameters

[INFO] [Migration] [MU-6006] {0}:{1}
will not be migrated because the
referenced object {2}:{3} was not
migrated due to other reasons.

The dimension referenced by the
cube failed to be migrated.

Check the migration utility log to
determine why the dimension was
not migrated.

Appendix A

A-8

Table A-2 (Cont.) Migration Utility Informational, Warning, and Error Messages

Message Cause Action

[INFO] [Migration] [MU-6009] {0}:{1}
is not migrated because it has
multiple references to dimension {2},
level {3} with no unique role
qualifiers.

The cube references a dimension
several times but with no unique
dimension role set.

Set the dimension role for each
dimension reference in cube.

Appendix A

A-9

B
Reference to Migration Details

It is important to understand about the Repositories, Data Objects, Mappings, and
Pluggable Mappings
This appendix contains the following topics:

B.1 OWB Repositories
You can find out more information on the various repositories that are available.

B.1.1 OWB Workspace to ODI Work Repository
When invoking the migration utility, the OWB Workspace Owner and its password are
needed to connect to the OWB Repository. Each OWB Workspace Owner may have
multiple workspaces. Only one workspace will be migrated with each migration.
Therefore, one workspace name must be specified for each migration. Each OWB
workspace will be migrated to ODI as one ODI Work repository.

If an OWB Workspace owner has multiple OWB Workspaces, each OWB Workspace
should be migrated to an ODI Work repository of an ODI Master repository. The
migration utility can only migrate at most one OWB Workspace at each time.

B.1.2 OWB Platform to ODI Technology
OWB Platforms and their associated data types are mapped to ODI Technologies and
their associated data types. This platform and data type mapping is stored in a
configuration file.

For the predefined platforms in OWB, the mappings to ODI can be found in the file
PlatformMappingsForMigration.xml located in the <ORACLE_HOME for OWB>/owb/bin/admin
directory.

If a user has defined new or custom Platforms in OWB, the mapping of this platform
and its data types to ODI technology and its data types can be defined in the same
configuration file. The physical name of the OWB Platform should be specified in the
mapping, and the internal name of the ODI technology should be used.

The following table shows the predefined OWB Platform to ODI Technology mappings.

OWB Platform ODI Technology

GENERIC Generic SQL

ORACLE

(including Oracle Workflow, Apps Concurrent manager)

Oracle

DB2UDB IBM DB2 UDB

SQLSERVER Microsoft SQL Server

SAP SAP ABAP

B-1

OWB Platform ODI Technology

FILE File

OBIEE, OBISE, J2EE These are not migrated.

Data type mapping differs for each OWB Platform mapping. The following tables show
the data type mappings for each predefined OWB Platform.

If an OWB data type that has no mapping in ODI is used in Data Objects like Table,
View, Materialized View, and External Table, the data object is reported as not
migrated.

If an OWB data type that has no mapping in ODI is used in a Mapping Attribute, the
data type of the mapping attribute is not set.

B.1.2.1 Data Type Mapping for OWB GENERIC Platform to ODI Generic SQL
Technology

OWB Data Type (GENERIC) ODI Data Type (Generic SQL)

BIGINT BIGINT

BINARY BINARY

BINARY_DOUBLE BINARY_DOUBLE

BINARY_FLOAT BINARY_FLOAT

BLOB BLOB

BOOLEAN CHAR

CHAR CHAR

CLOB CLOB

DATE DATE

DATETIME DATETIME

DECIMAL DECIMAL

DOUBLE DOUBLE

FLOAT FLOAT

IMAGE BLOB

INTEGER INTEGER

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

LONG CLOB

LONGVARBINARY BLOB

LONGVARCHAR CLOB

MONEY MONEY

NCHAR NCHAR

NCLOB NCLOB

NTEXT NCLOB

NUMERIC NUMERIC

Appendix B
OWB Repositories

B-2

OWB Data Type (GENERIC) ODI Data Type (Generic SQL)

NVARCHAR NVARCHAR

NVARCHAR(MAX) NCLOB

REAL REAL

SMALLINT SMALLINT

TEXT CLOB

TIME TIME

TIMESTAMP TIMESTAMP

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

TINYINT TINYINT

VARBINARY VARBINARY

VARBINARY(MAX) BLOB

VARCHAR VARCHAR

VARCHAR(MAX) CLOB

XMLTYPE XMLTYPE

B.1.2.2 Data Type Mapping for OWB ORACLE Platform to ODI Oracle
Technology

OWB Data Type (ORACLE) ODI Data Type (Oracle)

BINARY_DOUBLE BINARY_DOUBLE

BINARY_FLOAT BINARY_FLOAT

BLOB BLOB

CHAR CHAR

CLOB CLOB

DATE DATE

FLOAT FLOAT

INTEGER NUMBER

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

LONG LONG

LONG RAW LONG RAW

MDSYS.SDOAGGRTYPE

MDSYS.SDO_DIM_ARRAY

MDSYS.SDO_DIM_ELEMENT

MDSYS.SDO_ELEM_INFO_ARRAY

MDSYS.SDO_GEOMETRY MDSYS.SDO_GEOMETRY

MDSYS.SDO_ORDINATE_ARRAY

MDSYS.SDO_POINT_TYPE

NCHAR NCHAR

Appendix B
OWB Repositories

B-3

OWB Data Type (ORACLE) ODI Data Type (Oracle)

NCLOB NCLOB

NUMBER NUMBER

NVARCHAR2 NVARCHAR2

RAW RAW

ROWID ROWID

SYS.ANYDATA

SYS.AQ$_JMS_BYTES_MESSAGE

SYS.AQ$_JMS_MAP_MESSAGE

SYS.AQ$_JMS_MESSAGE

SYS.AQ$_JMS_STREAM_MESSAGE

SYS.AQ$_JMS_TEXT_MESSAGE

SYS.LCR$_ROW_RECORD

TIMESTAMP TIMESTAMP

TIMESTAMP WITH LOCAL TIME ZONE TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH TIME ZONE TIMESTAMP WITH TIME ZONE

UROWID UROWID

VARCHAR VARCHAR2

VARCHAR2 VARCHAR2

XMLFORMAT XMLFORMAT

XMLTYPE XMLTYPE

B.1.2.3 Data Type Mapping for OWB DB2UDB Platform to ODI IBM DB2 UDB
Technology

OWB Data Type (DB2UDB) ODI Data Type (IBM DB2 UDB)

BIGINT BIGINT

BLOB BLOB

CHARACTER CHAR

CLOB CLOB

DATE DATE

DBCLOB DBCLOB

DECIMAL DECIMAL

DOUBLE DOUBLE

FLOAT FLOAT

GRAPHIC GRAPHIC

INTEGER INTEGER

LONG VARCHAR LONG VARCHAR

LONG VARGRAPHIC LONG VARGRAPHIC

NUMERIC NUMERIC

Appendix B
OWB Repositories

B-4

OWB Data Type (DB2UDB) ODI Data Type (IBM DB2 UDB)

REAL REAL

SMALLINT SMALLINT

TIME TIME

TIMESTAMP TIMESTAMP

VARCHAR VARCHAR

VARGRAPHIC VARGRAPHIC

XML

B.1.2.4 Data Type Mapping for OWB SQLSERVER Platform to ODI Microsoft
SQL Server Technology

OWB Data Type (SQLSERVER) ODI Data Type (Microsoft SQL Server)

BIGINT BIGINT

BINARY BINARY

BIT BIT

CHAR CHAR

DATETIME DATETIME

DECIMAL DECIMAL

FLOAT FLOAT

IMAGE IMAGE

INT INT

MONEY MONEY

NCHAR NCHAR

NTEXT NTEXT

NUMERIC NUMERIC

NVARCHAR NVARCHAR

NVARCHAR(MAX) NTEXT

REAL REAL

SMALLDATETIME SMALLDATETIME

SMALLINT SMALLINT

SMALLMONEY SMALLMONEY

SQL_VARIANT SQL_VARIANT

TEXT TEXT

TIMESTAMP TIMESTAMP

TINYINT TINYINT

UNIQUEIDENTIFIER UNIQUEIDENTIFIER

VARBINARY VARBINARY

VARBINARY(MAX) IMAGE

VARCHAR VARCHAR

Appendix B
OWB Repositories

B-5

OWB Data Type (SQLSERVER) ODI Data Type (Microsoft SQL Server)

VARCHAR(MAX) TEXT

XML

B.1.2.5 Data Type Mapping for OWB FILE Platform to ODI File Technology

OWB Data Type (FILE) ODI Data Type (File)

BYTEINT BINARY_SIGNED_BIG_ENDIAN

CHAR STRING

DECIMAL EBCDIC_SIGNED_ZONED_DECIMAL

DATE DATE

DECIMAL EXTERNAL NUMERIC

DOUBLE NUMERIC

FLOAT NUMERIC

FLOAT EXTERNAL NUMERIC

INTEGER BINARY_SIGNED_BIG_ENDIAN

INTEGER UNSIGNED BINARY_UNSIGNED_BIG_ENDIAN

INTEGER EXTERNAL NUMERIC

INTERVAL DAY TO SECOND DATE

INTERVAL YEAR TO MONTH DATE

SMALLINT BINARY_SIGNED_BIG_ENDIAN

SMALLINT UNSIGNED BINARY_UNSIGNED_BIG_ENDIAN

TIMESTAMP DATE

TIMESTAMP WITH TIME ZONE DATE

TIMESTAMP WITH LOCAL TIME ZONE DATE

VARRAWC BINARY_SIGNED_BIG_ENDIAN

VARCHAR STRING

VARCHARC STRING

ZONED EXTERNAL ASCII_SIGNED_ZONED_DECIMAL

ZONED ASCII_SIGNED_ZONED_DECIMAL

B.1.2.6 Data Type Mapping for OWB SAP Platform to ODI SAP ABAP
Technology

OWB Data Type (SAP) ODI Data Type (SAP ABAP)

ACCP ACCP

CHAR CHAR

CLNT CLNT

CUKY CUKY

CURR CURR

Appendix B
OWB Repositories

B-6

OWB Data Type (SAP) ODI Data Type (SAP ABAP)

DATS DATS

DEC DEC

FLTP FLTP

INT1 INT1

INT2 INT2

INT4 INT4

LANG LANG

LCHR LCHR

LRAW LRAW

NUMC NUMC

PREC PREC

QUAN QUAN

RAW RAW

TIMS TIMS

UNIT UNIT

B.1.3 OWB Location to ODI Data Server
Each OWB Location is associated with an OWB Platform or equivalent ODI
technology. Hence OWB location will be migrated to an ODI Data Server under the
equivalent ODI technology.

B.1.3.1 Location Name to Data Server Name
Location Name will be migrated to ODI Data Server Name. Since OWB Location
Name is unique within an OWB Workspace, while ODI Data Server Name is unique
within the master repository, when there are several OWB workspaces for a
Workspace Owner, each OWB Workspace should be migrated to a different ODI
Master repository to avoid name conflicts.

B.1.3.2 Location Properties to Data Server Properties
The following table shows mapping of properties of OWB Location to properties of ODI
Data Server:

OWB Property Name ODI Property Name Note

- dataServerId

(I_CONNECT)

This number will be generated.

platform technology

(I_TECHNO)

-

Name name

(CON_NAME)

-

Driver Class jdbcDriverName

(JAVA_DRIVER)

-

Appendix B
OWB Repositories

B-7

OWB Property Name ODI Property Name Note

Url jdbcUrl

(JAVA_URL)

-

User Name

(CONNECT_AS_USER)

username

(USER_NAME)

-

Batch Update Size

(UPDATE_SIZE)

batchUpdateSize

(BATCH_UPDATE_SIZE)

-

Array Fetch Size

(FETCH_SIZE)

fetchArraySize

(FETCH_ARRAY_SERV)

-

Schema schemaName

(SCHEMA_NAME)

-

Work Schema workSchemaName

(WSCHEMA_NAME)

-

Catalog catalogName

(CATALOG_NAME)

-

Work Catalog workCatalogName

(WCATALOG_NAME)

-

B.1.3.3 Specific Location
For OWB Location using Database Link as the Connection Type, the location will be
migrated to a new ODI Data Server, with the location name as the data server name.
Other information for the location will not be migrated.

For File Location using FTP as the Connection Type, the location will be migrated to a
new ODI Data Server with the location name as the data server name. Other
information for the location will not be migrated.

B.1.4 OWB Modules to ODI Models
OWB Modules will be migrated to ODI Models.

B.1.4.1 Module Name to Model Name
To create a unique model name, the ODI Model name will be a concatenation of OWB
Module Name and OWB Project name. If the resulting name is longer than the allowed
length in ODI Model name, the resulting name will be trimmed.

B.1.4.2 Module Properties to Model Properties

OWB Property Name ODI Property Name Note

- modelId

(I_MOD)

This number will be generated by the
migration utility.

Name name

(MOD_NAME)

If the length of the name exceeds the
maximum limit, then the name will be
truncated.

Appendix B
OWB Repositories

B-8

OWB Property Name ODI Property Name Note

Platform technology

(TECH_INT_NAME)

-

- logicalSchema

(LSCHEMA_NAME)

Will be created according to the
OWB module name.

Name code

(COD_MOD)

If the length of the code exceeds the
maximum limit allowed in ODI model
code, then the code will be
truncated.

Project parentModelFolder

(I_MOD_FOLDER)

-

description description

(I_TXT_MOD)

-

B.1.4.3 Additional Migration of OWB Modules to ODI Folders
Some OWB Modules will also be migrated to ODI as ODI Folders, in addition to ODI
Models. The following OWB modules will also be migrated as ODI Folders:

• Oracle Database Module

• Template Mapping Module

OWB Oracle Database Module will be migrated as ODI Model where the OWB Data
Objects are migrated to, and also as ODI Folder where OWB mappings are migrated
to.

OWB Template Mapping Module and Pluggable Mapping Folder will be migrated as
ODI Folder.

OWB Property Name ODI Property Name Note

Name Name

(FOLDER_NAME)

B.1.4.4 Physical Schema and Logical Schema
OWB supported a list of Data Locations for use with a module but only one location is
selected to use at a time. This location is called the active location. During migration,
only the active location will be migrated to ODI. The location is migrated as ODI Data
Server. Corresponding to the location user name, a new ODI Physical Schema will be
created in ODI if one does not exist already. The new ODI Physical Schema will be
from the Location Schema of OWB Database Location, or the directory path for File
Location.

Corresponding to the physical schema, a logical schema will be created in ODI if none
with the same name as the Model name exists. The logical schema will set to "LS_"
plus model name, and will be associated with the physical schema in the global
context.

Appendix B
OWB Repositories

B-9

B.1.5 OWB Projects to ODI Projects
OWB Project will be migrated as ODI Project.

OWB Property Name ODI Property Name Note

- projectId

(I_PROJECT)

This number will be generated.

Name Name

(PROJECT_NAME)

-

Name code

(PROJECT_CODE)

-

B.1.6 OWB Folders to ODI Folders
Two types of OWB Folders will be migrated to ODI:

• OWB Pluggable Mapping Folders

OWB Pluggable Mapping Folders are migrated to ODI Folders; the name of the
OWB Pluggable Mapping Folder will be the name of the ODI Folder.

• OWB Pluggable Mapping Standalone Folders

Pluggable mappings in this OWB folder will be migrated to an ODI Folder named
STAND_ALONE.

B.2 OWB Data Objects
You can find out more information on the various data objects that are available.

B.2.1 OWB Table to ODI Datastore
OWB Table is migrated to ODI Datastore. The following related attributes of tables are
migrated:

• Columns

• Keys

• Indexes

Attribute Sets and Data Rules are not migrated.

For Partitions, the partition name and the description are migrated, other properties
are not migrated.

Attributes or properties of OWB Table are migrated to ODI Datastore.

Attributes or properties of OWB Table Columns are migrated to ODI Datastore
Columns as described in Table B-1.

OWB Table supports these types of keys: Primary Key, Unique Key, Foreign Key, and
Constraint.

Appendix B
OWB Data Objects

B-10

• The attributes/properties of OWB Table Primary Keys and Unique Keys are
migrated to ODI Keys as described in Table B-4.

• The attributes/properties of OWB Table Constraints are migrated to ODI Condition
as described in Table B-5.

• The attributes/properties of OWB Table Foreign Keys are migrated to ODI
Reference as described in Table B-6.

The attributes/properties of Indexes are migrated to ODI Datastore Key as described
in Table B-7, which lists the mappings between the OWB Index and ODI Key.

OWB supports four types of indexes: unique, non-unique, bitmap, and function-based.
A unique index will be mapped to OdiKey, and the key type will be set to
ALTERNATE_KEY. A non-unique index will be mapped to OdiKey, and the key type
will be set to INDEX. Bitmap and function-based keys are not migrated.

B.2.2 OWB View to ODI Datastore
OWB View is migrated to ODI Datastore. The following related attributes of OWB View
are migrated:

• Columns

• Keys

Attribute Sets and Data Rules are not migrated.

Attributes or properties of OWB View are migrated to ODI Datastore.

Attributes or properties of OWB View Columns are migrated to ODI Datastore
Columns as described in Table B-1.

OWB Table supports these types of keys: Primary Key, Unique Key, Foreign Key, and
Constraint.

• The attributes/properties of OWB View Primary/Unique Keys are migrated to ODI
Keys as described in Table B-4.

• The attributes/properties of OWB View Constraints are migrated to ODI Condition
as described in Table B-5.

• The attributes/properties of OWB View Foreign Keys are migrated to ODI
Reference as described in Table B-6.

B.2.3 OWB Materialized View to ODI Datastore
OWB Materialized View is migrated to ODI Datastore. The following related attributes
of Materialized views are migrated:

• Columns

• Keys

• Indexes

Attribute Sets and Data Rules are not migrated.

For Partitions, the partition name and the description are migrated, other properties
are not migrated.

Attributes or properties of OWB Materialized View are migrated to ODI Datastore.

Appendix B
OWB Data Objects

B-11

Attributes or properties of OWB Materialized View Columns are migrated to ODI
Datastore Columns as described in Table B-1.

OWB Materialized View supports these types of keys: Primary Key, Unique Key,
Foreign Key, and Constraint.

The attributes/properties of OWB Materialized View Primary Keys and Unique Keys
are migrated to ODI Keys as described in Table B-4.

The attributes/properties of OWB Materialized View Constraints are migrated to ODI
Condition as described in Table B-5.

