
Oracle® Fusion Middleware
Installing Oracle Coherence

12c (12.2.1.3.0)
E80346-02
September 2017

Oracle Fusion Middleware Installing Oracle Coherence, 12c (12.2.1.3.0)

E80346-02

Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience ix

Documentation Accessibility ix

Related Documents ix

Conventions x

 What's New In This Guide

New and Changed Features xi

Other Significant Changes in this Document xii

1 Planning Your Oracle Coherence Installation

1.1 About Oracle Coherence 1-1

1.2 Introducing the Oracle Coherence Standard Installation Topologies 1-2

1.3 Roadmap for Installing and Configuring Standalone Oracle Coherence 1-2

1.4 Roadmap for Verifying Your System Environment 1-3

1.5 Understanding and Obtaining the Oracle Coherence Distribution 1-3

2 Installing Oracle Coherence for Java

2.1 System Requirements 2-1

2.2 Performing a Coherence Installation 2-2

2.2.1 Performing a Coherence Installation In Graphical Mode 2-3

2.2.1.1 Starting the Installation Program 2-3

2.2.1.2 Navigating the Installation Screens 2-3

2.2.2 Performing a Coherence Installation In Silent Mode 2-4

2.2.3 Running the Coherence Quick Installer 2-5

2.2.4 Running the Coherence Supplemental Installer 2-6

2.2.5 Installing Coherence with WebLogic Server 2-6

2.3 Setting Environment Variables 2-6

2.4 Running Coherence for the First Time 2-7

2.4.1 Create a Basic Cluster 2-7

iii

2.4.2 Create a Cache 2-8

2.5 Integration with Maven 2-8

2.6 Installing a Coherence Patch 2-9

2.7 Deinstalling Coherence 2-9

3 Installing a Client Distribution

3.1 Installing Coherence for Java 3-1

3.2 Installing the C++ Client Distribution 3-1

3.2.1 Supported Environments for Coherence C++ Client 3-1

3.2.2 Microsoft-Specific Requirements 3-2

3.2.3 Extracting the Coherence for C++ Distribution 3-2

3.3 Installing the .NET Client Distribution 3-3

3.3.1 Prerequisites 3-3

3.3.2 Running the Installer 3-3

3.3.3 Coherence .NET Version Number Mapping 3-4

3.3.4 Deploying Coherence for .NET 3-5

3.4 Compatibility Between Coherence*Extend Versions 3-5

4 Installing Coherence*Web to an Application Server

4.1 Installing Coherence*Web with WebLogic Server 4-1

4.2 Installing Coherence*Web with Other Application Servers 4-1

5 Upgrading Coherence from Previous Releases

5.1 General Upgrade Guidelines 5-1

5.2 Upgrading from Version 12.1.x 5-1

5.2.1 Update JVM 5-2

5.2.2 Update Maven Build Scripts 5-2

5.2.3 Update Cache Configuration File 5-2

5.2.4 Update Address and Port Assignments 5-2

5.2.5 Update Multiple Clusters that Run on the Same Network 5-3

5.2.6 Plan for TCP Usage 5-3

5.2.7 Update Extractor Implementations 5-3

5.2.8 Updated Packaging for Coherence REST on WebLogic Server 5-4

5.2.9 Running coherence.jar for the Coherence Console 5-4

5.2.10 Update CohQL Scripts 5-4

5.2.11 Update the Coherence*Web Configuration 5-4

5.2.12 Migrate to a Supported Web Container 5-4

5.2.13 Remove ActiveCache Integrations 5-5

5.2.14 Remove Encryption Filters 5-5

iv

5.2.15 Remove TopLink Grid Implementations 5-5

5.2.16 Update Classpaths for HotCache 5-5

5.2.17 Update Custom Health Monitors 5-5

5.3 Upgrading from Version 3.7.1.x 5-6

5.3.1 Upgrading Applications Using Coherence and Coherence*Web on
WebLogic Server 5-6

5.3.2 Upgrading Coherence*Extend 5-7

5.3.3 Upgrading Coherence*Web 5-7

5.3.3.1 Coherence*Web SPI Reserved for Older Versions of WebLogic 5-7

5.3.3.2 ActiveCache (active-cache.jar) Replaced with Managed
Coherence Servers 5-7

5.3.3.3 New Session Cache Configuration File 5-8

5.3.4 Upgrading ActiveCache Applications on WebLogic Server 5-8

5.3.5 Replacements for Deprecated Features 5-9

5.3.5.1 Replacement for Deprecated packet-pool and message-pool
Elements 5-10

5.3.5.2 Replacement for the Deprecated LH File Manager 5-10

5.3.5.3 Replacement for the Deprecated NamedCache Lock APIs 5-10

5.3.5.4 Replacement for the Deprecated XmlConfigurable Interface 5-10

5.3.6 Other Upgrade Issues 5-11

5.3.6.1 New DistributedCache Default for Exalogic Environments 5-11

5.3.6.2 Connecting from Remote RMI Clients 5-11

5.3.6.3 Key Associations on the Coherence*Extend Client 5-11

5.3.6.4 Changes to Invalidation Strategy for Near Caches 5-12

5.3.6.5 New Cache Configuration Element: resource-config 5-12

5.3.6.6 Changes to Invocable API Behavior 5-12

6 Running the Coherence Examples

6.1 Overview of Coherence Examples 6-1

6.2 Obtaining the Examples 6-5

6.3 How to Build the Examples 6-5

6.3.1 How to Build the Java Examples 6-5

6.3.1.1 Prerequisites for Java 6-6

6.3.1.2 Directory Structure for Java 6-6

6.3.1.3 Build Instructions for Java 6-7

6.3.2 How to Build the .NET Examples 6-7

6.3.2.1 Prerequisites for .NET 6-8

6.3.2.2 Directory Structure for .NET 6-8

6.3.2.3 Build Instructions for .NET 6-8

6.3.3 How to Build the C++ Examples 6-9

6.3.3.1 Prerequisites for C++ 6-9

v

6.3.3.2 Directory Structure for C++ 6-9

6.3.3.3 Build Instructions for C++ 6-10

6.4 How to Run the Examples 6-11

6.4.1 How to Run the Java Examples 6-11

6.4.1.1 Prerequisites for Java 6-11

6.4.1.2 Directory Structure for Java 6-11

6.4.1.3 Instructions for Java 6-12

6.4.2 How to Run the .NET Examples 6-16

6.4.2.1 Prerequisites for .NET 6-16

6.4.2.2 Directory Structure for .NET 6-16

6.4.2.3 Instructions for .NET 6-16

6.4.3 How to Run the C++ Examples 6-17

6.4.3.1 Prerequisites for C++ 6-17

6.4.3.2 Directory Structure for C++ 6-17

6.4.3.3 Instructions for C++ 6-18

6.5 Coherence Basic Features Example 6-19

6.5.1 Overview of the Basic Features Examples 6-19

6.5.2 Running the Example Set 6-20

6.5.3 Understanding the Features Driver File 6-20

6.5.4 Basic Data Access Example 6-20

6.5.5 Loader Example 6-22

6.5.6 Query Example 6-22

6.5.7 Observer Example 6-24

6.5.8 Processor Example 6-24

6.5.9 Query Language 6-26

6.5.10 Data Generator 6-28

6.6 Coherence Security Examples 6-28

6.6.1 Overview of the Coherence Security Examples 6-29

6.6.2 This Example Set 6-29

6.6.2.1 Running the Security Example Set 6-29

6.6.2.2 Understanding the Security Driver File 6-29

6.6.3 Password Example 6-30

6.6.4 Access Control Example 6-31

6.6.5 Password Identity Transformer 6-33

6.6.6 Password Identity Asserter 6-33

6.6.7 Entitled Cache Service 6-34

6.6.8 Entitled Invocation Service 6-34

6.6.9 Entitled Named Cache 6-35

6.6.10 Security Example Helper 6-35

6.7 Coherence Live Events Example 6-36

6.7.1 Overview of the Coherence Live Events Example 6-36

vi

6.7.2 This Example Set 6-36

6.7.2.1 Running the Live Events Example Set 6-37

6.7.2.2 Understanding the Live Events Driver File 6-37

6.7.3 EventsExamples 6-37

6.7.3.1 EventsTimingExample 6-37

6.7.3.2 VetodEventsExample 6-38

6.7.3.3 RedistributionEventsExample 6-38

6.7.4 TimedTraceInterceptor 6-39

6.7.5 CantankerousInterceptor 6-39

6.7.6 RedistributionInterceptor 6-39

6.7.7 RedistributionInvocable 6-39

6.7.8 LazyProcessor 6-40

6.8 Coherence Java 8 Features Example 6-40

6.8.1 This Example Set 6-40

6.8.1.1 Running the Java 8 Features Example Set 6-40

6.8.1.2 Understanding the Java 8 Driver File 6-41

6.8.2 Streams 6-41

6.8.3 Lambda 6-41

6.8.4 Map Default Method 6-41

6.9 Coherence Asynchronous Features Example 6-41

6.9.1 This Example Set 6-42

6.9.1.1 Running the Asynchronous Features Example Set 6-42

6.9.1.2 Understanding the Asynchronous Driver File 6-42

6.9.2 Asynchronous Data Access 6-42

6.9.3 Asynchronous Entry Processor 6-43

6.9.4 Asynchronous Aggregator 6-43

6.10 Coherence Federated Caching Example 6-43

6.10.1 This Example Set 6-43

6.10.1.1 Running the Federated Caching Example Set 6-43

6.10.1.2 Understanding the Federated Caching Driver File 6-43

6.10.2 Federation Configuration 6-44

6.11 Coherence Persistence Example 6-44

6.11.1 This Example Set 6-44

6.11.1.1 Running the Persistence Example Set 6-44

6.11.1.2 Understanding the Persistence Driver File 6-45

6.11.2 Basic Snapshot Operations 6-45

6.11.3 Persistence Notifications 6-45

6.11.4 Persistence Operations in Parallel 6-46

6.11.5 Archiving Snapshots with a Custom Archiver 6-46

6.12 Coherence REST Examples 6-46

6.12.1 This Example Set 6-47

vii

6.12.2 Building and Running the Example 6-47

6.12.3 Products Page 6-48

6.12.4 Departments Page 6-48

6.12.5 Contacts Page 6-49

6.12.6 Server-Sent Events 6-49

6.12.7 JSON Pass-Through Page 6-49

6.12.8 Binary Pass-Through Page 6-49

A Understanding the Oracle Coherence Directory Structure

viii

Preface

Installing Oracle Coherence provides instructions for installing Coherence for Java,
Coherence for C++, Coherence for .NET, and Coherence*Web. The documentation
also includes instructions for upgrading from previous releases and instructions for
running the Coherence examples.

This preface includes the following sections:

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
Installing Oracle Coherence is intended for the following audiences:

• Primary Audience – Application developers who want to install Coherence for
application development.

• Secondary Audience – System architects and operations personnel who want to
understand how to install Coherence components.

The audience must be familiar with Java, C++, and .NET to use this guide.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents in the Oracle Coherence
documentation set:

• Administering Oracle Coherence

ix

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

• Administering HTTP Session Management with Oracle Coherence*Web

• Developing Applications with Oracle Coherence

• Developing Remote Clients for Oracle Coherence

• Integrating Oracle Coherence

• Managing Oracle Coherence

• Securing Oracle Coherence

• Java API Reference for Oracle Coherence

• C++ API Reference for Oracle Coherence

• .NET API Reference for Oracle Coherence

• Release Notes for Oracle Coherence

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements
associated with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs,
code in examples, text that appears on the screen, or text that you
enter.

Preface

x

What's New In This Guide

This preface includes the following sections:

• New and Changed Features
New and changed features in Installing Oracle Coherence that are organized by
release.

• Other Significant Changes in this Document
Other significant changes in Installing Oracle Coherence that are organized by
release.

New and Changed Features
New and changed features in Installing Oracle Coherence that are organized by
release.

New and Changed Features for 12c (12.2.1.3)

Oracle Coherence 12c (12.2.1.3) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1.2)

Oracle Coherence 12c (12.2.1.2) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1.1)

Oracle Coherence 12c (12.2.1.1) does not contain any new and changed features for
this document.

New and Changed Features for 12c (12.2.1)

Oracle Coherence 12c (12.2.1) includes the following new and changed features for
this document.

• Java 8 features example, which demonstrates using lambdas, streams, and
default Map methods in Coherence. See Coherence Java 8 Features Example.

• Asynchronous NamedCache example, which demonstrates using the AsyncNamedCache
interface. See Coherence Asynchronous Features Example.

• Federated caching example, which demonstrates replicating cache data across
two cluster that are configured in an active-active topology. See Coherence
Federated Caching Example.

• Persistence example, which demonstrates how to persist and recover cached
data. See Coherence Persistence Example.

xi

• REST example, which demonstrates how an application can use Coherence
REST to interact with a Coherence cache. See Coherence REST Examples.

Other Significant Changes in this Document
Other significant changes in Installing Oracle Coherence that are organized by
release.

Other Significant Changes in This Document for 12c (12.2.1.3)

For 12c (12.2.1.3), no other significant changes have been made to this guide.

Other Significant Changes in This Document for 12c (12.2.1.2)

For 12c (12.2.1.2), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Revised Linux support for C++ clients. See Supported Environments for
Coherence C++ Client.

• Revised REST example instructions to include Binary and JSON pass-through.
See Coherence REST Examples.

Other Significant Changes in This Document for 12c (12.2.1.1)

For 12c (12.2.1.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Revised instruction for upgrading to Coherence 12.2.x. See Upgrading from
Version 12.1.x.

Other Significant Changes in This Document for 12c (12.2.1)

For 12c (12.2.1), this guide has been updated in several ways. Following are the
sections that have been added or changed.

• Revised the JDK requirement. See System Requirements.

• Revised C++ client requirements. See Installing the C++ Client Distribution.

• Revised .NET client requirements. See Installing the .NET Client Distribution.

• Revised instruction for upgrading to Coherence 12.2.x. See Upgrading from
Version 12.1.x.

What's New In This Guide

xii

1
Planning Your Oracle Coherence
Installation

This guide will help you install Oracle Coherence. Various topics are covered that
should be reviewed thoroughly to help ensure that you do not encounter any problems
either during or after the Oracle Coherence installation.
To install standalone Oracle Coherence, there is no prerequisite for Oracle Fusion
Middleware Infrastructure. If you do have the Infrastructure on your system, then
Oracle Coherence can be integrated with it in a number of ways. For the purposes of
this guide, only the standalone mode is considered.

Note:

Oracle Coherence can also be installed as part of an Oracle WebLogic Server
installation. Installing and configuring Oracle Coherence with WebLogic Server
is beyond the scope of this documentation. See Planning the Oracle WebLogic
Server Installation in Installing and Configuring Oracle WebLogic Server and
Coherence.

This chapter contains the following sections:

• About Oracle Coherence

• Introducing the Oracle Coherence Standard Installation Topologies

• Roadmap for Installing and Configuring Standalone Oracle Coherence

• Roadmap for Verifying Your System Environment

• Understanding and Obtaining the Oracle Coherence Distribution

1.1 About Oracle Coherence
Oracle Coherence in-memory data grid is a key component of Oracle's Cloud
Application Foundation. Oracle Coherence predictably scales applications to meet
mobile and cloud demands on shared services and infrastructure.

• Provides real-time application processing using parallel query, live event
processing, map-reduce aggregation, and parallel transaction processing

• Scales applications linearly and dynamically for predictable cost and reliable
delivery of real-time customer experiences

• Enables continuous data availability and transactional integrity across the most
demanding multi-data center deployments

• Oracle Coherence's GoldenGate HotCache enables businesses to leverage real-
time cache updates to provide always-accurate application information

1-1

• Provides operational simplicity through advanced integration with Oracle
WebLogic Server, across conventional and cloud environments, and Oracle
Exalogic Elastic Cloud

1.2 Introducing the Oracle Coherence Standard Installation
Topologies

Using Oracle Coherence software together with other application software, you can
create a variety of production topologies to suit the needs of your applications, your
organization, and your application users.

As a result, it is difficult to provide exact instructions for every possible Oracle
Coherence installation. This documentation provides detailed instructions for installing
Oracle Coherence only in standalone mode.

For more information about standard installation topologies, see Understanding the
Standard Installation Topology in Planning an Installation of Oracle Fusion
Middleware.

1.3 Roadmap for Installing and Configuring Standalone
Oracle Coherence

Review the steps that are required to install and Oracle Coherence. Table 1-1 shows
the steps required to install and configure standalone Oracle Coherence.

Table 1-1 Roadmap for Standalone Oracle Coherence Installation

Task Description For More Information

Verify your system
environment

Before beginning the installation, verify that
the minimum system and network
requirements are met.

Roadmap for Verifying Your System
Environment and System Requirements

Obtain the
appropriate
distribution

To install Oracle Coherence, obtain the
distribution.

Understanding and Obtaining the Oracle
Coherence Distribution

Determine your
installation directories

Verify that the directory into which you want
to install Oracle Coherence is accessible by
the installer, and exists on systems that meet
the minimum requirements.

Understanding the Oracle Coherence
Directory Structure

Install Oracle
Coherence

Run the installation program to install the
software. This transfers the software to your
system.

Performing a Coherence Installation

Post-configuration
administration and
configuration tasks

Discover additional tools and resources to
configure and administer Oracle Coherence.

Installing a Client Distribution, Installing
Coherence*Web to an Application Server

Upgrade tasks If you are already working with Coherence,
upgrade your applications to use the current
release.

Upgrading Coherence from Previous
Releases

Run Coherence
Examples

The Coherence distribution includes a
collection of examples that exercise many
Coherence features.

Running the Coherence Examples

Chapter 1
Introducing the Oracle Coherence Standard Installation Topologies

1-2

1.4 Roadmap for Verifying Your System Environment
Oracle Fusion Middleware products are certified to run in different system
environments. Table 1-2 identifies important tasks and checks that you must perform
to make sure that your environment is properly prepared for installing and configuring
Oracle Coherence.

Table 1-2 Roadmap for Verifying Your System Environment

Task Description For More Information, See

Verify certification
and system
requirements.

Verify that your operating system is certified
and properly configured for Oracle Fusion
Middleware Infrastructure installation and
configuration.

Verifying Certification and System
Requirements in Planning an Installation of
Oracle Fusion Middleware.

Prepare your system
for installation.

Verify that the necessary environment
variables are set, and you have identified a
proper installation user.

Prepare Your System for Installation in
Planning an Installation of Oracle Fusion
Middleware.

1.5 Understanding and Obtaining the Oracle Coherence
Distribution

The Oracle Coherence distribution is available as a standalone executable installation
program. To obtain the distribution, see Obtaining Product Distributions in Planning an
Installation of Oracle Fusion Middleware.

Chapter 1
Roadmap for Verifying Your System Environment

1-3

2
Installing Oracle Coherence for Java

Several installers are available for installing Oracle Coherence for Java (simply
referred to as Coherence). The installers are delivered as executable JAR files and
facilitate the installation process. After you have installed Coherence, run the quick
example to verify that Coherence is successfully installed.

Note:

For instructions about installing a Coherence*Extend client distribution, see
Installing a Client Distribution. For instructions about installing
Coherence*Web to an application server, see Installing Coherence*Web to an
Application Server .

This chapter includes the following sections:

• System Requirements
Coherence has different requirements for installation and runtime.

• Performing a Coherence Installation

• Setting Environment Variables
You can set the JAVA_HOME and COHERENCE_HOME environment variables.
However, they are not required to run Coherence.

• Running Coherence for the First Time

• Integration with Maven

• Installing a Coherence Patch

• Deinstalling Coherence

2.1 System Requirements
Coherence has different requirements for installation and runtime.

Runtime Requirements

The following are the suggested minimum system requirements for running Coherence
in a development environment:

• 100 MB disk space for complete installation (includes API documentation and
examples)

• 1 GB of RAM (assuming a maximum Java heap size of 512MB) – This amount of
RAM can ideally support a maximum cache size of 150MB on a single node that is
configured to store a backup of all data (150MB x 2) and leaves more than a 1/3 of
the heap available for scratch and JVM tasks. This recommendation is considered
a basic starting point and should not be considered a rule. See JVM Tuning in
Administering Oracle Coherence.

