Oracle® Fusion Middleware
REST API for Managing Credentials and
Keystores with Oracle Web Services Manager

ORACLE"

Oracle Fusion Middleware REST API for Managing Credentials and Keystores with Oracle Web Services
Manager, 12c (12.2.1.3.0)

E80894-03

Copyright © 2013, 2018, Oracle and/or its affiliates. All rights reserved.
Primary Author: Showvik Roychowdhuri

Contributing Authors: Sudhira Subudhi

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility

Vi

Conventions Vi
What's New In This Guide
New and Changed Features for 12c (12.2.1.3.0) Vi
New and Changed Features for 12c (12.2.1.2.0) viii
New and Changed Features for 12c (12.2.1.1.0) viii
Part | Getting Started with the REST API
1 About the REST API
Introduction to REST API 1-1
URL Structure for Security Stores 1-1
Create and Manage Oracle WSM Instances Using REST 1-2
Authenticating REST Resources 1-2
HTTP Status Codes for HTTP Methods 1-2
2 Use Cases for the REST API
Managing the Credential Store Framework Using the REST API 2-1
Managing JKS Keystores Using the REST API 2-3
Managing KSS Keystores Using the REST API 2-5
Managing Token Issuer Trust Using the REST API 2-7
Part Il REST API Reference
3 Manage Credentials in the Credential Store
View and Manage the Credential Store Using REST Resources 3-1

ORACLE"

POST Credential Method 3-1

GET Credential Method 3-3
PUT Credential Method 3-4
DELETE Credential Method 3-5
4 Manage Java Keystore Keystores
View and Manage JKS keystores within a Domain Using REST Resources 4-1
GET All Aliases Trusted Certificate JKS Keystore Method 4-2
POST Specified Alias Trusted Certificate JKS Keystore Method 4-2
POST PKCS#7 Trusted Certificate JKS Keystore Method 4-4
GET Specified Alias Trusted Certificate JKS Keystore Method 4-5
DELETE Trusted Certificate JKS Keystore Method 4-7
5 View and Manage Keystore Service Keystores
View and Manage KSS keystores Using REST Resources 5-1
POST New KSS Keystore Method 5-2
POST Import KSS Keystore Method 5-3
PUT Password Update KSS Keystore Method 5-5
POST Trusted Certificate KSS Keystore Method 5-6
GET Stripe KSS Keystores Method 5-7
GET Alias KSS Keystore Method 5-8
GET Trusted Certificate KSS Keystore Method 5-9
DELETE Trusted Certificate KSS Keystore Method 5-11
POST Secret Key KSS Keystore 5-12
GET Secret Key Properties KSS Keystore Method 5-13
DELETE Keystore Service KSS Keystore Method 5-14
6 Manage Token Issuer Trust Configurations
View and Manage Token Issuer Trust Configurations Using REST Resources 6-2
POST TrustDocument Name Method 6-3
POST Domain Trusted Issuers and Distinguished Name Lists Method 6-4
POST Document Trusted Issuers and Distinguished Name Lists Method 6-6
GET All Trusted Issuer and Distinguished Name Lists Method 6-8
GET Specified Document Trusted Issuer and Distinguished Name Lists Method 6-10
POST Token Attribute Rule Distinguished Name Method (Domain Context) 6-11
POST Token Attribute Rule Distinguished Name Method (Document Context) 6-14
GET All Token Attribute Rules Method 6-18
GET Specified Document Token Attribute Rules Method 6-20
Import TrustDocument Name Configurations Method 6-23

ORACLE iv

Export TrustDocument Name Configurations Method 6-29

Import Global Discovery Configuration 6-31
GET TrustDocument Method 6-32
DELETE Trust Document Method 6-33
Import Federation Metadata Document Method 6-34
Export Federation Metadata Document Method 6-35
Revoke Federation Metadata Document Method 6-36
POST Virtual User for a DN 6-37
Get Virtual User for a DN 6-40
One Paas — One Token Trust 6-42
Enabling and Disabling Token Issuer Trust 6-43
Import TrustDocument Name Configurations Method 6-45
Import JWK Document Trust Configurations 6-51
Revoke JWK Trust Configurations 6-52
Import WSM Discovery Metadata Trust Configurations 6-52
Revoke WSM Discovery Metadata Trust Configurations 6-53

A Summary of REST APIs

ORACLE Y

Preface

Preface

This preface describes the document accessibility features and conventions used in
this guide—REST API for Managing Credentials and Keystores with Oracle Web
Services Manager.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. com pl s/t opi ¢/ | ookup?ct x=acc& d=trs
if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New In This Guide

ORACLE

This section summarizes the new features and significant product changes for Oracle
Web Services Manager in Oracle Fusion Middleware 12¢ (12.2.1).

New and Changed Features for 12¢ (12.2.1.3.0)

Release 12¢ (12.2.1.3.0) supports new Rest API to import, export, or revoke a
federation metadata document.

These updates are summarized in the following table:

Features in Oracle Web Services Manager 12.2.1.3.0

Feature Description

New Rest APIto -
import, export, or .

Import Federation Metadata Document Method
Export Federation Metadata Document Method

revoke a ¢ Revoke Federation Metadata Document Method
federation

metadata

document.

New Rest APIto ¢ POST Virtual User for a DN

create or view * Viewing Virtual User for a DN

virtual users for
the Distinguished
Name (DN).

Support for key
rotating external .
identity providers

Import JWK Document Trust Configurations
Revoke JWK Trust Configurations

Support for File
Type in JWK .
import REST

APIs

Import JWK Document Trust Configurations
Revoke JWK Trust Configurations

HTTP Proxy .
support in JWK/
Discovery

Import TrustDocument Name Configurations Method

Disabling/ .
enabling trusted
issuer

temporarily

Enabling and Disabling Token Issuer Trust

One Paas — .
One Token Trust

One Paas — One Token Trust

New Rest APl to -
Import or Revoke .
WSM Discovery
Metadata Trust
Configuration

Import WSM Discovery Metadata Trust Configurations
Revoke WSM Discovery Metadata Trust Configurations

Vii

What's New In This Guide

New and Changed Features for 12¢ (12.2.1.2.0)

Minor updates, such as fixes or corrections, were made to this document.

New and Changed Features for 12¢ (12.2.1.1.0)

Minor updates, such as fixes or corrections, were made to this document.

ORACLE" viii

Getting Started with the REST API

You should get started using the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part | contains the following chapters:

About the REST API
Use Cases for the REST API

ORACLE

About the REST API

An introduction of Oracle Fusion Middleware representational state transfer (REST)
API for managing credentials and keystores is detailed in this chapter.
It includes the following topics:

* Introduction to REST API

e URL Structure for Security Stores

e Create and Manage Oracle WSM Instances Using REST
e Authenticating REST Resources

« HTTP Status Codes for HTTP Methods

Introduction to REST API

The credential and keystore management REST API provides endpoints for creating
and configuring credential stores, keystores, and trust stores for your domain or web
services.

You can access the REST endpoints through Web browsers and client applications.

You can also use the Oracle WSM REST endpoints in REST client applications that
are developed in languages such as:

e JavaScript

* Ruby

° Perl

e Java

e JavaFX

Before using the REST API, you need to understand a few important concepts, as
described in the following sections.

URL Structure for Security Stores

You can use certain URL structures to manage security stores.
Use the following URL to manage security stores:
http(s)://host:port/idaas/contextpath/adnin/vl/resource
Where:

* host :port—Host and port where Oracle Fusion Middleware is running.

* cont ext pat h—Context path for the REST resource. This value can be set to
pl at f or mfor resources that apply across the domain (for example, keystore and

ORACLE 1-1

Chapter 1
Create and Manage Oracle WSM Instances Using REST

credential management resources), or webser vi ce for resources that apply to a
specific web service (for example, trust management resources).

e resour ce—Relative path that defines the REST resource. For more information,
see REST API Reference To access the Web Application Definition Language
(WADL) document, specify appl i cati on. wadl .

Create and Manage Oracle WSM Instances Using REST

The Oracle WSM REST endpoints support standard methods for creating and
managing Oracle WSM instances.

REST Method Task

GET Retrieve information about the REST resource.
POST Add a REST resource.

PUT Update a REST resource.

DELETE Delete a REST resource.

Authenticating REST Resources

You can access the Oracle Fusion Middleware REST resources over HTTP and you
must provide your Oracle WebLogic Server administrator user name and password.

For example, to authenticate using cURL, pass the user name and password (for
example, Smith and Password) using the - u cURL option.

curl -i -X GET -u Smith:Password http://nyhost: 7001/i daas/ pl at fornf adm n/ vl/ keystore

For POST and DELETE methods, which do not send data in the request body, if a keystore
or key is password-protected, you must pass the Base64-encrypted keystore and key
passwords, respectively, in custom headers. For example:

curl -i -X DELETE -u Smith: Password -H keyst or ePasswor d: Base64EncodedPassword - H
keyPasswor d: Base64EncodedPassword http://myhost: 7001/ i daas/ pl at f ormi admi n/v1/
keyst or eservi ce/

certificates?"stri peName=nmyStri pe&keyst or eNane=nyKeyst or e€keyAl i as=nyAl i as"

HTTP Status Codes for HTTP Methods

The HTTP methods used to manipulate the resources described in this topic return
one of the following HTTP status codes:

HTTP Status Code Description

200 OK

201 Created

ORACLE

The request was successfully completed. A 200 status is returned for successful GET
or POST method.

The request has been fulfilled and resulted in a new resource being created. The
response includes a Location header containing the canonical URI for the newly
created resource.

A 201 status is returned from a synchronous resource creation or an asynchronous
resource creation that completed before the response was returned.

1-2

Chapter 1
HTTP Status Codes for HTTP Methods

HTTP Status Code

Description

202 Accepted

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found
405 Method Not Allowed

406 Not Acceptable

415 Not Acceptable

500 Internal Server Error

503 Service Unavailable

The request has been accepted for processing, but the processing has not been
completed. The request may or may not eventually be acted upon, as it may be
disallowed at the time processing actually takes place.

When specifying an asynchronous (__det ached=t r ue) resource creation (for example,
when deploying an application), or update (for example, when redeploying an
application), a 202 is returned if the operation is still in progress. If __det ached=f al se,
a 202 may be returned if the underlying operation does not complete in a reasonable
amount of time.

The response contains a Location header of a job resource that the client should poll
to determine when the job has finished. Also, returns an entity that contains the
current state of the job

The request could not be processed because it contains missing or invalid information
(such as, a validation error on an input field, a missing required value, and so on).

The request is not authorized. The authentication credentials included with this
request are missing or invalid.

The user cannot be authenticated. The user does not have authorization to perform
this request.

The request includes a resource URI that does not exist.

The HTTP verb specified in the request (DELETE, GET, POST, PUT) is not supported for
this request URI.

The resource identified by this request is not capable of generating a representation
corresponding to one of the media types in the Accept header of the request. For
example, the client's Accept header request XML be returned, but the resource can
only return JSON.

The client's ContentType header is not correct (for example, the client attempts to
send the request in XML, but the resource can only accept JSON).

The server encountered an unexpected condition that prevented it from fulfilling the
request.

The server is unable to handle the request due to temporary overloading or
maintenance of the server. The Oracle WSM REST web application is not currently
running.

ORACLE

1-3

Use Cases for the REST API

A demonstration of several use cases using the REST API is detailed in this chapter.
* Managing the Credential Store Framework Using the REST API

* Managing JKS Keystores Using the REST API

* Managing KSS Keystores Using the REST API

* Managing Token Issuer Trust Using the REST API

Managing the Credential Store Framework Using the REST
API

You can view and manage the credential store framework using the REST APIs.
The following use case shows you how to:

e Create a credential in the credential store
¢ View all credentials in the credential store

« Delete a credential from the credential store

¢ Note:

For more information about credential store management, see "Configuring
the Credential Store" in Administering Web Services.

TESTED
To manage the credential store framework using the REST API:

1. Create a credential in the credential store framework by performing the following
steps:

a. Create a JSON document, creat ecred. j son, that defines the credential that
you want to create.

The following shows an example of the request document. In this example, the
name of the credential map is def aul t, the credential key is nyKey, and the
username and password credentials are nyUsr and nmyPwd, respectively.

{

“username" : "username",
"credential" : "pwd",

“key" 1 "mykey",

"map" : "oracle.wsmsecurity"

ORACLE 2-1

ORACLE

Chapter 2
Managing the Credential Store Framework Using the REST API

For more information about the request attributes, see "POST Credential
Method".

b. Using cURL, create a credential in the credential store framework, passing the
JSON document defined in the previous step.

curl -i -X POST -u usernane: password --data @reatecred.json -H Content-
Type: application/json http://nyhost:7001/i daas/ pl atfornf adm n/vl/credential

The following shows an example of the response indicating the request
succeeded.

"STATUS": "Succeeded"
}

For more information, see "POST Credential Method".
View all credentials in the credential store.

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
credenti al

The following shows an example of the response, showing all credentials in the
credential store:

{
"CSF_MAP_NAME": "CSF_KEY_NAME',
"default": "systenuser",
"oracle.wsmsecurity": |
"sign-csf-key",
"jwt-sign-csf-key",
"owsnt est. credential s",
"basic.client.credentials",
"webl ogi c- csf - key",
"enc- csf-key",
"nykey",
"dumy- pwd- csf - key",
"webl ogi c- ker ber os- csf - key",
"keyst ore- csf - key",
"webl ogi c- wi ndowsdonai n- csf - key",
"oratest-csf-key",
"csr-csf-key",
"invalid-csf-key",
"ca- si gned- si gn- csf - key"

}

For more information, see "GET Credential Method".
Delete the credential from the credential store.

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ webservi ce/
admi n/v1/ credential ?"key=nykey&ap=or acl e. wsm security"

You must pass query parameters to define the map and key names associated
with the credential store that you want to delete. For more information, see
"DELETE Credential Method".

The following shows an example of the response indicating the request
succeeded.

2-2

Chapter 2
Managing JKS Keystores Using the REST API

{
}

"STATUS": "Succeeded"

Managing JKS Keystores Using the REST API

You can view and manage Java Keystore (JKS) certificates within the current domain
using the REST APlIs.

ORACLE

The following use case shows you how to:

View all aliases in the JKS keystore.
Import a trusted certificate into the JKS keystore.
View a trusted certificate in the JKS keystore.

Delete a trusted certificate from the JKS keystore.

< Note:

For information about JKS keystore management, see "Configuring
Keystores for Message Protection" in Administering Web Services.

TESTED

To manage JKS keystores using the REST API:

1.

View all of the aliases that currently exist in the JKS keystore within the current
domain:

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f or ml admi n/ v1/
keystore

The following shows an example of the response, showing all aliases in the JKS
keystore.

{
}

"aliases":"oratest, orakey, testkey, j kstest, ms- oaut hkey"

For more information, see "GET All Aliases Trusted Certificate JKS Keystore
Method".

Import the trusted certificate into the JKS keystore at the specified alias, by
performing the following steps:

a. Create a JSON document, i nportj ks. j son, that defines the trusted certificate
to import into the JKS keystore.

The following shows an example of the request document. In this example, the
trusted certificate provided must be Base64-encoded and the component type
must be set to JKS for this release.

{ "conponent":"JKS",
"certificate": "Bese64-encoded certificate"

}

2-3

ORACLE

Chapter 2
Managing JKS Keystores Using the REST API

For more information about the request attributes, see "POST Specified Alias
Trusted Certificate JKS Keystore Method".

b. Using cURL, import the trusted certificate, specifying the alias of the trusted
key to be imported, nyt est key, and passing the JSON request document
defined in the previous step.

curl -i -X POST -u username: password -H Content-type:application/json --data
@nportjks.json http://nyhost:7001/i daas/ pl at f or mf adm n/ v1/ keyst or e/ myt est key

The following shows an example of the response indicating the request
succeeded.

"STATUS": " Succeeded",
"SUBJECT DN': " CNey, Oy, =y, L=y, ST=y, C=y"
}

For more information, see "POST Specified Alias Trusted Certificate JKS
Keystore Method".

View the trusted certificate that you imported in step 3:

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl at f or ml admi n/ v1/
keyst or e/ nyt est key

The following shows an example of the response, showing the details for the
trusted certificate.

{
"SUBJECT_DN': " CN=y, QU=y, Oy, L=y, ST=y, C=y",
"1 SSUER_DN': " CN=y, OU=y, O=y, L=y, ST=y, C=y",
"NOT_BEFORE": " Thu Jul 03 04:00:16 PDT 2014",
"NOT_AFTER': "Wed Cct 01 04:00:16 PDT 2014",
"SERIAL_NO': "1784168778",
"SI GNI NG_ALGORI THV': " 1. 2. 840. 10040. 4. 3",
"CONTENT": "----- BEG N CERTI FI CATE- - - - - \
Bese64-encoded certificate
----- END CERTI FI CATE-----",
"SI GNATURE": " Bese64-encoded signature key",
"Extensions": "{subjectKeyl DExtension {oid = 2.5.29.14, critical = false,
val ue = f74cabc1016d848260c749884e2b710c5f ecc7b8}}"

}

For more information, see "GET Specified Alias Trusted Certificate JKS Keystore
Method".

