
Oracle® Fusion Middleware
REST API for Managing Credentials and
Keystores with Oracle Web Services Manager

12c (12.2.1.3.0)
E80894-03
July 2018

Oracle Fusion Middleware REST API for Managing Credentials and Keystores with Oracle Web Services
Manager, 12c (12.2.1.3.0)

E80894-03

Copyright © 2013, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Showvik Roychowdhuri

Contributing Authors: Sudhira Subudhi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility vi

Conventions vi

 What's New In This Guide

New and Changed Features for 12c (12.2.1.3.0) vii

New and Changed Features for 12c (12.2.1.2.0) viii

New and Changed Features for 12c (12.2.1.1.0) viii

Part I Getting Started with the REST API

1 About the REST API

Introduction to REST API 1-1

URL Structure for Security Stores 1-1

Create and Manage Oracle WSM Instances Using REST 1-2

Authenticating REST Resources 1-2

HTTP Status Codes for HTTP Methods 1-2

2 Use Cases for the REST API

Managing the Credential Store Framework Using the REST API 2-1

Managing JKS Keystores Using the REST API 2-3

Managing KSS Keystores Using the REST API 2-5

Managing Token Issuer Trust Using the REST API 2-7

Part II REST API Reference

3 Manage Credentials in the Credential Store

View and Manage the Credential Store Using REST Resources 3-1

iii

POST Credential Method 3-1

GET Credential Method 3-3

PUT Credential Method 3-4

DELETE Credential Method 3-5

4 Manage Java Keystore Keystores

View and Manage JKS keystores within a Domain Using REST Resources 4-1

GET All Aliases Trusted Certificate JKS Keystore Method 4-2

POST Specified Alias Trusted Certificate JKS Keystore Method 4-2

POST PKCS#7 Trusted Certificate JKS Keystore Method 4-4

GET Specified Alias Trusted Certificate JKS Keystore Method 4-5

DELETE Trusted Certificate JKS Keystore Method 4-7

5 View and Manage Keystore Service Keystores

View and Manage KSS keystores Using REST Resources 5-1

POST New KSS Keystore Method 5-2

POST Import KSS Keystore Method 5-3

PUT Password Update KSS Keystore Method 5-5

POST Trusted Certificate KSS Keystore Method 5-6

GET Stripe KSS Keystores Method 5-7

GET Alias KSS Keystore Method 5-8

GET Trusted Certificate KSS Keystore Method 5-9

DELETE Trusted Certificate KSS Keystore Method 5-11

POST Secret Key KSS Keystore 5-12

GET Secret Key Properties KSS Keystore Method 5-13

DELETE Keystore Service KSS Keystore Method 5-14

6 Manage Token Issuer Trust Configurations

View and Manage Token Issuer Trust Configurations Using REST Resources 6-2

POST TrustDocument Name Method 6-3

POST Domain Trusted Issuers and Distinguished Name Lists Method 6-4

POST Document Trusted Issuers and Distinguished Name Lists Method 6-6

GET All Trusted Issuer and Distinguished Name Lists Method 6-8

GET Specified Document Trusted Issuer and Distinguished Name Lists Method 6-10

POST Token Attribute Rule Distinguished Name Method (Domain Context) 6-11

POST Token Attribute Rule Distinguished Name Method (Document Context) 6-14

GET All Token Attribute Rules Method 6-18

GET Specified Document Token Attribute Rules Method 6-20

Import TrustDocument Name Configurations Method 6-23

iv

Export TrustDocument Name Configurations Method 6-29

Import Global Discovery Configuration 6-31

GET TrustDocument Method 6-32

DELETE Trust Document Method 6-33

Import Federation Metadata Document Method 6-34

Export Federation Metadata Document Method 6-35

Revoke Federation Metadata Document Method 6-36

POST Virtual User for a DN 6-37

Get Virtual User for a DN 6-40

One Paas — One Token Trust 6-42

Enabling and Disabling Token Issuer Trust 6-43

Import TrustDocument Name Configurations Method 6-45

Import JWK Document Trust Configurations 6-51

Revoke JWK Trust Configurations 6-52

Import WSM Discovery Metadata Trust Configurations 6-52

Revoke WSM Discovery Metadata Trust Configurations 6-53

A Summary of REST APIs

v

Preface

This preface describes the document accessibility features and conventions used in
this guide—REST API for Managing Credentials and Keystores with Oracle Web
Services Manager.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New In This Guide

This section summarizes the new features and significant product changes for Oracle
Web Services Manager in Oracle Fusion Middleware 12c (12.2.1).

New and Changed Features for 12c (12.2.1.3.0)
Release 12c (12.2.1.3.0) supports new Rest API to import, export, or revoke a
federation metadata document.

These updates are summarized in the following table:

Features in Oracle Web Services Manager 12.2.1.3.0

Feature Description

New Rest API to
import, export, or
revoke a
federation
metadata
document.

• Import Federation Metadata Document Method
• Export Federation Metadata Document Method
• Revoke Federation Metadata Document Method

New Rest API to
create or view
virtual users for
the Distinguished
Name (DN).

• POST Virtual User for a DN
• Viewing Virtual User for a DN

Support for key
rotating external
identity providers

• Import JWK Document Trust Configurations
• Revoke JWK Trust Configurations

Support for File
Type in JWK
import REST
APIs

• Import JWK Document Trust Configurations
• Revoke JWK Trust Configurations

HTTP Proxy
support in JWK/
Discovery

• Import TrustDocument Name Configurations Method

Disabling/
enabling trusted
issuer
temporarily

• Enabling and Disabling Token Issuer Trust

One Paas —
One Token Trust

• One Paas — One Token Trust

New Rest API to
Import or Revoke
WSM Discovery
Metadata Trust
Configuration

• Import WSM Discovery Metadata Trust Configurations
• Revoke WSM Discovery Metadata Trust Configurations

vii

New and Changed Features for 12c (12.2.1.2.0)
Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12c (12.2.1.1.0)
Minor updates, such as fixes or corrections, were made to this document.

What's New In This Guide

viii

Part I
Getting Started with the REST API

You should get started using the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part I contains the following chapters:

• About the REST API

• Use Cases for the REST API

1
About the REST API

An introduction of Oracle Fusion Middleware representational state transfer (REST)
API for managing credentials and keystores is detailed in this chapter.
It includes the following topics:

• Introduction to REST API

• URL Structure for Security Stores

• Create and Manage Oracle WSM Instances Using REST

• Authenticating REST Resources

• HTTP Status Codes for HTTP Methods

Introduction to REST API
The credential and keystore management REST API provides endpoints for creating
and configuring credential stores, keystores, and trust stores for your domain or web
services.

You can access the REST endpoints through Web browsers and client applications.

You can also use the Oracle WSM REST endpoints in REST client applications that
are developed in languages such as:

• JavaScript

• Ruby

• Perl

• Java

• JavaFX

Before using the REST API, you need to understand a few important concepts, as
described in the following sections.

URL Structure for Security Stores
You can use certain URL structures to manage security stores.

Use the following URL to manage security stores:

http(s)://host:port/idaas/contextpath/admin/v1/resource

Where:

• host:port—Host and port where Oracle Fusion Middleware is running.

• contextpath—Context path for the REST resource. This value can be set to
platform for resources that apply across the domain (for example, keystore and

1-1

credential management resources), or webservice for resources that apply to a
specific web service (for example, trust management resources).

• resource—Relative path that defines the REST resource. For more information,
see REST API Reference To access the Web Application Definition Language
(WADL) document, specify application.wadl.

Create and Manage Oracle WSM Instances Using REST
The Oracle WSM REST endpoints support standard methods for creating and
managing Oracle WSM instances.

REST Method Task

GET Retrieve information about the REST resource.

POST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

Authenticating REST Resources
You can access the Oracle Fusion Middleware REST resources over HTTP and you
must provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password (for
example, Smith and Password) using the -u cURL option.

curl -i -X GET -u Smith:Password http://myhost:7001/idaas/platform/admin/v1/keystore

For POST and DELETE methods, which do not send data in the request body, if a keystore
or key is password-protected, you must pass the Base64-encrypted keystore and key
passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u Smith:Password -H keystorePassword:Base64EncodedPassword -H
keyPassword:Base64EncodedPassword http://myhost:7001/idaas/platform/admin/v1/
keystoreservice/
certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myAlias"

HTTP Status Codes for HTTP Methods
The HTTP methods used to manipulate the resources described in this topic return
one of the following HTTP status codes:

HTTP Status Code Description

200 OK The request was successfully completed. A 200 status is returned for successful GET
or POST method.

201 Created The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

Chapter 1
Create and Manage Oracle WSM Instances Using REST

1-2

HTTP Status Code Description

202 Accepted The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__detached=true) resource creation (for example,
when deploying an application), or update (for example, when redeploying an
application), a 202 is returned if the operation is still in progress. If __detached=false,
a 202 may be returned if the underlying operation does not complete in a reasonable
amount of time.

The response contains a Location header of a job resource that the client should poll
to determine when the job has finished. Also, returns an entity that contains the
current state of the job

400 Bad Request The request could not be processed because it contains missing or invalid information
(such as, a validation error on an input field, a missing required value, and so on).

401 Unauthorized The request is not authorized. The authentication credentials included with this
request are missing or invalid.

403 Forbidden The user cannot be authenticated. The user does not have authorization to perform
this request.

404 Not Found The request includes a resource URI that does not exist.

405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported for
this request URI.

406 Not Acceptable The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

415 Not Acceptable The client's ContentType header is not correct (for example, the client attempts to
send the request in XML, but the resource can only accept JSON).

500 Internal Server Error The server encountered an unexpected condition that prevented it from fulfilling the
request.

503 Service Unavailable The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

Chapter 1
HTTP Status Codes for HTTP Methods

1-3

2
Use Cases for the REST API

A demonstration of several use cases using the REST API is detailed in this chapter.

• Managing the Credential Store Framework Using the REST API

• Managing JKS Keystores Using the REST API

• Managing KSS Keystores Using the REST API

• Managing Token Issuer Trust Using the REST API

Managing the Credential Store Framework Using the REST
API

You can view and manage the credential store framework using the REST APIs.

The following use case shows you how to:

• Create a credential in the credential store

• View all credentials in the credential store

• Delete a credential from the credential store

Note:

For more information about credential store management, see "Configuring
the Credential Store" in Administering Web Services.

TESTED

To manage the credential store framework using the REST API:

1. Create a credential in the credential store framework by performing the following
steps:

a. Create a JSON document, createcred.json, that defines the credential that
you want to create.

The following shows an example of the request document. In this example, the
name of the credential map is default, the credential key is myKey, and the
username and password credentials are myUsr and myPwd, respectively.

{
 "username" : "username",
 "credential" : "pwd",
 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

2-1

For more information about the request attributes, see "POST Credential
Method".

b. Using cURL, create a credential in the credential store framework, passing the
JSON document defined in the previous step.

curl -i -X POST -u username:password --data @createcred.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/credential

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "POST Credential Method".

2. View all credentials in the credential store.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
credential

The following shows an example of the response, showing all credentials in the
credential store:

{
 "CSF_MAP_NAME": "CSF_KEY_NAME",
 "default": "systemuser",
 "oracle.wsm.security": [
 "sign-csf-key",
 "jwt-sign-csf-key",
 "owsmtest.credentials",
 "basic.client.credentials",
 "weblogic-csf-key",
 "enc-csf-key",
 "mykey",
 "dummy-pwd-csf-key",
 "weblogic-kerberos-csf-key",
 "keystore-csf-key",
 "weblogic-windowsdomain-csf-key",
 "oratest-csf-key",
 "csr-csf-key",
 "invalid-csf-key",
 "ca-signed-sign-csf-key"
]
}

For more information, see "GET Credential Method".

3. Delete the credential from the credential store.

curl -i -X DELETE -u username:password http://myhost:7001/idaas/webservice/
admin/v1/credential?"key=mykey&map=oracle.wsm.security"

You must pass query parameters to define the map and key names associated
with the credential store that you want to delete. For more information, see
"DELETE Credential Method".

The following shows an example of the response indicating the request
succeeded.

Chapter 2
Managing the Credential Store Framework Using the REST API

2-2

{
 "STATUS": "Succeeded"
}

Managing JKS Keystores Using the REST API
You can view and manage Java Keystore (JKS) certificates within the current domain
using the REST APIs.

The following use case shows you how to:

• View all aliases in the JKS keystore.

• Import a trusted certificate into the JKS keystore.

• View a trusted certificate in the JKS keystore.

• Delete a trusted certificate from the JKS keystore.

Note:

For information about JKS keystore management, see "Configuring
Keystores for Message Protection" in Administering Web Services.

TESTED

To manage JKS keystores using the REST API:

1. View all of the aliases that currently exist in the JKS keystore within the current
domain:

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystore

The following shows an example of the response, showing all aliases in the JKS
keystore.

{
 "aliases":"oratest,orakey,testkey,jkstest,ms-oauthkey"
}

For more information, see "GET All Aliases Trusted Certificate JKS Keystore
Method".

2. Import the trusted certificate into the JKS keystore at the specified alias, by
performing the following steps:

a. Create a JSON document, importjks.json, that defines the trusted certificate
to import into the JKS keystore.

The following shows an example of the request document. In this example, the
trusted certificate provided must be Base64-encoded and the component type
must be set to JKS for this release.