2-1

• JVM (JRE or JDK) 1.8 or later. A JDK is often used during development and offers
tools for monitoring and troubleshooting Java applications, but a JDK is not
required to run Coherence.

Note:

Customers that want to integrate with applications that are running older JVM
versions can use older Coherence clients; however, the client is constrained to
the platform and client features that are supported for that Coherence version.

• Windows or UNIX-based system that supports the required Java Version

• Network adapter

Installation Requirements

The following are the minimum requirements for using the Coherence installer:

Note:

The requirements for running the installer are not the same as the
requirements for running Coherence.

• 300 MHz CPU

• 512 MB swap space

• 256 color monitor (required for GUI-based installation only)

• Java Development Kit (JDK) 1.6.0_4 or later

2.2 Performing a Coherence Installation
Coherence is installed using the Oracle Universal Installer. The installer provides both
installation and patching services for Oracle products. The following installers are
available for Coherence and detailed in this section.

• fmw_version_coherence.jar – A full Coherence installation that can be run in either
graphical mode or silent mode. See Performing a Coherence Installation In
Graphical Mode and Performing a Coherence Installation In Silent Mode.

• fmw_version_coherence_quick.jar – A minimum Coherence installation that is
always run in silent mode. The quick installer provides a smaller footprint and does
not include API documentation or examples. See Running the Coherence Quick
Installer.

• fmw_version_coherence_quick_supplemental.jar – A supplemental installation that is
always run in silent mode. The supplemental installer contains only API
documentation and examples. See Running the Coherence Supplemental
Installer.

• fmw_version_wls.jar – A full WebLogic Server installation that includes Coherence.
See Installing Coherence with WebLogic Server.

Chapter 2
Performing a Coherence Installation

2-2

Coherence is always installed to an ORACLE_HOME/coherence directory. The complete
path to the coherence directory is referred to as COHERENCE_HOME throughout the
Coherence documentation.

This section includes the following topics:

• Performing a Coherence Installation In Graphical Mode

• Performing a Coherence Installation In Silent Mode

• Running the Coherence Quick Installer

• Running the Coherence Supplemental Installer

• Installing Coherence with WebLogic Server

2.2.1 Performing a Coherence Installation In Graphical Mode
The Coherence installer is distributed as an executable Java ARchive (JAR) file called
fmw_version_coherence.jar. Use the java command to run the installer on the target
computer. For detailed help on the installer's options, use the -help argument when
running the installer.

For information about the directories created by the installer, see Understanding the
Oracle Coherence Directory Structure.

This section includes the following topics:

• Starting the Installation Program

• Navigating the Installation Screens

2.2.1.1 Starting the Installation Program
To perform a Coherence installation in graphical mode:

1. Copy the fmw_version_coherence.jar file to the target computer.

2. From a command prompt, change directories to the location of the
coherence_version.jar file and execute the following command (assuming that
JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence.jar

The installation program displays.

2.2.1.2 Navigating the Installation Screens
Table 2-1 lists the screens in the order that the installation program displays.

If you need additional help with any of the installation screens, click the screen name.

Chapter 2
Performing a Coherence Installation

2-3

Table 2-1 Oracle Coherence Installation Screens

Screen Description

Inventory Setup On UNIX operating systems, this screen will appear if this is the
first time you are installing any Oracle product on this host.
Specify the location where you want to create your central
inventory. Make sure that the operating system group name
selected on this screen has write permissions to the central
inventory location.

For more information about the central inventory, see
Understanding the Oracle Central Inventory in Installing Software
with the Oracle Universal Installer.
This screen will not appear on Windows operating systems.

Welcome This screen introduces you to the product installer.

Installation Location Use the drop-down list to select an existing ORACLE_HOME directory
to which Coherence will be installed, or enter an absolute path to
create a new Coherence ORACLE_HOME directory. Click Browse to
search for a directory if required. The directory cannot contain an
existing Coherence installation.

Installation Type Select which Coherence options to install.

Prerequisite Checks This screen displays a list of system checks that are performed to
ensure that Coherence is certified on the system.

Installation Summary Verify the installation. Click Save Response File if you intend to
duplicate this installation on additional computers. A response file
is created that can be used to perform a silent install with the
exact same installation settings. See Performing a Coherence
Installation In Silent Mode.

Installation Progress This screen allows you to see the progress of the installation.

Installation Complete This screen appears when the installation is complete. Review the
information on this screen, then click Finish to dismiss the
installer.

2.2.2 Performing a Coherence Installation In Silent Mode
Silent mode allows Coherence to be installed without using a graphical interface and is
ideal for remote installations or when incorporating the installation as part of a script.
Silent mode typically uses a response file (.rsp) that contains the installation
parameters as name=value pairs. Create a response file by running the installer in
graphical mode and then saving the installation parameters to a response file at the
Installation Summary screen. Use the saved file to replicate the installation on other
computers or modify the file to change the installation as required.

To perform a Coherence installation in silent mode:

1. Copy the fmw_version_coherence.jar file and a response file to the target computer.

2. From a command prompt, change directories to the location of the
coherence_version.jar file and execute the following command (assuming that
JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence.jar -silent -responseFile
full_path_to_response_file -waitForCompletion

Chapter 2
Performing a Coherence Installation

2-4

On UNIX-based platforms, the installer requires the location of the oraInst.loc
inventory directory pointer file if it is not found in the default location (/etc). If this is
the first time that an Oracle product has been installed on this computer, you can
use the createCentralInventory.sh script to set up an inventory directory pointer
file in the /etc directory. The script requires root permissions.

If you want to use a custom location for the oraInst.loc file, use the -invPtrLoc
installer option to specify the location. For example:

java -jar fmw_version_coherence.jar -silent -responseFile
full_path_to_response_file -waitForCompletion -invPtrLoc /MyDirectory/oraInst.loc

The contents of the oraInst.loc file contains the location and the ownership group
for the inventory directory. For example:

inventory_loc=/MyDirectory/oraInventory
inst_group=group

2.2.3 Running the Coherence Quick Installer
The quick install is distributed as an executable JAR file called
fmw_version_coherence_quick.jar. Use the java command to run the installer on the
target computer. For detailed help on the installer's options, use the -help argument
when running the installer.

The quick install performs a silent install with no options. The distribution includes less
lifecycle tools but does register the Coherence components as part of the Oracle
inventory, which allows future lifecycle operations to work. In addition, the installation
does not include API documentation or code examples. The result is a faster
installation process and a smaller installation footprint than the regular Coherence
installer and is an ideal method for installing Coherence as part of a script without user
interaction.

To perform a Coherence quick installation:

1. Copy the fmw_version_coherence_quick.jar file to a directory on the target
computer.

2. From a command prompt, change directories to the location of the
fmw_version_coherence_quick.jar file and execute the following command
(assuming that JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence_quick.jar ORACLE_HOME=/oracle

The value of the ORACLE_HOME variable specifies the ORACLE_HOME directory to which
Coherence will be installed. The value must be an absolute path. If the directory
already exists, it must be empty or it must be an existing valid ORACLE_HOME. The
directory cannot contain an existing Coherence installation. If the directory does
not exist, the installer creates the directory. You can also start the installation from
an empty current working directory and omit the ORACLE_HOME variable; the current
working directory becomes the ORACLE_HOME directory. For example:

cd /oracle
java -jar /tmp/fmw_version_coherence_quick.jar

On UNIX-based platforms, the quick installer attempts to find the oraInst.loc
inventory directory pointer file in the /etc directory. If the file is not found, the /tmp
directory is used as the inventory directory. If this is the first time that an Oracle
product has been installed on this computer, you can use the

Chapter 2
Performing a Coherence Installation

2-5

createCentralInventory.sh script to set up an inventory directory pointer file in
the /etc directory. The script requires root permissions.

If you want to use a custom location for the oraInst.loc file, use the -invPtrLoc
installer option to specify the location. For example:

java -jar fmw_version_coherence_quick.jar -invPtrLoc /MyDirectory/oraInst.loc

The contents of the oraInst.loc file contains the location and the ownership group
for the inventory directory. For example:

inventory_loc=/MyDirectory/oraInventory
inst_group=group

2.2.4 Running the Coherence Supplemental Installer
The supplemental install is distributed as an executable JAR file called
fmw_version_coherence_quick_supplemental.jar. The distribution is used to install the
API documentation and code examples to an existing Coherence installation. The
supplemental installer performs a silent install with no options. It is typically used
together with the quick installer to perform an installation as part of a script without
user interaction. If you do not require the API documentation or code examples, then
you can skip the supplemental installation.

1. Copy the fmw_version_coherence_quick_supplemental.jar file to the ORACLE_HOME
directory where Coherence is installed.

2. From a command prompt, change directories to the location of the
fmw_version_coherence_quick_supplemental.jar file and execute the following
command (assuming that JAVA_HOME/bin is located on the computer's PATH):

java -jar fmw_version_coherence_quick_supplemental.jar

The installation starts and status messages are emitted.

2.2.5 Installing Coherence with WebLogic Server
The WebLogic Server installer includes the Coherence distribution and installs
Coherence in the same ORACLE_HOME directory as WebLogic Server. WebLogic Server
includes a Coherence integration that standardizes how Coherence is managed and
deployed within a WebLogic Server domain. The integration makes Coherence a
subsystem of WebLogic Server and allows Coherence environments to be
administered using WebLogic Server tools and infrastructure, such as Java EE-styled
packaging and deployment, remote server management, server clusters, WebLogic
Scripting Tool (WLST) automation, and configuration through the Administration
Console. For details about installing Coherence with WebLogic Server, see Planning
the Oracle WebLogic Server Installation in Installing and Configuring Oracle WebLogic
Server and Coherence.

2.3 Setting Environment Variables
You can set the JAVA_HOME and COHERENCE_HOME environment variables.
However, they are not required to run Coherence.

• JAVA_HOME – This variable is used when running the scripts that are included in
the COHERENCE_HOME/bin directory. The value of this variable is the full path
to the Java installation directory. If JAVA_HOME is not set, the scripts use the

Chapter 2
Setting Environment Variables

2-6

computer's default Java installation. Set this variable to ensure that the scripts use
a specific Java version.

• COHERENCE_HOME – This variable is typically set as a convenience. The value
of this variable is the full path to the ORACLE_HOME/coherence directory.

2.4 Running Coherence for the First Time
The COHERENCE_HOME/bin directory includes scripts that are used during
development and testing and are provided as a design-time convenience. The cache-
server script starts a cache server using a default configuration. The coherence script
starts a cache factory instance using a default configuration. The cache factory
instance includes a command-line tool that is used to (among other things) create and
interact with a cache.
In this scenario, a basic cluster is created and then the command-line tool is used to
create and interact with a cache that is hosted in the cluster.

This section includes the following topics:

• Create a Basic Cluster

• Create a Cache

2.4.1 Create a Basic Cluster
In this step, a basic cluster is created that contains three separate Java processes: a
cache server and two cache factory instances. For simplicity, the three processes are
collocated on a single computer. The cache server, by default, is configured to store
backup data. The two cache factory instances, by default, are configured not to store
backup data. As each process is started, they automatically join and become cluster
members (also referred to as cluster nodes).

For this example, the Coherence out-of-box default configuration is slightly modified to
create a unique cluster which ensures that these cluster members do not attempt to
join an existing Coherence cluster that may be running on the network.

Note:

The Coherence default behavior is to use multicast to find cluster members.
Coherence can be configured to use unicast if a network does not allow the
use of multicast. See Using Well Known Addresses in Developing Applications
with Oracle Coherence.

To create a basic cluster:

1. Using a text editor, open the COHERENCE_HOME/bin/cache-server script.

2. Modify the java_opts variable to include the coherence.cluster system properties
as follows:

set java_opts="-Xms%memory% -Xmx%memory% -Dcoherence.cluster=cluster_name"

Replace cluster_name with a value that is unique for this cluster. For example, use
your name for the cluster name.

Chapter 2
Running Coherence for the First Time

2-7

3. Save and close the cache-server script.

4. Repeat steps 1 to 3 for the COHERENCE_HOME/bin/coherence script and specify the
same value for cluster_name.

5. Run the cache-server script. The cache server starts and output is emitted that
provides information about this cluster member.

6. Run 2 instances of the coherence script. As each instance is started, output is
emitted that provides information about the respective cluster members. Each
instance returns a command prompt for the command-line tool.

2.4.2 Create a Cache
In this step, a cache is created and hosted on the basic cluster. A simple string is
entered into the cache using the command-line tool of the first cache factory instance.
The string is then retrieved from the cache using the command-line tool of the second
cache factory instance. The example is simplistic and not very practical, but it does
quickly demonstrate the distributed nature of Coherence caches. Moreover, these
steps are typically performed directly using the Coherence API.

To create a cache:

1. At the command prompt for either cache factory instance, create a cache named
Test using the cache command:

cache Test

2. At the command prompt, use the put command to place a simple string in the new
cache by entering a key/value pair (separated by a space):

put key1 Hello

The command returns and displays null. The put command always returns the
previous value for a given key. The null value is returned because this is the first
value entered for this key.

3. Switch to the other cache factory instance and from the command prompt create
the Test cache using the cache command:

cache Test

4. From this command prompt, retrieve the string in the cache using the get
command and entering the key name:

get key1

The command returns and displays hello. Either cache factory process can add or
remove cache entries because the processes are part of the same cluster and
because the Test cache is known to all cluster members. In addition, since the
cache server is storing a backup of the cache data, either cache factory process
(or both) can be shutdown and the cache data persists.

2.5 Integration with Maven
Software projects that use Maven can incorporate Coherence into their build process.
Maven is a build and dependency system that allows the configuration of project
dependencies, 3rd party dependencies and definition of a build lifecycle. Software
projects often use Maven to simplify and standardize their build process. If you are
new to Maven, see the Maven project page.

Chapter 2
Integration with Maven

2-8

http://maven.apache.org/

Oracle Middleware provides a plug-in that synchronizes an Oracle home directory with
a Maven repository and standardizes Maven usage and naming conventions. The
plug-in allows Coherence artifacts to be uploaded to a Maven repository, which
simplifies how the artifacts are consumed in development projects. See Installing and
Configuring Maven for Build Automation and Dependency Management in Developing
Applications Using Continuous Integration.

In addition, the Maven integration includes an archetype and packaging plug-in for a
Coherence Grid Archive (GAR). A Coherence GAR is a module type that is typically
used to deploy Coherence applications within a WLS domain. The Maven archetype
plug-in generates a GAR structure and provides example configuration files. The
packaging plug-in generates a GAR based on a project's contents and dependencies
and ensures that the dependencies, source, and configuration files are copied into the
GAR.

The Maven plug-in and configuration files for Coherence are located in the
COHERENCE_HOME/plugins directory. The Maven GAR plug-in and archetype are installed
in the enterprise repository as part of the synchronization plug-in. See Building Oracle
Coherence Projects with Maven in Developing Applications Using Continuous
Integration.

2.6 Installing a Coherence Patch
Coherence periodically releases patches to the Oracle Support Website. See My
Oracle Support. Patches are installed using the standard Oracle patching mechanism.
See Patching Your Environment Using OPatch in Patching with OPatch.

2.7 Deinstalling Coherence
Coherence is deinstalled using the Oracle Fusion Middleware deinstaller. The
deinstaller allows you to select which components in a Coherence ORACLE_HOME
directory to deinstall and can also be used to completely remove a Coherence
ORACLE_HOME directory.
To deinstall Coherence using the deinstallation wizard, start the deinstaller. Use either
the Coherence ORACLE_HOME/oui/bin/deinstall.sh script on UNIX-based
platforms or the Coherence ORACLE_HOME\oui\bin\deinstall.cmd script on
Windows. A shortcut to the script is available on Windows and is located in the Oracle
program group on the start menu.

Table 2-2 lists the screens in the order that the deinstallation program displays.

Table 2-2 Oracle Coherence Deinstallation Screens

Screen Description

Welcome This screen introduces you to the product deinstaller.

Deinstallation Summary This screen displays and lists the features that will be deinstalled.

Deinstallation Progress This screen displays and shows all tasks that have succeeded
and failed.

Deinstallation Complete This screen displays and shows a summary of the Deinstallation.
Click Finish to close the deinstallation program.

Chapter 2
Installing a Coherence Patch

2-9

https://support.oracle.com
https://support.oracle.com

Note:

Additional files in the ORACLE_HOME directory must be manually deleted. On
Windows, you must also manually delete the Oracle program group on the
Start menu.

Chapter 2
Deinstalling Coherence

2-10

3
Installing a Client Distribution

Coherence provides C++ and .NET client distributions that can be installed as
required. There is no separate Java client distribution. Java extend clients are created
using the Coherence for Java. In addition, the Coherence cluster is implemented in
Java. Therefore, Coherence for Java must be installed to use any client distribution.
This chapter includes the following sections:

• Installing Coherence for Java

• Installing the C++ Client Distribution

• Installing the .NET Client Distribution

• Compatibility Between Coherence*Extend Versions

3.1 Installing Coherence for Java
The Coherence for Java distribution is used to build and use Java-based extend
clients. To install Coherence for Java, see Installing Oracle Coherence for Java.

3.2 Installing the C++ Client Distribution
The Oracle Coherence for C++ distribution is used to develop and run C++ extend
clients. The latest version of the distribution can be downloaded at Oracle Coherence
Software Downloads.
This section contains the following topics:

• Supported Environments for Coherence C++ Client

• Microsoft-Specific Requirements

• Extracting the Coherence for C++ Distribution

3.2.1 Supported Environments for Coherence C++ Client
Table 3-1 lists the supported platforms and operating systems for Coherence for C++:

Table 3-1 Platform and Operating System Support for Coherence for C++

Operating System Compiler Architecture

Microsoft Windows Server: 2012R2+
Client: Windows 7+

Visual Studio 2010, 2012, 2013,
2015, and 2017

x86, x64

Sun Solaris 10+ SunPro 5.9+1,2 SPARC64, x64

Linux GCC 4.4.7+, GNU libc 2.2.5+, GNU
libc++ 3.4.11+

x86, x64

Apple OS X 10.10+3 Xcode 6 (GCC) x64

1 Specifically Sun C++ 5.9 SPARC Patch 124863-14 or later are supported.

3-1

http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html
http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html
http://support.oracle.com/

2 Specifically Sun C++ 5.9 x64 Patch 124864-14 or later are supported.
3 When building C++ applications with Apple OS X, you must compile with the command "g++" (as

opposed to "CC").

3.2.2 Microsoft-Specific Requirements
When deploying on Microsoft Windows, just as with any Visual Studio based
application, the corresponding Visual Studio runtime libraries must be installed on the
deployment computer.

• Visual C++ Redistributable for Visual Studio 2015 and 2017

• Visual C++ Redistributable for Visual Studio 2013

• Visual C++ Redistributable for Visual Studio 2012 Update 4

• Visual C++ Redistributable (x86) for Visual Studio 2010

• Visual C++ Redistributable (x64) for Visual Studio 2010

3.2.3 Extracting the Coherence for C++ Distribution
Coherence for C++ is distributed as a ZIP file. Use a ZIP utility or the unzip command-
line utility to extract the ZIP file to a location on the target computer. The extracted files
are organized within a single directory called coherence-cpp.

The following example uses the unzip utility to extract the distribution to the /opt
directory which is the suggested installation directory on UNIX-based operating
systems. Use the ZIP utility provided with the target operating system if the unzip utility
is not available.

unzip /path_to_zip/coherence-cpp-version_number-platform-architecture-compiler.zip -
d /opt

The following example extracts the distribution using the unzip utility to the C:\
directory on the Windows operating system.

unzip C:\path_to_zip\coherence-cpp-version_number-platform-architecture-compiler.zip
-d C:\

The following list describes the directories that are included in installation directory:

• bin – This directory includes sanka.exe, which is an application launcher that is
used to invoke executable classes embedded within a shared library.

• doc – This directory contains Coherence for C++ documentation including the API
documentation

• include – This directory contains header files that use the Coherence API and
must be compiled with an application.

• lib – This directory includes the Coherence for C++ library. The coherence.dll file
is the main development and run-time library and is discussed in detail throughout
this documentation.

