Oracle® Fusion Middleware
Deploying Applications with the WebLogic
Deployment API

ORACLE"

Oracle Fusion Middleware Deploying Applications with the WebLogic Deployment API, 12¢ (12.2.1.3.0)
E80448-01
Copyright © 2007, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility Vil
Conventions Vi

1 Introduction and Roadmap

1.1 Document Scope and Audience 1-1
1.2 Guide to This Document 1-1
1.3 Related Documentation 1-2
1.4 New and Changed Features in This Release 1-2

2 Understanding the WebLogic Deployment API

2.1 The WebLogic Deployment API 2-1
2.1.1 WebLogic Deployment API Deployment Phases 2-1
2.1.1.1 Configure an Application for Deployment 2-2

2.1.1.2 Deploy an Application 2-2

2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API 2-2
2.1.3 When to Use the WebLogic Deployment API 2-3

2.2 Java EE Deployment API Compliance 2-3
2.3 WebLogic Server Value-Added Deployment Features 2-3
2.4 The Service Provider Interface Package 2-4
2.4.1 weblogic.deploy.api.spi 2-4
2.4.2 weblogic.deploy.api.spi.factories 2-5
2.4.3 Module Targeting 2-5
2.4.4 Support for Querying WebLogic Target Types 2-5
2.45 Server Staging Modes 2-6
2.4.6 Deployment Plan Staging Modes 2-6
2.4.7 DConfigBean Validation 2-6

2.5 The Model Package 2-7
2.5.1 weblogic.deploy.api.model 2-7
2.5.2 Accessing Deployment Descriptors 2-7

2.6 The Shared Package 2-8

ORACLE iii

ORACLE

2.6.1 weblogic.deploy.api.shared 2-8
2.6.2 Command Types for Deploy and Update 2-8
2.6.3 Support for Module Types 2-9
2.6.4 Support for all WebLogic Server Target Types 2-9

2.7 The Tools Package 2-9
2.7.1 weblogic.deploy.api.tools 2-9
2.7.2 SessionHelper 2-9
2.7.3 Deployment Plan Creation 2-10

2.8 The JMX API for Deployment Operations 2-11
2.8.1 Supported Deployment Options 2-11
2.8.2 Using the JMX API for Deployment Operations 2-13

2.9 Using a Deployment Validation Plug-In with WebLogic Server 2-17
2.9.1 Configuring the Deployment Validation Plug-In 2-18
2.9.2 Using the Deployment Validation Plug-In 2-18

3 Configuring Applications for Deployment

3.1 Overview of the Configuration Process 3-1
3.2 Types of Configuration Information 3-2
3.2.1 Java EE Configuration 3-2
3.2.2 WebLogic Server Configuration 3-3
3.2.3 Representing Java EE and WebLogic Server Configuration Information 3-3
3.2.3.1 DDBeans 3-4

3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors 3-4
3.2.4.1 DConfigBeans 3-5

3.3 Application Evaluation 3-5
3.3.1 Obtain a Deployment Manager 3-6
3.3.1.1 Types of Deployment Managers 3-6

3.3.1.2 Connected and Disconnected Deployment Manager URIs 3-6

3.3.1.3 Using SessionHelper to Obtain a Deployment Manager 3-7

3.3.2 Create a Deployable Object 3-8
3.3.2.1 Using the WebLogicDeployableObiject class 3-8

3.3.2.2 Using SessionHelper to obtain a Deployable Object 3-8

3.4 Perform Front-end Configuration 3-9
3.4.1 What is Front-end Configuration 3-9
3.4.2 Deployment Configuration 3-9
3.4.2.1 Example Code 3-10

3.4.2.2 Reading In Information with SessionHelper 3-11

3.4.3 Validating a Configuration 3-12

3.5 Customizing Deployment Configuration 3-12
3.5.1 Modifying Configuration Values 3-12

3.5.2 Targets 3-15

3.5.3 Application Naming 3-15

3.6 Deployment Preparation 3-16
3.7 Session Cleanup 3-16

4 Performing Deployment Operations

4.1 Register Deployment Factory Objects 4-1
4.2 Allocate a DeploymentManager 4-2
4.2.1 Getting a DeploymentManager Object 4-2
4.2.2 Understanding DeploymentManager URI Implementations 4-2
4.2.3 Server Connectivity 4-3

4.3 Deployment Processing 4-3
4.3.1 DeploymentOptions 4-4
4.3.2 Distribution 4-4
4.3.3 Application Start 4-5
4.3.4 Application Deploy 4-5
4.3.5 Application Stop 4-5
4.3.6 Undeployment 4-6