The attributes/properties of OWB Materialized View Foreign Keys are migrated to ODI
Reference as described in Table B-6.

The attributes/properties of Indexes are migrated to ODI Datastore Key as described
in Table B-7, which lists the mappings between the OWB Index and ODI Key.

B.2.4 OWB External Table to ODI Datastore
OWB External Table is migrated to ODI Datastore. The following related attributes of
External Table are migrated:

• Columns

Data Rules are not migrated. Associated locations will be migrated as ODI Data
Server if the migration configuration option MIGRATE_DEPENDENCIES is set to true.

Attributes or properties of OWB External Table are migrated to ODI Datastore.

Attributes or properties of OWB External Table Columns are migrated to ODI
Datastore Columns as described in Table B-1.

OWB External Table has association to OWB FLAT FILE and its access parameters.
These associations will not be migrated to ODI.

B.2.5 OWB Flat File to ODI Datastore
OWB Flat File is migrated to ODI Datastore. The following related attributes of OWB
Files are migrated:

• Records

• Fields

Attributes or properties of OWB Flat File are migrated to ODI Datastore.

OWB Flat File may contain one or more Records. Each Record will be migrated as
one ODI Datastore. The naming convention for the ODI Datastore name is
<FlatFileName>_<RecordName>.

Attributes or properties of OWB File Record are migrated to ODI Datastore Columns
as described in Table B-3.

Attributes or properties of OWB File Record Field are migrated to ODI Datastore
Columns as described in section Table B-2.

Appendix B
OWB Data Objects

B-12

B.2.6 OWB Sequence to ODI Sequence
OWB Sequence is migrated to ODI Sequence (Native sequence). OWB Sequence
contains Columns, which are not migrated to ODI.

Attributes or properties of OWB Sequence are migrated to ODI Sequence as
described in Table B-9.

B.2.7 OWB Dimensions Under Database Module to ODI Dimension
Model

OWB dimensions are placed under the Oracle database module. ODI dimension
objects would be placed under a specific dimensional model. If dimensions or cubes
exist in OWB Oracle database module, then that Oracle database module is migrated
to an ODI dimension model. To reduce the name conflicts, the naming convention of
the migrated ODI dimension model is in the form of <Oracle database module
name>_<OWB project name>.

For example, In a project named BI_DEMO, if there is an Oracle module named SALES_WH
then SALES_WH_BI_DEMO will be used for the ODI dimension model name after migration.
If the length of the name exceeds the maximum length allowed (the maximum length is
35), then the proposed name will be truncated. If the name needs be to unique and it
has already been occupied, a unique name suffixed by a digit is generated based on
the proposed name. This naming rule is used for all migration objects when the object
name needs to be unique and has a maximum length limitation.

Dimension :

OWB dimension will be migrated to ODI dimension.

Cube:

OWB Cube will be migrated to ODI Cube.

B.2.8 Property Migration Mapping Tables

Table B-1 OWB Table Column to ODI Datastore Column

OWB Property Name ODI Property Name Note

Name Name

(COL_NAME)

-

- COL_DESC Short description.

TypeDefinition dataTypeCode

(SOURCE_DT)

-

Position position

(POS)

-

Length length

(LONGC)

-

Precision Length

(LONGC)

-

Appendix B
OWB Data Objects

B-13

Table B-1 (Cont.) OWB Table Column to ODI Datastore Column

OWB Property Name ODI Property Name Note

Scale scale

(SCALEC)

-

Nullable mandatory

(COL_MANDATORY)

-

dafaultValue defaultValue

(DEF_VALUE)

If the length of the default value
exceeds the maximum length
allowed in ODI, then the default
value will not be migrated.

- scdType

(SCD_COL_TYPE)

-

description description

(I_TXT_COL_DESC)

If the length of the description
exceeds the maximum length
allowed in ODI, then the description
will be truncated.

fractionalsecondsprecision length

(LONGC)

-

Table B-2 OWB File Record Field to ODI Datastore Column

OWB Property Name ODI Property Name Note

Name Name

(COL_NAME)

-

TypeDefinition dataTypeCode

(SOURCE_DT)

-

Position position

(POS)

-

Sqlprecision - -

Sqlscale - -

Precision bytes

(BYTES)

-

Scale scale

(SCALEC)

-

StartPostion startPosition

(FILE_POS)

Only for file/record.

FieldLength bytes

(BYTES)

Only for file/record.

Nullable mandatory

(COL_MANDATORY)

-

dafaultValue defaultValue

(DEF_VALUE)

-

Appendix B
OWB Data Objects

B-14

Table B-2 (Cont.) OWB File Record Field to ODI Datastore Column

OWB Property Name ODI Property Name Note

description description

(I_TXT_COL_DESC)

If the length of the description
exceeds the maximum length
allowed in ODI, then the description
will be truncated.

sqllength - -

mask format

(SNP_COL.COL_FORMAT)

-

Table B-3 OWB File Record to ODI Datastore Column

OWB Property Name ODI Property Name Note

Name name

(TABLE_NAME)

-

Name defaultAlias

(TABLE_ALIAS)

-

classname dataStoreType

(TABLE_TYPE)

-

Description Description

(TABLE_DESC)

If the length of the description
exceeds the maximum length
allowed in ODI, then the description
will be truncated.

Prefix - -

Position - -

RecordClassifierValue - -

RecordSize - -

Table B-4 OWB Key to ODI Key

OWB Property Name ODI Property Name Note

Name Name

(KEY_NAME)

-

Primarykey keyType

(CONS_TYPE)

keyType:

PRIMARY_KEY(PK)

ALTERNATE_KEY(AK)

Appslabel - -

Table B-5 OWB Check Constraint to ODI Condition

OWB Property Name ODI Property Name Note

Name Name

(KEY_NAME)

-

Appendix B
OWB Data Objects

B-15

Table B-5 (Cont.) OWB Check Constraint to ODI Condition

OWB Property Name ODI Property Name Note

Primarykey keyType

(CONS_TYPE)

keyType:

PRIMARY_KEY(PK)

ALTERNATE_KEY(AK)

Appslabel - -

Table B-6 OWB ForeignKey to ODI Reference

OWB Property Name ODI Property Name Note

- referenceId

(I_JOIN)

This number will be generated.

Name name

(FK_NAME)

-

Should map to DB_REFERENCE referenceType

(FK_TYPE)

referenceType:

DB_REFERENCE,

ODI_REFERENCE,

COMPLEX_REFERENCE

- primaryDataStore

(I_TABLE_PK)

Find the table by Unique key.

module primaryModel

(PK_I_MOD)

-

- primaryDataStoreSchemaName

(PK_SCHEMA)

Find the schema based on the model
of the primary table.

- primaryDataStoreName

(PK_TABLE_NAME)

Find primary table name by unique
key.

- primaryDataStoreAlias

(PK_TABLE_ALIAS)

Find the alias by primary data store.

Appslabel - -

Mandatory - -

OnetoOne - -

Table B-7 OWB Index to ODI Key

OWB Property Name ODI Property Name Note

Name Name

(KEY_NAME)

Indextype keyType

(CONS_TYPE)

keyType:

ALTERNATE_KEY(AK)

INDEX(I)

Appslabel - -

Expression - -

Appendix B
OWB Data Objects

B-16

Table B-7 (Cont.) OWB Index to ODI Key

OWB Property Name ODI Property Name Note

LocalIndex - -

LocalPartitionType - -

Table B-8 OWB Partition to ODI Partition

OWB Property Name ODI Property Name Note

Name name

(PARTITION_NAME)

-

Description Description

(PARTITION_DESC)

If the length of the description
exceeds the maximum length
allowed in ODI, then the description
will be truncated.

classname - -

Attribute - -

Autosubpartitionordering - -

Hashsubpartitioncount - -

IsDefault - -

IsSubPartition - -

PartitionOrder - -

Table B-9 OWB Sequence to ODI Sequence

OWB Property Name ODI Property Name Note

- sequenceId

(SEQ_ID)

This number will be generated.

Project project

(I_PROJECT)

-

Name SEQ_NAME -

Increment By incrementValue

(INCR)

Retrieve from active configuration.

- seqType

(SEQ_TYPE)

OWB sequence is migrated as
project sequence.

- type

(IND_STD)

OWB sequence is migrated as native
sequence.

- logicalSchemaName

(LSCHEMA_NAME)

Via OWB module, the ODI Model's
logical schema is used here.

Name nativeSequenceName

(DB_SEQ_NAME)

-

Prefix - -

ExternalElementName - -

Appendix B
OWB Data Objects

B-17

Table B-9 (Cont.) OWB Sequence to ODI Sequence

OWB Property Name ODI Property Name Note

Proxy - -

SynonymFor - -

ValidationResult - -

B.2.9 OWB Dimensions to ODI Dimensions
OWB dimension will be migrated to ODI dimension.

1. Dimension

Table B-10 General Properties

OWB Property Name ODI Property Name Note

Name Name

Description Description

Dimension Role Not Migrated

Table B-11 Storage Properties

OWB Property Name ODI Property Name Note

OWB ROLAP Dimension

Implementation Type

Implementation Type. It has two types
of implementation — Star (for one
binding table) Snowflake (for more
than one binding tables)

ODI dimension has no implementation
type called Manual. If the OWB
dimension is set to Manual
implementation, according to the
amount of the binding tables on OWB
dimension, the implementation type is
migrated to Star or Snowflake for ODI
dimension. If there is only one binding
table for OWB dimension, the
implementation type is set to Star for
ODI dimension, otherwise the
implementation type is set to
Snowflake.

Create composite Unique Key Not Migrated

OWB MLOAP Dimensions It has no binding tables. User needs
to manually set the binding
information after migration, if
necessary.

AW Name Not Migrated

AW table space name Not Migrated

Generate surrogate keys in the
analytic workspace

Not Migrated

Use natural keys from data source Not Migrated

Appendix B
OWB Data Objects

B-18

Physical Properties
All physical properties on OWB Dimension are not migrated.

SCD Properties
SCD properties are set directly on ODI dimension level attributes.

Table B-12 Orphan Properties

OWB Property Name ODI Property Name Note

Orphan management for loading –
Null parent key values

Load Null Parent

Orphan management for loading –
Invalid parent values

Load Invalid Parent

Orphan management for loading –
Default Level Row

The default values for OWB level
attributes in default parent record are
migrated as default values for ODI
level attributes.

Orphan management for removal Not Migrated

Deploy Error Table Not Migrated

2. Level Properties

OWB dimension level will be migrated to ODI dimension level.

Table B-13 Level

OWB Property Name ODI Property Name Note

Name Name

Description Description

Level Type (time dimension only) Description Level Type is migrated as a part of
the description.

Used (time dimension only) Not Migrated

If the OWB dimension is of snowflake implementation, the OWB dimension table for
each level is migrated to ODI dimension table and bind to each dimension level. OWB
does not have metadata for stage table and error table for dimension level. Migration
utility will create the metadata of the stage table and error table for ODI dimension
level. For more details, see Stage Table and Error Table.

3. Dimension Attribute and Level Attribute

As ODI has only level attributes and does not have dimension attributes, ODI level
attribute combines all the properties from OWB dimension attribute and OWB level
attribute.

Table B-14 General Properties

OWB Property Name ODI Property Name Note

Level Attribute Name Name

Description Description

Appendix B
OWB Data Objects

B-19

Table B-14 (Cont.) General Properties

OWB Property Name ODI Property Name Note

Surrogate Key Surrogate Key

Business Key Natural Key Member Each business key in OWB
dimension is corresponding to an
ODI dimension natural key member.
Each ODI dimension natural key
member is associated with a
dimension level attribute.

Data Type Data Type ODI level attribute uses Generic data
type. Migration utility will convert the
data type from Oracle technology to
Generic technology.

Length Size

Scale Scale

Precision Size

Seconds Precision Size

Default Value Default Value

Table B-15 SCD2 Properties

OWB Property Name ODI Property Name Note

Trigger history Trigger history

Effective Date Start Date

Expiration Date End Date

Table B-16 SCD3 Properties

OWB Property Name ODI Property Name Note

Previous Attribute Type 3 Previous Attribute

Effective Date Type 3 Start Date

4. Hierarchy

Table B-17 Hierarchy Properties

OWB Property Name ODI Property Name Note

Name Name

Description Description

Default Default

Hierarchy Type (time dimension
only)

Description Hierarchy Type is migrated as part of
the description of ODI hierarchy.

Appendix B
OWB Data Objects

B-20

5. Binding Objects

All binding tables/views/sequences are selected to be migrated when the migration
option MIGRATE_DEPENDENCY is set to TRUE. OWB surrogate key sequence is migrated as
ODI surrogate key sequence. If the OWB dimension is of star implementation type, the
OWB dimension table is migrated to ODI dimension table. OWB does not have
metadata for dimension error table. Migration utility will create the metadata of the
error table for ODI dimension when orphan management is enabled. For more details,
see Error Table.

6. Stage Table

In OWB, there is no metadata for stage tables (the temp table operator in the extended
map of the dimension is unbound). ODI does not allow unbound datastore component.
The ODI dimension level needs to be explicitly associated with a stage table. In this
case, migration utility creates the metadata of a stage table for each dimension level in
ODI based on the structure of the dimension level.

7. Error Table

Error tables behave in the same way as the stage tables. ODI dimension needs to be
explicitly bound to an error table if the orphan management feature is enabled.
Migration utility will create the metadata of the error tables for dimension when orphan
management is enabled. For star implementation dimension, a dimension is
associated to an error table. For snowflake implementation dimension, a level is
associated to an error table. The structure of the error table is similar to the dimension
bound table. The error table should include all the columns from the dimension bound
table. More audit columns are added in error table. The audit columns are:

Table B-18 Audit Columns of Error Table

Property Name Property Type

ODI_ERR_TYPE VARCHAR 2 (1 CHAR) NULL

ODI_ERR_MESS VARCHAR 2 (250 CHAR) NULL

ODI_ORIGIN VARCHAR 2 (4000 CHAR) NULL

ODI_SESS_NO VARCHAR 2 (36 CHAR) NULL

8. Exclusive Check

Before the real migration is performed, exclusive check should be done to check
whether the dimension can be migrated or not. The exclusive check includes:

1. Checking the binding objects (tables/views/sequences) to make sure all the
bindings are in the migration selection list and can be migrated. If the bindings are
not in the migration selection list, the dimension will be exclusive and so turn on
MIGRATE_DEPENDENCY option or bindings should be explicitly specified in
MIGRATION_OBJECTS present in the configuration file.

2. If OWB dimension level attributes don't refer to any dimension attribute, then the
dimension will be exclusive.

Appendix B
OWB Data Objects

B-21

B.2.10 OWB Cubes to ODI Cubes
OWB Cube will be migrated to ODI Cube.

1. Cube Properties

Table B-19 General Properties

OWB Property Name ODI Property Name Note

Name Name

Description Description

Table B-20 Storage Type Properties

OWB Property Name ODI Property Name Note

For ROLAP Cube,

1. Create bitmap indexes

2. Create composite Unique
Key

Not Migrated

For MOLAP Cube, the cube is
migrated as unbound cube

1. AW Name

2. AW Table Space Name

Not Migrated

Table B-21 Dimensions Properties

OWB Property Name ODI Property Name Note

Level Level

Role Role

Table B-22 Measures

OWB Property Name ODI Property Name Note

Name Name

Description Description

Data Type Data Type OWB measure uses oracle data
type, but ODI measure uses Generic
technology data type. Data type
conversion from oracle data type to
Generic data type is handled in
migration.

Length or Precision Or Seconds
Precision

Size

Scale Scale

Appendix B
OWB Data Objects

B-22

OWB cube measure will be migrated to ODI cube measure. Each ODI measure will be
bound to a column of the ODI cube bound datastore, according to the binding
information from OWB measure.
Aggregation
OWB cube aggregation related properties will not be migrated.

Table B-23 Orphan

OWB Property Name ODI Property Name Note

Orphan management for loading —
Null dimension key values

Load Null Dimension Key

Orphan management for loading —
Invalid dimension key values

Load Invalid Dimension Key

Deploy Error Table(s) Not Migrated. ODI does not support this feature.

Physical Properties

All physical properties on cube are not migrated.

2. Binding Objects

All binding tables/views of cube are selected to be migrated when migration option
MIGRATE_DEPENDENCY is set to true. If the option MIGRATE_DEPENDENCY is set to false, user
should explicitly select the binding table or view together with cube to be migrated.
Otherwise cube migration may fail because its bound object is not migrated. The error
table is created based on the binding table. If any binding table is not specified to
migrate, the corresponding error table will not be migrated.

3. Error Table

In OWB, cube is not explicitly bound to an error table. But in ODI, if the orphan
management feature is enabled, then cube should be explicitly bound to an error
datastore. Since OWB does not have metadata for cube error table, migration utility
will create the error datastore for ODI cube according to the OWB cube bound table
when orphan management is enabled. The error datastore should include all the
columns from the cube bound table. More audit columns are added in error datastore.
The audit columns are:

Table B-24 Audit Columns of Cube

Property Name Property Type

ODI_ERR_TYPE VARCHAR 2 (1 CHAR) NULL

ODI_ERR_MESS VARCHAR 2 (250 CHAR) NULL

ODI_ORIGIN VARCHAR 2 (4000 CHAR) NULL

ODI_SESS_NO VARCHAR 2 (36 CHAR) NULL

When cube references a dimension with a surrogate key enabled, a natural key
column for each dimension reference is assumed to be in the cube error table to load
the invalid natural key values from source. Migration utility will create these natural key
columns using the naming conversion <dimension_key_bound_column>_NAT and data type
set to VARCHAR2 (4000).

Appendix B
OWB Data Objects

B-23

4. Exclusive Check

Before the real migration is performed, migration utility will check whether the cube
can be migrated or not. It will check the binding objects (tables/views/) of the cube to
make sure all the bindings are in the migration selection list and can be migrated. If the
bindings are not in the migration selection list, the cube will be exclusive you must turn
on MIGRATE_DEPENDENCY option or bindings should be explicitly specified in
MIGRATION_OBJECTS.

B.3 OWB Mappings
You can find out more information on the various mappings that are available.
OWB Mapping is migrated to ODI Mapping. OWB Mappings are contained in Oracle
module or Template Mapping Module while ODI Mappings are contained in Project
Folder. OWB Project is migrated to ODI project, OWB Oracle Module or Template
Mapping Module is migrated to ODI Project Folder.