Chapter 3
Installing the C++ Client Distribution

3-2

http://support.oracle.com
http://www.microsoft.com/en-eg/download/details.aspx?id=48145
http://www.microsoft.com/en-us/download/details.aspx?id=40784
http://www.microsoft.com/en-us/download/details.aspx?id=30679
http://www.microsoft.com/en-us/download/details.aspx?id=5555
http://www.microsoft.com/en-us/download/details.aspx?id=14632

Note:

– For Visual Studio 2015 and 2017 support, use \lib\vs2015\coherence.dll.

– For Solaris, STLport, /lib/stlport/libcoherence.so.

3.3 Installing the .NET Client Distribution
The Oracle Coherence for .NET distribution is used to develop and use .NET extend
clients. The latest version of the distribution can be downloaded at Oracle Coherence
Software Downloads.
This section contains the following topics:

• Prerequisites

• Running the Installer

• Coherence .NET Version Number Mapping

• Deploying Coherence for .NET

3.3.1 Prerequisites
The following are required to use Coherence for .NET:

• Microsoft .NET 4.0 or higher runtime and SDK

• Supported Microsoft Windows operating system (see the system requirements for
the appropriate .NET runtime above)

• MSHelp 2.x runtime, which is included in Visual Studio

• Microsoft Visual Studio 2010 or higher is required to build and run the examples in
the example.zip file that is provided as part of the Coherence for Java distribution

3.3.2 Running the Installer
Coherence for .NET is distributed as a ZIP file which contains an installer. Use a ZIP
utility or the unzip command-line utility to extract the installer to a location on the target
computer. The following example extracts the installer using the unzip utility to the C:\
directory:

unzip C:\path_to_zip\coherence-net-version_number.zip -d C:\

To run the installer:

1. From the directory where the ZIP was extracted, double-click the coherence-net-
version.msi file.

2. Follow the instructions in the installer to complete the installation.

Chapter 3
Installing the .NET Client Distribution

3-3

http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html
http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html

Note:

If the installer indicates that it is rolling back the installation, then run the
installer in elevated execution mode. For example, executing the MSI file from
a command prompt that was started as an Administrator should enable the
installation process to complete. For Windows 7, right-click the command
prompt and select run as Administrator.

The following list describes the directories that are included in the installation directory:

• bin – This directory includes the Coherence for .NET library. The Coherence.dll file
is the main development and run-time library and is discussed in detail throughout
this documentation.

• config – This directory contains XML schemas for Coherence client configuration
files and also includes a POF configuration file for Coherence-defined user types.

• doc – This directory contains Coherence for .NET API documentation. The API
documentation is available as: HTML Help (Coherence.chm), MSHelp 2.0, and MS
Help Viewer.

3.3.3 Coherence .NET Version Number Mapping
A Coherence assembly uses a custom version number mapping. Oracle version
numbers use 5 digits (N.N.N.N.N), but .NET version numbers can only have up to 4
digits (N.N.N.N). To support the .NET version convention, the 4th and 5th Oracle digits
are combined for the 4th .NET version digit.

The following calculation is used to create the 4th .NET version digit:

4th .NET digit = 4th Oracle digit * 1000 + 5th Oracle digit

The following calculations are used to convert the 4th .NET version digit to the 4th and
5th Oracle version digits:

4th Oracle digit = int(4th .NET digit / 1000)

5th Oracle digit = 4th .NET digit - (4th Oracle digit * 1000)

For example:

.NET Version Number Oracle Version Number

12.2.1.0 12.2.1.0.0

12.2.1.1 12.2.1.0.1

12.2.1.1000 12.2.1.1.0

12.2.1.1001 12.2.1.1.1

12.2.1.2010 12.2.1.2.10

12.2.1.10010 12.2.1.10.10

Chapter 3
Installing the .NET Client Distribution

3-4

Note:

For logging, the .NET 4th digit is converted to the Oracle 4th and 5th digits so
that logging messages appear the same as Java and C++ log messages.

3.3.4 Deploying Coherence for .NET
Coherence for .NET requires no specialized deployment configuration. Simply add a
reference to the Coherence.dll found in the bin\ folder to your Microsoft.NET
application.

3.4 Compatibility Between Coherence*Extend Versions
Coherence client distributions support both forward and backwards compatibility with
cluster proxies. Compatibility for the extend protocol and POF is maintained between
the second digit of major releases (for example, 12.1, 12.2, and so on) but may not be
maintained between the first digit of major releases (for example, 12.x, 13.x, and so
on).

Note:

Compatibility requires the use of POF, because POF can support backward
compatible serialization changes.

Prior to version 12.1.2.0.1, extend clients only support forward compatibility with
cluster proxies. That is, extend clients can connect to cluster proxies that have either
the same or higher second digit of a major release.

Starting with version 12.1.2.0.1, extend clients support both forward and backward
compatibility with cluster proxies. That is, extend clients can connect to cluster proxies
that have lower or higher version numbers. For example, a 12.1.2.0.2 extend client
can connect to a 12.1.2.0.1 proxy. Extend client backward compatibility is not
supported on proxy versions prior to 12.1.2.0.1, including 12.1.2.0.0 and proxy
versions 3.7.1 or earlier.

Coherence 12.1.2.0.0 extend clients require 12.1.2.0.0 or later cluster proxies.
Coherence 12.1.2 extend clients other than 12.1.2.0.0 (for example 12.1.2.0.1 and
12.1.2.0.2) require 12.1.2.0.1 or later cluster proxies.

Backward compatibility to cluster proxies is intended as an upgrade convenience and
not as a long term solution. It allows extend clients to upgrade to a new version before
the proxy server and cluster. However, a cluster should always be upgraded to the
latest version as a best practice. When an extend client and the server it connects to
are on different versions, the extend client is limited to the functionality of the older of
the two releases or patch set versions.

Coherence 12.2.1 Backward Compatibility Exception

Coherence 12.2.1 cluster proxies are backward compatible with version 3 extend
clients. That is, version 3 clients can connect to 12.2.1 cluster proxies. Backward

Chapter 3
Compatibility Between Coherence*Extend Versions

3-5

compatibility in 12.2.1 is an exception to the Coherence*Extend major release
compatibility policy. Cluster proxies beyond version 12.2.1 may not include the current
exception and may not maintain backward compatibility.

Chapter 3
Compatibility Between Coherence*Extend Versions

3-6

4
Installing Coherence*Web to an Application
Server

Coherence*Web is an HTTP session management module dedicated to managing
session state in clustered environments. Built on top of Oracle Coherence,
Coherence*Web brings Coherence data grid's data scalability, availability, reliability,
and performance to in-memory session management and storage.
Coherence*Web can be deployed to many mainstream application servers such as
Oracle WebLogic Server, IBM WebSphere, and Tomcat. For a complete list of
supported application servers, see Supported Web Containers in Administering HTTP
Session Management with Oracle Coherence*Web.

This chapter includes the following sections:

• Installing Coherence*Web with WebLogic Server

• Installing Coherence*Web with Other Application Servers

4.1 Installing Coherence*Web with WebLogic Server
All of the files which support Coherence*Web are included with the Coherence
distribution. If you are using WebLogic Server, then you can install WebLogic Server
and Coherence simultaneously. See Planning the Oracle WebLogic Server Installation
in Installing and Configuring Oracle WebLogic Server and Coherence.
Once you have installed WebLogic Server and Coherence, you can integrate your
applications with Coherence*Web without any further configuration. See Using
Coherence*Web with WebLogic Server in Administering HTTP Session Management
with Oracle Coherence*Web.

4.2 Installing Coherence*Web with Other Application
Servers

Coherence*Web is supported on different application servers, such as IBM
WebSphere or Tomcat. The Coherence*Web files are installed as part of the
Coherence distribution. However, you must then complete post-installation steps to
integrate Coherence*Web with your applications. See Using Coherence*Web on Other
Application Servers in Administering HTTP Session Management with Oracle
Coherence*Web.

4-1

5
Upgrading Coherence from Previous
Releases

Coherence applications can be upgraded to new Coherence versions to take
advantage of new and improved features. The most common upgrading steps are
provided and should be followed as required for your application.
This chapter includes the following sections:

• General Upgrade Guidelines
Understanding and following some basic guidelines before you upgrade to a new
Coherence release can ensure a successful upgrade.

• Upgrading from Version 12.1.x
You can migrate Coherence 12.1.x applications to 12.2.1.x.

• Upgrading from Version 3.7.1.x

5.1 General Upgrade Guidelines
Understanding and following some basic guidelines before you upgrade to a new
Coherence release can ensure a successful upgrade.

General Instructions:

• Read the Release Notes carefully for any changes to features you may be using.

• Pay particular attention to changes in default behavior.

• Plan a period of QA and Performance testing as subtle changes may impact
customer SLA.

• Plan for upgrades to the JVM, if required by the Coherence upgrade.

• Check compatibilities with any external systems.

• Do not combine changes in environment, network, external systems with the
planned upgrade (or treat it as a new product release).

5.2 Upgrading from Version 12.1.x
You can migrate Coherence 12.1.x applications to 12.2.1.x.

This sections includes the following topics:

• Update JVM

• Update Maven Build Scripts

• Update Cache Configuration File

• Update Address and Port Assignments

• Update Multiple Clusters that Run on the Same Network

• Plan for TCP Usage

5-1

• Update Extractor Implementations

• Updated Packaging for Coherence REST on WebLogic Server

• Running coherence.jar for the Coherence Console

• Update CohQL Scripts

• Update the Coherence*Web Configuration

• Migrate to a Supported Web Container

• Remove ActiveCache Integrations

• Remove Encryption Filters

• Remove TopLink Grid Implementations

• Update Classpaths for HotCache

• Update Custom Health Monitors

5.2.1 Update JVM
The minimum supported JVM version for Coherence has changed. See Runtime
Requirements.

5.2.2 Update Maven Build Scripts
The maven-gar-plugin plug-in and maven-gar-archetype archetype have been refactored
to gar-maven-plugin and gar-maven-archetype, respectively. Also, the version is now
12.2.1-0-0. If you are using Maven to create, build, and deploy Oracle Coherence
applications, then you must change your scripts accordingly. See Building Oracle
Coherence Projects with Maven in Developing Applications Using Continuous
Integration.

5.2.3 Update Cache Configuration File
A new default cache configuration file is included in the coherence.jar library. The new
default configuration is not backwards compatible with the previous configuration. If
your solution relies on the previous default cache configuration file, then the proper
work around is to author a new cache configuration file that defines the required cache
mappings and override the default cache configuration file. If your solution does not
rely on the default cache configuration file, then no update is required.

5.2.4 Update Address and Port Assignments
Significant enhancements have been made to simplify the way Coherence addresses
and ports are configured and may require updates to your solution. The enhancements
include:

• Coherence now uses port 7574 as the default cluster port for multicast
communication and 239.192.0.0 as the default address. Addresses and ports that
are explicitly configured are still used. However, solutions that rely on the previous
defaults need to be updated to use the new defaults. See Specifying a Cluster's
Multicast Address and Port in Developing Applications with Oracle Coherence.

• Unicast Ports are now automatically selected. Unicast ports that are explicitly
configured are still used. However, solutions that relied on the previous default

Chapter 5
Upgrading from Version 12.1.x

5-2

ports need to be updated accordingly. For most use cases, unicast ports do not
need to be explicitly configured. See Specifying a Cluster Member Unicast
Address and Port in Developing Applications with Oracle Coherence.

• WKA addresses now use the cluster port. WKA addresses which contain an
explicit port are still respected but it is recommended that the new form which does
not include a port be used instead as it provides increased availability. However,
solutions that relied on the previous default port need to be updated accordingly.
See Specifying WKA Addresses in Developing Applications with Oracle
Coherence.

• The Name service now automatically uses the cluster port. Proxy addresses that
are explicitly configured are still used. However, extend clients that rely on the
Name service to find a proxy and rely on the previous default Name service port
must be updated to use the new default. Extend clients that run on the same
network as the proxy and use the Name service are no longer required to
configure an address or a port, so long as they have an operational configuration
which is compatible with the cluster. See Defining a Single Proxy Service Instance
in Developing Remote Clients for Oracle Coherence.

5.2.5 Update Multiple Clusters that Run on the Same Network
Multiple clusters can now share a cluster port and Multicast or WKA address. For most
use cases, there is no reason to change the cluster port, or multicast address. Note
that clusters configured to use SSL do not support sharing. In addition, clusters that
are configured to only support IPv4 (-DpreferIPv4Stack=true) can only share with other
clusters that are configured to only support IPv4. the use of -DpreferIPv4Stack=true is
generally not necessary. If your solution includes multiple clusters on the same
network, consider using the Coherence defaults addresses and port and not explicitly
configuring addresses and ports. Note that when using shared addresses and ports
the selection of a unique cluster name is required.

5.2.6 Plan for TCP Usage
The default protocol that is used between clustered data services has changed from
UDP to TCP message bus (TMB). UDP is still used for cluster maintenance while TCP
is used for workloads which may be more performance sensitive. Most networks are
already optimally configured for TCP and do not require Coherence-specific
configuration. In addition, there should be very little network load difference between
UDP and TCP. A message bus test utility is provided that can be used test TMB
performance between network nodes. See Running the Message Bus Test Utility and
TCP Considerations in Administering Oracle Coherence.

Solutions that require the use of a firewall between cluster members should ensure
that the cluster port (7574) is open for both UDP and TCP for both multicast and
unicast configurations as well as port 7 for Coherence TcpRing/IpMonitor death
detection. Lastly, ensure that the unicast port range is open for both UDP and TCP
traffic and that the unicast listen port range is explicitly set rather then relying upon a
system assigned ephemeral port. See Changing the Default Unicast Port in
Developing Applications with Oracle Coherence.

5.2.7 Update Extractor Implementations
The QueryHelper.createExtractor() API does not produce value extractors that are
equivalent with previous versions of Coherence. Do not use

Chapter 5
Upgrading from Version 12.1.x

5-3

QueryHelper.createExtractor() for indexes and extend client filters if you have extend
clients running previous versions of Coherence. Instead, you should change your
extractors to use actual extractors (ReflectionExtractor). For example:

QueryHelper.createExtractor("key().myKey");

should be changed to:

new ReflectionExtractor("getMyKey", null,ReflectionExtractor.KEY);

5.2.8 Updated Packaging for Coherence REST on WebLogic Server
WebLogic Server now includes the coherence-rest.jar library in the server classpath.
Existing Coherence REST applications that are deployed on WebLogic server should
be repackaged and the coherence-rest.jar library should be removed from the
application. See Deploying to WebLogic Server in Developing Applications with Oracle
Coherence.

5.2.9 Running coherence.jar for the Coherence Console
Executing java -jar coherence.jar starts a DefaultCacheServer instance rather than the
legacy Coherence console. If your solution depends on the console, you can start the
console using the bin/coherence script or directly using:

java -cp coherence.jar com.tangosol.net.CacheFactory

5.2.10 Update CohQL Scripts
The BACKUP CACHE and RESTORE CACHE statements available in CohQL are deprecated.
Applications or scripts that relied on these commands must be updated to use
Coherence persistence and the new persistence statements. See Persisting Cache
Data to Disk in Developing Applications with Oracle Coherence.

5.2.11 Update the Coherence*Web Configuration
The default Coherence*Web session configuration file no longer includes a near cache
definition. Applications that were dependent on the near cache configuration must
override the default configuration file and define a near cache definition. See Defining
Near Cache Schemes in Developing Applications with Oracle Coherence.

5.2.12 Migrate to a Supported Web Container
Coherence*Web no longer supports the following web containers: Apache Tomcat
5.5.n, Apache Tomcat 6.0.n, Caucho Resin 3.1.n, IBM WebSphere 5.n, IBM
WebSphere 6.n, IBM WebSphere 7.n, Sun GlassFish 2.n, Sun Application Server 8.n,
Oracle OC4J 10.1.3.n, Oracle OC4J 10.1.2.n, Oracle GlassFish 3.n, Oracle GlassFish
4.n, Jetty 6.1.n, Jetty 5.1.n, JBoss Application Server. Applications that require
Coherence HTTP session management must be migrated to use a supported web
container version. See Supported Web Containers in Administering HTTP Session
Management with Oracle Coherence*Web.

Chapter 5
Upgrading from Version 12.1.x

5-4

5.2.13 Remove ActiveCache Integrations
The active-cache.jar library that was previously used to integrate Coherence with
WebLogic Server has been removed from the WLS distribution. Solutions that rely on
the Coherence and WLS integration must be re-factored to use the Managed
Coherence Server integration instead. See Deploying Coherence Applications to
WebLogic Server in Administering Oracle Coherence.

5.2.14 Remove Encryption Filters
Encryption filters are no longer available and can no longer be used. Solutions that
rely on encryption filters must now be configured to use SSL. See Using SSL to
Secure Communication in Securing Oracle Coherence.

5.2.15 Remove TopLink Grid Implementations
TopLink Grid has been deprecated in the TopLink product. Applications must be re-
architected to use the Coherence API in their data access layers instead of using the
JPA API.

5.2.16 Update Classpaths for HotCache
Applications that use Oracle Coherence GoldenGate HotCache require an additional
JAR file to certain JVM classpaths when upgrading from Coherence version 12.1.x to
12.2.1.x, and you need to refer to 12.2.1.x distributions of other JAR files in those
same JVM classpaths.

Specifically, all cache server JVMs (storage-enabled cluster members) need to include
ORACLE_HOME/coherence/lib/coherence-hotcache.jar on their classpaths. Likewise, all
HotCache JVMs need to include that same JAR file on their classpaths. The
classpaths of HotCache JVMs are configured in a properties file. See Configuring
HotCache in Integrating Oracle Coherence. Classpaths of cache server and HotCache
JVMs also need to be modified to refer to 12.2.1.x versions of other JAR files used
with HotCache. Those classpaths should refer to the following JAR files from the
12.2.1.x installation and not older versions of the same JAR files from a 12.1.x
installation:

• ORACLE_HOME/coherence/lib/coherence.jar

• ORACLE_HOME/oracle_common/modules/javax.persistence.jar

• ORACLE_HOME/oracle_common/modules/oracle.toplink/eclipselink.jar

• ORACLE_HOME/oracle_common/modules/oracle.toplink/toplink-grid.jar

5.2.17 Update Custom Health Monitors
The hexadecimal receive string that is required to ping Coherence from a BIG-IP LTM
custom health monitor has changed. If your solution makes use of a BIG-IP LTM
custom health monitor to ping Coherence, then you must update the monitor to use
the new hexadecimal string. See Using Advanced Health Monitoring in Developing
Remote Clients for Oracle Coherence.

Chapter 5
Upgrading from Version 12.1.x

5-5

5.3 Upgrading from Version 3.7.1.x
You can migrate Coherence 3.7.1.x applications to 12.x.

Note:

Perform the tasks as required for your Coherence deployment. However,
these tasks should be performed only after considering the upgrade issues for
12.1.x which may supersede these instructions. See Upgrading from Version
12.1.x.

This section includes the following topics:

• Upgrading Applications Using Coherence and Coherence*Web on WebLogic
Server

• Upgrading Coherence*Extend

• Upgrading Coherence*Web

• Upgrading ActiveCache Applications on WebLogic Server

• Replacements for Deprecated Features

• Other Upgrade Issues

5.3.1 Upgrading Applications Using Coherence and Coherence*Web
on WebLogic Server

Follow these instructions for upgrading applications running on WebLogic Server that
use Coherence and Coherence*Web.

1. In an existing WebLogic Server domain:

• Stop and undeploy the applications that use Coherence*Web.

• Undeploy the coherence.jar and coherence-web-spi.war files if they are
deployed.

2. Follow the steps to upgrade WebLogic Server and its domains to WebLogic Server
12c (12.2.1.1). See Roadmap for Upgrading Your Application Environment in
Upgrading Oracle WebLogic Server.

3. Modify your applications to remove all references to the coherence.jar file:

• In the weblogic.xml file, remove the <library-ref> element that refers to the
coherence-web-spi file.

• In the META-INF/MANIFEST.MF file, remove the following lines that identify
Coherence as an extension:

Extension-List: coherence
coherence-Extension-Name: coherence

• Remove any explicit references to the coherence.jar file in the classpath.

4. Modify your applications to use the required settings for Coherence 12c (12.2.1.1):

Chapter 5
Upgrading from Version 3.7.1.x

5-6

• If you used the default session-cache-config.xml file in your Coherence
release 3.7.1.x application, note that the name has been changed to default-
session-cache-config.xml in 12c (12.2.1.1).

