
Oracle® Fusion Middleware
Configuration File Reference for Oracle Traffic
Director

12c (12.2.1.3.0)
E90198-02
July 2018

Oracle Fusion Middleware Configuration File Reference for Oracle Traffic Director, 12c (12.2.1.3.0)

E90198-02

Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: N. T. Thrupthi Contributors: Nanda Kishore

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience x

Documentation Accessibility x

Related Documents x

Conventions xi

1 Overview of Configuration Files and Directories

1.1 Configuration Files 1-1

1.1.1 The server.xml File 1-1

1.1.2 The obj.conf File 1-1

1.1.3 The certmap.conf File 1-1

1.1.3.1 Syntax 1-2

1.1.3.2 Properties 1-2

1.1.4 NZ Wallet Files 1-3

1.1.5 Default Paths 1-3

1.2 Directory Structure 1-3

1.2.1 bin 1-4

1.2.2 Legal 1-4

1.2.3 lib 1-4

1.2.4 admin-server 1-4

1.2.5 net-server-id 1-5

1.3 Dynamic Reconfiguration 1-5

2 Syntax and Use of server.xml

2.1 Overview of server.xml 2-1

2.1.1 Editing the server.xml File 2-1

2.1.1.1 Editing Element Values 2-1

2.1.1.2 Adding Elements 2-2

2.1.1.3 Validating server.xml 2-2

2.2 Understanding server.xml 2-2

2.2.1 Server Pools 2-2

iii

2.2.2 Health check 2-3

2.2.3 High Availability 2-3

2.2.4 HTTP Protocol 2-3

2.2.5 Logging and Monitoring 2-3

2.2.6 Performance Tuning 2-3

2.2.7 SSL, TLS, and PKCS #11 2-4

2.2.8 Variables 2-4

2.2.9 Virtual Servers 2-4

2.3 Sample server.xml File 2-4

3 Elements in server.xml

3.1 List of Elements 3-1

3.1.1 access-log 3-2

3.1.2 access-log-buffer 3-2

3.1.3 cluster 3-3

3.1.4 cert 3-4

3.1.5 crl 3-4

3.1.6 cipher 3-4

3.1.7 dns 3-7

3.1.8 dns-cache 3-8

3.1.9 event 3-8

3.1.10 event-subscription 3-9

3.1.11 failover-group 3-10

3.1.12 ftp-filter 3-10

3.1.13 health-check 3-11

3.1.14 http 3-15

3.1.15 http-listener 3-16

3.1.16 instance 3-18

3.1.17 keep-alive 3-18

3.1.18 localization 3-19

3.1.19 log 3-20

3.1.20 max-fd 3-21

3.1.21 origin-server-pool 3-21

3.1.22 origin-server 3-22

3.1.23 property 3-23

3.1.24 proxy-cache 3-24

3.1.25 qos-limits 3-24

3.1.26 server 3-25

3.1.27 snmp 3-26

3.1.28 ssl 3-27

iv

3.1.29 ssl3-tls-ciphers 3-29

3.1.30 ssl-session-cache 3-30

3.1.31 stats 3-30

3.1.32 status-listener 3-31

3.1.33 tcp-access-log 3-31

3.1.34 tcp-listener 3-32

3.1.35 tcp-proxy 3-33

3.1.36 tcp-thread-pool 3-34

3.1.37 thread-pool 3-35

3.1.38 time 3-35

3.1.39 variable 3-36

3.1.40 virtual-server 3-36

3.1.41 webapp-firewall-ruleset 3-38

4 Syntax and Use of obj.conf

4.1 Request-Handling Process Overview 4-1

4.1.1 Steps in the Request-Handling Process 4-1

4.2 Directives in obj.conf 4-2

4.3 Objects in obj.conf 4-3

4.3.1 Objects That Use the name Attribute 4-3

4.3.2 Objects That Use the ppath Attribute 4-3

4.3.3 Using the Client, If, ElseIf, and Else Tags 4-3

4.3.3.1 Client 4-4

4.3.3.2 If, ElseIf, and Else 4-5

4.4 Flow of Control in obj.conf 4-5

4.4.1 AuthTrans 4-5

4.4.2 NameTrans 4-6

4.4.2.1 How and When Oracle Traffic Director Processes Other Objects 4-6

4.4.3 PathCheck 4-6

4.4.4 ObjectType 4-6

4.4.5 Input 4-7

4.4.6 Output 4-7

4.4.7 Route 4-7

4.4.8 Service 4-8

4.4.9 AddLog 4-8

4.4.10 Error 4-8

4.5 Changes in Function Flow 4-8

4.5.1 Restarted Requests 4-8

4.5.2 Internal Requests 4-8

4.5.3 URI Translation 4-9

v

4.6 Editing obj.conf 4-9

4.6.1 Order of Directives 4-9

4.6.2 Parameters 4-9

4.6.3 Case Sensitivity 4-9

4.6.4 Separators 4-9

4.6.5 Quotation Marks 4-9

4.6.6 Spaces 4-9

4.6.7 Line Continuation 4-10

4.6.8 Path Names 4-10

4.6.9 Comments 4-10

5 Predefined Server Application Functions and Filters in obj.conf

5.1 The bucket Parameter 5-1

5.2 AuthTrans 5-2

5.2.1 get-sslid 5-2

5.2.2 qos-handler 5-2

5.2.3 webapp-firewall 5-3

5.3 NameTrans 5-4

5.3.1 assign-name 5-5

5.3.2 block-request-cookie 5-6

5.3.3 map 5-6

5.3.4 reverse-map 5-7

5.3.5 rewrite 5-8

5.3.6 sed-request-header 5-8

5.3.7 strip-params 5-9

5.4 PathCheck 5-9

5.4.1 check-request-limits 5-10

5.4.2 deny-existence 5-12

5.4.3 get-client-cert 5-12

5.4.4 nt-uri-clean 5-13

5.4.5 ssl-logout 5-13

5.4.6 unix-uri-clean 5-14

5.5 ObjectType 5-14

5.5.1 block-auth-cert 5-15

5.5.2 block-cache-info 5-16

5.5.3 block-cipher 5-16

5.5.4 block-ip 5-16

5.5.5 block-issuer-dn 5-17

5.5.6 block-jroute 5-17

5.5.7 block-keysize 5-17

vi

5.5.8 block-proxy-agent 5-17

5.5.9 block-secret-keysize 5-18

5.5.10 block-ssl 5-18

5.5.11 block-ssl-id 5-18

5.5.12 block-user-dn 5-18

5.5.13 block-via 5-19

5.5.14 block-xforwarded-for 5-19

5.5.15 forward-auth-cert 5-19

5.5.16 forward-cache-info 5-20

5.5.17 forward-cipher 5-20

5.5.18 forward-ip 5-20

5.5.19 forward-issuer-dn 5-21

5.5.20 forward-jroute 5-21

5.5.21 forward-keysize 5-22

5.5.22 forward-proxy-agent 5-22

5.5.23 forward-secret-keysize 5-22

5.5.24 forward-ssl 5-23

5.5.25 forward-ssl-id 5-23

5.5.26 forward-user-dn 5-24

5.5.27 forward-via 5-24

5.5.28 forward-xforwarded-for 5-25

5.5.29 http-client-config 5-25

5.5.30 proxy-cache-config 5-26

5.5.31 proxy-cache-override-http 5-28

5.5.32 proxy-websocket-config 5-29

5.5.33 reverse-block-date 5-30

5.5.34 reverse-block-server 5-30

5.5.35 reverse-forward-date 5-30

5.5.36 reverse-forward-server 5-31

5.5.37 set-basic-auth 5-31

5.5.38 set-cache-control 5-31

5.5.39 set-cookie 5-32

5.5.40 type-by-exp 5-32

5.5.41 type-by-extension 5-33

5.6 Input 5-33

5.7 Output 5-34

5.8 Route 5-35

5.8.1 set-origin-server 5-35

5.8.2 set-proxy-server 5-36

5.9 Service 5-37

5.9.1 proxy-retrieve 5-38

vii

5.9.2 remove-filter 5-39

5.9.3 service-proxy-cache-dump 5-40

5.9.4 service-trace 5-41

5.9.5 stats-xml 5-42

5.10 AddLog 5-43

5.10.1 flex-log 5-43

5.11 Error 5-44

5.11.1 qos-error 5-44

5.11.2 send-error 5-45

5.12 Common SAFs 5-45

5.12.1 insert-filter 5-47

5.12.2 match-browser 5-48

5.12.3 redirect 5-48

5.12.4 remove-filter 5-49

5.12.4.1 Example 5-50

5.12.5 restart 5-50

5.12.6 rewrite-cookie 5-51

5.12.7 sed-param-name 5-51

5.12.8 sed-param-value 5-52

5.12.9 sed-response-header 5-52

5.12.10 set-priority 5-53

5.12.11 set-variable 5-54

A Using Variables, Expressions, Wildcards, and String Interpolation

A.1 If, ElseIf, and Else Tags A-1

A.2 Variables A-2

A.2.1 Predefined Variables A-2

A.2.2 Custom Variables A-4

A.2.3 Resolving Variables A-4

A.3 Expressions A-5

A.3.1 Expression Syntax A-5

A.3.2 Expression Results as Boolean Values A-5

A.3.3 Expression Literals A-6

A.3.3.1 String Literals A-6

A.3.3.2 Numeric Literals A-7

A.3.4 Expression Variables A-7

A.3.5 Expression Operators A-7

A.3.6 Expression Functions A-9

A.3.6.1 atime A-10

A.3.6.2 choose A-10

viii

A.3.6.3 ctime A-11

A.3.6.4 escape A-11

A.3.6.5 external A-12

A.3.6.6 httpdate A-13

A.3.6.7 lc A-13

A.3.6.8 length A-14

A.3.6.9 lookup A-14

A.3.6.10 lookupregex A-15

A.3.6.11 mtime A-16

A.3.6.12 owner A-16

A.3.6.13 uc A-16

A.3.6.14 unescape A-17

A.3.6.15 uuid A-17

A.3.7 Regular Expressions A-18

A.4 String Interpolation A-19

A.4.1 Using Variables in Interpolated Strings A-19

A.4.2 Using Expressions in Interpolated Strings A-19

A.5 Wildcard Patterns A-20

B Using the Custom Access-Log File Format

C Using Time Formats

D Alphabetical List of Server Configuration Elements and Predefined
SAFs

Index

ix

Preface

This document describes the purpose and use of the configuration files for Oracle®
Fusion Middleware, including server.xml, and obj.conf. It provides a comprehensive
list of the elements and directives in these configuration files.

Audience
The intended audience for this document is the person who administers and maintains
Oracle® Fusion Middleware.

This document assumes you are familiar with:

• Working in a terminal window

• HTTP

• XML

• Executing operating system commands on UNIX-like platforms

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see the following documents, which are available on the Oracle
Technology Network:

• Installing Oracle Traffic Director

• WebLogic Scripting Tool Command Reference for Oracle Traffic Director
Reference

• Administering Oracle Traffic Director

• Using WebLogic Server MT

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xi

1
Overview of Configuration Files and
Directories

The configuration and behavior of Oracle Traffic Director is determined by a set of
configuration files. You can use the Oracle Fusion Middleware Control and the
WebLogic Scripting Tool (WLST) to change the configuration file settings. You can
also manually edit these files.

This chapter includes the following topics:

• Configuration Files

• Directory Structure

• Dynamic Reconfiguration

1.1 Configuration Files
Each server instance has its own directory, referred to as INSTANCE_HOME in this
document. The INSTANCE_HOME/config directory contains configuration files for Oracle
Traffic Director components. The exact number and names of the configuration files
depend on the components that were enabled or loaded into the server. For the
default location of the INSTANCE_HOME, see Default Paths.

The following sections describe the configuration files and related information
pertaining to Oracle Traffic Director:

• The server.xml File

• The obj.conf File

• The certmap.conf File

1.1.1 The server.xml File
The server.xml file contains the Oracle Traffic Director configuration. For more
information about the server.xml file, see Syntax and Use of server.xml.

1.1.2 The obj.conf File
The obj.conf file contains directives for HTTP request processing. For more
information about the obj.conf file, see Syntax and Use of obj.conf.

1.1.3 The certmap.conf File
The certmap.conf file describes how a certificate is mapped to an LDAP entry
designated by issuerDN.

1-1

1.1.3.1 Syntax
certmap name issuerDNname:property1 [value1]
name:property2 [value2]
...

The default certificate is named default, and the default issuerDN is also named
default. Therefore, the first line defined in the certmap.conf file must be as follows:

certmap default default

Use # at the beginning of a line to indicate a comment.

1.1.3.2 Properties
Table 1-1 describes the properties of certmap.conf file.

Table 1-1 certmap.conf properties

Attribute Allowed
Values

Default Value Description

DNComps See description Commented
out

Used to form the base DN for
performing an LDAP search while
mapping the certificate to a user entry.
Values are as follows:

• Commented out - Takes the
user's DN from the certificate as
is

• Empty - Searches the entire
LDAP tree (DN == suffix)

• Comma-separated attributes -
Forms the DN

FilterComps See description Commented
out

Used to form the filter for performing
an LDAP search while mapping the
certificate to a user entry. Values are
as follows:

• Commented out or empty - Sets
the filter to "objectclass=*"

• Comma-separated attributes -
Forms the filter

verifycert on or off off
(commented
out)

Specifies whether certificates are
verified.

CmapLdapAttr Name of the
LDAP attribute

certSubjectDN
(commented
out)

Specifies the name of the attribute in
the LDAP database that contains the
DN of the certificate.

library Path to shared
lib or dll

None Specifies the library path for custom
certificate mapping code.

InitFn Name of
initialization
function

None Specifies the initialization function in
the certificate mapping code
referenced by library.

Chapter 1
Configuration Files

1-2

1.1.4 NZ Wallet Files
Wallet files are stored in the INSTANCE_HOME/config directory:

• ewallet.p12 - an editable wallet, with PIN

• cwallet.sso - a 'single sign-on' wallet, with obfuscated password (no PIN needed)

There are three NZ wallet operational modes. All three modes are supported by the
OTD core server, but the admin may not support all of them. The modes are:

• only ewallet.p12 - a PIN is always needed, whether OTD accesses the wallet in
read-only mode, or the admin accesses the wallet in read-write mode. OTD
prompts for the PIN on startup. The PIN is not stored in server.xml.

• only cwallet.sso - called "auto-login only" mode in orapki. No PIN is required,
whether OTD accesses the wallet in read-only mode, or the admin accesses the
wallet in read-write mode.

• both ewallet.p12 and cwallet.sso - called "auto-login" mode in orapki. OTD doesn't
require a PIN to access the wallet in read-only mode, but the admin requires a PIN
to access the wallet in read-write mode. Edits are made to ewallet.p12. After each
edit, ewallet.p12 is converted to cwallet.sso.

Use the Oracle orapki command line utility to manage public key infrastructure (PKI)
elements such as wallets. For more information, see the appendix Using the orapki
Utility to Manage PKI Elements in the Oracle Database Security Guide.

1.1.5 Default Paths
The default paths used in Oracle Traffic Director are listed below. Table 1-2 describes
the default paths and file names.

Table 1-2 Default Paths

Placeholder Description

ORACLE_HOME The directory in which Oracle Traffic Director is installed.

INSTANCE_HOME The directory that contains the files pertaining to the
Oracle Traffic Director administration server and Oracle
Traffic Director instances.

1.2 Directory Structure
This section describes the directory structures that are created when you first install
Oracle Traffic Director. In a typical OTD installation, all directories are located in the
ORACLE_HOME directory, except for the admin-server directory and net-server-id instance
subdirectory. The admin-server directory and the net-server-id subdirectory are located
in the INSTANCE_HOME directory. Creating an administration server or an administration
node requires you to execute the configure-server command. To create an
administration node in OTD, you must make sure that the administration server is up
and running. The newly created administration node will be registered with the
administration server. Before creating any instances, create an administration server
by running the configure-server command. Later, execute the create-instance
command to create instances in OTD. For more information about the CLI commands,

Chapter 1
Directory Structure

1-3

see Oracle Traffic Director Command-line Reference. For more information about the
default locations for these directories, see Default Paths. The following directories
exist under the Oracle Traffic Director installation directory, ORACLE_HOME:

• bin

• Legal

• lib

• admin-server

• net-server-id

1.2.1 bin
The bin directory contains the commands to administer Oracle Traffic Director,
including the WebLogic Scripting Tool Command interface (WLST).

1.2.2 Legal
The Legal directory contains the third party information pertaining to the software.

1.2.3 lib
The lib directory contains internal binaries, scripts, libraries, and bundled plug-ins.
These are private files, for internal use only.

For information about the admin-server directory and net-server-id subdirectory see:

• admin-server

• net-server-id

1.2.4 admin-server
The admin-server directory contains the following subdirectories:

• bin - contains binary files used to start, stop, and restart Oracle® Fusion
Middleware. On UNIX systems, this directory also contains the file required for
rotating logs.

• config - contains private configuration files for the administration server. These
files are for internal use.

• config-store - contains files used by the administration server to track server
configuration information.

Note:

The files in this directory are created by for internal use. Do not edit, run
scripts on, or otherwise access any files in the config-store directory.

• generated - contains files generated by the instance, such as Java class files
corresponding to JavaServer Pages (JSP).

Chapter 1
Directory Structure

1-4

• logs - contains any error messages or access log files generated by a server
instance.

1.2.5 net-server-id
A net-server-id directory is created for every instance you create in OTD. This
directory has the following subdirectories and files:

• bin - contains the commands for starting, stopping, restarting, and reconfiguring
the server. It also contains the command for rotating the log files.

• config - contains the following instance-specific configuration files:

– <C1>-obj.conf - virtual server specific directory.

– obj.conf -Oracle® Fusion Middleware directives for handling HTTP requests
from clients.

– pkcs11.txt - NSS PKCS #11 module database.

– server.xml - most of the server configuration settings.

• logs - contains log files generated by this server instance.

1.3 Dynamic Reconfiguration
Dynamic reconfiguration enables you to make configuration changes to a running
Oracle Traffic Director instance, without having to stop and restart it in order for the
changes to take effect.

Dynamic configuration happens:

• When you deploy a configuration through the Administration Console or CLI

• When you run the reconfig script in the server instance's bin directory

You can dynamically change the configuration settings in the obj.conf file without
restarting the server. In addition, most settings in the server.xml file can be changed
without restarting the server. If you must restart the server, a warning message
appears in the server log when you deploy the configuration or run the reconfig
command.

You cannot dynamically reconfigure the following server.xml configuration parameters:

• user

• temp-path

• log (with the exception of log-level)

• thread-pool

• pkcs11

• stats

• dns

• dns-cache

• ssl-session-cache

• access-log-buffer

Chapter 1
Dynamic Reconfiguration

1-5

When you run the reconfig command, a new configuration object is created, and all
new incoming requests are processed based on this new configuration object. The
current configuration object is removed when no HTTP requests are using the object.

In case an erroneous configuration occurs during dynamic reconfiguration, the server
displays an error message. The server logs the error message to a log file specified by
the last configuration that worked.

Certain erroneous configurations result in warning messages but do not cause the
server to reject the configuration. Other erroneous configurations trigger error
messages and cause the server to reject the configuration. If the server rejects a
configuration during startup, the server does not start. If the server rejects a
configuration during a dynamic reconfiguration, the server reverts to the last
configuration that worked.

Chapter 1
Dynamic Reconfiguration

1-6

2
Syntax and Use of server.xml

The server.xml file contains most of the server configuration. This chapter describes
the basic syntax of the server.xml file and provides a high-level view of the elements
that are used to configure features of the server. This chapter contains the following
topics:

• Overview of server.xml

• Understanding server.xml

• Sample server.xml File

2.1 Overview of server.xml
The server.xml file contains the elements that define the configuration. The server.xml
file is located in the INSTANCE_HOME/net-server-id/config directory.

The file encoding is UTF-8 to maintain compatibility with UNIX text editors.

2.1.1 Editing the server.xml File
The structure of the server.xml file is a hierarchy, with server as the topmost element.
The server element has many subelements, many of which have subelements of their
own.

In general, you do not need to edit server.xml directly. Instead, use the Administrator
Console and the tadm command-line interface to change values in the server.xml file.
Changes made using the Administrator Console and tadm command-line interface
affect the server.xml file. Using tadm when creating scripts to change the server.xml file
ensures forward compatibility. If you edit the server.xml file directly, ensure that the
resulting server.xml file is valid.

2.1.1.1 Editing Element Values
To change the values in the server.xml file, change the value between the tags
associated with the element you are editing. For example, to change the value of <log-
level> from NOTIFICATION:1 to TRACE:1, find the log child element of the server element.
In this example, you see the following lines:

 <log>
 <log-file>../logs/server.log</log-file>
 <log-level>NOTIFICATION:1</log-level>
 </log>

For example:

Change the log-level from NOTIFICATION:1

<log-level>NOTIFICATION:1</log-level>

2-1

to TRACE:1

<log-level>TRACE:1</log-level>

After altering the server.xml file, you must deploy your configuration for most changes
to take effect. Use the command-line interface command tadm pull-config to pull the
modified server.xml file, then use the Administrator Console or the tadm deploy-config
command to deploy your changes. Some changes require a server restart in order to
take effect. For information about changes that require a restart and which do not, see
Dynamic Reconfiguration.

2.1.1.2 Adding Elements
To add a new element to the file, add the element and any required subelements.
Elements begin with a tag, for example <virtual-server>, and end with the closing tag,
for example </virtual-server>. The tags are case-sensitive.

2.1.1.3 Validating server.xml
After editing the server.xml file, Oracle Traffic Director automatically validates the XML
code when you start or dynamically reconfigure a server.

You can also use the -configtest option of the startserv script to validate your
configuration. From the instance's bin directory, run:

startserv -configtest

2.2 Understanding server.xml
To change the server.xml file for your environment, you must know which elements
contain the relevant settings. The following sections contain brief descriptions of the
elements that configure the functional areas:

• Server Pools

• Health check

• High Availability

• HTTP Protocol

• Logging and Monitoring

• Performance Tuning

• SSL, TLS, and PKCS #11

• Variables

• Virtual Servers

For more information about all the server.xml elements and their subelements, see
Elements in server.xml.

2.2.1 Server Pools
The origin-server element defines a member of a server pool. The origin-server-pool
element configures a pool of origin servers that are used to load-balance requests. An
origin server is a back-end server—such as an Oracle WebLogic Server instance or an

Chapter 2
Understanding server.xml

2-2

Oracle iPlanet Web Server instance—to which Oracle Traffic Director should forward
requests that it receives from clients, and from which it receives responses. A set of
origin servers providing the same service constitute an origin server pool. For more
information, see origin-server-pool, origin-server, server.

2.2.2 Health check
The health-check element configures the parameters that are used to determine the
status of each origin server in an origin-server pool. The health-check element is a
subelement of the origin-server-pool element. See health-check and origin-server-
pool.

2.2.3 High Availability
The failover-group element is a grouping of a VIP (Virtual IP), an instance that is
designated as the primary server and another instance designated as the backup
server. The Active-Passive or Active-Active cluster failover configurations are
represented as Failover Groups. The failover-group element defines a failover group.
See failover-group.

2.2.4 HTTP Protocol
The http element configures the general HTTP protocol options. The keep-alive
element configures the HTTP keep-alive connection management. The http-listener
element configures the ports and IP addresses on which the server listens for new
HTTP connections. The virtual-server element configures a method by which the
server processes the HTTP requests. See http, keep-alive, http-listener, and virtual-
server.

2.2.5 Logging and Monitoring
The access-log element configures the file name and format of access logs. The
access-log-buffer element configures the frequency of access log updates and
ordering of the access log entries. See access-log and access-log-buffer. For more
information about the log file format, see Using the Custom Access-Log File Format.

The log element configures the file name and contents of the server log. The event
element configures the access log and server log rotation. See log and event.

The snmp element configures Simple Network Management Protocol (SNMP), and the
stats element configures statistics collection. See snmp and stats.

2.2.6 Performance Tuning
The thread-pool element configures the number of threads used to process requests
and the maximum number of HTTP connections that the server queues. See thread-
pool.

The keep-alive element configures the HTTP keep-alive connection management. See
keep-alive. The dns-cache element configures the DNS caching. See dns-cache.

Chapter 2
Understanding server.xml

2-3

2.2.7 SSL, TLS, and PKCS #11
The ssl element configures Secure Sockets Layer (SSL) and Transport Layer Security
(TLS). SSL and TLS can be configured separately for each HTTP listener. For more
information, see ssl and http-listener.

The pkcs11 element configures the PKCS #11 subsystem, including certificate
revocation lists (CRLs) and third-party cryptographic modules.

2.2.8 Variables
The variable element defines a variable for use in expressions, log formats, and
obj.conf parameters. See variable. For more information about variable and
expression use, see Using Variables, Expressions, Wildcards, and String Interpolation.

2.2.9 Virtual Servers
The virtual-server element configures the virtual servers. Each virtual server
processes HTTP requests from one or more HTTP listeners. The http-listener
element configures the HTTP listeners. See virtual-server and http-listener.

You can define variables within a virtual server using the variable element, as
described in Variables.

2.3 Sample server.xml File
Example 2-1 shows an excerpt from a server.xml file.

Example 2-1 server.xml file

<?xml version="1.0" encoding="UTF-8" ?>

<!--
 Copyright (c) 2011, Oracle and/or its affiliates. All rights reserved
-->

<server>
 <cluster>
 <local-host>www.example.com</local-host>
 <instance>
 <host>www.example.com</host>
 </instance>
 </cluster>
 <log>
 <log-file>../logs/server.log</log-file>
 <log-level>NOTIFICATION:1</log-level>
 </log>
 <platform>64</platform>
 <temp-path>/tmp/net-test-8a4af444</temp-path>
 <user>myuser</user>
 <access-log>
 <file>../logs/access.log</file>
 </access-log>
 <http-listener>
 <name>http-listener-1</name>
 <port>1894</port>

Chapter 2
Sample server.xml File

2-4

 <server-name>www.example.com</server-name>
 <default-virtual-server-name>test</default-virtual-server-name>
 </http-listener>
 <virtual-server>
 <name>test</name>
 <http-listener-name>http-listener-1</http-listener-name>
 <host>www.example.com</host>
 <object-file>test-obj.conf</object-file>
 </virtual-server>
 <origin-server-pool>
 <name>origin-server-pool-1</name>
 <type>http</type>
 <origin-server>
 <host>www.example.com</host>
 <port>20005</port>
 </origin-server>
 </origin-server-pool>
 </server>

Chapter 2
Sample server.xml File

2-5

3
Elements in server.xml

This chapter describes the elements in the server.xml file in alphabetical order.

3.1 List of Elements
This section describes the elements in the server.xml file in alphabetical order.

• access-log

• access-log-buffer

• cluster

• cert

• crl

• dns

• dns-cache

• event

• failover-group

• health-check

• http

• http-listener

• instance

• keep-alive

• localization

• log

• log

• origin-server-pool

• origin-server

• property

• proxy-cache

• qos-limits

• server

• snmp

• ssl

• ssl3-tls-ciphers

• ssl-session-cache

3-1

• stats

• tcp-access-log

• tcp-listener

• tcp-proxy

• tcp-thread-pool

• thread-pool

• time

• variable

• virtual-server

• webapp-firewall-ruleset

3.1.1 access-log
The access-log element configures the settings for the access log. This element can
appear zero or more times within the server element and zero or more times within the
virtual-server element. See server and virtual-server.

Table 3-1 describes the subelements of access-log.

Table 3-1 access-log Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the server writes to this access log.
Default Value: true.

name 0 or 1 The name that uniquely identifies the access log. If you
specify a name, the server does not automatically write to
this access log. Instead, you explicitly configure this access
log in an obj.conf AddLog directive.

file 1 The file name of the access log. If a relative path is used, it
is relative to the server's config directory, for example, ../
logs/access.log.

format 0 or 1 The format of the access log entries. The default format is
an extended custom log format. For more information about
access log format, see Using the Custom Access-Log File
Format.

Related Topics

• access-log-buffer

• event

• log

3.1.2 access-log-buffer
The access-log-buffer element configures the settings for access log buffering
subsystem. This element can appear zero or one time within the server element. For
more information, see server.

Chapter 3
List of Elements

3-2

Table 3-2 describes the subelements of access-log-buffer.

Table 3-2 access-log-buffer Subelements

Element Occurrences Description

direct-io 0 or 1 Specifies if the file system cache access
log writes. Default value: false. It
indicates that the file system write to a
cache. Setting the value to true indicates
that the file system should not to write to a
cache. The setting is purely advisory;
either the server or the operating system
may choose to ignore it.

enabled 0 or 1 Specifies whether the server buffers the
access log entries. Default value: true.

buffer-size 0 or 1 The size (in bytes) of individual access log
buffers. The value can be from 4096 to
1048576.

max-buffers 1 Specifies the maximum number of
access-log buffers per server. Values: 1 to
65536.

max-buffers-per-file 0 or 1 Specifies the maximum number of
access-log buffers per access-log file.

max-age 0 or 1 The maximum time (in seconds) to buffer
a given access log entry. The value can
be from 0.001 to 3600.

Related Topics

• access-log

Related Topics

• event

• log

3.1.3 cluster
The cluster element defines the cluster to which the server belongs. This element can
appear zero or one time within the server element. See server.

Table 3-3 describes the subelements of cluster.

Table 3-3 cluster Subelements

Element Occurrences Description

local-host 1 Defines the network address of an instance.
The value is the host value from an instance
element. See instance.

instance 1 or more Defines a member of the server cluster. See
instance.

failover-group 0 or more Defines the configuration of a failover group.
See failover-group.