B.3.1 OWB Mapping Properties

B.3.1.1 OWB Mapping Logical Properties

OWB Property Name Description ODI Property Name Note

Physical Name

(NAME)

Name

Business Name

(LOGICAL_NAME)

Execution Type

(EXECUTION_TYPE)

BATCH,
TRICKLE

TRICKLE mappings are not
supported for migration.

Target Load Order

(TARGET_LOAD_ORDER)

TARGET_LOAD_ORDER

Created By

Creation Time

Description Description If the length of the
description exceeds the
maximum length allowed in
ODI, then the description will
be truncated.

Icon Object

Last Update Time

Update By

B.3.1.2 OWB Mapping Physical Properties
Physical Properties of OWB Mappings are not migrated to ODI.

Appendix B
OWB Mappings

B-24

OWB Property Name Description ODI Property Name Note

Deployable

(DEPLOYABLE)

Not migrated.

Generation Comments

(GENERATION_COMMENTS)

Not migrated.

Language

(GENERATION_LANGUAGE)

Choices =
'PLSQL,
SQLLOADER,
ABAP,
UNDEFINED'

Not migrated.

Referred Calendar

(REFERRED_CALENDAR)

Not migrated.

Schedules are not
supported for migration.

B.3.1.3 PLSQL Physical Properties

B.3.1.3.1 Chunking Options
Properties for Chunking options are not migrated. Those properties are:

Chunk Method
Chunk table (NUMCOL_CHUNK_TABLE)
Chunk column (NUMCOL_CHUNK_COLUMN)
Chunk size (NUMCOL_CHUNK_SIZE)
Chunk table (ROWID_CHUNK_TABLE)
Chunk type (ROWID_CHUNK_TYPE)
Chunk size (ROWID_CHUNK_SIZE)
Chunk table (SQL_CHUNK_TABLE)
SQL statement (SQL_CHUNK_STATEMENT)
SQL statement chunk type (SQL_CHUNK_TYPE)

B.3.1.3.2 Runtime Parameters
Properties for Runtime parameters are not migrated. Those properties are:

Analyze table sample percentage
Bulk size
Chunk execute resume task
Chunk force resume
Chunk number of times to retry
Chunk parallel level
Commit frequency
Default audit level
Default Operating Mode
Default purge group
Maximum number of errors

Appendix B
OWB Mappings

B-25

B.3.1.3.3 Code Generation Options

Property Name Description ODI Property Name Note

Analyze table statements Generate statistics collection
statement if this is true.

Not migrated.

ANSI SQL Syntax

(ANSI_SQL_SYNTAX)

A switch between ANSI and
Oracle SQL syntax.

ODI has no such
property defined on
mapping, but ODI Join
Component has similar
property.

AUTHID Option

(AUTHID)

Generate the map with
selected AUTHID option.

Package will be executed
with the permissions defined
by the AUTHID clause rather
than the package owner's
permissions.

Not migrated.

Bulk Processing code Generate bulk processing
code if this is true.

Not migrated.

Commit Control

(COMMIT_CONTROL)

Choices = 'AUTO_COMMIT,
AUTO_CORR_COMMIT,
MANUAL_COMMIT'

Not migrated.

Enable Parallel DML Determine if Parallel DML is
enabled at runtime.

Not migrated.

Error trigger

(ERROR_TRIGGER)

Error trigger procedure
name

Not migrated.

Generation Mode Choices = 'SET_BASED,
ROW_BASED,
ROW_BASED_TARGET_O
NLY,
SET_BASED_FAIL_OVER_
TO_ROW_BASED,
SET_BASED_FAIL_OVER_
TO_ROW_BASED_TARGE
T_ONLY, ALL_MODES'

Not migrated.

Optimized Code Attempt to generate
optimized code if this is true.

Not migrated.

PL/SQL Compilation Mode Specifies the compilation
mode for PL/SQL library
unit.

Choices = 'DEFAULT,
INTERPRETED, NATIVE'

Not migrated.

Use Target Load Ordering

(TARGET_LOAD_ORDERING)

Not migrated.

B.3.1.4 SQL*LOADER Physical Properties

B.3.1.4.1 SQL Loader Settings
Properties for SQL Loader Settings are not migrated. Those properties are:

Appendix B
OWB Mappings

B-26

Bind Size
Byte Order Mark
Column Array Rows
Continue Load
Control File Location
Control File Name
Database File Name
Delimited File Record Termination
Direct Mode
Endian (Byte Order)
Errors Allowed
Load Last Field As Pieced
Log File Location
Log File Name
Multithreading
Nls Characterset
Operation Recoverable
Perform Parallel Load
Preserver Blanks
Read Buffers
Read Size
Records to Load
Records to Skip
Resumable
Resumable Name
Resumeable Timeout
Rows per Commit
Skip Index Maintenance
Skip Unusable Indexes
Stream size
Suppress discards
Suppress Errors
Suppress Feedback
Suppress Header
Suppress partitions

B.3.1.4.2 Runtime Parameters
Properties for Runtime parameters are not migrated. Those properties are:

Audit
Default purge group

B.3.1.4.3 SQL Loader Data Files
Properties for SQL Loader Data Files are not migrated. Those properties are:

Data File Name
Data File Location
Discard File Name
Discard File Location

Appendix B
OWB Mappings

B-27

Discard Max
Bad File Name
Bad File Location

B.3.1.5 ABAP Mapping Physical Properties

B.3.1.5.1 Runtime Parameters
Properties for runtime parameters are not migrated, these properties are:

ABAP Report Name
Background Job
Control File Name
Data File Name
File Delimiter for Staging File
Include FTP
Install only
Log File Name
SAP Location
SAP System Version
Sql Join Collapsing
Staging File Directory
Timeout

B.3.1.5.2 SQL Loader Settings
Properties for SQL Loader Setting are not migrated, those properties are:

NLS Characterset

B.3.1.6 SQLPLUS Mapping Physical Properties

B.3.1.6.1 SQL*Plus Settings
The properties for SQL*Plus Settings are not migrated. Those properties are:

ARRAYSIZE
COPYCOMMIT
Log File Directory
Log File Name
LONG
SQL File Directory
SQL File Name

B.3.1.6.2 Runtime Parameters
The properties for Runtime Parameters are not migrated. Those properties are:

Audit
Default purge group

Appendix B
OWB Mappings

B-28

B.3.1.7 Code Template Mappings Physical Properties

B.3.1.7.1 Chunking Options
Properties for Chunking options are not migrated. (The same as PLSQL mappings.)

B.3.1.7.2 Code Generation Options

OWB Property Name Description ODI Property Name Note

Analyze table statements Generate statistics collection
statement if this is true.

Not migrated.

ANSI SQL Syntax

(ANSI_SQL_SYNTAX)

A switch between ANSI and
Oracle SQL syntax.

ODI has no such
property defined on the
mapping, but ODI Join
Component has a
similar property, see
migration on Join
Operator.

AUTHID Option

(AUTHID)

Generate the map with
selected AUTHID option.

Package will be executed with
the permissions defined by the
AUTHID clause rather than the
package owner's permissions.

Not migrated.

Bulk Processing code Generate bulk processing
code if this is true.

Not migrated.

Commit Control

(COMMIT_CONTROL)

Choices='AUTO_COMMIT,
AUTO_CORR_COMMIT,
MANUAL_COMMIT'

Not migrated.

Enable Parallel DML Determine if PDML is enabled
at runtime.

Not migrated.

Error trigger

(ERROR_TRIGGER)

Error trigger procedure name. Not migrated.

Generation Mode Choices='SET_BASED,
ROW_BASED,
ROW_BASED_TARGET_ONL
Y,
SET_BASED_FAIL_OVER_T
O_ROW_BASED,
SET_BASED_FAIL_OVER_T
O_ROW_BASED_TARGET_O
NLY, ALL_MODES'

Not migrated.

Optimized Code Attempt to generate optimized
code if this is true.

Not migrated.

Use Enclosure Char Not migrated.

Use Target Load Ordering

(TARGET_LOAD_ORDERING)

Not migrated.

Appendix B
OWB Mappings

B-29

B.3.1.7.3 Runtime Parameters
Properties for runtime parameters are not migrated. Those properties are:

Analyze table sample percentage
Bulk size
Commit frequency
Default audit level
Default Operating Mode
Default purge group
Maximum number of errors

B.3.1.7.4 SCD Updates
Properties for SCD Updates are not migrated. Those properties are:

Strategy

B.3.2 Multiple Target Mapping Migration
For mappings with multiple targets, target load order and Multiple Target Insert (MTI)
are considered for migration.

B.3.2.1 Target Load Order
The OWB Target Load Order property is migrated to the ODI Target Load Order
property.

The OWB Use Target Load Ordering property is not migrated, because this property
does not exist in ODI.

B.3.2.2 Multiple Target Insert (MTI)
When an OWB mapping has multiple targets to insert, the data is coming from the
same sources, and the Optimized code option is set to true, during code generation, a
single insert statement for all targets may be generated instead of a multi-table insert
SQL statement.

Because this property is a physical property and MTI occurs at code generation, MTI is
not supported for migration.

B.3.3 Mapping Operator

OWB Property Name ODI Property Name Note

Business Name

(LOGICAL_NAME)

Business Name

(BUSINESS_NAME)

Create By Not migrated.

Create Time Not migrated.

Description

(Description)

Description

(DESCRIPTION)

If the length of the description exceeds the maximum
length allowed in ODI, then the description will be
truncated.

Appendix B
OWB Mappings

B-30

OWB Property Name ODI Property Name Note

Icon Object Not migrated.

Last Update Time Not migrated.

Physical Name

(NAME)

Name

(NAME)

Update By Not migrated.

The above properties are common properties for the Mapping operator.

B.3.4 Mapping Attribute

B.3.4.1 General Properties

OWB Property Name ODI Property Name Note

Physical Name

(NAME)

Name

Business Name

(LOGICAL_NAME)

Not migrated.

Created By Not migrated.

Creation Time Not migrated.

Description Description If the length of the description exceeds the maximum
length allowed in ODI, then the description will be
truncated.

Icon Object Not migrated.

Last Update Time Not migrated.

Update By Not migrated.

B.3.4.2 Data Type Information

OWB Property Name ODI Property Name Note

Data Type

(DATA_TYPE)

Data type Convert the OWB data type to ODI
data type according the data type
mappings.

Fractional Seconds precision

(FRACTIONAL_SECONDS_PRECISION)

Not migrated.

Length

(Length)

Size For data type which allows length.

Precision

(Precision)

Size For data type which allows
precision.

Scale

(Scale)

Scale

Appendix B
OWB Mappings

B-31

Mapping Attributes of OWB Mapping Operator use OWB GENERIC platform data
types. OWB GENERIC platform is mapped to ODI Generic SQL technology. See Data
Type Mapping for OWB GENERIC Platform to ODI Generic SQL Technologyfor
details.

B.4 OWB Pluggable Mappings
You can find out more information on the various pluggable mappings that are
available.
OWB Pluggable Mapping is migrated to ODI Reusable Mapping.

Also see Pluggable Mapping Operator.

B.4.1 Pluggable Mapping Folder
The OWB Pluggable Mapping Folder is migrated to an ODI Project Folder. Standalone
pluggable mappings are migrated to a Project Folder named STAND_ALONE, which is
created automatically during migration if it does not already exist.

B.4.2 Properties of Pluggable Mapping
Only Physical name and Description are migrated. Physical name of OWB Pluggable
Mapping is migrated to name of ODI Reusable Mapping. Description of OWB
Pluggable Mapping is migrated to Description of ODI Reusable Mapping.

B.4.3 Input Signature and Output Signature
In OWB, Signature Operator can have unlimited attribute groups (for Input Signature
Operator, the attribute groups are output groups; for Output Signature Operator, the
attribute groups are input groups). In ODI, Signature Component can have only one
connector point, so each attribute group of OWB Signature Operator is migrated to a
Signature Component.

For example, the following figure shows a Pluggable Mapping for which the
INPUT_SIGNATURE operator has three output groups (INGRP1, INGRP2, and
INGPR3).

These OWB output groups are migrated to three Input Signature Components in ODI,
as shown in the following figure.

Appendix B
OWB Pluggable Mappings

B-32

The name of ODI Signature Component is composed of OWB attribute group name of
Signature Operator, underscore (_), and Signature Operator name.

The attributes of Signature Operator in OWB are migrated to attributes of Signature
Component in ODI. No special properties need to be migrated for signature attributes.

B.4.4 Join Operator in Pluggable Mapping
OWB Pluggable Mapping does not have the property ANSI SQL Syntax as does a
regular OWB Mapping. Therefore, all Join Operators of a Pluggable Mapping are split
into binary joins during migration to ODI unless the migration configuration option
SPLIT_JOIN_FOR_ANSI_SYNTAX is set to false in the migration utility configuration
file. For information about ordered join, see Join Operator.

Appendix B
OWB Pluggable Mappings

B-33

C
Migration Details for Operators

This appendix provides migration details of operators.

This appendix provides reference information about migrating operators from OWB to
ODI.

This appendix contains the following topics:

• Common Properties

• Aggregate Operator

• Cube Operator

• Deduplicator Operator

• Dimension Operator

• Expression Operator

• External Table Operator

• Flat File Operator

• Join Operator

• Lookup Operator

• Lookup Properties Migration

• Mapping Input Parameter Operator

• Materialized View Operator

• Pivot Operator

• Pluggable Mapping Operator

• Post-Mapping Operator

• Pre-Mapping Operator

• Sequence Operator

• Set Operator

• Sorter Operator

• Splitter Operator

• Subquery Filter Operator

• Table Operator

• Table Function Operator

• Transformation Function Operator

• Unpivot Operator

• View Operator

C-1

C.1 Common Properties
The following OWB properties are migrated to the same ODI properties across all the
operators and attributes for which they are defined.

OWB Property Name ODI Property Name

Physical Name Name

Description Description

C.2 Aggregate Operator
The OWB Aggregate operator is migrated to the ODI Aggregate component.

C.2.1 Logical Properties of the Aggregate Operator

OWB Property Name Description ODI Property Name Note

Having Clause

(HAVING_CLAUSE)

Having Clause HAVING

Group By Clause

(GROUP_BY_CLAUSE)

Group By Clause MANUAL GROUP BY
CLAUSE

C.2.2 Physical Properties of the Aggregate Operator

OWB Property Name Description ODI Property Name Note

Inline view hint

(INLINEVIEW_HINT)

Hint used when inline view
is created for this operator

Not migrated.

C.2.3 Attribute Groups and Attributes of the Aggregate Operator
Output attributes of the Aggregate operator are migrated to output attributes of the
Aggregate component in ODI. No specific properties of output attributes need to be
migrated.

C.3 Cube Operator
OWB Cube operator is migrated to ODI cube component.

1. Cube Operator

This section describes the properties of cube operator.

Appendix C
Common Properties

C-2

Table C-1 General Properties

OWB Property Name ODI Property Name Note

Name Name

Description Description

Other General Properties Not Migrated

Cube AW Properties

All cube AW properties are not migrated.

Table C-2 Cube Loading Properties

OWB Property Name ODI Property Name Note

Enable Source Aggregation Enable Source Aggregation

Incremental Aggregation Not Migrated

Loading Type Integration Type

Loading Type — Insert Load Integration Type — Control Append

Loading Type — Load Integration Type — Incremental
Update

Loading Type — Remove Integration Type — None

Table C-3 Cube Policies

OWB Property Name ODI Property Name Note

LOAD policy for INVALID keys Not Migrated If the property value on OWB cube object is
different from the value on OWB cube operator,
a warning message is generated in the
migration report.

LOAD policy for NULL keys Not Migrated

Record Error Rows Not Migrated

Solve the Cube Not Migrated

Table C-4 Error Tables

OWB Property Name ODI Property Name Note

DML Error table Name Not Migrated DML Error table name and Error
table name are not migrated
because error table information is
defined on ODI cube object.

Error table Name Not Migrated

Truncate Error Table Truncate Error Datastore

Physical Properties

All physical properties on OWB cube operator are not migrated.

Appendix C
Cube Operator

C-3

2. Cube Operator Attribute Group

OWB input/output attribute group of cube operator is mapped to the input connector
point of ODI cube component.

3. Cube Operator Map Attribute

Table C-5 General Properties

OWB Property Name ODI Property Name Note

Description Description

Other General Properties Not Migrated

AW Properties

AW properties on map attribute are not migrated.

Data Type Information

Data Type Information properties are not migrated because they can be derived from
the attribute’s bound object.

Table C-6 Loading Properties

OWB Property Name ODI Property Name Note

Attribute Role Not Migrated It’s a read-only property.

Source Aggregation Function Source Aggregation Function Only measure map attribute has this
property.

Update Operation Not Migrated

Table C-7 Operator Specific Properties

OWB Property Name ODI Property Name Note

Binding Column Name Not Migrated

These properties are read-
only and can be derived from
the map attribute’s bound
object.

Dimension Attribute Not Migrated

Is Skip Level Not Migrated

Level Attribute Not Migrated

Level Relationship Name Not Migrated

Referenced Level Attribute Name Not Migrated

Referenced Level Name Not Migrated

Default Value Not Migrated It is defined on ODI
dimension level attribute. The
value can be derived from the
map attribute’s bound
dimension level attribute.

Null Data Value Null Data Value This migration happens only
when this map attribute
represents as a dimension
key attribute.

Appendix C
Cube Operator

C-4

4. Base Cube for Cube Operator

The base cube of the cube operator is migrated to ODI cube object and ODI cube
component is bound to the cube object when migration option MIGRATE_DEPENDENCY is
set to true. If the base cube is not selected to be migrated together with the cube
mapping and option MIGRATE_DEPENDENCY is set to false, the cube mapping will not be
migrated. A message is generated in migration report - Mapping is not migrated
because the bound object of the mapping operator CUBE:XXX is not being
migrated. If the cube operator is unbound, the owning mapping is not migrated. A
message is generated in migration report as — Mapping is not migrated because
the mapping operator CUBE:XXX is unbound.

C.4 Deduplicator Operator
The OWB Deduplicator operator is migrated to the ODI Distinct component.

C.4.1 Properties of the Deduplicator Operator
No specific properties of the Deduplicator operator need to be migrated.

C.4.2 Attribute Groups and Attributes of the Deduplicator Operator
Input attributes of the Deduplicator operator are not migrated.

Output attributes of the Deduplicator operator are migrated. No specific properties of
output attributes need to be migrated.

C.5 Dimension Operator
You can find out more information on the migration of the OWB Dimension operator to
the ODI dimension component.