{ "component":"JKS",
 "certificate": "Bese64-encoded certificate"
}

Chapter 2
Managing JKS Keystores Using the REST API

2-3

For more information about the request attributes, see "POST Specified Alias
Trusted Certificate JKS Keystore Method".

b. Using cURL, import the trusted certificate, specifying the alias of the trusted
key to be imported, mytestkey, and passing the JSON request document
defined in the previous step.

curl -i -X POST -u username:password -H Content-type:application/json --data
@importjks.json http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS":"Succeeded",
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

For more information, see "POST Specified Alias Trusted Certificate JKS
Keystore Method".

3. View the trusted certificate that you imported in step 3:

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystore/mytestkey

The following shows an example of the response, showing the details for the
trusted certificate.

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Thu Jul 03 04:00:16 PDT 2014",
 "NOT_AFTER":"Wed Oct 01 04:00:16 PDT 2014",
 "SERIAL_NO":"1784168778",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "CONTENT":"-----BEGIN CERTIFICATE-----\
Bese64-encoded certificate
-----END CERTIFICATE-----",
 "SIGNATURE": "Bese64-encoded signature key",
 "Extensions": "{subjectKeyIDExtension {oid = 2.5.29.14, critical = false,
value = f74ca5c1016d848260c749884e2b710c5fecc7b8}}"
}

For more information, see "GET Specified Alias Trusted Certificate JKS Keystore
Method".

4. Delete the trusted certificate from the JKS keystore.

curl -i -X DELETE -u username:password http://myhost:7001/idaas/platform/
admin/v1/keystore/mytestkey

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "DELETE Trusted Certificate JKS Keystore Method".

Chapter 2
Managing JKS Keystores Using the REST API

2-4

Managing KSS Keystores Using the REST API
You can view and manage Keystore Service (KSS) keystores using the REST APIs.

The following use case shows you how to:

• Create a KSS keystore

• View all KSS keystores for a stripe

• Import a trusted certificate into the KSS keystore

• View a trusted certificate in the JKS keystore

• Delete the KSS keystore

Note:

For more information about KSS keystore management, see "Configuring the
OPSS Keystore Service for Message Protection" in Administering Web
Services.

TESTED

To manage KSS keystores using the REST API:

1. Create a KSS keystore by performing the following steps:

a. Create a JSON document, createkss.json, that defines the KSS keystore that
you want to create.

The following shows an example of the request document. In this example, the
KSS stripe and keystore names are myStripe and myKeystore, respectively; the
password for the KSS keystore is Passowrd; and the KSS keystore created is
not permission-based.

{
 "stripe" : "myStripe",
 "keystore" : "myKeystore",
 "pwd" : "Password",
 "permission" : "false"
}

For more information about the request attributes, see "POST New KSS
Keystore Method".

b. Using cURL, create a KSS keystore, passing the JSON document defined in
the previous step.

curl -i -X POST -u username:password -H Content-Type:application/json --data
@createkss.json http://myhost:7001/idaas/platform/admin/v1/keystoreservice

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

Chapter 2
Managing KSS Keystores Using the REST API

2-5

For more information, see "POST New KSS Keystore Method".

2. View all KSS keystores for a stripe to confirm the KSS keystore was created.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystoreservice/myStripe

The following shows an example of the response, showing all KSS keystores in
the stripe:

{
 "keystore 1:"myKeystore"
}

For more information, see "GET Stripe KSS Keystores Method".

3. Import a trusted certificate into the KSS keystore by performing the following
steps:

a. Create a JSON document, importkss.json, that defines the details of the
trusted certificate that you want to import into the KSS keystore.

The following shows an example of the request document. In this example, the
KSS keystore is identified by its stripe and keystore names, myStripe and
myKeystore, respectively; the KSS keystore password, Password, is required; the
alias for the key is myAlias; the certificate is defined as a TrustedCertificate;
and keystoreEntry specifies the encrypted certificate contents.

{
 "keyAlias" : "myAlias",
 "keystoreEntry":
"Bese64-encoded certificate",
 "keystoreEntryType" : "TrustedCertificate",
 "keystoreName" : "myKeystore",
 "stripeName" : "myStripe",
 "keystorePassword" : "Password"
}

For more information about the request attributes, see "POST Trusted
Certificate KSS Keystore Method".

b. Using cURL, import a trusted certificate into the KSS keystore, passing the
JSON document defined in the previous step.

curl -i -X POST -u username:password -H Content-Type:application/json --data
@importcertkss.json http://myhost:7001/idaas/platform/admin/v1/
keystoreservice/certificates

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded"
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

For more information, see "POST Trusted Certificate KSS Keystore Method".

4. View the trusted certificate that you just imported into the KSS keystore.

curl -i -X GET -u username:password -H keystorePassword:cHdkMQ== http://myhost:
7001/idaas/platform/admin/v1/keystoreservice/

Chapter 2
Managing KSS Keystores Using the REST API

2-6

certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myAlias&keysto
reEntryType=TrustedCertificate"

You must pass query parameters to define the stripe name, keystore name and
entry type, and alias name associated with the trusted certificate you want to view.

The following shows an example of the response, showing the details of the
trusted certificate.

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Fri Jul 25 02:45:11 PDT 2014",
 "NOT_AFTER":"Thu Oct 23 02:45:11 PDT 2014",
 "SERIAL_NO":"982191050",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "CONTENT":"-----BEGIN CERTIFICATE----- \n
Bese64-encoded certificate\n
-----END CERTIFICATE-----",
 "SIGNATURE":"Bese64-encoded signature key",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false,
value = 329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

For more information, see "GET Trusted Certificate KSS Keystore Method".

5. Delete the KSS keystore.

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ== http://
myhost:7001/idaas/platform/admin/v1/
keystoreservice?"stripeName=myStripe&keystoreName=myKeystore"

You must pass query parameters to define the stripe and keystore name of the
KSS keystore you want to delete. For more information, see "DELETE Keystore
Service KSS Keystore Method".

The following shows an example of the response indicating the request
succeeded.

HTTP/1.1 204 No Content

Managing Token Issuer Trust Using the REST API
You can view and manage token issuer trust using the REST APIs.

The following use case shows you how to:

• View all trusted issuers

• Create a trusted issuer

• Create a token attribute rule

• Delete a trusted issuer

• Create a trust document

Chapter 2
Managing Token Issuer Trust Using the REST API

2-7

Note:

For more information about token issuer trust management, see "Defining
Trusted Issuers and a Trusted DN List for Signing Certificates" in
Administering Web Services.

To manage token issuer trust using the REST API:

1. Create a trusted issuer document.

curl -i -X POST -u username:password http://myhost:7001/idaas/webservice/
admin/v1/trustdocument?"documentName=myTrustDocument&displayName=myTrustDocument"

You must pass query parameters to define the document and display names for
the trusted issuer document.

The following shows an example of the response indicating the request
succeeded.

{
 "STATUS": "Succeeded",
 "Result": "New Token Issuer Trust document named "myTrustDocument" created."
}

For more information, see "POST TrustDocument Name Method".

2. Create the trusted issuers and DN lists, by performing the following steps:

a. Create a JSON document, createtrust.json, that defines the trusted issuers
and distinguished name (DN) lists that you want to create.

The following shows an example of the request document. In this example, the
following types of trusted issuers are created: SAML holder-of-key, SAML
sender vouches, and JSON Web Token (JWT). For each trusted issuer, the
name and DN list is defined.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":

Chapter 2
Managing Token Issuer Trust Using the REST API

2-8

 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

For more information about the request attributes, see "POST Domain Trusted
Issuers and Distinguished Name Lists Method".

b. Using cURL, create the trusted issuers and DN lists, passing the JSON
document defined in step 2.

curl -i -X POST -u username:password --data @createtrust.json -H Content-
Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/
issuers

The following shows an example of the response body indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "POST Domain Trusted Issuers and Distinguished
Name Lists Method".

3. Create a JSON document, createtoken.json, that defines the token attribute rules
for the trusted DN lists.

The following shows an example of the request document. In this example:

• Create a separate "token-attribute-rule" entry for each trusted DN list for
which you want to create a token attribute rule.

• Specify filters for the name-id and user attributes, as required.

For more information about the request attributes, see "POST Token Attribute
Rule Distinguished Name Method (Domain Context)".

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 },
 "attributes":

Chapter 2
Managing Token Issuer Trust Using the REST API

2-9

 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
]
 }
]
 }
}

4. Create the token attribute rules for the trusted DN lists, passing the JSON
document defined in step 4.

curl -i -X POST -u username:password --data @createrule.json http://myhost:7001/
idaas/webservice/admin/v1/trust/token

The following shows an example of the response body indicating the request
succeeded.

{
 "STATUS": "Succeeded"
}

For more information, see "POST Token Attribute Rule Distinguished Name
Method (Domain Context)".

5. View the configuration details for the trusted issuer.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
trustdocument?"documentName=myTrustDocument"

The following shows an example of the response body, showing the configuration
details:

{
 "STATUS":"Succeeded",
 "Result":"List of token issuer trust documents in the Repository:\nDetails
of the document matching your request:\nName : myTrustDocument\tDisplay
Name : myTrustDocument\tStatus : DOCUMENT_STATUS_COMMITED \nList of
trusted issuers for this type:\tNone\nList of Token Attribute Rules\tNone"
}

For more information, see "GET TrustDocument Method ".

6. Delete the trusted issuer document.

curl -i -X DELETE -u username:password http://myhost:7001/idaas/webservice/
admin/v1/trustdocument?"documentName=myTrustDocument&displayName=myTrustDocument"

Chapter 2
Managing Token Issuer Trust Using the REST API

2-10

You must pass query parameters to define the document and display names for
the trusted issuer document that you want to delete. For more information, see
"DELETE Credential Method".

The following example shows the contents of the response body.

{
 "STATUS": "Succeeded",
 "Result": "Token Issuer Trust document named "myTrustDocument" deleted from
the repository."
}

Chapter 2
Managing Token Issuer Trust Using the REST API

2-11

Part II
REST API Reference

You can review details about the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part II contains the following chapters:

• Manage Credentials in the Credential Store

• Manage Java Keystore Keystores

• View and Manage Keystore Service Keystores

• Manage Token Issuer Trust Configurations

• Summary of REST APIs

3
Manage Credentials in the Credential Store

Oracle Web Services Manager (WSM) uses the Credential Store Framework (CSF) to
manage the credentials in a secure form.

Before using the REST API to view and manage the credential store, you need to
understand how to access the REST resources and other important concepts. See
"About the REST API".

For more information about credential store management, see "Configuring the
Credential Store" in Administering Web Services.

This chapter includes the following sections:

• View and Manage the Credential Store Using REST Resources

• POST Credential Method

• GET Credential Method

• PUT Credential Method

• DELETE Credential Method

View and Manage the Credential Store Using REST
Resources

Representational state transfer (REST) resources enable you to view and manage the
credential store.

You can view and manage the credential store using a set of representational state
transfer (REST) resources, as summarized below.

Section Method Resource Path

POST Credential Method POST /idaas/platform/admin/v1/credential

GET Credential Method GET /idaas/platform/admin/v1/credential

PUT Credential Method PUT /idaas/platform/admin/v1/credential

DELETE Credential Method DELETE /idaas/platform/admin/v1/credential

POST Credential Method
Use the POST method to create a new credential in the domain credential store.

REST Request

POST /idaas/platform/admin/v1/credential

3-1

Request Body

Media types for the request or response body: application/json

The request body contains the details of the create request:

Attribute Description Required

"credential" Password for the credential. Yes

"key" Name of the key. Yes

"map" Name of the map (folder). Yes

"username" Username for the credential. Yes

Response Body

Media types for the request or response body: application/json

The response body returns the status of the create operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to create a credential in the credential store by
submitting a POST request on the REST resource using cURL

TESTED

curl -i -X POST -u username:password --data @createcred.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/credential

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "username" : "username",
 "credential" : "credential",
 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

Chapter 3
POST Credential Method

3-2

{
 "STATUS": "Succeeded"
}

GET Credential Method
Use the GET method to view all credentials in the domain credential store.

REST Request

GET /idaas/platform/admin/v1/credential

Response Body

Media types for the request or response body: application/json

The response body contains information about all credentials in the credential store,
including:

Attribute Description

"CSF_MAP_NAME" Name of the credential store map.

"default" List of keys in the default credential map.

"oracle.wsm.security" List of keys in the Oracle Web Services Manager (Oracle WSM)
security credential map.

cURL Example

The following example shows how to view all credentials in a credential store by
submitting a GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
credential

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "CSF_MAP_NAME": "CSF_KEY_NAME",
 "default": "systemuser",
 "oracle.wsm.security": [
 "sign-csf-key",
 "jwt-sign-csf-key",
 "owsmtest.credentials",
 "basic.client.credentials",
 "weblogic-csf-key",
 "enc-csf-key",
 "mykey",
 "dummy-pwd-csf-key",

Chapter 3
GET Credential Method

3-3

 "weblogic-kerberos-csf-key",
 "keystore-csf-key",
 "weblogic-windowsdomain-csf-key",
 "oratest-csf-key",
 "csr-csf-key",
 "invalid-csf-key",
 "ca-signed-sign-csf-key"
]
}

PUT Credential Method
Use the PUT method to update a credential in the domain credential store.

REST Request

PUT /idaas/platform/admin/v1/credential

Request Body

Media types for the request body: application/json

The request body contains the details of the update request:

Attribute Description Required

"credential" Updated password for the key in the
keystore.

Yes

"key" Name of the key that you want to modify.
The key must exist.

Yes

"map" Name of the map (folder) that you want to
modify.