Chapter 3
List of Elements

3-3

Related Topics

• instance

3.1.4 cert
The cert element uniquely identifies a certificate. This element can appear zero or
more times within the ssl element. See ssl.

Table 3-4 describes the subelements of cert.

Table 3-4 cert Subelements

Element Occurrences Description

subject 1 Required. Subject name of the certificate.

serial-number 0 or 1 This optional field can be specified in order to
disambiguate between multiple certificates with the same
subject name. This field is specified in hexadecimal and is
not case-sensitive. The 0x prefix is optional.

issue 0 or 1 This optional field can be specified in order to
disambiguate between multiple certificates with the same
subject name.

3.1.5 crl
The crl element uniquely identifies a certificate revocation list (CRL). This element can
appear zero or one time within the server element. See server.

Table 3-5 describes the subelements of crl.

Table 3-5 crl Subelements

Element Occurrences Description

enabled 0 or 1 Defines whether the CRL is enabled. Default value:
true.

crl-path 0 or 1 Defines path to the CRL. See instance.

crl-cache-size 0 or 1 Defines a cache size between 0 and 2,147,483,647
bytes inclusive. Default value: 52428800.

require-crls 0 or 1 Specifies whether a CRL is required when verifying
peer certificates during SSL/TLS handshakes. This
affects both libproxy (back-end) and client (front-
end) authentication. Default value: false.

3.1.6 cipher
The ssl3-tls-ciphers element enables ciphers. This element can appear zero or one
time within the ssl3-tls-ciphers element. See ssl3-tls-ciphers.

Note that if ssl3-tls-ciphers is not present in the configuration, the default enablement
value for each of the ciphers is used. If ssl3-tls-ciphers is present, you must include a
cipher element for each cipher that you want enabled.

Chapter 3
List of Elements

3-4

Table 3-6 describes the subelements of cipher.

Table 3-6 cipher Subelements

Element Occurrences Description

SSL_RSA_WITH_RC4_128_S
HA

0 or 1 Specifies whether SSL_RSA_WITH_RC4_128_SHA
cipher suite is enabled at runtime. Default value:
true.

TLS_RSA_WITH_AES_128_G
CM_SHA256

0 or 1 Specifies whether
TLS_RSA_WITH_AES_128_GCM_SHA256
cipher suite is enabled at runtime. Valid only for
TLS 1.2. Default value: true.

TLS_RSA_WITH_AES_256_G
CM_SHA384

0 or 1 Specifies whether
TLS_RSA_WITH_AES_256_GCM_SHA384
cipher suite is enabled at runtime. Valid only for
TLS 1.2. Default value: true.

TLS_RSA_WITH_AES_128_C
BC_SHA256

0 or 1 Specifies whether
TLS_RSA_WITH_AES_128_CBC_SHA256
cipher suite is enabled at runtime. Valid only for
TLS 1.2. Default value: true.

TLS_RSA_WITH_AES_256_C
BC_SHA256

0 or 1 Specifies whether
TLS_RSA_WITH_AES_256_CBC_SHA256
cipher suite is enabled at runtime. Valid only for
TLS 1.2. Default value: true.

TLS_ECDHE_ECDSA_WITH_A
ES_128_CBC_SHA256

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_
SHA256 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_ECDSA_WITH_A
ES_256_CBC_SHA384

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_
SHA384 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_ECDSA_WITH_A
ES_128_GCM_SHA256

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_
SHA256 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_ECDSA_WITH_A
ES_256_GCM_SHA384

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_
SHA384 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_RSA_WITH_AES
_128_CBC_SHA256

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_128_CBC_SH
A256 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_RSA_WITH_AES
_256_CBC_SHA384

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_256_CBC_SH
A384 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDHE_RSA_WITH_AES
_128_GCM_SHA256

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_128_GCM_SH
A256 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

Chapter 3
List of Elements

3-5

Table 3-6 (Cont.) cipher Subelements

Element Occurrences Description

TLS_ECDHE_RSA_WITH_AES
_256_GCM_SHA384

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_256_GCM_SH
A384 cipher suite is enabled at runtime. Valid
only for TLS 1.2. Default value: true.

TLS_ECDH_RSA_WITH_AES_
128_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_RSA_WITH_AES_128_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDH_RSA_WITH_RC4_
128_SHA

0 or 1 Specifies whether
TLS_ECDH_RSA_WITH_RC4_128_SHA cipher suite is
enabled at runtime. Default value: true.

TLS_ECDH_RSA_WITH_3DES
_EDE_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDH_RSA_WITH_AES_
256_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_RSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDH_ECDSA_WITH_AE
S_128_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDH_ECDSA_WITH_RC
4_128_SHA

0 or 1 Specifies whether
TLS_ECDH_ECDSA_WITH_RC4_128_SHA cipher suite
is enabled at runtime. Default value: true.

TLS_ECDH_ECDSA_WITH_3D
ES_EDE_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA
cipher suite is enabled at runtime. Default value:
true.

TLS_ECDH_ECDSA_WITH_AE
S_256_CBC_SHA

0 or 1 Specifies whether
TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_RSA_WITH_AES_128_C
BC_SHA

0 or 1 Specifies whether
TLS_RSA_WITH_AES_128_CBC_SHA cipher suite is
enabled at runtime. Default value: true.

TLS_ECDHE_ECDSA_WITH_R
C4_128_SHA

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_RC4_128_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDHE_RSA_WITH_RC4
_128_SHA

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_RC4_128_SHA cipher suite
is enabled at runtime. Default value: true.

The following cipher subelements are disabled by default and are now deprecated:

Table 3-7 cipher Subelements

Element Occurrences Description

SSL_RSA_WITH_3DES_EDE_
CBC_SHA

0 or 1 Specifies whether
SSL_RSA_WITH_3DES_EDE_CBC_SHA cipher suite is
enabled at runtime. Default value: true.

Chapter 3
List of Elements

3-6

Table 3-7 (Cont.) cipher Subelements

Element Occurrences Description

TLS_ECDHE_RSA_WITH_AES
_128_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDHE_ECDSA_WITH_A
ES_128_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA
cipher suite is enabled at runtime. Default value:
true.

TLS_RSA_WITH_AES_256_C
BC_SHA

0 or 1 Specifies whether
TLS_RSA_WITH_AES_256_CBC_SHA cipher suite is
enabled at runtime. Default value: true.

TLS_ECDHE_ECDSA_WITH_3
DES_EDE_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA
cipher suite is enabled at runtime. Default value:
true.

TLS_ECDHE_ECDSA_WITH_A
ES_256_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA
cipher suite is enabled at runtime. Default value:
true.

TLS_ECDHE_RSA_WITH_3DE
S_EDE_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

TLS_ECDHE_RSA_WITH_AES
_256_CBC_SHA

0 or 1 Specifies whether
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA cipher
suite is enabled at runtime. Default value: true.

Related Topics

• http-listener

• ssl

• ssl-session-cache

3.1.7 dns
The dns element configures how the server uses the domain name system (DNS). This
element can appear zero or one time within the server element. See server.

Table 3-8 describes the subelements of dns.

Table 3-8 dns Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the server does DNS lookups. Default
value: false.

async 0 or 1 Specifies whether the server uses its own asynchronous
DNS resolver, instead of the Operating System's
synchronous resolver. Default value: true.

Chapter 3
List of Elements

3-7

Table 3-8 (Cont.) dns Subelements

Element Occurrences Description

timeout 0 or 1 Specifies the duration (in seconds) after which the
asynchronous DNS lookups should time out. The value can
be from 0.001 to 3600.

Related Topics

• dns-cache

3.1.8 dns-cache
The dns-cache element configures the DNS cache. This element can appear zero or
one time within the server element. See server.

Table 3-9 describes the subelements of dns-cache.

Table 3-9 dns-cache Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the server writes to a cache for DNS
lookup results. Default value: true.

max-age 0 or 1 Specifies the duration (in seconds) for which the entries
must be kept in the cache. The value can be from 1 to
31536000.

max-entries 0 or 1 Specifies the maximum number of DNS lookup results
to write to the cache. The value can be from 32 to
32768.

Related Topics

• dns

3.1.9 event
The event element configures a recurring event. The element can appear zero or more
times within the server element. See server.

Table 3-10 describes the subelements of event.

Table 3-10 event Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the event is enabled at run
time. Default value: true.

time 0 or more Configures a specific time when the event
occurs. See time.

interval 0 or 1 Specifies the interval (in seconds) at which the
event occurs. The value can be from 60 to
86400.

Chapter 3
List of Elements

3-8

Table 3-10 (Cont.) event Subelements

Element Occurrences Description

rotate-log 0 or 1 Rotates the log files. Default value: false.

rotate-access-log 0 or 1 Rotates the access log files. Default value:
false.

command 0 or more The command to execute to get an event to run.

reconfig 0 or 1 Dynamically reconfigures the server. Default
value: false.

restart 0 or 1 Restarts the server. Default value: false.

description 0 or 1 The description of the event. The value of this
element is in text format.

Related Topics

• access-log

Related Topics

• access-log-buffer

Related Topics

• log

3.1.10 event-subscription
The event-subscription eelement configures parameters for receiving notifications on
HTTP endpoint URLs when an event occurs. The element may appear zero or once
within the element. See origin-server.

Table 3-11 describes the subelements of event.

Table 3-11 event-subscription Subelements

Element Occurrences Description

enabled 0 or 1 Specifies the configuration in the event-
subscription block is enabled or disabled. Default
value: true (enabled).

name 1 Specifies the user defined name of the event
subscription. Values: string.

URL 1 Specifies the subscription URL. If this is
configured, Oracle® Fusion Middleware
publishes the notification to this URL. Value: a
valid HTTP URL.

Note:

HTTPS endpoints are not supported.

Chapter 3
List of Elements

3-9

3.1.11 failover-group
The failover-group element defines a failover group. This element may appear zero or
one time within the cluster element. See cluster.

Table 3-12 describes the subelements of failover-group.

Table 3-12 failover-group Subelements

Element Occurrences Description

ip 1 Specifies the virtual IP for the failover group. The
value must be unique across failover groups in a
configuration.

network-prefix 0 or 1 Specifies the subnet mask for the number of bits
used to identify the network. Values: positive
integer and 24 (max 32) by default for IPV4.
Default value: 64 (max 128) for IPV6

router-id 0 or 1 Specifies the router identity for the failover-
group. The value must be unique across the
failover-groups. It is used to identify the router
group of all the participating routers for the same
VIP. Values are positive integer. Range of
values: 1 to 255. Default value: 255.

failover-instance 1 or more Specifies the failover instance types.

Values: active-active or active-passive.

Default value: active-passive.

failover-type 0 or 1 Specifies the failover type.

Default values: minoccurs is 0, maxoccurs is
255.

host 1 Specifies the hostname of the administration
node where the instance has been created. It
must match one of the instance or the host
elements in the cluster elements.

priority 0 or 1 Specifies the priority value for the instance. This
value identifies whether the instance is the
primary or the backup for the failover-group.
Values: positive integer. Range of values: 1 to
254. Default value: 250.

network-interface 1 Indicates the network interface on the node
where this instance is created on which the VIP
is moderated.

3.1.12 ftp-filter
The ftp-filter element configures parameters that are used to make a TCP proxy to
front-end an FTP server. See tcp-proxy.

Table 3-13 describes the subelements of tcp-proxy.

Chapter 3
List of Elements

3-10

Table 3-13 ftp-filter Subelements

Element Occurrences Description

enabled 0 or 1 Specifies id the FTP filter is enabled or disabled.

Default value: false

client-
explicit-
ftps

0 or 1 Specifies if client-side SSL should be enanbled explicitly.

Default value: true

origin-
explicit-
ftps

0 or 1 Specifies if server-side SSL should enabled explicitly.

Default value: true

ssl-
termination

0 or 1 Specifies if SSL should terminate at Oracle® Fusion
Middleware.

Default value: false

passive-
port-min

0 or 1 Specifies the lower limit of port range for FTP passive
connections.

Default value: 1025

passive-
port-max

0 or 1 Specifies the upper limit of port range for FTP passive
connections.

Default value: 65535

active-port-
min

0 or 1 Specifies the lower limit of port range for FTP active
connections.

Default value: 1025

active-port-
max

0 or 1 Specifies the upper limit of port range for FTP active
connections.

Default value: 65535

Related Topics

• tcp-access-log

• tcp-listener

• tcp-thread-pool

3.1.13 health-check
The health-check element configures the parameters that are used to determine the
status of each origin-server in an origin-server pool. This element may appear zero or
one time within the origin-server-pool element. See origin-server-pool.

Table 3-14 describes the subelements of health-check.

Chapter 3
List of Elements

3-11

Table 3-14 health-check Subelements

Elements Occurrences Description TCP health
check on HTTP
servers

TCP health
check on TCP
servers

protocol 0 or 1 Specifies the type of
connection—HTTP or
TCP, or an external
executable—that
Oracle Traffic Director
should attempt with the
origin server to
determine its health.
Alternatively, specifies
an external health
check executable.

TCP: Oracle Traffic
Director attempts to
open a TCP connection
to each origin server.
The success or failure
of this attempt
determines whether
Oracle Traffic Director
considers the origin
server to be online or
offline.

HTTP: Oracle Traffic
Director sends an
HTTP GET or
OPTIONS request to
each origin server in
the pool, and checks
the response to
determine the
availability and health
of the origin server.

EXTERNAL: Oracle
Traffic Director invokes
the executable
specified in <command>
for the health check.

Default value: HTTP.

Valid Valid; HTTP is
not a valid value
for origin-
server-pool
elements that
specify tcp in
the type
subelement.

interval 0 or 1 Specifies the time
interval (in seconds)
between successive
health check
operations. Default
value: 30.

Valid Valid

Chapter 3
List of Elements

3-12

Table 3-14 (Cont.) health-check Subelements

Elements Occurrences Description TCP health
check on HTTP
servers

TCP health
check on TCP
servers

failover-
threshold

0 or 1 Indicates the number of
consecutive failures for
marking a server down.
It is indicated by a
positive integer. The
maximum possible
value is 256. Default
value: 3.

Valid Valid

timeout 0 or 1 Specifies the timeout
value for a connection.
It is indicated by a
positive integer and in
seconds. Default value:
5.

Valid Valid

command 0 or 1 Specifies the full path of
an external health
check executable. You
must configure this
parameter if the
protocol is EXTERNAL

N/A N/A

request-
method

0 or 1 Specifies the method
used during HTTP
health check
operations. Default
value: OPTIONS.

Ignored Ignored

request-uri 0 or 1 Specifies the URI that
is used for HTTP health
check operations.
Default value: "/".

Ignored Ignored

Chapter 3
List of Elements

3-13

Table 3-14 (Cont.) health-check Subelements

Elements Occurrences Description TCP health
check on HTTP
servers

TCP health
check on TCP
servers

response-
code-match

0 or 1 A modified regular
expression used to
specify the types of
response status codes
acceptable for a healthy
origin server. The
expression is a union of
three character patterns
that contain only digits
or 'x'. 'x' represents any
digit, for example, the
following three
expressions are valid:
200, 2xx|304, 1xx|
2xx|3xx|4xx.

If the parameter is not
specified, all other
codes except 5xx
server error are
considered acceptable.
This is applicable only
when protocol is HTTP.

Ignored Ignored

response-
body-match

0 or 1 A regular expression
that is used to match
the HTTP response
body to determine the
origin server's health.
This is applicable only
when protocol is HTTP.

Ignored Ignored

response-
body-match-
size

0 or 1 Specifies the maximum
length of the response
body that should match.
Default value: 2048.

Ignored Ignored

dynamic-
server-
discovery

0 or 1 Specifies whether the
server should
dynamically discover
Oracle WebLogic
Server cluster nodes
and add them to the
pool. Default value:
false.

Valid for HTTP
Health Check

Ignored

use-object-
file

0 or 1 Specifies whether the
obj.conf file processing
for health-check
requests is enabled.

Default value: True

Ignored Ignored

Chapter 3
List of Elements

3-14

3.1.14 http
The http element configures the settings for the miscellaneous HTTP protocol options.
This element can appear zero or one time within the server element. For more
information, see server.

Table 3-15 describes the subelements of http.

Table 3-15 http Subelements

Element Occurrences Description

version 0 or 1 Specifies the highest HTTP protocol version the
server supports. The default HTTP version
string is HTTP/1.1.

server-header 0 or 1 Specifies the server header information such as
server software and version. The default server
header is Oracle-Traffic-Director/
11.1.1.6.0.

body-buffer-size 0 or 1 Specifies the maximum size (in bytes) of the
request body content that OTD will expose using
the $body variable in obj.conf. The value can
be from 0 to 2147483647. Default value: 1024.

Note: All values must specify units.

request-header-
buffer-size

0 or 1 Specifies the size (in bytes) of the buffer used to
read HTTP request headers. The value can be
from 0 to 2147483647.

strict-request-
headers

0 or 1 Indicates whether the server rejects certain
malformed HTTP request headers. Default
value: false.

max-request-headers 0 or 1 Specifies the maximum number of header fields
in an HTTP request header. The value can be
from 1 to 512.

output-buffer-size 0 or 1 Specifies the size (in bytes) of the buffer for
HTTP responses. The value can be from 0 to
2147483647.

max-unchunk-size 0 or 1 Specifies the maximum size (in bytes) of a
chunked HTTP request body that the server will
unchunk. The value can be from 0 to
2147483647.

unchunk-timeout 0 or 1 Specifies the maximum time (in seconds) that
the server waits for a chunked HTTP request
body to arrive. The value can be from 0 to 3600,
or -1 for no timeout.

io-timeout 0 or 1 Specifies the maximum time (in seconds) that
the server waits for an individual packet. The
value can be from 0 to 3600, or -1 for no
timeout.

request-header-
timeout

0 or 1 Specifies the maximum time (in seconds) that
the server waits for a complete HTTP request
header. The value can be from 0 to 604800, or
-1 for no timeout.

Chapter 3
List of Elements

3-15

Table 3-15 (Cont.) http Subelements

Element Occurrences Description

request-body-timeout 0 or 1 Specifies the maximum time (in seconds) that
the server waits for a complete HTTP request
body. The value can be from 0 to 604800, or -1
for no timeout.

favicon 0 or 1 Specifies whether the server replies to requests
for favicon.ico with its own built-in icon file.
Default value: true.

etag 0 or 1 Controls if the server includes an Etag header
field in its responses. Default value: true.

ecid 0 or 1 Specifies whether the server generates,
propagates, and logs the execution context. The
value of the ECID is a unique identifier that can
be used to correlate individual events as being
part of the same request execution flow. For
example, events that are identified as being
related to a particular request typically have the
same ECID value. However, the format of the
ECID string itself is determined by an internal
mechanism that is subject to change; therefore,
you should not have or place any dependencies
on that format. ECID is defined as a part of the
execution context. The execution context
consists of ECID and RID. You may also refer to
the whole execution context, which is the
combination of ECID and RID, as just ECID.
Default value: true.

websocket-strict-
upgrade

0 or 1 Enables/disables strict RFC 6455 adherence
during the WebSocket upgrade request. Default
value: false.

Related Topics

• http-listener

• keep-alive

• thread-pool

• virtual-server

Related Topics

• thread-pool

3.1.15 http-listener
The http-listener element configures an HTTP listener. This element can appear zero
or more times within the server element. See server.

Table 3-16 describes the subelements of http-listener.

Chapter 3
List of Elements

3-16

Table 3-16 http-listener Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the HTTP listener is enabled to
accept connection requests. Default value: true.

name 1 Specifies the name that uniquely identifies the
HTTP listener.

ip 0 or 1 Specifies an IP address to which to listen. The
value of this element is a specific IP address or
an asterisk * to listen on all IP addresses.

port 1 Specifies the port to which to listen. The value of
this element is the port number.

acceptor-threads 0 or 1 Specifies the number of threads dedicated to
accept connections received by this listener. The
value can be from 1 to 128.

server-name 1 Specifies the default server name. Tells the
server what to put in the host name section of any
URLs it sends to the client. This affects URLs the
server automatically generates; it doesn't affect
the URLs for directories and files stored in the
server. This name should be the alias name if
your server uses an alias. If a colon and port
number are appended, that port will be used in
URLs that the server sends to the client.

Values: The value can include a scheme (for
example, prefix http://) and port suffix (for
example, :80)

blocking-io 0 or 1 Specifies whether the server uses blocking I/O.
Default value: false.

family 0 or 1 Specifies the socket family that is used to connect
to the origin server. Values: inet, inet6, inet-
sdp, and default. inet and inet6 represent IPV4
and IPV6 protocols respectively. inet-sdp is used
for Sockets Direct Protocol (SDP). Default value:
inet.

handle-protocol-
mismatch

0 or 1 Indicates whether the server responds to SSL or
non-SSL protocol mismatches in client requests.
Default value: true, meaning the server will
attempt to detect SSL or non-SSL protocol
mismatches and send an HTTP redirect or SSL
alert when a mismatch is detected.

listen-queue-size 0 or 1 Specifies the size (in bytes) of the listen queue.
The value of this element can be from 1 to
1048576.

receive-buffer-size 0 or 1 Specifies the size (in bytes) of the operating
system socket receive buffer. The value of this
element can be from 1 to 1048576.

send-buffer-size 0 or 1 Specifies the size (in bytes) of the operating
system socket send buffer. The value of this
element can be from 1 to 1048576.

Chapter 3
List of Elements

3-17

Table 3-16 (Cont.) http-listener Subelements

Element Occurrences Description

default-virtual-
server-name

1 Specifies the name of the virtual server that
processes request that do not match a host. The
value of this element is the name value from a
virtual-server element. See virtual-server.

ssl 0 or 1 Configures SSL/TLS. See ssl.

description 0 or 1 Specifies the description of the HTTP listener.
The value of this element must be in text format.

blocking-accept 0 or 1 Enables/disables blocking of the server listen
socket while retaining client end points as non
blocking (useful when MaxProcs > 1). Default
value: false.

Related Topics

• cipher

Related Topics

• http

Related Topics

• keep-alive

• virtual-server

3.1.16 instance
The instance element defines a member of a server cluster. This element can appear
one or more times within the cluster element. See cluster.

Table 3-17 describes the subelements of instance.

Table 3-17 instance Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the instance is enabled at run
time. Default value: true.

host 1 The network address of the instance. The value is
the host name or the IP address.

Related Topics

• cluster

3.1.17 keep-alive
The keep-alive element configures the settings for the keep-alive subsystem. This
element can appear zero or one time within the server element. See server.

Table 3-18 describes the subelements of keep-alive.

Chapter 3
List of Elements

3-18

Table 3-18 keep-alive Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the keep-alive subsystem is
enabled at runtime. Default value: true.

threads 0 or 1 Specifies the number of keep alive subsystem
threads. The value can be from 1 to 128. Default
value: 1.

max-connections 0 or 1 Specifies the maximum number of concurrent keep
alive connections that the server supports. The
value can be from 1 to 1048576. Default value:
200.

timeout 0 or 1 Specifies the timeout (in seconds) after which an
inactive keep alive connection can be used. The
value can be from 0.001 to 3600. Default value: 30
seconds.

poll-interval 0 or 1 Specifies the interval (in seconds) between polls.
The value can be from 0.001 to 1. Default value: .
001.

Related Topics

• http

Related Topics

• http-listener

Related Topics

• virtual-server

• thread-pool

Related Topics

• thread-pool

3.1.18 localization
The localization element defines a method by which the server chooses a language
with which it presents information to the client. This element may appear zero or one
time within the server element, and zero or one time within the virtual-server
element. See server and virtual-server.

Table 3-19 describes the subelement of localization.

Table 3-19 localization Subelements

Element Occurrences Description

default-language 0 or 1 The default language with which the
messages and content are displayed. The
value is a language tag.

Chapter 3
List of Elements

3-19

Table 3-19 (Cont.) localization Subelements

Element Occurrences Description

negotiate-client-language 0 or 1 Specifies whether the server uses the
accept-language HTTP header to negotiate
the content language with clients. Default
value: false.

3.1.19 log
The log element configures the logging subsystem. This element can appear zero or
one time within the server element. See server.

Table 3-20 describes the subelements of log.

Table 3-20 log Subelements

Element Occurrences Description

log-stdout 0 or 1 Specifies whether the server logs data that
applications write to stdout. Default value:
true.

log-stderr 0 or 1 Specifies whether the server logs data that
applications write to stderr. Default value:
true.

log-virtual-server-
name

0 or 1 Specifies whether the server includes the
virtual server name in log messages. Default
value: false.

create-console 0 or 1 Specifies whether the server creates a console
window (Windows only). Default value: false.

log-to-console 0 or 1 Specifies whether the server writes log
messages to the console. Default value: true.

log-to-syslog 0 or 1 Specifies whether the server writes log
messages to syslog. Default value: false.

archive-command 0 or 1 This is executed after the server rotates a log
file. The program is passed the post-rotation
file name of the log file as an argument. A
program command line, for example: gzip

log-level 0 or 1 Specifies the log verbosity for the server as a
whole. Values: INCIDENT_ERROR:1,
NOTIFICATION:1, ERROR:1, ERROR:16, ERROR:
32, WARNING:1, TRACE:1, TRACE:16 TRACE:32.
Default value: NOTIFICATION:1

log-file 0 or 1 Specifies the name and location of the log file.
Value: User defined name and location. Default
value: ../logs/server.log

Related Topics

• access-log

Chapter 3
List of Elements

3-20

Related Topics

• access-log-buffer

Related Topics

• event

3.1.20 max-fd
The max-fd element specifies a configurable upper limit on the file descriptor usage of
the Oracle Traffic Director server process. The default value of max-fd element is 2
million. This means that by default, Oracle Traffic Director does not assume more than
2 million available file descriptors even if the actual file descriptor availability is
configured to be higher.

3.1.21 origin-server-pool
The origin-server-pool element configures a pool of origin servers that are used for
load balancing requests. This element may appear zero or more times within the
server element. See server.

Table 3-21 describes the subelements of origin-server-pool.

Table 3-21 origin-server-pool Subelements

Element Occurrences Description

name 1 Specifies the name by which the server
pool is identified.

load-distribution 0 or 1 The load-balancing method for
distributing requests to the origin-server
pool. Values: round-robin, least-
connection-count, and least-
response-time. Default value: least-
connection-count.

For more information about load-
balancing methods, see the section
Modifying an Origin-Server Pool in the
Oracle Traffic Director Administrator's
Guide.

ssl 0 or 1 Specifies outgoing proxy SSL
connections.

This allows you to select the client
certificate as well as ciphers. With
Oracle Traffic Director 12.2.1, it
replaces the ssl-client-config SAF. See
ssl,

type 1 Indicates the kind of requests that are
handled by every server in the server
pool. Values: http, https and tcp. If
<origin-server-pool> has the <ssl> sub
element enabled, then its type is
assumed to be https. Default: https.

Chapter 3
List of Elements

3-21

Table 3-21 (Cont.) origin-server-pool Subelements

Element Occurrences Description

family 0 or 1 Specifies the socket family that is used
to connect to the origin server. Values:
inet, inet6, inet-sdp, and default.
inet and inet6 represent IPV4 and
IPV6 protocols respectively. inet-sdp
is used for Sockets Direct Protocol
(SDP). Default value: inet.

origin-server 0 or more Represents an origin server that
belongs to the server pool.

health-check 0 or 1 Specifies the health check settings for
the server pool

proxy-server 0 or 1 It support for specifying a proxy server
in the server pool

3.1.22 origin-server
The origin-server element defines a member of a server pool. This element may
appear zero or more times within the origin-server-pool element. For more
information, see origin-server-pool.

Table 3-22 describes the subelements of origin-server.

Table 3-22 origin-server Subelements

Element Occurrences Description

host 1 Specifies the host name or the IP
address of the origin server.

port 0 or 1 Specifies the port number of the origin
server. Value: Integer. 80 is the default
port if the origin server pool type is
HTTP. 443 is the default port if the
origin server pool type is HTTPS.

weight 0 or 1 Specifies the load distribution weight
for the origin server. The value is an
integer. Default value: 1.

enabled 0 or 1 Specifies whether requests can be
routed to the origin server. Default
value: true.

backup 0 or 1 Specifies whether the origin server is a
backup server. Requests are sent to
the backup origin server only when
none of the primary (non-backup)
origin servers is available. Default
value: false.

max-connections 0 or 1 Specifies the maximum number of
concurrent connections to the server.
Values: 0 to 20480. Default value: 0.
The value 0 indicates no limit.

Chapter 3
List of Elements

3-22

Table 3-22 (Cont.) origin-server Subelements

Element Occurrences Description

ramp-up-time 0 or 1 The time (in seconds) that Oracle
Traffic Director should take to ramp up
the request sending rate to the full
capacity of this origin server. Default
value: Any positive integer. If max-
connections is set to 0, ramp-up-time
is ignored.

max-requests-per-
connection

0 or 1 Maximum limit on times a connection
to the origin server can be reused for
different requests. When this limit is hit,
OTD voluntarily closes the connection
to the origin server. The value 0 means
no limit is enforced.

max-request-bps 0 or 1 Total bandwidth limit in byte/second
enforced on request. The value 0
means no limit is enforced.

max-response-bps 0 or 1 Total bandwidth limit in byte/second
enforced on response. The value 0
means no limit is enforced.

bandwidth-queue-timeout 0 or 1 Time in seconds before a request
waiting in the queue for bandwidth is
aborted.

3.1.23 property
The property element defines a name-value pair. The effect of defining a property name-
value pair depends on the context in which the property element appears.

Table 3-23 describes the subelements of property.

Table 3-23 property Subelements

Element Occurrences Description

name 1 The name of the property.

value 1 The value of the property.

encoded 0 or 1 Specifies if the property value was encoded using the
uunencode algorithm. Default value: false.

encrypted 0 or 1 Specifies if the property value is encrypted. Default
value: false.

description 0 or 1 The description of the property.