1. Dimension Operator

OWB Dimension operator is migrated to ODI dimension component.

Table C-8 General Properties

OWB Property Name ODI Property Name Note

Name Name

Description Description

Other General Properties Not Migrated The property Target Load Order will
be calculated in ODI Dimension
Pattern and there is no need to
migrate it.

AW Properties

All AW properties are not migrated.

Appendix C
Deduplicator Operator

C-5

Table C-9 Dimension Properties

OWB Property Name ODI Property Name Note

Enable Source Dedup Enable Source De-duplicate

Loading Type Not Migrated The default integration type for ODI
dimension component is set to
Incremental Update.

Sequence Name Not Migrated It is read-only property and this value
can be derived from the base
dimension of the dimension
component.

Type 2 Extract/Remove Current Only Not Migrated

Table C-10 Error Table

OWB Property Name ODI Property Name Note

DML Error Table Name Not Migrated Since error table information is
defined on ODI dimension object.Error Table Name Not Migrated

Truncate Error Tables Truncate Error Datastore(s)

Table C-11 History Logging Policies

OWB Property Name ODI Property Name Note

Default Effective Time of Initial
Record

Default Effective Time of Initial
Record

Default Effective Time of Open
Record

Default Effective Time of Open
Record

Default Expiration Time of Open
Record

Default Expiration Time of Open
Record

Slowing Changing Type Not Migrated. It is read-only property and can be
derived from the base dimension
object of the ODI dimension
component.

Support Multiple History Loading Not Migrated.

Support Out of Order History
Loading

Not Migrated.

Type2 Gap Type2 Gap

Type2 Gap Units Type2 Gap Units

Table C-12 Orphan Management Policies

OWB Property Name ODI Property Name Note

Create Default Level Records Not Migrated

LOAD policy for INVALID keys Not Migrated ODI dimension component retrieves
the value from its base dimension
object.LOAD policy for NULL keys Not Migrated

Appendix C
Dimension Operator

C-6

Table C-12 (Cont.) Orphan Management Policies

OWB Property Name ODI Property Name Note

Record Error Rows Not Migrated

REMOVE Orphan Policy Not Migrated

Physical properties on Dimension Operator

All physical properties set on OWB dimension operator will not be migrated.

2. Dimension Operator Attribute Group Migration

Table C-13 General Properties

OWB Property Name ODI Property Name Note

Description Description

Other General Properties Not Migrated

Default Properties

All default properties on attribute group of dimension operator are not migrated.

Error Table

All error table properties on attribute group of OWB dimension operator are not
migrated, as the error table information can be retrieved from the base dimension
object of ODI the dimension component.

3. Dimension Operator Map Attribute Migration

Table C-14 General Properties

OWB Property Name ODI Property Name Note

Description Description

Other General Properties Not Migrated.

AW Properties

AW properties on map attribute are not migrated.

Data Type Information

Data Type Information properties are not migrated because they can be derived from
the map attribute’s bound object (The bound object should be the level attribute).

Loading Properties

Loading properties are not migrated because they are read-only properties and can be
derived from the attribute’s bound object (The bound object should be the level
attribute).

Appendix C
Dimension Operator

C-7

Table C-15 Operator Specific Properties

OWB Property Name ODI Property Name Note

Binding Column Name Not Migrated

They are read-only parameters and
can be derived from the map
attribute’s bound object.

Dimension Attribute Name Not Migrated

Level Attribute Name Not Migrated

Referenced Level Name Not Migrated

Default Value Not Migrated This value is derived from the map
attribute’s bound object. If the value
on OWB map attribute is different
from the value on its OWB bound
object, a warning is provided in the
migration report to say “The value of
the property DEFAULT_VALUE set on
map attribute xxx of operator
DIMENSION:XXX is different from the
value set on the bound object of
XXX.

Load when Inserting Record Load when Inserting Record

Load when Updating Record Load when Updating Record

Null Data Value Null Data Value

4. Base Dimension for Dimension Operator

The base dimension of the dimension operator is migrated to ODI dimension object
and ODI dimension component is bound to the dimension object when migration
option MIGRATE_DEPENDENCY is set to true. If the base dimension is not selected to be
migrated together with the dimension mapping and MIGRATE_DEPENDENCY is set to false,
the dimension mapping will not be migrated. A message is generated in migration
report as - Mapping is not migrated because the bound object of the mapping
operator DIMENSION:XXX is not being migrated. If the dimension operator is unbound,
the owning mapping is not migrated. A message is generated in migration report as -
Mapping is not migrated because the mapping operator DIMENSION:XXX is
unbound.

C.6 Expression Operator
The OWB Expression operator is migrated to the ODI Expression component.

C.6.1 Properties of the Expression Operator
No specific properties of the Expression operator need to be migrated.

C.6.2 Attribute Groups and Attributes of the Expression Operator
Input attributes of the Expression operator are not migrated.

Output attributes of the Expression operator are migrated.

For output attributes, the expression of the output attribute is migrated to the
expression of the ODI attribute. The OWB properties Variable Initial Value and

Appendix C
Expression Operator

C-8

Variable Write condition are not migrated. No other specific properties of output
attributes need to be migrated.

C.7 External Table Operator
OWB External Table operators inside OWB mappings are migrated to ODI Datastore
components in the migrated ODI mappings.

For detailed migration steps and behaviors, see Migrating the External Table Operator.

C.7.1 Logical Properties of the External Table Operator

C.7.1.1 General Properties

OWB Property Name Description ODI Property Name Note

Bound Name

(BOUND_NAME)

If the OWB External Table
operator is bound to an
external table, the ODI
Datastore component is
bound to the corresponding
data store.

Primary Source

(PRIMARY_SOURCE)

A boolean value to indicate
whether this is a primary
source (only used in EDW).

(YES/NO)

Not migrated.

Key

(KEYS_READONLY)

Not migrated.

C.7.1.2 Chunking
As with the Table operator, properties for Chunking are not migrated.

C.7.1.3 Error Table
As with the Table operator, properties for Error Table are not migrated.

C.7.1.4 SCD Updates
As with the Table operator, properties for SCD Updates are not migrated.

C.7.1.5 Temp Stage Table
As with the Table operator, properties for Temp Stage Table are not migrated.

C.7.2 Physical Properties of the External Table Operator

Appendix C
External Table Operator

C-9

C.7.2.1 General Properties

OWB Property Name Description ODI Property Name Note

Schema

(SCHEMA)

Not migrated.

Database link

(DATABASE_LINK)

Database link used to
access this entity during
mapping.

Not migrated.

Location

(DB_LOCATION)

Location, used to access
referenced entity.

Not migrated.

C.7.2.2 Hints

OWB Property Name Description ODI Property Name Note

Extraction hint

(EXTRACTION_HINT)

Hint used when extracting
from this table using SQL

SELECT_HINT

Loading hint

(LOADING_HINT)

Hint used when loading
into this table using SQL

INSERT_HINT or

UPDATE_HINT

Automatic hints enabled

(AUTOMATIC_HINTS_EN
ABLED)

Automatic hints enabled
using SQL

Not migrated.

C.7.2.3 Partition Exchange Loading
As with the Table operator, properties for Partition Exchange Loading are not
migrated.

C.7.2.4 Constraint Management

OWB Property Name Description ODI Property Name Note

Enable Constraints

(ENABLE_CONSTRAINTS
)

Enable Constraints Not migrated.

Exceptions Table Name

(EXCEPTIONS_TABLE_N
AME)

Exceptions Table Name Not migrated.

C.7.3 Migrating the External Table Operator
OWB External Table operators inside OWB mappings are migrated to ODI Datastore
components in the migrated ODI mappings.

The KM of the ODI Datastore's Physical Mapping is set to XKM Oracle External Table,
and the following information is migrated from the OWB External Table Operator (or its
bound external table) to KM options of the ODI Physical Node.

Appendix C
External Table Operator

C-10

OWB Property Name KM Option Note

Default Location SQL_DEFAULT_DIR

Accessed Data Location SQL_DIRECTORIES The format is DIR_NAME:path,...; for
example: MyDir:/tmp/mydir,
MyDir2:/tmp/mydir2

Data Files DIR_DATA_FILES The format is
DIR_NAME:filename,...; for example:
MyDir:file1,MyDir:file2

Access Parameters ACCESS_PARAMETERS

C.8 Flat File Operator
OWB Flat File operators inside OWB mappings are migrated to ODI Datastore
components in the migrated ODI mappings.

C.8.1 Logical Properties of the Flat File Operator

OWB Property Name Description ODI Property Name Note

Loading type

(LOADING_TYPE)

Choices = 'INSERT,
UPDATE, NONE'

INTEGRATION_TYPE Same as for the Table
operator. See Notes About
Loading Type.

SAMPLED_FILE_NAME The default physical source
file name.

Not migrated.

Source Data File Location

(SOURCE_DATA_FILE_L
OCATION)

The Locations of the File
Module of this Flat File at
the time of reconciliation.
Stored as UOID.

Not migrated.

File Format

(FILE_FORMAT)

File Format (Fixed or
Delimited).

Not migrated.

Record Delimiter

(RECORD_DELIMITER)

Character that indicates the
end of the record.

Not migrated.

Continuation Character

(CONTINUATION_CHARA
CTER)

Character that indicates the
record is continued on the
next line.

Not migrated.

Continuation Character on
Next Line

(CONTINUATION_CHARA
CTER_ON_NEXT_LINE)

If there is a continuation
character, is it at the start
of the line.

Not migrated.

Filed Termination
Character

(FIELD_TERMINATION_C
HARACTER)

Character that separates
the fields of a delimited file.

Not migrated.

Filed Enclosure Characters

(FIELD_ENCLOSURE_CH
ARACTERS)

Characters that wrap fields.
Example ' or ".

Not migrated.

Record Size

(RECORD_SIZE)

Size of a fixed length
record.

Not migrated.

Appendix C
Flat File Operator

C-11

OWB Property Name Description ODI Property Name Note

Concatenate Records

(CONCATENATE_RECOR
DS)

Number of Physical
Records per Logical
Record.

Not migrated.

Record Type Position

(RECORD_TYPE_POSITI
ON)

If this is a multi record file,
this will indicate the
position of the field that
identifies the type of
record.

Not migrated.

Record Type Length

(RECORD_TYPE_LENGT
H)

If this is a multi record file,
this will indicate the length
of the data that identifies
the type of record. It is
used with the Record Type
Position.

Not migrated.

File contains a header row

(FIELD_NAMES_IN_THE_
FIRST_ROW)

Indicates whether file
contains a header row

Not migrated.

Bound Name

(BOUND_NAME)

If the OWB Flat File
operator is bound to an
OWB Flat File object, the
corresponding ODI
Datastore component is
bound to the ODI
Datastore.

C.8.2 Logical Properties of the Map Attribute Group of the Flat File
Operator

OWB Property Name Description ODI Property Name Note

Record Type Values

(RECORD_TYPE_VALUE
S)

Not migrated.

Bound Name

(BOUND_NAME)

Not migrated.

Appendix C
Flat File Operator

C-12

C.8.3 Logical Properties of the Map Attribute of the Flat File Operator

OWB Property Name Description ODI Property Name Note

Field Data Type

(FIELD_DATA_TYPE)

Choices = 'CHAR, DATE,
INTEGER EXTERNAL,
FLOAT EXTERNAL,
DECIMAL, DECIMAL
EXTERNAL, ZONED,
ZONED EXTERNAL, RAW,
TIMESTAMP, TIMESTAMP
WITH TIME ZONE,
TIMESTAMP WITH LOCAL
TIME ZONE, INTERVAL
YEAR TO MONTH,
INTERVAL DAY TO
SECOND, FLOAT,
DOUBLE, BYTEINT,
SMALLINT, SMALLINT
UNSIGNED, INTEGER,
INTEGER UNSIGNED,
GRAPHIC,
GRAPHICEXTERNAL,
VARGRAPHIC,
VARCHAR, VARCHARC,
VARRAW, LONG
VARRAW, VARRAWC'

Not migrated.

Data type of ODI map
attribute is determined by
the data type of the column
of the bound datastore.

Filed Length

(FIELD_DATA_TYPE_LEN
GTH)

Length of the field in the file
to which this operator is
bound.

Not migrated.

Length of ODI map
attribute is determined by
the length of the column of
the bound datastore.

Field Precision

(FIELD_DATA_TYPE_PRE
CISION)

Precision of the field in the
file to which this operator is
bound.

Not migrated.

Precision of ODI map
attribute are determined by
the length of the column of
the bound datastore.

Field Scale

(FIELD_DATA_TYPE_SCA
LE)

Scale of the field in the file
to which this operator is
bound.

Not migrated.

Field starting position

(FIELD_START_POSITIO
N)

Not migrated.

Field ending position

(FIELD_END_POSITION)

Not migrated.

Field Mask

(FIELD_MASK)

Date mask of the field in
the file to which this
operator is bound.

Not migrated.

Field null if condition

(FIELD_NULLIF_VALUE)

NULLIF value of the field in
the file to which this
operator is bound.

Not migrated.

Appendix C
Flat File Operator

C-13

OWB Property Name Description ODI Property Name Note

Field default if condition

(FIELD_DEFAULTIF_VAL
UE)

Not migrated.

C.9 Join Operator
The OWB Join operator is migrated to the ODI Join component.

Attribute groups and attributes of the OWB Join operator are not migrated.

C.9.1 Properties of the Join Operator
For information about the general properties of the Join operator, see Mapping
Operator.

C.9.1.1 ANSI SQL syntax
ANSI SQL syntax is a property on the mapping level in OWB.

ODI does not have this property on the mapping level, but the ODI Join component
has a property called Generate ANSI Syntax which has the same functionality.

The value of ANSI SQL syntax on the OWB mapping is migrated to the Generate
ANSI Syntax property of the ODI Join component.

C.9.1.2 Join Condition
Join Condition on the OWB Join operator is migrated to Join Condition on ODI Join
component. However, the OWB Join Condition references its own operator's input
attributes, which is not supported in ODI; thus, the ODI Join Condition is configured to
reference the attributes of the upstream sources to the OWB input attribute.

C.9.1.3 Join Input Role
Join Input Role is an attribute group level property of the OWB Join operator. It has
three choices: STANDARD, OUTER and FULLOUTER.

The corresponding property on the ODI Join component is Join Type.

Join Input Role does not map directly to Join Type because Join Input Role supports
multiple input groups, while Join Type supports only a binary join. During migration,
complex joins are split into a series of the binary joins using the OWB code generation
rules for the Join operator.

Appendix C
Join Operator

C-14

C.9.2 Migrating an ANSI Join Operator
When ANSI SQL syntax of OWB mapping is set to true, the Join operator is by default
split into binary joins during migration.

Setting the SPLIT_JOIN_FOR_ANSI_SYNTAX migration configuration option to false
can override this default behavior and prohibit the Join operator from being split into
binary joins. However, if a "Join Input Role" value is set on any of the Join operator's
attribute groups, the value of the SPLIT_JOIN_FOR_ANSI_SYNTAX migration
configuration option is ignored and the Join operator is split into binary joins during
migration.

The following scenarios provide examples of migrating the Join operator when ANSI
SQL Syntax is set to true for the mapping.

C.9.2.1 Scenario 1: Two Input Groups with Standard Join
OWB mapping description: two sources joining together, the join condition is standard
join (not outer join). No "Join Input Role" is specified on input attribute groups of Join
operator.

Join Condition is: INGRP2.DEPTNO = INGRP1.DEPTNO and INGRP1.EMPNO > 1000

The generated code (only displays the select clause) from OWB side is:

SELECT
 "EMP"."EMPNO" "EMPNO", "EMP"."ENAME" "ENAME", "DEPT"."DNAME" "DNAME"
FROM
 "DEPT" "DEPT" JOIN "EMP" "EMP"
ON (("DEPT"."DEPTNO" = "EMP"."DEPTNO"))
WHERE ("EMP"."EMPNO" > 1000)

When this kind of mapping is migrated to ODI, the ODI mapping should look as
follows:

Appendix C
Join Operator

C-15

The join condition for JOIN1 is: (DEPT.DEPTNO = EMP.DEPTNO)

The filter condition for Filter_JOIN1 is: (EMP.EMPNO > 1000)

The operator JOIN1 in OWB mapping is migrated to a Join component followed a
Filter component in ODI.

C.9.2.2 Scenario 2: Two Input Groups with Outer Join Using (+) Style
The mapping is much similar with the mapping in scenario 1. The only difference is the
join condition is not a standard join. It is an outer join using (+) style.

JOIN_CONDITION is: INGRP2.DEPTNO(+) = INGRP1.DEPTNO

The generated code (only displays the select clause) from OWB side is:

SELECT
 "EMP"."EMPNO" "EMPNO","EMP"."ENAME" "ENAME", "DEPT"."DNAME" "DNAME"
FROM
 "DEPT" "DEPT"
RIGHT OUTER JOIN "EMP" "EMP" ON (("DEPT"."DEPTNO" = "EMP"."DEPTNO"))

Appendix C
Join Operator

C-16

The migrated ODI mapping should look as follows:

The join condition is set to DEPT.DEPTNO = EMP.DEPTNO, and the join type is set to DEPT
RIGHT_OUTER join EMP.

C.9.2.3 Scenario 3: Two Input Groups with Outer Join Using Join Input Role
Two sources joining together, the join condition is standard join, but "Join Input Role"
is specified on some of the input attribute groups of Join operator. Take the following
OWB mapping as an example:

Appendix C
Join Operator

C-17

The Join Input Role of INGRP1 is set to OUTER.

Join condition is: INGRP2.DEPTNO = INGRP1.DEPTNO

The generated code (only displays the select clause) from OWB side is:

SELECT
 "EMP"."EMPNO" "EMPNO",
 "EMP"."ENAME" "ENAME",
 "DEPT"."DNAME" "DNAME"
FROM
 "DEPT" "DEPT"
LEFT OUTER JOIN "EMP" "EMP" ON (("DEPT"."DEPTNO" = "EMP"."DEPTNO"))

The migrated ODI mapping looks like the following:

Appendix C
Join Operator

C-18

The join condition is set to DEPT.DEPTNO = EMP.DEPTNO, and the join type is set to DEPT
LEFT_OUTER join EMP.

C.9.2.4 Scenario 4: Two Input Groups with both (+) Style and Join Input Role
In this case, OWB will use Join Input Role to generate code and ignore the (+) style.
The migrated mapping will be the same as Scenario 3.