For example, if you used this context parameter value in Coherence release
3.7.1.x application:

coherence.cacheconfig=session-cache-config.xml

change it to default-session-cache-config.xml:

coherence.cacheconfig=default-session-cache-config.xml

You should not have to change the session cache file name. If you created a
custom session-cache-config.xml, you should be able to leave the file name as
it is.

• If your application is in an EAR file, then the packaging for the custom session-
cache-config file has changed. See Using a Custom Session Cache
Configuration File in Administering HTTP Session Management with Oracle
Coherence*Web.

5. Redeploy your applications on WebLogic Server.

5.3.2 Upgrading Coherence*Extend
For all Extend client customers (Java, C++, and .NET), you must upgrade the cluster
side before upgrading the Coherence*Extend clients. This is in compliance with the
Coherence client and proxy upgrade policy. See Compatibility Between
Coherence*Extend Versions in Installing Oracle Coherence.

5.3.3 Upgrading Coherence*Web
The following sections describe upgrade considerations for Coherence*Web.

• Coherence*Web SPI Reserved for Older Versions of WebLogic

• ActiveCache (active-cache.jar) Replaced with Managed Coherence Servers

• New Session Cache Configuration File

5.3.3.1 Coherence*Web SPI Reserved for Older Versions of WebLogic
The coherence-web-spi.war file, which was included in previous releases of
Coherence*Web, is deprecated. If you are using WebLogic Server 12c (12.2.1.1), you
should not have to work with or reference this file. If you attempt to deploy the
coherence-web-spi.war file to WebLogic Server 12c (12.2.1.1), it will be ignored.

5.3.3.2 ActiveCache (active-cache.jar) Replaced with Managed Coherence
Servers

ActiveCache (active-cache.jar), the collection of WebLogic Server features which
allow deployed applications to easily use Coherence data caches and seamlessly
incorporate Coherence*Web for session management, has been deprecated since the
12.1.2. release.

Chapter 5
Upgrading from Version 3.7.1.x

5-7

Users must migrate to Managed Coherence Servers when developing new WebLogic
Server/Coherence applications for the current release. See Deploying Coherence
Applications to WebLogic Server in Administering Oracle Coherence.

5.3.3.3 New Session Cache Configuration File
In previous releases, Coherence cache configurations and services used by
Coherence*Web SPI were defined in the session-cache-config.xml file, As of the 12c
(12.2.1.1), Coherence cache configurations and services used by Coherence*Web are
defined in the default-session-cache-config.xml file, which can be found in the
coherence-web.jar file. The default cache and services configuration defined in the
default-session-cache-config.xml file should satisfy most Web applications.

You can create your own custom session cache configuration by packaging a file
named session-cache-config.xml in your Web application. See Using a Custom
Session Cache Configuration File in Administering HTTP Session Management with
Oracle Coherence*Web.

5.3.4 Upgrading ActiveCache Applications on WebLogic Server
The 11g Release 1 (10.3.6) version of ActiveCache is documented in About
ActiveCache in Oracle Fusion Middleware Using ActiveCache. This version of
ActiveCache will work with WebLogic Server and Coherence 12.1.2 but some of the
documented steps are no longer required.

Note:

ActiveCache has been deprecated since the 12.1.2 release. Users must
migrate to Managed Coherence Servers. See Deploying Coherence
Applications to WebLogic Server in Administering Oracle Coherence.

• Choose the ActiveCache Deployment Topology in Oracle Fusion Middleware
Using ActiveCache describes the several different combinations of application and
data tiers, or cluster topologies, in which ActiveCache can be deployed. In
upgrading applications using ActiveCache, you should not use the Out-of-Process
topology except for backward compatibility. In the current release, WebLogic Out-
of-Process topology is the preferred approach. Using managed Coherence servers
makes the WebLogic Out-of-Process topology easier to configure.

• Locate the Cache Configuration File in Oracle Fusion Middleware Using
ActiveCache describes the location where you place the cache configuration file.
The location where you store the cache configuration file determines the cache
scope; that is, the visibility of the caches to deployed applications. The approaches
described in this section will work, but putting the cache configuration in the
system classpath is a bad practice unless there is only one and will only ever be
one application using Coherence in the server.

Oracle recommends that you use a GAR file when you package your application.
The cache configuration file is packaged in the GAR file. For more information on
the GAR file and its packaging structure, see Packaging Coherence Applications
in Developing Oracle Coherence Applications for Oracle WebLogic Server.

Chapter 5
Upgrading from Version 3.7.1.x

5-8

http://docs.oracle.com/cd/E28280_01/web.1111/e16517/cases.htm#COHWL111
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/cases.htm#COHWL111
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABJFAJF
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABDJCFA

• Configuring Application-Server Scoped Coherence Clusters in Oracle Fusion
Middleware Using ActiveCache describes a configuration such that all deployed
applications on WebLogic Server instances that are directly accessing Coherence
caches become part of one Coherence cluster. In the procedure, do not perform
Step 1: do not put the coherence.jar and active-cache.jar files in the system
classpath. The active-cache.jar file uses the classpath in the MANIFEST file to add
the Coherence integration module to the classpath. In release 12.1.2, the
Coherence integration module will always be in the server classpath, in addition to
the coherence.jar file.

• Configuring EAR-Scoped Coherence Clusters in Oracle Fusion Middleware Using
ActiveCache describes a configuration such that all deployed applications within
each EAR become part of one Coherence cluster. Caches will be visible to all
modules in the EAR. The procedure described in this section will not work as
described. Because coherence.jar is already in the system classpath, you must
follow the steps documented in the for using a filtering Classloader.

The only reason to use the EAR-scoped approach is to isolate your application
from other Coherence applications. That use case is better handled by the
application isolation provided by a GAR file, or by using the scope element in the
cache configuration file. Another use case is to use a different version of
coherence.jar than is in the system classpath but using a different version should
be discouraged.

• Configuring WAR-Scoped Clusters in Oracle Fusion Middleware Using
ActiveCache describes a configuration such that each deployed Web application
becomes its own Coherence cluster. Caches will be visible to the individual
modules only. In the procedure, do not perform Steps 1 and 2. The coherence.jar
and active-cache.jar should not be deployed as shared libraries nor should they
appear in the MANIFEST file. You can perform Step 3 to reference the Coherence
cluster system resource, but making the managed server a member of the
Coherence cluster is the preferred approach.

• Example 3-10 tangosol-coherence-override.xml in Oracle Fusion Middleware
Using ActiveCache displays a custom cache configuration file that contains a
logging configuration. The logging configuration is not required.

• Start a Cache Server in Oracle Fusion Middleware Using ActiveCache describes
several different ways of starting the cache server. The Out-of-Process topology
should be replaced with managed Coherence servers. The procedure for starting a
cache server using node manager should be performed by using managed
Coherence servers, instead of using the external cache server managed by
WebLogic Server.

5.3.5 Replacements for Deprecated Features
The following sections describe replacements for features that have been deprecated
since Coherence 12.1.2.

• Replacement for Deprecated packet-pool and message-pool Elements

• Replacement for the Deprecated LH File Manager

• Replacement for the Deprecated NamedCache Lock APIs

• Replacement for the Deprecated XmlConfigurable Interface

Chapter 5
Upgrading from Version 3.7.1.x

5-9

http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABIEAEE
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABHAHJG
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABJBCHF
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#BABDHDAA
http://docs.oracle.com/cd/E28280_01/web.1111/e16517/coh_wls.htm#CIHBFDGJ

5.3.5.1 Replacement for Deprecated packet-pool and message-pool Elements
The packet-pool and message-pool elements are deprecated. In Coherence 12c
(12.2.1.1), the API will now take care of sizing. To upgrade, remove the elements from
any configuration files.

5.3.5.2 Replacement for the Deprecated LH File Manager
The LH store manager is deprecated as of Coherence 12.1.2 release. Use Berkeley
DB for similar functionality.

5.3.5.3 Replacement for the Deprecated NamedCache Lock APIs
The NamedCache lock APIs are deprecated. Use the locking support that is provided by
the entry processor API instead (EntryProcessor for Java and C++, IEntryProcessor
for .NET).

5.3.5.4 Replacement for the Deprecated XmlConfigurable Interface
The com.tangosol.run.xml.XmlConfigurable interface has been deprecated since the
Coherence 12.1.2 release. Coherence used this interface to inject XML parameters
into instances of custom classes.

In the Coherence 12c (12.2.1.1) release, you can initialize parameters by writing XML
which nests <instance> and <class-scheme> (or any other custom namespace) inside of
<param-value> elements.

For example, given the following Java code:

public class MyClass
 {
 public MyClass(String s, OtherClass o, int i) { ... }
 }

public class OtherClass
 {
 public OtherClass(String s) { ... }
 }

You can initialize the MyClass and OtherClass classes by writing the following XML. In
the XML, the MyClass class is initialized with the string Hello World and the integer 42.
The instance of the OtherClass class which appears in the MyClass class, is initialized
with the string Goodbye World.

<instance>
 <class-name>MyClass</class-name>
 <init-params>
 <init-param>
 <param-value>Hello World</param-value>
 </init-param>
 <init-param>
 <param-value>
 <instance>
 <class-name>OtherClass</class-name>
 <init-params>
 <init-param>

Chapter 5
Upgrading from Version 3.7.1.x

5-10

 <param-value>Goodbye World</param-value>
 </init-param>
 </init-params>
 </instance>
 </param-value>
 </init-param>
 <init-param>
 <param-value>42</param-value>
 </init-param>
 </init-params>
 </instance>

5.3.6 Other Upgrade Issues
The following sections describe issues that you might need to consider when
upgrading to Coherence 12c (12.2.1.1).

• New DistributedCache Default for Exalogic Environments

• Connecting from Remote RMI Clients

• Key Associations on the Coherence*Extend Client

• Changes to Invalidation Strategy for Near Caches

• New Cache Configuration Element: resource-config

• Changes to Invocable API Behavior

5.3.6.1 New DistributedCache Default for Exalogic Environments
All DistributedCache instances now default to the Infiniband Message Bus (IMB)
transport in Exalogic environments. The transport is configured within the <reliable-
transport> service parameter. See DistributedCache Service Parameters in
Developing Applications with Oracle Coherence.

5.3.6.2 Connecting from Remote RMI Clients
When connecting from a remote RMI client (different physical computer), add the
java.rmi.server.hostname RMI system property to the script with the value set to the
cluster member's IP address. The address ensures that the RMI stubs that are sent to
the client contain the correct server address. See Allowing Remote Access to Oracle
Coherence MBeans in Managing Oracle Coherence.

5.3.6.3 Key Associations on the Coherence*Extend Client
Key association is now processed on the extend client by default. Existing client
implementations (including Java clients) that rely on key association on the cluster
must set the defer-key-association-check parameter in order to force the processing of
key classes on the cluster.

To force key association processing to be done on the cluster side instead of by the
extend client, set the <defer-key-association-check> element, within a <remote-cache-
scheme> element, in the client-side cache configuration to true. For example:

<remote-cache-scheme>
 ...
 <defer-key-association-check>true</defer-key-association-check>
</remote-cache-scheme>

Chapter 5
Upgrading from Version 3.7.1.x

5-11

See Deferring the Key Association Check in Developing Remote Clients for Oracle
Coherence.

5.3.6.4 Changes to Invalidation Strategy for Near Caches
The default near cache invalidation strategy auto has changed to ensure that reduced
network traffic is prioritized over performance. Set the invalidation strategy to all for
pre-12c (12.2.1.1) default behavior. See Near Cache Invalidation Strategies in
Developing Applications with Oracle Coherence.

5.3.6.5 New Cache Configuration Element: resource-config
The resource-config element contains the configuration information for a class that
extends the com.sun.jersey.api.core.ResourceConfig class. The instance is used by the
HTTP acceptor to load resource and provider classes for the Coherence REST
application that is mapped to the specified context path. Multiple resource
configuration classes can be configured and mapped to different context paths. See
Deploying with the Embedded HTTP Server in Developing Remote Clients for Oracle
Coherence.

5.3.6.6 Changes to Invocable API Behavior
Applications that use the Invocable API may receive an error when upgrading from
Coherence 3.7.1 to Coherence 12.x due to a change in serialization requirements. In
Coherence 3.7.1, if an Invocable is sent to a number of nodes including itself, then
there is a chance that it will begin local execution before having been serialized for
transmission to the remote members. If the Invocable updates non-transient state, this
state will be leaked to the other nodes as part of the delayed serialization.

In Coherence 12.x, applications that use the Invocable API on local members must
make sure that their classes (such as entry processors and aggregators) are
serializable.

Chapter 5
Upgrading from Version 3.7.1.x

5-12

6
Running the Coherence Examples

The Coherence distribution provides a collection of example code. The examples
show how to use multiple Coherence features and are implemented the same across
Java, C++, and .NET.
This chapter includes the following sections:

• Overview of Coherence Examples
The Coherence examples are grouped into feature sets. Each feature set contains
multiple examples that demonstrate key functionality.

• Obtaining the Examples
The Coherence examples are included in the coherence_version.jar or
wls_version.jar installer file.

• How to Build the Examples

• How to Run the Examples
The Coherence examples are run using the scripts in the examples directory.
Scripts are provided for the Java, C++, and .NET (C#) programming languages.

• Coherence Basic Features Example
The Coherence Basic Features Examples are a collection of examples that
demonstrate basic functionality using a simplified contact information tracker
application:

• Coherence Security Examples

• Coherence Live Events Example

• Coherence Java 8 Features Example

• Coherence Asynchronous Features Example

• Coherence Federated Caching Example
The federated caching example starts two clusters: ClusterA and ClusterB. The
clusters are configured in a federation topology and cached data is actively
synchronized between the two clusters.

• Coherence Persistence Example

• Coherence REST Examples
The Coherence REST examples shows how to create a basic web-based
application that uses the Coherence REST API. The example uses the Grizzly
HTTP server to receive client HTTP requests.

6.1 Overview of Coherence Examples
The Coherence examples are grouped into feature sets. Each feature set contains
multiple examples that demonstrate key functionality.

Basic Features

The Coherence Basic Features Examples include the following:

6-1

Table 6-1 Coherence Basic Features Examples

Example Name Description

Basic Data Access Getting, putting and removing data from the Coherence Data Grid.
See Basic Data Access Example.

Data Loading Loading example data into the Coherence Data Grid. See Loader
Example.

Parallel Querying Querying the Coherence Data Grid including the use of indexes.
See Query Example.

Observable Listening for changes to data in the Coherence Data Grid. See
Observer Example.

Processing Co-locating data processing with the data itself in the Coherence
Data Grid. See Processor Example.

Query Language How to use the Coherence Query Language. See Query
Example.

Security Features

The Coherence Security Examples include the following:

Table 6-2 Coherence Security Examples

Example Name Description

Password Example Requiring a password to access Coherence. See Password
Example.

Access Control Example Simplified role based access control. See Access Control
Example.

Password Identity
Transformer

Creates a custom security token that contains the required
password and then adds a list of Principal names. See Password
Identity Transformer.

Password Identity Asserter Asserts that the security token contains the required password
and then constructs a Subject based on a list of Principal names.
See Password Identity Asserter.

Entitled Cache Service Wraps a cache service for access control. See Entitled Cache
Service.

Entitled Invocation Service Wraps an invocation service for access control. See Entitled
Invocation Service.

Entitled Named Cache Wraps a named cache for access control. See Entitled Named
Cache.

Live Events

The Coherence Live Events Examples are available for the Java platform only. They
include the following:

Chapter 6
Overview of Coherence Examples

6-2

Table 6-3 Coherence Live Events Examples

Example Name Description

EventsExamples Illustrates various features within Live Events, such as providing
mean elapsed times split by event type, the different semantics in
throwing exceptions in pre-events compared to post-events, and
logging of partition movement when enabled. See
EventsExamples.

TimedTraceInterceptor Provides timings between pre- and post-commit events for
different types of events. See TimedTraceInterceptor.

CantankerousInterceptor Responds with runtime exceptions at either pre- or post-commit
time, based on the type of key being inserted. See
CantankerousInterceptor.

RedistributionInterceptor Logs partition events when enabled. See
RedistributionInterceptor.

RedistributionInvocable Defines three actionable states that will be executed on various
members of the cluster. The states are enable logging performed
by the RedistributionInterceptor, disable logging, or terminate the
JVM that the invocable (RedistributionInvocable) is executed on.
See RedistributionInvocable.

LazyProcessor Creates a superficial delay between the processing of events. See
LazyProcessor.

Java 8 Features

The Coherence Java 8 Examples demonstrate how to use Coherence with various
features introduced in Java 8. The examples are available for the Java platform only.
They include the following:

Table 6-4 Coherence Java 8 Examples

Example Name Description

StreamsExample Queries a cache using the Stream API. See Streams.

LambdaExample Performs cache operations using lambda expressions. See
Lambda.

MapDefaultMethodExampl
e

Performs cache operations using overridden default methods from
the Map API. See Map Default Method.

Asynchronous Features

The Coherence Asynchronous Examples demonstrate how to use asynchronous
processing using the AsyncNamedCache interface. The examples are available for the
Java platform only. They include the following:

Table 6-5 Coherence Asynchronous Examples

Example Name Description

DataAccessExample Performs cache operations asynchronously. See Asynchronous
Data Access.

Chapter 6
Overview of Coherence Examples

6-3

Table 6-5 (Cont.) Coherence Asynchronous Examples

Example Name Description

ProcessorExample Process cache entries asynchronously. See Asynchronous Entry
Processor.

AggregatorExample Aggregates cache entries asynchronously. See Asynchronous
Aggregator.

Federated Caching

The Coherence Federated Caching Examples demonstrates how to configure and use
Federated Caching. Two clusters are started and are configured to use Active-Active
replication, which means data can be replicated from either cluster to the other. Each
cluster includes a GUI to insert data or clear the caches in either cluster. The
Federated Caching Examples also includes steps to configure SSL between cluster
participants. The examples are available for the Java platform only.

Persistence

The Coherence Persistence Examples demonstrate how to save and restore the
contents of a cache to disk. The examples are available for the Java platform only.
They include the following:

Table 6-6 Coherence Persistence Examples

Example Name Description

Basic Snapshot Operations Persists the contacts cache to disk. Destroys the cache and then
reloads the cache from disk. See Basic Snapshot Operations.

Persistence Notifications Subscribes to persistence notifications to determine the duration
of persistence operations. See Persistence Notifications.

Persistence Operations in
Parallel

Runs persistence operations in parallel across multiple services.
See Persistence Operations in Parallel.

SFTP Archiver Creates a custom snapshot archiver which uses SFTP to store
and retrieve snapshots. See Archiving Snapshots with a Custom
Archiver.

REST

The Coherence REST Examples demonstrates how applications can interact with a
Coherence Cache over the HTTP protocol. The example is a single web-based
application that exercise serval Coherence features. The examples are available for
the Java platform only and the client-side application is written using JavaScript. They
include the following:

Table 6-7 Coherence REST Examples

Example Name Description

Products Example Insert, edit and remove entries from a cache and update entries
using an entry processor. See Products Page.

Department Example Insert, edit, and remove entries from a cache. See Departments
Page.

Chapter 6
Overview of Coherence Examples

6-4

Table 6-7 (Cont.) Coherence REST Examples

Example Name Description

Contacts Example Insert, edit, and remove entries from a cache. Query entries in a
cache. See Contacts Page.

Server-Sent Events Add listeners and monitor events for the products, department,
and contacts caches. See Server-Sent Events.

6.2 Obtaining the Examples
The Coherence examples are included in the coherence_version.jar or wls_version.jar
installer file.

The Coherence examples appear as an installation option in the Oracle Universal
Installer and are installed to COHERENCE_HOME/examples.

If you installed Coherence using coherence_quick_version.jar, you can obtain the
examples by running the coherence_quick_supp_version.jar supplemental installer file.
The supplemental installer contains only API documentation and examples. Note that
the coherence_quick_version.jar quick installer file does not install the examples or API
documentation.

6.3 How to Build the Examples
The Coherence examples’ source files must be built using the scripts
in the examples directory. Scripts are provided for the Java, C++,
and .NET (C#) programming languages.