Yes

"username" Username for the key in the keystore. Yes

Response Body

Media types for the response body: application/json

The response body returns the status of the update operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to update a credential in the credential store by
submitting a PUT request on the REST resource using cURL.

TESTED

curl -i -X PUT -u username:password --data @updatecred.json -H Content-
Type:application/json http://myhost:7001/idaas/patform/admin/v1/credential

Chapter 3
PUT Credential Method

3-4

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "username" : "username",
 "credential" : "Password",
 "key" : "mykey",
 "map" : "oracle.wsm.security"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

DELETE Credential Method
Use the Delete method to delete a credential from the domain credential store.

REST Request

DELETE /idaas/platform/admin/v1/credential

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

"key" Name of the key for the credential that you want to
delete.

Query

"map" Name of the map (folder) for the credential that you
want to delete.

Query

Response Body

Media types for the request or response body: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Chapter 3
DELETE Credential Method

3-5

cURL Example

The following example shows how to delete a credential from the credential store by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u username:password http://myhost:7001/idaas/platform/admin/v1/
credential?"key=mykey&map=oracle.wsm.security"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 204 No Content

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Chapter 3
DELETE Credential Method

3-6

4
Manage Java Keystore Keystores

Before using the REST API to view and manage Java Keystore (JKS) keystores within
a domain, you need to understand how to access the REST resources and other
important concepts.

For more information, see "About the REST API".

For information about JKS keystore management, see "Configuring Keystores for
Message Protection" in Administering Web Services.

This chapter includes the following sections:

• View and Manage JKS keystores within a Domain Using REST Resources

• GET All Aliases Trusted Certificate JKS Keystore Method

• POST Specified Alias Trusted Certificate JKS Keystore Method

• POST PKCS#7 Trusted Certificate JKS Keystore Method

• GET Specified Alias Trusted Certificate JKS Keystore Method

• DELETE Trusted Certificate JKS Keystore Method

View and Manage JKS keystores within a Domain Using
REST Resources

Representational state transfer (REST) resources enable you to view and manage
JKS keystores.

You can view and manage JKS keystores within a domain using a set of
representational state transfer (REST) resources, as summarized below.

Task Method Resource Path

GET All Aliases Trusted Certificate
JKS Keystore Method

GET /idaas/platform/admin/v1/keystore

POST Specified Alias Trusted
Certificate JKS Keystore Method

POST /idaas/platform/admin/v1/keystore/{alias}

POST PKCS#7 Trusted Certificate
JKS Keystore Method

POST /idaas/platform/admin/v1/keystore/pkcs7/{alias}

GET Specified Alias Trusted
Certificate JKS Keystore Method

GET /idaas/platform/admin/v1/keystore/{alias}

DELETE Trusted Certificate JKS
Keystore Method

DELETE idaas/platform/admin/v1/keystore/{alias}

4-1

GET All Aliases Trusted Certificate JKS Keystore Method
Use the GET method to get all aliases for the trusted certificate entries in the JKS
keystore.

REST Request

GET /idaas/platform/admin/v1/keystore

Response Body

Media types for the request or response body: application/json

The response body contains the list of aliases:

Attribute Description

"aliases" Comma-separated list of aliases.

cURL Example

The following example shows how to view all aliases for the trusted certificate entries
in the JKS keystore by submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystore

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

TESTED

{
 "aliases":"oratest,orakey,testkey,jkstest,ms-oauthkey"
}

POST Specified Alias Trusted Certificate JKS Keystore
Method

Use the POST method to import a trusted certificate at the specified alias into the JKS
keystore. The certificate must be Base64 encoded.

REST Request

POST /idaas/platform/admin/v1/keystore/{alias}

Chapter 4
GET All Aliases Trusted Certificate JKS Keystore Method

4-2

Parameters

The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the trusted certificate to be imported.

The alias will be created. The alias must not already
exist in the JKS keystore; otherwise, the request will
fail.

Path

Request Body

Media types for the request body: application/json

The request body contains the details of the import request:

Attribute Description

"certificate" Base64-encoded certificate.

"component" Component to which the certificate is imported. This value
must be set to JKS.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

"SUBJECT_DN" Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted certificate into the JKS keystore
by submitting a POST request on the REST resource using cURL.

TESTED

curl -i -X POST -u username:password --data @importjkscert.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystore/mytestkey

Example of Request Body

The following shows an example of the request body in JSON format.

{ "component":"JKS",
 "certificate": "Bese64-encoded certificate"
}

Example of Response Header

Chapter 4
POST Specified Alias Trusted Certificate JKS Keystore Method

4-3

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

POST PKCS#7 Trusted Certificate JKS Keystore Method
Use the POST method to import a PKCS#7 trusted certificate or a certificate chain
associated with a private key indicated by the specified alias into the JKS keystore.

REST Request

POST /idaas/platform/admin/v1/keystore/pkcs7/{alias}

Parameters

The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the private key for which the trusted PKCS#7
certificate will be imported. The alias must already in
the JKS keystore.

Path

Request Body

Media types for the request body: application/json

The request body contains the details of the import request:

Attribute Description

"certificate" Base64-encoded certificate.

"component" Component to which the certificate is imported. This value
must be set to JKS.

"keyPassword" Password for the private key.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

Chapter 4
POST PKCS#7 Trusted Certificate JKS Keystore Method

4-4

Attribute Description

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

"SUBJECT_DN" Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted PKCS#7 certificate into the JKS
keystore by submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @importjkscert.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystore/pkcs7/
myprivatekey

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "component":"JKS",
 "certificate": "Bese64-encoded certificate",
 "keyPassword" : "Password"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

GET Specified Alias Trusted Certificate JKS Keystore
Method

Use to GET method to view details of the trusted certificate at the specified alias in the
JKS keystore.

If the alias specifies a keyStore.TrustedCertificateEntry, the details of the trusted
certificate are returned. If the alias specifies a KeyStore.PrivateKeyEntry, the first
certificate in the trusted certificate chain is returned.

REST Request

GET /idaas/platform/admin/v1/keystore/{alias}

Parameters

The following table summarizes the GET request parameters.

Chapter 4
GET Specified Alias Trusted Certificate JKS Keystore Method

4-5

Name Description Type

alias Name of alias for which you want to view a trusted
certificate.

Path

Response Body

Media types for the request or response body: application/json

The response body contains information about the certificate, including:

Attribute Description

"CONTENT" Contents of the Base64-encoded certificate.

"Extensions" Optional extensions that are used to issue a certificate for a
specific purpose. Each extension includes the following:

• Object identifier (oid) that uniquely identifies it
• Flag indicating whether the extension is critical
• Value

"ISSUER_DN" List of trusted distinguished names.

"NOT_AFTER" Date the certificate expires.

"NOT_BEFORE" Date the certificate is activated.

"SERIAL_NO" Serial number of the JKS keystore.

"SIGNATURE" Base64-encoded signature key.

"SIGNING_ALGORITHM" Signing algorithm for the alias.

"SUBJECT_DN" Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias in the JKS
keystore by submitting a GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystore/mytestkey

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "SUBJECT_DN":"CN=weblogic,OU=Testkey for JKS Mbean
test,O=Oracle,L=testcity,ST=teststate,C=us",
 "ISSUER_DN":"CN=weblogic,OU=Testkey for JKS Mbean
test,O=Oracle,L=testcity,ST=teststate,C=us",
 "NOT_BEFORE":"Tue Jun 25 02:20:38 PDT 2013",
 "NOT_AFTER":"Wed Nov 27 01:20:38 PST 2052",

Chapter 4
GET Specified Alias Trusted Certificate JKS Keystore Method

4-6

 "SERIAL_NO":"1372152038",
 "SIGNING_ALGORITHM":"1.2.840.113549.1.1.5",
 "CONTENT":"-----BEGIN CERTIFICATE-----\n
Bese64-encoded certificate\n
-----END CERTIFICATE-----",
 "SIGNATURE":"Bese64-encoded signature key",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false, value =
329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

DELETE Trusted Certificate JKS Keystore Method
Use the Delete method to delete a trusted certificate
(keyStore.TrustedCertificateEntry) with the specified alias from the JKS keystore. You
cannot delete the keyStore.PrivateKeyEntry.

REST Request

DELETE /idaas/platform/admin/v1/keystore/{alias}

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

alias Alias of the trusted certificate entry to be deleted. Path

Response Body

Media types for the request or response body: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystore/testalias

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Chapter 4
DELETE Trusted Certificate JKS Keystore Method

4-7

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Chapter 4
DELETE Trusted Certificate JKS Keystore Method

4-8

5
View and Manage Keystore Service
Keystores

Before using the REST API to view and manage Keystore Service (KSS) keystores,
you need to understand how to access the REST resources and other important
concepts.

See "About the REST API".

For more information about KSS keystore management, see "Configuring the OPSS
Keystore Service for Message Protection" in Administering Web Services.

This chapter includes the following sections:

• View and Manage KSS keystores Using REST Resources

• POST New KSS Keystore Method

• POST Import KSS Keystore Method

• PUT Password Update KSS Keystore Method

• POST Trusted Certificate KSS Keystore Method

• GET Stripe KSS Keystores Method

• GET Alias KSS Keystore Method

• GET Trusted Certificate KSS Keystore Method

• DELETE Trusted Certificate KSS Keystore Method

• POST Secret Key KSS Keystore

• GET Secret Key Properties KSS Keystore Method

• DELETE Keystore Service KSS Keystore Method

View and Manage KSS keystores Using REST Resources
You can view and manage KSS keystores using a set of representational state
transfer (REST) resources, as summarized below.

Section Method Resource Path

POST New KSS Keystore Method POST /idaas/platform/admin/v1/keystoreservice

POST Import KSS Keystore Method POST /idaas/platform/admin/v1/keystoreservice/keystore

PUT Password Update KSS
Keystore Method

PUT /idaas/platform/admin/v1/keystoreservice

POST Trusted Certificate KSS
Keystore Method

POST /idaas/platform/admin/v1/keystoreservice/certificates

GET Stripe KSS Keystores Method GET /idaas/platform/admin/v1/keystoreservice/{stripeName}

5-1

Section Method Resource Path

GET Alias KSS Keystore Method GET /idaas/platform/admin/v1/keystoreservice/alias/
{stripeName}/{keystoreName}/{entryType}

GET Trusted Certificate KSS
Keystore Method

GET /idaas/platform/admin/v1/keystoreservice/certificates

DELETE Trusted Certificate KSS
Keystore Method

DELETE /idaas/platform/admin/v1/keystoreservice/certificates

POST Secret Key KSS Keystore POST /idaas/platform/admin/v1/keystoreservice/secretkey

GET Secret Key Properties KSS
Keystore Method

GET /idaas/platform/admin/v1/keystoreservice/secretkey

DELETE Keystore Service KSS
Keystore Method

DELETE /idaas/platform/admin/v1/keystoreservice

POST New KSS Keystore Method
Use the POST method to create a new Keystore Service (KSS) Keystore.

REST Request

POST /idaas/platform/admin/v1/keystoreservice

Request Body

Media types for the request or response body: application/json

The request body contains the details of the create request:

Attribute Description

"keystore" Name for the KSS keystore.

"permission" Boolean value that specifies whether to create a permission-
based keystore.

"pwd" Password for the KSS keystore.

"stripe" Name of the stripe to contain the KSS keystore.

Response Body

Media types for the request or response body: application/json

The response body returns the status of the create operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Chapter 5
POST New KSS Keystore Method

5-2

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username:password --data @createkss.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystoreservice

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripe" : "myStripe",
 "keystore" : "myKeystore",
 "pwd" : "Password",
 "permission" : "false"
}

Note:

A password is required unless creating a permission-based keystore
("permission" : "true").

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 201 Created

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

POST Import KSS Keystore Method
Use the POST method to import a Keystore Service (KSS) keystore from a JKS
keystore file.

REST Request

POST /idaas/platform/admin/v1/keystoreservice/keystore

Request Body

Media types for the request body: multipart/form-data

The response body contains information about the import request, including:

Chapter 5
POST Import KSS Keystore Method

5-3

Attribute Description

"keyAliases" Comma-separated list of aliases for the keys to be imported
from the keystoreFile.

"keyPasswords" Comma-separated list of passwords for the keys to be
imported from the keystoreFile.

"keystoreFile" Name of a valid local JKS keystore file

"keystoreName" Name for the JKS keystore.

"keystorePassword" Password for the local keystore file that is being imported and
the keystore entry, if password-protected.

"keystoreType" Keystore type. This value must be set to JKS.

"permission" Boolean value that specifies whether to import as a
permission-based keystore.

"stripeName" Name of the stripe.

Response Body

Media types for the response body: application/json

The response body contains information about the import operation, including:

Attribute Description

"alias n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username:password -H Content-Type:multipart/form-data --form
"stripeName=myStripe" --form "keystoreFile=@clientkeystore" --form
"keystoreName=myKeystore" --form "keystorePassword=Password" --form
"keystoreType=JKS" --form "keyAliases=client" --form "keyPasswords=Password" --form
"permission=false" http://myhost:7001/idaas/platform/admin/v1/keystoreservice/
keystore

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 201 Created

Example of Response Body

The following shows an example of the response body in JSON format.

Chapter 5
POST Import KSS Keystore Method

5-4

{
 "STATUS":"Succeeded",
 "SUCCESS_MSG":"Aliases:client imported successfully",
 "alias 1":"client"
}

PUT Password Update KSS Keystore Method
Use the PUT method to update the password for a Keystore Service (KSS) keystore.