C.9.2.5 Scenario 5: Multiple Input Groups
Take the following mapping as an example:

Appendix C
Join Operator

C-19

Join condition is:

INGRP1.SAL > 1000 and INGRP1.EMPNO(+) = INGRP2.DEPTNO
and INGRP3.ENAME = INGRP4.CUSTID and INGRP1.EMPNO = INGRP4.CUSTID
and SUBSTR(INGRP1.ENAME(+),0,2) = INGRP2.DNAME

The generated code (only displays the select clause) from OWB side is:

SELECT
 /* EMP.INOUTGRP1 */
 "EMP"."EMPNO" "EMPNO",
 "EMP"."ENAME" "ENAME",
 "EMP"."JOB" "JOB",
 "EMP"."MGR" "MGR",
 "EMP"."HIREDATE" "HIREDATE",
 "EMP"."SAL" "SAL",
 "EMP"."COMM" "COMM",
 "EMP"."DEPTNO" "DEPTNO"
FROM
 "EMP" "EMP") "INGRP1"
RIGHT OUTER JOIN "DEPT" "DEPT" ON (
 (("INGRP1"."EMPNO" = "DEPT"."DEPTNO"))
 AND ((SUBSTR ("INGRP1"."ENAME" , 0 , 2) = "DEPT"."DNAME"))
)
JOIN "ADDRESS" "ADDRESS$1" ON (("INGRP1"."EMPNO" = "ADDRESS$1"."CUSTID"))
JOIN "BONUS" "BONUS" ON (("BONUS"."ENAME" = "ADDRESS$1"."CUSTID"))
WHERE
 ("INGRP1"."SAL" > 1000)

The migrated ODI mapping looks like this:

Appendix C
Join Operator

C-20

The properties of JOINER would be:

The properties of JOINER1 would be:

Appendix C
Join Operator

C-21

The properties of JOINER2 would be:

The properties of Filter_JOINER would be:

Appendix C
Join Operator

C-22

C.9.3 Migrating a Non-ANSI Join Operator
When the property ANSI SQL syntax of OWB mapping is set to false, the OWB Join
operator will be migrated to one ODI Join component.

Exception: when "ANSI SQL syntax" is set to false, but "Join input Role" is set for
some of the Join operator attribute groups. The OWB Join operator may be split into
binary joins as described in Join Input Role.

C.9.4 Migrating a Self Join
The following mapping is allowed in OWB, but it is not well supported in ODI 12.1.2.

One source table operator is connected to two input groups of the Join operator.

To support this mapping in ODI 12.1.2, the source table operator is migrated twice,
producing an ODI mapping like:

Appendix C
Join Operator

C-23

ODI 12.1.3 can support the self join just as the way OWB does, so there is no need to
migrate the source table operator twice, and the mapping is migrated to ODI 12.1.3 as
below:

EMP component is connected to JOINER component twice by 2 input connector points
of JOINER component.

C.10 Lookup Operator
You can find out more information on how the OWB Lookup operator is migrated to
ODI.
The OWB Lookup operator is not migrated to ODI directly. Instead, each of its input/
output attribute group pairs is migrated to an ODI Lookup component.

If the OWB Lookup operator has multiple input/output attribute group pairs, the
resulting ODI Lookup components are chained together as a binary tree.

Properties of the input/output attribute group pairs are migrated to properties of the
ODI Lookup components.

The OWB in group and input attributes will be omitted after the lookup condition
converted to ODI.

Appendix C
Lookup Operator

C-24

<OWB In Group, Attributes, and Lookup Conditions>

<ODI Lookup Condition>

The OWB Lookup Table is migrated as ODI Lookup Operator's <Lookup Source> and
show up in the mapping.

Appendix C
Lookup Operator

C-25

<OWB Lookup Table>

<ODI Lookup Source>

The OWB Multiple Match Rows Rules are migrated to ODI's <Multiple Match Rows>,
<Nth Row Number> and <Lookup Attributes default value & order by> - Column <order
by>

Appendix C
Lookup Operator

C-26

<OWB Multiple Match Rows – Error>

<ODI Multiple Match Rows – Error>

Appendix C
Lookup Operator

C-27

<OWB Multiple Match Rows - All Rows>

<ODI Multiple Match Rows - All Rows >

Appendix C
Lookup Operator

C-28

<OWB Multiple Match Rows - Single Row - Any Row>

<ODI Multiple Match Rows - Select Any Single Row>

Appendix C
Lookup Operator

C-29

<OWB Multiple Match Rows - Single Row - First / Last Row>

<ODI Multiple Match Rows -Select Single First / Last row>

Appendix C
Lookup Operator

C-30

<OWB Multiple Match Rows - Single Row - Nth Row>

<ODI Multiple Match Rows - Select Single Nth Row>

OWB No Match Rows Rules are migrated to ODI No Match Rows Plus <Lookup
Attributes Default Value & Order By> Default Value.

Appendix C
Lookup Operator

C-31

<OWB Match No Rows - Using Predefined Value>

<ODI Match No Rows - Using Default Value>

Migration Path

To support OWB lookup migration, the concept Multiple Match Rows and No match
Rows are introduced into ODI. The migration combines as following:

- OWB ODI12.1.2 ODI12.1.3 - -

Multiple Match
Rows

No Match Rows Lookup Type Multiple Match
Rows

No Match Rows Code Generated

ALL ROWS DEFAULT
VALUES

LEFT OUTER ALL ROWS(LEFT
OUTER)

DEFAULT
VALUES

LEFT OUTER
JOIN

ALL ROWS NO ROW N/A ALL_ROWS
(ALL_ROWS)

NO ROW INNER JOIN

ERROR DEFAULT
VALUES

EXPRESSION IN
SELECT

ERROR
(ERROR_WHEN
_MULTIPLE_RO
W)

DEFAULT
VALUES

EXPRESSION IN
SELECT

NTH ROW DEFAULT
VALUES

N/A NTH ROW DEFAULT
VALUES

LEFT OUTER
JOIN

ANY ROW DEFAULT
VALUES

N/A ANY ROW DEFAULT
VALUES

EXPRESSION IN
SELECT

FIRST ROW DEFAULT
VALUES

N/A FIRST ROW DEFAULT
VALUES

EXPRESSION IN
SELECT

LAST ROW DEFAULT
VALUES

N/A LAST ROW DEFAULT
VALUES

EXPRESSION IN
SELECT

Appendix C
Lookup Operator

C-32

C.11 Lookup Properties Migration
You can find out more information on how the OWB lookup properties are migrated to
ODI.

OWB Property Name ODI Property Name

Name Name

Input Group Not Migrated

Input Attributes Not Migrated

Multiple Match Rows Multiple Match Rows

No-Match Row No-Match Row

Nth Row Number Nth Row Number

Default Value and Order By Lookup Default Values & Order By

Lookup Condition Lookup Condition

Each Group's Lookup Table Lookup Operator's Lookup Table

C.12 Mapping Input Parameter Operator
Each attribute of an OWB Mapping Input Parameter operator is migrated as one ODI
variable under the project tree panel.

The default value of an attribute in the OWB Mapping Input Parameter operator is
migrated as the default value of the ODI variable. If the default value is not set, the
expression of the attribute is used instead.

By default, the attribute name is migrated to the ODI variable name. If the name
already exists, a number is automatically appended to create a unique name. If
multiple attributes of the same name are migrated, increasing numbers are used to
create unique names.

C.12.1 Properties of the Attributes of the Mapping Input Parameter
Operator

OWB Property Name ODI Property Name Description

Physical Name Name If the name already exists, a number
is automatically appended to create
a unique name.

Default Value Default Value The default value of the attribute in
the OWB Mapping Input Parameter
will be migrated as the ODI
Variable's default. If the default value
of the attribute in the input parameter
is not set, use the expression of the
attribute instead.

Appendix C
Lookup Properties Migration

C-33

OWB Property Name ODI Property Name Description

Data Type; one of:

• TIMESTAMP
• TIMESTAMP_WITH_LOCAL_TI

ME_ZONE
• TIMESTAMP_WITH_TIME_ZO

NE
• DATE

Data Type: DATE The attribute's default value (or
expression if no default value is set)
is converted to text and the ODI
variable's data type is configured as
SHORT_TEXT or LONG_TEXT:

• If the length of the converted
text exceeds 250, the ODI
variable's data type is configured
as LONG_TEXT.

• Otherwise, the ODI variable's
data type is configured as
SHORT_TEXT.

Data Type; one of:

• NUMBER
• NUMERIC
• FLOAT
• BINARY_DOUBLE
• BINARY_FLOAT
• INTEGER

Data Type: NUMERIC If the attribute's default value (or
expression if no default value is set)
cannot be parsed to numeric, it is
converted to text and the ODI
variable's data type is configured as
SHORT_TEXT or LONG_TEXT:

• If the length of the converted
text exceeds 250, the ODI
variable's data type is configured
as LONG_TEXT.

• Otherwise, the ODI variable's
data type is configured as
SHORT_TEXT.

Data Type; one of:

• VARCHAR2
• VARCHAR
• CHAR
• NCHAR
• NVARCHAR2

Data Type: SHORT_TEXT If the length of attribute's default
value (or expression if no default
value is set) exceeds 250, the ODI
variable's data type is configured as
LONG_TEXT.

Data Type: Other Not Supported If the attribute's type in OWB is some
other type, the operator will not be
migrated.

C.12.2 Migration Logic
The following diagram provides an example of how the OWB Mapping Input
Parameter is migrated to ODI. In this diagram, note the following:

1. Each attribute inside the Mapping Input Parameter EMP_RANGE is migrated to a
standalone variable; for example, EMP_RANGE.EMPNO_MIN is migrated to the
ODI project variable EMPNO_MIN.

2. The attribute's default value or expression is migrated to the ODI variable's default
value; for example, the expression 4001 of EMP_RANGE.EMPNO_MIN in OWB is
migrated to the ODI variable EMPNO_MIN's default value of 4001.

3. The downstream expressions of OWB Mapping Input Parameter attributes are
parsed to use the variable; for example, the FILTER condition expression has
been converted to #OPERATOR_MIGRATION.EMPNO_MIN.

Appendix C
Mapping Input Parameter Operator

C-34

C.12.3 How the Default Value Is Used
Once a mapping that contains an Input Parameter operator been migrated to ODI, it
can be executed through the generated mapping scenario. During the execution, all
the ODI variables migrated from OWB will be populated with the default value (OWB
input parameter attribute's default value or expression). If necessary, you can change
the value as needed, as shown in the following figure:

Appendix C
Mapping Input Parameter Operator

C-35

C.13 Materialized View Operator
The OWB Materialized View operator is migrated to the ODI Data store component.

C.13.1 Logical Properties of the Materialized View Operator

C.13.1.1 General Properties

OWB Property Name Description ODI Property Name Note

Bound Name

(BOUND_NAME)

If the OWB Materialized
View operator is bound to
a materialized view, the
ODI Data store
component will be bound
to the corresponding data
store.

Primary Source

(PRIMARY_SOURCE)

A boolean value to
indicate whether this is a
primary source (only
used in EDW).

(YES/NO)

Not migrated.

Keys

(KEYS_READONLY)

Not migrated.

Loading Type

(LOADING_TYPE)

Choices = "INSERT,
UPDATE,
INSERT_UPDATE,
UPDATE_INSERT,
DELETE, NONE,
TRUNCATE_INSERT,
DELETE_INSERT,
CHECK_INSERT,
DERIVE_FROM_LCR"

INTEGRATION_TYPE Same as for the Table
operator. See Notes
About Loading Type.

Appendix C
Materialized View Operator

C-36

OWB Property Name Description ODI Property Name Note

Target Load Order

(TARGET_LOAD_ORDER)

Map targets names in
loading sequence.

Not migrated.

C.13.1.2 Chunking
As with the Table operator, properties for Chunking are not migrated.

C.13.1.3 Conditional Loading
Same as for the Table operator. See Conditional Loading.

C.13.1.4 Data Rules
As with the Table operator, properties for Data Rules are not migrated.

C.13.1.5 Error Table
As with the Table operator, properties for Error Table are not migrated.

C.13.1.6 SCD Updates
As with the Table operator, properties for SCD Updates are not migrated.

C.13.1.7 Temp Stage Table
As with the Table operator, properties for Temp Stage Table are not migrated.

C.13.2 Physical Properties of the Materialized View Operator
Same as for the Table operator. See Physical Properties of the Table Operator.

C.13.3 Logical Properties of the Attributes of the Materialized View
Operator

Same as for the Table operator. See Logical Properties of the Attributes of the Table
Operator.

C.13.4 Migrating an Unbound Materialized View Operator
Same as for the Table operator. See Migrating an Unbound Table Operator.

C.14 Pivot Operator
The OWB Pivot operator is migrated to the ODI Unpivot component.

C.14.1 Properties of the Pivot Operator

Appendix C
Pivot Operator

C-37

C.14.1.1 General Properties

OWB Property
Name

Description ODI Property Name Note

Business Name

(LOGICAL_NAME)

Business Name

(BUSINESS_NAME)

Physical Name

(NAME)

Name

(NAME)

If the OWB name includes the
string "pivot", it is changed to
"unpivot".

C.14.1.2 Row Locator
The output attribute that is set as the row locator of the OWB Pivot operator is
migrated to the value of the Row Locator property of the ODI Unpivot component.

C.14.1.3 Pivot Transform
Pivot transform values of the OWB Pivot operator are migrated to unpivot transform
values of the ODI Unpivot component.

C.14.2 Map Attribute Group and Map Attribute
Map attribute groups of the OWB Pivot operator are migrated to connector points of
the ODI Unpivot component. No specific properties for attribute group of Pivot operator
need to be migrated.

Input attributes of the OWB Pivot operator are not migrated.

Output attributes are migrated. Name, Data Type, Length, Precision, Scale, Second
Precision and Description are general properties described in Mapping Attribute.
Migration of the Row Locator property is described in Row Locator. The Expression
property of the OWB Output attribute is migrated to the Expression property of the ODI
Output attribute.

C.15 Pluggable Mapping Operator
The OWB Pluggable Mapping operator is migrated to the ODI Reusable Mapping
component.

For general information about migrating pluggable mappings, see OWB Pluggable
Mappings.

C.15.1 Properties of the Pluggable Mapping Operator
No specific properties of the Pluggable Mapping operator need to be migrated.

C.15.2 Attribute Groups and Attributes of the Pluggable Mapping
Operator

Attribute groups and attributes in the Pluggable Mapping operator are not migrated.

Appendix C
Pluggable Mapping Operator

C-38

In ODI, when a Reusable Mapping component is bound to a Reusable Mapping, the
connector points and attributes of the Reusable Mapping component are created
automatically according to the binding Reusable Mapping. Thus, if an OWB Pluggable
Mapping operator is not consistent with its bound object in OWB, migration issues
might arise. To avoid any such issues, synchronize the Pluggable Mapping operator
before migration.

C.15.3 Migrating an Unbound Pluggable Mapping Operator
A mapping containing an unbound Pluggable Mapping operator will not be migrated
unless the MIGRATE_UNBOUND_OPERATOR migration configuration option is set to
true.

During migration, a Reusable Mapping will be created in ODI based on the unbound
Pluggable Mapping operator. The created Reusable Mapping is placed in the
STAND_ALONE folder under the project where the mapping is placed. The unbound
Pluggable Mapping operator is migrated to a Reusable Mapping component and
bound to the newly created Reusable Mapping.

C.16 Post-Mapping Operator
You can find out more information on how the OWB Post-Mapping operator is
migrated to ODI.
For ODI 12.1.2 (plus the applied patch), the OWB Post-Mapping operator is converted
to PL/SQL code and configured into the ODI container mapping's target node as the
KM option END_MAPPING_SQL.

For ODI 12.1.3, the OWB Post-Mapping operator is migrated as SQL clause and
saved into the "End Mapping Command" of the mapping. The operator's location
information is migrated into Location for End Mapping Command, and the Technology
for End Mapping Command would be populated as Oracle.

The downstream expressions which refer to the Output Attribute are resolved as
NULL.

The data type of Attribute Process operator are limited to: TIMESTAMP,
TIMESTAMP_WITH_LOCAL_TIME_ZONE, TIMESTAMP_WITH_TIME_ZONE, DATE, NUMBER, NUMERIC,

FLOAT, BINARY_DOUBLE, BINARY_FLOAT, INTEGER, VARCHAR2, VARCHAR, CHAR, NCHAR,

NVARCHAR2. Otherwise, the Attribute Process Operator is not migrated.

OWB Property Name ODI Property Name Note

Business Name Not migrated.

Description Not migrated.

Function Name Function Name inside the End
Mapping Command.

Physical Name Not migrated.

Post-Mapping Process Run
Condition

Skipped after migrated to ODI
Mapping.

Row based only Not migrated.

Input Attribute Physical Name Not migrated.

Output Attribute Physical Name Not migrated.

Appendix C
Post-Mapping Operator

C-39

C.17 Pre-Mapping Operator
You can find out more information on how the OWB Pre-Mapping operator is migrated
to ODI.
For ODI 12.1.2 (plus the applied patch), the OWB Pre-Mapping operator is migrated to
the KM option BEGIN_MAPPING_SQL of the source ODI Datastore component.

For ODI 12.1.3, the OWB Pre-Mapping operator is migrated as a SQL clause and
saved into the "Begin Mapping Command" of the mapping. The operator's location
information would be migrated into Location for Begin Mapping Command, and the
Technology for Begin Mapping Command would be populated as Oracle.

The downstream expressions which refer to the Output Attribute are be resolved as
NULL.

The data type of Attribute Process operator are limited to: TIMESTAMP,
TIMESTAMP_WITH_LOCAL_TIME_ZONE, TIMESTAMP_WITH_TIME_ZONE, DATE, NUMBER, NUMERIC,

FLOAT, BINARY_DOUBLE, BINARY_FLOAT, INTEGER, VARCHAR2, VARCHAR, CHAR, NCHAR,

NVARCHAR2. Otherwise, the Attribute Process Operator is not migrated.

OWB Property Name ODI Property Name Note

Business Name Not migrated.

Description Not migrated.

Function Name Function Name inside the Begin
Mapping Command.

Physical Name Not migrated.

Post-Mapping Process Run
Condition

Skipped after migrated to ODI
Mapping.

Row based only Not migrated.

Input Attribute Physical Name Not migrated.

Output Attribute Physical Name Not migrated.