Note:

You must build and run the Java example even for C++ and .NET. This is
because the cache server runs in Java.

This section contains the following topics:

• How to Build the Java Examples

• How to Build the .NET Examples

• How to Build the C++ Examples

6.3.1 How to Build the Java Examples
This section contains the following topics:

• Prerequisites for Java

• Directory Structure for Java

• Build Instructions for Java

Chapter 6
Obtaining the Examples

6-5

6.3.1.1 Prerequisites for Java
To build the example, you must have Coherence and a Java Development Kit (JDK)
1.8 or later. Ensure that the following environment variables are set.

E
n
v
i
r
o
n
m
e
n
t
V
a
r
i
a
b
l
e

Description

$
C
O
H
E
R
E
N
C
E
_
H
O
M
E

Make sure that the COHERENCE_HOME environment variable points to the location of the
Coherence installation directory.

$
J
A
V
A
_
H
O
M
E

Make sure that the JAVA_HOME environment variable points to the location of a 1.8 or greater
JDK before building the example. A Java runtime 1.8 or greater is needed to run the example

6.3.1.2 Directory Structure for Java
The directory structure described below is relative to the examples directory.

Chapter 6
How to Build the Examples

6-6

Table 6-8 Directory Structure for Java

Directory Name Description

java/bin Scripts for building and executing the example. There are two sets
of scripts. Scripts with no file extension are bash scripts. Scripts
with a .cmd file extension are Windows command scripts. The
following description refers to the script names without specifying
the file extension.

• build—builds an example

java/src All example source. The examples are in the
com.tangosol.examples.<example name> package. The classes
for objects stored in the cache are in the
com.tangosol.examples.pof package.

java/classes The class files output from a build. This directory will not exist until
the build script is executed.

java/resource/config The common Coherence configuration files required by the
examples.

java/resource/<example
name>

If an example has configuration that is required instead of the
common configuration, it will have its own directory. The security
example uses configuration files from java/resource/security.

$COHERENCE_HOME/lib Coherence libraries used for compiling and running the example.

6.3.1.3 Build Instructions for Java
Execute the build script with the name of the example collection:

• bin/build contacts

• bin/build security

• bin/build events

• bin/build java8

• bin/build async

• bin/build federation

• bin/build persistence

The script builds the POF package files and then the files for the particular example.
The contacts example is required for the other examples and should always be built
first.

On Windows, change directories to the /bin directory then run the scripts.

6.3.2 How to Build the .NET Examples
This section contains the following topics:

• Prerequisites for .NET

• Directory Structure for .NET

• Build Instructions for .NET

Chapter 6
How to Build the Examples

6-7

6.3.2.1 Prerequisites for .NET
To build the example, you must have Coherence for .NET and Visual Studio 2008 or
later or Visual Studio 2008 Express or later. See Prerequisites.

To run the example, you will need the Java version of Coherence and a Java
Development Kit (JDK) 1.8 or greater. The Java version is required because the
Coherence*Extend proxy and cache servers require Java. Also, the examples depend
on Java example classes that must be built before running the proxy and cache
server. See the Java example readme.txt file for instructions on how to build and run.

6.3.2.2 Directory Structure for .NET
The directory structure described below is relative to the examples directory.

Table 6-9 Directory Structure for .NET

Directory Name Description

dotnet\src All example source. The examples are in the
Tangosol.Examples.<example name> namespace. The classes for
objects stored in the cache are in the Tangosol.Examples.Pof
namespace.

The examples are in the Visual Studio 2008 examples solution.
Each example has its own Visual Studio 2008 project in the src
directory. For example, src contains projects for the contacts and
security examples.

The Coherence configuration files required by the example.

src\pof\config The common Coherence configuration files required by the
examples.

src\<example name>
\config

If an example has configuration that is required instead of the
common configuration, it will have its own directory. The security
example uses configuration files from security\config.

6.3.2.3 Build Instructions for .NET
Open the examples project from the examples\dotnet\src\contacts.csproj directory
with Visual Studio

When installing Coherence for the .NET Framework, the installer registers the
coherence.dll library with the assembly registry. The included Visual Studio projects
have a reference to coherence.dll in the default location. If another version of the
library is desired, or it was not installed in the default location, the Coherence
reference can be overridden when configuring the reference, be sure to set the local
copy attribute to true. This setting will copy and register the correct coherence.dll in the
bin\debug directory.

After Coherence for .NET is configured, in Visual Studio select Build then Build
Solution from the menu, Build Solution (F6), etc., to build the solution.

The build for the contacts example will copy resource\contacts.csv to the build output
directory (examples\dotnet\src\bin\Debug).

Chapter 6
How to Build the Examples

6-8

6.3.3 How to Build the C++ Examples
This section contains the following topics:

• Prerequisites for C++

• Directory Structure for C++

• Build Instructions for C++

6.3.3.1 Prerequisites for C++
To run the examples, you will need the Java version of Coherence and a Java
Development Kit (JDK) 1.8 or greater. The Java version is required because the
Coherence*Extend proxy and cache servers require Java. Also, the examples depend
on Java example classes that must be built before running the proxy and cache
server. See the Java examples readme.txt for instructions on how to build and run.

Ensure that the following environment variables are set:

Environment Variable Description

%COHERENCE_HOME% Make sure that the COHERENCE_HOME environment variable points
to the location of the unpacked Coherence directory.

%JAVA_HOME% Make sure that the JAVA_HOME environment variable points to the
location of a 1.8 or greater JDK before building the examples. A
Java runtime 1.8 or greater is needed to run the examples.

%COHERENCE_CPP_HOME% Make sure that the COHERENCE_CPP_HOME environment variable
points to the location of the unpacked C++ development
environment. Compiler environments supported.

6.3.3.2 Directory Structure for C++
The directory structure described below is relative to the examples directory.

Table 6-10 Directory Structure for C++

Directory Name Description

cpp\bin Scripts for building and executing the examples. Scripts with no
file extension are bash scripts. Scripts with a .cmd file extension
are Windows command scripts. The following description refers to
the script names without specifying any file extension.

cpp All example source organized under the <example name> (such as
contacts and security) and pof directories.

cpp\contacts The contacts example source. The examples are in the
coherence::examples namespace. The next level of the name
after examples represents a related set of example classes.
"Driver" in coherence::examples::LoaderExample is the Loader
for the contacts example. In other words, the name of the
example is the name after coherence::examples.

cpp\security The security example source. The examples are in the
coherence::examples namespace.

Chapter 6
How to Build the Examples

6-9

Table 6-10 (Cont.) Directory Structure for C++

Directory Name Description

cpp\pof The data model is represented in this directory plus any classes
that are serialized. The rationale is to show how to utilize an
already existing data model and expose it in Coherence. The
model classes do not contain any Coherence-specific code to
prove this point. However, there is a serializer that is associated
with each model type. For example the Contact has a
ContactSerializer class whose purpose is to register the model
type with Coherence and serialization operations.

The generated output will be in the form of a dynamic library.

cpp\config The common Coherence configuration files required by the
examples.

cpp\config\<example
name>

If an example has configuration that is required instead of the
common configuration, it will have its own directory. The security
example uses configuration files from config/security.

cpp\<example name>\out The object files output from a build. This directory will not exist
until the build script is executed.

%COHERENCE_CPP_HOME%
\include

Contains the Coherence header files.

%COHERENCE_CPP_HOME%
\lib

Contains the Coherence library.

6.3.3.3 Build Instructions for C++
This section contains the following information:

Build Instructions for C++ on Windows

Open a development environment command prompt. This should have been installed
with Visual Studio or the platform SDK. Go to the C++ examples directory and type bin
\build.cmd <example name>. This will build both the pof (model) and the example
executable. For example, bin\build.cmd contacts or bin\build.cmd security

The model will put the pof.lib and pof.dll file under cpp\pof\out. These are needed
for building and running the contacts and security examples.

The executable contacts.exe will be generated in cpp\contacts\out directory. The
executable security.exe will be generated in cpp\security\out directory.

To run the contacts example, type bin\run.cmd contacts after starting a proxy server
and cache servers: bin/run-cache-server. The cache server also runs a proxy service
which allows connections from Coherence*Extend clients.

As an alternative, in any command window you can cd to the C++ bin directory and run
vcvars32.bat before trying to build the examples. With a default install of Visual Studio,
the bin directory is C:\Program Files\Mircorsoft Visual Studio 9.0\vc\bin. Follow the
previous instructions for running the build script.

Build Instructions for C++ on Linux/Mac and Solaris

Open a command shell. Go to the C++ examples directory and type bin/build <example
name>. This will build both the pof (model) and the contacts examples executable.

Chapter 6
How to Build the Examples

6-10

The model dynamic library and lib file will be put in cpp/pof/out. These are needed for
building and running the contacts and security examples.

The executable contacts, will be generated in cpp/contacts/out or cpp/security/out.

6.4 How to Run the Examples
The Coherence examples are run using the scripts in the examples directory. Scripts
are provided for the Java, C++, and .NET (C#) programming languages.

Note:

The Coherence examples are distributed as source, so they must first be built.
See How to Build the Examples.

This section contains the following topics:

• How to Run the Java Examples

• How to Run the .NET Examples

• How to Run the C++ Examples

6.4.1 How to Run the Java Examples
This section contains the following topics:

• Prerequisites for Java

• Directory Structure for Java

• Instructions for Java

6.4.1.1 Prerequisites for Java
To run the examples, you must have Coherence installed and use the currently
supported JDK. See System Requirements.

Environment Variable Description

$COHERENCE_HOME Make sure that the COHERENCE_HOME environment variable points
to the location of the unpacked Coherence directory.

$JAVA_HOME Make sure that the JAVA_HOME environment variable points to the
location of a supported JDK before building the examples.

6.4.1.2 Directory Structure for Java
The directory structure described below is relative to the examples directory, the
directory into which the examples were unzipped.

Chapter 6
How to Run the Examples

6-11

Table 6-11 Directory Structure for Java

Directory Name Description

java/bin Scripts for building and executing examples. There are two sets of
scripts. Scripts with no file extension are bash scripts. Scripts with
a .cmd file extension are Windows command scripts. The
following description refers to the script names without specifying
any file extension.

• run—Runs an example collection
• run-cache-server—Runs the cache server used for the

examples. The command is also used to start a proxy service
that is required for extend clients.

java/classes The class files output from a build. This directory will not exist until
the build script is executed.

java/resource/config The common Coherence configuration files required by the
examples.

java/resource/<example
name>

If an example has configuration that is required instead of the
common configuration, it will have its own directory. The security
example uses configuration files from java/resource/security.

$COHERENCE_HOME/lib Coherence libraries used for compiling and running the examples.

resource The data file used for the contacts LoaderExample: contacts.csv.

6.4.1.3 Instructions for Java
Execute the run script for each example.

contacts example

1. Start one or more cache servers: bin/run-cache-server. Each execution starts a
cache server cluster node. To add additional nodes, execute the command in a
new command shell.

2. In a new command shell, run with the name of the example: bin/run contacts. The
Driver.main method runs through the features of the example with output going to
the command window (stdout).

Starting with Coherence 12.1.2, an example of the new Query Language feature was
added. This example shows how to configure and use a simple helper class
FilterFactory using the Coherence InvocationService.

security example

The security example requires Coherence*Extend, which uses a proxy.

1. Start one or more cache servers: bin/run-cache-server security. The cache server
also runs a proxy service which allows connections from Coherence*Extend
clients.

2. In a new command shell, run with the name of the example: bin/run security. The
Driver.main method runs through the features of the example with output going to
the command window (stdout).

Chapter 6
How to Run the Examples

6-12

live events example

1. Start at least two cache servers: bin/run-cache-server events. Each execution
starts a cache server cluster node. To add additional nodes, execute the
command in a new command shell.

2. In a new command shell, run with the name of the example: bin/run events. The
Driver.main method runs through the features of the example with output going to
the command window (stdout).

Java 8 features example

1. Start a cache server: bin/run-cache-server.

2. In a new command shell, run with the name of the example: bin/run java8. The
Driver.main method runs through the features of the example with output going to
the command window (stdout). Inspect the output and refer to the code at src/com/
tangosol/examples/java8.

asynchronous features example

1. Start a cache server: bin/run-cache-server.

2. In a new command shell, run with the name of the example: bin/run async. The
Driver.main method runs through the features of the example with output going to
the command window (stdout). Inspect the output and refer to the code at src/com/
tangosol/examples/async.

federated caching example

1. Start ClusterA using: bin/run-cache-server federation ClusterA.

2. In a new command shell, start ClusterB using: bin/run-cache-server federation
ClusterB.

3. Run the following to start a GUI which connects to ClusterA: bin/run federation
ClusterA. Use the cohql or console argument to use CohQL or the console instead
of a GUI.

4. Run the following to start a GUI which connects to ClusterB: bin/run federation
ClusterB. Use the cohql or console argument to use CohQL or the console instead
of a GUI.

5. Add objects to a cluster and observe that the objects are being replicated to the
other cluster.

6. Remove objects from a cluster and observe that the objects are being removed
from the other cluster.

The example above uses standard TCP connections between clusters. The example
can also be configured to use SSL. SSL allows connections between clusters to be
encrypted and ensures only authorized clusters can exchange information by using
two-way authentication.

Chapter 6
How to Run the Examples

6-13

Note:

The SSL configuration uses self signed certificates and obvious passwords.
You should follow security best practices and refer to the Coherence security
documentation to configure this for production environments.

SSL configuration requires:

• Generating keystores for each of the clusters

• Creating SSL certificates for each cluster

• Importing the certificates into a trust store that ensure only authorized members
can communicate.

Note:

For windows environments, make sure you use %JAVA_HOME%\bin\keytool.

To configure SSL for the federation examples:

1. Generate Keystores for ClusterA and ClusterB

cd $COHERENCE_HOME/examples/java/classes

$JAVA_HOME/bin/keytool -genkeypair -dname "cn=ClusterA, ou=Coherence, o=Oracle,
 c=US" -alias ClusterA -keypass password -keystore ClusterA-keystore.jks
 -storepass password

$JAVA_HOME/bin/keytool -genkeypair -dname "cn=ClusterB, ou=Coherence, o=Oracle,
 c=US" -alias ClusterB -keypass password -keystore ClusterB-keystore.jks
 -storepass password

2. Export certificates from each store:

$JAVA_HOME/bin/keytool -export -alias ClusterA -storepass password -file
 ClusterA.cer -keystore ClusterA-keystore.jks

$JAVA_HOME/bin/keytool -export -alias ClusterB -storepass password -file
 ClusterB.cer -keystore ClusterB-keystore.jks

3. Import both certificates into the trust store that defines which clusters can connect.

$JAVA_HOME/bin/keytool -import -v -trustcacerts -alias ClusterA -file
 ClusterA.cer -keystore trust.jks -storepass password

$JAVA_HOME/bin/keytool -import -v -trustcacerts -alias ClusterB -file
 ClusterB.cer -keystore trust.jks -storepass password

Enter 'yes' for both of the above to confirm importing the certificates.

4. Validate the entries in the trust store using:

$JAVA_HOME/bin/keytool -list -keystore trust.jks -storepass password

Once the above has been completed, the classes directory contains the following:

• trust.jks – keystore containing the ClusterA and ClusterB certificates

Chapter 6
How to Run the Examples

6-14

• ClusterA.jks – keystore containing the ClusterA private key

• ClusterB.jks – keystore containing the ClusterB private key

Re-run the examples and set the SSL environment variable in each command prompt
window.

SET SSL=true (Windows)

export SSL=true (Unix)

In the cache server log files, notice that the connection is now tmbs (TCP Message Bus
over SSL):

Connecting to service FederatedPartitionedPofCache at participant ClusterB with
address tmbs://127.0.0.1:56217.39550

Note:

Removing a certificate from the trust store disables communication to that
member and simulates an unauthorized communication.

When you have completed running the Federation examples with SSL, make sure to
unset the SSL environment variable if you are going to run other examples.

persistence example

1. start one or more cache servers: bin/run-cache-server persistence

2. In a new command shell, run the persistence example: bin/run persistence. The
Driver.main method will run through the features of the example with output going
to the command window (stdout).

3. Start the notification listener: bin/run persistence notifications.

4. Run the persistence example: bin/run persistence. Output is emitted that
indicates that Persistence operations are being completed

5. Use CTRL+C to interrupt the notifications listener.

6. Run the persistence parallel example: bin/run persistence parallel. The
Driver.main method will run through the features of the example with output going
to the command window (stdout).

7. Download the JSch library jsch-0.1.51.jar or later and extract the contents into
the classes directory.

8. Build the archiver example: bin/build archiver.

9. Update the resource/archiver/tangosol-coherence-override.xml file and modify the
third parameter for the custom archiver and replace the username, password and
path to the location of a machine running SSH. If you have ssh equivalence setup
to your machine, you can omit the password. You may also consider using a
system property to hide your password if one is required.

10. Run the archive example: bin/run archiver.

11. Inspect the remote SFTP machine to see the archive directory.

Chapter 6
How to Run the Examples

6-15

6.4.2 How to Run the .NET Examples
This section contains the following topics:

• Prerequisites for .NET

• Directory Structure for .NET

• Instructions for .NET

6.4.2.1 Prerequisites for .NET
To run the examples, you must have Coherence for .NET and Visual Studio 2008 or
later. To run the examples, you will also need to build the Java examples. The Java
version is required because the Coherence*Extend proxy and cache servers require
Java.

Also, the examples depend on Java example classes that must be built before running
the proxy and cache server.

6.4.2.2 Directory Structure for .NET
The directory structure described below is relative to the "examples" directory.

Table 6-12 Directory Structure for .NET

Directory Name Description

resource The data file used for the contacts LoaderExample: contacts.csv.

6.4.2.3 Instructions for .NET
The following sections contain instructions for running the contacts and security
examples.

contacts

1. Start one or more cache servers: bin/run-cache-server. The cache server also
runs a proxy service which allows connections from Coherence*Extend clients.

2. From Visual Studio, start the contacts project without debugging or execute the
contacts.exe produced from the build in a command shell. The Driver.Main method
will run through the features of the example with the output going to the command
window (stdout).

Starting with Coherence 12.1.2, a new example of the new Query Language feature
was integrated. This example shows how configure and use a simple helper class
"FilterFactory" using the Coherence InvocationService.

security

1. Following the java readme.txt instructions, start one or more cache servers: bin/
run-cache-server security. The cache server also runs a proxy service which
allows connections from Coherence*Extend clients.

Chapter 6
How to Run the Examples

6-16

2. From Visual Studio, start the security project without debugging or execute the
contacts.exe produced from the build in a command shell. The Driver.Main method
will run through the features of the example with the output going to the command
window (stdout).

6.4.3 How to Run the C++ Examples
This section contains the following topics:

• Prerequisites for C++

• Directory Structure for C++

• Instructions for C++

6.4.3.1 Prerequisites for C++
To build the examples, you must have the appropriate C++ library of Coherence. Also
you must have a C++ development environment. To run the examples, you will also
need to build the Java examples. The Java version is required because the
Coherence*Extend proxy and cache servers require Java. Also, the examples depend
on Java example classes that must be built before running the proxy and cache
server.

Environment Variable Description

$COHERENCE_CPP_HOME Make sure that the COHERENCE_CPP_HOME environment variable
points to the location of the unpacked Coherence C++ installation
directory.

The supported C++ compilers are:

• Windows —Microsoft Visual C++ Express/Studio 2008 or later or the equivalent
Platform SDK.

• Linux—g++ 4.0

• Mac—g++ 4.0

6.4.3.2 Directory Structure for C++
The directory structure described below is relative to the examples directory.

Table 6-13 Directory Structure for C++

Directory Name Description

cpp/bin Scripts for building and executing the examples. Scripts with no
file extension are bash scripts. Scripts with a .cmd file extension
are Windows command scripts. The following description refers to
the script names without specifying any file extension.

• run—Runs an example, requires that java/bin/run-cache-
server be run to start a proxy service.

cpp All example source organized under the contacts and model
directories.

Chapter 6
How to Run the Examples

6-17

Table 6-13 (Cont.) Directory Structure for C++

Directory Name Description

contact/out The object files output from a build. This directory will not exist
until the build script is executed.

resource The data file used for the contacts LoaderExample: contacts.csv.

cpp/contacts Contains the contacts example sources.

cpp/security Contains the security example sources.

cpp/pof Contains the datamodel sources and any classes that require
serialization.