Related Topics

• variable

Chapter 3
List of Elements

3-23

3.1.24 proxy-cache
The proxy-cache element configures the HTTP reverse proxy cache configuration.
This element can appear zero or one time within the server element. For more
information, see server.

Table 3-24 describes the subelements of proxy-cache.

Table 3-24 proxy-cache Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether response caching is enabled.
Default value: true.

max-heap-space 0 or 1 Specifies the maximum number (in bytes) of
heap that is used for caching response objects.
Values: 0 to 1099511627776 (1024 GB). Default
value: 10485760 (10 MB).

max-heap-object-size 0 to 1 Specifies the maximum size of objects that
should be cached. Objects larger than the
specified size are not cached. Values: 0 to
214783647. Default value: 524288 (512 KB).

replacement 0 to 1 Specifies the algorithm for cache replacement.
Values: lru, lfu, and false. Default value: lru.

• lru (Least Recently Used): Oracle Traffic
Director discards the least recently used
entry first.

• lfu (Least Frequently Used): Oracle Traffic
Director discards the least frequently used
entry first.

• false: Cache replacement is disabled.

max-entries 0 to 1 Specifies the maximum number of entries in the
cache. The range is 1 to 1073741824. Default
value: 1024.

3.1.25 qos-limits
The qos-limits element configures the Quality of Service (QoS) limits. This element
may appear zero or one time within the server element and zero or one time within the
virtual-server element. See server and virtual-server.

Table 3-25 describes the subelements of qos-limits.

Table 3-25 qos-limits Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the QoS limits are enforced at
runtime. Default value: true.

max-bps 0 or 1 Specifies the maximum transfer rate (bytes/
second). Range of value: 1 to 2147483647

max-connections 0 or 1 Specifies the maximum number of concurrent
connections. Range of value: 1 to 1048576

Chapter 3
List of Elements

3-24

3.1.26 server
The server element defines a server. This is the root element. There can be only one
server element in the server.xml file.

Table 3-26 describes the subelements of server.

Table 3-26 server Subelements

Element Occurrences Description

cluster 0 or 1 The server cluster to which the server
belongs. See cluster.

fips 0 or 1 Enables the FIPS-140 mode of operation for
the security library.

crl 0 or 1 Defines a certificate. See crl.

log 0 or 1 Configures the logging subsystem. See log.

user 0 or 1 The account the server runs as (UNIX only).
The value is the user account. If the server is
started as root, any UNIX account can be
specified. If the server is started by a non-
root account, only that non-root account can
be specified.

temp-path 0 or 1 The directory where the server stores its
temporary files. If a relative path is used, it is
relative to the server's config directory. The
directory must be owned by the account that
the server runs as.

variable 0 or more Defines a variable for use in expressions, log
formats, and obj.conf parameters. See
variable.

localization 0 or 1 Configures localization. See localization.

http 0 or 1 Configures the HTTP protocol options. See
http.

keep-alive 0 or 1 Configures the HTTP keep-alive subsystem.
See keep-alive.

thread-pool 0 or 1 Configures the HTTP request processing
threads. See thread-pool.

stats 0 or 1 Configures the statistics collection subsystem.
See stats.

dns 0 or 1 Configures the server's use of DNS. See dns.

dns-cache 0 or 1 Configures the DNS cache. See dns-cache.

ssl-session-cache 0 or 1 Configures the SSL/TLS session cache. See
ssl-session-cache.

access-log-buffer 0 or 1 Configures the access log buffering
subsystem. See access-log-buffer.

snmp 0 or 1 Configures SNMP. See snmp.

access-log 0 or more Configures an HTTP access log for the server.
See access-log.

Chapter 3
List of Elements

3-25

Table 3-26 (Cont.) server Subelements

Element Occurrences Description

http-listener 0 or more Configures an HTTP listener. See http-
listener.

virtual-server 0 or more Configures a virtual server. See virtual-server.

event 0 or more Configures a recurring event. See event-
subscription.

event-subscription 0 or more Configures notifications for origin server status
change. See event.

origin-server-pool 0 or more Configures a pool of origin servers that are
used for handling load balancing requests.
See origin-server-pool.

proxy-cache 0 or 1 Defines the HTTP reverse proxy caching
configuration mechanism. See proxy-cache.

qos-limits 0 or 1 Specifies information related to QoS settings.
See qos-limits.

status-listener 0 or 1 Configures a Status Listener. See status-
listener.

tcp-thread-pool 0 or 1 Configures the TCP request processing
threads. See tcp-thread-pool.

tcp-access-log 0 or 1 Configures TCP access log for the server. See
tcp-access-log.

tcp-listener 0 or more Configures a TCP listener. See tcp-listener.

tcp-proxy 0 or more Configures a TCP service. See tcp-proxy.

webapp-firewall-ruleset 0 or more Specifies the path to a file containing the Web
Application Firewall (WAF) module rules. See
webapp-firewall-ruleset.

3.1.27 snmp
The snmp element configures the server's SNMP subagent. This element can appear
zero or one time within the server element. See server.

Table 3-27 describes the subelements of snmp.

Table 3-27 snmp Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the SNMP agent is enabled.
If enabled, the SNMP subagent gathers
information about the server and passes the
information to the master agent. Default value:
true.

description 0 or 1 (Optional) Specifies the description of the
server. The value must be in text format.

Chapter 3
List of Elements

3-26

Table 3-27 (Cont.) snmp Subelements

Element Occurrences Description

organization 0 or 1 (Optional) Specifies the name of the
organization responsible for the server. The
value must be in text format.

location 0 or 1 (Optional) Specifies the location of the server.
The value must be in text format.

contact 0 or 1 (Optional) Specifies the contact information of
the person responsible for the server. The value
must be in text format.

Related Topics

• stats

3.1.28 ssl
The ssl element configures the SSL/TLS settings. This element can appear zero or
one time within the http-listener element. See http-listener.

To configure outgoing proxy SSL connections, this element can appear zero or one
time within the origin-server-pool element. See origin-server-pool.

Table 3-28 describes the subelements of ssl.

Table 3-28 ssl Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether SSL support is
enabled for the listener. Disabled by
default for listeners when no cert
element is specified, otherwise
enabled. Enabled by default when
included in origin-server-pool.

cert 0 or more Specifies the nickname of the
certificate that the server presents to
the clients. You can specify zero or
one RSA certificate, and zero or one
ECC certificate.

numCtx 0 or 1 Allows the creation of more than one
NZ global context to get around NZ
lock contention in high load situations.
Default value: 1.

Chapter 3
List of Elements

3-27

Table 3-28 (Cont.) ssl Subelements

Element Occurrences Description

pool-context-size 0 or 1 Creates a pool to support the re-use
of NZ ssl contexts, boosting
performance.

At creation, the pool is empty, so
there is no additional startup time.
Once the pool is full, new contexts are
created but not reused, and
performance drops. This setting
should be tuned to the maximum
number of expected concurrent SSL
connections. Note that increasing the
pool size will increase memory usage,
as the contexts saved in the pool will
not be freed until re-configuration or
shutdown. Default value: 4096.

tls1.1 0 or 1 Specifies whether TLS connections
fully protect against BEAST attacks.
Default value: true.

tls1.2 0 or 1 Specifies whether TLS connections
fully protect against BEAST attacks.
Default value: true.

ssl3-tls-ciphers 0 or 1 Configures the SSL3 and TLS cipher
suites. See ssl3-tls-ciphers.

client-auth 0 or 1 Specifies the method of client
certificate authentication. The value
can be required, optional, or false.
When you choose required option, the
server requests the client for a
certificate; if the client does not
provide a certificate, the connection is
closed. When you choose optional
option, the server requests the client
for a certificate, but does not require
it. The connection is established even
if the client does not provide a
certificate. Default value: false. The
client authentication is disabled by
default.

client-auth-timeout 0 or 1 Indicates the duration (in seconds)
after which a client authentication
handshake fails. The value can be
from 0.001 to 3600.

max-client-auth-data 0 or 1 Specifies the number of characters of
authentication data that the server
can buffer. The value can be from 0 to
2147483647.

Chapter 3
List of Elements

3-28

Table 3-28 (Cont.) ssl Subelements

Element Occurrences Description

validate-server-cert-hostname 0 or 1 Specifies whether validate SSL
certificate hostname is on or off.
Applies only to outgoing connections.
The remote certificate or CA must still
be trusted locally in the wallet.

NZ does not provide a programmatic
override if the remote certicate is
completely untrusted (for example,
self-signed). Default value: true

wallet-location 0 or 1 Allows selection of an alternate wallet
for a virtual server, listener, or origin
server group. If this is omitted, the
wallet from the instance's config
directory is omitted. This is primarily
to support SNI for multi-tenant, so that
each virtual server can use a different
wallet.

Related Topics

• cipher

Related Topics

• ssl3-tls-ciphers

• ssl-session-cache

3.1.29 ssl3-tls-ciphers
The ssl3-tls-ciphers element configures SSL3 and TLS cipher suites. This element
can appear zero or one time within the ssl element. See ssl.

Note that if ssl3-tls-ciphers is not present in the configuration, the default enablement
value for each of the ciphers is used. If ssl3-tls-ciphers is present, you must include a
cipher element for each cipher that you want enabled. See cipher.

Table 3-29 describes the subelements of ssl3-tls-ciphers.

Table 3-29 ssl3-tls-ciphers Subelements

Element Occurrences Description

cipher 0 or more Specifies a cipher to be enabled. See
cipher.

Chapter 3
List of Elements

3-29

Table 3-29 (Cont.) ssl3-tls-ciphers Subelements

Element Occurrences Description

override-cipher-order 0 or 1 This setting applies only to server-side
listeners (ie. HTTPS and TCP listeners),
and SNI virtual servers. If set, the server
chooses a cipher in the order specified in
<ssl3-tls-ciphers>. The first cipher from this
list supported by the client is selected. If not
set, the first cipher from the ClientHello
message supported by the server is
selected. Default value: false.

Related Topics

• ssl

3.1.30 ssl-session-cache
The ssl-session-cache element configures the SSL/TLS session cache. This element
can appear zero or one time within the server element. See server.

Table 3-30 describes the subelements of ssl-session-cache.

Table 3-30 ssl-session-cache Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the server writes
SSL/TLS sessions to the cache. Default
value: true.

max-entries 0 or 1 Specifies the maximum number of
SSL/TLS sessions that are written to the
cache by the server. The value can be
from 1 to 524288.

max-ssl3-tls-session-age 0 or 1 Specifies the maximum amount of time
(in seconds) a SSL/TLS session is
written to the cache. The value can be
from 5 to 86400.

Related Topics

• cipher

Related Topics

• ssl

3.1.31 stats
The stats element configures the statistics collection subsystem. This element can
appear zero or one time within the server element. See server.

Table 3-31 describes the subelements of stats.

Chapter 3
List of Elements

3-30

Table 3-31 stats Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the server collects the statistics.
Default value: true.

interval 0 or 1 Specifies the interval (in seconds) at which statistics
are updated. The value can be from 0.001 to 3600.

profiling 0 or 1 Specifies whether the performance buckets used to
track NSAPI function execution time are enabled at
runtime. Default value: true.

Related Topics

• snmp

3.1.32 status-listener
The stats-listenerelement configures dedicated Status Listeners to check the status
of Oracle® Fusion Middleware instances. This element can appear zero or one time
within the server element. See server.

Table 3-32 describes the subelements of stats.

Table 3-32 stats-listener Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the Status Listener is enabled to
accept connection requests. Default value: true.

ip 0 or 1 Specifies the IP address to listen.

port 1 Specifies the port to listen.

family 0 or 1 Specifies the protocol family that is used to connect to
the origin server. Values: inet, inet6 or default.
Default value: default.

ssl 0 or 1 Configures SSL/TLS. See ssl.

description 0 or 1 Specifies the description of the Status Listener. The
value of this element must be in text format.

blocking-
accept

0 or 1 Enables/disables blocking of the server listen socket,
while retaining client end points as non-blocking
(useful when Maxprocs > 1). Default value: false.

3.1.33 tcp-access-log
The tcp-access-log element configures the settings for the TCP access log. If the tcp-
access-log element is missing TCP access logging is disabled. See server.

Table 3-33 describes the subelements of tcp-access-log.

Chapter 3
List of Elements

3-31

Table 3-33 tcp-access-log Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether TCP access logging is
enabled. If the element is enabled, the server
writes a log entry for every request received by
TCP listeners. Default value: true.

file 1 Specifies the filename of the access log file
(absolute path or path relative to the server's
config directory).

Related Topics

• ftp-filter

Related Topics

• tcp-listener

• tcp-proxy

• tcp-thread-pool

3.1.34 tcp-listener
The tcp-listener element configures a TCP listener. See server.

Table 3-34 describes the subelements of tcp-listener.

Table 3-34 tcp-listener Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the TCP listener is enabled to accept
connection requests. Default value: true.

name 1 Specifies the name that uniquely identifies the TCP
listener.

ip 0 or 1 Specifies the IP address to listen. The value of this
element is a specific IP address or an asterisk * to listen
on all IP addresses.

port 1 Specifies the port to listen. The value of this element is the
port number.

family 0 or 1 Specifies the socket family that is used to connect to the
origin server. Values: inet, inet6, inet-sdp and default.
inet and inet6 represent IPV4 and IPV6 protocols
respectively. inet-sdp is used for Sockets Direct Protocol
(SDP). Default value: inet.

acceptor-
threads

0 or 1 Specifies the number of threads dedicated to accept
connections received by this listener. The value can be
from 1 to 128. Default value: 1 per CPU.

tcp-proxy-
name

1 Specifies the name of the TCP proxy that processes
requests received by the listener.

listen-
queue-size

0 or 1 Specifies the size (in bytes) of the listen queue. Value: 1 to
1048576.

Chapter 3
List of Elements

3-32

Table 3-34 (Cont.) tcp-listener Subelements

Element Occurrences Description

receive-
buffer-size

0 or 1 Specifies the size (in bytes) of the operating system
socket receive buffer. Value: 1 to 1048576.

send-
buffer-size

0 or 1 Specifies the size (in bytes) of the operating system
socket send buffer. Value: 1 to 1048576.

ssl 0 or 1 Configures SSL/TLS. See ssl.

description 0 or 1 Specifies the description of the TCP listener. The value of
this element must be in text format.

blocking-
accept

0 or 1 Enables/disables blocking of the server listen socket, while
retaining client end points as non-blocking (useful when
MaxProcs > 1). Default value: false.

Related Topics

• ftp-filter

Related Topics

• tcp-access-log

Related Topics

• tcp-proxy

• tcp-thread-pool

3.1.35 tcp-proxy
The tcp-proxy element is used to support LDAP/T3 listeners. See server.

Table 3-35 describes the subelements of tcp-proxy.

Table 3-35 tcp-proxy Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the TCP service is enabled. Default
value: true.

name 1 A name that uniquely identifies the TCP proxy.

session-
idle-timeout

0 or 1 Specifies the maximum timeout (in seconds) that the
server waits while receiving/sending data Default value:
300

origin-
server-pool-
name

0 or 1 Specifies the name of a server pool that provides the
TCP service. The value must be a name value from an
origin-server-pool element.

ftp-filter 0 or 1 Specifies if the FTP protocol is enabled for the TCP
proxy. See ftp-filter.

Related Topics

• tcp-access-log

Chapter 3
List of Elements

3-33

Related Topics

• tcp-listener

Related Topics

• tcp-thread-pool

3.1.36 tcp-thread-pool
The tcp-thread-pool element configures the threads used to process WebSocket
requests and requests received by TCP listeners. See server.

Table 3-36 describes the subelements of tcp-thread-pool.

Table 3-36 tcp-thread-pool Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the pool is enabled. Default value:
true.

threads 0 or 1 Specifies the number of TCP/WebSocket request
processing threads. The value can be from 1 to 512.
Default value: 1 per CPU.

max-
connections

0 or 1 Specifies the maximum number of connection pairs that
the server will support. The value can be from 1 to
1048576. Default value: the default value is the value of
the keep-alive max-connections value.

timeout 0 or 1 Specifies the idle timeout (in seconds), after which
connection pairs will be closed. The value will be
overridden by the tcp or WebSocket subsystem. The
value can be from 0.001 to 3600. Default value: 300
seconds.

stack-size 0 or 1 Specifies the stack size (in bytes) for each thread. The
value can be from 8192 to 67108864, or 0. Default
value: 32768.

poll-
interval

0 or 1 Specifies the interval (in seconds) between polls. The
value can be from 0.001 to 1. Default value: 0.010
seconds.

buffer-size 0 or 1 Specifies the size of the buffer (in bytes), used by each
connection for transferring data. The value can be from 1
to 1048576. Default value: 16384.

Related Topics

• ftp-filter

Related Topics

• tcp-access-log

Related Topics

• tcp-listener

Related Topics

• tcp-proxy

Chapter 3
List of Elements

3-34

3.1.37 thread-pool
The thread-pool element configures the threads used to process HTTP requests. This
element can appear zero or one time within the server element. See server.

Table 3-37 describes the subelements of thread-pool.

Table 3-37 thread-pool Subelements

Element Occurrences Description

min-threads 0 or 1 Specifies the minimum number of HTTP request
processing threads. The value can be from 1 to 4096.

max-threads 0 or 1 Specifies the maximum number of HTTP request
processing threads.

The default value is based on the number of processors.
For example, if there are 1 or 2 processors, the default
value is 256. Similarly, if there are 3 or 4 processors, the
default value is 512. The default value is never more than
quarter of the maximum number of file descriptors available
for the process.

stack-size 0 or 1 Specifies the stack size (in bytes) for HTTP request
processing threads. The value can be from 8192 to
67108864.

queue-size 0 or 1 Specifies the maximum number of concurrent HTTP
connections that can be queued for processing. The value
can be from 1 to 1048576.

Related Topics

• http

Related Topics

• keep-alive

Related Topics

• http

• keep-alive

3.1.38 time
The time element schedules when an event occurs. This element can appear zero or
more times within the event element. See event.

Table 3-38 describes the subelement of time.

Table 3-38 time Subelements

Element Occurrences Description

time-of-day 1 Specifies the time when the event occurs. The value
must be in the hh:mm format.

Chapter 3
List of Elements

3-35

Table 3-38 (Cont.) time Subelements

Element Occurrences Description

day-of-week 0 or 1 Specifies the day of the week. The value can be
Sun, Mon, Tue, Wed, Thu, Fri, or Sat.

day-of-month 0 or 1 Specifies the day of month. The value can be from 1
to 31.

month 0 or 1 Specifies the name of the month. The value can be
Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov,
or Dec.

3.1.39 variable
The variable element defines a variable for use in expressions, log formats, and
obj.conf parameters. This element can appear zero or more times within the server
element, and zero or more times within the virtual-server element. For more
information, see server and virtual-server.

Table 3-39describes the subelements of variable.

Table 3-39 List of variable Subelements

Element Occurrences Description

name 1 Specifies the name of the variable. The value must be
in text format.

value 1 Specifies the value of the variable. The value must be
in text format.

description 0 or 1 The description of the variable. The value must be in
text format.

Related Topics

• property

Related Topics

• Using Variables, Expressions, Wildcards, and String Interpolation

3.1.40 virtual-server
The virtual-server element configures an HTTP virtual server. Each server typically
has at least one virtual server. This element can appear zero or more times within the
server element. See server.

Table 3-40 describes the subelements of virtual-server.

Table 3-40 virtual-server Subelements

Element Occurrences Description

enabled 0 or 1 Specifies whether the virtual server is enabled
at runtime. Default value: true.

Chapter 3
List of Elements

3-36

Table 3-40 (Cont.) virtual-server Subelements

Element Occurrences Description

name 1 A name that uniquely identifies the virtual
server.

ssl 0 or 1 Specifies SSL for a virtual-server.

SSL is configurable for each virtual server for
SNI. You can select an alternate wallet
certificate and cipher suite for each virtual-
server.

ssl can be set only on a virtual-server
explicitly bound to an http-listener. The
default virtual-server cannot implement ssl,
as the ssl parameters would come from the
listener's ssl settings.

A virtual-server with ssl is accessible only
by SNI-capable SSL clients that send an SNI
extension and HTTP host header, both of
which must match one of the host elements
for the virtual-server.

To support non-SNI capable clients, configure
OTD without including ssl in a virtual-
server. For example, configure multiple
listeners on different IP addresses with
separate certificates, or configure one listener
and one certificate with multiple
subjectAltNames.

http-listener-name 0 or more The name of a HTTP listener associated with
one or more of the virtual server's host name.
The value is the name from an http-listener
element. See http-listener.

host 0 or more Indicates the host name that the virtual-server
services. The values can be a host name or a
wildcard. See Wildcard Patterns.

canonical-server-
name

0 or 1 The canonical name of the virtual server.
Requests using a different name are
redirected to the canonical name. The value is
a host name or URL prefix.

object-file 1 The obj.conf file that controls request
processing for virtual server. Default value:
default-virtual-server-name-obj.conf, and
the user can specify any valid file

default-object-name 0 or 1 The name of the root obj.conf object. Default
value: default.

localization 0 or 1 Configures localization. See localization.

access-log 0 or more Configures an HTTP access log for the virtual
server. See access-log.

log-file 0 or 1 Specifies the log file for the virtual server. The
value is the log file name, for example, ../
logs/errors.

Chapter 3
List of Elements

3-37

Table 3-40 (Cont.) virtual-server Subelements

Element Occurrences Description

variable 0 or more Defines an obj.conf variable for the virtual
server. See variable.

description 0 or 1 The description of the virtual server.

cert 0 or 1 RSA certificate
or 1 ECC certificate

Specifies the nickname of the certificate that
the server presents to the clients. Values: zero
or one for RSA and zero or one for ECC

qos-limits 0 or 1 Specifies information related to QoS settings.

webapp-firewall-
ruleset

0 or multiple Specifies the path to a file containing Web
Application Firewall (WAF) rules or
configuration.

Related Topics

• http

Related Topics

• http-listener

Related Topics

• keep-alive

3.1.41 webapp-firewall-ruleset
The webapp-firewall-ruleset element configures the path to a web application firewall
configuration file, which contains ModSecurity rules/configuration directives. The path
may be an absolute path or a relative path. If a relative path is used, it is relative to the
server's config directory. The file name component may contain wildcard characters to
specify multiple files within the given directory.

The webapp-firewall-ruleset element may be present at the virtual-server level as
well as at the server level and can appear zero or more times within the server and
virtual-server elements. Configuration settings at the virtual-server level take
precedence over the server level. However some configuration directives can only be
specified at the server level. The scope of these directives is considered to be Main.
Similarly, scope of directives that can be specified at either server level or virtual-
server level is considered to be Any. Note that if a directive with Main scope is
specified within the virtual-server level configuration file, then an error will be logged
and the server will fail to start. For information about the scope of different directives,
see the Web Application Firewall section in the Oracle Traffic Director Administrator's
Guide.

Note:

For information about various web application firewall use cases, see the
appendix, Web Application Firewall Examples and Use Cases in the Oracle
Traffic Director Administrator's Guide.

Chapter 3
List of Elements

3-38

4
Syntax and Use of obj.conf

The obj.conf file contains directives for HTTP request processing.

During the installation of Oracle Traffic Director, an obj.conf file is created. If you
configure multiple virtual servers using the Oracle Traffic Director Administrator
Console or Command-Line Interface (CLI), separate obj.conf files can be created for
each virtual server. These files are named virtual-server-name-obj.conf, where
virtual-server-name is the name of the virtual server.

From this point onward, the default obj.conf file is neither updated, used, nor deleted.
However, if you want to modify the obj.conf file for either of the two virtual servers, you
should edit the respective file only, not the original obj.conf file.

In this document, the obj.conf file refers to the obj.conf file specified by the object-
file sub element of the virtual-server element in the server.xml file.

This chapter describes the obj.conf directives; the use of Object, Client, If, ElseIf,
and Else tags; the flow of control in obj.conf; and the syntax rules for editing obj.conf.

This chapter includes the following topics:

• Request-Handling Process Overview

• Directives in obj.conf

• Objects in obj.conf

• Flow of Control in obj.conf

• Changes in Function Flow

• Editing obj.conf

4.1 Request-Handling Process Overview
When you first start Oracle Traffic Director, it performs some initialization tasks and
then waits for an HTTP request from a client (such as a browser). When Oracle Traffic
Director receives a request, it first selects a virtual server. The obj.conf file of the
selected virtual server determines how Oracle Traffic Director handles a request.

The obj.conf file contains a series of instructions known as directives that tell Oracle
Traffic Director what to do at each stage in the request-handling process. These
directives are grouped inside Object tags. Each directive invokes a function with one or
more arguments.

Each directive is applied to a specific stage in the request-handling process. For
example, a directive that is applied during the authorization stage in the request-
handling process is an AuthTrans directive.

4.1.1 Steps in the Request-Handling Process
1. AuthTrans (authorization translation)

4-1

Verify the authorization information (such as name and password) sent in the
request.

2. NameTrans (name translation)

Translate the logical URI into a local file system path.

3. PathCheck (path checking)

Check the local file system path for validity and check if the requestor has access
privileges to the requested resource on the file system.

4. ObjectType (object typing)

Controls the flow of information from Oracle Traffic Director to the origin server
and also configures Oracle Traffic Director to origin server connection attributes.

5. Input (prepare to read input)

Select filters that will process incoming request data read by the Service step.

6. Output (prepare to send output)

Select filters that will process outgoing response data generated by the Service
step.

7. Route (request routing)

Select where to route the request.

8. Service (generate the response)

Generate and return the response to the client.

9. AddLog (adding log entries)

Add entries to log files.

10. Error (error handling)

Send an error message to the client and exit processing. This step is executed
only if an error occurs in the previous steps.

4.2 Directives in obj.conf
The directives in the obj.conf file invoke functions known as server application
functions (SAFs). Each directive calls a function, indicating when to call it and
specifying parameters for it.

The syntax of each directive is:

Directive fn="function" name1="value1"...nameN="valueN"

The value of the function (fn) parameter is the name of the SAF to execute. All
directives must supply a value for the fn parameter; if there is no function, the
instruction does nothing. The remaining parameters are the arguments needed by the
function, and they vary from function to function.

Parameters can contain references to variables and expressions. The variables can be
predefined variables, variables defined at request time using the set-variable SAF, or
variables defined in the server.xml file. See set-variable. For more information about
defining variables in the server.xml file, see variable. For more information about
expressions and variables, see Using Variables, Expressions, Wildcards, and String
Interpolation.

Chapter 4
Directives in obj.conf

4-2

Oracle Traffic Director has a set of built-in SAFs that you can use to create and modify
directives in the obj.conf file. Predefined Server Application Functions and Filters in
obj.conf describes these SAFs in detail.

The magnus.conf file contains Init directive SAFs that initialize NASPI plug-ins.

4.3 Objects in obj.conf
Directives in the obj.conf file are grouped into Object tags. The default object contains
instructions to Oracle Traffic Director about how to process requests by default. Each
new object modifies the default behavior of the object.

An Object tag can contain a name or ppath attribute. Either parameter can be a wildcard
pattern.

Oracle Traffic Director starts handling a request by processing the directives in the
default object. However, Oracle Traffic Director switches to processing directives in
another object after the NameTrans stage of the default object if either of the following
conditions is true:

• The successful NameTrans directive specifies a name argument.

• The physical path name that results from the NameTrans stage matches the ppath
attribute of another object.

When Oracle Traffic Director is alerted to use an object other than the default object, it
processes the directives in the other object before processing the directives in the
default object. For some steps in the process, Oracle Traffic Director stops processing
directives in that particular stage (such as the Service stage) as soon as one is
successfully executed. Whereas for other stages, Oracle Traffic Director processes all
directives in that stage, including the ones in the default object and those in the
additional object. See Flow of Control in obj.conf.

4.3.1 Objects That Use the name Attribute
If a NameTrans directive in the default object specifies a name argument, Oracle Traffic
Director switches to processing the directives in the object of that name before
processing the remaining directives in the default object.

4.3.2 Objects That Use the ppath Attribute
When Oracle Traffic Director completes processing the NameTrans directives in the
default object, the logical URL of the request is converted to a physical path name. If
this physical path name matches the ppath attribute of another object in the obj.conf
file, Oracle Traffic Director switches to processing the directives in that object before
processing the remaining ones in the default object.

4.3.3 Using the Client, If, ElseIf, and Else Tags
Additional tags are available to use within the Object tag. These tags give you greater
flexibility when invoking directives within an object.

Chapter 4
Objects in obj.conf

4-3

4.3.3.1 Client
The Client tag enables you to limit the execution of a set of directives to requests
received from specific clients. Directives listed within the Client tag are executed only
when information in the client request matches the parameter values specified.

Table 4-1 describes the parameters for the Client tag.