4.4 Production Redeployment 4-6
4.4.1 In-Place Redeployment 4-6
4.4.2 Module Level Targeting 4-6
4.4.3 Retirement Policy 4-6
4.4.4 Version Support 4-7
4.4.5 Administration (Test) Mode 4-7

4.5 Progress Reporting 4-7
4.6 Target Objects 4-9
4.6.1 Module Types 4-9
4.6.2 Extended Module Support 4-9
4.6.2.1 Web Services 4-9

46.22 CMP 4-9

46.2.3 JDBC 4-9

46.24 JMS 4-10

4.6.2.5 INTERCEPT 4-10

4.6.3 Recognition of Target Types 4-10
4.6.4 TargetModulelD Objects 4-10
4.6.5 WebLogic Server TargetModulelD Extensions 4-11
4.6.6 Example Module Deployment 4-12

ORACLE Y

ORACLE"

Vi

Preface

This preface describes the document accessibility features and conventions used in
this guide—Deploying Applications with the WebLogic Deployment API.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. coml pl s/t opi ¢/ | ookup?ct x=acc&i d=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This chapter describes the contents and organization of this guide— Deploying
Applications with the WebLogic Deployment API.
This chapter includes the following sections:

e Document Scope and Audience
e Guide to This Document
e Related Documentation

 New and Changed Features in This Release

1.1 Document Scope and Audience

This document is a resource for:

» Software developers who want to understand the WebLogic Deployment API. This
API adheres to the specifications described in the Java EE Deployment API
standard (JSR-88, see http://jcp.org/en/jsr/detail ?i d=88) and extends the
interfaces provided by that standard.

» Developers and Independent Software Vendors (ISVs) who want to perform
deployment operations programmatically for WebLogic Server applications.

« System architects who are evaluating WebLogic Server or considering the use of
the WebLogic Deployment API.

» Design, development, test, and pre-production phases of a software project. It
does not directly address production phase administration, monitoring, or tuning
application performance with the WebLogic Deployment API. The deployment API
includes utilities to make software updates during production but it mirrors the
functionality of the deployment tools already available.

This guide emphasizes:
e Value-added features of the WebLogic Deployment API.

e How to manage application deployment using the WebLogic Deployment API.

It is assumed that the reader is familiar with Java EE concepts, the Java EE
Deployment API standard (JSR-88) at http://www. j cp. org/ en/j sr/ detail ?i d=088, the
Java programming language, Enterprise Java Beans (EJBs), and Web technologies.

1.2 Guide to This Document

ORACLE

» This chapter, Introduction and Roadmap, describes the organization and scope of
this guide.

» Understanding the WebLogic Deployment API, describes the packages,
interfaces, and classes of the API. This section also includes information on
extensions to the Java EE Deployment API standard (JSR-88, see http://

1-1

http://jcp.org/en/jsr/detail?id=88
http://www.jcp.org/en/jsr/detail?id=088
http://jcp.org/en/jsr/detail?id=88

Chapter 1
Related Documentation

jcp.org/en/jsr/detail ?i d=88), utilities, helper classes, and new concepts for
WebLogic Server deployment.

Configuring Applications for Deployment, describes the process of preparing an
application or deployable resource for deployment to WebLogic Server.

Performing Deployment Operations, provides information on the deployment life
cycle and controls for a deployed application.

1.3 Related Documentation

For additional information about deploying applications and modules to WebLogic
Server, see these documents:

Developing Applications for Oracle WebLogic Server describes how to deploy
applications during development using the w depl oy Ant task, and provides
information about the WebLogic Server deployment descriptor for enterprise
applications.

The WebLogic Server Java EE programming guides describe the Java EE and
WebLogic Server deployment descriptors used with each Java EE application and
module:

— Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
— Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

— Developing Resource Adapters for Oracle WebLogic Server

— Developing JAX-WS Web Services for Oracle WebLogic Server

— Deploying Applications to Oracle WebLogic Server

Developing JDBC Applications for Oracle WebLogic Server describes the XML
deployment descriptors for JDBC application modules.

Developing JMS Applications for Oracle WebLogic Server describes the XML
deployment descriptors for JMS application modules.

1.4 New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

ORACLE

1-2

http://jcp.org/en/jsr/detail?id=88

Understanding the WebLogic Deployment
API

This chapter describes the structure and functionality of the WebLogic Deployment
API, which implements and extends the Java EE Deployment API specification
(JSR-88). It also describes the JIMX API for deployment operations, which can be used
as an alternative to JSR-88.