$COHERENCE_CPP_HOME/
include

Contains the Coherence header files.

$COHERENCE_CPP_HOME/lib Contains the Coherence library.

6.4.3.3 Instructions for C++
Execute the run scripts. There are two parts to running the example. From within new
command shells:

contacts example

1. Start one or more cache servers: bin/run-cache-server. The cache server also
runs a proxy service which allows connections from Coherence*Extend clients.

2. In a new command shell, execute run with the name of the example:

Running the contacts Example on Windows:

Type bin\run.cmd contacts

Running the contacts Example on Linux/Mac and Solaris:

Type bin/run contacts

The Driver.main method will run through the features of the example with output
going to the command window (stdout).

Starting with Coherence 12.1.2, an example of the new Query Language feature was
added. This example shows how to configure and use a simple helper class
FilterFactory using the Coherence InvocationService.

security example

1. Start one or more cache servers: bin/run-cache-server security. The cache server
also runs a proxy service which allows connections from Coherence*Extend
clients.

2. In a new command shell, execute run with the name of the example:

Running the security Example on Windows:

Type bin\run.cmd security

Running the security Example on Linux/Mac and Solaris:

Type bin/run security

Chapter 6
How to Run the Examples

6-18

The Driver.main method will run through the features of the example with output
going to the command window (stdout).

6.5 Coherence Basic Features Example
The Coherence Basic Features Examples are a collection of examples that
demonstrate basic functionality using a simplified contact information tracker
application:

This section includes the following topics:

• Overview of the Basic Features Examples

• Running the Example Set

• Understanding the Features Driver File

• Basic Data Access Example

• Loader Example

• Query Example

• Observer Example

• Processor Example

• Query Language

• Data Generator

6.5.1 Overview of the Basic Features Examples
The Coherence Basic Features examples include:

• Basic Data Access Example—Getting, putting and removing data from the
Coherence Data Grid.

• Loader Example—Loading example data into the Coherence Data Grid.

• Query Example—Querying the Coherence Data Grid including the use of indexes.

• Observer Example—Listening for changes to data in the Coherence Data Grid.
See .

• Processor Example—Co-locating data processing with the data itself in the
Coherence Data Grid.

• Query Language—How to use the new 3.6 Coherence Query Language.

This example set uses example data represented by these Data Model classes.

Table 6-14 Data Model Classes for the Features Examples

Name Description

Address Address information

Contact Contact information (includes addresses and phone numbers)

ContactId The key (contact name) to the contact information

PhoneNumber Phone number

Chapter 6
Coherence Basic Features Example

6-19

This example set also ships with a contacts.csv file which is a comma-delimited value
file containing sample Contacts information.

6.5.2 Running the Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the Driver implementation found in Understanding the
Features Driver File.

6.5.3 Understanding the Features Driver File
The Driver file has a static main method that executes all the Contacts examples in the
following order:

1. LoaderExample

2. QueryExample

3. QueryLanguageExample

4. ObserverExample

5. BasicExample

6. ProcessorExample

The Driver file is implemented in each of the three programming languages supported
by Coherence.

Language Implementation Class

Java com.tangosol.examples.contacts.Driver in java/src

.NET Driver in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

C++ Driver in namespace coherence::examples in cpp/contacts

6.5.4 Basic Data Access Example
This example shows the most basic data access features of Coherence including
getting, putting and removing data.

Java

Implementation Class: com.tangosol.examples.contacts.BasicExample in java/src

• Associate a ContactId with a Contact in the cache:

cache.put(contactId, contact);

• Retrieve the Contact associated with a ContactId from the cache:

contact = (Contact) cache.get(contactId);

• Remove mapping of ContactId to Contact from the cache:

cache.remove(contactId);

Chapter 6
Coherence Basic Features Example

6-20

.NET

Implementation Class: BasicExample in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

• Associate a ContactId with a Contact in the cache:

cache.Add(contactId, contact);

• Retrieve the Contact associated with a ContactId from the cache:

contact = (Contact)cache[contactId];

• Remove mapping of ContactId to Contact from the cache:

cache.Remove(contactId);

C++

Implementation Class: BasicExample in namespace coherence::examples in cpp/contacts

• Associate a ContactId with a Contact in the cache:

hCache->put(vContactId, vContact);

• Retrieve the Contact associated with a ContactId from the cache:

vContact = cast<Managed<Contact>::View>(hCache->get(vContactId));

• Remove mapping of ContactId to Contact from the cache:

hCache->remove(vContactId);

Example Output

The example output (due to "Observer Example"):

Example 6-1 Example Output of the Basic Data Access Example

entry inserted:
John Nocyefqgqo
Addresses
Home: 1500 Boylston St.
null
Obopnof, NM 88824
US
Work: 8 Yawkey Way
null
Ssedhvmdeq, OR 84217
US
Phone Numbers
work: +11 0 707 3776578
Birth Date: 1971-12-31
entry deleted:
John Nocyefqgqo
Addresses
Home: 1500 Boylston St.
null
Obopnof, NM 88824
US
Work: 8 Yawkey Way
null
Ssedhvmdeq, OR 84217
US

Chapter 6
Coherence Basic Features Example

6-21

Phone Numbers
work: +11 0 707 3776578
Birth Date: 1971-12-31

6.5.5 Loader Example
This example loads contacts into the cache from a file or stream.

It demonstrates the most effective way of inserting data into a cache using bulk
inserts. This will allow for minimizing the number of network roundtrips between the
application and the cache.

Java

Implementation Class: com.tangosol.examples.contacts.LoaderExample in java/src

cache.putAll(mapBatch);

.NET

Implementation Class: LoaderExample in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

cache.InsertAll(dictBatch);

C++

Implementation Class: LoaderExample in namespace coherence::examples in cpp/
contacts

hCache->putAll(hMapBatch);

Example Output

Example 6-2 Example Output

.........Added 10000 entries to cache

6.5.6 Query Example
QueryExample runs sample queries for contacts.

The purpose of this example is to show how to create Extractors on cache data and
how to create a KeyExtractor for the cache keys. It also illustrates how to use the
indexes to filter the dataset to efficiently create a matching set. Finally, the example
demonstrates how to use some of the built-in cache aggregators to do simple
computational tasks on the cache data. A subset of the code is shown below.

Java

Implementation Class: com.tangosol.examples.contacts.QueryExample in java/src

• Add an index to make queries more efficient.

cache.addIndex(new ChainedExtractor("getHomeAddress.getState"), /*fOrdered*/
false, /*comparator*/ null);

• Find all contacts who live in Massachusetts.

Set setResults = cache.entrySet(new EqualsFilter("getHomeAddress.getState",
"MA"));

Chapter 6
Coherence Basic Features Example

6-22

• Count contacts who are older than nAge for the entire cache dataset.

System.out.println("count > " + nAge + ": " + cache.aggregate(new
GreaterFilter("getAge", nAge), new Count()));

.NET

Implementation Class: QueryExample in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

• Add an index to make queries more efficient.

cache.AddIndex(new ChainedExtractor("getHomeAddress.getState"),/*fOrdered*/
false, /*comparator*/ null);

• Find all contacts who live in Massachusetts.

ICacheEntry[] aCacheEntry = cache.GetEntries(new
EqualsFilter("getHomeAddress.getState", "MA"));

• Count contacts who are older than nAge for the entire cache dataset.

Console.WriteLine("count > " + nAge + ": "+ cache.Aggregate(new
GreaterFilter("getAge", nAge), new
Count()));

C++

Implementation Class: QueryExample in namespace coherence::examples in cpp/contacts

• Add an index to make queries more efficient.

ValueExtractor::View vHomeStateExtractor = ChainedExtractor::create(
ChainedExtractor::createExtractors("getHomeAddress.getState"));

• Find all contacts who live in Massachusetts.

Object::View voStateName = String::create("MA");
Set::View setResults = hCache->entrySet(
EqualsFilter::create(vHomeStateExtractor, voStateName));

• Count contacts who are older than nAge for the entire cache dataset.

Integer32::View nAge = Integer32::valueOf(58);
Object::View vResult = hCache->aggregate((Filter::View)
GreaterFilter::create(vAgeExtractor, nAge), Count::create());
std::cout << "count > " << nAge->getValue() << ": " << vResult << std::endl;

Example Output

The example output is large due to 10,000 contacts and several queries. A sample of
the query for Massachusetts residents:

Example 6-3 Example Output of the Query Example

MA Residents
ConverterEntry{Key="John Scqngqda", Value="John Scqngqda
Addresses
Home: 265 Beacon St.
Oaskxm, MA 88259
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, OK 95744
US

Chapter 6
Coherence Basic Features Example

6-23

Phone Numbers
work: +11 88 903 8991283
home: +11 98 553 5878221
Birth Date: 1960-01-03"}

6.5.7 Observer Example
ObserverExample demonstrates how to use a MapListener to monitor cache events such
as when cache data has been inserted, updated, and removed. There is no immediate
output when this example is run. The registered listener outputs the entry when it is
inserted, updated, and deleted. For an update, it outputs both the old value and the
new value. The changes to entries are caused by running the Basic Data Access
Example and the Processor Example, so the output happens when those examples
are run.

A subset of the code is shown below.

Java

Implementation Class: com.tangosol.examples.contacts.ObserverExample in java/src

• ContactChangeListener is a class that implements the MapListener interface.

cache.addMapListener(new ContactChangeListener());

.NET

Implementation Class: ObserverExample in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

• ContactChangeListener is a class that implements the ICacheListener interface.

cache.AddCacheListener(new ContactChangeListener());

C++

Implementation Class: ObserverExample in namespace coherence::examples in cpp/
contacts

• ContactChangeListener is a class that implements the MapListener interface using
Coherence implements clause.

ContactChangeListener::Handle hListener = ContactChangeListener::create();
hCache->addFilterListener(hListener);

• Definition of ContactChangeListener:

class ContactChangeListener
 : public class_spec<ContactChangeListener,
 extends<Object>, implements <MapListener> >

6.5.8 Processor Example
ProcessorExample demonstrates how to use a processor to modify a set of data in the
cache. In the code sample that follows, all Contacts who live in MA will have their work
address updated.

Java

Implementation Class: com.tangosol.examples.contacts.ProcessorExample in java/src

Chapter 6
Coherence Basic Features Example

6-24

Helper Class: com.tangosol.examples.contacts.OfficeUpdater in java/src

• Apply the OfficeUpdater on all contacts who live in MA. The OfficeUpdater is a
class that implements the InvocableMap.EntryProcessor interface by extending
AbstractProcessor.

cache.invokeAll(new EqualsFilter("getHomeAddress.getState", "MA"), new
OfficeUpdater(addrWork));

.NET

Implementation Class: ProcessorExample in namespace Tangosol.Examples.Contacts in
dotnet/src/contacts

Helper Class: OfficeUpdater in namespace Tangosol.Examples.Contacts in dotnet/src/
contacts

• Apply the OfficeUpdater on all contacts who live in MA. The OfficeUpdater is a
class that implements the IEntryProcessor interface by extending
AbstractProcessor.

cache.InvokeAll(new EqualsFilter("getHomeAddress.getState", "MA"), new
OfficeUpdater(addrWork));

C++

Implementation Class: ProcessorExample in namespace coherence::examples in cpp/
contacts

Helper Class: OfficeUpdater in namespace coherence::examples in cpp/contacts

• The OfficeUpdater is a class that extends the UpdaterProcessor type.

class OfficeUpdater
: public class_spec<OfficeUpdater,
extends<UpdaterProcessor>,
implements<PortableObject> >

• Apply the OfficeUpdater on all contacts who live in MA.

Filter::View vEqualsFilter = EqualsFilter::create(
ChainedExtractor::create(ChainedExtractor::createExtractors(
"getHomeAddress.getState")),
String::create("MA"));
InvocableMap::EntryProcessor::Handle hOffice = OfficeUpdater::create(addrWork);
Map::View vMap = hCache->invokeAll(vEqualsFilter, hOffice);

Example Output

The example Output (due to Observer Example) is large due to the number of
contacts. A sample of output:

Example 6-4 Example Output of the Processor Example

entry updated
old value:
John Keau
Addresses
Home: 443 Beacon St.
Ophvowvw, MA 06539
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.

Chapter 6
Coherence Basic Features Example

6-25

Grover's Mill, FL 86812
US
Phone Numbers
work: +11 8 919 9456102
home: +11 25 759 588823
Birth Date: 1968-12-31
new value:
John Keau
Addresses
Home: 443 Beacon St.
Ophvowvw, MA 06539
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 8 919 9456102
home: +11 25 759 588823
entry updated
old value:
John Lbggblkd
Addresses
Home: 929 Beacon St.
Trwylbmf, MA 50358
US
Work: Yoyodyne Propulsion Systems
330 Lectroid Rd.
Grover's Mill, AZ 19164
US
Phone Numbers
work: +11 60 699 203810
home: +11 34 149 5018157
Birth Date: 1964-01-02
new value:
John Lbggblkd
Addresses
Home: 929 Beacon St.
Trwylbmf, MA 50358
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 60 699 203810
home: +11 34 149 5018157
Birth Date: 1964-01-02
Birth Date: 1968-12-31

6.5.9 Query Language
This example shows how to run sample queries for contacts.

Java

Implementation Class: com.tangosol.examples.query.QueryExample in java/src

• Add indexes to make queries more efficient.

Chapter 6
Coherence Basic Features Example

6-26

cache.addIndex(ff.createExtractor("age"), /*fOrdered*/ true, /*comparator*/
null);
cache.addIndex(ff.createExtractor("homeAddress.state"), /*fOrdered*/ false, /
comparator/ null);

• Find all contacts who live in Massachusetts.

Set setResults = cache.entrySet(ff.createFilter("homeAddress.state = 'MA'"));

• Count contacts who are older than nAge for the entire cache dataset.

final int nAge = 58;
Object[] aEnv = new Object[] {new Integer(nAge)};
System.out.println("count > " + nAge + ": " +
cache.aggregate(ff.createFilter("age > ?1", aEnv), new
Count()));

.NET

Implementation Class: SimpleQueryExample in namespace Tangosol.Examples.Query in
dotnet/src/query

• Add indexes to make queries more efficient.

cache.AddIndex(ff.CreateExtractor("age"), /*fOrdered*/ true, /*comparator*/
null);
cache.AddIndex(ff.CreateExtractor("homeAddress.state"), /*fOrdered*/ false, /
comparator/ null);

• Find all contacts who live in Massachusetts.

ICollection results = cache.GetEntries(ff.CreateFilter("homeAddress.state =
'MA'"));

• Count contacts who are older than age for the entire cache dataset.

const int age = 58;
object[] env = new object[] { age };
results = cache.GetEntries(ff.CreateFilter("age > ?1", env));

C++

Implementation Class: SimpleQueryExample in namespace coherence::examples in cpp/
query

• Add indexes to make queries more efficient.

hCache->addIndex(hff->createExtractor("age"), /*fOrdered*/ true, /*vComparator*/
NULL);
hCache->addIndex(hff->createExtractor("homeAddress.state"), /*fOrdered*/ false, /
vComparator/ NULL);

• Find all contacts who live in Massachusetts.

Set::View setResults = hCache->entrySet(hff->createFilter("homeAddress.state is
'MA'"));
s

• Count contacts who are older than nAge for the entire cache dataset.

Integer32::View nAge = Integer32::valueOf(58);
ObjectArray::Handle haEnv = ObjectArray::create(1);
haEnv[0] = nAge;
HashMap::Handle hbinds = HashMap::create();
hbinds->put(String::create("nAge"), nAge);
setResults = hCache->entrySet(hff->createFilter("age > ?1", haEnv));

Chapter 6
Coherence Basic Features Example

6-27

Example Output

The example output (due to Query Example):

Example 6-5 Example Output of the Query Language Example

MA Residents
ConverterCacheEntry{Key="John Wmbltik", Value="John Wmbltik
Addresses
Home: 785 Beacon St.
Vpmji, MA 34400
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 62 133 6144503
home: +11 17 238 6189757
Birth Date: 1/1/1968 12:00:00 AM"}
ConverterCacheEntry{Key="John Dtpx", Value="John Dtpx
Addresses
Home: 673 Beacon St.
Mvblms, MA 25889
US
Work: 200 Newbury St.
Yoyodyne, Ltd.
Boston, MA 02116
US
Phone Numbers
work: +11 89 900 8436918
home: +11 32 686 9582798
Birth Date: 1/3/1960 12:00:00 AM"}
.
.
.
count > 58 : 496

6.5.10 Data Generator
Implementation Class: com.tangosol.examples.contacts.DataGenerator in java/src

The DataGenerator has a static main method that generates random Contact
information and stores the results in a comma separated value file. This class was
used to generate the contacts.csv that is packaged with the contacts examples and is
included in case more sample data is needed. The class is implemented only in Java.

6.6 Coherence Security Examples
The Coherence security examples are a collection of examples that show how to use
the security features of Coherence in order to provide access control. The examples
are simplified to show only the security features of Coherence. They are not examples
of security best practices.
This section contains the following topics:

• Overview of the Coherence Security Examples

• This Example Set

Chapter 6
Coherence Security Examples

6-28

• Password Example

• Access Control Example

• Password Identity Transformer

• Password Identity Asserter

• Entitled Cache Service

• Entitled Invocation Service

• Entitled Named Cache

• Security Example Helper

6.6.1 Overview of the Coherence Security Examples
The security examples include:

• Password Example—Shows how a Coherence Proxy can require a password to
access a cache.

• Access Control Example—Shows simplified role based access control.

• Password Identity Transformer—Creates a custom security token that contains the
required password and then adds a list of Principal names.

• Password Identity Asserter—Asserts that the security token contains the required
password and then constructs a Subject based on a list of Principal names.

• Entitled Cache Service—Wraps a cache service for access control.

• Entitled Invocation Service—Wraps an invocation service for access control.

• Entitled Named Cache—Wraps a named cache for access control.

6.6.2 This Example Set
The Coherence security example set gets a cache reference that requires a password
an attempts cache and invocation service operations that require different roles.

This section includes the following topics:

• Running the Security Example Set

• Understanding the Security Driver File

6.6.2.1 Running the Security Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the security Driver implementation found in the next
section.

6.6.2.2 Understanding the Security Driver File
Has a static main method that executes all the security examples in the following order:

Chapter 6
Coherence Security Examples

6-29

1. PasswordExample

2. AccessControlExample.accessCache()

3. AccessControlExample.accessInvocationService()

Is implemented in each of the three programming languages supported by Coherence:

Language Implementation Class

Java com.tangosol.examples.security.Driver in java/src

.NET Driver in namespace Tangosol.Examples.Security in
dotnet/src/security

C++ Driver in namespace coherence::examples in cpp/security

Please refer to this example set's example.zip file for more details on each of the
examples outlined below.

6.6.3 Password Example
This example shows how a Coherence Proxy can require a password to get a
reference to a cache.

Java

Implementation Class: com.tangosol.examples.security.PasswordExample in java/src

The code logs in to get a Subject, and then tries to get a cache reference running in
the context of the Subject.

The Password Identity Transformer will generate a security token that contains the
password. The Password Identity Asserter (running in the proxy) will validate the
security token to enforce the password. The token generation and validation occurs
automatically when a connection to the proxy is made.

.NET

Implementation Class: PasswordExample in namespace Tangosol.Example.Security in
dotnet/src/security

The code logs in to get a Principal, and then tries to get a cache reference running in
the context of the Principal by making the Principal the Thread's current principal.

The Password Identity Transformer will generate a security token that contains the
password. The Password Identity Asserter (running in the proxy) will validate the
security token to enforce the password. The token generation and validation occurs
automatically when a connection to the proxy is made.

C++

Implementation Class: AccessExample in namespace coherence::examples in cpp/
security

The code logs in to get a Subject, and then tries to get a cache reference running in
the context of the Subject.

The Password Identity Transformer will generate a security token that contains the
password. The Password Identity Asserter (running in the proxy) will validate the

Chapter 6
Coherence Security Examples

6-30

security token to enforce the password. The token generation and validation occurs
automatically when a connection to the proxy is made.