Table 4-1 Client Tag Parameters

Parameter Description

browser The User-Agent string sent by a browser to Oracle Traffic Director.

chunked A Boolean value set by a client requesting chunked encoding.

code The HTTP response code.

dns The DNS name of the client.

internal The Boolean value indicating internally generated request.

ip The IP address of the client.

keep-alive The Boolean value indicating whether the client has requested a
keep-alive connection.

keysize The key size used in an SSL transaction.

match The match mode for the Client tag. The valid values are all, any,
and none.

method The HTTP method used by the browser.

name The name of an object as specified in a previous NameTrans
statement.

odds A random value for evaluating the enclosed directive. The value can
be a percentage or a ratio (for example, 20% or 1/5).

path The physical path to the requested resource.

ppath The physical path of the requested resource.

query The query string sent in the request.

reason The text version of the HTTP response code.

restarted A Boolean value indicating that a request was restarted.

secret-keysize The secret key size used in an SSL transaction.

security An encrypted request.

type The type of document requested (such as text/html or image/gif).

uri The URI section of the request from the browser.

urlhost The DNS name of the virtual server requested by the client. (The
value is provided in the Host header of the client request).

variable-headers Prevents access to a specific site, based on the request by the client,
for example:

Client variable-headers="Weferer:SKVFVWRKJVZCMHVIBGDA
Service type="image/*" fn="deny-existence"
</Client>

Chapter 4
Objects in obj.conf

4-4

The Client tag parameter provides greater control when the If directive is executed. In
the following example, the odds parameter gives the request a 25% chance of being
redirected:

<Client odds="25%">
NameTrans fn="redirect"
 from="/Pogues"
 url-prefix="http://pogues.example.com"
</Client>

One or more wildcard patterns can be used to specify the Client tag parameter values.
Wildcards can also be used to exclude clients that match the parameter value
specified in the Client tag. In the following example, the Client tag and the AddLog
directive are combined to direct Oracle Traffic Director to log access requests from all
clients except those from the specified subnet:

<Client ip="*~192.85.250.*">
AddLog fn="flex-log" name="access"
</Client>

You can also create a negative match by setting the match parameter of the Client tag
to none. In the following example, access requests from the specified subnet are
excluded as are all requests to the virtual server example.com:

<Client match="none" ip="192.85.250.*" urlhost="www.example.com">
AddLog fn="flex-log" name="access"
</Client>

See Wildcard Patterns.

4.3.3.2 If, ElseIf, and Else
Similar to the Client tag, these tags can only appear inside an Object tag. In addition,
these tags can evaluate an expression, then conditionally execute one or more
contained directives. See If, ElseIf, and Else Tags.

4.4 Flow of Control in obj.conf
Before Oracle Traffic Director can process a request, it must direct the request to the
correct virtual server. After the virtual server is determined, Oracle Traffic Director
executes the obj.conf file of the specified virtual server. This section describes how
Oracle Traffic Director determines the directives to execute in obj.conf.

4.4.1 AuthTrans
When Oracle Traffic Director receives a request, it executes the AuthTrans directives in
the default object to check if the client is authorized to access Oracle Traffic Director.
If there is more than one AuthTrans directive, Oracle Traffic Director executes them in
sequence until one succeeds in authorizing the user, unless one of them results in an
error. If an error occurs, Oracle Traffic Director skips all other directives except for the
Error directive.

AuthTrans directives work in conjunction with the PathCheck directives. The AuthTrans
directive checks if the user name and password associated with the request are
acceptable, but it does not allow or deny access to the request; that is done by the
PathCheck directive.

Chapter 4
Flow of Control in obj.conf

4-5

The authorization process is split into two steps to incorporate multiple authorization
schemes easily and provide the flexibility to have resources that record authorization
information.

When a client initially makes a request, the user name and password are unknown.
The AuthTrans directive gets the user name and password from the headers
associated with the request. The AuthTrans and PathCheck directives work together to
reject the request if they cannot validate the user name and password. When a
request is rejected, Oracle Traffic Director displays a dialog box. The client includes
the user name and password in the headers and resubmits the request.

4.4.2 NameTrans
Oracle Traffic Director executes NameTrans directives in the default object to associate
a named object (for example, an object that specifies the routing rules) with the URL of
the requested resource.

Oracle Traffic Director evaluates each NameTrans directive in the default object in turn,
until it finds one that can be applied.

Because Oracle Traffic Director might not execute all NameTrans directives, the order in
which the directives appear is important.

4.4.2.1 How and When Oracle Traffic Director Processes Other Objects
As a result of executing a NameTrans directive, Oracle Traffic Director might start
processing directives in another object. This happens if the NameTrans directive that
was successfully executed specifies a name or generates a partial path that matches
the name or ppath attribute of another object.

If the successful NameTrans directive assigns a name by specifying a name argument,
Oracle Traffic Director starts processing directives in the named object (defined with
the object tag) before processing directives in the default object for the rest of the
request-handling process.

4.4.3 PathCheck
After converting the logical URL of the requested resource to a physical path name in
the NameTrans step, Oracle Traffic Director executes PathCheck directives to verify that
the client is allowed to access the requested resource.

If there is more than one PathCheck directive, Oracle Traffic Director executes all
directives in the order in which they appear, unless one of the directives denies
access. If access is denied, Oracle Traffic Director switches to executing directives in
the Error section.

If the NameTrans directive assigned a name or generated a physical path name that
matches the name or ppath attribute of another object, Oracle Traffic Director first
applies the PathCheck directives in the matching object before applying the directives in
the default object.

4.4.4 ObjectType
Assuming that the PathCheck directives approve access, Oracle Traffic Director next
executes the ObjectType directives to determine the MIME type of the request. The

Chapter 4
Flow of Control in obj.conf

4-6

MIME type has three attributes: type, encoding, and language. When Oracle Traffic
Director sends the response to the client, the type, language, and encoding values are
transmitted in the headers of the response. The type also frequently helps Oracle
Traffic Director to determine which Service directive to execute to generate the
response to the client.

If there is more than one ObjectType directive, Oracle Traffic Director applies all
directives in the order in which they appear. However, once a directive sets an
attribute of the MIME type, further attempts to set the same attribute are ignored. The
reason why all ObjectType directives are applied is that one directive can set one
attribute, for example type, while another directive sets a different attribute, such as
language.

As with the PathCheck directives, if another object was matched to the request as a
result of the NameTrans step, Oracle Traffic Director executes the ObjectType directives
in the matching object before executing the ObjectType directives in the default object.

4.4.5 Input
The Input directive selects filters that process incoming request data read by the
Service step. Input directives are invoked when Oracle Traffic Director or plug-in first
attempts to read entity body data from the client. You can add the NSAPI filters that
process incoming data by invoking the insert-filter SAF in the Input stage of the
request-handling process. NSAPI filters enable a function to intercept and potentially
modify the content presented to or generated by another function. The Input directives
are executed once per request.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives in
obj.conf is important if two or more filters are defined to be in the same location in the
filter stack. Filters that were inserted later appear higher than filters that were inserted
earlier.

4.4.6 Output
The Output directive selects filters that process outgoing response data generated by
the Service step. The Output directive allows you to invoke the insert-filter SAF to
install NSAPI filters that process outgoing data. NSAPI filters enable a function to
intercept and potentially modify the content presented to or generated by another
function. Output directives are executed when Oracle Traffic Director or a plug-in first
attempts to write entity body data from the client. The Output directives are executed
once per request.

The order of Input fn="insert-filter" and Output fn="insert-filter" directives in
obj.conf is important if two or more filters are defined to be in the same location in the
filter stack. Filters that were inserted later appear higher than filters that were inserted
earlier.

4.4.7 Route
If a Service directive requires that the HTTP request be sent to another server, Oracle
Traffic Director executes Route directives to determine how the request be routed.
Routing a request can involve selecting Oracle Traffic Director that will service the
request and selecting a proxy through which the request is sent.

Chapter 4
Flow of Control in obj.conf

4-7

4.4.8 Service
Oracle Traffic Director executes a Service directive to generate the response to send
to the client. Oracle Traffic Director looks at each Service directive to find the first one
that matches the type, method, and query string. If a Service directive does not specify
type, method, or query string, then the unspecified attribute matches anything.

If there is more than one Service directive, Oracle Traffic Director applies the first one
that matches the conditions of the request and ignores all remaining Service directives.

For the PathCheck and ObjectType directives, if another object was matched to the
request as a result of the NameTrans step, Oracle Traffic Director checks the Service
directives in the matching object before considering the ones in the default object. If
Oracle Traffic Director successfully executes a Service directive in the matching object,
it does not execute the Service directives in the default object, because it only
executes one Service directive.

4.4.9 AddLog
After Oracle Traffic Director generates the response and sends it to the client, it
executes AddLog directives to add entries to the log files. All AddLog directives are
executed. Oracle Traffic Director can add entries to multiple log files.

4.4.10 Error
If an error occurs during the request-handling process, for example, if a PathCheck or
AuthTrans directive denies access to the requested resource or the requested resource
does not exist, the SAF sets the HTTP response status code and returns the value
REQ_ABORTED. When this happens, Oracle Traffic Director stops processing the request.
Instead, it searches for an Error directive matching the HTTP response status code or
its associated reason phrase and executes the directive's function. If Oracle Traffic
Director does not find a matching Error directive, it returns the response status code to
the client.

4.5 Changes in Function Flow
There are times when the function flow changes from the normal request-handling
process. This happens during internal redirection, restarts, and URI translation
functions.

4.5.1 Restarted Requests
Requests can be restarted, for example, a PathCheck directive might restart a request
for http://server_name/ as a request for http://server_name/index.html.

4.5.2 Internal Requests
Oracle Traffic Director can generate internal requests, for example, an SHTML file or
servlet might include a file. While processing the original request, Oracle Traffic
Director makes an internal request to retrieve this file.

Chapter 4
Changes in Function Flow

4-8

4.5.3 URI Translation
Oracle Traffic Director can execute AuthTrans and NameTrans directives to translate a
URI to a physical path name without starting a new request.

4.6 Editing obj.conf
Use caution when making changes to this file. Simple mistakes can make Oracle
Traffic Director fail to start or operate incorrectly.

4.6.1 Order of Directives
The order of directives is important, because Oracle Traffic Director executes them in
the order in which they appear in obj.conf. The outcome of some directives affects the
execution of other directives.

For PathCheck directives, the order within the PathCheck section is not important
because Oracle Traffic Director executes all PathCheck directives. However, the order
within the ObjectType section is very important, because if an ObjectType directive sets
an attribute value, no other ObjectType directive can change that value.

Similarly, the order of directives in the Service section is very important. Oracle Traffic
Director executes the first Service directive that matches the current request and does
not execute the others.

4.6.2 Parameters
The number and names of parameters depend on the function. The order of
parameters on the line is not important.

4.6.3 Case Sensitivity
Items in the obj.conf file are case-sensitive including function names, parameter
names, parameter values, and path names.

4.6.4 Separators
Function names in the C language can be composed of letters, digits, and
underscores. You can use the hyphen (-) in the configuration file in place of
underscore (_) for your C code function names. This is only true for function names.

4.6.5 Quotation Marks
Quotation marks (") are only required around value strings when there is a space in
the string. Otherwise, they are optional. Each open quotation mark must be matched
by a closed quotation mark.

4.6.6 Spaces
• Spaces are not allowed at the beginning of a line except when continuing from the

previous line.

Chapter 4
Editing obj.conf

4-9

• Spaces are not allowed before or after the equal sign (=) that separates the name
and value.

• Spaces are not allowed at the end of a line or on a blank line.

4.6.7 Line Continuation
A long line may be continued on the next line by beginning the next line with a space
or tab.

4.6.8 Path Names
Always use forward slashes (/), in path names. A backslash escapes the next
character.

4.6.9 Comments
Comments begin with a pound sign (#). If you manually add comments to the obj.conf
file, then use the Administration Console or CLI to make changes to your server: your
comments are overwritten when the obj.conf file is updated.

Chapter 4
Editing obj.conf

4-10

5
Predefined Server Application Functions
and Filters in obj.conf

This chapter describes the predefined server application functions (SAFs) and filters
that are used in the obj.conf file. For details about the syntax and use of the obj.conf
file, see Syntax and Use of obj.conf.

Each SAF has its own parameters that are passed to it by an obj.conf directive. SAFs
can examine, modify, or create server variables. Each SAF returns a result code that
indicates whether it has succeeded, did nothing, or has failed.

The SAFs in this chapter are grouped by the type of directive that calls them. For an
alphabetical list of predefined SAFs and server configuration elements, see
Alphabetical List of Server Configuration Elements and Predefined SAFs.

This chapter includes the following topics:

• The bucket Parameter

• AuthTrans

• NameTrans

• PathCheck

• ObjectType

• Input

• Output

• Route

• Service

• AddLog

• Error

• Common SAFs

5.1 The bucket Parameter
The bucket parameter is common to all SAFs. You can measure the performance of
any SAF in the obj.conf file by adding a bucket=bucket-name parameter to the
function, for example, bucket="cache-bucket". The bucket statistics are displayed by
the perfdump utility, which can be set up through the Administrator Console, CLI, or
through the service-dump SAF.

The following performance buckets are predefined:

• The default-bucket records statistics for the functions not associated with any
user-defined or built-in bucket.

• The all-requests bucket records perfdump statistics for all NSAPI SAFs, including
those in the default-bucket.

5-1

5.2 AuthTrans
The Authtrans directive instructs Oracle Traffic Director to check for authorization
before allowing a client to access resources. See AuthTrans.

The following AuthTrans-class functions are described in detail in this section:

• get-sslid

• qos-handler

In addition, the following common SAFs are valid for the AuthTrans directive:

• match-browser

• sed-param-name

• sed-param-value

• set-priority

• set-variable

5.2.1 get-sslid
The get-sslid function retrieves a string that is unique to the current SSL session and
stores it as the ssl-id variable in the Session->client parameter block.

Note:

This function is provided for backward compatibility. The functionality of get-
sslid was incorporated into the standard processing of an SSL connection.

If the variable ssl-id is present when a CGI is invoked, it is passed to the CGI as the
HTTPS_SESSIONID environment variable. The get-sslid function has no parameters and
always returns REQ_NOACTION. It has no effect if SSL is not enabled.

5.2.2 qos-handler
The qos-handler function examines the current quality of service (QoS) statistics for a
virtual server, logs the statistics, and enforces the QoS parameters by returning an
error. This function must be the first AuthTrans function configured in the default object.

Example

AuthTrans fn= "qos-handler"

Related Topics

• qos-error

Chapter 5
AuthTrans

5-2

5.2.3 webapp-firewall
The webapp-firewall function controls the enabling and disabling of the rule engine. If
this function is present in a virtual server specific obj.conf, it indicates that the rule
engine is enabled for that particular virtual server.

The webapp-firewall function is not configured by default and hence, the rule engine is
not enabled. If the rule engine is not enabled, neither the directives nor the rules within
the configuration files, specified by webapp-firewall-ruleset element, are applied.

Note:

• If the directive SecRuleEngine is specified within the configuration file(s)
specified by the webapp-firewall-ruleset element, then it will be ignored.
However, this condition is not applicable if SecRuleEngine is set to
DetectionOnly mode.

• If there are other SAFs that could return REQ_PROCEED, then the SAF
webapp-firewall must be on top of the list. If this is not the case, the
execution of webapp-firewall might get skipped.

• For information about various web application firewall use cases, see the
appendix, Web Application Firewall Examples and Use Cases in the
Oracle Traffic Director Administrator's Guide.

Table 5-1 describes parameters for the webapp-firewall function. These parameters
take precedence over the equivalent settings specified within the webapp-firewall-
ruleset element.

Table 5-1 webapp-firewall Parameters

Parameter Equivalent setting
within webapp-
firewall-ruleset

Description

detect-only DetectionOnly (optional) Indicates whether the rule engine should
enforce the rules or not.

The value true indicates that the directives should
be evaluated but the result of the evaluation should
not be enforced. This is equivalent to setting the
SecRuleEngine directive to DetectionOnly. The
value false indicates that the rules should be
enforced.

If this parameter is not specified and if
SecRuleEngine is set to DetectionOnly mode (in the
configuration file specified by webapp-firewall-
ruleset), then the behavior is the same as setting
detect-only to true.

Chapter 5
AuthTrans

5-3

Table 5-1 (Cont.) webapp-firewall Parameters

Parameter Equivalent setting
within webapp-
firewall-ruleset

Description

process-
request-body

SecRequestBodyAcces
s

(Optional) Indicates whether request bodies are
processed by web application firewall. When the
body-buffer-size parameter in server.xml is
configured to be a positive value, Oracle Traffic
Director buffers the request body in memory, up to
the limit defined by body-buffer-size parameter.
This parameter dictates whether web application
firewall accesses the buffered request body.The
value on indicates that request bodies will be
processed. The value off indicates that response
bodies will not be processed.The default value is set
by the SecRequestBodyAccess directive (if any) in
the configuration files specified by the webapp-
firewall-ruleset element. If the
SecRequestBodyAccess directive is not present, the
value is off.

process-
response-body

SecResponseBodyAcce
ss

(Optional) Indicates whether response bodies are
buffered and processed by web application firewall.
When response body processing is enabled, the
server buffers the entire response body in memory,
up to the limit defined by the SecResponseBodyLimit
directive (if any) in configuration files specified by
the webapp-firewall-ruleset element. If the
SecResponseBodyLimit directive is not present, the
value is 524288 (512 KB).The value on indicates
that response bodies will be processed. The value
off indicates that response bodies will not be
processed.The default value is set by the
SecResponseBodyAccess directive (if any) in the
configuration files specified by the webapp-
firewall-ruleset directive. If the
SecResponseBodyAccess directive is not present, the
value is off.

5.3 NameTrans
The NameTrans directive translates virtual URLs to physical directories on your server.
The NameTrans directive must appear in the default object. See NameTrans.

The following NameTrans-class functions are described in detail in this section:

• assign-name

• block-request-cookie

• map

• reverse-map

• rewrite

• sed-request-header

Chapter 5
NameTrans

5-4

• strip-params

In addition, the following common SAFs are also valid for the NameTrans directive:

• match-browser

• redirect

• restart

• sed-param-name

• sed-param-value

• set-variable

5.3.1 assign-name
The assign-name function specifies the name of an object in the obj.conf file that
matches the current request. Oracle Traffic Director processes the directives in the
named object in preference to those in the default object.

For example, given the following directive in the default object:

NameTrans fn="assign-name" name="personnel" from="/personnel"

Assume that Oracle Traffic Director receives a request for http://server-name/
personnel. After processing this NameTrans directive, Oracle Traffic Director searches for
an object named personnel in the obj.conf file and continues by processing the
directives in the personnel object.

The assign-name function returns REQ_NOACTION.

Table 5-2 describes parameters for the assign-name function.

Table 5-2 assign-name Parameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path to be
affected. If you do not specify the from parameter, all paths are
affected.

name Specifies an additional named object in the obj.conf file whose
directives are applied to this request.

find-pathinfo-forward (Optional) Instructs Oracle Traffic Director to look for the
PATHINFO forward in the path right after the ntrans-base,
instead of backward from the end of path as Oracle Traffic
Director function assign-name does by default.

The find-pathinfo-forward parameter is ignored if the
ntrans-base parameter is not set in rq->vars. By default,
ntrans-base is set.

This feature can improve performance for certain URLs by
reducing the number of statistics performed.

Chapter 5
NameTrans

5-5

Table 5-2 (Cont.) assign-name Parameters

Parameter Description

nostat (Optional) Prevents Oracle Traffic Director from performing a
stat on a specified URL.

The effect of nostat="virtual-path" in the NameTrans function
assign-name is that Oracle Traffic Director assumes that a stat
on the specified virtual-path will fail. Therefore, use nostat only
when the path of the virtual-path does not exist on the system.
For example, use nostat for NSAPI plug-in URLs to improve
performance by avoiding unnecessary stats on those URLs.

When the default PathCheck server functions are used, Oracle
Traffic Director does not stat for the paths /ntrans-base/virtual-
path and /ntrans-base/virtual-path/* if ntrans-base is set (the
default condition). It does not stat for the URLs /virtual-path
and /virtual-path/* if ntrans-base is not set.

Example

This NameTrans directive is in the default object.
NameTrans fn="assign-name" name="proxy-cache" from="/.proxycache"
...
<Object name="proxy-cache">
...additional directives..
</Object>

5.3.2 block-request-cookie
The block-request-cookie needs one parameter, "name". This new SAF is introduced
to block request cookies by its name.

Table 5-4 describes the parameters for the block-request-cookie function.

Table 5-3 block-request-cookie Parameter

Parameter Description

name (Optional) Specifies an additional named object in the obj.conf file. The
directives of the named object are applied to this request.

5.3.3 map
The map function maps a request URI to a URL on another server, enabling you to
specify that a request should be serviced by another server. To load balance a given
URI across multiple servers, use the map function in conjunction with the set-origin-
server function. The map function looks for a certain prefix in the URI that the client is
requesting. If map finds the prefix, it replaces the prefix with the mirror site prefix.

Table 5-4 describes the parameters for the map function.

Chapter 5
NameTrans

5-6

Table 5-4 map Parameters

Parameter Description

from The URI prefix to map. The prefix must not contain trailing slashes.

to The URL prefix to which the request should be mapped. The prefix must not
contain trailing slashes. The Host and Port values specified in this
parameter are silently ignored.

name (Optional) Specifies an additional named object in the obj.conf file. The
directives of the named object are applied to this request.

rewrite-host (Optional) Indicates whether the Host HTTP request header is rewritten to
match the host specified by the to parameter. In a reverse proxy
configuration where the proxy server and origin server service the same set
of virtual servers, you can specify rewrite-host="false". Default value:
true. It indicates that the Host HTTP request header is rewritten.

Example

NameTrans fn="map" from="/" name="reverse-proxy" to="/"

Related Topics

• set-origin-server

Related Topics

• reverse-map

5.3.4 reverse-map
The reverse-map function rewrites the HTTP response headers when Oracle Traffic
Director is functioning as a reverse proxy. reverse-map looks for the URL prefix
specified by the from parameter in certain response headers. If the from prefix matches
the beginning of the response header value, reverse-map replaces the matching portion
with the to prefix.

Table 5-5 describes the parameters for the reverse-map function.

Table 5-5 reverse-map Parameters

Parameter Description

from URL prefix to be rewritten.

to URL prefix that will be substituted in place of the from prefix.

rewrite-location (Optional) Indicates whether the location HTTP response
header is rewritten. Default value: true (the location header is
rewritten).

rewrite-content-
location

(Optional) Indicates whether the Content-Location HTTP
response header is rewritten. Default value: true (the Content-
Location header is rewritten).

Chapter 5
NameTrans

5-7

Table 5-5 (Cont.) reverse-map Parameters

Parameter Description

rewrite-headername (Optional) Indicates whether the headername HTTP response
header is rewritten, where headername is a user-defined header
name. With the exception of the Location and Content-Location
headers. Default value: false (the headername header is not
rewritten).

Example

NameTrans fn="reverse-map" from="http://download.oracle.com/app/docs" to="/docs"

Related Topics

• map

5.3.5 rewrite
The rewrite function allows flexible mappings between URIs and file system paths.

The following table describes parameters for the rewrite function.

Table 5-6 rewrite Parameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path of requests that should be
rewritten. The default is to match all paths.

root (Optional) File system path to the effective root document directory.

name (Optional) Name of an object in obj.conf whose directives will be applied to this
request.

path (Optional) Rewritten partial path. If non-empty, the path must begin with a slash
(/).

Example

The following obj.conf code maps requests for the URI /~user/index.html to the file
system path /home/user/public_html/index.html:

<If $path =~ "^/~([^/]+)(|/.*)$">
NameTrans fn="rewrite"
 root="/home/$1/public_html"
 path="$2"
</If>

Related Topics

• restart

5.3.6 sed-request-header
The sed-request-header rewrites a request header and it needs two parameters,
"name" and "sed".

Chapter 5
NameTrans

5-8

The following table describes parameters for the sed-request-header function.

Table 5-7 sed-request-header Parameters

Parameter Description

name Header name for the specified variable.

sed sed expression value for the specified variable.

Example

Rewrite the value of a specified request header NameTrans fn="sed-request=header"
name="x-someheader" sed="s/abcd/123/g"

5.3.7 strip-params
The strip-params function removes the embedded semicolon-delimited parameters
from the path. For example, a URI of /dir1;param1/dir2 would become a path of /dir1/
dir2. When used, the strip-params function should be the first NameTrans directive
listed.

Example

NameTrans fn="strip-params"

5.4 PathCheck
The PathCheck directive checks the URL that is returned after the NameTrans step to
verify that the client is allowed to access the specified origin server. For more
information, see PathCheck.

The following PathCheck-class functions are described in detail in this section:

• check-request-limits

• deny-existence

• get-client-cert

• nt-uri-clean

• ssl-logout

• unix-uri-clean

In addition, the following common SAFs are valid for the PathCheck directive:

• match-browser

• restart

• sed-param-name

• sed-param-value

• set-variable

Chapter 5
PathCheck

5-9

5.4.1 check-request-limits
The check-request-limits function monitors incoming requests that match a given
attribute (for example, client IP address) and computes an average requests per
second on a configurable time interval. When requests that match the monitored
attribute exceed a threshold that you configure, subsequent matching requests are not
serviced until the request rate drops. Use this function to detect possible denial-of-
service attacks.

You must specify either max-rps or max-connections, otherwise check-request-limits
does nothing. If you do not enter an attribute or attributes to monitor, the function
monitors all requests.

By default, the function keeps entries on requests for 300 seconds (5 minutes) before
purging them. To adjust this time, use the init-request-limits SAF in the magnus.conf
file.

Table 5-8 describes the parameters for the check-request-limits function.

Table 5-8 check-request-limits Parameters

Parameter Description

max-rps (Optional) Threshold for matching requests per second. If this
threshold is exceeded subsequent connections matching the
criteria are not serviced. Because an acceptable threshold value
can vary widely between sites, there is no default value for this
parameter.

max-connections (Optional) Maximum number of concurrent matching connections. If
Oracle Traffic Director receives a request that matches the criteria
while the number of matching requests currently being processed
meets or exceeds this number, the request is denied.

Note that this number is the current requests at any time, and is
independent of the interval parameter. As soon as the number of
concurrent requests falls below this limit, new matching requests
are processed.

Because an acceptable value can vary widely between sites, there
is no default value for this parameter.

interval (Optional) Time interval in seconds during which average requests
per second is computed. The max-rps limit is not applied until the
next request rate computation. Because potential attackers can
have unlimited requests serviced during this interval, balance the
length of this interval against the performance cost of recomputing
the maximum requests per second. Default value: 30 seconds.

continue (Optional) The condition that must be met in order for a blocked
request type to become available again for servicing.

Valid values are:

• silence - Refused requests must fall to zero in a subsequent
interval for service to resume.

• threshold - Refused requests must fall below the max-rps
value for service to resume.

Default value: threshold.

error (Optional) The HTTP status code to use for blocked requests.
Default value: 503 (the Service Unavailable error).

Chapter 5
PathCheck

5-10

Table 5-8 (Cont.) check-request-limits Parameters

Parameter Description

monitor (Optional) A request attribute to monitor. Request rates are tracked
in a bucket named by the value of this parameter. If the monitor
parameter is not specified, the matching requests are tracked in an
unnamed (anonymous) bucket. Note that these buckets differ from
the buckets you specify with the standard obj.conf bucket
parameter.

Although the value of the monitor parameter can be a fixed string,
it is most useful when you use predefined variables, for example,
monitor="$ip". You can also specify multiple variables, separated
by a colon, for example, monitor="$ip:$uri".

For a list of predefined variables, see Predefined Variables.

Example

The following example limits a client IP to a maximum request rate of 10 requests per
second in the default interval of 30 seconds:

PathCheck fn="check-request-limit" monitor="$ip" max-rps="10"

The following example limits a client IP to a maximum request rate of 10 requests per
second when accessing any Perl CGIs. Other types of requests are unlimited:

<If path = "*.pl">
PathCheck fn="check-request-limits" monitor="$ip" max-rps="10"
</If>

For more information on using the If tag, see If, ElseIf, and Else.

The following example limits requests globally for Perl CGIs to 10 requests per
second. No specific monitor parameter is specified:

<If path = "*.pl">
PathCheck fn="check-request-limits" max-rps="10"
</If>

The following example limits a client IP from generating more than 10 Perl CGI
requests per second, or 5 JSP requests per second. To track the Perl and JSP totals
separately, the specified monitor parameters contain both a fixed string identifier and
the client IP variable:

<If path = "*.pl">
PathCheck fn="check-request-limits" max-rps="10" monitor="perl:$ip"
</If>
<If path = "*.jsp">
PathCheck fn="check-request-limits" max-rps="5" monitor="jsp:$ip"
</If>

The following example limits any one client IP to no more than 5 connections at a
given time:

PathCheck fn="check-request-limits" max-connections="2" monitor="$ip"

Chapter 5
PathCheck

5-11

5.4.2 deny-existence
The deny-existence function sends a 404 Not Found message when a client tries to
access a specified path.

Table 5-9 describes parameters for the deny-existence function.

Table 5-9 deny-existence Parameters

Parameter Description

path (Optional) Wildcard pattern of the file system path to hide. If the path does not
match, the function does nothing and returns REQ_NOACTION. If the path is not
provided, it is assumed to match.

bong-file (Optional) Specifies a file to send rather than responding with the 404 Not
Found message. The value is a full file system path.

Example

PathCheck fn="deny-existence" path="/opt/oracle/webserver7/docs/private"

PathCheck fn="deny-existence" bong-file="/svr/msg/go-away.html"

5.4.3 get-client-cert
The get-client-cert function gets the authenticated client certificate from the SSL3
session. It can apply to all HTTP methods, or only to those that match a specified
pattern. It only works when SSL is enabled on Oracle Traffic Director.

If the certificate is present or obtained from the SSL3 session, the function returns
REQ_NOACTION and allows the request to proceed. Otherwise, it returns REQ_ABORTED and
sets the protocol status to 403 forbidden, causing the request to fail.

The following table describes parameters for the get-client-cert function.

Table 5-10 get-client-cert Parameters

Parameter Description

dorequest (Optional) Controls whether to get the certificate, or just test for its
presence.

• 1 tells the function to redo the SSL3 handshake to get a client
certificate, if Oracle Traffic Director does not already have the client
certificate. This typically causes the client to present a dialog box to
the user to select a client certificate. Oracle Traffic Director might
already have the client certificate if it was requested on the initial
handshake, or if a cached SSL session has been resumed.