REST Request

PUT /idaas/platform/admin/v1/keystoreservice

Request Body

Media types for the request body: application/json

The response body contains information about the Load Balancer patches, including:

Attribute Description

"keystore" Name of the KSS keystore.

"newpass" New password for the keystore.

"oldpass" Old password for the keystore.

"stripe" Name of the stripe.

Response Body

Media types for the response body: application/json

The response body returns the status of the update operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL.

TESTED

curl -i -X PUT -u username:password --data @updatekss.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystoreservice

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripe" : "myStripe",
 "keystore" : "mykssstore",

Chapter 5
PUT Password Update KSS Keystore Method

5-5

 "oldpass" : "Password",
 "newpass" : "Password"
}

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

POST Trusted Certificate KSS Keystore Method
Use the POST method to Import a trusted certificate into a Keystore Service (KSS)
keystore.

REST Request

POST /idaas/platform/admin/v1/keystoreservice/certificates

Request Body

Media types for the request body: application/json

The response body contains information about the import request, including:

Attribute Description

"keyAlias" Alias for the trusted certificate.

"keystoreEntry" Base64-encoded certificate.

"keystoreEntryType" Keystore entry type. Valid values include: Certificate,
TrustedCertificate, or SecretKey.

"keystoreName" Name of the KSS keystore.

"keystorePassword" Password for the KSS keystore.

"stripeName" Name of the stripe.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Chapter 5
POST Trusted Certificate KSS Keystore Method

5-6

Attribute Description

"SUBJECT_DN" Subject DN list that was imported.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username:password --data @importcertkss.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystoreservice/
certificates

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "keyAlias" : "myAlias",
 "keystoreEntry":
"Bese64-encoded certificate",
 "keystoreEntryType" : "TrustedCertificate",
 "keystoreName" : "myKeystore",
 "stripeName" : "myStripe",
 "keystorePassword" : "Password"
}

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
 "SUBJECT_DN": "CN=y,OU=y,O=y,L=y,ST=y,C=y"
}

GET Stripe KSS Keystores Method
Use the GET method to return all Keystore Service (KSS) keystores for a stripe.

REST Request

GET /idaas/platform/admin/v1/keystoreservice/{stripeName}

Parameters

The following table summarizes the GET request parameters.

Chapter 5
GET Stripe KSS Keystores Method

5-7

Name Description Type

stripeName Name of stripe for which you want to view all KSS
keystores.

Path

Response Body

Media types for the request or response body: application/json

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystoreservice/myStripe

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "keystore 1":"trust",
 "keystore 2":"castore"
}

GET Alias KSS Keystore Method
Use the GET method to view the alias for the Keystore Service (KSS) keystore.

REST Request

GET /idaas/platform/admin/v1/keystoreservice/alias/{stripeName}/{keystoreName}/

{entryType}

Parameters

The following table summarizes the GET request parameters.

Chapter 5
GET Alias KSS Keystore Method

5-8

Name Description Type

entryType Keystore type. Valid values include Certificate,
TrustedCertificate, or SecretKey.

Path

keystoreName Name of the keystore. Path

stripeName Name of the stripe. Path

Response Body

Media types for the request or response body: application/json

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystore aliases in the stripe where n serves as an
index that starts at 1 and is incremented by 1 for each
additional property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
keystoreservice/alias/myStripe/myKeystore/TrustedCertificate

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "keystore 1":"myAlias",
}

GET Trusted Certificate KSS Keystore Method
Use the GET method to view trusted certificates in the Keystore Service (KSS)
keystore. If the keystore is password-protected, you must provide a Base64-encoded
header value for the keystore password.

REST Request

GET /idaas/platform/admin/v1/keystoreservice/certificates

Parameters

The following table summarizes the GET request parameters.

Chapter 5
GET Trusted Certificate KSS Keystore Method

5-9

Name Description Type

keyAlias Alias for trusted certificate. Query

keystoreEntryType Type of keystore entry. Valid values include
Certificate, TrustedCertificate, or
CertificateChain.

Query

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

Response Body

Media types for the request or response body: application/json

The response body contains information about the certificate, including:

Attribute Description

"CONTENT" Contents of the Base64-encoded certificate.

"Extensions" Optional extensions that are used to issue a certificate for a
specific purpose. Each extension includes the following:

• Object identifier (oid) that uniquely identifies it
• Flag indicating whether the extension is critical
• Set of values

"ISSUER_DN" List of trusted distinguished names.

"NOT_AFTER" Date the certificate expires.

"NOT_BEFORE" Date the certificate is activated.

"SERIAL_NO" Serial number of the JKS keystore.

"SIGNATURE" Base64-encoded signature key.

"SIGNING_ALGORITHM" Signing algorithm for the alias.

"SUBJECT_DN" Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password -H keystorePassword:password http://myhost:7001/
idaas/platform/admin/v1/keystoreservice/
certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=client&keystoreEnt
ryType=Certificate"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

Chapter 5
GET Trusted Certificate KSS Keystore Method

5-10

{
 "SUBJECT_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "ISSUER_DN":"CN=y,OU=y,O=y,L=y,ST=y,C=y",
 "NOT_BEFORE":"Fri Jul 25 02:45:11 PDT 2014",
 "NOT_AFTER":"Thu Oct 23 02:45:11 PDT 2014",
 "SERIAL_NO":"982191050",
 "SIGNING_ALGORITHM":"1.2.840.10040.4.3",
 "CONTENT":"-----BEGIN CERTIFICATE----- \n
Bese64-encoded certificate\n
-----END CERTIFICATE-----",
 "SIGNATURE":"Bese64-encoded signature key",
 "Extensions":"{subjectKeyIDExtension {oid = 2.5.29.14 critical = false, value =
329b98f6b6225e92ca52513d3bfc43ee02aa9121}}"
}

DELETE Trusted Certificate KSS Keystore Method
Use the Delete method to delete a certificate from a Keystore Service (KSS) keystore.
If the keystore is password-protected, you must provide Base64-encoded header
values for the keystore and key passwords.

REST Request

DELETE /idaas/platform/admin/v1/keystoreservice/certificates

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

keyAlias Alias for the certificate in the KSS keystore. Query

keystoreName Name of the keystore. Query

stripeName Name of stripe. Query

Response Body

Media types for the request or response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

Chapter 5
DELETE Trusted Certificate KSS Keystore Method

5-11

curl -i -X DELETE -u username:password -H keystorePassword:cHdkMQ== -H
keyPassword:bXlQd2Qy http://myhost:7001/idaas/platform/admin/v1/keystoreservice/
certificates?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myAlias"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

POST Secret Key KSS Keystore
Use the POST method to create a secret key used in symmetric encryption/decryption
for a KSS keystore.

REST Request

POST /idaas/platform/admin/v1/keystoreservice/secretkey

Request Body

Media types for the request body: application/json

The request body contains the details of the create request:

Attribute Description

"algorithm" Controls the cryptographic characteristics of the algorithms
that are used when securing messages.

"keyAlias" Alias for the secret key.

"keyPassword" Password for the secret key.

"keySize" Size measured in bits of the of the key used in cryptographic
algorithm.

"keystoreName" Name for the KSS keystore.

"keystorePassword" Password for the KSS keystore.

"stripeName" Name of the stripe.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

Chapter 5
POST Secret Key KSS Keystore

5-12

Attribute Description

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to create a secret key by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username:password --data @secretkey.json -H Content-
Type:application/json http://myhost:7001/idaas/platform/admin/v1/keystoreservice/
secretkey

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "stripeName" : "myStripe",
 "keystoreName" : "myKeystore",
 "keyAlias" : "myKeyAlias",
 "keySize" : "56",
 "algorithm" : "DES",
 "keystorePassword" : "Password",
 "keyPassword" : "Password"
}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

GET Secret Key Properties KSS Keystore Method
Use the GET method to view the secret key properties for a KSS keystore. If the
keystore is password-protected, you must provide Base64-encoded header values for
the keystore and key passwords.

REST Request

GET /idaas/platform/admin/v1/keystoreservice/secretkey

Chapter 5
GET Secret Key Properties KSS Keystore Method

5-13

Parameters

The following table summarizes the GET request parameters.

Name Description Type

keyAlias Alias of the secret key. Query

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

Response Body

Media types for the request or response body: application/json

The response body contains information about the certificate, including:

Attribute Description

"Property n" List of secret key properties, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u username:password -H keystorePassword:password -H
keyPassword:password http://myhost:7001/idaas/platform/admin/v1/keystoreservice/
secretkey?"stripeName=myStripe&keystoreName=myKeystore&keyAlias=myKeyAlias"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "Property 1":"DES"
}

DELETE Keystore Service KSS Keystore Method
Use the Delete method to delete a Keystore Service (KSS) keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the
keystore password.

REST Request

DELETE /idaas/platform/admin/v1/keystoreservice

Chapter 5
DELETE Keystore Service KSS Keystore Method

5-14

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

keystoreName Name of the keystore. Query

stripeName Name of the stripe. Query

Response Body

Media types for the request or response body: application/json

The response body returns the status of the delete operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u username:password -H keystorePassword:password http://myhost:
7001/idaas/platform/admin/v1/
keystoreservice?"stripeName=myStripe&keystoreName=myKeystore"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 204 No Content

Chapter 5
DELETE Keystore Service KSS Keystore Method

5-15

6
Manage Token Issuer Trust Configurations

Before using the REST API to view and manage token issuer trust configurations, you
need to understand how to access the REST resources and other important concepts.

For more information, see "About the REST API".

For more information about token issuer trust management, see "Defining Trusted
Issuers and a Trusted DN List for Signing Certificates" in Administering Web Services.

This chapter includes the following sections:

• View and Manage Token Issuer Trust Configurations Using REST Resources

• POST TrustDocument Name Method

• POST Domain Trusted Issuers and Distinguished Name Lists Method

• POST Document Trusted Issuers and Distinguished Name Lists Method

• GET All Trusted Issuer and Distinguished Name Lists Method

• GET Specified Document Trusted Issuer and Distinguished Name Lists Method

• POST Token Attribute Rule Distinguished Name Method (Domain Context)

• POST Token Attribute Rule Distinguished Name Method (Document Context)

• GET All Token Attribute Rules Method

• GET Specified Document Token Attribute Rules Method

• Import TrustDocument Name Configurations Method

• Export TrustDocument Name Configurations Method

• Import Global Discovery Configuration

• GET TrustDocument Method

• DELETE Trust Document Method

• Import Federation Metadata Document Method

• Export Federation Metadata Document Method

• Revoke Federation Metadata Document Method

• POST Virtual User for a DN

• Get Virtual User for a DN

• One Paas — One Token Trust

• Enabling and Disabling Token Issuer Trust

• Import TrustDocument Name Configurations Method

• Import JWK Document Trust Configurations

• Revoke JWK Trust Configurations

• Import WSM Discovery Metadata Trust Configurations

6-1

• Revoke WSM Discovery Metadata Trust Configurations

View and Manage Token Issuer Trust Configurations Using
REST Resources

You can view and manage token issuer trust configurations using a set of
representational state transfer (REST) resources, as summarized below.

Section Method Resource Path

POST TrustDocument Name Method POST /idaas/webservice/admin/v1/trustdocument

POST Domain Trusted Issuers and
Distinguished Name Lists Method

POST /idaas/webservice/admin/v1/trust/issuers

POST Document Trusted Issuers and
Distinguished Name Lists Method

POST /idaas/webservice/admin/v1/trust/issuers

GET All Trusted Issuer and
Distinguished Name Lists Method

GET /idaas/webservice/admin/v1/trust/issuers

GET Specified Document Trusted
Issuer and Distinguished Name Lists
Method

GET /idaas/webservice/admin/v1/trust/issuers

POST Token Attribute Rule
Distinguished Name Method (Domain
Context)

POST /idaas/webservice/admin/v1/trust/token

POST Token Attribute Rule
Distinguished Name Method
(Document Context)

POST
/idaas/webservice/admin/v1/trust/token

GET All Token Attribute Rules
Method

GET /idaas/webservice/admin/v1/trust/token

GET Specified Document Token
Attribute Rules Method

GET
/idaas/webservice/admin/v1/trust/token

Import TrustDocument Name
Configurations Method

POST /idaas/webservice/admin/v1/trustdocument/import

Export TrustDocument Name
Configurations Method

GET /idaas/webservice/admin/v1/trustdocument/export

Import Global Discovery Configuration
POST /idaas/webservice/admin/v1/trustdocument/import

GET TrustDocument Method GET /idaas/webservice/admin/v1/trustdocument

DELETE Trust Document Method DELETE /idaas/webservice/admin/v1/trustdocument

Import Federation Metadata
Document Method

POST /idaas/webservice/admin/v1/federation/import

Export Federation Metadata
Document Method

POST /idaas/webservice/admin/v1/federation/export

Revoke Federation Metadata
Document Method

POST /idaas/webservice/admin/v1/federation/revoke

POST Virtual User for a DN POST /idaas/webservice/admin/v1/trust/token

GET Virtual User for a DN GET /idaas/webservice/admin/v1/trust/token

One Paas — One Token Trust POST /idaas/webservice/admin/v1/trust/token

Chapter 6
View and Manage Token Issuer Trust Configurations Using REST Resources

6-2

Section Method Resource Path

Enabling and Disabling Token Issuer
Trust

POST /idaas/webservice/admin/v1/trust/issuers

Import JWK Document Trust
Configurations

PUT /idaas/webservice/admin/v1/federation/jwk/import

Revoke JWK Trust Configurations PUT /idaas/webservice/admin/v1/federation/jwk/revoke

Import WSM Discovery Metadata
Trust Configurations

PUT /idaas/webservice/admin/v1/federation/
discoverymetadata/import

Revoke WSM Discovery Metadata
Trust Configurations

PUT /idaas/webservice/admin/v1/federation/
discoverymetadata/revoke

POST TrustDocument Name Method
Use the Post method to create a trusted issuer document.