Delete the trusted certificate from the JKS keystore.

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ pl at f orm
admi n/ v1/ keyst or e/ nyt est key

The following shows an example of the response indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see "DELETE Trusted Certificate JKS Keystore Method".

2-4

Chapter 2
Managing KSS Keystores Using the REST API

Managing KSS Keystores Using the REST AP

You can view and manage Keystore Service (KSS) keystores using the REST APIs.

ORACLE

The following use case shows you how to:

Create a KSS keystore

View all KSS keystores for a stripe

Import a trusted certificate into the KSS keystore

View a trusted certificate in the JKS keystore

Delete the KSS keystore

Note:

For more information about KSS keystore management, see "Configuring the
OPSS Keystore Service for Message Protection” in Administering Web
Services.

TESTED

To manage KSS keystores using the REST API:

1.

Create a KSS keystore by performing the following steps:

a.

Create a JSON document, creat ekss. j son, that defines the KSS keystore that
you want to create.

The following shows an example of the request document. In this example, the
KSS stripe and keystore names are nyStri pe and myKeyst or e, respectively; the
password for the KSS keystore is Passow d; and the KSS keystore created is
not permission-based.

{
"stripe" : "nyStripe",
"keystore" . "nyKeystore",
"pwd" : "Password",
"permssion" : "fal se"

}

For more information about the request attributes, see "POST New KSS
Keystore Method".

Using cURL, create a KSS keystore, passing the JSON document defined in
the previous step.

curl -i -X PGST -u username: password -H Content - Type: application/json --data
@reat ekss.json http://nyhost:7001/i daas/ pl at f or mf adm n/ v1/ keyst or eservi ce

The following shows an example of the response indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

2-5

Chapter 2
Managing KSS Keystores Using the REST API

For more information, see "POST New KSS Keystore Method".
2. View all KSS keystores for a stripe to confirm the KSS keystore was created.

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f orml admi n/ v1/
keystoreservice/ nyStripe

The following shows an example of the response, showing all KSS keystores in
the stripe:

{
}

"keystore 1:"nyKeystore"

For more information, see "GET Stripe KSS Keystores Method".

3. Import a trusted certificate into the KSS keystore by performing the following
steps:

a. Create a JSON document, i nportkss. j son, that defines the details of the
trusted certificate that you want to import into the KSS keystore.

The following shows an example of the request document. In this example, the
KSS keystore is identified by its stripe and keystore names, nyStri pe and
nyKeyst or e, respectively; the KSS keystore password, Passwor d, is required; the
alias for the key is nyAl i as; the certificate is defined as a Trust edCertificate;
and keyst or eEnt ry specifies the encrypted certificate contents.

{

"keyAlias" : "nyAias",
"keystoreEntry":

"Bese64-encoded certificate",
"keystoreEntryType" : "TrustedCertificate",
"keystoreNane" : "nyKeystore",

"stripeNane" : "nyStripe",
"keyst orePassword" : "Password"

}

For more information about the request attributes, see "POST Trusted
Certificate KSS Keystore Method".

b. Using cURL, import a trusted certificate into the KSS keystore, passing the
JSON document defined in the previous step.

curl -i -X POST -u usernanme: password -H Content - Type: application/json --data
@nportcertkss.json http://nyhost:7001/idaas/ pl at f orml admi n/ v1/
keystoreservice/certificates

The following shows an example of the response indicating the request
succeeded.

"STATUS": "Succeeded"
"SUBJECT_DN': "CN=y, Oky, O=y, L=y, ST=y, C=y"
}

For more information, see "POST Trusted Certificate KSS Keystore Method".
4. View the trusted certificate that you just imported into the KSS keystore.

curl -i -X GET -u usernane: password -H keyst or ePasswor d: cHIkM== http://nyhost:
7001/ i daas/ pl at f or ml admi n/ v1/ keyst or eservi ce/

ORACLE 2-6

Chapter 2
Managing Token Issuer Trust Using the REST API

certificates?"stripeNane=nmyStri pe&keyst or eNane=nyKeyst or e&keyAl i as=nyAl i as&keyst o
reEnt ryType=TrustedCertificate"

You must pass query parameters to define the stripe name, keystore name and
entry type, and alias name associated with the trusted certificate you want to view.

The following shows an example of the response, showing the details of the
trusted certificate.

{
" SUBJECT DN': " CNey, Oy, O=y, L=y, ST=y, C=y",
"1 SSUER DN': " C\=y, Oy, O=y, L=y, ST=y, C=y",
"NOT_BEFORE": "Fri Jul 25 02:45:11 PDT 2014",
"NOT_AFTER": "Thu Cct 23 02:45:11 PDT 2014",
"SERI AL_NO': "982191050",
"SI GNI NG_ALGORI THM': " 1. 2. 840. 10040. 4. 3",
"CONTENT": "----- BEG N CERTI FI CATE- - - - - \n
Bese64- encoded certificate\ln
----- END CERTI FI CATE-----",
"SI GNATURE" : " Bese64- encoded signature key",
"Ext ensi ons": "{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false,
val ue = 329h98f 6b6225€92¢ca52513d3bf c43ee02aa9121}}"

}

For more information, see "GET Trusted Certificate KSS Keystore Method".
Delete the KSS keystore.

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: cHdkME== http://
myhost : 7001/ i daas/ pl at f or ml admi n/ v1/
keyst oreservi ce?"stri peName=nySt ri pe&keyst or eNanme=nyKeyst or e"

You must pass query parameters to define the stripe and keystore name of the
KSS keystore you want to delete. For more information, see "DELETE Keystore
Service KSS Keystore Method".

The following shows an example of the response indicating the request
succeeded.

HTTP/ 1.1 204 No Content

Managing Token Issuer Trust Using the REST API

You can view and manage token issuer trust using the REST APIs.

ORACLE

The following use case shows you how to:

View all trusted issuers
Create a trusted issuer
Create a token attribute rule
Delete a trusted issuer

Create a trust document

2-7

Chapter 2
Managing Token Issuer Trust Using the REST API

Note:

For more information about token issuer trust management, see "Defining
Trusted Issuers and a Trusted DN List for Signing Certificates" in
Administering Web Services.

To manage token issuer trust using the REST API:

1. Create a trusted issuer document.

curl -i -X PGST -u username: password http://nyhost: 7001/ i daas/ webservi ce/
adm n/v1/trustdocunent ?" docunent Name=ny Tr ust Docunent &di spl ayNane=nyTr ust Document "

You must pass query parameters to define the document and display names for
the trusted issuer document.

The following shows an example of the response indicating the request
succeeded.

{
"STATUS": "Succeeded",
"Result": "New Token Issuer Trust document named "nyTrust Docunent" created."

}

For more information, see "POST TrustDocument Name Method".
2. Create the trusted issuers and DN lists, by performing the following steps:

a. Create a JSON document, createtrust.j son, that defines the trusted issuers
and distinguished name (DN) lists that you want to create.

The following shows an example of the request document. In this example, the
following types of trusted issuers are created: SAML holder-of-key, SAML
sender vouches, and JSON Web Token (JWT). For each trusted issuer, the
name and DN list is defined.

{
"sam -trusted-dns":
{
"sam - hok-trusted-dns":
{
"issuer": [
{
"-name": "ww. oracl e. cont',
"dn": ["wsl",]
}
]
1
"sam - sv-trusted-dns":
{
"issuer": [
{
"-nanme": "ww. oracle. cont',
"dn": ["ws2",]
}
]
I8

"jwt-trusted-issuers":

ORACLE 2-8

Chapter 2
Managing Token Issuer Trust Using the REST API

{
"issuer": |
{
"-name": "ww. oracle. conf,
"dn": ["CNeorakey, OU=Orakey, O=Oracle, C=US',]
}
]
}

}

For more information about the request attributes, see "POST Domain Trusted
Issuers and Distinguished Name Lists Method".

b. Using cURL, create the trusted issuers and DN lists, passing the JSON
document defined in step 2.

curl -i -X PCST -u username: password --data @reatetrust.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ webservice/ adni n/vl/trust/
i ssuers

The following shows an example of the response body indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see "POST Domain Trusted Issuers and Distinguished
Name Lists Method".

3. Create a JSON document, creat et oken. j son, that defines the token attribute rules
for the trusted DN lists.

The following shows an example of the request document. In this example:

e Create a separate "token-attribute-rule" entry for each trusted DN list for
which you want to create a token attribute rule.

» Specify filters for the name-id and user attributes, as required.

For more information about the request attributes, see "POST Token Attribute
Rule Distinguished Name Method (Domain Context)".

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcladmn, o=oracl e",
"name-id":{
"filter":
{
"value":["filterl"]
b
"mappi ng":
{

"user-attribute": "val 3",
"user-nmapping-attribute": "val 4"

}
}

"attributes":

ORACLE 2-9

ORACLE

Chapter 2
Managing Token Issuer Trust Using the REST API

{
"-name": "tenant1",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
"filter2"
]
},
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}

}

4. Create the token attribute rules for the trusted DN lists, passing the JISON

document defined in step 4.

curl -i -X POST -u username: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ adnin/v1/trust/token

The following shows an example of the response body indicating the request
succeeded.

{
}

"STATUS": "Succeeded"

For more information, see "POST Token Attribute Rule Distinguished Name
Method (Domain Context)".

View the configuration details for the trusted issuer.

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
t rust docunent ?" document Nane=nyTr ust Docunent "

The following shows an example of the response body, showing the configuration
details:

" STATUS": " Succeeded",

"Result":"List of token issuer trust docunments in the Repository:\nDetails
of the docunent matching your request:\nName : nyTrust Document\t Di spl ay
Name : nyTrust Docunment\t Status . DOCUMENT_STATUS_COWM TED \ nLi st of
trusted issuers for this type:\tNone\nList of Token Attribute Rules\tNone"

}

For more information, see "GET TrustDocument Method ".
Delete the trusted issuer document.

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ webservi ce/
admi n/v1/trustdocunent ?" docunent Name=myTr ust Docunent &di spl ayNane=nyTr ust Document "

2-10

Chapter 2
Managing Token Issuer Trust Using the REST API

You must pass query parameters to define the document and display names for
the trusted issuer document that you want to delete. For more information, see
"DELETE Credential Method".

The following example shows the contents of the response body.

{

"STATUS": "Succeeded",

"Result": "Token Issuer Trust document named "nmyTrustDocunent” deleted from
the repository."

}

ORACLE 2-11

REST API Reference

You can review details about the Oracle Fusion Middleware REST API for managing
credentials and keystores.

Part Il contains the following chapters:

* Manage Credentials in the Credential Store
 Manage Java Keystore Keystores

* View and Manage Keystore Service Keystores
* Manage Token Issuer Trust Configurations

e Summary of REST APIs

ORACLE

Manage Credentials in the Credential Store

Oracle Web Services Manager (WSM) uses the Credential Store Framework (CSF) to
manage the credentials in a secure form.

Before using the REST API to view and manage the credential store, you need to
understand how to access the REST resources and other important concepts. See
"About the REST API".

For more information about credential store management, see "Configuring the
Credential Store" in Administering Web Services.

This chapter includes the following sections:

* View and Manage the Credential Store Using REST Resources
* POST Credential Method

* GET Credential Method

* PUT Credential Method

» DELETE Credential Method

View and Manage the Credential Store Using REST
Resources

Representational state transfer (REST) resources enable you to view and manage the
credential store.

You can view and manage the credential store using a set of representational state
transfer (REST) resources, as summarized below.

Section Method Resource Path

POST Credential Method POST /i daas/ pl at f orml admi n/ v1/ credenti al
GET Credential Method CET /i daas/ pl atfornfadm n/vl/credential
PUT Credential Method PUT /i daas/ pl atfornf adm n/vl/credential
DELETE Credential Method DELETE /i daas/ pl atfornf admi n/vl/credenti al

POST Credential Method

ORACLE

Use the POST method to create a new credential in the domain credential store.

REST Request

PCST /i daas/ pl atforn admi n/v1/credential

3-1

ORACLE

Chapter 3
POST Credential Method

Request Body
Media types for the request or response body: appl i cation/|son

The request body contains the details of the create request:

Attribute Description Required
“credential " Password for the credential. Yes
"key" Name of the key. Yes
" map" Name of the map (folder). Yes
"user nane" Username for the credential. Yes

Response Body
Media types for the request or response body: application/|son

The response body returns the status of the create operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to create a credential in the credential store by
submitting a POST request on the REST resource using cURL

TESTED

curl -i -X POST -u username: password --data @reatecred.json -H Content-
Type: appl i cation/json http://nyhost:7001/i daas/ pl atfornf adm n/vl/credential

Example of Request Body
The following shows an example of the request body in JSON format.

{

"username" : "usernane",
"credential" : "credential",

"key" : "mykey",
"map" : "oracle.wsm security"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

3-2

Chapter 3
GET Credential Method

{
}

"STATUS": "Succeeded"

GET Credential Method

ORACLE

Use the GET method to view all credentials in the domain credential store.

REST Request

CET /idaas/platfornfadmi n/vl/credential

Response Body
Media types for the request or response body: application/|son

The response body contains information about all credentials in the credential store,
including:

Attribute Description

" CSF_MAP_NAME" Name of the credential store map.

"defaul t" List of keys in the default credential map.
"oracle.wsmsecurity" List of keys in the Oracle Web Services Manager (Oracle WSM)

security credential map.

cURL Example

The following example shows how to view all credentials in a credential store by
submitting a GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or ml admi n/ v1/
credenti al

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
" CSF_MAP_NAME": "CSF_KEY_NAME",
"default": "systenmuser",
"oracle.wsmsecurity": [
"sign-csf-key",
"jwt-sign-csf-key",
"owsntest.credentials",
"basic.client.credentials",
"webl ogi c- csf - key",
"enc- csf-key",
"nykey",
" durmmy- pwd- csf - key",

3-3

Chapter 3

PUT Credential Method

"webl ogi c- ker ber os- csf - key",
"keyst ore- csf - key",

"webl ogi c- wi ndowsdonai n- csf - key",
"oratest-csf-key",

"csr-csf-key",

"invalid-csf-key",

"ca- si gned- si gn- csf - key"

}

PUT Credential Method

Use the PUT method to update a credential in the domain credential store.

ORACLE

REST Request

PUT /idaas/ pl atform adm n/v1/credential

Request Body
Media types for the request body: application/json

The request body contains the details of the update request:

Attribute Description Required

"credential" Updated password for the key in the Yes
keystore.

"key" Name of the key that you want to modify. Yes
The key must exist.

" map" Name of the map (folder) that you wantto Yes
modify.

"user name" Username for the key in the keystore. Yes

Response Body

Media types for the response body: appl i cation/j son

The response body returns the status of the update operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to " Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.
" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to update a credential in the credential store by

submitting a PUT request on the REST resource using cURL.
TESTED

curl -i -X PUT -u username: password --data @updatecred.json -H Content-

Type: application/json http://nmyhost:7001/i daas/ patform adnin/vl/credential

3-4

Chapter 3
DELETE Credential Method

Example of Request Body
The following shows an example of the request body in JSON format.

{

"usernanme" : "usernane",
“credential" : "Password",

“key" : "mykey”,
"map" : "oracle.wsmsecurity"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"STATUS": "Succeeded"

DELETE Credential Method

ORACLE

Use the Delete method to delete a credential from the domain credential store.

REST Request

DELETE /i daas/ pl at f ormf admi n/ v1/credenti al

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

"key" Name of the key for the credential that you wantto Query
delete.

" map" Name of the map (folder) for the credential that you Query

want to delete.

Response Body
Media types for the request or response body: application/|son

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

3-5

ORACLE

Chapter 3
DELETE Credential Method

cURL Example

The following example shows how to delete a credential from the credential store by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ pl atform admin/v1/
credenti al ?"key=nykey&map=or acl e. wsm security"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 204 No Content

Example of Response Body

The following shows an example of the response body in JSON format.

"STATUS": "Succeeded"

3-6

Manage Java Keystore Keystores

Before using the REST API to view and manage Java Keystore (JKS) keystores within
a domain, you need to understand how to access the REST resources and other
important concepts.

For more information, see "About the REST API".

For information about JKS keystore management, see "Configuring Keystores for
Message Protection” in Administering Web Services.

This chapter includes the following sections:

* View and Manage JKS keystores within a Domain Using REST Resources
e GET All Aliases Trusted Certificate JKS Keystore Method

* POST Specified Alias Trusted Certificate JKS Keystore Method

 POST PKCS#7 Trusted Certificate JKS Keystore Method

* GET Specified Alias Trusted Certificate JKS Keystore Method
 DELETE Trusted Certificate JKS Keystore Method

View and Manage JKS keystores within a Domain Using

REST Resources

Representational state transfer (REST) resources enable you to view and manage

JKS keystores.