• 0 tells the function not to redo the SSL3 handshake if Oracle Traffic
Director does not already have the client certificate.

If a certificate is obtained from the client and verified successfully by
Oracle Traffic Director, the ASCII base 64 encoding of the DER-
encoded X.509 certificate is placed in the parameter auth-cert in
the Request->vars pblock, and the function returns REQ_PROCEED,
allowing the request to proceed.

Default value: 0.

Chapter 5
PathCheck

5-12

Table 5-10 (Cont.) get-client-cert Parameters

Parameter Description

require (Optional) Controls whether failure to get a client certificate aborts the
HTTP request.

• 1 tells the function to abort the HTTP request if the client certificate
is not present after dorequest is handled. In this case, the HTTP
status is set to PROTOCOL_FORBIDDEN, and the function returns
REQ_ABORTED.

• 0 tells the function to return REQ_NOACTION if the client certificate is
not present after dorequest is handled.

Default value: 1.

method (Optional) Specifies a wildcard pattern for the HTTP methods for which
the function will be applied. If method is absent, the function is applied to
all requests.

Example

Get the client certificate from the session.
If a certificate is not already associated with the session, request one.
The request fails if the client does not present a
#valid certificate.
PathCheck fn="get-client-cert" dorequest="1"

5.4.4 nt-uri-clean
(Windows only) The nt-uri-clean function denies access to any resource whose
physical path contains \.\, \..\ or \\ (these are potential security problems).

Table 5-11 describes the parameters for the nt-uri-clean function.

Table 5-11 nt-uri-clean Parameters

Parameter Description

tildeok (Optional) If present, allows tilde (~) characters in URIs. This is a
potential security risk on the Windows platform, where, for example,
longfi~1.htm might reference longfilename.htm but does not go
through the proper ACL checking. If present, "//" sequences are
allowed.

dotdirok (Optional) If present, /./ sequences are allowed.

Example

PathCheck fn="nt-uri-clean"

Related Topics

• unix-uri-clean

5.4.5 ssl-logout
The ssl-logout function invalidates the current SSL session in Oracle Traffic Director's
SSL session cache. This does not affect the current request, but the next time that the

Chapter 5
PathCheck

5-13

client connects, a new SSL session is created. If SSL is enabled, this function returns
REQ_PROCEED after invalidating the session cache entry. If SSL is not enabled, it returns
REQ_NOACTION.

5.4.6 unix-uri-clean
(UNIX only) The unix-uri-clean function denies access to any resource whose
physical path contains /./ or /../ or // (these are potential security problems).

The following table describes parameters for the unix-uri-clean function.

Table 5-12 unix-uri-clean Parameters

Parameter Description

dotdirok If present, /./ sequences are allowed.

Example

PathCheck fn="unix-uri-clean"

Related Topics

• nt-uri-clean

5.5 ObjectType
The ObjectType directives determine the MIME type of the file that has to be sent to the
client in response to a request. See ObjectType.

The following ObjectType-class functions are described in detail in this section:

• block-auth-cert

• block-cache-info

• block-cipher

• block-ip

• block-issuer-dn

• block-jroute

• block-keysize

• block-proxy-agent

• block-secret-keysize

• block-ssl

• block-ssl-id

• block-user-dn

• block-via

• block-xforwarded-for

• forward-auth-cert

• forward-cache-info

Chapter 5
ObjectType

5-14

• forward-cipher

• forward-ip

• forward-issuer-dn

• forward-jroute

• forward-keysize

• forward-proxy-agent

• forward-secret-keysize

• forward-ssl

• forward-ssl-id

• forward-user-dn

• forward-via

• forward-xforwarded-for

• http-client-config

• proxy-cache-config

• proxy-cache-override-http

• proxy-websocket-config

• reverse-block-date

• reverse-block-server

• reverse-forward-date

• reverse-forward-server

• set-basic-auth

• set-cache-control

• set-cookie

• type-by-exp

• type-by-extension

In addition, the following common SAFs are valid for the ObjectType directive:

• match-browser

• sed-param-name

• sed-param-value

• set-variable

5.5.1 block-auth-cert
The block-auth-cert function instructs Oracle Traffic Director to not generate and
forward its own Proxy-auth-cert header to the origin server. In addition, if the incoming
request contains this header, then the SAF will allow Oracle Traffic Director to pass-
through the incoming request containing this header to the origin server.

Chapter 5
ObjectType

5-15

Example

ObjectType fn="block-auth-cert"

Related Topics

• forward-auth-cert

5.5.2 block-cache-info
The block-cache-info function instructs Oracle Traffic Director to not generate and
forward its own Proxy-cache-info header to the origin server. In addition, if the
incoming request contains this header, the SAF allows Oracle Traffic Director to pass-
through the incoming request containing this header to the origin server.

Example

ObjectType fn="block-cache-info"

Related Topics

• forward-cache-info

5.5.3 block-cipher
The block-cipher function instructs Oracle Traffic Director to not generate and forward
its own Proxy-cipher header to the origin server. In addition, if the incoming request
contains this header, the SAF allows Oracle Traffic Director to pass-through the
incoming request containing this header to the origin server.

Example

ObjectType fn="block-cipher"

Related Topics

• forward-cipher

5.5.4 block-ip
The block-ip function instructs Oracle Traffic Director to not generate and forward its
own Client-ip header (or Wl-proxy-client-ip header for WebLogic Server) to the
origin server. In addition, if the incoming request contains this header, the SAF allows
Oracle Traffic Director to pass-through the incoming request containing this header to
the origin server.

Example

ObjectType fn="block-ip"

Related Topics

• forward-ip

Chapter 5
ObjectType

5-16

5.5.5 block-issuer-dn
The block-issuer-dn function instructs Oracle Traffic Director to not generate and
forward its own Proxy-issuer-dn header to the origin server. In addition, if the incoming
request contains this header, the SAF allows Oracle Traffic Director to pass-through
the incoming request containing this header to the origin server.

Example

ObjectType fn="block-issuer-dn"

Related Topics

• forward-issuer-dn

5.5.6 block-jroute
The block-jroute function instructs Oracle Traffic Director to not generate and forward
its own Proxy-jroute header to the origin server. In addition, if the incoming request
contains this header, the SAF allows Oracle Traffic Director to pass-through the
incoming request containing this header to the origin server.

Example

ObjectType fn="block-jroute"

Related Topics

• forward-jroute

5.5.7 block-keysize
The block-keysize function instructs Oracle Traffic Director to not generate and
forward its own Proxy-keysize header (or Wl-proxy-client-keysize header for
WebLogic Server) to the origin server. In addition, if the incoming request contains this
header, then the SAF will allow Oracle Traffic Director to pass-through the incoming
request containing this header to the origin server.

Example

ObjectType fn="block-keysize"

Related Topics

• forward-keysize

5.5.8 block-proxy-agent
The block-proxy-agent function instructs Oracle Traffic Director to not generate and
forward its own Proxy-agent header to the origin server. In addition, if the incoming
request contains this header, the SAF allows Oracle Traffic Director to pass-through
the incoming request containing this header to the origin server.

Example

ObjectType fn="block-proxy-agent"

Chapter 5
ObjectType

5-17

Related Topics

• forward-proxy-agent

5.5.9 block-secret-keysize
The block-secret-keysize function instructs Oracle Traffic Director to not generate and
forward its own Proxy-secret-keysize header (or Wl-proxy-client-secretkeysize header
for WebLogic Server) to the origin server. In addition, if the incoming request contains
this header, the SAF allows Oracle Traffic Director to pass-through the incoming
request containing this header to the origin server.

Example

ObjectType fn="block-secret-keysize"

Related Topics

• forward-secret-keysize

5.5.10 block-ssl
The block-ssl function instructs Oracle Traffic Director to not generate and forward its
own Proxy-ssl header (or Wl-proxy-ssl header for WebLogic Server) to the origin
server. In addition, if the incoming request contains this header, the SAF allows Oracle
Traffic Director to pass-through the incoming request containing this header to the
origin server.

Example

ObjectType fn="block-ssl"

Related Topics

• forward-ssl

5.5.11 block-ssl-id
The block-ssl-id function instructs Oracle Traffic Director to not generate and forward
its own Proxy-ssl-id header to the origin server. In addition, if the incoming request
contains this header, the SAF allows Oracle Traffic Director to pass-through the
incoming request containing this header to the origin server.

Example

ObjectType fn="block-ssl-id"

Related Topics

• forward-ssl-id

5.5.12 block-user-dn
The block-user-dn function instructs Oracle Traffic Director to not generate and
forward its own Proxy-user-dn header to the origin server. In addition, if the incoming
request contains this header, the SAF allows Oracle Traffic Director to pass-through
the incoming request containing this header to the origin server.

Chapter 5
ObjectType

5-18

Example

ObjectType fn="block-user-dn"

Related Topics

• forward-user-dn

5.5.13 block-via
The block-via function instructs Oracle Traffic Director to not generate and forward its
own Via header to the origin server. In addition, if the incoming request contains this
header, the SAF allows Oracle Traffic Director to pass-through the incoming request
containing this header to the origin server.

Example

ObjectType fn="block-via"

Related Topics

• forward-via

5.5.14 block-xforwarded-for
The block-xforwarded-for function instructs Oracle Traffic Director to not generate and
forward its own X-forwarded-for header to the origin server. In addition, if the incoming
request contains this header, the SAF allows Oracle Traffic Director to pass-through
the incoming request containing this header to the origin server.

Example

ObjectType fn="block-xforwarded-for"

Related Topics

• forward-xforwarded-for

5.5.15 forward-auth-cert
The forward-auth-cert function instructs Oracle Traffic Director to generate information
about client's SSL/TLS certificate within the header Proxy-auth-cert and forward it to
origin server. If an incoming request includes the header Proxy-auth-cert, this SAF
causes OTD to remove the header from the request that is forwarded to the origin
server.

Table 5-13 describes the parameters for the forward-auth-cert function.

Table 5-13 forward-auth-cert Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the client's
DER-encoded SSL/TLS certificate in Base 64 encoding. Default value: Proxy-
auth-cert.

Chapter 5
ObjectType

5-19

Related Topics

• block-auth-cert

5.5.16 forward-cache-info
The forward-cache-info function instructs Oracle Traffic Director to generate
information about local hits within the header Cache-info and forward it to the origin
server. If an incoming request includes the header Cache-info, this SAF causes OTD to
remove the header from the request that is forwarded to the origin server.

Table 5-14 describes the parameters for the forward-cache-info function.

Table 5-14 forward-cache-info Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate information
about local cache hits. Default value: Cache-info.

Related Topics

• block-cache-info

5.5.17 forward-cipher
The forward-cipher function instructs Oracle Traffic Director to generate information
about the client's SSL/TLS cipher suite within the header Proxy-cipher and forward it to
origin server. If an incoming request includes the header Proxy-cipher, this SAF
causes OTD to remove the header from the request that is forwarded to the origin
server.

Table 5-15 describes the parameters for the forward-cipher function.

Table 5-15 forward-cipher Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the name of
the client's SSL/TLS cipher suite. Default value: Proxy-cipher.

Related Topics

• block-cipher

5.5.18 forward-ip
The forward-ip function instructs Oracle Traffic Director to generate the client's IP
address within the header Client-ip (or WI-proxy-client-ip for WebLogic Server) and
forward it to origin server. If an incoming request includes the header Client-ip (or WI-
proxy-client-ip for WebLogic Server), this SAF causes Oracle Traffic Director to
remove the header from the request that is forwarded to the origin server.
Subsequently, Oracle Traffic Director generates and inserts this header with the
appropriate value before forwarding the request to the origin server.

Table 5-16 describes parameters for the forward-ip function.

Chapter 5
ObjectType

5-20

Table 5-16 forward-ip Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the client's IP
address.

Default value: Client-ip, when the origin server is non-WLS and WI-proxy-
client-ip -> when origin server is WLS.

Related Topics

• block-ip

5.5.19 forward-issuer-dn
The forward-issuer-dn function instructs Oracle Traffic Director to generate information
about the client's SSL/TLS certificate within the header Proxy-issuer-dn and forward it
to origin server. If an incoming request includes the header Proxy-issuer-dn, this SAF
causes OTD to remove the header from the request that is forwarded to the origin
server.

Table 5-17 describes the parameters for the forward-issuer-dn function.

Table 5-17 forward-issuer-dn Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
distinguished name of the issuer of the client's SSL/TLS certificate. Default value:
Proxy-issuer-dn.

Related Topics

• block-issuer-dn

5.5.20 forward-jroute
The forward-jroute function instructs Oracle Traffic Director to generate information
about request routing within the header Proxy-jroute and forward it to origin server.
The Proxy-jroute header field is used by the set-origin-server function and some
Servlet containers to implement session stickiness. If an incoming request includes the
header Proxy-jroute, this SAF causes OTD to remove the header from the request
that is forwarded to the origin server.

Table 5-18 describes the parameters for the forward-jroute function.

Table 5-18 forward-jroute Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the request
routing information. Default value: Proxy-jroute.

Chapter 5
ObjectType

5-21

Related Topics

• block-jroute

5.5.21 forward-keysize
The forward-keysize function instructs Oracle Traffic Director to generate information
about the size of the client's SSL/TLS key within the header Proxy-keysize and forward
it to origin server. If an incoming request includes the header Proxy-keysize, this SAF
causes OTD to remove the header from the request that is forwarded to the origin
server.

Table 5-19 describes the parameters for the forward-keysize function.

Table 5-19 forward-keysize Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the size of
the client's SSL/TLS key. Default value: Proxy-keysize.

Related Topics

• block-keysize

5.5.22 forward-proxy-agent
The forward-proxy-agent function instructs Oracle Traffic Director to generate its
version information within the header Proxy-agent and forward it to origin server. If an
incoming request includes the header Proxy-agent, this SAF causes OTD to remove
the header from the request that is forwarded to the origin server.

Table 5-20 describes the parameters for the forward-proxy-agent function.

Table 5-20 forward-proxy-agent Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate server
version. Default value: Proxy-agent.

Related Topics

• block-proxy-agent

5.5.23 forward-secret-keysize
The forward-secret-keysize function instructs Oracle Traffic Director to generate
information about the size of the client's SSL/TLS secret key within the header Proxy-
secret-keysize (or Wl-proxy-client-secretkeysize for WebLogic Server) and forward it
to origin server. If an incoming request includes the header Proxy-secret-keysize (or
Wl-proxy-client-secretkeysize for WebLogic Server), this SAF causes OTD to remove
the header from the request that is forwarded to the origin server.

Chapter 5
ObjectType

5-22

Table 5-21 forward-secret-keysize Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the client's
SSL/TLS secret key.

Default value: Proxy-secret-keysize, when the origin server is non-WLS and
Wl-proxy-client-secretkeysize -> when origin server is WLS.

Example

Related Topics

• block-secret-keysize

5.5.24 forward-ssl
The forward-ssl function instructs the server to forward information to remote (origin)
servers to check if the client sent the request to Oracle Traffic Director over an SSL
connection. Accordingly, if the client connects to OTD using a non-SSL connection,
this header is set with the value False. Similarly, if the client connects to OTD using an
SSL connection, this header is set with the value True. If an incoming request includes
the header Proxy-ssl (or WI-proxy-ssl for WebLogic Server), this SAF causes OTD to
remove the header from the request that is forwarded to the origin server.

Table 5-22 forward-ssl

Parameter Description

hdr Name of the HTTP request header used to communicate that the
connection between the client and OTD was over SSL. Default
value: Proxy-ssl, when the origin server is non-WLS and WI-
proxy-ssl -> when origin server is WLS.

Example

ObjectType fn="forward-ssl"

Related Topics

• block-ssl

5.5.25 forward-ssl-id
The forward-ssl-id function instructs Oracle Traffic Director to generate information
about the client's SSL/TLS session ID within the header Proxy-ssl-id and forward it to
origin server. If an incoming request includes the header Proxy-ssl-id, this SAF
causes OTD to remove the header from the request that is forwarded to the origin
server.

Table 5-23 describes the parameters for the forward-ssl-id function.

Chapter 5
ObjectType

5-23

Table 5-23 forward-ssl-id Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the client's
SSL/TLS session ID. Default value: Proxy-ssl-id.

Related Topics

• block-ssl-id

5.5.26 forward-user-dn
The forward-user-dn function instructs Oracle Traffic Director to generate information
about the distinguished name of the subject of the client's SSL/TLS certificate within
the header Proxy-user-dn and forward it to origin server. If an incoming request
includes the header Proxy-user-dn, this SAF causes OTD to remove the header from
the request that is forwarded to the origin server.

Table 5-24 describes the parameters for the forward-user-dn function.

Table 5-24 forward-user-dn Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate the
distinguished name of the subject of the client's SSL/TLS certificate. Default
value: Proxy-user-dn.

Related Topics

• block-user-dn

5.5.27 forward-via
The forward-via function instructs Oracle Traffic Director to generate information about
request routing within the header Via and forward it to origin server using the HTTP/1.1
Via format. The HTTP/1.1 Via header field records the proxy servers and protocol
versions that were involved in routing a request. If an incoming request includes the
header Via, this SAF causes OTD to remove the header from the request that is
forwarded to the origin server.

Table 5-25 describes parameters for the forward-via function.

Table 5-25 forward-via Parameters

Parameter Description

hdr (Optional) Name of the HTTP request header used to communicate routing
information. Default value: Via.

Related Topics

• block-via

Chapter 5
ObjectType

5-24

5.5.28 forward-xforwarded-for
The forward-xforwarded-for function instructs Oracle Traffic Director to generate
information about user-specified X-Forwarded-For header values within the header X-
Forwarded-For and forward it to origin server. If the function is enabled, Oracle Traffic
Director sends the X-Forwarded-For header value to the origin server, where the value
is a comma-separated list of IP addresses. This SAF is enabled by default. If an
incoming request includes the header X-forwarded-for, this SAF causes OTD to
remove the header from the request that is forwarded to the origin server.

Table 5-26 forward-xforwarded-for

Parameter Description

hdr (Optional) Name of the HTTP request header used to
communicate routing information. Default value: X-forwarded-
for.

Example

ObjectType fn="forward-xforwarded-for"

Related Topics

• block-xforwarded-for

5.5.29 http-client-config
The http-client-config function configures Oracle Traffic Director's HTTP client.

Table 5-27 describes the parameters for the http-client-config function.

Table 5-27 http-client-config Parameters

Parameter Description

always-use-keep-alive (Optional) Indicates whether the HTTP client can reuse existing
persistent connections for all types of requests. Default value:
true for WLS origin servers. It indicates that GET/HEAD/OPTIONS
requests uses keep-alive by default.

exclude-escape-chars (Optional) Specifies the list of characters that Oracle Traffic
Director should not escape. Various applications deployed in the
application server require certain characters not to be escaped. If
you do not specify this parameter, Oracle Traffic Director might
escape those characters. For example:

ObjectType fn="http-client-config" exclude-escape-
chars="%&"

keep-alive (Optional) Indicates whether the HTTP client uses persistent
connections. Default value: true.

keep-alive-timeout (Optional) The maximum number of seconds to keep a persistent
connection open. Default value: 29.

Chapter 5
ObjectType

5-25

Table 5-27 (Cont.) http-client-config Parameters

Parameter Description

log-headers (Optional) Specifies whether to log request or response headers
in server log that Oracle Traffic Director sends and receives from
the origin server. This parameter is useful for diagnostic
purposes.

For example:

ObjectType fn="http-client-config" log-headers="true"

protocol (Optional) HTTP protocol version string. By default, the HTTP
client uses either HTTP/1.0 or HTTP/1.1 based on the contents of
the HTTP request. In general, do not use the protocol parameter
unless you encounter specific protocol interoperability problems.

proxy-agent (Optional) Value of the proxy-agent HTTP request header. The
default is a string that contains the web server product name and
version.

proxy-buffer-size (Optional) Specifies the size of the buffer used by Oracle Traffic
Director to store data before it is sent to the client. A larger buffer
size results in a lower number of write system calls. By default,
the value of the proxy buffer size is 16 KB. To change the value
to 32 KB, use the parameter as follows:

ObjectType fn="http-client-config" proxy-buffer-
size="32768"

retries (Optional) The number of times to retry when getting content
from the origin web server before sending an error to the client.
Only GET/HEAD/OPTIONS requests are retried. If GET requests
have a body associated, those requests are also not retried.
Acceptable values are 0 through 100. The value 0 indicates that
no retries should be attempted. Default value: 9.

Example

ObjectType fn="http-client-config" keep-alive="false"

5.5.30 proxy-cache-config
The proxy-cache-config function configures reverse proxy cache settings.

Table 5-28 describes the parameters for the proxy-cache-config function.

Table 5-28 proxy-cache-config Parameters

Parameter Type Description Default Value

enabled Boolean Enable or disable caching of reverse proxy
content.

false

Chapter 5
ObjectType

5-26

Table 5-28 (Cont.) proxy-cache-config Parameters

Parameter Type Description Default Value

max-reload-
interval

Integer (Optional) Specifies the maximum time in
seconds allowed between consecutive up-to-
date checks. If set to 0 (the default), a check is
made every time the document is accessed,
and the last-modified-factor value has no
effect.

Note: Setting a value for this element will
cause the server to behave in a manner
different from what the HTTP specification
mandates.

3600

min-reload-
interval

Integer Specifies the minimum time in seconds allowed
between consecutive up-to-date checks of a
cached document.

0

last-
modified-
factor

Float (Optional) Represents the factor used in
estimating the expiry time, which defines how
long a document will be up-to-date based on
the time it was last modified. The time elapsed
since the last modification is multiplied by this
factor. The result gives the estimated time the
document is likely to remain unchanged.
Specifying a value of 0 turns off this function.
The caching system then uses only explicit
expiry information, which is rarely available.
Only explicit Cache-Control or Expires HTTP
headers are used. This value has no effect if
max-reload-interval is set to 0.

0

min-object-
size

Integer The minimum size, in bytes, of any document
to be cached. This is useful if you prefer to
cache only larger documents.

0

max-object-
size

Integer Limits the maximum size of cached documents
to the specified value. This value cannot
exceed the maximum value specified in
server.xml in proxy-cache->max-heap-
object-size.

proxy-cache-
>max-heap-
object-size

query-maxlen Integer Specifies the number of characters in the query
string (the "?string" part at the end of the URL
that are still cacheable). The same queries are
rarely repeated exactly in the same form by
more than one user, and so caching them is
often not desirable.

0

compression Boolean If this parameter is set to true, the proxy
compresses the document before storing. This
consumes less cache space, allowing the
cache to accommodate more entries for a
given cache size. For clients that accept
compression, compressed content is sent. For
other clients, the server dynamically
uncompresses the content. The cache will not
store two copies of the same content.

false

Chapter 5
ObjectType

5-27

Table 5-28 (Cont.) proxy-cache-config Parameters

Parameter Type Description Default Value

cache-https Boolean If this parameter is set to true, responses from
HTTPS connections are cached. If cache-
https is false, responses from HTTPS origin
server connections are not cached irrespective
of HTTP headers.

false

Example

ObjectType fn="proxy-cache-config" enable="1" max-reload-interval=300 min-reload-
interval=60

Related Topics

• proxy-cache-override-http

• service-proxy-cache-dump

5.5.31 proxy-cache-override-http
The proxy-cache-override-http function configures reverse proxy cache parameters
that override certain HTTP caching rules.

Table 5-29 describes the parameters for the proxy-cache-override-http function.

Table 5-29 proxy-cache-override-http Parameters

Parameter Type Description Default Value

ignore-server-
no-cache

Boolean If this parameter is set to true, a
pragma: no-cache or cache-control:
no-cache header from the origin server
is ignored and the response is cached.
This behavior violates the HTTP
standard.

false

ignore-server-
no-store

Boolean If this parameter is set to true, a
cache-control: no-store header from
the origin server is ignored and the
response is cached. This behavior
violates the HTTP standard.

false

ignore-private Boolean If this parameter is set to true, a
cache-control: private header from
the origin server is ignored and the
response is cached. This behavior
violates the HTTP standard.

false

ignore-client-
no-cache

Boolean If set to true, a pragma: no-cache or
cache-control: no-cache header from
the client is ignored and the request is
served from the cache. This behavior
violates the HTTP standard.

false

Chapter 5
ObjectType

5-28

Table 5-29 (Cont.) proxy-cache-override-http Parameters

Parameter Type Description Default Value

override-expire Boolean If this parameter is set to true, min-
reload-interval is enforced over the
value of an Expires header and Cache-
Control: max-age value. This behavior
violates the HTTP standard.

false

override-
lastmod

Boolean If this parameter is set to true, min-
reload-interval is enforced over the
value of a Last-modified header. This
behavior violates the HTTP standard.

false

reload-into-ims Boolean If this parameter is set to true, reload
request from clients are converted into
conditional GET requests with an If-
modified-since header. This behavior
violates the HTTP standard.

true

require-expires Boolean If this parameter is set to true, a
response without an Expires header will
not be cached. This behavior violates
the HTTP standard.

false

without-lastmod Boolean If this parameter is set to true, the
absence of a Last-modified header is
ignored and the response cached. This
behavior violates the HTTP standard.

false

Example

<If uri =~ '^/images/'> ObjectType fn="proxy-cache-config" enable="1" max-reload-
interval=600
 ObjectType fn="proxy-cache-override-http" ignore-client-no-cache="true"
</If>
<Else uri =~ '^/myapp/'>
 ObjectType fn="proxy-cache-config" enable="1" max-reload-interval=120
</Else>

Related Topics

• proxy-cache-config

Related Topics

• service-proxy-cache-dump

5.5.32 proxy-websocket-config
The proxy-websocket-config SAF disables WebSocket upgrade and modifies the idle-
timeout for WebSocket connections. WebSocket upgrade is enabled by default. If
WebSocket upgrade must be disabled, proxy-websocket-config can be used with
enabled set to off. The proxy-websocket-config directive may be present in the route
object for a route or the default object for the whole virtual server. This enables
administrators to disable WebSocket traffic or to set a different idle-timeout value for
certain routes or for the whole virtual server.

Table 5-30 describes the parameters for the proxy-cache-override-http function.

Chapter 5
ObjectType

5-29

Table 5-30 proxy-websocket-config Parameters

Parameter Default Value

enabled 'on' or 'off'

idle-timeout Default is the timeout value mentioned in the tcp-thread-pool element

Example

ObjectType fn="proxy-websocket-config"

5.5.33 reverse-block-date
The reverse-block-date SAF blocks the Date header sent from the origin server and
causes Oracle Traffic Director to generate and insert its own Date header in the
response.

Example

ObjectType fn="reverse-block-date"

Related Topics

• reverse-forward-date

5.5.34 reverse-block-server
The reverse-block-server SAF blocks the Server header sent from the origin server
and causes Oracle Traffic Director to insert its own Server header in the response.

Example

ObjectType fn="reverse-block-server"

Related Topics

• reverse-forward-server

5.5.35 reverse-forward-date
The reverse-forward-date SAF forwards the Date header sent from the origin server. In
Oracle Traffic Director, this is the default behavior.

Example

ObjectType fn="reverse-forward-date"

Related Topics

• reverse-block-date

Chapter 5
ObjectType

5-30

5.5.36 reverse-forward-server
The reverse-forward-server SAF forwards the Server header sent from the origin
server. If origin server does not generate any Server header then Oracle Traffic
Director generates and uses its own Server header. This is the default behavior.

Example

ObjectType fn="reverse-forward-server"

Related Topics

• reverse-block-server

5.5.37 set-basic-auth
The set-basic-auth function allows you to set the HTTP basic authentication
credentials used by the server when it sends an HTTP request. Use set-basic-auth to
authenticate to a remote origin server or proxy server.

The following table describes parameters for the set-basic-auth function.

Table 5-31 set-basic-auth Parameters

Parameter Description

user Name of the user to authenticate.

password Password of the user to authenticate.

hdr (Optional) Name of the HTTP request header used to communicate the
credentials.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. See The bucket Parameter.

Example

ObjectType fn="set-basic-auth" user="admin" password="secret" hdr="proxy-
authorization"

5.5.38 set-cache-control
The set-cache-control function allows you to specify the HTTP caching policy for the
response being sent back to the client.

The following table describes parameters for the set-cache-control function.

Table 5-32 set-cache-control Parameters

Parameter Description

control HTTP cache control directives. Separate multiple directives by commas.

The following table describes some of the useful cache control directives defined by
the HTTP/1.1 protocol.

Chapter 5
ObjectType

5-31

Table 5-33 Cache Control Directives

Directive Description

public The response may be cached by any cache.

private The response must not be cached by a shared cache (for example, a proxy
server).

no-cache Clients must ask Oracle Traffic Director for updated content on each access.

max-age=n The response should not be cached for more than n seconds.

Example

ObjectType fn="set-cache-control" control="private,max-age=60"

5.5.39 set-cookie
The set-cookie function allows you to set a cookie in the response being sent back to
the client.

The following table describes parameters for the set-cookie function.

Table 5-34 set-cookie Parameters

Parameter Description

name Name of the cookie.

value (Optional) Value of the cookie. Default value: null.

path (Optional) Base URI to which the cookie applies. Default value: / (slash).

domain (Optional) The domain name of servers to which the cookie must be sent.
If no domain is specified, web browsers send the cookie only to Oracle
Traffic Director that sets the cookie.

max-age (Optional) Maximum time (in seconds) after which the cookie expires. If
max-age is not specified, web browsers delete the cookie when the user
closes the web browser.