REST Request

POST /idaas/webservice/admin/v1/trustdocument

Parameters

The following table summarizes the POST request parameters.

Name Description Type

"displayName" Display name for the document. Query

"documentName" Name of the document. Query

Response Body

Media types for the request or response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

The following example shows how to create a trusted issuer document by submitting a
POST request on the REST resource using cURL.

Chapter 6
POST TrustDocument Name Method

6-3

curl -i -X POST -u username:password http://myhost:7001/idaas/webservice/admin/v1/
trustdocument?"documentName=myTrustDocument&displayName=myTrustDocument"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "Result": "New Token Issuer Trust document named "myTrustDocument" created."
}

POST Domain Trusted Issuers and Distinguished Name
Lists Method

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a domain context (that is, it applies to the entire domain).

REST Request

POST /idaas/webservice/admin/v1/trust/issuers

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the trusted
issuer. For each DN, use a string that
conforms to RFC 2253, as described at the
following URL: http://www.ietf.org/rfc/
rfc2253.txt

Yes

"issuer" Groups information about a trusted issuer. Yes

"-name" Name of the trusted issuer. For example,
www.example.com. The default value for the
predefined SAML client policies is
www.oracle.com.

Yes

"jwt-trusted-dns" Groups information about JSON Web
Token (JWT) trusted issuers.

No

"saml-hok-trusted-dns" Groups information about SAML holder-of-
key trusted issuers.

No

"saml-sv-trusted-dns" Groups information about SAML sender
vouches trusted issuers.

No

"saml-trusted-dns" Groups the trusted issuers and DN lists. Yes

Chapter 6
POST Domain Trusted Issuers and Distinguished Name Lists Method

6-4

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

The following example shows how to create a trusted issuers and DN lists by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @createtrust.json -H Content-
Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/issuers

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

Chapter 6
POST Domain Trusted Issuers and Distinguished Name Lists Method

6-5

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
}

POST Document Trusted Issuers and Distinguished Name
Lists Method

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a document context (that is, it applies to a specified document).
The trusted issuers will be stored in the specified trusted issuers document.

REST Request

POST /idaas/webservice/admin/v1/trust/issuers/{documentName}

Parameters

The following table summarizes the POST request parameters.

Name Description Type

documentName Name of trusted issuer document. For information
about creating a trusted issuer document, see "POST
TrustDocument Name Method".

Query

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the trusted
issuer. For each DN, use a string that
conforms to RFC 2253, as described at the
following URL: http://www.ietf.org/rfc/
rfc2253.txt

Yes

"issuer" Groups information about a trusted issuer. Yes

"-name" Name of the trusted issuer. For example,
www.example.com. The default value for the
predefined SAML client policies is
www.oracle.com.

Yes

"jwt-trusted-dns" Groups information about JSON Web
Token (JWT) trusted issuers.

No

Chapter 6
POST Document Trusted Issuers and Distinguished Name Lists Method

6-6

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Attribute Description Required

"saml-hok-trusted-dns" Groups information about SAML holder-of-
key trusted issuers.

No

"saml-sv-trusted-dns" Groups information about SAML sender
vouches trusted issuers.

No

"saml-trusted-dns" Groups the trusted issuers and DN lists. Yes

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

The following example shows how to create trusted issuers and DN lists by submitting
a POST request on the REST resource using cURL

curl -i -X POST -u username:password --data @createtrust.json -H Content-
Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/issuers/
mydocument

Example of Request Body

The following shows an example of the request body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },

Chapter 6
POST Document Trusted Issuers and Distinguished Name Lists Method

6-7

 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
}

GET All Trusted Issuer and Distinguished Name Lists
Method

Use the GET method to view a trusted issuer and its distinguished name (DN) lists for
all domain documents.

REST Request

GET /idaas/webservice/admin/v1/trust/issuers

Response Body

Media types for the request or response body: application/json

The response body contains information about the trusted issuer and DN lists,
including:

Attribute Description

"dn" List of DN values to be added to the trusted issuer.

"issuer" Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns" Groups information about JSON Web Token (JWT) trusted
issuers.

"saml-hok-trusted-dns" Groups information about SAML holder-of-key trusted
issuers.

"saml-sv-trusted-dns" Groups information about SAML sender vouches trusted
issuers.

"saml-trusted-dns" Groups the DN lists.

Chapter 6
GET All Trusted Issuer and Distinguished Name Lists Method

6-8

cURL Example

TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/trust/
issuers

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

Chapter 6
GET All Trusted Issuer and Distinguished Name Lists Method

6-9

GET Specified Document Trusted Issuer and Distinguished
Name Lists Method

Use the GET method to view a trusted issuer and its distinguished name (DN) lists
based on the document name provided.

REST Request

GET /idaas/webservice/admin/v1/trust/issuers/{documentName}

Parameters

The following table summarizes the GET request parameters.

Name Description Type

documentName Name of document for which you want to view issuer
and DN lists.

Path

Response Body

Media types for the request or response body: application/json

The response body contains information about the trusted issuer and DN lists,
including:

Attribute Description

"dn" List of DN values to be added to the trusted issuer.

"issuer" Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns" Groups information about JSON Web Token (JWT) trusted
issuers.

"saml-hok-trusted-dns" Groups information about SAML holder-of-key trusted
issuers.

"saml-sv-trusted-dns" Groups information about SAML sender vouches trusted
issuers.

"saml-trusted-dns" Groups the DN lists.

cURL Example

TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/trust/
issuers/mydocument

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Chapter 6
GET Specified Document Trusted Issuer and Distinguished Name Lists Method

6-10

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls1",]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["wls2",]
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US",]
 }
]
 }
 }
}

POST Token Attribute Rule Distinguished Name Method
(Domain Context)

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a domain context (that is, it applies to the entire domain). This operation can
be performed by the REST service or client. Only token attribute mapping is supported
on the client side.

REST Request

POST /idaas/webservice/admin/v1/trust/token

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

6-11

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL: http://www.ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host or http(s)://host/root. For example, if
you set this value to https://example.com/, then the
attribute rule applies to all service invocations with the
service URL of the form https://example.com/<path>

"filter" Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.

"mapping" Defines the mapping attributes for trusted users.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN can
assert.

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

6-12

http://www.ietf.org/rfc/rfc2253.txt

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @createrule.json http://myhost:7001/
idaas/webservice/admin/v1/trust/token

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 },
 "attributes":
 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
]
 }
]
 }
}

Example of Request Body - Client Side

The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

6-13

 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

POST Token Attribute Rule Distinguished Name Method
(Document Context)

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a document context (that is, it applies to a specified document). This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

POST /idaas/webservice/admin/v1/trust/token/{documentName}

Parameters

The following table summarizes the POST request parameters.

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

6-14

Name Description Type

documentName Name of document for which you want to create a token
attribute rule.

Path

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL: http://www.ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host or http(s)://host/root. For example, if
you set this value to https://example.com/, then the
attribute rule applies to all service invocations with the
service URL of the form https://example.com/<path>

"filter" Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.

"mapping" Defines the mapping attributes for trusted users.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN can
assert.

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

6-15

http://www.ietf.org/rfc/rfc2253.txt

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @createrule.json http://myhost:7001/
idaas/webservice/admin/v1/trust/token/mydocument

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 },
 "attributes":
 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

6-16

]
 }
]
 }
}

Example of Request Body - Client Side

The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded"
}

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

6-17

GET All Token Attribute Rules Method
Use the GET method to view all token attribute rules for a domain context (applies to
entire domain). This operation can be performed by the REST service or client. Only
token attribute mapping is supported on the client side.

REST Request

GET /idaas/webservice/admin/v1/trust/token

Response Body

Media types for the request or response body: application/json

The response body contains information about all token attribute rules, including:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL: http://
www.ietf.org/rfc/rfc2253.txt

On the client side, URL specified using the following
format: http(s)://host or http(s)://host/root

"filter" Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as yourTrusted*. If you
specify multiple attribute filters, each filter should be
separated by a comma.

"mapping" Defines the mapping attributes for trusted users.

Note: This attribute is not applicable on the client side.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN can
assert.

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

Chapter 6
GET All Token Attribute Rules Method

6-18

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

cURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in
review.

The following example shows how to view all token attribute rules by submitting a GET
request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/trust/
token

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "attributes":
 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
],
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 }
 }

Chapter 6
GET All Token Attribute Rules Method

6-19

]
 }
}

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

GET Specified Document Token Attribute Rules Method
Use the GET method to view token attribute rules for a specified document. This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

GET /idaas/webservice/admin/v1/trust/token/{documentName}

Parameters

The following table summarizes the GET request parameters.

Name Description Type

documentName Name of document for which you want to view token
attribute rules.

Path

Chapter 6
GET Specified Document Token Attribute Rules Method

6-20

Response Body

Media types for the request or response body: application/json

The response body contains information about all token attribute rules for the
document, including:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL: http://
www.ietf.org/rfc/rfc2253.txt

On the client side, URL specified using the following
format: http(s)://host or http(s)://host/root

"filter" Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as yourTrusted*. If you
specify multiple attribute filters, each filter should be
separated by a comma.

"mapping" Defines the mapping attributes for trusted users.

Note: This attribute is not applicable on the client side.

"-name" Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"name-id" Defines the users that are accepted for the trusted DN.

"token-attribute-rule" Groups information about a single token attribute rule.

"tokn-attribute-rules" Groups information about all token attribute rules.

"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mapping-attribute" Defines the user mapping attribute that the trusted DN can
assert.

"value" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "yourTrusted*". Multiple values
must be separated by a comma.

cURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in
review.

The following example shows how to view all token attribute rules by submitting a GET
request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/trust/
token/mydocument

Example of Response Header

The following shows an example of the response header.

Chapter 6
GET Specified Document Token Attribute Rules Method

6-21

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

HTTP/1.1 200 OK

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "cn=orcladmin,o=oracle",
 "attributes":
 [
 {
 "-name": "tenant1",
 "attribute":
 {
 "filter":
 {
 "value": [
 "filter1",
 "filter2"
]
 },
 "mapping":{
 "user-attribute": "val1",
 "user-mapping-attribute":"val2"
 }
 }
 }
],
 "name-id":{
 "filter":
 {
 "value":["filter1"]
 },
 "mapping":
 {
 "user-attribute": "val3",
 "user-mapping-attribute":"val4"
 }
 }
 }
]
 }
}

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/",

Chapter 6
GET Specified Document Token Attribute Rules Method

6-22

 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"mail"
 }
 },
 }
]
 "token-attribute-rule":
 [
 {
 "-dn": "https://example.com/mysvcInstance1-acme/",
 "name-id":{
 "mapping":
 {
 "user-mapping-attribute":"uid"
 }
 },
 }
]
 }
}

Import TrustDocument Name Configurations Method
Use the POST method to import trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

POST /idaas/webservice/admin/v1/trustdocument/import

Request Body

Media types for the request body: application/xml and application/JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the oratrust:name element.

Request body in xml format:

<?xml version="1.0" encoding="UTF-8"?>
<ns0:TokenIssuerTrust xmlns:ns0="http://xmlns.oracle.com/wsm/security/trust"
ns0:name="owsm" ns0:displayName="owsm">
 <ns0:Issuers>
 <ns0:Issuer ns0:name="www.oracle.com" ns0:tokentype="saml.sv"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="x509certificate" ns0:valuetype="dn"
ns0:enabled="true">alice2</ns0:KeyIdentifier>
 </ns0:TrustedKeys>
 </ns0:Issuer>
 <ns0:Issuer ns0:name="www.example.com" ns0:tokentype="saml.hok"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="x509certificate" ns0:valuetype="dn"
ns0:enabled="true">bob</ns0:KeyIdentifier>
 </ns0:TrustedKeys>
 </ns0:Issuer>