You can view and manage JKS keystores within a domain using a set of
representational state transfer (REST) resources, as summarized below.

Task Method Resource Path

GET All Aliases Trusted Certificate GET /i daas/ pl at f or mf admi n/ v1/ keyst ore

JKS Keystore Method

POST Specified Alias Trusted POST /i daas/ pl at f orml admi n/ v1/ keystore/ {al i as}
Certificate JKS Keystore Method

POST PKCS#7 Trusted Certificate ~ POST /i daas/ pl at f ornf admi n/ v1/ keyst or e/ pkcs7/{al i as}
JKS Keystore Method

GET Specified Alias Trusted CGET /i daas/ pl atfornf admi n/ v1l/ keystore/{alias}
Certificate JKS Keystore Method

DELETE Trusted Certificate JKS DELETE i daas/ pl atfornf adm n/vl/ keystore/{alias}

Keystore Method

ORACLE

4-1

Chapter 4
GET All Aliases Trusted Certificate JKS Keystore Method

GET All Aliases Trusted Certificate JKS Keystore Method

Use the GET method to get all aliases for the trusted certificate entries in the JKS
keystore.

REST Request

GET /idaas/platform adni n/vl/ keystore

Response Body
Media types for the request or response body: application/|son

The response body contains the list of aliases:

Attribute Description

"al i ases" Comma-separated list of aliases.

cURL Example

The following example shows how to view all aliases for the trusted certificate entries
in the JKS keystore by submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
keystore

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
TESTED

{

}

"aliases":"oratest, orakey, testkey,jkstest, ms- oaut hkey"

POST Specified Alias Trusted Certificate JKS Keystore

Method

ORACLE

Use the POST method to import a trusted certificate at the specified alias into the JKS
keystore. The certificate must be Base64 encoded.

REST Request

PCOST /i daas/ pl atfornf adm n/v1l/ keystore/{alias}

4-2

Chapter 4
POST Specified Alias Trusted Certificate JKS Keystore Method

Parameters

The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the trusted certificate to be imported. Path
The alias will be created. The alias must not already
exist in the JKS keystore; otherwise, the request will
fail.

Request Body
Media types for the request body: appl i cation/json

The request body contains the details of the import request:

Attribute Description
“certificate" Base64-encoded certificate.
"component " Component to which the certificate is imported. This value

must be set to JKS.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted certificate into the JKS keystore
by submitting a POST request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password --data @nportjkscert.json -H Content-
Type: application/json http://myhost:7001/i daas/ pl atform adm n/v1/keyst ore/ nyt est key

Example of Request Body
The following shows an example of the request body in JSON format.

{ "conponent":"JKS',
"certificate": "Bese64-encoded certificate"

}

Example of Response Header

ORACLE' 4.3

Chapter 4
POST PKCS#7 Trusted Certificate JKS Keystore Method

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
"STATUS": "Succeeded",

"SUBJECT DN': " CNey, Olsy, O=y, L=y, ST=y, C=y"
}

POST PKCS#7 Trusted Certificate JKS Keystore Method

ORACLE

Use the POST method to import a PKCS#7 trusted certificate or a certificate chain
associated with a private key indicated by the specified alias into the JKS keystore.

REST Request

PCST /i daas/ pl at fornf adm n/ v1/ keystore/ pkcs7/{al i as}

Parameters

The following table summarizes the POST request parameter.

Name Description Type

alias Alias of the private key for which the trusted PKCS#7 Path
certificate will be imported. The alias must already in
the JKS keystore.

Request Body
Media types for the request body: application/json

The request body contains the details of the import request:

Attribute Description
"certificate" Base64-encoded certificate.
"conponent " Component to which the certificate is imported. This value

must be set to JKS.

"keyPasswor d" Password for the private key.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

4-4

Chapter 4
GET Specified Alias Trusted Certificate JKS Keystore Method

Attribute Description
" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".
" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to import a trusted PKCS#7 certificate into the JKS
keystore by submitting a POST request on the REST resource using cURL.

curl -i -X POST -u usernane: password --data @nportjkscert.json -H Content-
Type: application/json http://nyhost:7001/i daas/ pl atfornf adm n/v1/ keystore/ pkcs7/
myprivat ekey

Example of Request Body
The following shows an example of the request body in JSON format.

{
“conponent": " JKS",

"certificate": "Bese64-encoded certificate",
"keyPassword" : "Password"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
"STATUS": "Succeeded",

"SUBJECT_DN': "CN=y, OFy, C=y, L=y, ST=y, C=y"
}

GET Specified Alias Trusted Certificate JKS Keystore

Method

ORACLE

Use to GET method to view details of the trusted certificate at the specified alias in the
JKS keystore.

If the alias specifies a keyStore. Trust edCerti fi cat eEntry, the details of the trusted
certificate are returned. If the alias specifies a KeyStore. Pri vat ekeyEnt ry, the first
certificate in the trusted certificate chain is returned.

REST Request

CET /idaas/pl atfornfadmi n/vl/ keystore/{alias}

Parameters

The following table summarizes the GET request parameters.

4-5

ORACLE

Chapter 4
GET Specified Alias Trusted Certificate JKS Keystore Method

Name Description Type
alias Name of alias for which you want to view a trusted Path
certificate.

Response Body
Media types for the request or response body: appl i cation/json

The response body contains information about the certificate, including:

Attribute Description
" CONTENT" Contents of the Base64-encoded certificate.
"Ext ensi ons" Optional extensions that are used to issue a certificate for a

specific purpose. Each extension includes the following:
e Object identifier (oid) that uniquely identifies it
* Flag indicating whether the extension is critical

¢ Value
" | SSUER_DN' List of trusted distinguished names.
"NOT_AFTER" Date the certificate expires.
" NOT_BEFORE" Date the certificate is activated.
" SERI AL_NO' Serial number of the JKS keystore.
" Sl GNATURE" Base64-encoded signature key.
"SI GNI NG_ALGORI THM! Signing algorithm for the alias.
" SUBJECT_DN' Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias in the JKS
keystore by submitting a GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f or mf admi n/ v1/
keyst or e/ myt est key

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
" SUBJECT _DN': " CNewebl ogi ¢, OU=Test key for JKS Mean

test, O=Oracl e, L=testcity, ST=teststate, Cus",
"1 SSUER_DN': " CN=webl ogi ¢, OU=Test key for JKS Miean
test, O=Oracl e, L=testcity, ST=teststate, Cus",
"NOT_BEFORE": " Tue Jun 25 02:20:38 PDT 2013",
"NOT_AFTER': "Wed Nov 27 01:20:38 PST 2052",

4-6

Chapter 4
DELETE Trusted Certificate JKS Keystore Method

"SERIAL_NO': "1372152038",

"SI GNING_ALGORI THM': " 1. 2. 840. 113549. 1. 1. 5",

" CONTENT": "----- BEG N CERTI FI CATE-- - - - \n
Bese64- encoded certificate\ln
----- END CERTI FI CATE-----",

"SI GNATURE" : " Bese64- encoded si gnature key",

"Extensions": "{subj ect Keyl DExtension {oid = 2.5.29.14 critical = false, value =
329h98f 6h6225€92ca52513d3bf c43ee02aa9121}}"

}

DELETE Trusted Certificate JKS Keystore Method

ORACLE

Use the Delete method to delete a trusted certificate
(keyStore. TrustedCertificat eEntry) with the specified alias from the JKS keystore. You
cannot delete the keyStore. Pri vat eKeyEntry.

REST Request

DELETE /i daas/ pl at f ormf admi n/ v1/ keystore/{alias}

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

alias Alias of the trusted certificate entry to be deleted. Path

Response Body
Media types for the request or response body: appl i cation/json

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ pl atf orm admi n/v1/
keystore/testalias

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

4-7

ORACLE

Chapter 4
DELETE Trusted Certificate JKS Keystore Method

Example of Response Body

The following shows an example of the response body in JSON format.
{
}

"STATUS": "Succeeded"

4-8

View and Manage Keystore Service
Keystores

Before using the REST API to view and manage Keystore Service (KSS) keystores,
you need to understand how to access the REST resources and other important
concepts.

See "About the REST API".

For more information about KSS keystore management, see "Configuring the OPSS
Keystore Service for Message Protection™” in Administering Web Services.

This chapter includes the following sections:

View and Manage KSS keystores Using REST Resources
POST New KSS Keystore Method

POST Import KSS Keystore Method

PUT Password Update KSS Keystore Method
POST Trusted Certificate KSS Keystore Method
GET Stripe KSS Keystores Method

GET Alias KSS Keystore Method

GET Trusted Certificate KSS Keystore Method
DELETE Trusted Certificate KSS Keystore Method
POST Secret Key KSS Keystore

GET Secret Key Properties KSS Keystore Method
DELETE Keystore Service KSS Keystore Method

View and Manage KSS keystores Using REST Resources

You can view and manage KSS keystores using a set of representational state
transfer (REST) resources, as summarized below.

Section

Method

Resource Path

POST New KSS Keystore Method ~ POST
POST Import KSS Keystore Method POST
PUT Password Update KSS PUT

Keystore Method

POST Trusted Certificate KSS POST

Keystore Method

GET Stripe KSS Keystores Method GET

ORACLE

/i daas/ pl at f ornf admi n/ v1/ keyst or eservi ce
/i daas/ pl at f ormf admi n/ v1/ keyst or eservi ce/ keystore

/i daas/ pl atfornf admi n/ v1/ keyst or eservice

/i daas/ pl at f or mf adni n/ v1/ keyst oreservi ce/ certificates

/i daas/ pl at formf admi n/ v1/ keyst or eservi ce/ {stri peNane}

5-1

Chapter 5
POST New KSS Keystore Method

Section Method Resource Path

GET Alias KSS Keystore Method CET /i daas/ pl atfornf admi n/ v1l/ keyst oreservicel/ al i as/
{stripeNanme}/{keystoreName}/{entryType}

GET Trusted Certificate KSS CET /i daas/ pl at formf admi n/ v1/ keyst oreservi ce/ certificates

Keystore Method

DELETE Trusted Certificate KSS DELETE /i daas/ pl at f or mf admi n/ v1/ keyst oreservi ce/ certificates

Keystore Method

POST Secret Key KSS Keystore POST /i daas/ pl at f ornf admi n/ v1/ keyst or eser vi ce/ secr et key

GET Secret Key Properties KSS CET /i daas/ pl at f ormf admi n/ v1/ keyst or eservi ce/ secr et key

Keystore Method

DELETE Keystore Service KSS DELETE /i daas/ pl at f ornf admi n/ v1/ keyst or eservi ce

Keystore Method

POST New KSS Keystore Method

Use the POST method to create a new Keystore Service (KSS) Keystore.

REST Request

PCST /i daas/ pl atfornf adm n/v1l/ keystoreservice

Request Body
Media types for the request or response body: appl i cation/|son

The request body contains the details of the create request:

Attribute Description

"keystore" Name for the KSS keystore.

" perm ssi on" Boolean value that specifies whether to create a permission-
based keystore.

"pwd” Password for the KSS keystore.

"stripe” Name of the stripe to contain the KSS keystore.

Response Body
Media types for the request or response body: application/json

The response body returns the status of the create operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

ORACLE 5-2

Chapter 5
POST Import KSS Keystore Method

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password --data @reatekss.json -H Content-
Type: application/json http://nmyhost:7001/i daas/ pl atform adm n/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripe" : "nyStripe",
"keystore" . "nyKeystore",
"pwd" : "Password",
"permssion" : "false"

" Note:

A password is required unless creating a permission-based keystore
("permission" : "true").

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 201 Created

Example of Response Body

The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded"

POST Import KSS Keystore Method

ORACLE

Use the POST method to import a Keystore Service (KSS) keystore from a JKS
keystore file.

REST Request

PCST /i daas/ pl at f ormf adm n/ v1/ keyst oreservi ce/ keyst ore

Request Body
Media types for the request body: mul tipart/form data

The response body contains information about the import request, including:

5-3

ORACLE

Chapter 5
POST Import KSS Keystore Method

Attribute Description

"keyAl i ases" Comma-separated list of aliases for the keys to be imported
from the keystoreFi | e.

"keyPasswor ds" Comma-separated list of passwords for the keys to be
imported from the keyst oreFi | e.

"keystoreFile" Name of a valid local JKS keystore file

"keyst or eName" Name for the JKS keystore.

"keyst or ePasswor d" Password for the local keystore file that is being imported and
the keystore entry, if password-protected.

"keyst or eType" Keystore type. This value must be set to JKS.

" perm ssion” Boolean value that specifies whether to import as a

permission-based keystore.

"stripeName" Name of the stripe.

Response Body
Media types for the response body: appl i cation/json

The response body contains information about the import operation, including:

Attribute Description

"alias n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to import a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password -H Content-Type: nul tipart/formdata --form
"stripeNane=nyStripe" --form"keystoreFile=@lientkeystore" --form

"keyst or eNane=nyKeystore" --form "keyst orePasswor d=Password" --form

"keyst oreType=JKS" --form "keyAl iases=client" --form"keyPasswords=Password" --form
"perm ssi on=fal se" http://nyhost:7001/i daas/ pl atform admi n/ v1/ keyst oreservicel
keystore

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 201 Created

Example of Response Body

The following shows an example of the response body in JSON format.

5-4

Chapter 5
PUT Password Update KSS Keystore Method

{
" STATUS": " Succeeded",
"SUCCESS_MSG': " Ali ases:client inported successful ly",
"alias 1":"client"

}

PUT Password Update KSS Keystore Method

Use the PUT method to update the password for a Keystore Service (KSS) keystore.

REST Request

PUT /idaas/ pl at formf admi n/ v1/ keyst or eservi ce

Request Body
Media types for the request body: application/json

The response body contains information about the Load Balancer patches, including:

Attribute Description

"keystore" Name of the KSS keystore.
"newpass" New password for the keystore.
"ol dpass” Old password for the keystore.
"stripe" Name of the stripe.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the update operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to import a KSS keystore by submitting a PUT
request on the REST resource using cURL.

TESTED

curl -i -X PUT -u usernane: password --data @updatekss.json -H Content-
Type: application/json http://myhost:7001/idaas/ pl atform adm n/v1/keystoreservice

Example of Request Body
The following shows an example of the request body in JSON format.
{

"stripe" : "nyStripe",
"keystore" : "nykssstore",

ORACLE' 5.5

Chapter 5
POST Trusted Certificate KSS Keystore Method

"ol dpass" : "Password",
"newpass" : "Password"

}

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

POST Trusted Certificate KSS Keystore Method

Use the POST method to Import a trusted certificate into a Keystore Service (KSS)
keystore.

"STATUS": "Succeeded"

REST Request

PCST /i daas/ pl atfornfadm n/vl/ keystoreservice/certificates

Request Body
Media types for the request body: appl i cation/json

The response body contains information about the import request, including:

Attribute Description

"keyAlias" Alias for the trusted certificate.

"keystoreEntry" Base64-encoded certificate.

"keyst or eEnt ryType" Keystore entry type. Valid values include: Certificate,
TrustedCertificate, or SecretKey.

"keyst or eNang" Name of the KSS keystore.

"keyst or ePasswor d" Password for the KSS keystore.

"stripeName" Name of the stripe.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

ORACLE 5-6

Chapter 5
GET Stripe KSS Keystores Method

Attribute Description
" SUBJECT_DN' Subject DN list that was imported.

cURL Example

The following example shows how to create a KSS keystore by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password --data @nportcertkss.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ pl atform adm n/v1/keyst oreservice/
certificates

Example of Request Body
The following shows an example of the request body in JSON format.

{

"keyAlias" @ "nyAlias",
"keystoreEntry":

"Bese64-encoded certificate",
"keystoreEntryType" : "TrustedCertificate",
"keystoreNanme" : "nyKeystore",

"stripeNanme" : "nyStripe",
"keyst orePassword" : "Password"

}

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body
The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded"

"SUBJECT_DN': "CN=y, QU=y, C=y, L=y, ST=y, C=y"
}

GET Stripe KSS Keystores Method

ORACLE

Use the GET method to return all Keystore Service (KSS) keystores for a stripe.

REST Request

CGET /idaas/ pl atfornf admi n/v1/ keystoreservice/ {stripeName}

Parameters

The following table summarizes the GET request parameters.

5-7

Chapter 5
GET Alias KSS Keystore Method

Name Description Type
stripeName Name of stripe for which you want to view all KSS Path
keystores.

Response Body
Media types for the request or response body: appl i cation/json

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystores in the stripe, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
keystore.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ daas/ pl at f ormf admi n/ v1/
keystoreservice/ nyStripe

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body

The following shows an example of the response body in JSON format.