Example

<If not defined $cookie{'FIRSTVISITTIME'}>
ObjectType fn="set-cookie"
 name="FIRSTVISITTIME"
 value="$time"
 max-age="31536000"
</If>

5.5.40 type-by-exp
The type-by-exp function matches the current path with a wildcard expression. If they
match, the type parameter information is applied to the file. This is the same as type-
by-extension, except that you use wildcard patterns for the files or directories specified
in the URLs.

Table 5-35 describes the parameters for the type-by-exp function.

Chapter 5
ObjectType

5-32

Table 5-35 type-by-exp Parameters

Parameter Description

exp Wildcard pattern of paths for which this function is applied.

type (Optional) Type assigned to a matching request (the Content-Type
header).

enc (Optional) Encoding assigned to a matching request (the Content-
Encoding header).

lang (Optional) Language assigned to a matching request (the Content-
Language header).

charset (Optional) The character set for the magnus-charset parameter in rq-
>srvhdrs. If a browser sends the Accept-Charset header or its User-
Agent is Mozilla/1.1 or newer, then append "; charset=charset" to
Content-Type, where charset is the value of the magnus-charset
parameter in rq->srvhdrs.

Example

ObjectType fn="type-by-exp" exp="*.test" type="application/html"

Related Topics

• type-by-extension

5.5.41 type-by-extension
The type-by-extension function instructs Oracle Traffic Director to look in a table of
MIME type mappings to find the MIME type of the requested resource. The MIME type
is added to the Content-Type header that is sent back to the client.

The table of MIME type mappings is created by a mime-file element in the server.xml
file, which loads a MIME types file or list and creates the mappings.

For example, the following two lines are part of a MIME types file:

type=text/html exts=htm,html
type=text/plain exts=txt

If the extension of the requested resource is htm or html, the type-by-extension file sets
the type to text/html. If the extension is .txt, the function sets the type to text/plain.

Example

ObjectType fn="type-by-extension"

Related Topics

• type-by-exp

5.6 Input
The Input directives allow you to select filters that process incoming request data read
by the Service stage. See Input.

Chapter 5
Input

5-33

The following common SAFs are valid for the Input directive:

• insert-filter

• match-browser

• remove-filter

• sed-param-name

• sed-param-value

• set-variable

Every Input directive has the following optional parameters.

Table 5-36 Input Directive's Optional Parameters

Parameters Description

type (Optional) Specifies a wildcard pattern of MIME types for which this function is
executed.

method (Optional) Specifies a wildcard pattern of HTTP methods for which this function
is executed. Common HTTP methods are GET, HEAD, and POST.

query (Optional) Specifies a wildcard pattern of query strings for which this function is
executed.

5.7 Output
The Output stage allows you to select filters that will process outgoing data. For more
information, see Output.

Every Output directive has the following optional parameters:

Table 5-37 Output Directive's Optional Parameters

Parameters Description

type (Optional) Specifies a wildcard pattern of MIME types for which this function is
executed.

method (Optional) Specifies a wildcard pattern of HTTP methods for which this function
is executed. Common HTTP methods are GET, HEAD, and POST.

query (Optional) Specifies a wildcard pattern of query strings for which this function is
executed.

The following common SAFs are valid for the Output directive:

• insert-filter

• match-browser

• redirect

• remove-filter

• restart

• sed-param-name

• sed-param-value

Chapter 5
Output

5-34

• sed-response-header

• set-variable

5.8 Route
The Route directive specifies information as to where the Web Server should route
requests. See Route.

The following Route-class functions are described in detail in this section:

• set-origin-server

• set-proxy-server

In addition, the following common SAFs are valid for the Route directive:

• match-browser

• sed-param-name

• sed-param-value

• set-variable

5.8.1 set-origin-server
The set-origin-server function distributes the load across a set of homogeneous
HTTP origin servers. This SAF chooses the origin server from a given origin server
pool for this request. The set-origin-server SAF requires origin-server-pool as
mandatory parameter.

Table 5-38 describes the parameters for the set-origin-server function.

Table 5-38 set-origin-server Parameters

Parameter Description

origin-server-pool (Mandatory) Name of the configured origin server pool. From
this pool, one of the origin servers will be chosen based on
the load balancing properties defined within the origin-
server-pool element in server.xml.

sticky-cookie (Optional) Name of a cookie that, when present in a
response, causes subsequent requests to stick to that origin
server. Accordingly, subsequent requests with this cookie
are sent to the same origin server.

This parameter accepts * as value, which means that any
cookie received from the origin server will be considered as
sticky. Default value: *.

sticky-param (Optional) Name of a URI parameter to inspect for route
information. When the URI parameter is present in a request
URI and its value contains a colon (:) followed by a route ID,
the request will stick to the origin server identified by that
route ID. Default value: jsessionid.

Chapter 5
Route

5-35

Table 5-38 (Cont.) set-origin-server Parameters

Parameter Description

route-hdr (Optional) Name of the HTTP request header used to
communicate route IDs to origin servers. set-origin-
server associates each origin server named by a server
parameter with a unique route ID. Origin servers may
encode this route ID in the URI parameter named by the
sticky-param parameter to cause subsequent requests to
stick to them. Default value: Proxy-jroute.

route-cookie (Optional) Name of the cookie generated by Oracle Traffic
Director when it encounters a sticky-cookie in a response.
The route-cookie parameter stores a route ID that enables
Oracle Traffic Director to direct subsequent requests back to
the same origin server. Default value: JROUTE.

rewrite-host (Optional) Indicates whether the host HTTP request header
is rewritten to match the host specified by the server
parameter. Default value: false. It indicates that the host
header is not rewritten.

rewrite-location (Optional) Indicates whether the Location HTTP response
header that matches the server parameter should be
rewritten. Default value: true. It indicates that the matching
Location headers are rewritten.

rewrite-content-location (Optional) Indicates whether the Content-Location HTTP
response header that matches Oracle Traffic Director
parameter should be rewritten. Default value: true. It
indicates that the matching Content-Location headers are
rewritten.

rewrite-headername (Optional) Indicates whether the headername HTTP
response headers that match Oracle Traffic Director
parameter should be rewritten, where headername is a user-
defined header name. headername is in lowercase. With the
exception of the Location and Content-Location headers,
Default value: false. It indicates that the headername header
is not rewritten.

Example

Route fn="set-origin-server" origin-server-pool="origin-server-pool-1"

Related Topics

• map

Related Topics

• set-proxy-server

Related Topics

• proxy-retrieve

5.8.2 set-proxy-server
The set-proxy-server function directs Oracle Traffic Director to retrieve the current
resource from a particular proxy server.

Chapter 5
Route

5-36

Table 5-39 describes the parameters for the set-proxy-server function.

Table 5-39 set-proxy-server Parameters

Parameter Description

server URL of the remote proxy server. If multiple server parameters are given, Oracle
Traffic Director distributes load among the specified remote servers.

Example

Route fn="set-proxy-server"
 server="http://webcache1.eng.sun.com:8080"
 server="http://webcache2.eng.sun.com:8080"

Related Topics

• set-origin-server

Related Topics

• proxy-retrieve

5.9 Service
The Service directives send the response data to the client. See Service.

Every Service directive has the following optional parameters to determine whether the
function is executed. All optional parameters must match the current request for the
function to be executed.

Table 5-40 Service Directive's Optional Parameters

Optional Parameters Description

type Specifies a wildcard pattern of MIME types for which this
function is executed. The magnus-internal/* MIME types
are used only to select a Service function to execute.

method Specifies a wildcard pattern of HTTP methods for which this
function is executed. Common HTTP methods are GET,
HEAD, and POST.

query Specifies a wildcard pattern of query strings for which this
function is executed.

UseOutputStreamSize Determines the default output stream buffer size (in bytes),
for data sent to the client. If this parameter is not specified,
the default is 8192 bytes.

Note: Set this parameter to zero (0) to disable output
stream buffering.

flushTimer Determines the maximum number of milliseconds between
write operations in which buffering is enabled. If the interval
between subsequent write operations is greater than the
flushTimer value for an application, further buffering is
disabled. This is necessary for monitoring the status of CGI
applications that run continuously and generate periodic
status update reports. If this parameter is not specified, the
default is 3000 milliseconds.

Chapter 5
Service

5-37

Table 5-40 (Cont.) Service Directive's Optional Parameters

Optional Parameters Description

ChunkedRequestBufferSize Determines the default buffer size, in bytes, for unchunking
request data. If this parameter is not specified, the default is
8192 bytes.

ChunkedRequestTimeout Determines the default timeout, in seconds, for unchunking
request data. If this parameter is not specified, the default is
60 seconds.

If there is more than one Service-class function, the first one matching the optional
wildcard parameters (type, method, and query) are executed.

The UseOutputStreamSize, ChunkedRequestBufferSize, and ChunkedRequestTimeout
parameters also have equivalent magnus.conf directives. The obj.conf parameters
override the magnus.conf directives.

By default, Oracle Traffic Director sends the requested file to the client by calling the
send-file function. The directive that sets the default is:

Service method="(GET|HEAD)" type="*~magnus-internal/*" fn="send-file"

This directive usually comes last in the set of Service-class directives to give all other
Service directives a chance to be invoked. This directive is invoked if the method of the
request is GET, HEAD, or POST, and the type does not start with magnus-internal/. Note
here that the pattern *~ means "does not match." For a list of characters that can be
used in patterns, see Wildcard Patterns.

The functions used in the Service directive are described in the following sections:

• proxy-retrieve

• remove-filter

• service-proxy-cache-dump

• service-trace

• stats-xml

In addition, the following common SAFs are valid for the Service directive:

• match-browser

• remove-filter

• sed-param-name

• sed-param-value

• set-variable

5.9.1 proxy-retrieve
The proxy-retrieve function retrieves a document from a remote server and returns it
to the client. This function also enables you to configure Oracle Traffic Director to allow
or block arbitrary methods. This function only works on the HTTP protocol.

Table 5-41 describes the parameters for the proxy-retrieve function.

Chapter 5
Service

5-38

Table 5-41 proxy-retrieve Parameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of MIME types for which this function is
executed. See Service.

method (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of HTTP methods for which this function is
executed. See Service.

query (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of query strings for which this function is
executed. See Service.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines
the default output stream buffer size (in bytes), for data sent to
the client. See Service.

flushTimer (Optional) Common to all Service-class functions. Determines
the maximum number of milliseconds between write operations in
which buffering is enabled. See Service.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines
the default buffer size, in bytes, for unchunking request data. See
Service.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines
the default timeout, in seconds, for unchunking request data. See
Service.

Example

Normal proxy retrieve
Service fn="proxy-retrieve"
Proxy retrieve with POST method disabled
Service fn="proxy-retrieve"
 method="(POST)"

Related Topics

• set-origin-server

• set-proxy-server

5.9.2 remove-filter
The remove-filter function is used to remove a filter from the filter stack. If the filter is
inserted multiple times, only the topmost instance is removed. In general, it is not
necessary to remove filters with remove-filter, as they are removed automatically at
the end of a request.

The following table describes parameters for the remove-filter function.

Chapter 5
Service

5-39

Table 5-42 remove-filter Parameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies
a wildcard pattern of MIME types for which this function is
executed. See Service.

method (Optional) Common to all Service-class functions. Specifies
a wildcard pattern of HTTP methods for which this function
is executed. See Service.

query (Optional) Common to all Service-class functions. Specifies
a wildcard pattern of query strings for which this function is
executed. See Service.

UseOutputStreamSize (Optional) Common to all Service-class functions.
Determines the default output stream buffer size (in bytes),
for data sent to the client. See Service.

flushTimer (Optional) Common to all Service-class functions.
Determines the maximum number of milliseconds between
write operations in which buffering is enabled. See Service.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions.
Determines the default buffer size, in bytes, for un-chunking
request data. See Service.

ChunkedRequestTimeout (Optional) Common to all Service-class functions.
Determines the default timeout, in seconds, for un-chunking
request data. See Service.

Example

Service fn="remove-filter"

5.9.3 service-proxy-cache-dump
The service-proxy-cache-dump function dumps the current reverse proxy caching
statistics.

Table 5-43 describes the parameters for the service-proxy-cache-dump function.

Table 5-43 service-proxy-cache-dump Parameters

Parameter Description

list Lists the objects in the cache.

The cache listing includes the URI, a set of flags, the current
number of references to the cache entry and the size of the entry.

refresh=n Setting this parameter to a value n causes the client to reload the
page every n seconds.

restart Stops and restarts the cache.

start Starts the cache.

stop Stops the cache.

Chapter 5
Service

5-40

Example

<Object name="default"
NameTrans fn=assign-name name="proxy-cache" from="/.proxycache"
</Object>
<Object name="proxy-cache">
 Service fn="service-proxy-cache-dump"
</Object>

Related Topics

• proxy-cache-config

Related Topics

• proxy-cache-override-http

5.9.4 service-trace
The service-trace function services TRACE requests. TRACE requests are used to
diagnose problems with web proxy servers located between a web client and web
server.

Table 5-44 describes the parameters for the service-trace function.

Table 5-44 service-trace Parameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of MIME types for which this function is
executed. See Service.

method (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of HTTP methods for which this function is
executed. See Service.

query (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of query strings for which this function is
executed. See Service.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines
the default output stream buffer size (in bytes), for data sent to
the client. See Service.

flushTimer (Optional) Common to all Service-class functions. Determines
the maximum number of milliseconds between write operations in
which buffering is enabled. See Service.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines
the default buffer size, in bytes, for unchunking request data. See
Service.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines
the default timeout, in seconds, for unchunking request data. See
Service.

Example

<Object name="default">
...
Service method="TRACE" fn="service-trace"

Chapter 5
Service

5-41

...
</Object>

5.9.5 stats-xml
The stats-xml function creates a performance report in XML format. If performance
buckets are defined, this performance report includes them.

The report is generated at:

http://server_id:portURI

For example:

http://example.com:80/stats-xml

The following table describes parameters for the stats-xml function.

Table 5-45 stats-xml Parameters

Parameter Description

type (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of MIME types for which this function is
executed. See Service.

method (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of HTTP methods for which this function is
executed. See Service.

query (Optional) Common to all Service-class functions. Specifies a
wildcard pattern of query strings for which this function is
executed. See Service.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines
the default output stream buffer size (in bytes), for data sent to
the client. See Service.

flushTimer (Optional) Common to all Service-class functions. Determines
the maximum number of milliseconds between write operations in
which buffering is enabled. See Service.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines
the default buffer size, in bytes, for unchunking request data. See
Service.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines
the default timeout, in seconds, for unchunking request data. See
Service.

Example

<Object name="default">
<If uri = "/stats-xml/*">
Service fn="stats-xml"
</If>
...
</Object>

Chapter 5
Service

5-42

5.10 AddLog
The AddLog directives are executed to record information about the transaction. For
more information, see AddLog.

The following AddLog-class function is described in detail in this section:

• flex-log

In addition, the following common SAFs are valid for the AddLog directive:

• match-browser

• sed-param-name

• sed-param-value

• set-variable

5.10.1 flex-log
The flex-log function records request-specific data in a flexible log format. It can also
record requests in the common log format. A log analyzer, flexanlg, exists in the /bin
directory for Web Server. There are also a number of free statistics generators for the
common log format.

Specify the log format using the format subelement of the access-log element in
server.xml. See access-log. For more information about the log format, see Using the
Custom Access-Log File Format.

Table 5-46 describes the parameters for the flex-log function.

Table 5-46 flex-log Parameters

Parameter Description

name (Optional) Specifies the name of a log file. The name must previously been
defined by an access-log element in server.xml. If no name is given, the entry
is recorded in the default log file.

iponly (Optional) Instructs Oracle Traffic Director to log the IP address of the remote
client rather than looking up and logging the DNS name. This improves
performance if DNS is turned off. The value of iponly has no significance, as
long as it exists; you can use iponly=1.

Example

Log all accesses to the default log file
AddLog fn="flex-log"
Log accesses from outside our subnet (198.93.5.*) to
nonlocallog
<Client ip="*~198.93.5.*">
AddLog fn="flex-log" name="nonlocallog"
</Client>

Chapter 5
AddLog

5-43

5.11 Error
If an SAF results in an error, Oracle Traffic Director stops executing all other directives
and immediately starts executing the Error directives. See Error.

The following Error-class functions are described in detail in this section:

• qos-error

• send-error

In addition, the following common SAFs are valid for the Error directive:

• match-browser

• redirect

• remove-filter

• restart

• sed-param-name

• sed-param-value

• set-variable

5.11.1 qos-error
The qos-error function returns an error page stating the quality of service that caused
the error and the value of the QoS statistic.

Table 5-47 describes the parameters for the qos-error function.

Table 5-47 qos-error Parameters

Parameter Description

code (Optional) Three-digit number representing the HTTP response status code, such
as 401 or 407. The recommended value is 503.

This can be any HTTP response status code or reason phrase according to the
HTTP specification.

A list of common HTTP response status codes and reason strings is as follows:

• 401 Unauthorized

• 403 Forbidden

• 404 Not Found

• 500 Server Error

Example

Error fn="qos-error" code="503"

Related Topics

• qos-handler

Chapter 5
Error

5-44

5.11.2 send-error
The send-error function sends an HTML file to the client in place of a specific HTTP
response status. This allows the server to present a message describing the problem.
The HTML page may contain images and links to the server's home page or other
pages.

Table 5-48 describes the parameters for the send-error function.

Table 5-48 send-error Parameters

Parameter Description

path Specifies the absolute path of an HTML file to send to the client. If the file does
not exist or is not accessible, the server returns a 404 or 403 error page. The
file is sent as text/html regardless of its name or actual type.

code (Optional) Three-digit number representing the HTTP response status code,
such as 401 or 407.

This can be any HTTP response status code or reason phrase according to the
HTTP specification.

A list of common HTTP response status codes and reason strings is as follows:

• 401 Unauthorized

• 403 Forbidden

• 404 Not Found

• 500 Server Error

type (Optional) Common to all Service-class functions. Specifies a wildcard pattern
of MIME types for which this function will be executed. See Service.

method (Optional) Common to all Service-class functions. Specifies a wildcard pattern
of HTTP methods for which this function will be executed. See Service.

query (Optional) Common to all Service-class functions. Specifies a wildcard pattern
of query strings for which this function will be executed. See Service.

bucket (Optional) Common to all obj.conf functions. Adds a bucket to monitor
performance. See The bucket Parameter.

Example

Error fn="send-error" code="401" path="/opt/oracle/webserver7/docs/errors/401.html"

5.12 Common SAFs
This section lists SAFs that are common to multiple directives.

Table 5-49 Common SAFs

Server Application Functions Directives

insert-filter • Input
• Output

Chapter 5
Common SAFs

5-45

Table 5-49 (Cont.) Common SAFs

Server Application Functions Directives

match-browser • AuthTrans
• NameTrans
• PathCheck
• ObjectType
• Input
• Output
• Route
• Service
• AddLog
• Error

redirect • NameTrans
• Output
• Error

remove-filter • Input
• Output
• Service
• Error

restart • NameTrans

sed-param-name • AuthTrans
• NameTrans
• PathCheck
• ObjectType
• Input
• Output
• Route
• Service
• AddLog
• Error

sed-param-value • AuthTrans
• NameTrans
• PathCheck
• ObjectType
• Input
• Output
• Route
• Service
• AddLog
• Error

Chapter 5
Common SAFs

5-46

Table 5-49 (Cont.) Common SAFs

Server Application Functions Directives

set-variable • AuthTrans
• NameTrans
• PathCheck
• ObjectType
• Input
• Output
• Route
• Service
• AddLog
• Error

5.12.1 insert-filter
The insert-filter SAF is used to add a filter to the filter stack to process incoming
(client to server) data. The order of Input fn="insert-filter" and Output fn="insert-
filter" directives is important.

Returns

Returns REQ_PROCEED if the specified filter was inserted successfully or REQ_NOACTION if
the specified filter was not inserted because it was not required. Any other return value
indicates an error.

Parameters

The following table describes parameters for the insert-filter function.

Table 5-50 insert-filter Parameters

Parameter Description

filter Specifies the name of the filter to insert. For more information about predefined
filters, see Input and Output.

type (Optional) Common to all Input-class and Output-class functions. Specifies a
wildcard pattern of MIME types for which this function is executed.

method (Optional) Common to all Input-class and Output-class functions. Specifies a
wildcard pattern of HTTP methods for which this function is executed. Common
HTTP methods are GET, HEAD, and POST.

query (Optional) Common to all Input-class and Output-class functions. Specifies a
wildcard pattern of query strings for which this function is executed.

Example

Input fn="insert-filter" filter="http-decompression"

This directive instructs the insert-filter function to add a custom filter, that is, http-
decompression to the filter stack. The http-decompression filter will decompress the
incoming HTTP request data before it goes to the service stage. See Input and Output.

Chapter 5
Common SAFs

5-47

5.12.2 match-browser
The match-browser function matches specific strings in the User-Agent string supplied
by the browser. It then modifies the behavior of Oracle Traffic Director based on the
results by setting values for specified variables. This function is applicable in all
directives.

Syntax

stage fn="match-browser" browser="string" name="value" [name="value" ...]

Parameters

The following table describes parameter values for the match-browser function.

Table 5-51 match-browser Parameters

Value Description

stage Stage directive used in obj.conf processing. The match-browser function is
applicable in all stage directives.

string Wildcard pattern to compare with the User-Agent header (for example, "*Mozilla*").

name Variable to be changed. The match-browser function indirectly invokes the set-
variable function.

value New value for the specified variable.

Example

AuthTrans fn="match-browser"
 browser="*[Bb]roken*"
 ssl-unclean-shutdown="true"
 keep-alive="disabled"
 http-downgrade="1.0"

If a browser's User-Agent header contains the string Broken or broken, the above
AuthTrans directive instructs Oracle Traffic Director to do the following:

• Not send the SSL3 and TLS close_notify packet

• Not honor requests for HTTP Keep-Alive

• Use the HTTP/1.0 protocol rather than HTTP/1.1

For more information on the variables used in this example, such as ssl-unclean-
shutdown, see set-variable.

Related Topics

• set-variable

5.12.3 redirect
The redirect function lets you change URLs and send the updated URL to the client.
When a client accesses your server with an old path, Oracle Traffic Director treats the
request as a request for the new URL.

Chapter 5
Common SAFs

5-48

The redirect function inspects the URL to which the client will be redirected. If the
URL matches the URL the client has requested (same scheme, hostname, port, and
path), this function does not perform the redirect and instead returns REQ_NOACTION.

Table 5-52 describes the parameters for the redirect function.

Table 5-52 redirect Parameters

Parameter Description

from (Optional) Specifies the prefix of the requested URI to match. If from is not
specified, it defaults to "".

url (Optional) Specifies a complete URL to return to the client. If you use this
parameter, do not use url-prefix.

url-prefix (Optional) The new URL prefix to return to the client. The from prefix is
replaced by this URL prefix. If you use this parameter, do not use url.

escape (Optional) Indicates whether the value of the url or url-prefix parameter
must be escaped. The default is yes, indicating that Oracle Traffic Director will
escape the value. The value no indicates that the URL or URL prefix value has
already been escaped. An example of an escaped value is one where any %
characters have been replaced with %25 and any spaces have been replaced
with %20.

status (Optional) Customizes the HTTP status code. If status is not specified, it
defaults to 302.

type (Optional) Common to all Output-class functions. Specifies a wildcard pattern
of MIME types for which this function is executed.

method (Optional) Common to all Output-class functions. Specifies a wildcard pattern
of HTTP methods for which this function is executed. Common HTTP methods
are GET, HEAD, and POST.

query (Optional) Common to all Output-class functions. Specifies a wildcard pattern
of query strings for which this function is executed.

Example

In the first example, any request for http://server-name/whatever is translated to a
request for http://tmpserver/whatever.

NameTrans fn="redirect" from="/" url-prefix="http://tmpserver/"

In the second example, any request for http://server-name/toopopular/whatever is
translated to a request for http://bigger/better/stronger/morepopular/.

NameTrans fn="redirect" from="/toopopular"
 url="http://bigger/better/stronger/morepopular"

5.12.4 remove-filter
The remove-filter SAF is used to remove a filter from the filter stack. If the filter is
inserted multiple times, only the topmost instance is removed. In general, it is not
necessary to remove filters with remove-filter, as they are removed automatically at
the end of a request.

Chapter 5
Common SAFs

5-49

Returns

Returns REQ_PROCEED if the specified filter was removed successfully, or REQ_NOACTION if
the specified filter was not part of the filter stack. Any other return value indicates an
error.

Parameters

The following table describes parameters for the remove-filter function.

Table 5-53 remove-filter Parameters

Parameter Description

filter Specifies the name of the filter to remove.

type (Optional) Common to all Input-class, Output-class, and
Service-class functions. Specifies a wildcard pattern of MIME
types for which this function is executed. The magnus-internal/*
MIME types are used only to select a Service function to
execute.

method (Optional) Common to all Input-class, Output-class, and
Service-class functions. Specifies a wildcard pattern of HTTP
methods for which this function is executed. Common HTTP
methods are GET, HEAD, and POST.

query (Optional) Common to all Input-class, Output-class, and
Service-class functions. Specifies a wildcard pattern of query
strings for which this function is executed.

UseOutputStreamSize (Optional) Common to all Service-class functions. Determines
the default output stream buffer size (in bytes), for data sent to
the client. See Service.

flushTimer (Optional) Common to all Service-class functions. Determines
the maximum number of milliseconds between write operations in
which buffering is enabled. See Service.

ChunkedRequestBufferSize (Optional) Common to all Service-class functions. Determines
the default buffer size, in bytes, for unchunking request data. See
Service.

ChunkedRequestTimeout (Optional) Common to all Service-class functions. Determines
the default timeout, in seconds, for unchunking request data. See
Service.

5.12.4.1 Example
Input fn="remove-filter" filter="http-compression"

5.12.5 restart
The restart function allows URL rewriting within Oracle Traffic Director without
sending an HTTP redirect to the client. The restart function replaces the uri and query
values in rq->reqpb with the URI and query string specified by the uri parameter and
restarts the request by returning REQ_RESTART.

If the uri parameter contains a ? character, the value following ? is used as the query
string. Otherwise, the restarted request will not have a query string. Because the new

Chapter 5
Common SAFs

5-50

request URI will be passed through the AuthTrans and NameTrans stages again, avoid
creating infinite loops.

The following table describes parameters for the restart function.

Table 5-54 restart Parameters

Parameter Description

from (Optional) Wildcard pattern that specifies the path of requests that should be
restarted. The default is to match all paths.

uri URI and query string to use for the restarted request.

Example

The following obj.conf code directs Oracle Traffic Director to service requests for /
index.html as though they were requests for /index.jsp:

NameTrans fn="restart" from="/index.html" uri="/index.jsp"

Related Topics

• rewrite

5.12.6 rewrite-cookie
The rewrite-cookie function allows modification of cookie/s returned by the back end
server.

The following table describes parameters for the rewrite-cookie function.

Table 5-55 restart Parameters

Parameter Type Description

name Boolean It specifies a response cookie name

secure Boolean It specifies, if a "secure" attribute needs to be added/dropped
from the response cookie specified by "name".

httponly Boolean It specifies, if a "HttpOnly" parameter need to be added/dropped
from the response cookie specified by "name".

passthrough Boolean It specifies, if the "path" attribute of the response cookie specified
by "name" need to be rewritten or not.

5.12.7 sed-param-name
The sed-param-name function modifies a specified pblock parameter name based on a
given sed expression.

The following table describes parameters for the sed-param-name function.

Chapter 5
Common SAFs

5-51

Table 5-56 sed-param-name Parameters

Parameter Description

name It specifies a parameter name

sed It specifies sed expression value for the specified variable.

pblock It specifies the pblock name.

Example

To convert "Content-length: 123" to "Content-Length: 123" NameTrans fn="sed-param-
name" pblock="headers" name="content-length" sed="s/-length/-Length/g"

5.12.8 sed-param-value
The sed-param-value function modifies a specified pblock parameter value based on a
given sed expression.

The following table describes parameters for the sed-param-value function.

Table 5-57 sed-param-value Parameters

Parameter Description

name It specifies the parameter name whose value will be modifed

sed It specifies sed expression value for the specified variable.

pblock It specifies the pblock name.

Example

Rewrite an arbitrary pblock parameter value (corresponding to a specified name)
NameTrans fn="sed-param-value" pblock="reqpb" name="uri" sed="s/test/plan/g"

5.12.9 sed-response-header
The sed-response-header rewrites a response header and it needs two parameters,
"name" and "sed".

Returns

Returns REQ_ABORTED if there is an error or REQ_NOACTION if the specified filter
was not inserted because it was not required.

Parameters

The following table describes parameter values for the sed-response-header function.

Table 5-58 sed-response-header Parameters

Value Description

name Header name for the specified variable.

Chapter 5
Common SAFs

5-52

Table 5-58 (Cont.) sed-response-header Parameters

Value Description

sed sed expression value for the specified variable.

Example

Rewrite the value of a specified response header Output fn="sed-response-header"
name="server" sed="s/backend/frontend/g".

5.12.10 set-priority
The set-priority function sets the priority (HIGH, NORMAL, or LOW) for other SAFs
and filters (such as check-req-limit, set-origin-server, and bandwidth filters) that are
called after it.

If set-priority is not used, requests are executed with the default NORMAL priority.

The priority value is stored as an ordinal in rq->vars with HIGH stored as 2, NORMAL
as 1, and LOW as 0.

The access-log format can be modified to include the priority - for example, %Req-
>vars.priority%.

The following table describes parameters for the set-priority function.

Table 5-59 restart Parameters

Value Description

priority Supported priority values are:

• "HIGH" - the request has higher chance of getting processed before LOW and
NORMAL priority requests

• "NORMAL" - the request has higher chance of getting processed before LOW
priority requests

• "LOW" - the request has lower chance of getting processed before HIGH and
NORMAL priority requests

The priority values are case sensitive.

uri URI and query string to use for the restarted request.