Chapter 6
Import TrustDocument Name Configurations Method

6-23

 <ns0:Issuer ns0:name="https://identity.oraclecloud.com/" ns0:tokentype="jwt"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">orakey_jwk</ns0:KeyIdentifier>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">orakey</ns0:KeyIdentifier>
 <ns0:Keys ns0:type="jwk" ns0:trust="idcs.jwk.jwt"></ns0:Keys>
 </ns0:TrustedKeys>
 <ns0:TrustedRP>
 <ns0:RP ns0:type="literal">client</ns0:RP>
 </ns0:TrustedRP>
 <ns0:DiscoveryInfo>
 <ns0:DiscoveryURL>https://www.example.com/.well-known/openid-
configuration</ns0:DiscoveryURL>
 <ns0:IdcsClientCsfKey>idcs-orakey</ns0:IdcsClientCsfKey>
 </ns0:DiscoveryInfo>
 </ns0:Issuer>
 <ns0:Issuer ns0:name="https://accounts.example.com" ns0:tokentype="jwt"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">3b0fc11962ad16e49d55a26816c5ad0d3f6b8a83</ns0:KeyIdentifier>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">19e8b40cf03c4cf1ec545f01ec8c51a6f46ab455</ns0:KeyIdentifier>
 <ns0:mdURL>https://www.exampleapis.com/oauth2/v3/certs</ns0:mdURL>
 <ns0:Keys ns0:type="jwk" ns0:trust="jwk.jwt"
ns0:refreshInterval="2000"></ns0:Keys>
 </ns0:TrustedKeys>
 <ns0:TrustedRP>
 <ns0:RP ns0:type="literal">client</ns0:RP>
 </ns0:TrustedRP>
 </ns0:Issuer>
 </ns0:Issuers>
 <ns0:TokenAttributeRules>
 <ns0:TokenAttributeRule ns0:issuer="https://accounts.example.com">
 <ns0:NameId ns0:name="name-id">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val3</ns0:user-attribute>
 <ns0:user-mapping-attribute>val4</ns0:user-mapping-attribute>
 </ns0:Mapping>
 </ns0:NameId>
 <ns0:Proxy>
 <ns0:ProxyHost>www-proxy.us.oracle.com</ns0:ProxyHost>
 <ns0:ProxyPort>80</ns0:ProxyPort>
 </ns0:Proxy>
 </ns0:TokenAttributeRule>
 <ns0:TokenAttributeRule ns0:identifier="cn=user,o=oracle"
ns0:issuer="https://identity.oraclecloud.com/">
 <ns0:NameId ns0:name="name-id">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val3</ns0:user-attribute>
 <ns0:user-mapping-attribute>val4</ns0:user-mapping-attribute>

Chapter 6
Import TrustDocument Name Configurations Method

6-24

 </ns0:Mapping>
 </ns0:NameId>
 <ns0:Attributes>
 <ns0:Attribute ns0:name="user.tenant.name">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val1</ns0:user-attribute>
 <ns0:user-mapping-attribute>val2</ns0:user-mapping-attribute>
 </ns0:Mapping>
 </ns0:Attribute>
 </ns0:Attributes>
 <ns0:VirtualUser ns0:enabled="true">
 <ns0:DefaultRoles>
 <ns0:Role>defRole1</ns0:Role>
 <ns0:Role>defRole2</ns0:Role>
 </ns0:DefaultRoles>
 <ns0:TokenRoleAttributes>
 <ns0:AttributeName>displayname</ns0:AttributeName>
 </ns0:TokenRoleAttributes>
 <ns0:TokenRoleMapping>
 <ns0:RoleMapping>
 <ns0:TokenRole>TestUser</ns0:TokenRole>
 <ns0:MappingRole>manager</ns0:MappingRole>
 <ns0:MappingRole>executer</ns0:MappingRole>
 </ns0:RoleMapping>
 </ns0:TokenRoleMapping>
 </ns0:VirtualUser>
 </ns0:TokenAttributeRule>
 </ns0:TokenAttributeRules>
</ns0:TokenIssuerTrust>

Request body in JSON format:

{
 "name": "test",
 "displayname": "test",
 "issuers":
 [
 {
 "issuer": "www.oracle.com",
 "enabled": "true",
 "tokentype": "saml.sv",
 "trustedkeys":
 {
 "keyidentifiers":
 [
 {
 "keytype": "x509certificate",
 "valuetype": "dn",
 "enabled": "true",
 "value": "alice2"
 }
]
 }
 },
 {
 "issuer": "www.example.com",
 "enabled": "true",

Chapter 6
Import TrustDocument Name Configurations Method

6-25

 "tokentype": "saml.hok",
 "trustedkeys":
 {
 "keyidentifiers":
 [
 {
 "keytype": "x509certificate",
 "valuetype": "dn",
 "enabled": "true",
 "value": "bob"
 }
]
 }
 },
 {
 "issuer": "https://identity.oraclecloud.com/",
 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "trust": "idcs.jwk.jwt",
 "keyidentifiers":
 [
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "orakey_jwk"
 },
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "orakey"
 }
]
 },
 "relyingparty":
 [
 {
 "type": "literal",
 "value": "client"
 }
],
 "discovery":
 {
 "discovery_uri": "https://www.example.com/.well-known/openid-
configuration",
 "idcs-client-csf-key": "idcs-orakey"
 }
 },
 {
 "issuer": "https://accounts.example.com",
 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "jwk_uri": "https://www.exampleapis.com/oauth2/v3/certs",
 "trust": "jwk.jwt",
 "refreshinterval": "2000",
 "keyidentifiers":

Chapter 6
Import TrustDocument Name Configurations Method

6-26

 [
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "3b0fc11962ad16e49d55a26816c5ad0d3f6b8a83"
 },
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "19e8b40cf03c4cf1ec545f01ec8c51a6f46ab455"
 }
]
 },
 "relyingparty":
 [
 {
 "type": "literal",
 "value": "client"
 }
]
 }
],
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "issuer": "https://accounts.example.com",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "proxy" : {
 "host": "www-proxy.us.oracle.com",
 "port" : "80"
 }
 },
 {
 "-dn": "cn=user,o=oracle",
 "issuer": "https://identity.oraclecloud.com/",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",

Chapter 6
Import TrustDocument Name Configurations Method

6-27

 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "attributes":
 [
 {
 "-name": "user.tenant.name",
 "attribute":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val2",
 "user-attribute": "val1"
 }
 }
 }
],
 "virtual-user":
 {
 "enabled": "true",
 "default-roles":
 {
 "role":
 [
 "defRole1",
 "defRole2"
]
 },
 "token-role-attributes":
 {
 "attribute-name":
 [
 "displayname"
]
 },
 "token-role-mapping":
 {
 "role-mapping":
 [
 {
 "token-role": "TestUser",
 "mapping-role":
 [
 "manager",
 "executer"
]
 }

Chapter 6
Import TrustDocument Name Configurations Method

6-28

]
 }
 }
 }
]
 }
}

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Element Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to view all certificates for an alias by submitting a
POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @import.xml -H Content-Type:application/
xml -H Accept:application/json http://myhost:7001/idaas/platform/admin/v1/
trustdocument/import

Export TrustDocument Name Configurations Method
Use the GET method to export trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

GET/idaas/webservice/admin/v1/trustdocument/export

Request Body

Media types for the request body: application/xml and application/JSON

The request body contains the details of the export request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the oratrust:name element.

Request body in JSON format:

{
 "name": "owsm",
 "displayname": "owsm",
 "issuers": [
 {
 "issuer": "https://identity.oraclecloud.com/",
 "enabled": "true",
 "tokentype": "jwt",

Chapter 6
Export TrustDocument Name Configurations Method

6-29

 "trustedkeys":
 {
 "trust": "idcs.jwk.jwt" ,
 "refreshinterval" : "2000"
 },
 "discovery":
 {
 "base_uri":"https://identity.c9dev0.oc9qadev.com/",
 "idcs-client-csf-key": "idcs-orakey",
 "idcs-client-tenant":"owsm"
 }
 },
 {
 "issuer": "https://identity.oraclecloud.com/",
 "tenant": "owsm",
 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "trust": "idcs.jwk.jwt",
 "refreshinterval" : "2000",
 "keyidentifiers":
 [
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "SIGNING_KEY"
 }
]
 },
 "discovery":
 {
 "discovery_uri":"https://owsm.identity.c9dev0.oc9qadev.com/.well-
known/openid-configuration", "idcs-client-csf-key": "idcs-
orakey",
 "idcs-client-tenant":"owsm"}
 }
]
 ,
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "issuer": "https://identity.oraclecloud.com/",
 "tenant": "owsm",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"

Chapter 6
Export TrustDocument Name Configurations Method

6-30

 }
 }
 }
]
 }
}

Note:

• The base_uri is defined as https://identity.c9dev0.oc9qadev.com/

• The idcs-client-csf-key is the csf key of the client with cross tenant role.

• The idcs-client-tenant is the tenant of the above client.

Response Body

Media types for the response body: application/xml and application/JSON

The response body returns the status of the export operation, including:

Element Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Import Global Discovery Configuration
The Global Discovery Configuration uses the POST method to configure discovery
settings globally instead of doing it for individual tenants. At runtime these global
settings are used to fetch JWK keys for tenants.

REST Request

POST/idaas/webservice/admin/v1/trustdocument/import

Request Body

Media types for the request body: application/xml and application/JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the oratrust:name element.

Request body in JSON format:

{
 "name": "owsm",
 "displayname": "owsm",
 "issuers": [
 {
 "issuer": "https://identity.oraclecloud.com/",

Chapter 6
Import Global Discovery Configuration

6-31

 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "trust": "idcs.jwk.jwt",
 "refreshinterval" : "2000"
 },
 "discovery":
 {
 "base_uri": "https://identity.c9dev0.oc9qadev.com/",
 "idcs-client-csf-key": "idcs-orakey",
 "idcs-client-tenant":"owsm"
 }
 }
]
}

Note:

• The base_uri is defined as https://identity.c9dev0.oc9qadev.com/

• The idcs-client-csf-key is the csf key of the client with cross tenant role.

• The idcs-client-tenant is the tenant of the above client.

Response Body

Media types for the response body: application/xml and application/JSON

The response body returns the status of the import operation, including:

Element Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

GET TrustDocument Method
Use the GET method to view configuration details for the trusted issuer document.

REST Request

GET /idaas/webservice/admin/v1/trustdocument

Parameters

The following table summarizes the POST request parameters.

Name Description Type

"documentName" Name of the document. Query

Chapter 6
GET TrustDocument Method

6-32

Response Body

Media types for the request or response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to view all token attribute rules by submitting a GET
request on the REST resource using cURL.

curl -i -X GET -u username:password http://myhost:7001/idaas/platform/admin/v1/
trustdocument?"documentName=myTrustDocument"

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS":"Succeeded",
 "Result":"List of token issuer trust documents in the Repository:\nDetails of
the document matching your request:\nName : myTrustDocument\tDisplay Name :
myTrustDocument\tStatus : DOCUMENT_STATUS_COMMITED \nList of trusted issuers
for this type:\tNone\nList of Token Attribute Rules\tNone"
}

DELETE Trust Document Method
Use the Delete method to delete a trusted issuer document.

REST Request

DELETE /idaas/webservice/admin/v1/trustdocument

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

"displayName" Display name for the document. Query

"documentName" Name of trusted issuer document. Query

Chapter 6
DELETE Trust Document Method

6-33

Response Body

Media types for the request or response body: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

TESTED

The following example shows how to delete a SAML issuer trust document by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u username:password http://myhost:7001/idaas/webservice/admin/v1/
trustdocument?"documentName=myTrustDocument&displayName=myTrustDocument"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

{
 "STATUS": "Succeeded",
 "Result": "Token Issuer Trust document named "myTrustDocument" deleted from the
repository."
}

Import Federation Metadata Document Method
Use the POST method to import the signing certificate (federation metadata
document) and configure the WS-Trust for the Relying Party (RP-STS) in OWSM.

REST Request

POST /idaas/webservice/admin/v1/federation/import

Request Body

Method: POST

Content Type: multipart/form-data

Chapter 6
Import Federation Metadata Document Method

6-34

Parameters

The following table summarizes the POST request parameters.

Name Description Required?

name-id-
attribute

The name of the attribute to assert in case the name ID
maps to non standard attribute.

Optional

user-attribute The name of the local user attribute to the value of the
corresponding attribute.

Optional

user-mapping-
attribute

The name of the local user attribute to be mapped. Optional

filter List of filter values to be set for the attribute. Each value
can be an exact value.

Optional

metadata-file Location of the federation metadata file. This can be an
Web URL or file system path.

Example: https://<host:port>/FederationMetadata/
2007-06/FederationMetadata.xml

Required

Response Body

Content Type: application/json

The response body returns the status of the import operation:

Attribute Description

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the error
message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Export Federation Metadata Document Method
Use the POST method to generate the signed or unsigned federation document for the
Identity Provider STS (IP-STS) or Service Provider (SP).

Rest Request

POST /idaas/webservice/admin/v1/federation/export

Request Body

Method: POST

Content Type: application/json

Parameters

The following table summarizes the export request parameters.

Chapter 6
Export Federation Metadata Document Method

6-35

Name Description Required?

metadata-type Type of metadata document to create. For example,
IDP (Identify Provider) or SP (Service Provider).

Required

issuer Name of the issuer.

For IDP, you must specify the host name. For
example: www.example.com

For SP, you must specify the service URL. For
example:https:http://localhost:7001/
JaxWsWssStsIssuedBearerTokenWithADFSWssUN
OverSsl/
JaxWsWssStsIssuedBearerTokenWithADFSWssUN
OverSslService

Required

sign-metadata Specify whether to sign the metadata document. Optional

sign-keys List of aliases or csf key (in case of KSS).

The certificate is exported and used in the metadata
document. It is required in case of creating IDP
metdata. If this parameter is not provided, the sign
key will not be included. In case of empty values
("sign-keys": []), the domain configured sign key is
used.

Optional

encryption-keys List of aliases or csf key (in case of KSS).

The certificate is exported and used in the metadata
document. It is required in case of creating SP
metdata. If this parameter is not provided, the
encryption key will not be included. In case of empty
values ("encryption-keys": []) , the domain
configured encryption key is used.

Optional

Response Body

Content Type: application/xml

Revoke Federation Metadata Document Method
Use the revoke method to remove the signing certificates from OWSM and the WS-
Trust configuration from the federation metadata document.

REST Request

POST /idaas/webservice/admin/v1/federation/revoke

Request Body

Method: POST

Content Type: multipart/form-data

Parameters

The following table summarizes the revoke request parameters.

Chapter 6
Revoke Federation Metadata Document Method

6-36

Name Description Required?