{

"keystore 1":"trust",
"keystore 2":"castore"

}

GET Alias KSS Keystore Method

ORACLE

Use the GET method to view the alias for the Keystore Service (KSS) keystore.

REST Request

CET /idaas/pl atfornfadmi n/vl/ keystoreservice/alias/{stripeNanme}/{keystoreNane}/
{entryType}

Parameters

The following table summarizes the GET request parameters.

5-8

Chapter 5
GET Trusted Certificate KSS Keystore Method

Name Description Type

entryType Keystore type. Valid values include Certificate, Path
TrustedCertificate, or Secret Key.

keyst or eNarre Name of the keystore. Path

stripeName Name of the stripe. Path

Response Body
Media types for the request or response body: appl i cation/|son

The response body contains information about the certificate, including:

Attribute Description

"keystore n" List of keystore aliases in the stripe where n serves as an
index that starts at 1 and is incremented by 1 for each
additional property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password http://nyhost: 7001/ i daas/ pl at f or ml admi n/ v1/
keystoreservicel/alias/myStripel/ nyKeystore/ TrustedCertificate

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

{
"keystore 1":"nyAlias",

}

GET Trusted Certificate KSS Keystore Method

ORACLE

Use the GET method to view trusted certificates in the Keystore Service (KSS)
keystore. If the keystore is password-protected, you must provide a Base64-encoded
header value for the keystore password.

REST Request

CET /idaas/pl atfornf admi n/vl/ keystoreservice/certificates

Parameters

The following table summarizes the GET request parameters.

5-9

ORACLE

Chapter 5
GET Trusted Certificate KSS Keystore Method

Name Description Type
keyAl i as Alias for trusted certificate. Query
keyst oreEnt ryType Type of keystore entry. Valid values include Query

Certificate, TrustedCertificate, or
CertificateChain.

keyst or eName Name of the keystore. Query

stripeName Name of the stripe. Query

Response Body
Media types for the request or response body: application/|son

The response body contains information about the certificate, including:

Attribute Description
" CONTENT" Contents of the Base64-encoded certificate.
"Ext ensi ons" Optional extensions that are used to issue a certificate for a

specific purpose. Each extension includes the following:
e Object identifier (oid) that uniquely identifies it

* Flag indicating whether the extension is critical

e Set of values

" | SSUER DN List of trusted distinguished names.
"NOT_AFTER" Date the certificate expires.

" NOT_BEFORE" Date the certificate is activated.
"SERI AL_NO' Serial number of the JKS keystore.
" Sl GNATURE" Base64-encoded signature key.

"SI GNI NG_ALGORI THM' Signing algorithm for the alias.

" SUBJECT_DN' Subject distinguished names list.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X CGET -u usernane: password -H keyst orePassword: password http://nyhost: 7001/
i daas/ pl at f ormf admi n/ v1/ keyst or eservi ce/
certificates?"stripeNanme=nyStripe&keystoreName=nyKeyst or e&keyAl i as=cl i ent &eyst or eEnt
ryType=Certificate"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body

The following shows an example of the response body in JSON format.

5-10

Chapter 5
DELETE Trusted Certificate KSS Keystore Method

"SUBJECT_DN': " CN=y, Oy, Ory, L=y, ST=y, C=y",
"I SSUER_DN": " CNey, OU=y, O=y, L=y, ST=y, C=y",
"NOT_BEFORE": "Fri Jul 25 02:45:11 PDT 2014",
"NOT_AFTER": "Thu Cct 23 02:45:11 PDT 2014",
"SERI AL_NO': "982191050",
"SI GNI NG_ALGORI THM': " 1. 2. 840. 10040. 4. 3",
"CONTENT": "----- BEG N CERTI FI CATE- - - - - \n
Bese64- encoded certificateln
----- END CERTI FI CATE-----",
"SI GNATURE" : " Bese64- encoded signature key",
"Ext ensi ons": "{subj ect Keyl DExt ension {oid = 2.5.29.14 critical = false, value =
329h98f 6h6225e€92¢a52513d3bf c43ee02aa9121} } "

}

DELETE Trusted Certificate KSS Keystore Method

ORACLE

Use the Delete method to delete a certificate from a Keystore Service (KSS) keystore.
If the keystore is password-protected, you must provide Base64-encoded header
values for the keystore and key passwords.

REST Request

DELETE /i daas/ pl atform adm n/vl/ keystoreservice/certificates

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type

keyAl i as Alias for the certificate in the KSS keystore. Query
keyst or eName Name of the keystore. Query
stripeName Name of stripe. Query

Response Body
Media types for the request or response body: appl i cation/json

The response body returns the status of the import operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is setto "Fai | ed", provides the contents of the

error message.
" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

5-11

Chapter 5
POST Secret Key KSS Keystore

curl -i -X DELETE -u usernane: password -H keyst or ePasswor d: cHlkM®== -H
keyPasswor d: bXI Q2Qy http://nyhost: 7001/ i daas/ pl at f or ml adni n/ v1/ keyst or eservi ce/
certificates?"stri peName=nyStri pe&keyst or eNane=nyKeyst or e€keyAl i as=nyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"STATUS": "Succeeded"

POST Secret Key KSS Keystore

ORACLE

Use the POST method to create a secret key used in symmetric encryption/decryption
for a KSS keystore.

REST Request

PCST /i daas/ pl atfornf adm n/v1/ keystoreservice/ secretkey

Request Body
Media types for the request body: appli cation/json

The request body contains the details of the create request:

Attribute Description

"al gorithnt Controls the cryptographic characteristics of the algorithms
that are used when securing messages.

"keyAlias" Alias for the secret key.

"keyPasswor d" Password for the secret key.

"keySi ze" Size measured in bits of the of the key used in cryptographic
algorithm.

"keyst or eNang" Name for the KSS keystore.

"keyst or ePasswor d" Password for the KSS keystore.

"stripeName" Name of the stripe.

Response Body
Media types for the response body: application/json

The response body returns the status of the import operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

5-12

Chapter 5
GET Secret Key Properties KSS Keystore Method

Attribute Description

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to create a secret key by submitting a POST
request on the REST resource using cURL.

TESTED

curl -i -X POST -u username: password --data @ecretkey.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ pl atform adm n/v1/ keystoreservice/
secret key

Example of Request Body
The following shows an example of the request body in JSON format.

{
"stripeNane" : "nyStripe",
"keystoreNanme" : "nyKeystore",
"keyAlias" : "nyKeyAlias",

"keySi ze" : "56",

"algorithnt : "DES',

"keyst orePassword" : "Password",
"keyPassword" : "Password"

}

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"STATUS": "Succeeded"

GET Secret Key Properties KSS Keystore Method

ORACLE

Use the GET method to view the secret key properties for a KSS keystore. If the
keystore is password-protected, you must provide Base64-encoded header values for
the keystore and key passwords.

REST Request

GET /idaas/platfornfadnin/vl/ keystoreservicelsecretkey

5-13

Chapter 5
DELETE Keystore Service KSS Keystore Method

Parameters

The following table summarizes the GET request parameters.

Name Description Type

keyAl i as Alias of the secret key. Query
keyst or eName Name of the keystore. Query
stripeNane Name of the stripe. Query

Response Body
Media types for the request or response body: appl i cation/json

The response body contains information about the certificate, including:

Attribute Description

"Property n" List of secret key properties, where n serves as an index that
starts at 1 and is incremented by 1 for each additional
property.

cURL Example

The following example shows how to view all certificates for an alias by submitting a
GET request on the REST resource using cURL.

TESTED

curl -i -X GET -u usernane: password -H keyst or ePasswor d: password -H
keyPasswor d: password http://nyhost: 7001/ i daas/ pl at f or mf adm n/ v1/ keyst or eservi ce/
secret key?"stri peNane=nySt ri pe&keyst or eNane=nyKeyst or e&keyAl i as=nmyKeyAl i as"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
}

"Property 1":"DES"

DELETE Keystore Service KSS Keystore Method

ORACLE

Use the Delete method to delete a Keystore Service (KSS) keystore. If the keystore is
password-protected, you must provide Base64-encoded header values for the
keystore password.

REST Request

DELETE /i daas/ pl at f or nf admi n/ v1/ keyst or eservi ce

5-14

ORACLE

Chapter 5
DELETE Keystore Service KSS Keystore Method

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type
keyst or eName Name of the keystore. Query
stripeNane Name of the stripe. Query

Response Body
Media types for the request or response body: application/json

The response body returns the status of the delete operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.
" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to delete a trusted certificate from the keystore by
submitting a DELETE request on the REST resource using cURL.

TESTED

curl -i -X DELETE -u usernane: password -H keyst orePasswor d: password http://nyhost:
7001/ i daas/ pl at f or mf adm n/ v1/
keyst oreservi ce?"stri peName=nySt ri pe&keyst or eNane=nyKeyst or e"

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 204 No Content

5-15

Manage Token Issuer Trust Configurations

ORACLE

Before using the REST API to view and manage token issuer trust configurations, you
need to understand how to access the REST resources and other important concepts.

For more information, see "About the REST API".

For more information about token issuer trust management, see "Defining Trusted
Issuers and a Trusted DN List for Signing Certificates" in Administering Web Services.

This chapter includes the following sections:

View and Manage Token Issuer Trust Configurations Using REST Resources
POST TrustDocument Name Method

POST Domain Trusted Issuers and Distinguished Name Lists Method

POST Document Trusted Issuers and Distinguished Name Lists Method
GET All Trusted Issuer and Distinguished Name Lists Method

GET Specified Document Trusted Issuer and Distinguished Name Lists Method
POST Token Attribute Rule Distinguished Name Method (Domain Context)
POST Token Attribute Rule Distinguished Name Method (Document Context)
GET All Token Attribute Rules Method

GET Specified Document Token Attribute Rules Method

Import TrustDocument Name Configurations Method

Export TrustDocument Name Configurations Method

Import Global Discovery Configuration

GET TrustDocument Method

DELETE Trust Document Method

Import Federation Metadata Document Method

Export Federation Metadata Document Method

Revoke Federation Metadata Document Method

POST Virtual User for a DN

Get Virtual User for a DN

One Paas — One Token Trust

Enabling and Disabling Token Issuer Trust

Import TrustDocument Name Configurations Method

Import IWK Document Trust Configurations

Revoke JWK Trust Configurations

Import WSM Discovery Metadata Trust Configurations

6-1

Chapter 6

View and Manage Token Issuer Trust Configurations Using REST Resources

* Revoke WSM Discovery Metadata Trust Configurations

View and Manage Token Issuer Trust Configurations Using

REST Resources

You can view and manage token issuer trust configurations using a set of
representational state transfer (REST) resources, as summarized below.

Section Method Resource Path

POST TrustDocument Name Method POST /i daas/ webser vi ce/ admi n/v1/trust docunment
POST Domain Trusted Issuers and POST /i daas/ webservi ce/ adm n/v1l/trust/issuers
Distinguished Name Lists Method

POST Document Trusted Issuers and POST /i daas/ webservice/ adm n/vl/trust/issuers
Distinguished Name Lists Method

GET All Trusted Issuer and GET /i daas/ webservi ce/ admi n/v1/trust/issuers
Distinguished Name Lists Method

GET Specified Document Trusted CGET /i daas/ webservi ce/ adm n/v1/trust/issuers
Issuer and Distinguished Name Lists

Method

POST Token Attribute Rule PCST /i daas/ webservi ce/ adm n/v1/trust/token
Distinguished Name Method (Domain

Context)

POST Token Attribute Rule POST . . .

Distinguished Name Method /i daas/ webservi ce/ admi n/v1/trust/token
(Document Context)

GET All Token Attribute Rules GET /i daas/ webservi ce/ adm n/v1/trust/token
Method

GET Specified Document Token CET . . .

Attribute Rules Method /i daas/ webservi ce/ adm n/ v1/trust/token

Import TrustDocument Name POST /i daas/ webservi ce/ adm n/v1/trustdocument/inport
Configurations Method

Equrt Tru§tDocument Name CET /i daas/ webservi ce/ adm n/ v1/trustdocument/export
Configurations Method

Import Global Discovery Configuration POST /i daas/ webservi ce/ adni n/ v1/trust docunment/i nport
GET TrustDocument Method GET /i daas/ webser vi ce/ admi n/v1/trust docunment
DELETE Trust Document Method DELETE /i daas/ webservi ce/ adm n/v1/trustdocunent
Import Federation Metadata PCST /i daas/ webservi ce/ admi n/ v1/f ederation/inport
Document Method

Export Federation Metadata POST /i daas/ webservi ce/ admi n/ v1/federation/ export
Document Method

Revoke Federation Metadata POST /i daas/ webservi ce/ adm n/ v1/federation/revoke
Document Method

POST Virtual User for a DN PCST /i daas/ webservi ce/ admi n/v1/trust/token

GET Virtual User for a DN GET /i daas/ webservi ce/ adm n/v1/trust/token

One Paas — One Token Trust PCST /i daas/ webservi ce/ adm n/v1/trust/token

ORACLE

6-2

Chapter 6
POST TrustDocument Name Method

Section Method Resource Path

Enabling and Disabling Token Issuer PCST /i daas/ webservi ce/ adm n/vl/trust/issuers

Trust

Import JWK Document Trust PUT /i daas/ webservi ce/ admi n/v1/federation/jwk/inport
Configurations

Revoke JWK Trust Configurations PUT /i daas/ webservi ce/ adm n/v1/federation/jwk/revoke

Import WSM Discovery Metadata
Trust Configurations

Revoke WSM Discovery Metadata
Trust Configurations

PUT /i daas/ webservi ce/ adm n/ v1/federation/
di scoverynet adat a/ i nport

PUT /i daas/ webservi ce/ adm n/ v1/federation/
di scover ynet adat a/ r evoke

POST TrustDocument Name Method

ORACLE

Use the Post method to create a trusted issuer document.

REST Request

POST /i daas/ webservi ce/ adm n/v1/trustdocunent

Parameters

The following table summarizes the POST request parameters.

Name Description Type
"di spl ayNarme" Display name for the document. Query
"docunent Nang" Name of the document. Query

Response Body
Media types for the request or response body: application/|son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example
TESTED

The following example shows how to create a trusted issuer document by submitting a
POST request on the REST resource using cURL.

6-3

Chapter 6
POST Domain Trusted Issuers and Distinguished Name Lists Method

curl -i -X POST -u username: password http://myhost: 7001/i daas/ webservi ce/ admi n/ v1/
trust docunent ?" document Nane=my Tr ust Docunent &di spl ayNanme=nyTr ust Document "

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 X

Example of Response Body
The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded",

"Result": "New Token Issuer Trust document named "nyTrust Docunent" created.”

}

POST Domain Trusted Issuers and Distinguished Name
Lists Method

ORACLE

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a domain context (that is, it applies to the entire domain).

REST Request

POST /i daas/ webservice/ adm n/vl/trust/issuers

Request Body
Media types for the request body: appl i cation/json

The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the trusted Yes
issuer. For each DN, use a string that
conforms to RFC 2253, as described at the
following URL: http://www. ietf.org/rfc/
rfc2253. txt

"issuer"” Groups information about a trusted issuer. Yes

- nang" Name of the trusted issuer. For example, Yes
ww. exanpl e. com The default value for the
predefined SAML client policies is
www. or acl e. com

"jw-trusted-dns" Groups information about JISON Web No
Token (JWT) trusted issuers.

"sanl - hok-t rust ed- dns” Groups information about SAML holder-of- No
key trusted issuers.

"sanl - sv-trusted-dns" Groups information about SAML sender No
vouches trusted issuers.

"sanl -trusted-dns" Groups the trusted issuers and DN lists. Yes

6-4

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Response Body

Chapter 6
POST Domain Trusted Issuers and Distinguished Name Lists Method

Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute

Description

" ERROR_CCDE"
" ERROR_MSG'

" STATUS"

If " STATUS" is set to "Fai | ed", provides the error code.

If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example
TESTED

The following example shows how to create a trusted issuers and DN lists by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u usernane: password --data @reatetrust.json -H Content-
Type: appl i cation/json http://nyhost: 7001/ i daas/ webservi ce/ adm n/v1/trust/issuers

Example of Request Body

The following shows an example of the request body in JSON format.

"sanl - hok-trusted-dns":

"issuer": |

o "www. oracl e. cont',
" dnll : [IIV\A Sl" ,]

"sanl -sv-trusted-dns":

"issuer": |

"issuer": |

{
"sanl -trusted-dns":
{
{
{
}
]
1,
{
]
}
{
{
}
]
}
}
}

ORACLE

. "www. or acl e. cont',
lldnll: [II\AA 52",]

"W -trusted-issuers":

: "www. or acl e. cont',
"dn": ["CNeorakey, OU=Crakey, O=Oracle, C=US',]

6-5

Chapter 6
POST Document Trusted Issuers and Distinguished Name Lists Method

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded",

POST Document Trusted Issuers and Distinguished Name
Lists Method

ORACLE

Use the POST method to create trusted issuers and distinguished name (DN) lists for
signing certificates in a document context (that is, it applies to a specified document).
The trusted issuers will be stored in the specified trusted issuers document.