C.18 Sequence Operator
You can find out more information on how the OWB sequences are migrated to ODI.
OWB Sequences are migrated to ODI Sequences as described in OWB Sequence to
ODI Sequence. The OWB Sequence operator is not migrated; however, references to
OWB Sequences in expressions are migrated to ODI as part of the migration of the
expressions.

C.19 Set Operator
The OWB Set operator is migrated to the ODI Set component.

C.19.1 Properties of the Set Operator

Appendix C
Pre-Mapping Operator

C-40

C.19.1.1 Set Operation
Set operation is an operator level property in OWB. It has four choices: UNION,
UNIONALL, INTERSECT, and MINUS.

ODI has a similar property, but the property is set on the input connector point. Hence,
the operator-level OWB Set Operation property is migrated to each input connector
point of the Set ODI component except the first input connector point which is left as
empty.

The following table displays the migration from OWB Set Operation to ODI set
operation type.

OWB Set Operation Type ODI Set Operation Type

UNION UNION

UNIONALL UNION ALL

MINUS MINUS

INTERSECT INTERSECT

C.19.2 Attribute Groups and Attributes of the Set Operator
The operator attribute groups of the OWB Set operator are migrated to ODI
component connector points. No specific properties need to be migrated for attribute
groups of the Set operator.

Input attributes of the Set operator are not migrated.

Output attributes are migrated. The Output attribute of the ODI Set component can
have multiple expressions. Each expression is associated with an input connector
point. During migration, the expressions for the ODI attribute will be constructed
according to the input attributes of the OWB Set operator. Take the following mapping
as an example:

Union1 is a Set operator in OWB. It has two output attributes, and the two input
attributes INGRP1.EMPNO and INGPR2.DEPTNO are mapped to
OUTGRP1.DEPTNO.

Appendix C
Set Operator

C-41

Because INGRP1.EMPNO is connected from EMP.INOUTGRP.EMPNO and
INGRP2.DEPTNO is connected from DEPT.INOUTGRP.DEPTNO, the expressions for
the output attribute UNION1.DEPTNO in the ODI Set component are set to refer to
EMP.EMPNO and DEPT.DEPTNO.

C.20 Sorter Operator
The OWB Sorter operator is migrated to the ODI Sorter component.

C.20.1 Logical Properties of the Sorter Operator

OWB Property Name Description ODI Property Name Note

Order By Clause

(ORDER_BY_CLAUSE)

The Order By Clause ORDER_BY_CLAUSE

C.20.2 Physical Properties of the Sorter Operator

OWB Property Name Description ODI Property Name Note

Inline view hint

(INLINEVIEW_HINT)

Hint used when inline view
is created for this operator

Not migrated.

C.21 Splitter Operator
The OWB Splitter operator is migrated to the ODI Splitter component.

C.21.1 Properties of the Splitter Operator

C.21.1.1 Split Condition
Split Condition is an attribute group-level property in OWB. ODI has a similar property,
which is set on the output connector point. The Split Condition property on the output
attribute group in OWB is migrated to the split condition expression on the output
connector point in ODI.

C.21.2 Attribute Groups and Attributes of the Splitter Operator
Output attribute groups of the Splitter operator in OWB are migrated to output
connector points in ODI. The output attribute group with the name
REMAINING_ROWS in OWB is migrated to the Remainder output connector point in
ODI.

Attributes of the Splitter operator are not migrated.

C.22 Subquery Filter Operator
The OWB Subquery Filter operator is migrated to the ODI Subquery Filter component.

Appendix C
Sorter Operator

C-42

C.22.1 Properties of the Subquery Filter Operator

C.22.1.1 Name and Description
The physical name of the Subquery Filter operator is migrated to the Subquery Filter
component name. The description is migrated to the component description.

C.22.1.2 Subquery Filter Condition
The OWB subquery filter condition is mapped to the ODI subquery filter condition.

The subquery filter condition for the ODI Subquery Filter component is as follows:

C.22.1.3 Subquery Filter Input Role
The OWB subquery filter input role is migrated to the ODI subquery filter input role.

The subquery filter input role for the ODI Subquery Filter component is as follows:

C.22.2 Map Attribute Groups
The OWB Subquery Filter operator has two attribute groups: input attribute group and
inout attribute group. The input attribute group of the OWB Subquery Filter operator is
migrated to the ODI SUBQUERY_FILTER_INPUT connector point of the ODI
Subquery Filter component. The OWB inout attribute group of the Subquery Filter
operator is migrated to the ODI DRIVER_INPUT connector point and the output
connector point. The two connector points use the default name instead of the OWB
inout attribute group name.

Appendix C
Subquery Filter Operator

C-43

C.22.3 Attributes
Attributes in the input attribute group are not migrated. Attributes in the inout group of
the OWB Subquery Filter operator are migrated to output attributes of the ODI
Subquery Filter component.

An output attribute of the Subquery Filter component has two expressions. The
following example describes how these two expressions are set during migration.

Using the following OWB mapping as an example:

This OWB mapping is migrated to the following ODI mapping:

The expressions for each migrated attribute are as follows:

Appendix C
Subquery Filter Operator

C-44

C.22.3.1 Expression for DRIVER_INPUT Connector Point
For output attributes of the OWB Subquery Filter operator that are connected from an
upstream attribute, the expression of these output attributes is set to the ODI
DRIVER_INPUT connector point, and the expression references the upstream
projector attribute.

In the previous OWB mapping, the attribute
SUBQUERY_FILTER.INOUTGRP1.EMPNO is connected from EMP.EMPNO. After
migration to ODI, the expression set on the DRIVER_INPUT connector point is
EMP.EMPNO.

C.22.3.2 Expression for SUBQUERY_FILTER_INPUT Connector Point
For output attributes of the OWB Subquery Filter operator with an IN Matching
Attribute property set, the expression of this property is set to the
SUBQUERY_FILTER_INPUT connector point.

For example, if the IN Matching Attribute value is DEPTNO, when migrating to ODI,
DEPT.DEPTNO is set as the expression for the SUBQUERY_FILTER_INPUT
connector point in ODI.

C.23 Table Operator
The OWB Table operator is migrated to the ODI Datastore component.

C.23.1 Logical Properties of the Table Operator

C.23.1.1 General Properties

OWB Property Name Description ODI Property Name Note

Bound Name

(BOUND_NAME)

If the OWB Table operator
is bound to a table, the ODI
Datastore component will
be bound with the
corresponding data store.

Business Name

(LOGICAL_NAME)

Business Name

(BUSINESS_NAME)

Create By Not migrated.

Appendix C
Table Operator

C-45

OWB Property Name Description ODI Property Name Note

Create Time Not migrated.

Icon Object Not migrated.

Keys

(KEYS_READONLY)

Not migrated.

Last Update Time Not migrated.

Primary Source

(PRIMARY_SOURCE)

A boolean value to indicate
whether this is a primary
source (only used in EDW).

Not migrated.

Loading Type

(LOADING_TYPE)

Choices = "INSERT,
UPDATE,
INSERT_UPDATE,
UPDATE_INSERT,
DELETE, NONE,
TRUNCATE_INSERT,
DELETE_INSERT,
CHECK_INSERT,
DERIVE_FROM_LCR"

INTEGRATION_TYPE See Notes About Loading
Type.

Target Load Order

(TARGET_LOAD_ORDER)

Map targets names in
loading sequence.

Not migrated. The
TARGET_LOAD_ORDER
property will be specified
on the mapping level.

Update By Not migrated.

Notes About Loading Type

The loading type of the OWB operator is migrated to the ODI integration type. The
Loading Type property is migrated only when the operator is used as the target.

The following table displays the migration mappings from the OWB loading type to the
ODI integration type.

OWB Loading Type Description ODI Integration Type Note

INSERT CONTROL_APPEND A default IKM whose
integration type is
CONTROL_APPEND is
assigned.

UPDATE INCREMENTAL_UPDATE A default IKM whose
integration type is
INCREMENTAL_UPDATE
and subtype is UPDATE is
assigned.

INSERT_UPDATE INCREMENTAL_UPDATE A default IKM whose
integration type is
INCREMENTAL_UPDATE
and subtype is MERGE is
assigned.

UPDATE_INSERT INCREMENTAL_UPDATE A default IKM whose
integration type is
INCREMENTAL_UPDATE
and subtype is MERGE is
assigned.

Appendix C
Table Operator

C-46

OWB Loading Type Description ODI Integration Type Note

DELETE Integration type is not set;
a default integration type is
used.

ODI does not support
DELETE DML.

NONE Integration type is not set;
a default integration type is
used.

TRUNCATE_INSERT CONTROL_APPEND Similar to INSERT, and the
KM option
TRUNCATE_TARGET_TA
BLE (if it exists) is set to
true.

DELETE_INSERT CONTROL_APPEND Similar to INSERT, and the
KM option DELETE_ALL (if
it exists) is set to true.

CHECK_INSERT CONTROL_APPEND Treated the same as
INSERT.

Note that there is no KM
option to check whether the
target table is empty prior
to the insert action.

DERIVE_FROM_LCR Integration type is not set;
a default integration type is
used.

ODI does not support
DERIVE_FROM_LCR.

C.23.1.2 Change Data Capture
The following table displays the Change Data Capture (CDC) property mappings from
OWB to ODI.

OWB Property Name Description ODI Property Name Note

Enabled

(IS_CDC)

Indicates if journaling is
enabled for this entity.

Journalized Data Only

(JOURNALIZING_ENABLE
D)

Capture Consistency

(CDC_METHOD)

Change Data Capture
method for this entity.

Choices: NONE,
CONSISTENT, SIMPLE

Not migrated.

Change Data Capture Filter

(CDC_FILTER_CONDITIO
N)

The boolean filtering
condition that identifies the
data to be processed. Any
row with a false condition is
not migrated.

Journalized Data Filter

(JOURNALIZED_DATA_FI
LTER)

Trigger Based Capture

(IS_TRIGGER_CDC)

Indicates if journaling
triggers are generated for
this entity.

Not migrated.

C.23.1.3 Chunking
Not migrated.

Appendix C
Table Operator

C-47

C.23.1.4 Conditional Loading
The following table displays the Conditional Loading property mappings from the OWB
Table operator to the ODI Datastore component.

OWB Property Name Description ODI Property Name Note

Target Filter for Update

(TARGET_FILTER_FOR_
UPDATE)

A condition on the rows in
the target and if evaluated
to true, that row
participates in the update
loading operation.

Not migrated.

Target Filter for Delete

(TARGET_FILTER_FOR_
DELETE)

A condition on the rows in
the target and if evaluated
to true, that row
participates in the delete
loading operation.

Not migrated.

Match by constraint

(MATCH_BY_CONSTRAIN
T)

Indicates whether unique
or primary key information
on this target will override
the matching criteria
obtained from the "Match
by constraint" property on
the attributes of this target.

Update Key

(UPDATE_KEY)

See Notes About Match By
Constraint.

Notes About Match By Constraint

In OWB, the property "Match by constraint" can be set to ALL_CONSTRAINTS,
NO_CONSTRAINT and a specific CONSTRAINT name (a PK or UK name of the
entity).

ALL_CONSTRAINTS
If "Match by constraint" is set to ALL_CONSTRAINTS, no update key is set on the
corresponding ODI Datastore component.

NO_CONSTRAINT
If "Match by constraint" is set to NO_CONSTRAINT, no update key is set on the
corresponding ODI Datastore component.

Specific Constraint Name
If "Match by constraint" is set to a specific constraint name, the constraint name is
used to find the corresponding key (PK or UK) in ODI that will be set as the update
key.

C.23.1.5 Control CT
Migration details for Control CT (code template) mapping properties are as follows:

Primary Key, Foreign Key, Unique Key, Check Constraint
Based on the name of the Key of the OWB Table operator, if a constraint with the
same name exists on the corresponding ODI Datastore component, the flow control
value in OWB is migrated to the constraint value in ODI.

Appendix C
Table Operator

C-48

Not Null Attribute Property
The Not Null property is set on the attribute level. The flow control value of the OWB
attribute is migrated to the Check Not Null property value on the ODI attribute.

C.23.1.6 Data Rules
Data Rules properties are not migrated.

C.23.1.7 Error Table
Error Table properties are not migrated.

C.23.1.8 SCD Updates
SCD Updates properties are not migrated.

C.23.1.9 Temp Stage Table
Temp Stage Table properties are not migrated.

C.23.1.10 Partition DML
The following table displays the Partition DML property mappings from the OWB Table
operator to the ODI Datastore component.

OWB Property Name Description ODI Property Name Note

DML Partition Type

(DML_PARTITION_TYPE)

Choices: NONE,
PARTITION,
SUBPARTITION

Not migrated.

Is Partition Indexed by
Name

(IS_PARTITION_INDEXED
_BY_NAME)

False if partition is indexed
by partition key value;
otherwise, it's indexed by
partition name.

(YES/NO)

Not migrated.

DML Partition Name

(DML_PARTITION_NAME)

Uses OWB partition type
and partition name to find
the corresponding partition
in ODI.

Partition Key Value List

(PARTITION_KEY_VALUE
_LIST)

The partition key value list
to search for the partition.

Not migrated.

C.23.2 Physical Properties of the Table Operator
Only those physical properties in the active configuration are considered for migration.

Appendix C
Table Operator

C-49

C.23.2.1 General Physical Properties

OWB Property Name Description ODI Property Name Note

Conflict Resolution

(CONFLICT_RESOLUTIO
N)

Detect and resolve any
conflicts that may arise
during DML using the LCR
APIs.

(TRUE/FALSE)

Not migrated.

Optimize Merge

(OPTIMIZE_MERGE)

(TRUE/FALSE) Not migrated.

Schema

(SCHEMA)

Not migrated.

Database link

(DATABASE_LINK)

Database link used to
access this entity during
mapping.

Not migrated.

Location

(DB_LOCATION)

Location, used to access
the referenced entity.

Not migrated.

C.23.2.2 Hints

OWB Property Name Description ODI Property Name Note

Extraction hint

(EXTRACTION_HINT)

Hint used when extracting
from this table using SQL.

SELECT_HINT

Loading hint

(LOADING_HINT)

Hint used when loading
into this table using SQL.

INSERT_HINT or
UPDATE_HINT

Automatic hints enabled

(AUTOMATIC_HINTS_EN
ABLED)

Automatic hints enabled
using SQL.

Not migrated.

C.23.2.3 Partition Exchange Loading
Properties of Partition Exchange Loading for the Table operator are not migrated.

C.23.3 Logical Properties of the Attributes of the Table Operator

C.23.3.1 Loading Properties

OWB Property Name Description ODI Property Name Note

Load Column when
Inserting Row

(LOAD_COLUMN_WHEN_
INSERTING_ROW)

A boolean value to indicate
whether this attribute will
participate in the insert load
operation.

(YES/NO)

Insert Indicator

Appendix C
Table Operator

C-50

OWB Property Name Description ODI Property Name Note

Load when Updating Row
Column

(LOAD_COLUMN_WHEN_
UPDATING_ROW)

A boolean value to indicate
whether this attribute will
participate in the update
load operation.

(YES/NO)

Update Indicator

Match Column when
Updating Row

(MATCH_COLUMN_WHE
N_UPDATING_ROW)

A boolean value to indicate
whether this attribute will
be used to construct the
matching criteria between
the incoming data and the
existing data on the target
during the update load
operation.

(YES/NO)

Key indicator See Notes About Match
Column When Updating
Row.

Match Column when
Deleting Row

(MATCH_COLUMN_WHE
N_DELETING_ROW)

A boolean value to indicate
whether this attribute will
be used to construct the
matching criteria between
the incoming data and the
existing data on the target
during the delete load
operation.

(YES/NO)

Not migrated.

Update Operation

(UPDATE_OPERATION)

The computation to be
performed on this attribute
between the incoming data
and the existing data on
the target during the
update load operation.

Choices = '=, +=, -=, =-,
*=, /=, =/, =||, ||='

Not migrated.

Notes About Match Column When Updating Row

Although the property of MATCH_COLUMN_WHEN_UPDATING_ROW in OWB is
migrated to KEY_INDICATOR in ODI, several rules govern how the key indicator for
the ODI map attribute is set.

When the property "Match by constraint" of the OWB Table operator is set to
ALL_CONSTRAINTS, the value set on the property
MATCH_COLUMN_WHEN_UPDATING_ROW is not migrated, and the key indicator is
set to true for the ODI attribute whose bound object is referenced by any PK/AK.

When the property "Match by constraint" of the OWB Table operator is set to
NO_CONSTRAINT, the key indicator of the ODI attribute is set according to the
property MATCH_COLUMN_WHEN_UPDATE_ROW of the OWB attribute. If
MATCH_COLUMN_WHEN_UPDATE_ROW is set to YES, the key indicator of the ODI
attribute should be set to true.

When the property "Match by Constraint" of the OWB Table operator is set to a
specific constraint, an update key is set on the ODI Datastore component. The key
indicator of the ODI attributes is set automatically when the update key is set.

Appendix C
Table Operator

C-51

C.23.3.2 Code Template Metadata Tags

OWB Property Name Description ODI Property Name Note

UD1

(CODE_TEMPLATE_USE
R_DEFINED_1)

A boolean value indicating
whether this attribute will
be included in code
template functions using
the UD1 tag.

(YES/NO)

UD_1

UD2

(CODE_TEMPLATE_USE
R_DEFINED_2)

(YES/NO) UD_2

UD3

(CODE_TEMPLATE_USE
R_DEFINED_3)

(YES/NO) UD_3

UD4

(CODE_TEMPLATE_USE
R_DEFINED_4)

(YES/NO) UD_4

UD5

(CODE_TEMPLATE_USE
R_DEFINED_5)

(YES/NO) UD_5

UPD

(CODE_TEMPLATE_UPD
ATE)

A boolean value indicating
whether this attribute will
be included in code
template functions using
the UPD tag.

(YES/NO)

Not migrated.

SCD

(CODE_TEMPLATE_SCD)

Choices = 'SCD_UND,
SCD_SK, SCD_NK,
SCD_INS, SCD_UPD,
SCD_FLAG, SCD_START,
SCD_END'

Not migrated.

C.23.4 Migrating an Unbound Table Operator
It is recommended to make all mapping operators in OWB to be bound to the
corresponding object in the project tree.

Mappings that contain an unbound Table operator are not migrated, unless the
migration configuration option MIGRATE_UNBOUND_OPERATOR in the migration
utility configuration file is set to true.