"metadata-file" Location of the federation metadata file. This can be
an Web URL or file system path.

Example: https://<host:port>/
FederationMetadata/2007-06/
FederationMetadata.xml

Required

Response Body

Content Type: application/json

The response body returns the status of the import operation, including:

Attribute Description

"ERROR_MSG" It provides the contents of the error message, if "STATUS" is
"Failed".

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

POST Virtual User for a DN
Use the POST method to create virtual users for a DN.

REST Request

POST /idaas/webservice/admin/v1/trust/token

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Attribute Description Required

virtual-user List of virtual user properties. Yes

token-role-attributes List of token role attributes applicable for a
virtual user.

No

token-role-mapping Mapping values for token-role-attributes. No

issuer Name of the issuer. No

Example of Request Body

The following shows an example of the request body in JSON format.

 {
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "issuer": "https://accounts.example.com",
 "name-id":

Chapter 6
POST Virtual User for a DN

6-37

 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "proxy" : {
 "host": "www-proxy.us.oracle.com",
 "port" : "80"
 }
 },
 {
 "-dn": "cn=user,o=oracle",
 "issuer": "https://identity.oraclecloud.com/",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "attributes":
 [
 {
 "-name": "user.tenant.name",
 "attribute":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val2",
 "user-attribute": "val1"
 }
 }
 }
],

Chapter 6
POST Virtual User for a DN

6-38

 "virtual-user":
 {
 "enabled": "true",
 "default-roles":
 {
 "role":
 [
 "defRole1",
 "defRole2"
]
 },
 "token-role-attributes":
 {
 "attribute-name":
 [
 "displayname"
]
 },
 "token-role-mapping":
 {
 "role-mapping":
 [
 {
 "token-role": "TestUser",
 "mapping-role":
 [
 "manager",
 "executer"
]
 }
]
 }
 }
 }
]
 }
 }

Response Body

Media types for the response body: application/json

The response body returns the status of the add operation, including:

Attribute Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

Example of Response Header

The following shows an example of the response header.

HTTP/1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

Chapter 6
POST Virtual User for a DN

6-39

{
 "STATUS": "Succeeded",
}

Get Virtual User for a DN
Use the GET method to view the virtual users for a DN configured in a token issuer
trust document.

REST Request

GET /idaas/webservice/admin/v1/trust/token

Request Body

Media types for the request body: application/json

The request body contains the details of the view request:

Attribute Description Required

virtual-user List of virtual user properties. Yes

token-role-attributes List of token role attributes applicable for a
virtual user.

No

token-role-mapping Mapping values for token-role-attributes. No

issuer Name of the issuer. No

Response Body

Media types for the response body: application/json

The response body returns the information for the specified virtual user.

Example of Response Body

The following shows an example of the response body in JSON format.

 {
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "issuer": "https://accounts.example.com",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"

Chapter 6
Get Virtual User for a DN

6-40

 }
 },
 "proxy" : {
 "host": "www-proxy.us.oracle.com",
 "port" : "80"
 }
 },
 {
 "-dn": "cn=user,o=oracle",
 "issuer": "https://identity.oraclecloud.com/",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "attributes":
 [
 {
 "-name": "user.tenant.name",
 "attribute":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val2",
 "user-attribute": "val1"
 }
 }
 }
],
 "virtual-user":
 {
 "enabled": "true",
 "default-roles":
 {
 "role":
 [
 "defRole1",
 "defRole2"
]
 },
 "token-role-attributes":
 {

Chapter 6
Get Virtual User for a DN

6-41

 "attribute-name":
 [
 "displayname"
]
 },
 "token-role-mapping":
 {
 "role-mapping":
 [
 {
 "token-role": "TestUser",
 "mapping-role":
 [
 "manager",
 "executer"
]
 }
]
 }
 }
 }
]
 }
 }

One Paas — One Token Trust
Use the POST method to create tags for trusted issuer.

REST Request POST Method

curl -i -X POST -u username:password --data @createtokentags.json -H Content-

Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/token

Media types for the request body: JSON

Example:

{
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 "issuer": https://www.example.com,
 "one-token-trust":
 {
 "enabled": "true",
 "service-instance":
 [
 {
 "app-name": "App1",
 "refreshinterval": "444",
 "tags":
 {
 "tag":
 [
 {
 "key": "color",
 "value":"blue"
 },

Chapter 6
One Paas — One Token Trust

6-42

 {
 "key": "env",
 "value":"prod"
 }
]
 }
 },
 {
 "app-name": "App2",
 "refreshinterval": "555"
 }
]
 },
]
 }
 }

Enabling and Disabling Token Issuer Trust
Use the POST and PUT method to enable and disable Token Issuer Trust.

REST Request POST Method

curl -i -X POST -u username:password --data @createtrust.json -H Content-

Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/issuers

Media types for the request body: JSON

Example:

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "dn": ["CN=Alice"],
 "disabled-dn": ["CN=Bob"],
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "enabled": "true"
 "dn": [],
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "enabled": "false"
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US", "CN=Alice"],

Chapter 6
Enabling and Disabling Token Issuer Trust

6-43

 }
]
 }
 }
}

REST Request PUT Method

curl -i -X PUT -u username:password --data @updatetrust.json -H Content-

Type:application/json http://myhost:7001/idaas/webservice/admin/v1/trust/issuers

Media types for the request body: JSON

Example:

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "disabled-dn": ["CN=Alice"],
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "enabled": "false"
 }
]
 }
 }
}

Response Body

Media types for the response body: application/json

{
 "saml-trusted-dns":
 {
 "saml-hok-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "enabled": "true"
 "dn": [],
 "disabled-dn": ["CN=Alice", "CN=Bob"]
 }
]
 },
 "saml-sv-trusted-dns":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",

Chapter 6
Enabling and Disabling Token Issuer Trust

6-44

 "enabled": "false"
 "dn": [],
 "disabled-dn": []
 }
]
 },
 "jwt-trusted-issuers":
 {
 "issuer": [
 {
 "-name": "www.oracle.com",
 "enabled": true,
 "dn": ["CN=orakey, OU=Orakey,O=Oracle, C=US", "CN=Alice"],
 "disabled-dn": []
 }
]
 }
 }
}

Import TrustDocument Name Configurations Method
Use the POST method to import trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

POST /idaas/webservice/admin/v1/trustdocument/import

Request Body

Media types for the request body: application/xml and application/JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the oratrust:name element.

Request body in xml format:

<?xml version="1.0" encoding="UTF-8"?>
<ns0:TokenIssuerTrust xmlns:ns0="http://xmlns.oracle.com/wsm/security/trust"
ns0:name="owsm" ns0:displayName="owsm">
 <ns0:Issuers>
 <ns0:Issuer ns0:name="www.oracle.com" ns0:tokentype="saml.sv"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="x509certificate" ns0:valuetype="dn"
ns0:enabled="true">alice2</ns0:KeyIdentifier>
 </ns0:TrustedKeys>
 </ns0:Issuer>
 <ns0:Issuer ns0:name="www.example.com" ns0:tokentype="saml.hok"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="x509certificate" ns0:valuetype="dn"
ns0:enabled="true">bob</ns0:KeyIdentifier>
 </ns0:TrustedKeys>
 </ns0:Issuer>
 <ns0:Issuer ns0:name="https://identity.oraclecloud.com/" ns0:tokentype="jwt"
ns0:enabled="true">
 <ns0:TrustedKeys>

Chapter 6
Import TrustDocument Name Configurations Method

6-45

 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">orakey_jwk</ns0:KeyIdentifier>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">orakey</ns0:KeyIdentifier>
 <ns0:Keys ns0:type="jwk" ns0:trust="idcs.jwk.jwt"></ns0:Keys>
 </ns0:TrustedKeys>
 <ns0:TrustedRP>
 <ns0:RP ns0:type="literal">client</ns0:RP>
 </ns0:TrustedRP>
 <ns0:DiscoveryInfo>
 <ns0:DiscoveryURL>https://www.example.com/.well-known/openid-
configuration</ns0:DiscoveryURL>
 <ns0:IdcsClientCsfKey>idcs-orakey</ns0:IdcsClientCsfKey>
 </ns0:DiscoveryInfo>
 </ns0:Issuer>
 <ns0:Issuer ns0:name="https://accounts.example.com" ns0:tokentype="jwt"
ns0:enabled="true">
 <ns0:TrustedKeys>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">3b0fc11962ad16e49d55a26816c5ad0d3f6b8a83</ns0:KeyIdentifier>
 <ns0:KeyIdentifier ns0:keytype="publickey" ns0:valuetype="kid"
ns0:enabled="true">19e8b40cf03c4cf1ec545f01ec8c51a6f46ab455</ns0:KeyIdentifier>
 <ns0:mdURL>https://www.exampleapis.com/oauth2/v3/certs</ns0:mdURL>
 <ns0:Keys ns0:type="jwk" ns0:trust="jwk.jwt"
ns0:refreshInterval="2000"></ns0:Keys>
 </ns0:TrustedKeys>
 <ns0:TrustedRP>
 <ns0:RP ns0:type="literal">client</ns0:RP>
 </ns0:TrustedRP>
 </ns0:Issuer>
 </ns0:Issuers>
 <ns0:TokenAttributeRules>
 <ns0:TokenAttributeRule ns0:issuer="https://accounts.example.com">
 <ns0:NameId ns0:name="name-id">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val3</ns0:user-attribute>
 <ns0:user-mapping-attribute>val4</ns0:user-mapping-attribute>
 </ns0:Mapping>
 </ns0:NameId>
 <ns0:Proxy>
 <ns0:ProxyHost>www-proxy.us.oracle.com</ns0:ProxyHost>
 <ns0:ProxyPort>80</ns0:ProxyPort>
 </ns0:Proxy>
 </ns0:TokenAttributeRule>
 <ns0:TokenAttributeRule ns0:identifier="cn=user,o=oracle"
ns0:issuer="https://identity.oraclecloud.com/">
 <ns0:NameId ns0:name="name-id">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val3</ns0:user-attribute>
 <ns0:user-mapping-attribute>val4</ns0:user-mapping-attribute>
 </ns0:Mapping>
 </ns0:NameId>
 <ns0:Attributes>

Chapter 6
Import TrustDocument Name Configurations Method

6-46

 <ns0:Attribute ns0:name="user.tenant.name">
 <ns0:Filter>
 <ns0:value>filter1</ns0:value>
 <ns0:value>filter2</ns0:value>
 </ns0:Filter>
 <ns0:Mapping>
 <ns0:user-attribute>val1</ns0:user-attribute>
 <ns0:user-mapping-attribute>val2</ns0:user-mapping-attribute>
 </ns0:Mapping>
 </ns0:Attribute>
 </ns0:Attributes>
 <ns0:VirtualUser ns0:enabled="true">
 <ns0:DefaultRoles>
 <ns0:Role>defRole1</ns0:Role>
 <ns0:Role>defRole2</ns0:Role>
 </ns0:DefaultRoles>
 <ns0:TokenRoleAttributes>
 <ns0:AttributeName>displayname</ns0:AttributeName>
 </ns0:TokenRoleAttributes>
 <ns0:TokenRoleMapping>
 <ns0:RoleMapping>
 <ns0:TokenRole>TestUser</ns0:TokenRole>
 <ns0:MappingRole>manager</ns0:MappingRole>
 <ns0:MappingRole>executer</ns0:MappingRole>
 </ns0:RoleMapping>
 </ns0:TokenRoleMapping>
 </ns0:VirtualUser>
 </ns0:TokenAttributeRule>
 </ns0:TokenAttributeRules>
</ns0:TokenIssuerTrust>

Request body in JSON format:

{
 "name": "test",
 "displayname": "test",
 "issuers":
 [
 {
 "issuer": "www.oracle.com",
 "enabled": "true",
 "tokentype": "saml.sv",
 "trustedkeys":
 {
 "keyidentifiers":
 [
 {
 "keytype": "x509certificate",
 "valuetype": "dn",
 "enabled": "true",
 "value": "alice2"
 }
]
 }
 },
 {
 "issuer": "www.example.com",
 "enabled": "true",
 "tokentype": "saml.hok",
 "trustedkeys":
 {

Chapter 6
Import TrustDocument Name Configurations Method

6-47

 "keyidentifiers":
 [
 {
 "keytype": "x509certificate",
 "valuetype": "dn",
 "enabled": "true",
 "value": "bob"
 }
]
 }
 },
 {
 "issuer": "https://identity.oraclecloud.com/",
 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "trust": "idcs.jwk.jwt",
 "keyidentifiers":
 [
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "orakey_jwk"
 },
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "orakey"
 }
]
 },
 "relyingparty":
 [
 {
 "type": "literal",
 "value": "client"
 }
],
 "discovery":
 {
 "discovery_uri": "https://www.example.com/.well-known/openid-
configuration",
 "idcs-client-csf-key": "idcs-orakey"
 }
 },
 {
 "issuer": "https://accounts.example.com",
 "enabled": "true",
 "tokentype": "jwt",
 "trustedkeys":
 {
 "jwk_uri": "https://www.exampleapis.com/oauth2/v3/certs",
 "trust": "jwk.jwt",
 "refreshinterval": "2000",
 "keyidentifiers":
 [
 {
 "keytype": "publickey",

Chapter 6
Import TrustDocument Name Configurations Method

6-48

 "valuetype": "kid",
 "enabled": "true",
 "value": "3b0fc11962ad16e49d55a26816c5ad0d3f6b8a83"
 },
 {
 "keytype": "publickey",
 "valuetype": "kid",
 "enabled": "true",
 "value": "19e8b40cf03c4cf1ec545f01ec8c51a6f46ab455"
 }
]
 },
 "relyingparty":
 [
 {
 "type": "literal",
 "value": "client"
 }
]
 }
],
 "token-attribute-rules":
 {
 "token-attribute-rule":
 [
 {
 "issuer": "https://accounts.example.com",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "proxy" : {
 "host": "www-proxy.us.oracle.com",
 "port" : "80"
 }
 },
 {
 "-dn": "cn=user,o=oracle",
 "issuer": "https://identity.oraclecloud.com/",
 "name-id":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },

Chapter 6
Import TrustDocument Name Configurations Method

6-49

 "mapping":
 {
 "user-mapping-attribute": "val4",
 "user-attribute": "val3"
 }
 },
 "attributes":
 [
 {
 "-name": "user.tenant.name",
 "attribute":
 {
 "filter":
 {
 "value":
 [
 "filter1",
 "filter2"
]
 },
 "mapping":
 {
 "user-mapping-attribute": "val2",
 "user-attribute": "val1"
 }
 }
 }
],
 "virtual-user":
 {
 "enabled": "true",
 "default-roles":
 {
 "role":
 [
 "defRole1",
 "defRole2"
]
 },
 "token-role-attributes":
 {
 "attribute-name":
 [
 "displayname"
]
 },
 "token-role-mapping":
 {
 "role-mapping":
 [
 {
 "token-role": "TestUser",
 "mapping-role":
 [
 "manager",
 "executer"
]
 }
]
 }
 }

Chapter 6
Import TrustDocument Name Configurations Method

6-50

 }
]
 }
}

Response Body

Media types for the response body: application/json

The response body returns the status of the import operation, including:

Element Description

"ERROR_CODE" If "STATUS" is set to "Failed", provides the error code.