REST Request

PCST /i daas/ webservi ce/ admi n/v1/trust/issuers/{docunent Name}

Parameters

The following table summarizes the POST request parameters.

Name Description Type

docunent Nane Name of trusted issuer document. For information Query
about creating a trusted issuer document, see "POST
TrustDocument Name Method".

Request Body
Media types for the request body: appl i cation/json

The request body contains the details of the add request:

Attribute Description Required

"dn" List of DN values to be added to the trusted Yes
issuer. For each DN, use a string that
conforms to RFC 2253, as described at the
following URL: http://www. ietf.org/rfc/
rfc2253.txt

"issuer” Groups information about a trusted issuer. Yes

- nang" Name of the trusted issuer. For example, Yes
wwv. exanpl e. com The default value for the
predefined SAML client policies is
www. or acl e. com

"jw-trusted-dns” Groups information about JISON Web No
Token (JWT) trusted issuers.

6-6

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Chapter 6
POST Document Trusted Issuers and Distinguished Name Lists Method

Attribute

Description Required

"sam - hok-trust ed-dns"

"sam - sv-trusted-dns"

"sam -trusted-dns"

Groups information about SAML holder-of- No
key trusted issuers.

Groups information about SAML sender No
vouches trusted issuers.

Groups the trusted issuers and DN lists. Yes

Response Body

Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is setto "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example
TESTED

The following example shows how to create trusted issuers and DN lists by submitting
a POST request on the REST resource using cURL

curl -i -X POST -u username: password --data @reatetrust.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ webservice/ adm n/vl/trust/issuers/

mydocunent

Example of Request Body

The following shows an example of the request body in JSON format.

{
"sanl -trusted-dns":
{
"sanl - hok-trusted-dns":
{
"issuer": |
{
"-nanme": "www. oracl e. conf,
" dnn : [IIV\A Sl" ,]
}
]
}
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-nane": "www. oracle.cont,
|Idn|l: ["\AA 52",]
}
]
IS

ORACLE

6-7

Chapter 6
GET All Trusted Issuer and Distinguished Name Lists Method

"jwt-trusted-issuers":

{
"issuer": |
{
"-npame": "ww. oracle. conf,
"dn": ["CNeorakey, OU=Crakey, O=Oracle, C=US',]
}
]
}

}

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"STATUS": "Succeeded",

GET All Trusted Issuer and Distinguished Name Lists

Method

ORACLE

Use the GET method to view a trusted issuer and its distinguished name (DN) lists for
all domain documents.

REST Request

CET /i daas/webservice/ adm n/vl/trust/issuers

Response Body
Media types for the request or response body: appl i cation/|son

The response body contains information about the trusted issuer and DN lists,
including:

Attribute Description

“dn" List of DN values to be added to the trusted issuer.

"issuer"” Groups information about a trusted issuer.

"-name" Name of the trusted issuer.

"jwt-trusted-dns" Groups information about JSON Web Token (JWT) trusted
issuers.

"sanl - hok-t rust ed- dns” Groups information about SAML holder-of-key trusted
issuers.

"sanl - sv-trusted- dns" Groups information about SAML sender vouches trusted
issuers.

"sanl -trusted-dns" Groups the DN lists.

6-8

ORACLE

Chapter 6
GET All Trusted Issuer and Distinguished Name Lists Method

cURL Example
TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f or mf admi n/v1/trust/
issuers

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{

"sanl -trusted-dns":
{
"sanl - hok-trusted-dns":
{
"issuer": |
{
"-nanme": "www. oracle. conf,
ndnu: ["V\ASl",]
}
]
}
"sanl -sv-trusted-dns":
{
"issuer": |
{
"-nane": "www. oracle.cont,
"dn": ["\MSZH,]

]
}

{

jw-trusted-issuers":

"issuer": |
{

"-name": "ww. oracle. cont,
"dn": ["CNeorakey, OU=Crakey, O=COracle, C=US',]

6-9

Chapter 6
GET Specified Document Trusted Issuer and Distinguished Name Lists Method

GET Specified Document Trusted Issuer and Distinguished
Name Lists Method

ORACLE

Use the GET method to view a trusted issuer and its distinguished name (DN) lists
based on the document name provided.

REST Request

CET /i daas/webservice/admi n/v1/trust/issuers/{docunent Nane}

Parameters

The following table summarizes the GET request parameters.

Name Description Type
docunent Name Name of document for which you want to view issuer Path
and DN lists.

Response Body
Media types for the request or response body: appl i cation/|son

The response body contains information about the trusted issuer and DN lists,
including:

Attribute Description

"dn" List of DN values to be added to the trusted issuer.

"issuer"” Groups information about a trusted issuer.

"-nang" Name of the trusted issuer.

"jw-trusted-dns” Groups information about JISON Web Token (JWT) trusted
issuers.

"sanl - hok-trust ed- dns" Groups information about SAML holder-of-key trusted
issuers.

"sanl -sv-trusted-dns" Groups information about SAML sender vouches trusted
issuers.

"sam -trusted-dns" Groups the DN lists.

cURL Example
TESTED

The following example shows how to view a trusted issuer and its DN lists by
submitting a GET request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f ormf admi n/v1/trust/
i ssuers/ mydocunent

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 OK

6-10

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

Example of Response Body

The following shows an example of the response body in JSON format.

{
"sam -trusted-dns":
{
"sam - hok-trusted-dns":
{
"issuer": [
{
"-name": "ww. oracl e. cont',
"dn": ["wsl",]
}
]
1
"sam - sv-trusted-dns":
{
"issuer": [
{
“-nanme": "ww. oracle. cont',
"dn": ["ws2",]
}
]
IS
"jwt-trusted-issuers":
{
"issuer": [
{
“-nanme": "ww. oracle.cont',
"dn": ["CNeorakey, OU=Crakey, O=Oracle, C=US',]
}
]
}
}
}

POST Token Attribute Rule Distinguished Name Method
(Domain Context)

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a domain context (that is, it applies to the entire domain). This operation can
be performed by the REST service or client. Only token attribute mapping is supported
on the client side.

REST Request

POST /i daas/ webservi ce/ adm n/v1/trust/token

Request Body
Media types for the request body: appl i cation/json

The request body contains the details of the add request:

ORACLE' 6-11

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL: http://wmv ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host orhttp(s)://host/root.Forexample, if
you set this value to htt ps: // exanpl e. cont , then the
attribute rule applies to all service invocations with the
service URL of the form htt ps: // exanpl e. conf <pat h>

"filter" Defines the constraint values for trusted users and
attributes.

Note: This attribute is not applicable on the client side.
" mappi ng" Defines the mapping attributes for trusted users.

"-nane" Name of the attribute rule.
Note: This attribute is not applicable on the client side.

"nane-id" Defines the users that are accepted for the trusted DN.
"token-attribute-rule" Groups information about a single token attribute rule.
"tokn-attribute-rules" Groups information about all token attribute rules.
"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mappi ng-attribute Defines the user mapping attribute that the trusted DN can

assert.

"val ue" Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "your Trust ed*". Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example
TESTED

ORACLE 6-12

http://www.ietf.org/rfc/rfc2253.txt

ORACLE

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Domain Context)

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ admi n/v1/trust/token

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adm n, o=oracl e",
"nane-id":{
"filter":
{
"value":["filterl"]
b
"mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
b
"attributes":
[
{
"-nane": "tenantl",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
"filter2"
]
b
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}
]
}
]
}
}

Example of Request Body - Client Side

The following shows an example of the request body in JISON format for creating a
token attribute rule on the client side.

{

"token-attribute-rules":

{

6-13

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

"token-attribute-rule":

[

{
"-dn": "https://exanple.com",
"nane-id":{
"mappi ng":
{
"user-nmapping-attribute": "mail"
}
¥
}

]

"token-attribute-rule":

[

{
"-dn": "https://exanple.conf nysvclnstancel-acne/",
"nane-id":{
"mappi ng":
{
"user-mapping-attribute": "uid"
}
¥
}

}

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

{
}

"STATUS": "Succeeded"

POST Token Attribute Rule Distinguished Name Method
(Document Context)

ORACLE

Use the POST method to create a token attribute rule for a trusted distinguished name
(DN) for a document context (that is, it applies to a specified document). This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

PCST /i daas/ webservi ce/ admi n/v1/trust/token/{docunent Name}

Parameters

The following table summarizes the POST request parameters.

6-14

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

Name Description Type

docunent Nane Name of document for which you want to create a token Path
attribute rule.

Request Body
Media types for the request body: appl i cation/json

The request body contains the details of the add request:

Attribute Description

"attributes" Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

"-dn" On the service side, set this value to a trusted DN for
which you are configuring an attribute rule. Use a string
that conforms to RFC 2253, as described at the following
URL: http://wwv. ietf.org/rfc/rfc2253.txt

On the client side, set this value to a URL of the domain
hosting the targeted services using the following format:
http(s)://host orhttp(s)://host/root.For example, if
you set this value to htt ps: // exanpl e. cont , then the
attribute rule applies to all service invocations with the
service URL of the form htt ps: // exanpl e. con <pat h>

"filter” Defines the constraint values for trusted users and
attributes.
Note: This attribute is not applicable on the client side.
" mappi ng" Defines the mapping attributes for trusted users.

- name Name of the attribute rule.

Note: This attribute is not applicable on the client side.

"nane-id" Defines the users that are accepted for the trusted DN.
"token-attribute-rule" Groups information about a single token attribute rule.
"tokn-attribute-rul es" Groups information about all token attribute rules.
"user-attribute" Defines the user attribute that the trusted DN can assert.

Note: This attribute is not applicable on the client side.

"user-mappi ng-attribute" Defines the user mapping attribute that the trusted DN can
assert.
"val ue" Defines values for the constraint filter attribute. This value

can be a full name or name pattern with a wildcard
character (*), such as "your Trust ed*". Multiple values
must be separated by a comma.

Note: This attribute is not applicable on the client side.

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

ORACLE 6-15

http://www.ietf.org/rfc/rfc2253.txt

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai l ed".

cURL Example
TESTED

The following example shows how to create a token attribute rule for a trusted DN by
submitting a POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @reaterule.json http://myhost: 7001/
i daas/ webservi ce/ adni n/ v1/trust/token/ mydocument

Example of Request Body - Service Side

The following shows an example of the request body in JSON format for creating a
token attribute rule for a trusted DN on the service side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcladnmn, o=oracl e",
"nane-id":{
"filter":
{
"value":["filterl"]
b
"mappi ng":
{
"user-attribute": "val 3",
"user-nmapping-attribute": "val 4"
}
b
"attributes":
[
{
"-name": "tenant1",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
"filter2"
]
b
" mappi ng": {
"user-attribute": "val 1",
"user-nmapping-attribute": "val 2"
}
}
}

ORACLE 6-16

Chapter 6
POST Token Attribute Rule Distinguished Name Method (Document Context)

}

Example of Request Body - Client Side

The following shows an example of the request body in JSON format for creating a
token attribute rule on the client side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "https://exanple.com",
"name-id":{
" mappi ng":
{
"user-mapping-attribute": "mail"
}
I3
}
|
"token-attribute-rule":
[
{
"-dn": "https://exanpl e.conf nysvcl nstancel-acne/",
"name-id":{
" mappi ng":
{
"user-mapping-attribute": "uid"
}
I3
}
]
}
}

Example of Response Header

The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.
{

}

"STATUS": "Succeeded"

ORACLE 6-17

Chapter 6
GET All Token Attribute Rules Method

GET All Token Attribute Rules Method

Use the GET method to view all token attribute rules for a domain context (applies to
entire domain). This operation can be performed by the REST service or client. Only
token attribute mapping is supported on the client side.

REST Request

CET /idaas/ webservi ce/ admi n/vl/trust/token

Response Body

Media types for the request or response body: application/|son

The response body contains information about all token attribute rules, including:

Attribute

Description

"attributes"

"_ dnu

"filter"

" mappi ng"

- nane

"name-id"
"token-attribute-rule"
"tokn-attribute-rul es"

"user-attribute"

"user-mappi ng-attribute"

"val ue"

Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.
On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC

2253, as described at the following URL: http://
wwv. i etf.org/rfc/rfc2253. txt

On the client side, URL specified using the following
format: http(s)://host orhttp(s)://host/root

Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as your Tr ust ed*. If you
specify multiple attribute filters, each filter should be
separated by a comma.

Defines the mapping attributes for trusted users.
Note: This attribute is not applicable on the client side.

Name of the attribute rule.
Note: This attribute is not applicable on the client side.

Defines the users that are accepted for the trusted DN.
Groups information about a single token attribute rule.
Groups information about all token attribute rules.
Defines the user attribute that the trusted DN can assert.
Note: This attribute is not applicable on the client side.

Defines the user mapping attribute that the trusted DN can
assert.

Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "your Trust ed*". Multiple values
must be separated by a comma.

ORACLE

6-18

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

ORACLE

GET All Token Attribute Rules Method

cURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in

review.

The following example shows how to view all token attribute rules by submitting a GET

request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl at f ormf admi n/v1/trust/

t oken

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 OK

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a

token attribute rule on the service side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adm n, o=oracl e",
"attributes":
[
{
"-nane": "tenantl",
"attribute":
{
"filter":
{
"val ue": [
"filterl",
"filter2"
]
b
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}
1
"nane-id":{
"filter":
{
"value":["filterl"]
b
" mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
}
}

Chapter 6
GET Specified Document Token Attribute Rules Method

}

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"-dn": "https://exanple.com",
"name-id":{
" mappi ng":
{
"user-mapping-attribute": "mail"
}
I3
}
|
"token-attribute-rule":
[
{
"-dn": "https://exanpl e.conf nysvcl nstancel-acne/",
"name-id":{
" mappi ng":
{
"user-mapping-attribute": "uid"
}
I3
}
]
}
}

GET Specified Document Token Attribute Rules Method

Use the GET method to view token attribute rules for a specified document. This
operation can be performed by the REST service or client. Only token attribute
mapping is supported on the client side.

REST Request

GET /i daas/webservice/ adm n/v1/trust/token/{docunent Name}

Parameters

The following table summarizes the GET request parameters.

Name Description Type

docunent Nane Name of document for which you want to view token Path
attribute rules.

ORACLE 6-20

ORACLE

Response Body

Chapter 6
GET Specified Document Token Attribute Rules Method

Media types for the request or response body: application/|son

The response body contains information about all token attribute rules for the

document, including:

Attribute

Description

"attributes”

"_dn"

"filter"

" n.appl ngn

" name"

"nane-id"
"token-attribute-rule"
"tokn-attribute-rules"

"user-attribute"

"user-mappi ng-attribute

"val ue"

Groups the constraints filter and mapping attributes for
trusted users.

Note: This attribute is not required on the client side.

On the service side, trusted DN for which you are
configuring an attribute rule. The string conforms to RFC
2253, as described at the following URL: http://

waw. i etf.org/rfc/rfc2253. txt

On the client side, URL specified using the following
format: http(s)://host orhttp(s)://host/root
Defines the filter values for trusted users and attributes.

You can enter a complete name or a name pattern with a
wildcard character (*), such as your Tr ust ed*. If you
specify multiple attribute filters, each filter should be
separated by a comma.

Defines the mapping attributes for trusted users.
Note: This attribute is not applicable on the client side.

Name of the attribute rule.
Note: This attribute is not applicable on the client side.

Defines the users that are accepted for the trusted DN.
Groups information about a single token attribute rule.
Groups information about all token attribute rules.

Defines the user attribute that the trusted DN can assert.
Note: This attribute is not applicable on the client side.

Defines the user mapping attribute that the trusted DN can
assert.

Defines values for the constraint filter attribute. This value
can be a full name or name pattern with a wildcard
character (*), such as "your Trust ed*". Multiple values
must be separated by a comma.

cURL Example

TESTED against MAIN -- was asked to remove trust document name for URL in

review.

The following example shows how to view all token attribute rules by submitting a GET
request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://nyhost:7001/i daas/ pl atform adm n/v1l/trust/

t oken/ nydocunent

Example of Response Header

The following shows an example of the response header.

6-21

http://www.ietf.org/rfc/rfc2253.txt
http://www.ietf.org/rfc/rfc2253.txt

Chapter 6
GET Specified Document Token Attribute Rules Method

HTTP/ 1.1 200 K

Example of Response Body—Service Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the service side.

{
"token-attribute-rul es":
{
"token-attribute-rule":
[
{
"-dn": "cn=orcl adm n, o=or acl e",
"attributes":
[
{
"-name": "tenantl",
"attribute":
{
"filter":
{
"value": [
"filterl",
"filter2"
]
1
" mappi ng": {
"user-attribute": "val 1",
"user-mapping-attribute": "val 2"
}
}
}
I
"name-id":{
"filter":
{
"value":["filterl"]
1
" mappi ng":
{
"user-attribute": "val 3",
"user-mapping-attribute": "val 4"
}
}
}
]
}
}

Example of Response Body - Client Side

The following shows an example of the response body in JSON format for viewing a
token attribute rule on the client side.