If the migration configuration option MIGRATE_UNBOUND_OPERATOR is set to true,
a data store is created in ODI based on the unbound Table operator. The bound name
of the unbound Table operator is used as the ODI datastore name. The unbound OWB
Table operator is migrated to the ODI Datastore component and is bound to the newly
created ODI datastore. For each unbound Table operator in a mapping, a datastore is
created, even the unbound Table operators have a same bound name.

No keys are created for the datastore in ODI after the migration. This may cause
issues with mapping code generation. Users need to manually fix the datastore before
running the mapping.

Appendix C
Table Operator

C-52

C.24 Table Function Operator
The OWB Table Function operator is migrated to the ODI Table Function component.

OWB has a bound Table Function operator (the operator is bound to a table function)
and an unbound Table Function operator, and these two kinds of operators are
migrated to an unbound Table Function component in ODI. The OWB Table Function
operator can have one input attribute group and one output attribute group. The
attribute groups of the Table Function operator are migrated to ODI map connector
points.

C.24.1 Logical Properties of the Table Function Operator

OWB Property Name Description ODI Property Name Note

Table Function Name

(TABLE_FUNCTION_NAM
E)

Name of the table function
to be called.

FUNCTION_NAME

Table Function is Target

TABLE_FUNCTION_IS_TA
RGET

Indicates if this table
function is being used as a
target operator.

Not migrated.

Even without this property,
ODI still knows if this Table
Function component is
used as a target.

Bound Name

(BOUND_NAME)

The name to be used by
the code generator to
identify this operator. By
default, this is the same as
the operator's physical
name.

Not migrated.

C.24.2 Logical Properties of the Map Attribute Group of the Table
Function Operator

OWB Property Name Description ODI Property Name Note

Return Table of Scalar

(RETURN_TABLE_OF_SC
ALAR)

Specifies whether the
return of the table function
is a TABLE of SCALAR.

Not migrated.

If this property is set to true
in OWB, then the
expression of the output
attribute in ODI is set to
TABLE_FUNCTION_NAM
E.COLUMN_VALUE.

Appendix C
Table Function Operator

C-53

C.24.3 Logical Properties of the Map Attribute of the Table Function
Operator

OWB Property Name Description ODI Property Name Note

Bound Name

(BOUND_NAME)

The name to be used by
the code generator to
identify this item. By
default, this is the same
physical name as the item.

Not migrated.

Type Attribute Name

(TYPE_ATTRIBUTE_NAM
E)

The name of the field of the
PLS Record or attribute of
the Object Type or column
of the ROWTYPE that
corresponds to this
attribute. This property is
not applicable if the return
type is TABLE of SCALAR.

Contributes to the
expression of the output
attribute in ODI.

C.24.4 Migrating the Table Function Operator
Scenarios for the Table Function operator in OWB mappings are as follows.

C.24.4.1 Scenario 1: Table Function operator acts as source, no input map
attribute group, only return group (output attribute group).

OWB mapping:

Mapping in ODI after migration:

Appendix C
Table Function Operator

C-54

The OWB output attribute group RETURN is migrated to the output connector point
RETURN in ODI.

OWB output attributes in the group RETURN are migrated to output attributes in the
connector point RETURN in ODI.

C.24.4.2 Scenario 2: Table Function Operator has one input attribute group and
one output attribute group, data type of input attributes is scalar

OWB mapping:

Mapping in ODI after migration:

The operator CONSTANT_1 is not migrated. The expressions on its attributes are
migrated to the ODI Table Function component attribute.

The OWB input attribute group INGRP1 of the Table Function operator is migrated to
the input connector point INGRP1 in the ODI Table Function component. Attributes in
the group INGRP1 are migrated to attributes in the connector point INGRP1. The
property PARAMETER_TYPE of the input connector point INGRP1 is set to SCALAR.

The OWB output attribute group RETURN is migrated to the output connector point
RETURN in ODI. Attributes in the group RETURN are migrated to attributes in the
connector point RETURN. If the property RETURN_TABLE_OF_SCALAR of the
output attribute in OWB is set to true, the expression of the corresponding output
attribute in ODI is set to TABLE_FUNCTION_NAME.COLUMN_VALUE.

Appendix C
Table Function Operator

C-55

C.24.4.3 Scenario 3: Table Function operator has one input attribute group and
one output attribute group, some data types of input attributes are
REF_CURSOR

The following figure shows an OWB mapping for which the data type for attribute C in
the operator TF_INREF_INSCA_REFREC is a PL/SQL Ref Cursor type, and the
operator REF1 is responsible for constructing the Ref cursor.

If the input attribute group contains one or more REF_CURSOR type attributes in the
Table Function operator in OWB, an input connector point is added for each
REF_CURSOR type in ODI. If the REF_CURSOR type is constructed by a
Constructed operator in OWB, the input attribute group of the Construct operator is
used to define the REF_CURSOR input connector point for the Table Function
component in ODI.

In this scenario, the OWB mapping in the preceding figure is migrated to the ODI
mapping in the following figure:

Source TFO_SRC_T2 is connected to TF_INREF_INSCA_RETREC through the input
connector point INGRP1. The property PARAMETER_TYPE of INGRP1 is set to
REF_CURSOR. The property PARAMETER_TYPE of INGRP11 is set to SCALAR.

Appendix C
Table Function Operator

C-56

C.25 Transformation Function Operator
The OWB Transformation Function operator is migrated to the ODI Expression
component.

C.25.1 Properties of the Transformation Function Operator

OWB Property Name Description ODI Property Name Note

Scalar Type

Return Type Attribute under the output
connector point.

1. The OWB output group
RETURN is migrated as
the ODI Expression's
output connector point
RETURN.

2. The OWB output
parameter VALUE is
migrated as the ODI
attribute VALUE under the
RETURN connector point.

3. The attribute's
expression is migrated as it
is in OWB (kept
unchanged).

Input parameters

(INPUT)

Accessed by the return
attribute's expression field,
for example:
simpleFunc(INPUT.COL1,I
NPUT.COL2)

Migrated as the ODI
Expression component's
attributes under
INPUTGROUP.

Output parameters

(OUTPUT)

Not migrated.

Input/Output parameters

(INPUT_OUTPUT)

Not migrated.

Function Return Output
parameters

Migrated as the ODI
Expression component's
attributes under OUTPUT
GROUP.

If a given Transformation
Function operator contains
multiple Function Return
attributes (at least two), the
transformation operator is
not migrated.

Appendix C
Transformation Function Operator

C-57

Note:

Additional migration notes:

• If the OWB Transformation Function operator is configured as ROW
BASED, the operator is not migrated.

• If the OWB Transformation Function operator has attributes of the BLOB,
SYS_ANYDATA or XMLTYPE complex data types, the operator is not
migrated.

• Multiple output attributes defined as Function Return are not migrated.

C.25.2 Logical Properties of the Transformation Function Operator

OWB Property Name Description ODI Property Name Note

Function Name

(FUNCTION_NAME)

Name of the transformation
to be called.

Used to generate the
expression on the ODI
output attribute.

Not migrated if Function
Name is empty.

Row-based only

(ROW-BASED_ONLY)

Indicates if this
transformation must be
used in row-based mode
only. Some transformations
can be used in SQL mode
and row-based mode.

Not migrated.

Return type

(RETURN_TYPE)

Return type for public
transforms with
UNSPECIFIED data type.

Not migrated.

Bound Name

(BOUND_NAME)

Name to be used by the
code generator to identify
this operator. By default,
this is the same as the
operator's physical name.

Not migrated.

Function Expression
Holder

(FUNCTION_PLATFORM)

Function platform name. Not migrated.

C.25.3 Physical Properties of the Transformation Function Operator

OWB Property Name Description ODI Property Name Note

Schema

(SCHEMA)

Not migrated.

Database Link

(DATABASE_LINK)

Database link used to
access this entity during
mapping.

Not migrated.

Appendix C
Transformation Function Operator

C-58

OWB Property Name Description ODI Property Name Note

Location

(DB_LOCATION)

Location, used to access
the referenced entity.

Not migrated.

C.25.4 Properties of the Map Attribute Group of the Transformation
Function Operator

OWB Property Name Description ODI Property Name Note

Expression Inout

(EXPRESSION_INOUT)

Condition that defines
when to perform the
attribute maps for the
attributes in this group.

Not migrated.

Expression Out

(EXPRESSION_OUT)

Condition that defines
when to perform the
attribute maps for the
attributes in this group.

Not migrated.

C.25.5 Properties of the Map Attribute of the Transformation Function
Operator

OWB Property Name Description ODI Property Name Note

Is Optional

(IS_OPTIONAL)

If true, the input is not
required to be
connected.

Not migrated.

Default Value

(DEFAULT_VALUE)

Default Value for the
function input
parameter.

Not migrated.

Function Return Specifies whether this
output is the return
value of this function.

If this property is set to
true, the owning
attribute is migrated to
the ODI output
attribute of the
Expression
component.

C.26 Unpivot Operator
The OWB Unpivot operator is migrated to the ODI Pivot component.

Note that the operation carried out by the OWB Unpivot operator is the same as the
ODI Pivot component, and the operation carried out by the OWB Pivot operator is the
same as the ODI Unpivot component.

C.26.1 Properties of the Unpivot Operator

Appendix C
Unpivot Operator

C-59

C.26.1.1 General Properties

OWB Property Name Description ODI Property Name Note

Business Name

(LOGICAL_NAME)

Business Name

(BUSINESS_NAME)

Physical Name

(NAME)

Name

(NAME)

If the OWB name includes
the string "unpivot", it is
changed to "pivot".

C.26.1.2 Row Locator
The Row Locator of the OWB Unpivot operator is migrated to the value of the Row
Locator property of the ODI Pivot component.

The expression of the Row Locator in OWB must be redirected so that it references
the attribute of the upstream source during migration.

Row Locator values in OWB are migrated to Row Locator values in ODI.

Row Locator and Row Locator values in ODI are as follows:

C.26.2 Map Attribute Group and Map Attribute
Map attribute groups of the OWB Unpivot operator are migrated to connector points of
the ODI Pivot component. No specific properties for the attribute group of the Pivot
operator need to be migrated.

Input attributes of the OWB Pivot operator are not migrated.

Output attributes are migrated. Name, Data Type, Length, Precision, Scale, Second
Precision, and Description are general properties described in Mapping Attribute.

Properties in the Unpivot transform are as follows:

Appendix C
Unpivot Operator

C-60

The matching row of the output attribute in OWB is migrated to the matching row of the
output attribute in ODI. The expression of the output attribute in OWB is migrated to
the expression of the output attribute in ODI. The expression must be redirected to
reference the attribute of the upstream source.

The following figure shows these properties in ODI:

C.27 View Operator
The OWB View operator is migrated to the ODI Datastore component.

C.27.1 Logical Properties of the View Operator

C.27.1.1 General Properties

OWB Property Name Description ODI Property Name Note

Bound Name

(BOUND_NAME)

If the OWB View operator
is bound to a view, the
ODI Datastore
component is bound with
the corresponding data
store.

Primary Source

(PRIMARY_SOURCE)

A boolean value to
indicate whether this is a
primary source (only
used in EDW).

(YES/NO)

Not migrated.

Appendix C
View Operator

C-61

OWB Property Name Description ODI Property Name Note

Keys

(KEYS_READONLY)

Not migrated.

Inlined

(INLINED)

If true, the view source in
the generated code is
inlined from the stored
view query.

See the View Query
property in this table.

View Query

(VIEW_QUERY)

The view query for the
View operator, used if the
INLINED property is set
to true.

If INLINED is set to true,
View Query is migrated
to the
CUSTOM_TEMPLATE
option of the KM.

Loading Type

(LOADING_TYPE)

Choices = "INSERT,
UPDATE,
INSERT_UPDATE,
UPDATE_INSERT,
DELETE, NONE,
TRUNCATE_INSERT,
DELETE_INSERT,
CHECK_INSERT,
DERIVE_FROM_LCR"

INTEGRATION_TYPE Same as for the Table
operator. See Notes
About Loading Type.

Target Load Order

(TARGET_LOAD_ORDER)

Map targets names in
loading sequence.

Not migrated.

C.27.1.2 Change Data Capture
Same as for the Table operator. See Change Data Capture.

C.27.1.3 Chunking
As with the Table operator, properties for Chunking are not migrated.

C.27.1.4 Conditional Loading
Same as for the Table operator. See Conditional Loading.

C.27.1.5 Data Rules
As with the Table operator, properties for Data Rules are not migrated.

C.27.1.6 Error Table
As with the Table operator, properties for Error Table are not migrated.

C.27.1.7 SCD Updates
As with the Table operator, properties for SCD Updates are not migrated.

C.27.1.8 Temp Stage Table
As with the Table operator, properties for Temp Stage Table are not migrated.

Appendix C
View Operator

C-62

C.27.2 Physical Properties of the View Operator
Same as for the Table operator. See Physical Properties of the Table Operator.

C.27.3 Logical Properties of the Attributes of the View Operator
Same as for the Table operator. See Logical Properties of the Attributes of the Table
Operator.

C.27.4 Migrating an Unbound View Operator
Same as for the Table operator. See Migrating an Unbound Table Operator.

Appendix C
View Operator

C-63

D
Special Migration Cases

This appendix provides examples of special migration cases.
The following topics are addressed here:

D.1 Tables with Multiple Primary Keys
You can find out more information on how OWB tables with multiple primary keys are
migrated to ODI data stores.
OWB tables are migrated to ODI data stores. In OWB, tables can have multiple
primary keys. In ODI, data stores can have only one primary key. In the case of
multiple primary keys, the first primary key is migrated as the primary key in ODI, and
the others are migrated as alternate keys.

When this situation occurs, the following warning message is written to the migration
utility log file:

{0}:{1} has multiple primary keys. Only one primary key is allowed in ODI, the
redundant primary keys will be migrated as alternate keys.

D.2 Special Cases for Mappings
You can find out more information on how OWB mappings are migrated to ODI.
Some OWB mappings have different graph structures after they are migrated to ODI.
The migration utility attempts to migrate OWB mappings to ODI as closely as possible,
but in some cases the resulting ODI mappings may not correspond to the original
OWB mapping structure.

The following special cases for mappings are addressed here:

D.2.1 Two Operators Connected to Same Downstream Operator
The following figure shows an OWB mapping for which operators EMP and
EXPRESSION are both connected to operator TGT_EMP through the same map
attribute group INOUTGRP1. This is not allowed in ODI, because each input connector
point in ODI can only be connected once.

D-1

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure.

D.2.2 Multiple Operators Connected From and To Same Operator
The following figure shows an OWB mapping for which operators FILTER and
EXPRESSION are both connected to operator TGT_EMP through the same map
attribute group INOUTGRP1. This is not allowed in ODI.

During migration, the FILTER and EXPRESSION operators are chained together to
ensure that only one is connected to TGT_EMP. As a result, the ODI mapping may be
EMP > FILTER > EXPRESSION > TGT_EMP or EMP > EXPRESSION > FILTER >
TGT_EMP.

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure.

Appendix D
Special Cases for Mappings

D-2

D.2.3 Lookup Operator Has a Constant as Input
The following figure shows an OWB mapping for which the Lookup operator has no
upstream source operator, and is only connected from a constant.

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure (DEP is the lookup table of the Lookup operator).

Appendix D
Special Cases for Mappings

D-3

The constant operator CONSTANT in the OWB mapping is not migrated to any map
component in ODI. Instead, the expression of the constant attribute is migrated, and
that expression is set on the Lookup component.

For example, in OWB, if the expression of the attribute CONSTANT.OUTGRP1.NO is
set to 5, and the lookup condition of LOOKUP_DEPT is OUTGRP1.DEPTNO =
INGRP1.NO, then after migration the lookup condition of LOOKUP_DEPT in ODI is
DEP.DEPTNO = 5.

D.2.4 Lookup Operators Have No Driver Table (Mapping Is Invalid)
The following figure shows an OWB mapping for which several Lookup operators are
connected to operator TGT_EMP, but some of the Lookup operators have no
upstream operators as driver tables. This mapping is invalid, but will also be migrated.
All Lookup operators are chained together to ensure that only one is connected to
TGT_EMP.

Appendix D
Special Cases for Mappings

D-4

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure.

D.2.5 Multiple Operators Connected to Same Operator, Some with No
Upstream Source

The following figure shows an OWB mapping for which two operators are connected to
the same operator TGT_EMP. The EXPRESSION operator has an upstream source
operator, while the JOINER operator does not. Only one map component can be
connected to TGT_EMP in ODI. As a result, the operator with no upstream source
operator will lose the connection to TGT_EMP.

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure.

Appendix D
Special Cases for Mappings

D-5

D.2.6 Multiple Operators Connected to Same Operator, All with
Different Upstream Operator

The following figure shows an OWB mapping for which two operators are connected to
the same operator TGT_EMP. Both operators have an upstream operator. Only one
map component can be connected to TGT_EMP in ODI. As a result, one operator will
lose the connection to TGT_EMP.

The OWB mapping in the preceding figure is migrated to one of the ODI mappings in
the following figures.

Appendix D
Special Cases for Mappings

D-6

-or-

D.2.7 Pluggable Mapping Operator with only Constant as Input
The following figure shows an OWB mapping for which the pluggable mapping
operator has no upstream source operator, and is only connected from a constant.
Such kind of mapping may work in OWB.

Appendix D
Special Cases for Mappings

D-7

The OWB mapping in the preceding figure is migrated to the ODI mapping in the
following figure.

The constant operator CONSTANT in the OWB mapping is not migrated to any map
component in ODI. Instead, the expression of the constant attribute is migrated, and
that expression is set on the attribute of the reusable mapping component. Such ODI
mapping has execution issue and it needs to be manually fixed after migration.

Appendix D
Special Cases for Mappings

D-8

E
Known Issues and Solutions

This appendix lists the known issues and their solutions.
This appendix contains the following topics:

E.1 Known Issues and Solutions
You can find out more information on the known issues during migration and how to
work around these issues.
The following are the issues are known at the time of the release. This section also
provides the solutions to work around these issues.

1. Symptom: The OWB to ODI Migration Utility does not migrate the comments from
OWB Joiner Condition to ODI Joiner Condition.

Solution: Comments are migrated when the OWB Mapping is not ANSI.
Otherwise, the comments are filtered out and not migrated. If you need Joiner
comments to be migrated over for OWB mapping that is ANSI, you can use the
migration configuration property SPLIT_JOIN_FOR_ANSI_SYNTAX=false and
migrate the mapping again.