Example

The following obj.conf code sets the priority for requests based on the value of a URI -
setting it to HIGH for '/index.html' and LOW for 'foo.html'.:

<Object name="default">AuthTrans fn="match-browser" browser="*MSIE*" ssl-unclean-
shutdown="true"

<If $uri eq '/index.html'>AuthTrans fn="set-priority" priority="HIGH"</If>

<If $uri eq '/foo.html'>AuthTrans fn="set-priority" priority="LOW"</If>
......Service fn="proxy-retrieve" method="*"AddLog fn="flex-log"</Object>

Chapter 5
Common SAFs

5-53

5.12.11 set-variable
The set-variable function enables you to change Oracle Traffic Director settings
based upon conditional information in a request. This function is applicable in all
directives.

It can also be used to manipulate variables in parameter blocks with the following
commands:

• insert-pblock="name=value"

Adds a new value to the specified pblock.

• set-pblock="name=value"

Sets a new value in the specified pblock, replacing any existing values with the
same name.

• remove-pblock="name"

Removes all values with the given name from the specified pblock.

The set-variable function recognizes many predefined variables as parameters.
Additionally, when a set-variable parameter name begins with $ but is not the name of
a predefined variable, the parameter and its value are stored in the rq->vars pblock.
This functionality allows you to define or override the $variable values at the request
time.

set-variable accepts both the $variable and ${variable} forms, but the name of the
parameter stored in the rq->vars pblock is always in the $variable form.

Syntax

stage fn="set-variable" [{insert|set|remove}-pblock="name=value" ...]
[name="value" ...]

Parameters

The following table describes parameter values for the set-variable function.

Chapter 5
Common SAFs

5-54

Table 5-60 set-variable Parameters

Value Description

pblock Specifies one of the following session or request parameter block names:

• client: Contains the IP address of the client machine and the DNS name of
the remote machine.

• vars: Contains the server's working variables, which includes anything not
specifically found in the reqpb, headers, or srvhdrs pblocks. The contents of
this pblock differ, depending on the specific request and the type of SAF.

• reqpb: Contains elements of the HTTP request, which includes the HTTP
method such as GET or POST, the URI, the protocol (generally HTTP/1.0),
and the query string. This pblock does not change during the request-
response process.

• headers: Contains all the request headers (such as User-Agent, If-
Modified-Since, and so on) received from the client in the HTTP request.
This pblock does not change during the request-response process.

• srvhdrs: Contains the response headers (such as Server, Date, Content-
Type, Content-length, and so on) that are to be sent to the client in the HTTP
response.

name The variable to set.

value The string assigned to the variable specified by name.

Variables

The following tables lists variables supported by the set-variable SAF.

Table 5-61 Supported Variables

Variable Description

abort A value of true indicates that the result code should be set to
REQ_ABORTED. Setting the result code to REQ_ABORTED will abort the
current request and send an error to the browser. For information about
result codes, see Administering Oracle Traffic Director.

error Sets the HTTP status code and exits the request by returning
REQ_ABORTED. To set the HTTP status code without exiting the request,
use the set-variable error parameter along with the noaction parameter.
To rewrite an HTTP status code, use a Client tag to match the original
status code and an Output directive to set the new status code.

For example, the following code will rewrite all 302 Moved Temporarily
responses to 301 Moved Permanently responses:

<Client code="302">
Output fn="set-variable" error="301 Moved Permanently"
 noaction="true"
</Client>

Sets the error code to be returned in the event of an aborted browser
request.

escape A Boolean value signifying whether a URL should be escaped using
util_uri_escape.

See Administering Oracle Traffic Director.

Chapter 5
Common SAFs

5-55

Table 5-61 (Cont.) Supported Variables

Variable Description

find-pathinfo-
forward

Path information after the file name in a URI.

http-downgrade HTTP version number (for example, 1.0).

http-upgrade HTTP version number (for example, 1.0).

keep-alive A Boolean value that establishes whether a keep-alive request from a
browser will be honored.

name Specifies an additional named object in the obj.conf file whose
directives will be applied to this request. See also assign-name.

noaction A value of true indicates the result code should be set to REQ_NOACTION.
For AuthTrans, NameTrans, Service, and Error stage SAFs, setting the
result code to REQ_NOACTION indicates that subsequent SAFs in that
stage should be allowed to execute. For information about result codes,
see Administering Oracle Traffic Director.

nostat Causes the server not to perform the stat() function for a URL when
possible. See also assign-name.

senthdrs A Boolean value that indicates whether HTTP response headers have
been sent to the client.

ssl-unclean-
shutdown

A Boolean value that can be used to alter the way SSL3 connections are
closed.

Caution: As this violates the SSL3 RFCs, you should only use this with
great caution if you know that you are experiencing problems with SSL3
shutdowns.

stop A value of true indicates the result code should be set to REQ_PROCEED.
For AuthTrans, NameTrans, Service, and Error stage SAFs, setting the
result code to REQ_PROCEED indicates that no further SAFs in that stage
should be allowed to execute.

url Redirect requests to a specified URL.

Examples

• To deny HTTP keep-alive requests for a specific server class (while still honoring
keep-alive requests for the other classes), add this AuthTrans directive to the
obj.conf for the server class, and set the variable keep-alive to disabled:

AuthTrans fn="set-variable" keep-alive="disabled"

• To set the same server class to use HTTP/1.0 while the rest of Oracle Traffic
Director classes use HTTP/1.1, the AuthTrans directive is:

AuthTrans fn="set-variable" keep-alive="disabled" http-downgrade="1.0"

• To insert an HTTP header into each response, add a NameTrans directive to
obj.conf using the insert-pblock command and specify srvhdrs as your Session or
Request parameter block.

For example, to insert the HTTP header P3P, add the following line to each
request:

NameTrans fn="set-variable" insert-srvhdrs="P3P"

Chapter 5
Common SAFs

5-56

• To terminate processing a request based on certain URIs, use a Client tag to
specify the URIs and an AuthTrans directive that sets the variable abort to true
when there is a match. Your Client tag would be as follows:

<Client uri="*(system32|root.exe)*">
AuthTrans fn="set-variable" abort="true"
</Client>

• To use predefined variables so that Oracle Traffic Director rewrites redirects to
host badname as redirects to host goodname:

<If $srvhdrs{'location'} =~ "^(http|https)://badname/(.*)$"
Output fn="set-variable" $srvhdrs{'location'}="$1://goodname/$2"
</If>

• To set a $variable value at request time:

<If "$time_hour:$time_min" < "8:30" || "$time_hour:$time_min" > "17:00">
AuthTrans fn="set-variable" $docroot="/var/www/docs/closed"
</If>
...
NameTrans fn="document-root" root="$docroot"

Regardless of whether the $docroot variable has been defined in server.xml, its
value is set to /var/www/docs/closed when Oracle Traffic Director is accessed after
5:00 p.m. and before 8:00 a.m. local time.

Related Topics

• match-browser

Chapter 5
Common SAFs

5-57

A
Using Variables, Expressions, Wildcards,
and String Interpolation

The regular expressions that you specify in this field define various conditions under
which the server processes a client request. These regular expressions define the If
conditions in the obj.conf file of the Oracle Traffic Director configuration and determine
how a set of directives will be processed.

For example, if you specify the condition $uri = "/images/*" in the Route Settings of
route_1, the following If tag will be defined in the obj.conf file of the configuration.

<If $uri = "/images/*">
NameTrans fn="assign-name" id="route_1" name="route_1"
</If>

This appendix contains the following topics:

• If, ElseIf, and Else Tags

• Variables

• Expressions

• String Interpolation

• Wildcard Patterns

Related Topics

• variable

A.1 If, ElseIf, and Else Tags
The If, ElseIf, and Else tags enable you to define the conditions under which a set of
directives will be executed. These tags can only appear inside an Object tag. In
addition, these tags can evaluate an expression, then conditionally execute one or
more contained directives. The usage of these tags is summarized below:

• If and ElseIf tags offer a richer expression syntax, including support for regular
expressions. For more information about the If and ElseIf expression syntax, see
Expressions.

• If, ElseIf, and Else tags can contain other tags.

• If and ElseIf expressions are evaluated once per request, not once per contained
directive.

• If, ElseIf, and Else tags cannot contain multiple types of directives.

• Directives within the If and ElseIf tags can contain regular expression
backreferences.

When used, an ElseIf or Else tag must immediately follow an If or ElseIf tag. ElseIf
and Else tags are skipped if the preceding If or ElseIf expression evaluates to logical
true.

A-1

The following example shows If, ElseIf, and Else tag syntax:

<If $path eq "/">
<If $browser =~ "MSIE">
NameTrans fn="rewrite" path="/msie.html"
</If>
<ElseIf $browser =~ "Mozilla">
NameTrans fn="rewrite" path="/mozilla.html"
</ElseIf>
<Else>
NameTrans fn="rewrite" path="/unknown.html"
</Else>
</If>

This example displays a different page based on whether the browser is Microsoft
Internet Explorer, Mozilla Firefox, or another browser.

A.2 Variables
The Oracle® Fusion Middleware includes a set of variables predefined by the server,
and the capability for you to define custom variables. This section includes the
following topics:

• Predefined Variables

• Custom Variables

• Resolving Variables

A.2.1 Predefined Variables
Predefined variables are implicitly defined by the server. The following table lists the
predefined variables and their descriptions:

Variable Description

$n Regular expression backreference (value of the nth capturing
subpattern, n = 1...9), for example, $1.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions.

$& Value that matched a regular expression.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions.

$n Regular expression backreference (value of the nth capturing
subpattern, n = 1...9), for example, $1.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions.

$& Value that matched a regular expression.

Regular expression backreferences are only available within the body
of If and ElseIf containers, and only if the container expressions
includes one or more regular expressions.

Appendix A
Variables

A-2

Variable Description

$body Contains the entity-body (if any) of the current HTTP request that OTD
receives from the client (browser). The size of the data stored in this
variable is configured using the body-buffer-size sub-element of the
http element in server.xml.

$browser Web browser version (alias for $headers{'user-agent'} if the client
sent a User-Agent header or an empty string).

$chunked Boolean variable that indicates whether the request body was sent
using chunked encoding.

$code Response status code.

$cookie{'name'} Value of the cookie name from the request.

$dns Alias for $client{'dns'}.

$env{'name'} Value of the environment variable name (includes CGI/SHTML
environment variables).

$headers{'name'} Value of name from rq->headers, that is, value of the request header
name where name is a lowercase string.

$id Virtual server ID as specified by the name subelement of the virtual-
server element in the server.xml file.

$internal Boolean value that indicates whether request was internally generated.

$ip Alias for $client{'ip'}.

$keep_alive Boolean value that indicates whether the connection is kept open.

$keysize Alias for $client{'keysize'}.

$method Request method (alias for $reqpb{'method'}).

$path Requested path (either URI, partial path, or file system path depending
on stage).

The predefined variable path is the value of path from rq->vars. If
path is not set in rq->vars (for example, if NameTrans has not
completed), path gets the value of ppath from rq->vars.

$path_info Alias for $vars{'path-info'}.

$ppath Alias for $vars{'ppath'}.

$protocol Request protocol (alias for $reqpb{'protocol'}).

$query Request query string (alias for $reqpb{'query'}).

$reason Response reason phrase.

$referer Alias for $headers{'referer'}.

$reqpb{'name'} Value of name from rq->reqpb.

$restarted Boolean value that indicates whether the request was restarted.

$secret_keysize Alias for $client{'secret-keysize'}.

$server_url Prefix for self-referencing URLs.

$time Time the request was received as the number of seconds since
00:00:00 UTC, January 1, 2006.

$time_day Day of the month when the request was received. Value can be from 01
to 31.

$time_hour Hours since midnight when the request was received. Value can be
from 00 to 23.

Appendix A
Variables

A-3

Variable Description

$time_min Minutes after the hour when the request was received. Value can be
from 00 to 59.

$time_mon Month of the year when the request was received. Value can be from
01 to 12.

$time_sec Seconds after the minute when the request was received. Value can be
from 00 to 61.

$time_wday Day of the week when the request was received. Value can be from 0
to 6, where 0 corresponds to Sunday.

$time_year Four-digit year when the request was received.

$type Alias for $srvhdrs{'content-type'}.

$uri URI of the requested resource (alias for $reqpb{'uri'}).

$url URL of the requested resource.

$urlhost Host name to which the client connected.

$vars{'name'} Value of name from rq->vars.

$security Boolean value that indicates if a secure transport was used.

$senthdrs Boolean value that indicates if a response headers were been sent.

$srvhdrs{'name'} Value of name from rq->srvhdrs, that is, value of response header
name where name is a lowercase string.

A.2.2 Custom Variables
You can define custom variables in the server.xml file using the variables element.
These variables can then be used in function parameters in obj.conf functions. You
can also define variables at request time using the set-variables function in the
obj.conf file.

Note:

The predefined variables take precedence over custom variables. It is a best
practice to use uppercase names for custom variables. Using uppercase
avoids conflicts with the lowercase predefined variables, if the list of
predefined variables is extended in the future.

A.2.3 Resolving Variables
The server uses the following order when resolving a $variable:

1. Predefined variables

2. Variables defined at request time using set-variable in obj.conf

3. Variables defined by the virtual-server element's variable subelement in
server.xml

4. Variables defined by the server element's variable subelement in server.xml

Appendix A
Variables

A-4

When you define a $variable at request time, it is stored as a name-value pair in the
rq->vars pblock. These variables are given a higher precedence than server.xml
variables so that server.xml variables can be overridden at request time.

A.3 Expressions
Expressions enable you to dynamically construct server application function (SAF)
parameters and to select which SAFs to execute on a request-by-request basis.
Expressions are constructed from literals, variables, functions, and operators. Use
expressions in If and ElseIf tags, in log format strings, and SAF parameters.

This section contains the following topics:

• Expression Syntax

• Expression Results as Boolean Values

• Expression Literals

• Expression Variables

• Expression Operators

• Expression Functions

• Regular Expressions

A.3.1 Expression Syntax
The expression syntax is similar to the syntax used in Perl. Expressions are
constructed from literals, variables, functions, and operators.

The following example illustrates how to use expressions in an If tag:

<If not $internal
 and $uri =~ "^/private/(.*)$"
 and $referer !~ "^https?://example.com/">
NameTrans fn="redirect"
 url="http://example.com/denied.jsp?file=$1"
</If>

This example expression checks to see if a request meets certain criteria, for example
if it is an internal request. If it does not meet the criteria, the server redirects the
request to a request denied URL.

The expression contains the following components:

• Literals - "^/private/(.*)$" and "^https?://example.com/"

• Variables - $internal, $uri, and $referer

• Operators - not, and, =~, and !~

For more information about If and ElseIf tags, see If, ElseIf, and Else Tags.

A.3.2 Expression Results as Boolean Values
In some circumstances, for example, after evaluating an If or ElseIf expression, the
server must treat the result of an expression as a Boolean value. The server uses the
following rules when converting a numeric value to a Boolean value:

Appendix A
Expressions

A-5

• Zero evaluates to false.

• All other numeric values evaluate to true.

The server uses the following rules when converting a string to a Boolean value:

• Zero-length strings evaluate to false.

• The string 0 (zero) evaluates to false.

• All other strings evaluate to true.

A.3.3 Expression Literals
Expression literals are divided into string and numeric literals.

A.3.3.1 String Literals
A string literal is enclosed by either single quotation marks (') or double quotation
marks ("). When single quotation marks enclose a string literal, the value of the literal
is the value within the quotation marks. When double quotation marks are used, any
references to variables or expressions within the quotation marks are interpolated. For
more information, see String Interpolation.

The following expression examples show the use of single and double quotation
marks.

This expression evaluates to true.
('foo' eq "foo")

This expression evaluates to false.
('foo' eq "bar")

This expression evaluates to true.
('foo' eq "f$(lc('O'))o")

This expression may evaluate to true or false,
depending on the value of the variable $foo
('$foo' eq "$foo")

To include an uninterpolated dollar sign $ in a string enclosed in a double quotation
marks, use the two dollar sign or a backslash dollar sign $$ or \$ escape sequences.

When a double quotation marks appears within a literal enclosed by double quotation
marks, it must be prefixed with a backslash. When a single backslash (\) appears
within a literal bracketed by double quotes, it must be prefixed with a backslash. When
a single quote character appears within a literal bracketed by single quotes, it must be
prefixed with a backslash.

The following examples show valid and invalid literals:

The following are examples of valid literals
'this string literal is bracketed by single quotes'
"this string literal is bracketed by double quotes"
"the backslash, \\, escapes characters in double quote string literals"
'it\'s easy to use strings literals'

The following are examples of invalid literals
'it's important to escape quote characters'
"any \ characters in double quote string literals must be escaped"

Appendix A
Expressions

A-6

A.3.3.2 Numeric Literals
A numeric literal can consist of decimal digits and an optional decimal point, a leading
zero followed by octal digits, or a leading 0x prefix followed by hexadecimal digits.
Hexadecimal and octal numbers are automatically converted to decimal form.

The following examples show expressions that use numeric literals:

The following expressions evaluate to true
(1 < 2)
(0x10 == "16")
(1 == 1.00)

The following expressions evaluate to false
(1 > 2)
("0x10" == 16)
(1 != 1.00)

A.3.4 Expression Variables
Any $variable can be used as a variable in an expression. To mirror the Client tag
syntax, the dollar sign $ prefix is optional for predefined variable names in expressions.
For example, the following three portions of the obj.conf file are semantically
equivalent:

<If $uri = "*.html">
...
</If>

<If uri = "*.html">
...
</If>

<Client uri = "*.html">
...
</Client>

Any variable names you define must use the $ prefix. For example, the following
expression is invalid even if somecustomvariable is defined in a server.xml variable
element:

<If somecustomvariable = "foo">
...
</If>

To make this expression valid, add the dollar sign prefix:

<If $somecustomvariable = "foo">
...
</If>

A.3.5 Expression Operators
The following table lists the operators that are used in expressions.

Appendix A
Expressions

A-7

Operator Symbol Operator Name

! C-style logical not

= Wildcard pattern match

=~ Regular expression match

!~ Regular expression mismatch

+ Addition or unary plus

- Subtraction or unary minus

. String concatenation

defined Value is defined

-d Directory exists

-e File or directory exists

-f File exists

-l Symbolic link exists

-r File is readable

-s File size

-U URI maps to accessible file or directory

< Numeric less than

<= Numeric less than or equal to

> Numeric greater than

>= Numeric greater than or equal to

lt String less than

le String less than or equal to

gt String greater than

ge String greater than or equal to

== Numeric equal

!= Numeric not equal

eq String equal

ne String not equal

^ C-style exclusive or

&& C-style logical and

|| C-style logical or

not Logical not

and Logical and

or Logical or

xor Logical exclusive or

The following table lists the precedence of operators within expressions from highest
to lowest precedence.

Appendix A
Expressions

A-8

Symbol Operands Associativity Description

(), [] 0 Left to right Parentheses

!, unary +, unary - 1 Right to left Sign operators

=, =~, !~ 2 Non-associative Pattern matching
operators

+, -, . 2 Non-associative Additive operators

defined, -d, -f, -l, -
r, -s, -U

1 Right to left Named operators

<, lt, <=, le, >, gt, >=,
ge

2 Non-associative Relational operators

==, eq, !=, ne 2 Non-associative Equality operators

^ 2 Left to right C-style exclusive or
operator

&& 2 Left to right C-style logical and
operator

|| 2 Left to right C-style logical or
operator

not 1 Right to left Logical not operator

and 2 Left to right Logical and operator

or, xor 2 Left to right Logical or operators

The numeric operators (<, <=, >, >=, ==, and !=) are intended to operate on numbers
and not strings. To facilitate comparing numbers, dates, and timestamps, the numeric
operators ignore any white space, colons, slashes, and commas in their arguments.
Dashes after the first digit are also ignored.

Note:

It is generally incorrect to use the numeric operators on non-numeric values.

For example, the following expression evaluates to true:

The following expression evaluates to true because both
"foo" and "bar" are numerically equivalent to 0
("foo" == "bar")

A.3.6 Expression Functions
Expression functions manipulate data for use in expressions. Expression functions are
different from SAFs. While SAFs perform the actual work associated with an HTTP
request, expression functions are used to select which SAFs run and what parameters
to pass to the SAFs.

Some expression functions require one or more arguments. An expression function's
argument list is enclosed in parentheses (()) and the individual arguments are
separated by commas (,).

The individual expression functions are listed in the following sections:

Appendix A
Expressions

A-9

• atime

• choose

• ctime

• escape

• external

• httpdate

• lc

• length

• lookup

• lookupregex

• mtime

• owner

• uc

• unescape

• uuid

A.3.6.1 atime
The atime function returns the time of the last access for the specified file or directory.

Syntax

atime (path)

Arguments

The following table describes the argument for the expression function.

Argument Description

path The absolute path to the directory or file name for which you are
requesting the last access.

Note:

ctime, mtime

A.3.6.2 choose
The choose function parses pipe-separated values from values and returns one at
random.

Syntax

choose (values)

Arguments

Appendix A
Expressions

A-10

The following table describes the argument for the expression function.

Argument Description

values The list of values to choose from, separated by the pipe character (|)

Example

The following obj.conf code demonstrates the use of choose to randomly select one of
three images:

NameTrans fn="rewrite"
 from="/images/random"
 path="/images/$(choose('iwsvi.jpg|0061.jpg|webservervii.jpg'))"

A.3.6.3 ctime
The ctime function returns the time of the last status change for the specified file or
directory.

Syntax

ctime (path)

Arguments

The following table describes the argument for the expression function.

Argument Description

path The absolute path to the directory or file name for which you are
requesting the last status change

Note:

atime, mtime

A.3.6.4 escape
The escape function encodes the URI using util_uri_escape, converting special octets
to their percentage encoded equivalent and returns the result.

Syntax

escape(uri)

Arguments

The following table describes the argument for the expression function.

Argument Description

uri The URI that the expression function converts

Appendix A
Expressions

A-11

Note:

unescape

A.3.6.5 external
The external function passes a value to an external rewriting program and returns the
result.

Each invocation of external results in a single newline-terminated line being written to
the external rewriting program's stdin. For each line of input, the program must
produce a single line of output. When developing an external rewriting program, it is
important to avoid buffering stdout. In Perl, for example, $| = 1; is used to disable
buffering. Because the server expects the external rewriting program to produce one
line of output for each line of input, the server can stop responding if the external
rewriting program buffers its output.

Syntax

external (program, value)

Arguments

The following table shows the arguments for the external function.

Argument Description

program The program argument is the file name of an external rewriting
program. Because program is executed using the operating system's
default shell (/bin/sh on Unix/Linux) or the command interpreter
(CMD.EXE on Windows), program should be an absolute path or the
name of a program in the operating system's PATH. The server starts
the external rewriting program on demand. A given server process
never executes more than one instance of the program at a time.

value The value passed to the rewriting program.

Example

The following is an example of an external rewriting program rewrite.pl, used to
change the prefix /home/ to /u/:

#!/usr/bin/perl

$| = 1;

while (<STDIN>) {

 s|^/home/|/u/|;

 print $_;

}

In this example, the external expression function used to invoke rewrite.pl is as
follows:

Appendix A
Expressions

A-12

NameTrans fn="rewrite" path="$(external('rewrite.pl', $path))"

A.3.6.6 httpdate
The httpdate function returns an RFC 1123 date time stamp for use in HTTP header
fields such as Expires.

Syntax

httpdate (time)

Argument

The following table describes the argument for the httpdate function.

Argument Description

time The time value.

Example

The following obj.conf code could be used to set an Expires header that indicates a
response is not cached for more than one day:

ObjectType fn="set-variable"

 insert-srvhdrs="$(httpdate($time + 86400))"

A.3.6.7 lc
The lc function converts all the US ASCII characters in the string to lowercase and
returns the result.

Syntax

lc(string)

Argument

The following table describes the argument for the lc function.

Argument Description

string The string the expression function converts to lowercase.

Example

The following obj.conf code can be used to redirect clients, who erroneously used
uppercase characters in the request URI to the equivalent lowercase URI:

<If code == 404 and not -e path and -e lc(path)>

Error fn="redirect" uri="$(lc($uri))"

</If>e($time + 86400))"

Appendix A
Expressions

A-13

Note:

uc

A.3.6.8 length
The length function returns the length of its argument, that is, a number representing
the length of the string.

Syntax

length (string)

Arguments

The following table describes the argument for the expression function.

Argument Description

string The string for which the expression function computes the length.

Example

The following obj.conf code can be used to send a 404 Not found error to clients that
request URIs longer than 255 bytes:

<If length($uri) > 255)>

PathCheck fn="deny-existence"

</If>

A.3.6.9 lookup
The lookup function inspects a text file for a name-value pair with name name and
returns the corresponding value. The name-value pairs in the file are separated by
white space.

If the file does not contain a name-value pair with the specified name, this function
returns the value of defaultvalue, if specified, or returns an empty string.

Syntax

lookup(filename, name, defaultvalue)

Arguments

The following table describes the argument for the expression function.

Argument Description

filename Indicates the name of a text file that contains one name-value pair per
line. filename can be an absolute path or a path relative to the server's
config directory. Names and values are separated by white space.
Lines beginning with a pound sign (#) are ignored.

Appendix A
Expressions

A-14

Argument Description

name The name of the name-value pair for which the function looks in the text
file.

defaultvalue The value returned by the function if filename exists but does not
contain a name-value pair with a name matching the value of name. If
defaultvalue is not specified, it defaults to an empty string.

Example

The following example shows a text file called urimap.conf that could be used with the
lookup function to map shortcut URIs to URIs:

This file contains URI mappings for Oracle Traffic Director.

Lines beginning with # are treated as comments.

All other lines consist of a shortcut URI, whitespace, and canonical URI.

/webserver /software/products/web_srvr/home_web_srvr.html

/solaris /software/solaris/

/java /software/java/

Using the previous sample text file, you could use the following lookup expression to
implement shortcut URIs for commonly accessed resources:

<If lookup('urimap.conf', uri)>

NameTrans fn="redirect" url="$(lookup('urimap.conf', uri))"

</If>

A.3.6.10 lookupregex
The lookupregex function inspects a text file for a regular expression-value pair. This
function takes a string as an input and matches it with the regular expression in each
line. It returns the corresponding value only if it matches. If the file does not contain a
match, this function returns the default value, if specified, or returns an empty string.

Syntax

lookupregex (filename,string,defaultvalue)

Arguments

The following table describes the argument for the expression function.

Argument Description

filename The filename is the name of a text file that contains one regular
expression-value pair per line. filename can be an absolute path or a
path relative to the server's configuration directory.

string The string to match with every regular expression in the text file.

Appendix A
Expressions

A-15

Argument Description

defaultvalue The value returned by the function if the filename exists but does not
contain a matching regular expression-value pair. If defaultvalue is
not specified, it defaults to an empty string.

A.3.6.11 mtime
The mtime function returns the time of the last data modification for the specified file or
directory.

Syntax

mtime(path)

Arguments

The following table describes the argument for the expression function.

Argument Description

path The absolute path to the directory or file name for which you are
requesting the last data modification.

Note:

atime, ctime

A.3.6.12 owner
The owner function returns the owner of a file.

Syntax

owner(path)

Arguments

The following table describes the argument for the expression function.

Argument Description

path The absolute path to the directory or file name for which you are
requesting the last data modification.

A.3.6.13 uc
The uc function converts all the US ASCII characters in string to uppercase and returns
the result.

Syntax

uc(string)

Appendix A
Expressions

A-16

Arguments

The following table describes the argument for the expression function.

Table A-1 uc Argument

Argument Description

string The string that the expression function converts to uppercase.

Note:

lc

A.3.6.14 unescape
The unescape function decodes the URI using util_uri_unescape, converting percent-
encoded octets to their unencoded form, and returns the result.

Syntax

unescape(uri)

Arguments

The following table describes the argument for the expression function.

Table A-2 unescape Argument

Argument Description

uri The URI that the function converts.

Note:

escape

A.3.6.15 uuid
The uuid function returns a UUID as a string. No two calls to uuid return the same
UUID. Because they are guaranteed to be unique, UUIDs are useful for constructing
client-specific cookie values.

Syntax

uuid()

Appendix A
Expressions

A-17

A.3.7 Regular Expressions
The If and ElseIf expressions can evaluate regular expressions using the equal sign
and tilde (=~) and exclamation point and tilde (!~) regular expression matching
operators. These regular expressions use the Perl-compatible syntax implemented by
Perl-compatible Regular Expressions (PCRE).

By default, regular expressions are case sensitive. The (?i) option flag can be added
to the beginning of a regular expression to request case insensitivity, for example:

$uri =~ '^/[Ff][Ii][Ll][Ee][Nn][Aa][Mm][Ee]$'

$uri =~ '(?i)^/filename$'

When an If or ElseIf expression contains a regular expression, regular expression
backreferences can appear within arguments in the container body. Regular
expression backreferences are of the form $n where n is an integer between 1 and 9
corresponding to the capturing subpattern of the regular expression, for example:

<If $path =~ '^(.*)(\.html|\.htm)$'>
NameTrans fn="rewrite" path="$1.shtml"
</If>

In the preview example, two subpatterns are used in the If expression, so $1 and $2
can be used as backreferences. In the example, the value of the first capturing
subpattern is used within a NameTrans fn="rewrite" parameter. The value of the second
capturing subpattern is ignored.

An If or ElseIf expression can contain backreferences to earlier regular expressions
in that same If or ElseIf expression, for example:

<If "foo" =~ "(.*)" and $1 eq "foo">
Any contained directives will be executed
since $1 will evaluate to "foo"
...
</If>

The contents of the preview If expression are executed, because the given If
expression always evaluates to true.