{

"token-attribute-rules":

{

"token-attribute-rule":

[

{
"-dn": "https://exanple.com",

ORACLE 6-22

Chapter 6
Import TrustDocument Name Configurations Method

"nane-id":{
"mappi ng":
{

}

"user-nmapping-attribute": "mail"

b
}
]

"token-attribute-rule":

[

{
"-dn": "https://exanple.conf nysvclnstancel-acne/",
"nane-id":{
"mappi ng":
{
"user-nmapping-attribute": "uid"
}
¥
}

}

Import TrustDocument Name Configurations Method

Use the POST method to import trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

POST /i daas/ webservi ce/ admi n/v1/trustdocument/inport

Request Body
Media types for the request body: appl i cation/xnl and appl i cation/ JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the orat rust: nane element.

Request body in xml format:

<?xm version="1.0" encodi ng="UTF-8"?>
<ns0: Tokenl ssuer Trust xm ns: ns0="http://xm ns. oracl e. comf wsm security/trust"
ns0: name="owsm' nsO0: di spl ayNanme="owsni'>
<ns0: | ssuer s>
<ns0: | ssuer ns0: name="www. or acl e. conf ns0:tokentype="sam . sv"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl denti fier nsO: keytype="x509certificate" nsO:val uetype="dn"
ns0: enabl ed="t rue">al i ce2</ ns0: Keyl denti fier>
</ ns0: Trust edKeys>
</ ns0: | ssuer>
<ns0: | ssuer ns0: name="www. exanpl e. conf ns0:tokent ype="san . hok"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl denti fier nsO: keytype="x509certificate" nsO:val uetype="dn"
ns0: enabl ed="t r ue" >bob</ ns0: Keyl dentifier>
</ ns0: Trust edKeys>
</ ns0: | ssuer>

ORACLE 6-23

ORACLE

Chapter 6
Import TrustDocument Name Configurations Method

<ns0: | ssuer ns0:name="https://identity.oraclecloud.com" nsO:tokentype="jw"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t rue" >or akey_j wk</ ns0: Keyl denti fi er>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t r ue" >or akey</ ns0: Keyl denti fi er >
<ns0: Keys nsO:type="jwk" ns0:trust="idcs.jwk.jw"></ns0: Keys>
</ ns0: Trust edKeys>
<ns0: Trust edRP>
<ns0: RP ns0:type="literal ">client</ns0: RP>
</ ns0: Trust edRP>
<ns0: Di scoveryl nf o>
<ns0: Di scover yURL>ht t ps: // www. exanpl e. cont . wel | - known/ openi d-
configuration</ns0: Di scover yURL>
<ns0: | dcsd i ent Csf Key>i dcs- or akey</ ns0: | dcsd i ent Csf Key>
</ ns0: Di scoveryl nf 0>
</ ns0: | ssuer>
<ns0: | ssuer ns0: name="https://accounts. exanpl e. cont' nsO:tokentype="jwt"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t rue" >3b0f c11962ad16e49d55a26816¢c5ad0d3f 6b8a83</ nsO: Keyl denti fi er>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t r ue" >19e8b40cf 03c4cf 1lec545f 01ec8c51a6f 46ab455</ nsO: Keyl denti fier>
<ns0: ndURL>ht t ps: / / ww. exanpl eapi s. com oaut h2/ v3/ cert s</ ns0: ndURL>
<ns0: Keys nsO:type="jwk" nsO:trust="jwk.jw"
ns0: refreshl nterval ="2000" ></ ns0: Keys>
</ ns0: Trust edKeys>
<ns0: Trust edRP>
<ns0: RP ns0:type="literal ">client</ns0: RP>
</ ns0: Trust edRP>
</ ns0: | ssuer>
</ ns0: | ssuers>
<ns0: TokenAttri but eRul es>
<ns0: TokenAttribut eRul e nsO:issuer="https://accounts. exanpl e. coni>
<ns0: Nanel d ns0: name="nane-id">
<nsO: Filter>
<ns0: val ue>filter1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 3</ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 4</ ns0: user - mappi ng-at tri but e>
</ ns0: Mappi ng>
</ ns0: Nanel d>
<ns0: Proxy>
<ns0: ProxyHost >ww« pr oxy. us. or acl e. conx/ ns0: Pr oxyHost >
<ns0: ProxyPort >80</ ns0: ProxyPort >
</ ns0: Proxy>
</ ns0: TokenAt tri but eRul e>
<ns0: TokenAttribut eRul e nsO:identifier="cn=user, o=oracle"
nsO:issuer="https://identity.oraclecl oud. com ">
<ns0: Nanel d ns0: name="nane-id">
<nsO: Filter>
<ns0: val ue>filter1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 3</ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 4</ ns0: user - mappi ng-at tri but e>

6-24

Chapter 6
Import TrustDocument Name Configurations Method

</ ns0: Mappi ng>
</ ns0: Nanel d>
<ns0: Attributes>
<ns0: Attribute ns0O: name="user.tenant. nane">
<nsO: Filter>
<ns0: val ue>filter1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 1</ ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 2</ ns0: user - mappi ng-at tri but e>
</ ns0: Mappi ng>
</ns0: Attribute>
</ns0: Attributes>
<ns0: Virtual User nsO: enabl ed="true">
<ns0: Def aul t Rol es>
<ns0: Rol e>def Rol e1</ ns0: Rol e>
<ns0: Rol e>def Rol e2</ ns0: Rol e>
</ ns0: Def aul t Rol es>
<ns0: TokenRol eAttri but es>
<ns0: At tri but eName>di spl aynanme</ ns0: Attri but eName>
</ ns0: TokenRol eAttri but es>
<ns0: TokenRol eMappi ng>
<ns0: Rol eMappi ng>
<ns0: TokenRol e>Test User </ ns0: TokenRol e>
<ns0: Mappi ngRol e>manager </ ns0: Mappi ngRol e>
<ns0: Mappi ngRol e>execut er </ ns0: Mappi ngRol e>
</ ns0: Rol eMappi ng>
</ ns0: TokenRol eMappi ng>
</ ns0: Vi rtual User >
</ ns0: TokenAttri but eRul e>
</ ns0: TokenAttri but eRul es>
</ ns0: Tokenl ssuer Tr ust >

Request body in JSON format:
{

"name": "test",
"di spl aynane": "test",
"issuers":
[
{
"issuer": "ww. oracle.cont,
"enabl ed": "true",

"t okentype": "sam .sv",
"trustedkeys":

{
"keyidentifiers":
(
{
"keytype": "x509certificate",
"val uetype": "dn",
"enabl ed": "true",
"value": "alice2"
}
]
}
I3
{

"issuer”: "www. exanple. cont,
"enabl ed": "true",

ORACLE 6-25

Chapter 6
Import TrustDocument Name Configurations Method

"t okentype": "sam .hok",
"trustedkeys":

{
"keyidentifiers":
[
{
"keytype": "x509certificate",
"val uetype": "dn",
"enabl ed": "true",
"val ue": "bob"
}
]
}
¥
{

"issuer": "https://identity.oraclecloud.com",
"enabl ed": "true",

"tokentype": "jwt",

"trustedkeys":

{
"trust": "idcs.jwk.jw",
"keyidentifiers":
[
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "orakey_jwk"
¥
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "orakey"
}
]
¥
"relyingparty":
[
{
"type": "literal",
"value": "client"
}
] ! .
"di scovery":
{
"discovery_uri": "https://ww.exanple.cont.well-known/ openi d-
configuration",
"idcs-client-csf-key": "idcs-orakey"
}
¥
{

"issuer": "https://accounts.exanple.conl,
"enabl ed": "true",

"tokentype": "jwt",

"trustedkeys":

{
"jwk_uri": "https://ww. exanpl eapi s. conf oaut h2/v3/certs",
"trust": "jwk.jw",
"refreshinterval": "2000",

"keyidentifiers":

ORACLE 6-26

Chapter 6
Import TrustDocument Name Configurations Method

[
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "3b0fc11962ad16e49d55a26816¢c5ad0d3f 6b8a83"
b
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "19e8b40cf03c4cf lec545f 0lec8c51a6f 46ab455"
}
]
b
"relyingparty":
[
{
"type": "literal",
"value": "client"
}
]
}
1
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"issuer": "https://accounts.exanple.conf,
"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{
"user-nmapping-attribute": "val 4",
"user-attribute": "val 3"
}
b
"proxy" : {
"host": "www proxy. us. oracl e. conf,
“port" : "80"
}
¥
{

"-dn": "cn=user, o=oracle",
"issuer": "https://identity.oraclecloud.com",
"name-id":
{
“filter":
{

"val ue":

[
"filterl",

ORACLE 6-27

Chapter 6
Import TrustDocument Name Configurations Method

"filter2"
]
b
"mappi ng":
{
"user-nmapping-attribute": "val 4",
"user-attribute": "val 3"
}
H
"attributes":
[
{
"-nane": "user.tenant.name",
"attribute":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]

b

"mappi ng":

{
"user-nmapping-attribute": "val 2",
"user-attribute": "val 1"

}

}
}
1.
"virtual -user":
{

"enabl ed": "true",
"defaul t-rol es":

{
"role":
[
"def Rol e1",
" def Rol e2"
]
IS
"token-role-attributes":
{
"attribute-nane":
[
"di spl aynane"
]
H
"t oken-rol e- mappi ng":
{
"rol e-mappi ng":
[
{

"token-role": "TestUser",
"mappi ng-rol e":
[

"manager",

"executer"”

ORACLE 6-28

Chapter 6
Export TrustDocument Name Configurations Method

}
Response Body
Media types for the response body: appl i cation/json

The response body returns the status of the import operation, including:

Element Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to view all certificates for an alias by submitting a
POST request on the REST resource using cURL.

curl -i -X POST -u usernane: password --data @nport.xm -H Content-Type: application/
xm - H Accept:application/json http://nyhost:7001/i daas/ pl atfornf adm n/v1/
trustdocunent/i mport

Export TrustDocument Name Configurations Method

ORACLE

Use the GET method to export trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

GET/ i daas/ webservi ce/ admi n/ v1/trust docunent/export

Request Body
Media types for the request body: appli cation/xn and application/ JSON

The request body contains the details of the export request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the orat rust : nane element.

Request body in JSON format:
{

"nane": "owsnf,
"di spl ayname": "owsnl',
"issuers": [
{
"issuer": "https://identity.oraclecloud.com",
"enabl ed": "true",
"tokentype": "jwt",

6-29

Chapter 6
Export TrustDocument Name Configurations Method

"trustedkeys":

{
"trust": "ides.jwk.jw" ,
"refreshinterval" : "2000"
}, .
"di scovery":
{
"base_uri":"https://identity.c9dev0. oc9qgadev. com ",
"idcs-client-csf-key": "idcs-orakey",
"idcs-client-tenant": " owsnt
}
¥
{
"issuer": "https://identity.oraclecloud. com",
"tenant": "owsnf,
"enabl ed": "true",
"tokentype": "jwt",
"trustedkeys":
{
"trust": "ides.jwk.jw",
"refreshinterval" : "2000",
"keyidentifiers":
[
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "SI GNI NG_KEY"
}
]
}’ .
"di scovery":
{
"discovery_uri":"https://owsmidentity.c9dev0.oc9qadev. con . well -
known/ openi d- confi guration", "idcs-client-csf-key": "idcs-
or akey",
"idcs-client-tenant": " owsm'}
}
]

"token-attribute-rules":
{
"token-attribute-rule":
[
{

"issuer": "https://identity.oraclecloud.com",
"tenant": "owsnf,

"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{

"user-mapping-attribute": "val 4",
"user-attribute": "val 3"

ORACLE 6-30

Chapter 6
Import Global Discovery Configuration

Note:

e The base_uri is defined as https://identity.c9dev0. oc9gadev. com
e Theidcs-client-csf-key is the csf key of the client with cross tenant role.

e Theidcs-client-tenant is the tenant of the above client.

Response Body
Media types for the response body: appl i cation/xn and appl i cation/ JSON

The response body returns the status of the export operation, including:

Element Description

" ERROR_CODE" If " STATUS" is setto "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is setto "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

Import Global Discovery Configuration

The Global Discovery Configuration uses the POST method to configure discovery
settings globally instead of doing it for individual tenants. At runtime these global
settings are used to fetch JWK keys for tenants.

REST Request

PCST/ i daas/ webser vi ce/ admi n/ v1/trust docunment /i nport

Request Body
Media types for the request body: appli cation/xn and application/ JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the orat rust : name element.

Request body in JSON format:
{

“name": "owsnt,
"di spl aynane": "owsnf,
"issuers": [

{

"issuer": "https://identity.oraclecloud. com",

ORACLE 6-31

Chapter 6
GET TrustDocument Method

"enabl ed": "true",
"tokentype": "jwt",
"trustedkeys":

{
"trust": "idcs.jwk.jw",
"refreshinterval" : "2000"
}’ .
“di scovery":
{
"base_uri": "https://identity.c9dev0.oc9qgadev. con ",
"idcs-client-csf-key": "idcs-orakey",
"idcs-client-tenant": " owsnt
}
}
]
}
Note:

e The base_uri is defined as https://identity.c9dev0. oc9gadev. com
e Theidcs-client-csf-key is the csf key of the client with cross tenant role.

e Theidcs-client-tenant is the tenant of the above client.

Response Body
Media types for the response body: appl i cation/xn and appl i cation/ JSON

The response body returns the status of the import operation, including:

Element Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

GET TrustDocument Method

Use the GET method to view configuration details for the trusted issuer document.

REST Request

CET /i daas/ webservi ce/ admi n/ v1/trustdocunent

Parameters

The following table summarizes the POST request parameters.

Name Description Type

"docunment Nang" Name of the document. Query

ORACLE 6-32

Chapter 6
DELETE Trust Document Method

Response Body
Media types for the request or response body: application/|son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai l ed".

cURL Example

The following example shows how to view all token attribute rules by submitting a GET
request on the REST resource using cURL.

curl -i -X GET -u usernane: password http://myhost:7001/i daas/ pl at f orni adm n/v1/
trust docunent ?" docunent Name=nyTr ust Docunent "

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K
Example of Response Body
The following shows an example of the response body in JSON format.
{
"STATUS": " Succeeded",
"Result":"List of token issuer trust documents in the Repository:\nDetails of
the docunent matching your request:\nNanme : nyTrust Document\'t Di spl ay Nane :

myTrust Docunent \ t St at us . DOCUMENT_STATUS COMM TED \nLi st of trusted issuers
for this type:\tNone\nList of Token Attribute Rul es\tNone"

}

DELETE Trust Document Method

Use the Delete method to delete a trusted issuer document.

REST Request

DELETE /i daas/ webser vi ce/ admi n/v1/trust docunment

Parameters

The following table summarizes the DELETE request parameters.

Name Description Type
"di spl ayName" Display name for the document. Query
"docunent Nane" Name of trusted issuer document. Query

ORACLE 6-33

Chapter 6
Import Federation Metadata Document Method

Response Body
Media types for the request or response body: appl i cation/|son

The response body returns the status of the import operation, including:

Attribute Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example
TESTED

The following example shows how to delete a SAML issuer trust document by
submitting a DELETE request on the REST resource using cURL.

curl -i -X DELETE -u usernane: password http://myhost: 7001/ i daas/ webservi ce/ adm n/v1/
t rust docunent ?" docurment Name=ny Tr ust Docunent &di spl ayName=nyTr ust Document "

Example of Response Header

The following shows an example of the response header. For more about the HTTP
status codes, see HTTP Status Codes for HTTP Methods

HTTP/ 1.1 200 OK

Example of Response Body
The following shows an example of the response body in JSON format.

{
"STATUS": "Succeeded",

"Result": "Token Issuer Trust document named "myTrustDocunent" deleted fromthe
repository."

}

Import Federation Metadata Document Method

ORACLE

Use the POST method to import the signing certificate (federation metadata
document) and configure the WS-Trust for the Relying Party (RP-STS) in OWSM.

REST Request

PCST /i daas/webservi ce/ adm n/v1/federation/inport

Request Body
Method: POST

Content Type: nul tipart/formdata

6-34

Parameters

Chapter 6

Export Federation Metadata Document Method

The following table summarizes the POST request parameters.

Name Description Required?

name- i d- The name of the attribute to assert in case the name ID Optional

attribute maps to non standard attribute.

user-attribute The name of the local user attribute to the value of the Optional
corresponding attribute.

user - mappi ng- The name of the local user attribute to be mapped. Optional

attribute

filter List of filter values to be set for the attribute. Each value Optional
can be an exact value.

met adata-file Location of the federation metadata file. This can be an Required

Web URL or file system path.