2. Symptom: A misspelled configuration parameter has been added to the
configuration file. The Migration Utility execution does not report/list the misspelled
configuration parameter in the generated log files.

Solution: Check carefully the properties name in the migration utility configuration
file.A sample configuration file is provided in the following location.

<owb_home>/owb/bin/admin/migration.config

3. Symptom: After having migrated OWB mappings to ODI using the OWB-ODI
Migration Utility, ODI generates database links for mappings that have source and
target table in the same Oracle database.

Cause: This is not a bug. In OWB, when having e.g. a mapping with one source
and one target in the same database but in different schemas, one location is
required for every schema. When these two locations are migrated using the
migration utility, the utility will create two data servers in topology. However, when
ODI generates code for a mapping having source and target from different data
servers, ODI will generate a database link to the source. The disparity in the code
generated in ODI when compared with OWB is coming from the conceptual
differences about how connections and schemas are described in OWB and ODI.
The semantics and assumption in ODI is that if two physical schemas are under
different data servers, these two physical schemas are always considered to be in
different database instances. As a result, ODI will create two execution units in the
ODI mapping and thus a database link will be used to access the source table.
This is the expected behavior in ODI. The OWB-ODI migration utility is also
behaving as designed. Since it is possible in OWB to have multiple locations with
the same host/post/service name information but different user or schema, this will
result in having multiple data servers with the same JDBC URL in ODI after
migration.

E-1

Solution: Do the following:

• Create a new physical schema (pointing to the source) under the dataserver of
the target.

• Change the context for the logical schema for the original source to make it
point to the new physical schema.

4. Symptom: The Migration Utility fails to migrate OWB mappings containing the
Data Generator operator. The Data Generator operator is used to introduce
constants or sequences into a SQL*Loader mapping.

migration.log shows:

--------START MIGRATE MAPPING MAP1_DATA_GENERATOR.

------------[ERROR][Migration][MU-5001]Unable to migrate mapping with mapping
operator DATA_GENERATOR:DATA_GENERATOR.

--------FAILED MIGRATE MAP1_DATA_GENERATOR.

The Migration Utility does not support upgrading OWB mappings that contain the
Data Generator operator.

Solution:

• Before migrating, remove the Data Generator operator from the OWB
mapping.

• Migrate the mapping from OWB to ODI.

• After migration add a constant or sequence (depending on the way the Data
Generator was used) to the ODI mapping.

5. Symptom: When attempting to migrate an OWB Project with only a few selected
objects into ODI 12c the result in unexpected.Instead of migrating in a 1 to 1
manner (for example to MY_PROJECT), the operation creates a new Project (ex
MY_PROJECT_0) in ODI.

Solution: A new value for parameter MIGRATION_STRATEGY has been
introduced in migration utility for ODI 12.1.3 and above. Change the
MIGRATION_STRATEGY parameter from CREATE to NODUP.

6. Symptom: The OdiStartOwbJob utility is used to execute Oracle Warehouse
Builder objects (e.g. mappings, process flows) from within Oracle Data Integrator
and to retrieve the execution audit data into Oracle Data Integrator. Trying to
configure OdiStartOwbJob, the Location listbox shows the location
PlatformSchema. However all other locations are missing. Also a situation might
occur where location PlatformSchema is listed together with only a subset of
locations that can be seen in the OWB Design Client.

Cause: The location listbox of the OdiStartOwbJob utility, shows only locations
that are registered in the OWB Control Center. Locations that are only registered
in the Design Center are not listed by OdiStartOwbJob.

Solution:

• Start OWB 11.2.0.4 Design Client and login to the OWB Repository.

• Open the Control Center and register locations (target locations, process flow
locations) that are missing in the listbox of the OdiStartOwbJob utility.

• Exit from the OWB Design Client.

• Start ODI 12c Studio and login to the ODI Repository.

Appendix E
Known Issues and Solutions

E-2

• Open the Package where OdiStartOwbJob is being used and verify that the
location listbox of OdiStartOwbJob shows the registered locations.

7. Symptom: The OdiStartOwbJob utility is used to execute Oracle Warehouse
Builder objects (e.g. mappings, process flows) from within Oracle Data Integrator
and to retrieve the execution audit data into Oracle Data Integrator.

Starting an ODI package containing OdiStartOwbJob fails with:

ODI-13702: Unexpected error when connecting to OWB workspace
OWB_WORKSPACE_OWNER.OWB_WORKSPACE_NAME.

StatementCallback; bad SQL grammar [SELECT LOCATION_NAME,
LOCATION_TYPE, LOCATION_TYPE_VERSION FROM
OWBSYS.OWB_ODI_LOCATIONS]; nested exception is
java.sql.SQLSyntaxErrorException: ORA-00942: table or view does not exist.

Solution:

a. Check if required privileges are missing.

Using the query below, check if required privileges are missing:

connect owbsys/<password>

set lines 130

SELECT grantee,

table_name,

privilege

FROM user_tab_privs

WHERE table_name IN ('OWB_ODI_LOCATIONS', 'OWB_ODI_TASKS',

'OWB_ODI_TASK_PARAMETERS', 'OWB_SNP_SESSIONS',

'OWB_SNP_SESS_STEPS', 'OWB_SNP_SESS_TASKS',

'WB_RT_ODIAUDIT');

b. Grant required privileges.

When required privileges are missing, grant the correct privileges using
following grants:

connect owbsys/<password>

grant execute on wb_rt_odiaudit to OWB_USER;

grant select on owb_odi_locations to OWB_USER;

grant select on owb_odi_tasks to OWB_USER;

grant select on owb_odi_task_parameters to OWB_USER;

grant select on owb_snp_sessions to OWB_USER;

grant select on owb_snp_sess_steps to OWB_USER;

grant select on owb_snp_sess_tasks to OWB_USER;

Appendix E
Known Issues and Solutions

E-3

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Understanding the Migration Process
	1.1 About Migration
	1.2 About the Migration Utility
	1.3 What Is and Is Not Migrated
	1.3.1 Objects That Are Migrated
	1.3.2 Objects That Are Not Migrated

	1.4 Roadmap for Migration

	2 Preparing to Migrate
	2.1 Migration Requirements
	2.2 Migration Utility Run on a Non-64-bit Operating System
	2.3 Creating the Migration Utility Configuration File
	2.3.1 To Create the Migration Utility Configuration File
	2.3.2 Configuration File Parameters
	2.3.3 Configuration File Example

	3 Using the Migration Utility to Migrate
	3.1 Migration Utility Syntax and Parameters
	3.2 Migrating an OWB Workspace
	3.3 Migrating Specific Objects in an OWB Workspace
	3.4 Performing a Test Migration

	4 Reviewing Your Migration
	4.1 Reviewing Log and Report Files
	4.1.1 Reviewing the Migration Utility Log File
	4.1.2 Reviewing the Migration Utility Exclusion Report

	4.2 Verifying Your Migration

	A Message Reference
	B Reference to Migration Details
	B.1 OWB Repositories
	B.1.1 OWB Workspace to ODI Work Repository
	B.1.2 OWB Platform to ODI Technology
	B.1.2.1 Data Type Mapping for OWB GENERIC Platform to ODI Generic SQL Technology
	B.1.2.2 Data Type Mapping for OWB ORACLE Platform to ODI Oracle Technology
	B.1.2.3 Data Type Mapping for OWB DB2UDB Platform to ODI IBM DB2 UDB Technology
	B.1.2.4 Data Type Mapping for OWB SQLSERVER Platform to ODI Microsoft SQL Server Technology
	B.1.2.5 Data Type Mapping for OWB FILE Platform to ODI File Technology
	B.1.2.6 Data Type Mapping for OWB SAP Platform to ODI SAP ABAP Technology

	B.1.3 OWB Location to ODI Data Server
	B.1.3.1 Location Name to Data Server Name
	B.1.3.2 Location Properties to Data Server Properties
	B.1.3.3 Specific Location

	B.1.4 OWB Modules to ODI Models
	B.1.4.1 Module Name to Model Name
	B.1.4.2 Module Properties to Model Properties
	B.1.4.3 Additional Migration of OWB Modules to ODI Folders
	B.1.4.4 Physical Schema and Logical Schema

	B.1.5 OWB Projects to ODI Projects
	B.1.6 OWB Folders to ODI Folders

	B.2 OWB Data Objects
	B.2.1 OWB Table to ODI Datastore
	B.2.2 OWB View to ODI Datastore
	B.2.3 OWB Materialized View to ODI Datastore
	B.2.4 OWB External Table to ODI Datastore
	B.2.5 OWB Flat File to ODI Datastore
	B.2.6 OWB Sequence to ODI Sequence
	B.2.7 OWB Dimensions Under Database Module to ODI Dimension Model
	B.2.8 Property Migration Mapping Tables
	B.2.9 OWB Dimensions to ODI Dimensions
	B.2.10 OWB Cubes to ODI Cubes

	B.3 OWB Mappings
	B.3.1 OWB Mapping Properties
	B.3.1.1 OWB Mapping Logical Properties
	B.3.1.2 OWB Mapping Physical Properties
	B.3.1.3 PLSQL Physical Properties
	B.3.1.3.1 Chunking Options
	B.3.1.3.2 Runtime Parameters
	B.3.1.3.3 Code Generation Options

	B.3.1.4 SQL*LOADER Physical Properties
	B.3.1.4.1 SQL Loader Settings
	B.3.1.4.2 Runtime Parameters
	B.3.1.4.3 SQL Loader Data Files

	B.3.1.5 ABAP Mapping Physical Properties
	B.3.1.5.1 Runtime Parameters
	B.3.1.5.2 SQL Loader Settings

	B.3.1.6 SQLPLUS Mapping Physical Properties
	B.3.1.6.1 SQL*Plus Settings
	B.3.1.6.2 Runtime Parameters

	B.3.1.7 Code Template Mappings Physical Properties
	B.3.1.7.1 Chunking Options
	B.3.1.7.2 Code Generation Options
	B.3.1.7.3 Runtime Parameters
	B.3.1.7.4 SCD Updates

	B.3.2 Multiple Target Mapping Migration
	B.3.2.1 Target Load Order
	B.3.2.2 Multiple Target Insert (MTI)

	B.3.3 Mapping Operator
	B.3.4 Mapping Attribute
	B.3.4.1 General Properties
	B.3.4.2 Data Type Information

	B.4 OWB Pluggable Mappings
	B.4.1 Pluggable Mapping Folder
	B.4.2 Properties of Pluggable Mapping
	B.4.3 Input Signature and Output Signature
	B.4.4 Join Operator in Pluggable Mapping

	C Migration Details for Operators
	C.1 Common Properties
	C.2 Aggregate Operator
	C.2.1 Logical Properties of the Aggregate Operator
	C.2.2 Physical Properties of the Aggregate Operator
	C.2.3 Attribute Groups and Attributes of the Aggregate Operator

	C.3 Cube Operator
	C.4 Deduplicator Operator
	C.4.1 Properties of the Deduplicator Operator
	C.4.2 Attribute Groups and Attributes of the Deduplicator Operator

	C.5 Dimension Operator
	C.6 Expression Operator
	C.6.1 Properties of the Expression Operator
	C.6.2 Attribute Groups and Attributes of the Expression Operator

	C.7 External Table Operator
	C.7.1 Logical Properties of the External Table Operator
	C.7.1.1 General Properties
	C.7.1.2 Chunking
	C.7.1.3 Error Table
	C.7.1.4 SCD Updates
	C.7.1.5 Temp Stage Table

	C.7.2 Physical Properties of the External Table Operator
	C.7.2.1 General Properties
	C.7.2.2 Hints
	C.7.2.3 Partition Exchange Loading
	C.7.2.4 Constraint Management

	C.7.3 Migrating the External Table Operator

	C.8 Flat File Operator
	C.8.1 Logical Properties of the Flat File Operator
	C.8.2 Logical Properties of the Map Attribute Group of the Flat File Operator
	C.8.3 Logical Properties of the Map Attribute of the Flat File Operator

	C.9 Join Operator
	C.9.1 Properties of the Join Operator
	C.9.1.1 ANSI SQL syntax
	C.9.1.2 Join Condition
	C.9.1.3 Join Input Role

	C.9.2 Migrating an ANSI Join Operator
	C.9.2.1 Scenario 1: Two Input Groups with Standard Join
	C.9.2.2 Scenario 2: Two Input Groups with Outer Join Using (+) Style
	C.9.2.3 Scenario 3: Two Input Groups with Outer Join Using Join Input Role
	C.9.2.4 Scenario 4: Two Input Groups with both (+) Style and Join Input Role
	C.9.2.5 Scenario 5: Multiple Input Groups

	C.9.3 Migrating a Non-ANSI Join Operator
	C.9.4 Migrating a Self Join

	C.10 Lookup Operator
	C.11 Lookup Properties Migration
	C.12 Mapping Input Parameter Operator
	C.12.1 Properties of the Attributes of the Mapping Input Parameter Operator
	C.12.2 Migration Logic
	C.12.3 How the Default Value Is Used

	C.13 Materialized View Operator
	C.13.1 Logical Properties of the Materialized View Operator
	C.13.1.1 General Properties
	C.13.1.2 Chunking
	C.13.1.3 Conditional Loading
	C.13.1.4 Data Rules
	C.13.1.5 Error Table
	C.13.1.6 SCD Updates
	C.13.1.7 Temp Stage Table

	C.13.2 Physical Properties of the Materialized View Operator
	C.13.3 Logical Properties of the Attributes of the Materialized View Operator
	C.13.4 Migrating an Unbound Materialized View Operator

	C.14 Pivot Operator
	C.14.1 Properties of the Pivot Operator
	C.14.1.1 General Properties
	C.14.1.2 Row Locator
	C.14.1.3 Pivot Transform

	C.14.2 Map Attribute Group and Map Attribute

	C.15 Pluggable Mapping Operator
	C.15.1 Properties of the Pluggable Mapping Operator
	C.15.2 Attribute Groups and Attributes of the Pluggable Mapping Operator
	C.15.3 Migrating an Unbound Pluggable Mapping Operator

	C.16 Post-Mapping Operator
	C.17 Pre-Mapping Operator
	C.18 Sequence Operator
	C.19 Set Operator
	C.19.1 Properties of the Set Operator
	C.19.1.1 Set Operation

	C.19.2 Attribute Groups and Attributes of the Set Operator

	C.20 Sorter Operator
	C.20.1 Logical Properties of the Sorter Operator
	C.20.2 Physical Properties of the Sorter Operator

	C.21 Splitter Operator
	C.21.1 Properties of the Splitter Operator
	C.21.1.1 Split Condition

	C.21.2 Attribute Groups and Attributes of the Splitter Operator

	C.22 Subquery Filter Operator
	C.22.1 Properties of the Subquery Filter Operator
	C.22.1.1 Name and Description
	C.22.1.2 Subquery Filter Condition
	C.22.1.3 Subquery Filter Input Role

	C.22.2 Map Attribute Groups
	C.22.3 Attributes
	C.22.3.1 Expression for DRIVER_INPUT Connector Point
	C.22.3.2 Expression for SUBQUERY_FILTER_INPUT Connector Point

	C.23 Table Operator
	C.23.1 Logical Properties of the Table Operator
	C.23.1.1 General Properties
	C.23.1.2 Change Data Capture
	C.23.1.3 Chunking
	C.23.1.4 Conditional Loading
	C.23.1.5 Control CT
	C.23.1.6 Data Rules
	C.23.1.7 Error Table
	C.23.1.8 SCD Updates
	C.23.1.9 Temp Stage Table
	C.23.1.10 Partition DML

	C.23.2 Physical Properties of the Table Operator
	C.23.2.1 General Physical Properties
	C.23.2.2 Hints
	C.23.2.3 Partition Exchange Loading

	C.23.3 Logical Properties of the Attributes of the Table Operator
	C.23.3.1 Loading Properties
	C.23.3.2 Code Template Metadata Tags

	C.23.4 Migrating an Unbound Table Operator

	C.24 Table Function Operator
	C.24.1 Logical Properties of the Table Function Operator
	C.24.2 Logical Properties of the Map Attribute Group of the Table Function Operator
	C.24.3 Logical Properties of the Map Attribute of the Table Function Operator
	C.24.4 Migrating the Table Function Operator
	C.24.4.1 Scenario 1: Table Function operator acts as source, no input map attribute group, only return group (output attribute group).
	C.24.4.2 Scenario 2: Table Function Operator has one input attribute group and one output attribute group, data type of input attributes is scalar
	C.24.4.3 Scenario 3: Table Function operator has one input attribute group and one output attribute group, some data types of input attributes are REF_CURSOR

	C.25 Transformation Function Operator
	C.25.1 Properties of the Transformation Function Operator
	C.25.2 Logical Properties of the Transformation Function Operator
	C.25.3 Physical Properties of the Transformation Function Operator
	C.25.4 Properties of the Map Attribute Group of the Transformation Function Operator
	C.25.5 Properties of the Map Attribute of the Transformation Function Operator

	C.26 Unpivot Operator
	C.26.1 Properties of the Unpivot Operator
	C.26.1.1 General Properties
	C.26.1.2 Row Locator

	C.26.2 Map Attribute Group and Map Attribute

	C.27 View Operator
	C.27.1 Logical Properties of the View Operator
	C.27.1.1 General Properties
	C.27.1.2 Change Data Capture
	C.27.1.3 Chunking
	C.27.1.4 Conditional Loading
	C.27.1.5 Data Rules
	C.27.1.6 Error Table
	C.27.1.7 SCD Updates
	C.27.1.8 Temp Stage Table

	C.27.2 Physical Properties of the View Operator
	C.27.3 Logical Properties of the Attributes of the View Operator
	C.27.4 Migrating an Unbound View Operator

	D Special Migration Cases
	D.1 Tables with Multiple Primary Keys
	D.2 Special Cases for Mappings
	D.2.1 Two Operators Connected to Same Downstream Operator
	D.2.2 Multiple Operators Connected From and To Same Operator
	D.2.3 Lookup Operator Has a Constant as Input
	D.2.4 Lookup Operators Have No Driver Table (Mapping Is Invalid)
	D.2.5 Multiple Operators Connected to Same Operator, Some with No Upstream Source
	D.2.6 Multiple Operators Connected to Same Operator, All with Different Upstream Operator
	D.2.7 Pluggable Mapping Operator with only Constant as Input

	E Known Issues and Solutions
	E.1 Known Issues and Solutions