However, If and Elseif expressions, and contained directives, cannot contain
backreferences to regular expressions in parent containers. For example, the following
obj.conf entry is invalid:

<If $path =~ '(.*)\.css'>
<If $browser = "*MSIE*">
This example is invalid as $1 is not defined
AuthTrans fn="rewrite" path="$1-msie.css"
</If>
</If>

You can use the dollar sign and ampersand $& to obtain the value that last successfully
matched a regular expression. Use the following obj.conf entry to redirect requests for
HTML files to another server:

<If $path =~ '\.html$' or $path =~ '\.htm$' >
NameTrans fn="redirect" url="http://docs.example.com$&"
</If>

Appendix A
Expressions

A-18

A.4 String Interpolation
Strings that contain references to variables or expressions are called interpolated
strings. When you use interpolated strings, the embedded expressions and variables
are evaluated, and the result is inserted into the string. The act of inserting data into a
string is called string interpolation.

Use interpolated strings in expressions, log formats, and obj.conf parameters. In
expressions, only string literals enclosed in double quotation marks are interpolated.
See Expression Literals.

A.4.1 Using Variables in Interpolated Strings
To include the value of a variable in a string, prefix the name of the variable with the
dollar-sign ($). For example, the following format element in server.xml logs the client
IP address, requested URI, and corresponding file system path for each HTTP
request:

<access-log>
 <file>access</file>
 <format>$ip "$uri" $path</format>
</access-log>

In this example, $ip, $uri, and $path are predefined variables. See Variables.

For more information about access logs and log format, see Using the Custom
Access-Log File Format.

If the name of the variable is ambiguous, add braces {} to the name. For example, the
following string contains a reference to the predefined $path variable:

"${path}html"

Without the braces, the string contains a reference to a hypothetical variable named
pathhtml.

A.4.2 Using Expressions in Interpolated Strings
To include the result of an expression in a string, prefix the expression with a dollar
sign and a left parenthesis ($(and follow it with a right parenthesis). For example, the
following two strings are identical after interpolation:

"$(2 + 2)"

"4"

When an interpolated string is used as an obj.conf parameter, the string is
interpolated each time the corresponding instruction is executed. For example, the
following lines could be used in the obj.conf file to redirect clients based on the
requested URI and the contents of the file redirect.conf:

<Object ppath="/redirect/*">
NameTrans fn="redirect" url="$(lookup('redirect.conf', $uri, '/'))"
</Object>

Appendix A
String Interpolation

A-19

In this example, the expression lookup('redirect.conf', $uri, '/') is evaluated each
time the NameTrans directive is invoked, and the result is passed to the redirect SAF in
its url parameter.

A.5 Wildcard Patterns
Oracle Traffic Director supports wildcard pattern matching in expressions. To use a
wildcard without any special meaning, precede it with a backslash (\).

The following table describes various wildcard patterns and their uses.

Wildcard Use

* Matches zero or more characters.

? Matches one occurrence of any character.

| An or expression. The substrings used with this operator can contain
other special characters such as an asterisk * or dollar sign $. The
substrings must be enclosed in parentheses, for example, (a|b|c), but
the parentheses cannot be nested.

$ Matches the end of the string. This is useful in or expressions.

[abc] Matches one occurrence of the characters a, b, or c. Within these
expressions, the only character that must be treated as a special
character is the right bracket]; all others are not special.

[a-z] Matches one occurrence of a character between a and z.

[^az] Matches any character except a or z.

*~ This expression, followed by another expression, removes any pattern
matching the second expression.

The following table lists wildcard examples with pattern and the result.

Wildcard Result

*.example.com Matches any string ending with the characters .example.com.

(quark|
energy).example.com

Matches either quark.example.com or energy.example.com.

198.93.9[23].??? Matches a numeric string starting with either 198.93.92 or 198.93.93
and ending with any 3 characters.

. Matches any string with a period in it.

~example- Matches any string except those starting with example-.

*.example.com~quark
.example.com

Matches any host from domain example.com except for a single host
quark.example.com.

*.example.com~(quar
k|energy|
neutrino).example.c
om

Matches any host from domain .example.com except for hosts
quark.example.com, energy.example.com, and neutrino.example.com.

.com~.example.com Matches any host from domain .com except for hosts from sub domain
example.com.

~.gif* Matches any string except those including gif.

Appendix A
Wildcard Patterns

A-20

B
Using the Custom Access-Log File Format

This appendix contains information about the log format used by Oracle® Fusion
Middleware. Use these format options to customize the format of your log files. You
can enter them through the Admin Console, or edit the format subelement of the
access-log element in the server.xml file.

You can use variables and expressions in log formats with the syntax $variable and $
(expression).

When creating a custom log format, anything between percent signs (%) is recognized
as the name portion of a name-value pair stored in a parameter block in the server.
Any additional text is treated as literal text, so you can add to the line to make it more
readable. The one exception to the percent sign rule is the %SYSDATE% component,
which delivers the current system date. %SYSDATE% is formatted using the time format
%d/%b/%Y:%H:%M:%S and the offset from GMT.

If no format parameter is specified for a log file, the common log format is used:

"%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]
\"%Req->reqpb.clf-request%\" %Req->srvhdrs.clf-status%
%Req->srvhdrs.content-length%"

Typical components of log file format are listed in the following table . Because certain
components could resolve to values that contain spaces, they are enclosed in escape
quotes (\").

Option Component

Client host name (unless iponly is
specified in flex-log or DNS name is
not available) or IP address

%Ses->client.ip%

Client DNS name %Ses->client.dns%

System date %SYSDATE%

Full HTTP request line \"%Req->reqpb.clf-request%\"

Status %Req->srvhdrs.clf-status%

Response content length %Req->srvhdrs.content-length%

Response content type %Req->srvhdrs.content-type%

Referer header \"%Req->headers.referer%\"

User-agent header \"%Req->headers.user-agent%\"

HTTP method %Req->reqpb.method%

HTTP URI %Req->reqpb.uri%

HTTP query string %Req->reqpb.query%

HTTP protocol version %Req->reqpb.protocol%

Accept header %Req->headers.accept%

Date header %Req->headers.date%

B-1

Option Component

If-Modified-Since header %Req->headers.if-modified-since%

Authorization header %Req->headers.authorization%

Any header value %Req->headers.headername%

Name of authorized user %Req->vars.auth-user%

Value of a cookie %Req->headers.cookie.name%

Value of any variable in Req->vars %Req->vars.varname%

Virtual server ID %vsid%

ECID %Req->vars.ecid%. For more information, refer the
elements of http.

RID %Req->vars.rid%. For more information, refer the
elements of http.

Duration %duration%

Records the time in microseconds the server spent
handling the request. Statistics must be enabled
before %duration% can be used.

System time %Time

System time in seconds since 00:00:00 UTC, January
1, 1970.

Relative time %RELATIVETIME%

System time in seconds since logging started.

Method number %Req->method_num%

A number representing the HTTP method as used in
NSAPI.

HTTP Protocol Version %Req->protv_num%

A number representing the HTTP protocol version as
used in NSAPI.

HTTP request line %Req->reqpb.clf-request.method%

The method from the HTTP request line.

HTTP URI %Req->reqpb.clf-request.uri%

The URI from the HTTP request line.

URI path %Req->reqpb.clf-request.uri.abs_path%

The absolute path component of the URI

URI query %Req->reqpb.clf-request.uri.query%

The query component of the URI.

user_dn %Ses->client.user_dn%

The SSL client certificate authentication for web
security.

HTTP protocol %Req->reqpb.clf-request.protocol%

The protocol from the HTTP request line.

Protocol name %Req->reqpb.clf-request.protocol.name%

The name of the protocol.

Protocol version %Req->reqpb.clf-request.protocol.version%

The version of the protocol.

Appendix B

B-2

Option Component

Origin server %Req->vars.origin-server%

The origin server that served the request.

Cache Finish Statuses in Access Logs %Req->vars.proxy-cache-finish-status% Cache
status of the origin servers response in the proxy
server

Additional log file parameters that can be configured are listed in the table below.

Option Component

Cipher name %Ses->client.cipher%

Size in bits of cipher key %Ses->client.keysize%

Size in bits of private key %Ses->client.secret-keysize%

DN for certificate issuer %Ses->client.issuer_dn%

DN for certificate user %Ses->client.user_dn%

SSL session identifier %Ses->client.ssl-id%

Appendix B

B-3

C
Using Time Formats

This appendix describes the format strings used for dates and times in the server log.
These formats are used by the NSAPI function util_strftime, by some built-in SAFs.
The formats are similar to those used by the strftime C library routine, but not
identical.

Table C-1 Format Strings for Date and Time

Attribute Allowed Values

%a Abbreviated day of the week (3 chars)

%d Day of month as a decimal number (01-31)

%S Second as a decimal number (00-59)

%M Minute as a decimal number (00-59)

%H Hour in 24-hour format (00-23)

%Y Year with century, as a decimal number, up to 2099

%b Abbreviated month name (3 chars)

%h Abbreviated month name (3 chars)

%T Time in HH:MM:SS format

%X Time in HH:MM:SS format

%A Day of the week, full name

%B Month, full name

%C "%a %b %e %H:%M:%S %Y"

%c Date and time in "%m/%d/%y %H:%M:%S" format

%D Date in "%m/%d/%y" format

%e Day of month as decimal number (1-31) without leading zeros

%I Hour in 12-hour format (01-12)

%j Day of year as a decimal number (001-366)

%k Hour in 24-hour format (0-23) without leading zeros

%l Hour in 12-hour format (1-12) without leading zeros

%m Month as a decimal number (01-12)

%n Line feed

%p a.m./p.m. indicator for 12-hour clock

%R Time in "%H:%M" format

%r Time in "%I:%M:%S %p" format

%t Tab

%U Week of year as a decimal number, with Sunday as first day of week (00-51)

%w Weekday as a decimal number (0-6; Sunday is 0).

C-1

Table C-1 (Cont.) Format Strings for Date and Time

Attribute Allowed Values

%W Week of year as decimal number, with Monday as first day of week (00-51)

%x Date in "%m/%d/%y" format

%y Year without century, as decimal number (00-99)

%% Percent sign

Appendix C

C-2

D
Alphabetical List of Server Configuration
Elements and Predefined SAFs

This appendix provides an alphabetical list of server configuration elements, including
server.xml elements and predefined SAFs in obj.conf file.

A
access-log
access-log-buffer
assign-name

B
block-auth-cert
block-cache-info
block-cipher
block-ip
block-issuer-dn
block-jroute
block-keysize
block-proxy-agent
block-secret-keysize
block-ssl
block-ssl-id
block-user-dn
block-via
block-xforwarded-for

C
check-request-limits

D
deny-existence
dns
dns-cache

E
event

F
failover-group
flex-log
forward-auth-cert
forward-cache-info
forward-cipher
forward-ip
forward-issuer-dn
forward-jroute
forward-keysize

D-1

forward-proxy-agent
forward-secret-keysize
forward-ssl-id
forward-user-dn
forward-via
forward-xforwarded-for

G
get-client-cert
get-sslid

H
health-check
http
http-client-config
http-listener

I
instance

K
keep-alive

L
localization
log

M
map

N
nt-uri-clean

O
origin-server-pool
origin-server

P
property
proxy-cache
proxy-cache-config
proxy-cache-override-http
proxy-retrieve

Q
qos-error
qos-handler

R
remove-filter
restart
reverse-map
rewrite

S
server

Appendix D

D-2

service-proxy-cache-dump
service-trace
set-cache-control
set-cookie
set-origin-server
set-priority
set-proxy-server
set-variable
snmp
ssl
ssl-logout
ssl-session-cache
stats
stats-xml
strip-params

T
thread-pool
time
type-by-exp
type-by-extension

U
unix-uri-clean

V
variable
virtual-server

W
webapp-firewall-ruleset

Appendix D

D-3

Index

A
access-log element, 3-2
access-log-buffer element, 3-2
AddLog, 4-2

flow of control, 4-8
function descriptions, 5-43

admin-server directory, 1-4
all-requests bucket, 5-1
always-use-keep-alive parameter, 5-25
assign-name function, 5-5
AuthTrans, 4-1

flow of control, 4-5
function descriptions, 5-2

B
backreferences, A-18
bin directory, 1-4
block-auth-cert function, 5-15
block-cache-info function, 5-16
block-cipher function, 5-16
block-ip function, 5-16
block-issuer-dn function, 5-17
block-jroute function, 5-17
block-keysize function, 5-17
block-proxy-agent function, 5-17
block-secret-keysize function, 5-18
block-ssl-id function, 5-18
block-user-dn function, 5-18
block-via function, 5-19
bong-file parameter, 5-12
boolean

expression results, A-5
bucket

all request, 5-1
default, 5-1

built-in SAFs in obj.conf, 5-1

C
cache

DNS, 3-8
cache control directives, 5-31
case sensitivity in obj.conf, 4-9

charset parameter, 5-33
check-request-limits function, 5-10
choose function, A-10
ChunkedRequestBufferSize parameter, 5-38
ChunkedRequestTimeout parameter, 5-38
Client tag, 4-4
cluster element, 3-3, 3-4
CmapLdapAttr property, 1-2
code parameter, 5-44, 5-45
comments

in obj.conf, 4-10
config directory, 1-5
control parameter, 5-26, 5-28, 5-30, 5-31
core SAFs in obj.conf, 5-1
ctime function, A-11
custom log file format, B-1
custom variables, A-4

D
day of month, C-1
default object, 4-3
default-bucket, 5-1
deny-existence function, 5-12
directives

obj.conf, 5-1
order of in obj.conf, 4-9
syntax in obj.conf, 4-2

directory structure, 1-3
DNComps property, 1-2
dns element, 3-7
dns-cache element, 3-8
domain parameter, 5-32
dorequest parameter, 5-12
dotdirok parameter, 5-13, 5-14
dynamic reconfiguration, 1-5

E
elements in the server.xml file, 3-1
Else tag, 4-5
ElseIf tag, 4-5

with regular expressions, A-18
enc parameter, 5-33
Error directive, 4-2

Index-1

Error directive (continued)
flow of control, 4-8
function descriptions, 5-44

error parameter, 5-10
errors

sending customized messages, 5-44, 5-45
escape function, A-11
escape parameter, 5-49
event element, 3-8
exp parameter, 5-33
expressions, A-5

functions, A-9
in interpolated strings, A-19
literals, A-6
operators, A-7
regular, A-18
results as Booleans, A-5
syntax, A-5
variables, A-7

external function, A-12

F
failover-group element, 3-10
filter parameter, 5-47, 5-50
FilterComps property, 1-2
find-pathinfo-forward parameter, 5-5
flex-log function, 5-43
flow of control in obj.conf, 4-5
FlushTimer parameter, 5-37
fn parameter

in directives in obj.conf, 4-2
forward slashes, 4-10
forward-auth-cert function, 5-19
forward-cache-info function, 5-20
forward-cipher function, 5-20
forward-ip function, 5-20
forward-issue-dn function, 5-21
forward-jroute function, 5-21
forward-keysize function, 5-22
forward-proxy-agent function, 5-22
forward-secret-keysize function, 5-22
forward-ssl-id function, 5-23
forward-user-dn function, 5-24
forward-via function, 5-24, 5-25
from parameter, 5-3, 5-5, 5-8, 5-49, 5-51, 5-52
functions

common, 5-45
expression, A-9

G
get-client-cert function, 5-12
get-sslid function, 5-2

H
health-check element, 3-11
http element, 3-15
http-client-config function, 5-25
http-listener element, 3-16
httpdate function, A-13

I
If tag, 4-5

with regular expressions, A-18
InitFn property, 1-2
Input, 4-2

flow of control, 4-7
function descriptions, 5-33
optional parameters, 5-34

insert-filter function, 5-47
with Input directive, 4-7
with Output directive, 4-7

instance element, 3-18
internal requests, 4-8
interpolated strings, A-19
interval parameter, 5-10
iponly parameter, 5-43

K
keep-alive element, 3-18
keep-alive parameter, 5-25
keep-alive-timeout parameter, 5-25, 5-26

L
lang parameter, 5-33
lc function, A-13
length function, A-14
lib directory, 1-4
library property, 1-2
line continuation

in obj.conf, 4-10
literals

expression, A-6
numeric, A-7
string, A-6

localization element, 3-19
log analyzer, 5-43
log element, 3-20, 3-21
log file

analyzer for, 5-43
log file format, B-1
lookup function, A-14

Index

Index-2

M
map function, 5-6
match-browser function, 5-48, 5-52, 5-53
max-age parameter, 5-32
max-connections parameter, 5-10
max-rps parameter, 5-10
method parameter, 5-13, 5-34, 5-37
monitor parameter, 5-11
month name, C-1
mtime function, A-16

N
name attribute

in obj.conf objects, 4-3
in objects, 4-3

name parameter, 5-4, 5-5, 5-43
NameTrans, 4-2

flow of control, 4-6
function descriptions, 5-4

nondefault objects
processing, 4-6

nostat parameter, 5-6
nt-uri-clean function, 5-13
ntrans-base, 5-5, 5-6
numeric literals, A-7

O
obj.conf

case sensitivity, 4-9
Client tag, 4-4
comments, 4-10
directive syntax, 4-2
directives, 4-2, 5-1
Else tag, 4-5
ElseIf tag, 4-5
flow of control, 4-5
function flow changes, 4-8
If tag, 4-5
Object tag, 4-3
order of directives, 4-9
overview, 4-1
parameters for directives, 4-9
processing other objects, 4-6
syntax rules, 4-9

Object tag, 4-3
name attribute, 4-3
ppath attribute, 4-3

objects
processing nondefault objects, 4-6

ObjectType, 4-2
flow of control, 4-6
function descriptions, 5-14

operators
expression, A-7

order
of directives in obj.conf, 4-9

origin-server element, 3-22
origin-server-pool element, 3-21
Output, 4-2

flow of control, 4-7
function descriptions, 5-34
optional parameters, 5-34

owner function, A-16

P
parameters

for obj.conf directives, 4-9
path names

in obj.conf, 4-10
path parameter, 5-10, 5-12
PathCheck, 4-2

flow of control, 4-6
function descriptions, 5-9

ppath attribute
in obj.conf objects, 4-3
in objects, 4-3

predefined SAFs in obj.conf, 5-1
predefined variables, A-2
processing nondefault objects, 4-6
property element, 3-23
protocol parameter, 5-26
proxy-agent parameter, 5-26
proxy-retrieve function, 5-38

Q
qos-error function, 5-44, 5-45
qos-handler function, 5-2, 5-3
query parameter, 5-34, 5-37
quotes

in obj.conf, 4-9

R
reconfig, 1-5
redirect function, 5-48
regular expressions, A-18
remove-dir function, 5-39
remove-filter function, 5-49
request-handling process, 4-1

flow of control, 4-5
requests

internal, 4-8
restarted, 4-8

require parameter, 5-13
restart function, 5-50–5-52

Index

3

restarted requests, 4-8
retries parameter, 5-26
reverse-map function, 5-7
rewrite function, 5-8
rewrite-content-location parameter, 5-7, 5-36
rewrite-headername parameter, 5-8, 5-36
rewrite-host parameter, 5-7, 5-36
rewrite-location parameter, 5-7, 5-36
root element, 3-25
Route, 4-2

flow of control, 4-7
function descriptions, 5-35

route-cookie parameter, 5-36
route-hdr parameter, 5-36
rules

for editing obj.conf, 4-9

S
SAFs

predefined in obj.conf, 5-1
separators

in obj.conf, 4-9
server

flow of control, 4-5
instructions in obj.conf, 4-2
processing nondefault objects, 4-6

server element, 3-25
server instance directory, 1-5
server.xml, 2-1

editing, 2-1
elements, 3-1
overview, 2-1
sample, 2-4
validating, 2-2

Service, 4-2
flow of control, 4-8
function descriptions, 5-37
optional parameters, 5-37

service-trace function, 5-41
set-cache-control function, 5-31
set-cookie function, 5-32
set-origin-server function, 5-35
set-proxy-server function, 5-36
set-variable function, 5-54
snmp element, 3-26
spaces

in obj.conf, 4-9
ssl element, 3-27
ssl-logout function, 5-13
ssl-session-cache element, 3-30
ssl3-tls-ciphers element, 3-4, 3-29
stats element, 3-30
stats-xml function, 5-42
sticky-cookie parameter, 5-35

sticky-param parameter, 5-35
string interpolation, A-19
string literals, A-6
strip-params function, 5-8, 5-9
syntax

directives in obj.conf, 4-2
expressions, A-5
for editing obj.conf, 4-9

T
tags

Client, 4-4
Else, 4-5
ElseIf, 4-5
If, 4-5
Object, 4-3

thread-pool element, 3-31–3-35
tildeok parameter, 5-13
time element, 3-35
time format strings, C-1
type parameter, 5-33, 5-34, 5-37
type-by-exp function, 5-32
type-by-extension function, 5-33

U
uc function, A-16
unix-uri-clean function, 5-14
uri parameter, 5-51, 5-52
URI translation, 4-9
url parameter, 5-49
url-prefix parameter, 5-49
UseOutputStreamSize parameter, 5-37
util_strftime, C-1
uuid function, A-17

V
variable element, 3-36
variables, A-2

custom, A-4
expression, A-7
in interpolated strings, A-19
predefined, A-2
resolving, A-4
supported by set-variable, 5-55

verifycert property, 1-2
virtual-server element, 3-36, 3-38

W
weekday, C-1

Index

Index-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Overview of Configuration Files and Directories
	1.1 Configuration Files
	1.1.1 The server.xml File
	1.1.2 The obj.conf File
	1.1.3 The certmap.conf File
	1.1.3.1 Syntax
	1.1.3.2 Properties

	1.1.4 NZ Wallet Files
	1.1.5 Default Paths

	1.2 Directory Structure
	1.2.1 bin
	1.2.2 Legal
	1.2.3 lib
	1.2.4 admin-server
	1.2.5 net-server-id

	1.3 Dynamic Reconfiguration

	2 Syntax and Use of server.xml
	2.1 Overview of server.xml
	2.1.1 Editing the server.xml File
	2.1.1.1 Editing Element Values
	2.1.1.2 Adding Elements
	2.1.1.3 Validating server.xml

	2.2 Understanding server.xml
	2.2.1 Server Pools
	2.2.2 Health check
	2.2.3 High Availability
	2.2.4 HTTP Protocol
	2.2.5 Logging and Monitoring
	2.2.6 Performance Tuning
	2.2.7 SSL, TLS, and PKCS #11
	2.2.8 Variables
	2.2.9 Virtual Servers

	2.3 Sample server.xml File

	3 Elements in server.xml
	3.1 List of Elements
	3.1.1 access-log
	3.1.2 access-log-buffer
	3.1.3 cluster
	3.1.4 cert
	3.1.5 crl
	3.1.6 cipher
	3.1.7 dns
	3.1.8 dns-cache
	3.1.9 event
	3.1.10 event-subscription
	3.1.11 failover-group
	3.1.12 ftp-filter
	3.1.13 health-check
	3.1.14 http
	3.1.15 http-listener
	3.1.16 instance
	3.1.17 keep-alive
	3.1.18 localization
	3.1.19 log
	3.1.20 max-fd
	3.1.21 origin-server-pool
	3.1.22 origin-server
	3.1.23 property
	3.1.24 proxy-cache
	3.1.25 qos-limits
	3.1.26 server
	3.1.27 snmp
	3.1.28 ssl
	3.1.29 ssl3-tls-ciphers
	3.1.30 ssl-session-cache
	3.1.31 stats
	3.1.32 status-listener
	3.1.33 tcp-access-log
	3.1.34 tcp-listener
	3.1.35 tcp-proxy
	3.1.36 tcp-thread-pool
	3.1.37 thread-pool
	3.1.38 time
	3.1.39 variable
	3.1.40 virtual-server
	3.1.41 webapp-firewall-ruleset

	4 Syntax and Use of obj.conf
	4.1 Request-Handling Process Overview
	4.1.1 Steps in the Request-Handling Process

	4.2 Directives in obj.conf
	4.3 Objects in obj.conf
	4.3.1 Objects That Use the name Attribute
	4.3.2 Objects That Use the ppath Attribute
	4.3.3 Using the Client, If, ElseIf, and Else Tags
	4.3.3.1 Client
	4.3.3.2 If, ElseIf, and Else

	4.4 Flow of Control in obj.conf
	4.4.1 AuthTrans
	4.4.2 NameTrans
	4.4.2.1 How and When Oracle Traffic Director Processes Other Objects

	4.4.3 PathCheck
	4.4.4 ObjectType
	4.4.5 Input
	4.4.6 Output
	4.4.7 Route
	4.4.8 Service
	4.4.9 AddLog
	4.4.10 Error

	4.5 Changes in Function Flow
	4.5.1 Restarted Requests
	4.5.2 Internal Requests
	4.5.3 URI Translation

	4.6 Editing obj.conf
	4.6.1 Order of Directives
	4.6.2 Parameters
	4.6.3 Case Sensitivity
	4.6.4 Separators
	4.6.5 Quotation Marks
	4.6.6 Spaces
	4.6.7 Line Continuation
	4.6.8 Path Names
	4.6.9 Comments

	5 Predefined Server Application Functions and Filters in obj.conf
	5.1 The bucket Parameter
	5.2 AuthTrans
	5.2.1 get-sslid
	5.2.2 qos-handler
	5.2.3 webapp-firewall

	5.3 NameTrans
	5.3.1 assign-name
	5.3.2 block-request-cookie
	5.3.3 map
	5.3.4 reverse-map
	5.3.5 rewrite
	5.3.6 sed-request-header
	5.3.7 strip-params

	5.4 PathCheck
	5.4.1 check-request-limits
	5.4.2 deny-existence
	5.4.3 get-client-cert
	5.4.4 nt-uri-clean
	5.4.5 ssl-logout
	5.4.6 unix-uri-clean

	5.5 ObjectType
	5.5.1 block-auth-cert
	5.5.2 block-cache-info
	5.5.3 block-cipher
	5.5.4 block-ip
	5.5.5 block-issuer-dn
	5.5.6 block-jroute
	5.5.7 block-keysize
	5.5.8 block-proxy-agent
	5.5.9 block-secret-keysize
	5.5.10 block-ssl
	5.5.11 block-ssl-id
	5.5.12 block-user-dn
	5.5.13 block-via
	5.5.14 block-xforwarded-for
	5.5.15 forward-auth-cert
	5.5.16 forward-cache-info
	5.5.17 forward-cipher
	5.5.18 forward-ip
	5.5.19 forward-issuer-dn
	5.5.20 forward-jroute
	5.5.21 forward-keysize
	5.5.22 forward-proxy-agent
	5.5.23 forward-secret-keysize
	5.5.24 forward-ssl
	5.5.25 forward-ssl-id
	5.5.26 forward-user-dn
	5.5.27 forward-via
	5.5.28 forward-xforwarded-for
	5.5.29 http-client-config
	5.5.30 proxy-cache-config
	5.5.31 proxy-cache-override-http
	5.5.32 proxy-websocket-config
	5.5.33 reverse-block-date
	5.5.34 reverse-block-server
	5.5.35 reverse-forward-date
	5.5.36 reverse-forward-server
	5.5.37 set-basic-auth
	5.5.38 set-cache-control
	5.5.39 set-cookie
	5.5.40 type-by-exp
	5.5.41 type-by-extension

	5.6 Input
	5.7 Output
	5.8 Route
	5.8.1 set-origin-server
	5.8.2 set-proxy-server

	5.9 Service
	5.9.1 proxy-retrieve
	5.9.2 remove-filter
	5.9.3 service-proxy-cache-dump
	5.9.4 service-trace
	5.9.5 stats-xml

	5.10 AddLog
	5.10.1 flex-log

	5.11 Error
	5.11.1 qos-error
	5.11.2 send-error

	5.12 Common SAFs
	5.12.1 insert-filter
	5.12.2 match-browser
	5.12.3 redirect
	5.12.4 remove-filter
	5.12.4.1 Example

	5.12.5 restart
	5.12.6 rewrite-cookie
	5.12.7 sed-param-name
	5.12.8 sed-param-value
	5.12.9 sed-response-header
	5.12.10 set-priority
	5.12.11 set-variable

	A Using Variables, Expressions, Wildcards, and String Interpolation
	A.1 If, ElseIf, and Else Tags
	A.2 Variables
	A.2.1 Predefined Variables
	A.2.2 Custom Variables
	A.2.3 Resolving Variables

	A.3 Expressions
	A.3.1 Expression Syntax
	A.3.2 Expression Results as Boolean Values
	A.3.3 Expression Literals
	A.3.3.1 String Literals
	A.3.3.2 Numeric Literals

	A.3.4 Expression Variables
	A.3.5 Expression Operators
	A.3.6 Expression Functions
	A.3.6.1 atime
	A.3.6.2 choose
	A.3.6.3 ctime
	A.3.6.4 escape
	A.3.6.5 external
	A.3.6.6 httpdate
	A.3.6.7 lc
	A.3.6.8 length
	A.3.6.9 lookup
	A.3.6.10 lookupregex
	A.3.6.11 mtime
	A.3.6.12 owner
	A.3.6.13 uc
	A.3.6.14 unescape
	A.3.6.15 uuid

	A.3.7 Regular Expressions

	A.4 String Interpolation
	A.4.1 Using Variables in Interpolated Strings
	A.4.2 Using Expressions in Interpolated Strings

	A.5 Wildcard Patterns

	B Using the Custom Access-Log File Format
	C Using Time Formats
	D Alphabetical List of Server Configuration Elements and Predefined SAFs
	Index