Example Output

Example 6-6 Example Output of the Password Example

------password example begins------
------password example succeeded------
------password example completed------

6.6.4 Access Control Example
This example shows simplified role-based access control.

Java

Implementation Class: com.tangosol.examples.security.AccessControlExample in
java/src

The code logs in to get a Subject with a user-id with a particular role, gets a cache
reference running in the context of the Subject, and then tries cache operations.
Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can
get but not put. Someone with a writer role cannot destroy a cache. Someone with an
admin role can destroy a cache.

Then a user with a particular role tries to use the invocation service. A reader is not
allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a
Subject, that identity is permanently associated with that reference. Any use of that
cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the
password, the user-id, and the roles. The Password Identity Asserter (running in the
proxy) will validate the security token to enforce the password, and construct a Subject
with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named
Cache code for the implementation of access control.

.NET

Implementation Class: AccessControlExample in namespace Tangosol.Example.Security
in dotnet/src/security

The code logs in to get a Principal with a user-id with a particular role, gets a cache
reference running in the context of the Principal, and then tries cache operations.
Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can
get but not put. Someone with a writer role cannot destroy a cache. Someone with an
admin role can destroy a cache.

Chapter 6
Coherence Security Examples

6-31

Then a user with a particular role tries to use the invocation service. A reader is not
allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a
Principal, that identity is permanently associated with that reference. Any use of that
cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the
password, the user-id, and the roles. The Password Identity Asserter (running in the
proxy) will validate the security token to enforce the password, and construct a Subject
with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named
Cache code for the implementation of access control.

C++

Implementation Class: AccessControlExample in namespace coherence::examples in cpp/
security

The code logs in to get a Subject with a user-id with a particular role, gets a cache
reference running in the context of the Subject, and then tries cache operations.
Depending on the role granted to the user, the cache operation is allowed or denied.

Someone with a writer role is allowed to put and get. Someone with a reader role can
get but not put. Someone with a writer role cannot destroy a cache. Someone with an
admin role can destroy a cache.

Then a user with a particular role tries to use the invocation service. A reader is not
allowed to invoke, but a writer is allowed.

Note that once the cache or invocation service reference is created in the context of a
Subject, that identity is permanently associated with that reference. Any use of that
cache or service reference is on behalf of that identity.

The Password Identity Transformer will generate a security token that contains the
password, the user-id, and the roles. The Password Identity Asserter (running in the
proxy) will validate the security token to enforce the password, and construct a Subject
with the proper user-id and roles.

The production and assertion of the security token happens automatically.

See the Entitled Cache Service, Entitled Invocation Service, and Entitled Named
Cache code for the implementation of access control.

Example Output

Example 6-7 Example Output of the Access Control Example

------cache access control example begins------
Success: read and write allowed
Success: read allowed
Success: Correctly cannot write
Success: Correctly cannot destroy the cache
Success: Correctly allowed to destroy the cache
------cache access control example completed------
------InvocationService access control example begins------
Success: Correctly allowed to use the invocation service

Chapter 6
Coherence Security Examples

6-32

Success: Correctly unable to use the invocation service
------InvocationService access control example completed------

6.6.5 Password Identity Transformer
This example shows how an IdentityTransformer produces a security token from an
identity.

Java

Implementation Class: com.tangosol.examples.security.PasswordIdentityTransformer in
java/src

The code produces a security token that is an array of strings. The first string is the
password. The second string is the user-id and subsequent strings are the user's
roles. Arrays of strings will be serialized by Coherence*Extend without requiring a
custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or
a channel is opened in an existing connection.

.NET

Implementation Class: PasswordIdentityTransformer in namespace
Tangosol.Example.Security in dotnet/src/security

The code produces a security token that is an array of strings. The first string is the
password. The second string is the user-id and subsequent strings are the user's
roles. Arrays of strings will be serialized by Coherence*Extend without requiring a
custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or
a channel is opened in an existing connection.

C++

Implementation Class: PasswordIdentityTranfromer in namespace coherence::examples
in cpp/security

The code produces a security token that is an array of strings. The first string is the
password. The second string is the user-id and subsequent strings are the user's
roles. Arrays of strings will be serialized by Coherence*Extend without requiring a
custom serializer.

This class will be invoked automatically when the Extend client connects to a proxy or
a channel is opened in an existing connection.

6.6.6 Password Identity Asserter
This example shows how an IdentityAsserter validates a security token and produces
a Subject from a list of principal names.

Java

Implementation Class: com.tangosol.examples.security.PasswordIdentityAsserter in
java/src

Chapter 6
Coherence Security Examples

6-33

The code processes a security token that should be an array of strings. The first string
must be the password. Subsequent strings are principals. Any failure processing the
token results in a SecurityException that will deny access to the proxy.

.NET

Implementation Class: none

The IdentityAsserter runs only on the proxy (in Java), so it does not run in the .NET
client. Therefore, there is no PasswordIdentityAsserter for .NET.

C++

Implementation Class: none

The PasswordIdentityAsserter runs only on the proxy (in Java), so it does not run in the
C++ client. Therefore there is no PasswordIdentityAsserter for C++.

6.6.7 Entitled Cache Service
This example shows how a remote cache service can be wrapped to provide access
control.

Java

Implementation Class: com.tangosol.examples.security.EntitledCachService in
java/src

The code instantiates an Entitled Named Cache that provides access control for cache
operations. The code also provides access control for the cache service methods
release and destroy. The access control check is delegated to the Security Example
Helper.

This class will be instantiated automatically when the cache service is started on the
proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

6.6.8 Entitled Invocation Service
This example shows how a remote invocation service can be wrapped to provide
access control.

Java

Implementation Class: com.tangosol.examples.security.EntitledInvocationService in
java/src

The code provides access control for the invocation service methods. The access
control check is delegated to the Security Example Helper.

Chapter 6
Coherence Security Examples

6-34

This class will be instantiated automatically when the invocation service is started on
the proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

6.6.9 Entitled Named Cache
This example shows how a remote named cache can be wrapped to provide access
control.

Java

Implementation Class: com.tangosol.examples.security.EntitledNamedCache in java/src

The code provides access control for the NamedCache methods. The access control
check is delegated to the Security Example Helper.

This class will be instantiated automatically when the cache service is started on the
proxy.

.NET

There is no .NET implementation. The class runs only on the proxy in Java.

C++

There is no C++ implementation. The class runs only on the proxy in Java.

6.6.10 Security Example Helper
This example is a helper class for authentication and access control.

Java

Implementation Class: com.tangosol.examples.security.SecurityExampleHelper in
java/src

The code simulates authentication. For the sake of simplicity, it creates a Subject. A
real implementation would do platform- and company-specific authentication. The login
also does simple mapping of user names to roles.

The checkAccess method checks that the operation is allowed by the user's role.

.NET

Implementation Class: SecurityExampleHelper in namespace Tangosol.Example.Security
in dotnet/src/security

The code simulates authentication. For the sake of simplicity, it creates a Principal. A
real implementation would do platform- and company-specific authentication. The login
also does simple mapping of user names to roles.

Chapter 6
Coherence Security Examples

6-35

C++

Implementation Class: SecurityExampleHelper in namespace coherence::examples in
cpp/security

The code simulates authentication. For the sake of simplicity, it creates a Subject. A
real implementation would do platform- and company-specific authentication. The login
also does simple mapping of user names to roles.

6.7 Coherence Live Events Example
The Coherence Live Events examples illustrate the various event types and how they
can be consumed, including EntryEvents, EntryProcessorEvents and TransferEvents.
The Live Events Examples are available only in the Java programming language, as
they are executed on the storage-enabled members of the partitioned service.

This section includes the following topics:

• Overview of the Coherence Live Events Example

• This Example Set

• EventsExamples

• TimedTraceInterceptor

• CantankerousInterceptor

• RedistributionInterceptor

• RedistributionInvocable

• LazyProcessor

6.7.1 Overview of the Coherence Live Events Example
The Coherence Live Events examples include:

• EventsExamples—Illustrates various features within Live Events.

• TimedTraceInterceptor—Provides timings between pre- and post-commit events
for different types of events.

• CantankerousInterceptor—Responds with runtime exceptions at either pre- or
post-commit time, based on the type of key being inserted.

• RedistributionInterceptor—Logs partition events when enabled.

• RedistributionInvocable—Defines three actionable states that will be executed on
various members of the cluster. The states are enable logging performed by the
RedistributionInterceptor, disable logging, or terminate the JVM that the
invocable (RedistributionInvocable) is executed on.

• LazyProcessor—Creates a superficial delay between the processing of events.

6.7.2 This Example Set
The live events example set illustrates: how to measure the elapsed time between pre-
and post-events which are inserted into a results cache; the semantics of throwing

Chapter 6
Coherence Live Events Example

6-36

exceptions in pre- and post-commit events, and how partition redistribution events can
be logged.

This section includes the following topics:

• Running the Live Events Example Set

• Understanding the Live Events Driver File

6.7.2.1 Running the Live Events Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the Live Events Driver implementation found in the next
section.

6.7.2.2 Understanding the Live Events Driver File
Has a static main method that executes all the Live Events examples in the following
order:

1. Timed Events Example

2. Veto Events Example

3. Partition Transfer Events Example

Is implemented only in the Java programming language:

Language Implementation Class

Java com.tangosol.examples.events.Driver in java/src

6.7.3 EventsExamples
Implementation Class: com.tangosol.examples.events.EventsExamples in java/src

The EventsExamples class illustrates various features within Live Events. This includes:

• Providing mean elapsed times split by event type.

• Illustrating the different semantics in throwing exceptions in pre-events compared
to post-events.

• Illustrating logging of partition movement when enabled.

The EventsExamples class defines these inner classes:

• EventsTimingExample

• VetodEventsExample

• RedistributionEventsExample

6.7.3.1 EventsTimingExample
The EventsTimingExample inner class is a catalyst for action to be performed by
TimedTraceInterceptor. This illustrates how the elapsed time between pre- and post-

Chapter 6
Coherence Live Events Example

6-37

events can be measured which are inserted into a results cache. The entries inserted
into the results cache are displayed by using the stdout of the process executing this
class.

The example output:

Example 6-8 Example Output of the EventsTimingExample

Received stats [memberId=2, eventType=INSERTED, sample=1] = EventStats[name =
INSERTED, sampleMean = 0.294040ms, mean = 0.294040ms]
Received stats [memberId=3, eventType=INSERTED, sample=1] = EventStats[name =
INSERTED, sampleMean = 0.397855ms, mean = 0.397855ms]
Received stats [memberId=1, eventType=INSERTED, sample=1] = EventStats[name =
INSERTED, sampleMean = 0.373270ms, mean = 0.373270ms]
Received stats [memberId=3, eventType=UPDATED, sample=1] = EventStats[name =
UPDATED, sampleMean = 0.187132ms, mean = 0.187132ms]
Received stats [memberId=2, eventType=UPDATED, sample=1] = EventStats[name =
UPDATED, sampleMean = 0.234314ms, mean = 0.234314ms]
Received stats [memberId=1, eventType=UPDATED, sample=1] = EventStats[name =
UPDATED, sampleMean = 0.237622ms, mean = 0.237622ms]

6.7.3.2 VetodEventsExample
The VetodEventsExample inner class is a catalyst for action to be performed by
CantankerousInterceptor. This illustrates the semantics of throwing exceptions in pre-
and post-events. The exceptions that are expected to only be logged are inserted into
a results cache. The entries inserted into the results cache are displayed by using the
stdout of the process executing this class.

The example output:

Example 6-9 Example Output of the VetodEventsExample

Received event [memberId=3, eventType=NON_VETO, count=1] = Objection falls on deaf
ears! value = value: 11
Received event [memberId=3, eventType=NON_VETO, count=2] = Objection falls on deaf
ears! value = value: 22
Received event [memberId=3, eventType=NON_VETO, count=3] = Objection falls on deaf
ears! value = value: 33
Received event [memberId=3, eventType=NON_VETO, count=4] = Objection falls on deaf
ears! value = value: 44

6.7.3.3 RedistributionEventsExample
The RedistributionEventsExample inner class is a catalyst for action to be performed by
the RedistributionInterceptor class. This illustrates how partition redistribution events
can be logged, by enabling logging in the RedistributionInterceptor and killing a
member thus inducing partition redistribution.

The example output:

Example 6-10 Output of the RedistributionEventsExample

Choosing to kill member Member(Id=3, Timestamp=2014-01-02 16:38:17.942,
Address=10.159.154.103:8092, MachineId=47251, Location=site:,machine:TPFAEFFL-
LAP,process:8168, Role=CoherenceServer)

Chapter 6
Coherence Live Events Example

6-38

6.7.4 TimedTraceInterceptor
Implementation Class: com.tangosol.examples.events.TimedTraceInterceptor in
java/src

The TimedTraceInterceptor class provides timings between pre- and post-commit
events for each type of event; that is, inserts, updates, removes, and entry processor
execution. These timings are collected and averaged at a sample rate defined by
parameter cSample. Additionally they are output to the log at the same time. This
implementation does maintain a strong reference to the each binary key however this
is removed upon receiving the post-commit event for the same key.

The interceptor implements the EventInterceptor interface. The @Interceptor
annotation provides the unique name of the interceptor with the identifier attribute
and the order in which it should be executed (Order.HIGH) with the order attribute.

The interceptor also contains a protected EventTimer inner-class. This class times the
elapsed time for each event it is notified of. The interceptor tracks the time between a
pre- and post-commit event for each entry and the respective event types (INSERT,
UPDATE, REMOVE). The timings are sent to the Coherence log in batches displaying
sample and cumulative statistics.

As the generic argument is com.tangosol.net.events.partition.cache.Event, you will
only get events that are consumers of that event, that is, EntryEvent and
EntryProcessorEvent, without specifying any filtering.

6.7.5 CantankerousInterceptor
Implementation Class: com.tangosol.examples.events.CantankerousInterceptor in
java/src

The CantankerousInterceptor class is an EventInterceptor implementation that is
argumentative in nature, hence the event of inserting certain keys will result in runtime
exceptions at either pre- or post-commit phases.

If the exception is thrown at pre-commit time, then a rollback occurs and the exception
is propagated to the client. If the exception occurs at post-commit time, then a log
event is recorded. The keys used for the exceptions are VETO and NON-VETO. INSERTING
and UPDATING are events that can be vetoed, whereas INSERTED and UPDATED events
cannot be vetoed.

6.7.6 RedistributionInterceptor
Implementation Class: com.tangosol.examples.events.RedistributionInterceptor in
java/src

The RedistributionInterceptor class is an EventInterceptor that logs partition activity
when enabled. Logging can be enabled by setting the RedistributionInvocable.ENABLED
constant. See RedistributionInvocable.

6.7.7 RedistributionInvocable
Implementation Class: com.tangosol.examples.pof.RedistributionInvocable in java/src

Chapter 6
Coherence Live Events Example

6-39

The RedistributionInvocable class defines three actionable states that will be
executed on various members of the cluster. For this example, define the states as
follows:

• DISABLE: Disable the logging performed by the RedistributionInterceptor event
interceptor.

• ENABLE: Enable the logging performed by the RedistributionInterceptor event
interceptor.

• KILL: Terminate the JVM that this invocable (RedistributionInvocable) is executed
on.

6.7.8 LazyProcessor
Implementation Class: com.tangosol.examples.pof.LazyProcessor in java/src

The LazyProcessor class creates a superficial delay between the processing of events.
The class specifies the number of milliseconds this processor should sleep between
processing events. This class will be used by the EventsTimingExample subclass in
the EventsExamples class.

6.8 Coherence Java 8 Features Example
The Coherence Java 8 Features examples illustrate how to use Coherence with
features that are available in Java 8. The examples demonstrate using Streams,
Lambda, and default methods that were introduced in the Map interface. The features
are organized as three separate examples; however, these features often build on
each other and are not mutually exclusive.
This section includes the following topics:

• This Example Set

• Streams

• Lambda

• Map Default Method

6.8.1 This Example Set
The Coherence Java 8 features example illustrates: how to use the Java streams
when querying and processing cache entries; how Lambda features can be used to
simplify common Coherence tasks and how to query and process cache entries using
new default methods from the Map interface that have been overridden in the
Coherence InvocableMap interface.

This section includes the following topics:

• Running the Java 8 Features Example Set

• Understanding the Java 8 Driver File

6.8.1.1 Running the Java 8 Features Example Set
1. Review the following information:

• How to Build the Examples

Chapter 6
Coherence Java 8 Features Example

6-40

• How to Run the Examples

2. Review the information on the Java 8 Driver implementation found in the next
section.

6.8.1.2 Understanding the Java 8 Driver File
Has a static main method that executes all the Java 8 examples in the following order:

1. Streams

2. Lambda

3. Map Default Method

Is implemented only in the Java programming language:

Language Implementation Class

Java com.tangosol.examples.java8.Driver in java/src

6.8.2 Streams
Implementation Class: com.tangosol.examples.java8.StreamsExample in java/src.

The StreamsExample class perform multiple queries of the Contact cache using the
Stream API and also makes use of Lambda expressions. The results of the queries are
printed to the console. The class also uses the Coherence RemoteCollector interface
which extends the standard Java Collector interface and adds support for serialization
in order to process stream elements that are distributed.

6.8.3 Lambda
Implementation Class: com.tangosol.examples.java8.LambdaExample in java/src.

The LambdaExample class uses lambda expressions to add a listener for the Contact
cache and update a contact using an entry processor. Lastly a lambda expression is
used to query the Contact cache using the Coherence Filters API.

6.8.4 Map Default Method
Implementation Class: com.tangosol.examples.java8.MapDefaultMethdodExample in java/
src.

The MapDefaultMethodExample class performs multiple queries of the Contact cache and
updates several cache entries using default methods that have been added to the Map
interface. Note that Coherence overrides the default methods in the InvocableMap
interface. Note also that the example uses lambda expressions when querying the
cache.

6.9 Coherence Asynchronous Features Example
These Asynchronous examples illustrate how to perform asynchronous data grid
operations using the AsyncNamedCache API. The examples also uses the
java.util.concurrent.CompletableFuture API, which is used to check if an operations is
complete, to wait for its completion, and to retrieve the result of the operation.

Chapter 6
Coherence Asynchronous Features Example

6-41

This section includes the following topics:

• This Example Set

• Asynchronous Data Access

• Asynchronous Entry Processor

• Asynchronous Aggregator

6.9.1 This Example Set
The Coherence asynchronous features example illustrates: how to asynchronously get
and put data in a cache; how to asynchronously process cache entries; how to
asynchronously aggregate cache entries.

This section includes the following topics:

• Running the Asynchronous Features Example Set

• Understanding the Asynchronous Driver File

6.9.1.1 Running the Asynchronous Features Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the asynchronous Driver implementation found in the
next section.

6.9.1.2 Understanding the Asynchronous Driver File
Has a static main method that executes all the asynchronous examples in the following
order:

1. Data Access Example

2. Processor Example

3. Aggregator Example

Is implemented only in the Java programming language:

Language Implementation Class

Java com.tangosol.examples.async.Driver in java/src

6.9.2 Asynchronous Data Access
Implementation Class: com.tangosol.examples.async.DataAccessExample in java/src.

The DataAccessExample class uses the AsyncNamedCache API to get an instance of the
Contact cache. The class creates a new contact and uses the AsyncNamedCache
instance to put the contact in the cache and then gets the contact from the cache. The
contact is changed and then put back into the cache.

Chapter 6
Coherence Asynchronous Features Example

6-42

6.9.3 Asynchronous Entry Processor
Implementation Class: com.tangosol.examples.async.ProcessorExample in java/src.

The ProcessorExample class uses the AsyncNamedCache API to get an instance of the
Contact cache. The AsyncNamedCache instance is used to query the cache and execute
an entry processor which changes the set of contact names to uppercase. The entry
processors are then used to change the names back to lower case.

6.9.4 Asynchronous Aggregator
Implementation Class: com.tangosol.examples.async.AggregatorExample in java/src.

The AggregatorExample class uses the AsyncNamedCache API to get an instance of the
Contact cache. The AsyncNamedCache instance is used to query the cache and execute
an aggregation on a set of contacts based on age.

6.10 Coherence Federated Caching Example
The federated caching example starts two clusters: ClusterA and ClusterB. The
clusters are configured in a federation topology and cached data is actively
synchronized between the two clusters.