Example: https://<host: port >/ Feder ati onMet adat a/
2007- 06/ Feder at i onMet adat a. xm

Response Body

Content Type: application/json

The response body returns the status of the import operation:

Attribute Description

" ERROR_MSG' If " STATUS" is set to " Fai | ed", provides the contents of the error
message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

Export Federation Metadata Document Method

Use the POST method to generate the signed or unsigned federation document for the
Identity Provider STS (IP-STS) or Service Provider (SP).

ORACLE

Rest Request

PCST /i daas/webservi ce/ adm n/ v1/federation/ export

Request Body
Method: POST

Content Type: application/json

Parameters

The following table summarizes the export request parameters.

6-35

Chapter 6
Revoke Federation Metadata Document Method

Name

Description Required?

met adat a- t ype

i ssuer

si gn- net adat a

si gn-keys

encryption-keys

Type of metadata document to create. For example, Required
IDP (Identify Provider) or SP (Service Provider).

Name of the issuer. Required

For IDP, you must specify the host name. For
example: ww. exanpl e. com

For SP, you must specify the service URL. For
example:https:http://localhost: 7001/
JaxWsWssStslssuedBearerTokenWithADFSWssUN
OverSsl/
JaxWsWssStsIssuedBearerTokenWithADFSWssUN
OverSslService

Specify whether to sign the metadata document. Optional

List of aliases or csf key (in case of KSS). Optional

The certificate is exported and used in the metadata
document. It is required in case of creating IDP
metdata. If this parameter is not provided, the sign
key will not be included. In case of empty values
("sign-keys": []), the domain configured sign key is
used.

List of aliases or csf key (in case of KSS). Optional

The certificate is exported and used in the metadata
document. It is required in case of creating SP
metdata. If this parameter is not provided, the
encryption key will not be included. In case of empty
values ("encryption-keys": []) , the domain
configured encryption key is used.

Response Body

Content Type: appl i cati on/ xni

Revoke Federation Metadata Document Method

Use the revoke method to remove the signing certificates from OWSM and the WS-
Trust configuration from the federation metadata document.

REST Request

POST /i daas/ webservi ce/ admi n/v1/federation/revoke

Request Body
Method: POST

Content Type: mul tipart/formdata

Parameters

The following table summarizes the revoke request parameters.

ORACLE

6-36

Chapter 6
POST Virtual User for a DN

Name

Description Required?

"nmetadata-file"

Location of the federation metadata file. This can be Required
an Web URL or file system path.

Example: htt ps://<host: port>/
Feder at i onMet adat a/ 2007- 06/
Feder at i onMet adat a. xni

Response Body

Content Type: application/json

The response body returns the status of the import operation, including:

Attribute

Description

" ERROR_MSG'

"Resul t"
" STATUS"

It provides the contents of the error message, if " STATUS" is
"Fail ed".

Details of the operation results.

Status of operation. For example, " Succeeded" or "Fai | ed".

POST Virtual User for a DN

Use the POST method to create virtual users for a DN.

REST Request

POST /i daas/ webservice/ adm n/vl/trust/token

Request Body

Media types for the request body: application/json

The request body contains the details of the add request:

Attribute Description Required
virtual -user List of virtual user properties. Yes
token-role-attributes List of token role attributes applicable fora No

virtual user.
t oken-rol e- mappi ng Mapping values for token-role-attributes. No
i ssuer Name of the issuer. No

Example of Request Body

The following shows an example of the request body in JSON format.

{

"token-attribute-rules":

"token-attribute-rule":

[
{

ORACLE

"issuer": "https://accounts.exanple.conl',
"name-id":

6-37

Chapter 6
POST Virtual User for a DN

{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{
"user-nmapping-attribute": "val 4",
"user-attribute": "val 3"
}
b
"proxy" : {
"host": "wwa proxy. us. oracle.conf,
"port" : "80"
}
¥
{

"-dn": "cn=user, o=oracle",
"issuer": "https://identity.oraclecloud.com",

"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{

"user-nmapping-attribute": "val 4",
"user-attribute": "val 3"

}
H
"attributes":
[
{
"-nanme": "user.tenant.name",
"attribute":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]

b

"mappi ng":

{
"user-nmapping-attribute": "val 2",
"user-attribute": "val 1"

}

}
}
1.

ORACLE 6-38

Chapter 6
POST Virtual User for a DN

"virtual -user":

{
"enabl ed": "true",
"default-roles":
{
"role":
[
"def Rol e1",
"def Rol 2"
]
b
"token-role-attributes":
{
"attribute-name":
[
"di spl aynane"
]
b
"t oken-rol e- mappi ng":
{
"rol e-mappi ng":
[
{
"token-role": "TestUser",
"mappi ng-rol e":
[
"manager",
"executer"
]
}
]
}
}

}
}

Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the add operation, including:

Attribute Description
" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.
" ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the

error message.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

Example of Response Header
The following shows an example of the response header.

HTTP/ 1.1 200 K

Example of Response Body

The following shows an example of the response body in JSON format.

ORACLE 6-39

Chapter 6

Get Virtual User for a DN

{
}

Get Virtual User for a DN

"STATUS": "Succeeded",

Use the GET method to view the virtual users for a DN configured in a token issuer

trust document.

REST Request

CET /idaas/ webservice/ admi n/vl/trust/token

Request Body
Media types for the request body: application/json

The request body contains the details of the view request:

Attribute Description Required
virtual -user List of virtual user properties. Yes
token-rol e-attributes List of token role attributes applicable fora No

virtual user.
t oken-rol e- mappi ng Mapping values for token-role-attributes. No
i ssuer Name of the issuer. No

Response Body

Media types for the response body: appl i cation/j son

The response body returns the information for the specified virtual user.
Example of Response Body

The following shows an example of the response body in JSON format.

{

"token-attribute-rules":

"token-attribute-rule":

[
{

"issuer": "https://accounts.exanple.conl,
"name-id":
{
“filter":
{
"val ue":
[
"filterl",
"filter2"
|
}

{

pping":

"user-mapping-attribute": "val 4",
"user-attribute": "val 3"

ORACLE

6-40

Chapter 6
Get Virtual User for a DN

}
b
"proxy" : {
"host": "wwa proxy. us. oracle.conf,
"port" . "80"
}
¥
{

"-dn": "cn=user, o=oracle",
"issuer": "https://identity.oraclecloud.com",

"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{
"user-mapping-attribute": "val 4",
"user-attribute": "val 3"
}
H
"attributes":
[
{
"-nanme": "user.tenant.name",
"attribute":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]

b

"mappi ng":

{
"user-nmapping-attribute": "val 2",
"user-attribute": "val 1"

}

}
}
1.
"virtual -user":
{

"enabl ed": "true",
"default-roles":
{
"role":
[
"def Rol e1",
"def Rol 2"
]
}

"token-role-attributes":

{

ORACLE 6-41

Chapter 6
One Paas — One Token Trust

"attribute-name":

[
"di spl aynane"
]
1
"t oken-rol e- mappi ng":
{
"rol e-mappi ng":
[
{
"token-role": "TestUser",
"mappi ng-rol e":
[
"manager",
"executer"
]
}
]
}

}
}

One Paas — One Token Trust

Use the POST method to create tags for trusted issuer.

REST Request POST Method

curl -i -X POST -u usernane: password --data @reatetokentags.json -H Content-
Type: application/json http://myhost: 7001/ i daas/ webservi ce/ admi n/v1/trust/token

Media types for the request body: JSON
Example:

{

"token-attribute-rules":

{

"token-attribute-rule":
[
"issuer": https://ww. exanpl e.com
"one-token-trust":
{
"enabl ed": "true",
"service-instance":

[
{

"app- name": "Appl",
"refreshinterval": "444",
"tags":
{

"tag":

[

{

"key": "color",
"val ue":"bl ue"

b

ORACLE 6-42

Chapter 6

Enabling and Disabling Token Issuer Trust

{
"key": "env",
"val ue": "prod"
}
]
}
¥
{
"app- nanme": "App2",
"refreshinterval ": "555"
}
]
¥
]
}

Enabling and Disabling Token Issuer Trust

Use the POST and PUT method to enable and disable Token Issuer Trust.

REST Request POST Method

curl -i -X POST -u usernane: password --data @reatetrust.json -H Content-

Type: application/json http://myhost: 7001/ i daas/ webservi ce/ adm n/vl/trust/issuers

Media types for the request body: JSON

Example:
{
"sam -trusted-dns":
{
"sam - hok-trusted-dns":
{
"issuer": |
{
"-name": "ww. oracl e. cont',
"dn": ["CN=Alice"],
"di sabl ed-dn": ["CN=Bob"],
}
]
1,
"sam - sv-trusted-dns":
{
"issuer": |
{
"-nanme": "ww. oracle.cont',
"enabl ed": "true"
"dn": [],
}
]
IS

"jwt-trusted-issuers":
{
"issuer": |
{
"-nanme": "ww. oracle.cont',
"enabl ed": "fal se"

"dn": ["CNeorakey, OU=Orakey, O=Oracle, C=US"', "CN=Alice"],

ORACLE

6-43

Chapter 6
Enabling and Disabling Token Issuer Trust

}
]
}
}
}
REST Request PUT Method
curl -i -X PUT -u username: password --data @pdatetrust.json -H Content-

Type: application/json http://myhost:7001/i daas/ webservi ce/ adm n/vl/trust/issuers

Media types for the request body: JSON

Example:
{
"sam -trusted-dns":
{
"sam - hok-trusted-dns":
{
"issuer": [
{
"-name": "ww. oracl e. cont',
"disabled-dn": ["CN=Alice"],
}
]
1
"sam - sv-trusted-dns":
{
"issuer": |
{
"-nanme": "ww. oracle.cont',
"enabl ed": "fal se"
}
]
}
}

}
Response Body

Media types for the response body: appl i cation/j son
{

"sam -trusted-dns":
{
"sam - hok-trusted-dns":
{
"issuer": [
{
“-nanme": "ww. oracle. cont',
"enabl ed": "true"
ndn': [],
"di sabl ed-dn": ["CN=Alice", "CN=Bob"]
}
]
1,
"sam - sv-trusted-dns":
{
"issuer": [
{

"-nane": "ww. oracle. cont',

ORACLE 6-44

Chapter 6
Import TrustDocument Name Configurations Method

"enabl ed": "fal se"
"dn": [],
"disabled-dn": []

}
]
¥
"jwt-trusted-issuers”
{
"issuer": |
{
"-nanme": "www. oracle. conf
"enabl ed": true,
"dn": ["CNeorakey, OU=Orakey, O=Oracle, C=US", "CN=Alice"]
"disabled-dn": []
}
]
}

}

Import TrustDocument Name Configurations Method

ORACLE

Use the POST method to import trusted issuer configurations, including issuer names,
distinguished name (DN) lists, and token attribute rules.

REST Request

POST /i daas/webservi ce/ admi n/v1/trustdocument/inport

Request Body
Media types for the request body: appl i cation/xnl and appl i cation/ JSON

The request body contains the details of the import request. You must create a trusted
issuers document, as described in "POST TrustDocument Name Method", and pass it
using the orat rust: nane element.

Request body in xml format:

<?xm version="1.0" encodi ng="UTF-8"?>
<ns0: Tokenl ssuer Trust xm ns: ns0="http://xm ns. oracl e. comf wsm security/trust"
ns0: name="owsm' nsO0: di spl ayNanme="owsni'>
<ns0: | ssuer s>
<ns0: | ssuer ns0: name="www. or acl e. conf ns0:tokentype="sam . sv"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl denti fier nsO: keytype="x509certificate" nsO:val uetype="dn"
ns0: enabl ed="t rue">al i ce2</ ns0: Keyl denti fier>
</ ns0: Trust edKeys>
</ ns0: | ssuer>
<ns0: | ssuer ns0: name="www. exanpl e. conf ns0:tokent ype="san . hok"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl denti fier nsO: keytype="x509certificate" nsO:val uetype="dn"
ns0: enabl ed="t r ue" >bob</ ns0: Keyl dentifier>
</ ns0: Trust edKeys>
</ ns0: | ssuer>
<ns0:1ssuer nsO:name="https://identity.oraclecloud.com" nsO:tokentype="jw"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>

6-45

ORACLE

Chapter 6
Import TrustDocument Name Configurations Method

<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t rue" >or akey_j wk</ ns0: Keyl denti fi er>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t r ue" >or akey</ ns0: Keyl denti fi er >
<ns0: Keys nsO:type="jwk" ns0:trust="idcs.jwk.jw"></ns0: Keys>
</ ns0: Trust edKeys>
<ns0: Trust edRP>
<ns0: RP ns0:type="literal ">client</ns0: RP>
</ ns0: Trust edRP>
<ns0: Di scoveryl nf o>
<ns0: Di scover yURL>ht t ps: // www. exanpl e. cont . wel | - known/ openi d-
configuration</ns0: Di scover yURL>
<ns0: | dcsd i ent Csf Key>i dcs- or akey</ ns0: | dcsd i ent Csf Key>
</ ns0: Di scoveryl nf 0>
</ ns0: | ssuer>
<ns0: | ssuer ns0: name="https://accounts. exanpl e. cont' nsO:tokentype="jwt"
ns0: enabl ed="t rue">
<ns0: Trust edKeys>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t rue" >3b0f c11962ad16e49d55a26816¢c5ad0d3f 6b8a83</ nsO: Keyl denti fi er>
<ns0: Keyl dentifier nsO:keytype="publickey" ns0:val uetype="kid"
ns0: enabl ed="t r ue" >19e8b40cf 03c4cf 1lec545f 01ec8c51a6f 46ab455</ nsO: Keyl denti fier>
<ns0: ndURL>ht t ps: / / ww. exanpl eapi s. com oaut h2/ v3/ cert s</ ns0: ndURL>
<ns0: Keys nsO:type="jwk" nsO:trust="jwk.jw"
ns0: refreshl nterval ="2000" ></ ns0: Keys>
</ ns0: Trust edKeys>
<ns0: Trust edRP>
<ns0: RP ns0:type="literal ">client</ns0: RP>
</ ns0: Trust edRP>
</ns0: | ssuer>
</ ns0: | ssuers>
<ns0: TokenAttri but eRul es>
<ns0: TokenAttribut eRul e nsO:issuer="https://accounts. exanpl e. coni>
<ns0: Nanel d ns0: name="nane-id">
<nsO: Filter>
<ns0: val ue>filter1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 3</ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 4</ ns0: user - mappi ng-at tri but e>
</ ns0: Mappi ng>
</ ns0: Nanel d>
<ns0: Proxy>
<ns0: ProxyHost >ww« pr oxy. us. or acl e. conx/ ns0: Pr oxyHost >
<ns0: ProxyPort >80</ ns0: ProxyPort >
</ ns0: Proxy>
</ ns0: TokenAttri but eRul e>
<ns0: TokenAttribut eRul e nsO:identifier="cn=user, o=oracl e"
nsO:issuer="https://identity.oraclecl oud. com ">
<ns0: Nanel d ns0: name="nane-id">
<nsO: Filter>
<ns0: val ue>filter1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 3</ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 4</ ns0: user - mappi ng-at tri but e>
</ ns0: Mappi ng>
</ ns0: Nanel d>
<ns0: Attributes>

6-46

Chapter 6
Import TrustDocument Name Configurations Method

<ns0: Attribute ns0: name="user.tenant. nane">
<nsO: Filter>
<ns0: val ue>filteri1</ns0: val ue>
<ns0: val ue>filter2</ns0: val ue>
</nsO:Filter>
<ns0: Mappi ng>
<ns0: user-attribute>val 1</ ns0: user-attribute>
<ns0: user - mappi ng- at t ri but e>val 2</ ns0: user - mappi ng-at tri but e>
</ ns0: Mappi ng>
</ns0: Attribute>
</ns0: Attributes>
<ns0: Virtual User nsO: enabl ed="true">
<ns0: Def aul t Rol es>
<ns0: Rol e>def Rol e1</ ns0: Rol e>
<ns0: Rol e>def Rol e2</ ns0: Rol e>
</ ns0: Def aul t Rol es>
<ns0: TokenRol eAttri but es>
<ns0: Attri but eName>di spl aynane</ ns0: Attri but eName>
</ ns0: TokenRol eAttri but es>
<ns0: TokenRol eMappi ng>
<ns0: Rol eMappi ng>
<ns0: TokenRol e>Test User </ ns0: TokenRol e>
<ns0: Mappi ngRol e>manager </ ns0: Mappi ngRol e>
<ns0: Mappi ngRol e>execut er </ ns0: Mappi ngRol e>
</ ns0: Rol eMappi ng>
</ ns0: TokenRol eMappi ng>
</ ns0: Vi rtual User>
</ ns0: TokenAttri but eRul e>
</ ns0: TokenAttri but eRul es>
</ ns0: Tokenl ssuer Tr ust >