"ERROR_MSG" If "STATUS" is set to "Failed", provides the contents of the
error message.

"Result" Details of the operation results.

"STATUS" Status of operation. For example, "Succeeded" or "Failed".

cURL Example

The following example shows how to view all certificates for an alias by submitting a
POST request on the REST resource using cURL.

curl -i -X POST -u username:password --data @import.xml -H Content-Type:application/
xml -H Accept:application/json http://myhost:7001/idaas/platform/admin/v1/
trustdocument/import

Import JWK Document Trust Configurations
Use the PUT method to import configurations from JWK Document of trusted issuer.

REST Request

PUT /idaas/webservice/admin/v1/federation/jwk/import

Request Body

Media types for the request body: multipart/form-data

The request body contains the input parameters of the import request.

Input
Parameter

Description Data Type

issuer Name of the JWK issuer, for example
www.example.com.

String

type The type of trust. It can be dns.jwt and jwk.jwt. String

name-id-
attribute

The name of the attribute to assert in case name-id
maps to non standard attribute.

String

user-
attribute

The name of the local user attribute the value of the
attribute corresponds to.

String

user-mapping-
attribute

The name of the local user attribute to map to. String

filter Comma separated list of filter values to be set for
the attribute. Each value can be an exact value.

Comma separated
string

Chapter 6
Import JWK Document Trust Configurations

6-51

Input
Parameter

Description Data Type

metadata-file Path of the JWK document. It could be local system
file, file path on server, or web URL. For example /
home/example.jwk or http://www.example.com/
common/discovery/v2.0/keys

File/file path/web URL

refreshInterv
al

Time interval in milliseconds after which JWK keys
will be checked for any update.

String

trust-
document-name

Token issuer trust document to configure trust. If
not provided, then the domain configured document
will be used.

String

Response Body

The response body returns the status of the import operation. Media types for the
response body: application/json

Revoke JWK Trust Configurations
Use the PUT method to revoke JWK configurations of a trusted issuer.

REST Request

PUT /idaas/webservice/admin/v1/federation/jwk/revoke

Request Body

Media types for the request body: multipart/form-data

The request body contains the input parameters of the request.

Input
Parameter

Description Data Type

issuer Name of the JWK issuer, for example
www.example.com.

String

type The type of trust. It can be dns.jwt and jwk.jwt. String

trust-
document-name

Token issuer trust document to revoke trust. If not
provided, then the domain configured document will
be used.

String

Response Body

The response body returns the status of the revoke operation. Media types for the
response body: application/json

Import WSM Discovery Metadata Trust Configurations
Use the PUT method to import configurations from WSM Discovery Metadata of
trusted issuer.

REST Request

PUT/idaas/webservice/admin/v1/federation/discoverymetadata/import

Chapter 6
Revoke JWK Trust Configurations

6-52

Request Body

Media types for the request body: multipart/form-data

The request body contains the input parameters of the import request.

Input Parameter Description Data Type

type The type of trust. It can be dns.jwt ,jwk.jwt,
idcs.dns.jwt

or idcs.jwk.jwt

String

issuer Open id discovery metadata provider String

idcs-client-csf-key Optional . CSF key containing IDCS registered
clientid and secret to fetch JWK document.

String

jwk-access-token Optional . Access token containing IDCS registered
clientid and secret to fetch JWK document.

String

name-id-attribute Optional. The name of the attribute to assert in case
name-id maps to non standard attribute.

String

filter Optional. Comma separated list of filter values to be
set for the attribute. Each value can be an exact
value.

Comma
separated string

user-attribute Optional. The name of the local user attribute the
value of the attribute corresponds to.

String

user-mapping-
attribute

Optional. The name of the local user attribute to
map to.

String

metadata-file Optional. Path of the JWK document. It could be
local file, path on the server, and web URL.

File/file
path/web URL

refreshInterval Optional. The time interval after which keys will be
refreshed.

String

trust-document-name Optional. Name of the trust-document String

Response Body

The response body returns the status of the import operation. Media types for the
response body: application/json

Revoke WSM Discovery Metadata Trust Configurations
Use the PUT method to revoke WSM Discovery Metadata configurations of a trusted
issuer.

REST Request

PUT/idaas/webservice/admin/v1/federation/discoverymetadata/revoke

Request Body

Media types for the request body: multipart/form-data

The request body contains the input parameters of the revoke request.

Input Parameter Description Data Type

issuer Open id discovery metadata provider. String

Chapter 6
Revoke WSM Discovery Metadata Trust Configurations

6-53

Input Parameter Description Data Type

type The type of trust. It can be dns.jwt,
idcs.dns.jwt, idcs.jwt.jwt and jwk.jwt.

String

metadata-file Optional. Metadata file in case issuer is not
provided. This could be system path or file.

File/file path/web URL

trust-document-
name

Optional. Name of the trust-document String

Response Body

The response body returns the status of the revoke operation. Media types for the
response body: application/json

See Also:

• Import TrustDocument Name Configurations Method in REST API for
Managing Credentials and Keystores with Oracle Web Services
Manager.

Chapter 6
Revoke WSM Discovery Metadata Trust Configurations

6-54

A
Summary of REST APIs

The credential and keystore management REST API provides a powerful set of
resources that you can use to manage web service security, including credential
stores, keystores, and trust stores.

Before using the REST API, you need to understand how to access the REST
resources and other important concepts. See "About the REST API".

The following table summarizes the REST resource paths, alphabetically by resource
path.

REST Resource Method More Information

/idaas/platform/admin/v1/
credential

GET GET Credential Method

/idaas/platform/admin/v1/
credential

DELETE Delete Credential Method

/idaas/platform/admin/v1/
credential

POST POST Credential Method

/idaas/platform/admin/v1/
credential

PUT PUT Credential Method

/idaas/platform/admin/v1/
keystore

GET GET All Aliases Trusted Certificate JKS Keystore Method

/idaas/platform/admin/v1/
keystore/{alias}

GET GET Specified Alias Trusted Certificate JKS Keystore Method

/idaas/platform/admin/v1/
keystore/{alias}

DELETE DELETE Trusted Certificate JKS Keystore Method

/idaas/platform/admin/v1/
keystore/{alias}

POST POST Specified Alias Trusted Certificate JKS Keystore
Method

/idaas/platform/admin/v1/
keystore/pkcs7/{alias}

POST GET Specified Alias Trusted Certificate JKS Keystore Method

/idaas/platform/admin/v1/
keystoreservice

DELETE DELETE Keystore Service KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice

POST POST New KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice

PUT PUT Password Update KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/alias/
{stripeName}/{keystoreName}/
{entryType}

GET GET Alias KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/certificates

GET GET Trusted Certificate KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/certificates

DELETE DELETE Trusted Certificate KSS Keystore Method

A-1

REST Resource Method More Information

/idaas/platform/admin/v1/
keystoreservice/certificates

POST POST Trusted Certificate KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/keystore

POST POST Import KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/secretkey

GET GET Secret Key Properties KSS Keystore Method

/idaas/platform/admin/v1/
keystoreservice/secretkey

POST POST Secret Key KSS Keystore

/idaas/platform/admin/v1/
keystoreservice/{stripeName}

GET GET Stripe KSS Keystores Method

/idaas/webservice/admin/v1/
trust/issuers

GET GET All Trusted Issuer and Distinguished Name Lists Method

/idaas/webservice/admin/v1/
trust/issuers/{documentName}

GET GET Specified Document Trusted Issuer and Distinguished
Name Lists Method

/idaas/webservice/admin/v1/
trust/issuers

POST POST Domain Trusted Issuers and Distinguished Name Lists
Method

/idaas/webservice/admin/v1/
trust/issuers/{documentName}

POST POST Document Trusted Issuers and Distinguished Name
Lists Method

/idaas/webservice/admin/v1/
trust/token

GET GET All Token Attribute Rules Method

/idaas/webservice/admin/v1/
trust/token/{documentName}

GET GET Specified Document Token Attribute Rules Method

/idaas/webservice/admin/v1/
trust/token

POST POST Token Attribute Rule Distinguished Name Method
(Domain Context)

/idaas/webservice/admin/v1/
trust/token/{documentName}

POST POST Token Attribute Rule Distinguished Name Method
(Document Context)

/idaas/webservice/admin/v1/
trustdocument

GET GET TrustDocument Method

/idaas/webservice/admin/v1/
trustdocument

DELETE DELETE Trust Document Method

/idaas/webservice/admin/v1/
trustdocument

POST POST TrustDocument Name Method

/idaas/webservice/admin/v1/
trustdocument/import

POST Import TrustDocument Name Configurations Method

Appendix A

A-2

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New In This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1.1.0)

	Part I Getting Started with the REST API
	1 About the REST API
	Introduction to REST API
	URL Structure for Security Stores
	Create and Manage Oracle WSM Instances Using REST
	Authenticating REST Resources
	HTTP Status Codes for HTTP Methods

	2 Use Cases for the REST API
	Managing the Credential Store Framework Using the REST API
	Managing JKS Keystores Using the REST API
	Managing KSS Keystores Using the REST API
	Managing Token Issuer Trust Using the REST API

	Part II REST API Reference
	3 Manage Credentials in the Credential Store
	View and Manage the Credential Store Using REST Resources
	POST Credential Method
	GET Credential Method
	PUT Credential Method
	DELETE Credential Method

	4 Manage Java Keystore Keystores
	View and Manage JKS keystores within a Domain Using REST Resources
	GET All Aliases Trusted Certificate JKS Keystore Method
	POST Specified Alias Trusted Certificate JKS Keystore Method
	POST PKCS#7 Trusted Certificate JKS Keystore Method
	GET Specified Alias Trusted Certificate JKS Keystore Method
	DELETE Trusted Certificate JKS Keystore Method

	5 View and Manage Keystore Service Keystores
	View and Manage KSS keystores Using REST Resources
	POST New KSS Keystore Method
	POST Import KSS Keystore Method
	PUT Password Update KSS Keystore Method
	POST Trusted Certificate KSS Keystore Method
	GET Stripe KSS Keystores Method
	GET Alias KSS Keystore Method
	GET Trusted Certificate KSS Keystore Method
	DELETE Trusted Certificate KSS Keystore Method
	POST Secret Key KSS Keystore
	GET Secret Key Properties KSS Keystore Method
	DELETE Keystore Service KSS Keystore Method

	6 Manage Token Issuer Trust Configurations
	View and Manage Token Issuer Trust Configurations Using REST Resources
	POST TrustDocument Name Method
	POST Domain Trusted Issuers and Distinguished Name Lists Method
	POST Document Trusted Issuers and Distinguished Name Lists Method
	GET All Trusted Issuer and Distinguished Name Lists Method
	GET Specified Document Trusted Issuer and Distinguished Name Lists Method
	POST Token Attribute Rule Distinguished Name Method (Domain Context)
	POST Token Attribute Rule Distinguished Name Method (Document Context)
	GET All Token Attribute Rules Method
	GET Specified Document Token Attribute Rules Method
	Import TrustDocument Name Configurations Method
	Export TrustDocument Name Configurations Method
	Import Global Discovery Configuration
	GET TrustDocument Method
	DELETE Trust Document Method
	Import Federation Metadata Document Method
	Export Federation Metadata Document Method
	Revoke Federation Metadata Document Method
	POST Virtual User for a DN
	Get Virtual User for a DN
	One Paas — One Token Trust
	Enabling and Disabling Token Issuer Trust
	Import TrustDocument Name Configurations Method
	Import JWK Document Trust Configurations
	Revoke JWK Trust Configurations
	Import WSM Discovery Metadata Trust Configurations
	Revoke WSM Discovery Metadata Trust Configurations

	A Summary of REST APIs