This section includes the following topics:

• This Example Set

• Federation Configuration

6.10.1 This Example Set
The Coherence federated caching example set illustrates: federation cluster
participant configuration; an active-active replication topology configuration; a
federated cache service configuration; SSL configuration to secure communication
between cluster participants.

This section includes the following topics:

• Running the Federated Caching Example Set

• Understanding the Federated Caching Driver File

6.10.1.1 Running the Federated Caching Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the federated caching Driver implementation found in
the next section.

6.10.1.2 Understanding the Federated Caching Driver File
Has a static main method that:

Chapter 6
Coherence Federated Caching Example

6-43

1. Starts two clusters.

2. Starts either a GUI application, CohQL, or console for each cluster.

Is implemented only in the Java programming language:

Language Implementation Class

Java com.tangosol.examples.federation.Driver in java/src

6.10.2 Federation Configuration
The federation example demonstrates configuration. Inspect the resource/federation/
examples-cache-configure.xml file for an example of federated cache configuration.
Inspect the resource/federation/tangosol-coherence-override.xml file for details about
how to configure federation participants and replication topologies.

6.11 Coherence Persistence Example
The persistence example demonstrate saving and recovering cache data from disk.
The examples exercise many different persistence operations programmatically.
Persistence operations can also be performed using the PersistenceCoordinatorMBean
MBean and using CohQL commands.
This section includes the following topics:

• This Example Set

• Basic Snapshot Operations

• Persistence Notifications

• Persistence Operations in Parallel

• Archiving Snapshots with a Custom Archiver

6.11.1 This Example Set
The Coherence persistence example set illustrates: how to save and recover a cache
snapshot; how to register for persistence notifications how to perform persistence
operations in parallel; how to create and use a custom archiver.

This section includes the following topics:

• Running the Persistence Example Set

• Understanding the Persistence Driver File

6.11.1.1 Running the Persistence Example Set
1. Review the following information:

• How to Build the Examples

• How to Run the Examples

2. Review the information on the persistence Driver implementation found in the next
section.

Chapter 6
Coherence Persistence Example

6-44

6.11.1.2 Understanding the Persistence Driver File
Has a static main method that executes the persistence examples depending on the
arguments that are entered.

1. Basic Snapshot Example

2. Persistence Notifications Example

3. Persistence Operations in Parallel Example

4. Custom Archiver Example

Is implemented only in the Java programming language:

Language Implementation Class

Java com.tangosol.examples.async.Driver in java/src

6.11.2 Basic Snapshot Operations
Implementation Class: com.tangosol.examples.persistence.BasicSnapshotOperations in
java/src

The BasicSnapshotOperations class demonstrates how to use persistence snapshots to
the save and recover the contents of a cache. It uses the contacts example to
populate a cache and then programmatically performs persistence operations as
follows:

• A snapshot of the contacts cache is created. The location for persistence files is
java/persistence-data.

• A list of available snapshots is discovered.

• The contacts cache is cleared of all data.

• The cache contents are recovered from the snapshot.

• The size of cache is reported.

• The snapshot of the contacts cache is removed.

• A list of available snapshots verifies that the snapshot has been removed

6.11.3 Persistence Notifications
Implementation Class: com.tangosol.examples.persistence.NotificationWatcher in
java/src

The NotificationWatcher class demonstrates how to monitor notifications from
persistence operations. The basic snapshot operations example is run with each
operation being monitored. The class creates and registers a persistence notification
listener on the contacts cache service. The notifications are then used to monitor the
amount of time it takes for persistence operations to be performed.

Chapter 6
Coherence Persistence Example

6-45

6.11.4 Persistence Operations in Parallel
Implementation Class: com.tangosol.examples.persistence.ParallelSnapshotOperations
in java/src

The ParallelSnapshotOperations class demonstrates how to call snapshot operations
for multiple partitioned cache services in parallel. The basic snapshot operations
example is run and two instance of the contact cache service are created. The
persistence operations are then performed for each cache service.

6.11.5 Archiving Snapshots with a Custom Archiver
Implementation Class: com.tangosol.examples.archiver.SFTPSnapshotArchiver in
java/src

The SFTPSnapshotArchiver class is a custom implementation of a snapshot archiver that
uses JSch library from JCraft (http://www.jcraft.com/jsch/) to create an archiver that
archives snapshots to a remote server using secure FTP. The SFTPSnapshotArchiver
class extends the AbstractSnapshotArchiver class. To run this example, the JSch
library must be downloaded and the remote server must support SSH.

The example Driver file performs the same operations as the basic snapshot
operations example, but also includes archive operations. The persistence operations
are performed as follows:

• A snapshot of the contacts cache is created. The location for persistence files is
java/persistence-data.

• A list of available snapshots is discovered.

• The snapshot of the contacts cache is archived using SFTP.

• The snapshot of the contacts cache is removed.

• The contacts cache is cleared of all data.

• The size of cache is reported.

• The archived snapshot is retrieved using SFTP.

• A list of available snapshots is discovered.

• The cache contents are recovered from the snapshot.

• The size of cache is reported.

• The snapshot and the archived snapshot are both removed.

6.12 Coherence REST Examples
The Coherence REST examples shows how to create a basic web-based application
that uses the Coherence REST API. The example uses the Grizzly HTTP server to
receive client HTTP requests.

The example client is built using several JavaScript libraries and also the Angular JS
framework. For complete documentation about Coherence REST, see Using
Coherence REST in Developing Remote Clients for Oracle Coherence.

Chapter 6
Coherence REST Examples

6-46

Unlike the other Coherence examples, the Coherence REST examples uses Apache
Maven to build and run the examples. Maven is the preferred approach when using
Coherence REST and facilitates managing all library dependencies. The REST
examples are organized in a standard Maven directory structure in the COHERENCE_HOME/
examples/rest/ directory.

• /src/main/java – Directory for Java source files

• /src/main/resources – Directory for Coherence configuration files.

• /src/main/resources/web – Directory for static HTML pages and JavaScript files.

This section includes the following topics:

• This Example Set

• Building and Running the Example

• Products Page

• Departments Page

• Contacts Page

• Server-Sent Events

• JSON Pass-Through Page

• Binary Pass-Through Page

6.12.1 This Example Set
• Illustrates how create configure and deploy Coherence REST using the Grizzly

HTTP server.

• Illustrates how to build a basic JavaScript client that use the Coherence REST
APIs.

• Illustrates how to query, create, update and remove cache entries using standard
REST API's in Coherence.

• Illustrates how to use a custom entry processors

• Illustrates how to use composite keys and shows the use of a KeyConverter class.

• Illustrates how use server-sent events to be notified of cache events.

• Illustrates how to use pass-through for native JSON objects and static binary
objects.

6.12.2 Building and Running the Example
The examples are built and run using Maven 3.2.5 or above and require a browser that
supports AngularJS 1.4.1 or above.

To build and run the examples:

1. Include the coherence.jar and coherence-rest.jar libraries in the local Maven
repository.

mvn install:install-file -Dfile=COHERENCE_HOME/lib/coherence.jar
 -DpomFile=COHERENCE_HOME/plugins/maven/com/oracle/coherence/coherence
 /12.2.1/coherence.12.2.1.pom

Chapter 6
Coherence REST Examples

6-47

mvn install:install-file -Dfile=COHERENCE_HOME/lib/coherence-rest.jar
 -DpomFile=COHERENCE_HOME/plugins/maven/com/oracle/coherence/coherence-rest
 /12.2.1/coherence-rest.12.2.1.pom

Note:

You may need to specify the path to your settings.xml file to download the
required dependencies. For example:

mvn -s /path/to/settings.xml ...

If you do not have a settings file and you are using a proxy server for internet
access, you can utilize the sample settings.xml provided in the base directory.
You can modify the file to add your proxy server settings.

2. Issue the following to build the REST examples:

mvn clean compile

3. Start a cache server and HTTP proxy:

mvn exec:exec -DhttpProxy

The application starts and the home page automatically loads in the default
browser. If the home page does not load in the default browser, then navigate to
the following URL:

 http://127.0.0.1:8080/application/index.html

Note:

the HTTP server listens on all IP Addresses but you can change the address
and port that the application runs on by passing the following to the mvn
exec:exec command:

mvn exec:exec -DhttpProxy -Dhttp.address=x.x.x.x -Dhttp.port=7777

4. Optionally, start additional cache servers (without an HTTP server):

mvn exec:exec -DcacheServer

6.12.3 Products Page
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web\js\products.js

The Products page shows how to query, create, update, remove or populate default
products using standard REST API's in Coherence. The page also makes use of
custom entry processors to increase product prices and receive additional quantities of
an item.

6.12.4 Departments Page
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web\js
\departments.js

Chapter 6
Coherence REST Examples

6-48

The Department page shows how to query, create, update, remove or populate default
departments using standard REST API's in Coherence.

6.12.5 Contacts Page
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web\js\contacts.js

The Contacts page shows how to query, create, update, remove or populate default
contacts using standard REST API's in Coherence. The example has composite keys
and shows the use of a KeyConverter class to work with these keys. Lastly, the
example shows how to sort queries that are returned from REST calls.

6.12.6 Server-Sent Events
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web\js\sse.js

The server-sent events page listens for events from the Coherence REST API's. Click
Start Listening to register a listener for the respective cache. Start a new instance of
the application and modify the respective caches. Switch back to the original instance
of the application to view the updated statistics.

Note:

Internet Explorer does not support server-sent events.

6.12.7 JSON Pass-Through Page
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web
\js\json.js

The JSON Pass-through page shows how a cache can store and retrieve native JSON
objects. The objects are serialized in the cache using POF and JSON attribute
ordering is preserved. The page also shows how native JSON objects in a cache can
be processed and aggregated like any other value object.

6.12.8 Binary Pass-Through Page
Implementation: COHERENCE_HOME\examples\rest\src\main\resources\web
\js\static.js

The Binary Pass-through page shows how a cache can store and delete static binary
content (such as a graphic). The example makes use of the PassThroughResourceConfig
resource, which supports pass-through access to caches.

Chapter 6
Coherence REST Examples

6-49

A
Understanding the Oracle Coherence
Directory Structure

The standalone Oracle Coherence installation creates multiple directories on your
system. Take some time to learn about the directory structure and the files it contains.
Table A-1 describes the directories that are installed in COHERENCE_HOME.

Table A-1 Directory Description for Oracle Coherence

Directory or File Description

bin This directory includes a set of common scripts for performing
different tasks, such as: starting a cache server, starting
development tools, and performing network tests. The scripts are
provided in both Windows (.cmd) and UNIX-based (.sh) formats.

doc This directory contains the Coherence Java API Reference and a
link to the Coherence documentation on the Oracle Technology
Network (OTN). The Coherence Java API Reference is distributed
as a JAR file and must be extracted. The JAR can also be
imported into an IDE for easy access during development.

To extract the Coherence Java API Reference, execute the
following command from the /api directory (assuming that
JAVA_HOME/bin is located on the computer's PATH):

jar -xvf CoherenceJavaDoc.jar

examples This directory contains a set of examples that demonstrate many
Coherence features and how to use the Coherence API. See
Running the Coherence Examples.

lib lib – This directory includes all delivered libraries. The
coherence.jar library is the main development and run-time
library and is discussed in detail throughout the Coherence
documentation.

plugins This directory contains plug-ins for common integrations.
Coherence provides a plug-in for Maven and Java VisualVM. The
Maven plug-ins are used to integrate Coherence as part of a
Maven build process. See Integration with Maven. The Java
VisualVM plug-in provides Coherence monitoring. See Using the
Coherence-JVisualVM Plug-In in Managing Oracle Coherence.

A-1

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New In This Guide
	New and Changed Features
	Other Significant Changes in this Document

	1 Planning Your Oracle Coherence Installation
	1.1 About Oracle Coherence
	1.2 Introducing the Oracle Coherence Standard Installation Topologies
	1.3 Roadmap for Installing and Configuring Standalone Oracle Coherence
	1.4 Roadmap for Verifying Your System Environment
	1.5 Understanding and Obtaining the Oracle Coherence Distribution

	2 Installing Oracle Coherence for Java
	2.1 System Requirements
	2.2 Performing a Coherence Installation
	2.2.1 Performing a Coherence Installation In Graphical Mode
	2.2.1.1 Starting the Installation Program
	2.2.1.2 Navigating the Installation Screens

	2.2.2 Performing a Coherence Installation In Silent Mode
	2.2.3 Running the Coherence Quick Installer
	2.2.4 Running the Coherence Supplemental Installer
	2.2.5 Installing Coherence with WebLogic Server

	2.3 Setting Environment Variables
	2.4 Running Coherence for the First Time
	2.4.1 Create a Basic Cluster
	2.4.2 Create a Cache

	2.5 Integration with Maven
	2.6 Installing a Coherence Patch
	2.7 Deinstalling Coherence

	3 Installing a Client Distribution
	3.1 Installing Coherence for Java
	3.2 Installing the C++ Client Distribution
	3.2.1 Supported Environments for Coherence C++ Client
	3.2.2 Microsoft-Specific Requirements
	3.2.3 Extracting the Coherence for C++ Distribution

	3.3 Installing the .NET Client Distribution
	3.3.1 Prerequisites
	3.3.2 Running the Installer
	3.3.3 Coherence .NET Version Number Mapping
	3.3.4 Deploying Coherence for .NET

	3.4 Compatibility Between Coherence*Extend Versions

	4 Installing Coherence*Web to an Application Server
	4.1 Installing Coherence*Web with WebLogic Server
	4.2 Installing Coherence*Web with Other Application Servers

	5 Upgrading Coherence from Previous Releases
	5.1 General Upgrade Guidelines
	5.2 Upgrading from Version 12.1.x
	5.2.1 Update JVM
	5.2.2 Update Maven Build Scripts
	5.2.3 Update Cache Configuration File
	5.2.4 Update Address and Port Assignments
	5.2.5 Update Multiple Clusters that Run on the Same Network
	5.2.6 Plan for TCP Usage
	5.2.7 Update Extractor Implementations
	5.2.8 Updated Packaging for Coherence REST on WebLogic Server
	5.2.9 Running coherence.jar for the Coherence Console
	5.2.10 Update CohQL Scripts
	5.2.11 Update the Coherence*Web Configuration
	5.2.12 Migrate to a Supported Web Container
	5.2.13 Remove ActiveCache Integrations
	5.2.14 Remove Encryption Filters
	5.2.15 Remove TopLink Grid Implementations
	5.2.16 Update Classpaths for HotCache
	5.2.17 Update Custom Health Monitors

	5.3 Upgrading from Version 3.7.1.x
	5.3.1 Upgrading Applications Using Coherence and Coherence*Web on WebLogic Server
	5.3.2 Upgrading Coherence*Extend
	5.3.3 Upgrading Coherence*Web
	5.3.3.1 Coherence*Web SPI Reserved for Older Versions of WebLogic
	5.3.3.2 ActiveCache (active-cache.jar) Replaced with Managed Coherence Servers
	5.3.3.3 New Session Cache Configuration File

	5.3.4 Upgrading ActiveCache Applications on WebLogic Server
	5.3.5 Replacements for Deprecated Features
	5.3.5.1 Replacement for Deprecated packet-pool and message-pool Elements
	5.3.5.2 Replacement for the Deprecated LH File Manager
	5.3.5.3 Replacement for the Deprecated NamedCache Lock APIs
	5.3.5.4 Replacement for the Deprecated XmlConfigurable Interface

	5.3.6 Other Upgrade Issues
	5.3.6.1 New DistributedCache Default for Exalogic Environments
	5.3.6.2 Connecting from Remote RMI Clients
	5.3.6.3 Key Associations on the Coherence*Extend Client
	5.3.6.4 Changes to Invalidation Strategy for Near Caches
	5.3.6.5 New Cache Configuration Element: resource-config
	5.3.6.6 Changes to Invocable API Behavior

	6 Running the Coherence Examples
	6.1 Overview of Coherence Examples
	6.2 Obtaining the Examples
	6.3 How to Build the Examples
	6.3.1 How to Build the Java Examples
	6.3.1.1 Prerequisites for Java
	6.3.1.2 Directory Structure for Java
	6.3.1.3 Build Instructions for Java

	6.3.2 How to Build the .NET Examples
	6.3.2.1 Prerequisites for .NET
	6.3.2.2 Directory Structure for .NET
	6.3.2.3 Build Instructions for .NET

	6.3.3 How to Build the C++ Examples
	6.3.3.1 Prerequisites for C++
	6.3.3.2 Directory Structure for C++
	6.3.3.3 Build Instructions for C++

	6.4 How to Run the Examples
	6.4.1 How to Run the Java Examples
	6.4.1.1 Prerequisites for Java
	6.4.1.2 Directory Structure for Java
	6.4.1.3 Instructions for Java

	6.4.2 How to Run the .NET Examples
	6.4.2.1 Prerequisites for .NET
	6.4.2.2 Directory Structure for .NET
	6.4.2.3 Instructions for .NET

	6.4.3 How to Run the C++ Examples
	6.4.3.1 Prerequisites for C++
	6.4.3.2 Directory Structure for C++
	6.4.3.3 Instructions for C++

	6.5 Coherence Basic Features Example
	6.5.1 Overview of the Basic Features Examples
	6.5.2 Running the Example Set
	6.5.3 Understanding the Features Driver File
	6.5.4 Basic Data Access Example
	6.5.5 Loader Example
	6.5.6 Query Example
	6.5.7 Observer Example
	6.5.8 Processor Example
	6.5.9 Query Language
	6.5.10 Data Generator

	6.6 Coherence Security Examples
	6.6.1 Overview of the Coherence Security Examples
	6.6.2 This Example Set
	6.6.2.1 Running the Security Example Set
	6.6.2.2 Understanding the Security Driver File

	6.6.3 Password Example
	6.6.4 Access Control Example
	6.6.5 Password Identity Transformer
	6.6.6 Password Identity Asserter
	6.6.7 Entitled Cache Service
	6.6.8 Entitled Invocation Service
	6.6.9 Entitled Named Cache
	6.6.10 Security Example Helper

	6.7 Coherence Live Events Example
	6.7.1 Overview of the Coherence Live Events Example
	6.7.2 This Example Set
	6.7.2.1 Running the Live Events Example Set
	6.7.2.2 Understanding the Live Events Driver File

	6.7.3 EventsExamples
	6.7.3.1 EventsTimingExample
	6.7.3.2 VetodEventsExample
	6.7.3.3 RedistributionEventsExample

	6.7.4 TimedTraceInterceptor
	6.7.5 CantankerousInterceptor
	6.7.6 RedistributionInterceptor
	6.7.7 RedistributionInvocable
	6.7.8 LazyProcessor

	6.8 Coherence Java 8 Features Example
	6.8.1 This Example Set
	6.8.1.1 Running the Java 8 Features Example Set
	6.8.1.2 Understanding the Java 8 Driver File

	6.8.2 Streams
	6.8.3 Lambda
	6.8.4 Map Default Method

	6.9 Coherence Asynchronous Features Example
	6.9.1 This Example Set
	6.9.1.1 Running the Asynchronous Features Example Set
	6.9.1.2 Understanding the Asynchronous Driver File

	6.9.2 Asynchronous Data Access
	6.9.3 Asynchronous Entry Processor
	6.9.4 Asynchronous Aggregator

	6.10 Coherence Federated Caching Example
	6.10.1 This Example Set
	6.10.1.1 Running the Federated Caching Example Set
	6.10.1.2 Understanding the Federated Caching Driver File

	6.10.2 Federation Configuration

	6.11 Coherence Persistence Example
	6.11.1 This Example Set
	6.11.1.1 Running the Persistence Example Set
	6.11.1.2 Understanding the Persistence Driver File

	6.11.2 Basic Snapshot Operations
	6.11.3 Persistence Notifications
	6.11.4 Persistence Operations in Parallel
	6.11.5 Archiving Snapshots with a Custom Archiver

	6.12 Coherence REST Examples
	6.12.1 This Example Set
	6.12.2 Building and Running the Example
	6.12.3 Products Page
	6.12.4 Departments Page
	6.12.5 Contacts Page
	6.12.6 Server-Sent Events
	6.12.7 JSON Pass-Through Page
	6.12.8 Binary Pass-Through Page

	A Understanding the Oracle Coherence Directory Structure