Request body in JSON format:
{

"name": "test",
"di spl aynane": "test",
"issuers":
[
{
"issuer": "ww. oracle.conf,
"enabl ed": "true",

"t okentype": "sam .sv",
"trustedkeys":

{
"keyidentifiers":
(
{
"keytype": "x509certificate",
"val uetype": "dn",
"enabl ed": "true",
"value": "alice2"
}
]
}
I3
{

"issuer": "www. exanple. cont,
"enabl ed": "true",

"t okentype": "sam . hok",
"trustedkeys":

{

ORACLE 6-47

Chapter 6
Import TrustDocument Name Configurations Method

"keyidentifiers":

[
{
"keytype": "x509certificate",
"val uetype": "dn",
"enabl ed": "true",
"val ue": "bob"
}
]
}
¥
{

"issuer": "https://identity.oraclecloud. com",
"enabl ed": "true",

"tokentype": "jwt",

"trustedkeys":

{
"trust": "idcs.jwk.jw",
"keyidentifiers":
[
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "orakey_jwk"
¥
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "orakey"
}
]
¥
"relyingparty":
[
{
"type": "literal",
"value": "client"
}
] ! .
"di scovery":
{
"discovery_uri": "https://ww.exanple.cont.well-known/ openi d-
configuration",
"idcs-client-csf-key": "idcs-orakey"
}
¥
{

"issuer": "https://accounts.exanple.conl,
"enabl ed": "true",

"tokentype": "jwt",

"trustedkeys":

{
"jwk_uri": "https://ww. exanpl eapi s. conf oaut h2/v3/certs",
"trust": "jwk.jw",
"refreshinterval": "2000",
"keyidentifiers":
[
{

"keytype": "publickey",

ORACLE 6-48

Chapter 6
Import TrustDocument Name Configurations Method

"val uetype": "kid",
"enabl ed": "true",
"val ue": "3b0fc11962ad16e49d55a26816¢c5ad0d3f 6b8a83"

b
{
"keytype": "publickey",
"val uetype": "kid",
"enabl ed": "true",
"val ue": "19e8b40cf03c4cf lec545f 0lec8c51a6f 46ab455"
}
]
b
"relyingparty":
[
{
"type": "literal",
"value": "client"
}
]
}
1
"token-attribute-rules":
{
"token-attribute-rule":
[
{
"issuer": "https://accounts.exanple.conf,
"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
b
"mappi ng":
{
"user-nmapping-attribute": "val 4",
"user-attribute": "val 3"
}
b
"proxy" : {
"host": "www proxy. us. oracl e.cont,
“port" : "80"
}
¥
{

"-dn": "cn=user, o=oracle",
"issuer": "https://identity.oraclecloud.com",

"nane-id":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]
H

ORACLE 6-49

ORACLE

Chapter 6
Import TrustDocument Name Configurations Method

"mappi ng":

{
"user-mappi ng-attribute": "val 4",
"user-attribute": "val 3"

}
b
"attributes":
[
{
"-nanme": "user.tenant.name",
"attribute":
{
"filter":
{
"val ue":
[
"filterl",
"filter2"
]

b

"mappi ng":

{
"user-nmapping-attribute": "val 2",
"user-attribute": "val 1"

}

}
}
1
"virtual -user":
{
"enabl ed": "true",
"default-roles":
{
"role":
[
"def Rol e1",
"def Rol 2"
]
b
"token-role-attributes":
{
"attribute-name":
[
"di spl aynane"
]
b
"t oken-rol e- mappi ng":
{
"rol e-mappi ng":
[

{

"token-role": "TestUser",

"mappi ng-rol e":

[
"manager",
"executer”

]

}
]
}
}

6-50

Chapter 6
Import JWK Document Trust Configurations

}
Response Body
Media types for the response body: appl i cation/j son

The response body returns the status of the import operation, including:

Element Description

" ERROR_CODE" If " STATUS" is set to "Fai | ed", provides the error code.

"ERROR_MSG' If " STATUS" is set to "Fai | ed", provides the contents of the
error message.

"Resul t" Details of the operation results.

" STATUS" Status of operation. For example, " Succeeded" or "Fai | ed".

cURL Example

The following example shows how to view all certificates for an alias by submitting a
POST request on the REST resource using cURL.

curl -i -X POST -u username: password --data @nport.xm -H Content-Type: application/
xm - H Accept:application/json http://nyhost:7001/i daas/ pl atfornfadm n/v1l/
trustdocunent/i mport

Import JWK Document Trust Configurations

ORACLE

Use the PUT method to import configurations from JWK Document of trusted issuer.

REST Request

PUT /i daas/ webservi ce/ adni n/v1/federation/jwk/inport

Request Body
Media types for the request body: mul ti part/form data

The request body contains the input parameters of the import request.

Input Description Data Type
Parameter
i ssuer Name of the JWK issuer, for example String
wwv. exanpl e. com
type The type of trust. It can be dns. jwt and j wk. j wt . String
name- i d- The name of the attribute to assert in case name-id String
attribute maps to non standard attribute.
user - The name of the local user attribute the value of the String
attribute attribute corresponds to.
user - mappi ng- The name of the local user attribute to map to. String
attribute
filter Comma separated list of filter values to be set for Comma separated
the attribute. Each value can be an exact value. string

6-51

Chapter 6
Revoke JWK Trust Configurations

Input Description Data Type
Parameter

met adata-file Path of the JWK document. It could be local system File/file path/web URL
file, file path on server, or web URL. For example /
home/ exanpl e. j wk or htt p: //ww. exanpl e. cont
conmon/ di scovery/v2. 0/ keys

refreshinterv Time interval in milliseconds after which JWK keys String

al will be checked for any update.
trust- Token issuer trust document to configure trust. If String
docunent - name not provided, then the domain configured document

will be used.

Response Body

The response body returns the status of the import operation. Media types for the
response body: application/json

Revoke JWK Trust Configurations

Use the PUT method to revoke JWK configurations of a trusted issuer.

REST Request

PUT /i daas/ webservi ce/ adnin/v1/federation/jwk/revoke

Request Body
Media types for the request body: mul ti part/form data

The request body contains the input parameters of the request.

Input Description Data Type
Parameter
i ssuer Name of the JWK issuer, for example String

wwy. exanpl e. com
type The type of trust. It can be dns. jwt and j wk. j wt . String
trust- Token issuer trust document to revoke trust. If not String
docunent - name provided, then the domain configured document will

be used.

Response Body

The response body returns the status of the revoke operation. Media types for the
response body: application/json

Import WSM Discovery Metadata Trust Configurations

ORACLE

Use the PUT method to import configurations from WSM Discovery Metadata of
trusted issuer.

REST Request

PUT/ i daas/ webser vi ce/ adm n/v1/f ederation/ di scoverynet adat a/ i nport

6-52

Chapter 6
Revoke WSM Discovery Metadata Trust Configurations

Request Body
Media types for the request body: mul ti part/form data

The request body contains the input parameters of the import request.

Input Parameter Description Data Type
type The type of trust. It can be dns. jwt ,j wk. jwt, String
idcs.dns.jw

oridcs.jwk.jw

i ssuer Open id discovery metadata provider String
idcs-client-csf-key Optional . CSF key containing IDCS registered String
clientid and secret to fetch JWK document.
j wk-access-token Optional . Access token containing IDCS registered String
clientid and secret to fetch JWK document.
name-id-attribute Optional. The name of the attribute to assert in case String
name-id maps to non standard attribute.
filter Optional. Comma separated list of filter values to be Comma
set for the attribute. Each value can be an exact separated string
value.
user-attribute Optional. The name of the local user attribute the String
value of the attribute corresponds to.
user - mappi ng- Optional. The name of the local user attribute to String
attribute map to.
met adata-file Optional. Path of the JWK document. It could be File/file
local file, path on the server, and web URL. path/web URL
refreshlnterval Optional. The time interval after which keys will be String
refreshed.
trust-docunent-nane Optional. Name of the trust-document String

Response Body

The response body returns the status of the import operation. Media types for the
response body: application/json

Revoke WSM Discovery Metadata Trust Configurations

Use the PUT method to revoke WSM Discovery Metadata configurations of a trusted
issuer.

REST Request

PUT/ i daas/ webser vi ce/ adm n/ v1/federation/ di scoverynet adat a/ r evoke

Request Body
Media types for the request body: mul ti part/form data

The request body contains the input parameters of the revoke request.

Input Parameter Description Data Type

i ssuer Open id discovery metadata provider. String

ORACLE 6-53

Chapter 6
Revoke WSM Discovery Metadata Trust Configurations

Input Parameter Description Data Type

type The type of trust. It can be dns. jwt, String
idcs.dns.jwt, ides.jw.jw andjwk.jwt.

metadata-file Optional. Metadata file in case issuer is not Fileffile path/web URL
provided. This could be system path or file.

trust - docunent - Optional. Name of the trust-document String

name

Response Body

The response body returns the status of the revoke operation. Media types for the
response body: application/json

¢ See Also:

e Import TrustDocument Name Configurations Method in REST API for
Managing Credentials and Keystores with Oracle Web Services
Manager.

ORACLE 6-54

Summary of REST APIs

The credential and keystore management REST API provides a powerful set of
resources that you can use to manage web service security, including credential
stores, keystores, and trust stores.

Before using the REST API, you need to understand how to access the REST
resources and other important concepts. See "About the REST API".

The following table summarizes the REST resource paths, alphabetically by resource

path.
REST Resource Method More Information
/i daas/ pl at formf admi n/v1/ CET GET Credential Method
credenti al
/i daas/ pl at f ormf admi n/v1/ DELETE Delete Credential Method
credentia
/i daas/ pl at f or mf admi n/ v1/ POST POST Credential Method
credentia
/i daas/ pl at formf admi n/v1/ PUT PUT Credential Method
credenti al
/i daas/ pl at f or nf admi n/ v1/ GET GET All Aliases Trusted Certificate JKS Keystore Method
keystore
/i daas/ pl at f or mf admi n/ v1/ CGET GET Specified Alias Trusted Certificate JKS Keystore Method
keystore/{alias}
/i daas/ pl at f ormf admi n/v1/ DELETE DELETE Trusted Certificate JKS Keystore Method
keystore/{alias}
/i daas/ pl at f ormf admi n/v1/ POST POST Specified Alias Trusted Certificate JKS Keystore
keystore/{alias} Method
/i daas/ pl at f ormf admi n/ v1/ POST GET Specified Alias Trusted Certificate JKS Keystore Method
keyst ore/ pkcs7/{al i as}
/i daas/ pl at formf admi n/v1/ DELETE DELETE Keystore Service KSS Keystore Method
keyst oreservice
i daas/ pl at f ormf admi n/ v1/ PCST POST New KSS Keystore Method
keyst oreservi ce
/i daas/ pl at f ormf admi n/ v1/ PUT PUT Password Update KSS Keystore Method
keyst oreservi ce
/i daas/ pl at f or mf admi n/v1/ CET GET Alias KSS Keystore Method
keystoreservice/ alias/
{stripeNanme}/{keyst oreName}/
{entryType}
i daas/ pl at f or mf admi n/ v1/ GET GET Trusted Certificate KSS Keystore Method
keystoreservicel/certificates
/i daas/ pl at f ormf admi n/ v1/ DELETE DELETE Trusted Certificate KSS Keystore Method

keystoreservice/certificates

ORACLE

A-1

Appendix A

REST Resource Method More Information

/i daas/ pl at f or nf admi n/v1/ POST POST Trusted Certificate KSS Keystore Method
keystoreservice/certificates

i daas/ pl at f or mf admi n/ v1/ PCST POST Import KSS Keystore Method

keyst oreservi ce/ keystore

/i daas/ pl at f ormf admi n/ v1/ CGET GET Secret Key Properties KSS Keystore Method

keyst oreservi cel/ secret key

/i daas/ pl at f ornf admi n/ v1/ POST POST Secret Key KSS Keystore

keyst oreservi ce/ secret key

/i daas/ pl at f or nf admi n/ v1/ GET GET Stripe KSS Keystores Method

keyst oreservi ce/ {stri peName}

/i daas/ webservi ce/ adm n/ v1/ CGET GET All Trusted Issuer and Distinguished Name Lists Method
trust/issuers

/i daas/ webservi ce/ admi n/ v1/ GET GET Specified Document Trusted Issuer and Distinguished
trust/issuers/{docunment Nane} Name Lists Method

/i daas/ webservi ce/ admi n/v1/ POST POST Domain Trusted Issuers and Distinguished Name Lists
trust/issuers Method

/i daas/ webservi ce/ admi n/ v1/ PCST POST Document Trusted Issuers and Distinguished Name
trust/issuers/{document Nane} Lists Method

/i daas/ webservi ce/ adm n/v1/ CGET GET All Token Attribute Rules Method

trust/token

/i daas/ webservi ce/ adm n/ v1/ CET GET Specified Document Token Attribute Rules Method
trust/token/{document Nanme}

/i daas/ webservi ce/ admi n/ v1/ PCST POST Token Attribute Rule Distinguished Name Method
trust/token (Domain Context)

/i daas/ webservi ce/ adm n/ v1/ POST POST Token Attribute Rule Distinguished Name Method
trust/token/ {document Nanme} (Document Context)

/i daas/ webservi ce/ adni n/ v1/ GET GET TrustDocument Method

t rust document

/i daas/ webservi ce/ adm n/ v1/ DELETE DELETE Trust Document Method

trust docunent

/i daas/ webservi ce/ adm n/ v1/ POST POST TrustDocument Name Method

trust document

/i daas/ webservi ce/ admi n/ v1/ POST Import TrustDocument Name Configurations Method

t rust document /i nport

ORACLE

A-2

	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New In This Guide
	New and Changed Features for 12c (12.2.1.3.0)
	New and Changed Features for 12c (12.2.1.2.0)
	New and Changed Features for 12c (12.2.1.1.0)

	Part I Getting Started with the REST API
	1 About the REST API
	Introduction to REST API
	URL Structure for Security Stores
	Create and Manage Oracle WSM Instances Using REST
	Authenticating REST Resources
	HTTP Status Codes for HTTP Methods

	2 Use Cases for the REST API
	Managing the Credential Store Framework Using the REST API
	Managing JKS Keystores Using the REST API
	Managing KSS Keystores Using the REST API
	Managing Token Issuer Trust Using the REST API

	Part II REST API Reference
	3 Manage Credentials in the Credential Store
	View and Manage the Credential Store Using REST Resources
	POST Credential Method
	GET Credential Method
	PUT Credential Method
	DELETE Credential Method

	4 Manage Java Keystore Keystores
	View and Manage JKS keystores within a Domain Using REST Resources
	GET All Aliases Trusted Certificate JKS Keystore Method
	POST Specified Alias Trusted Certificate JKS Keystore Method
	POST PKCS#7 Trusted Certificate JKS Keystore Method
	GET Specified Alias Trusted Certificate JKS Keystore Method
	DELETE Trusted Certificate JKS Keystore Method

	5 View and Manage Keystore Service Keystores
	View and Manage KSS keystores Using REST Resources
	POST New KSS Keystore Method
	POST Import KSS Keystore Method
	PUT Password Update KSS Keystore Method
	POST Trusted Certificate KSS Keystore Method
	GET Stripe KSS Keystores Method
	GET Alias KSS Keystore Method
	GET Trusted Certificate KSS Keystore Method
	DELETE Trusted Certificate KSS Keystore Method
	POST Secret Key KSS Keystore
	GET Secret Key Properties KSS Keystore Method
	DELETE Keystore Service KSS Keystore Method

	6 Manage Token Issuer Trust Configurations
	View and Manage Token Issuer Trust Configurations Using REST Resources
	POST TrustDocument Name Method
	POST Domain Trusted Issuers and Distinguished Name Lists Method
	POST Document Trusted Issuers and Distinguished Name Lists Method
	GET All Trusted Issuer and Distinguished Name Lists Method
	GET Specified Document Trusted Issuer and Distinguished Name Lists Method
	POST Token Attribute Rule Distinguished Name Method (Domain Context)
	POST Token Attribute Rule Distinguished Name Method (Document Context)
	GET All Token Attribute Rules Method
	GET Specified Document Token Attribute Rules Method
	Import TrustDocument Name Configurations Method
	Export TrustDocument Name Configurations Method
	Import Global Discovery Configuration
	GET TrustDocument Method
	DELETE Trust Document Method
	Import Federation Metadata Document Method
	Export Federation Metadata Document Method
	Revoke Federation Metadata Document Method
	POST Virtual User for a DN
	Get Virtual User for a DN
	One Paas — One Token Trust
	Enabling and Disabling Token Issuer Trust
	Import TrustDocument Name Configurations Method
	Import JWK Document Trust Configurations
	Revoke JWK Trust Configurations
	Import WSM Discovery Metadata Trust Configurations
	Revoke WSM Discovery Metadata Trust Configurations

	A Summary of REST APIs