This chapter includes the following sections:

e The WebLogic Deployment API

« Java EE Deployment APl Compliance

* WebLogic Server Value-Added Deployment Features

e The Service Provider Interface Package

* The Model Package

e The Shared Package

e The Tools Package

e The JMX API for Deployment Operations

e Using a Deployment Validation Plug-In with WebLogic Server
For more on JSR-88, see http://jcp.org/en/jsr/detail ?i d=88.

2.1 The WebLogic Deployment API

Note:

WebLogic Server 9.0 deprecates the use of the webl ogi c. managenent . depl oy
API used in earlier releases.

The following sections provide an overview of the WebLogic Server Deployment API:

e WebLogic Deployment API Deployment Phases
« weblogic.Deployer Implementation of the WebLogic Deployment API

e When to Use the WebLogic Deployment API

2.1.1 WebLogic Deployment APl Deployment Phases

The Java EE Deployment API specification (JSR-88, see http://jcp.org/en/jsr/
det ai | ?i d=88) differentiates between a configuration session and deployment. They are
distinguished as follows:

ORACLE 2-1

http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88
http://jcp.org/en/jsr/detail?id=88

Chapter 2
The WebLogic Deployment API

Application configuration which involves the generation of descriptors for a
deployment plan

Deployment tasks such as distributing, starting, stopping, redeploying,
undeploying

In order to effectively manage the deployment process in your environment, you must
use the WebLogic Deployment API to:

Configure an Application for Deployment

Deploy an Application

2.1.1.1 Configure an Application for Deployment

In this document, the term configuration refers to the process of preparing an
application or deployable resource for deployment to a WebLogic Server instance.
Configuring an application consists of the following phases:

Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors. See Application Evaluation.

Front-end Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic
Server descriptors, defaults, and user provided deployment plans. See Perform
Front-end Configuration.

Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets. See Customizing Deployment Configuration.

Deployment preparation—Generation of the final deployment plan and
preliminary client-side validation of the application. See Deployment Preparation.

2.1.1.2 Deploy an Application

Application deployment is the process of distributing an application and plan to the
Administration Server for server-side processing and application startup. See
Performing Deployment Operations.

2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment

AP]

ORACLE

WebLogic Server provides a packaged deployment tool, webl ogi c. Depl oyer, to provide
deployment services for WebLogic Server. Any deployment operation that can be
implemented using the WebLogic Deployment API is implemented, either in part or in
full, by webl ogi c. Depl oyer.

2-2

Chapter 2
Java EE Deployment AP Compliance

2.1.3 When to Use the WebLogic Deployment AP

Note:

webl ogi c. Depl oyer is the recommended deployment tool for the WebLogic
Server environment. See Deploying Applications to Oracle WebLogic Server
for information on how to use webl ogi c. Depl oyer and the WebLogic Server
Administration Console.

You may need to implement the WebLogic Deployment API in the following cases:

* You need to model your own implementation and interface with the WebLogic
Service Provider Interface (SPI). In this case, the WebLogic Deployment API
deployment factory is used to obtain a WbLogi cDepl oyment Manager , which extends
javax. enterprise. depl oy. spi . Depl oynent Manager (see http://docs. oracle. com
javaeel 7/ api/ j avax/ ent er pri se/ depl oy/ spi / Depl oynent Manager . ht i) for use with
the webl ogi c. depl oy. api . spi . See Application Evaluation and the Java EE
Deployment API specification at http://jcp. org/en/sr/detail ?i d=88.

* You need to create your own deployment interface instead using the WebLogic
Server Administration Console and/or webl ogi c. Depl oyer . In this case, you may
implement some or all WebLogic Deployment APl Deployment Phases using the
WebLogic Deployment API classes and interfaces.

2.2 Java EE Deployment APl Compliance

The WebLogic Deployment API classes and interfaces extend and implement the Java
EE Deployment API specification (JSR-88) interfaces, which are described in the
javax. enterprise. depl oy sub-packages (see http://docs. oracl e. cont j avaee/ 7/ api /
overvi ewsummary. ht ni). The WebLogic Deployment API provides the following
packages:

* weblogic.deploy.api.spi

* weblogic.deploy.api.spi.factories
* weblogic.deploy.api.model

* weblogic.deploy.api.shared

* weblogic.deploy.api.tools

2.3 WebLogic Server Value-Added Deployment Features

ORACLE

WebLogic supports the "Product Provider” role described in the Java EE Deployment
API specification (JSR-88) at http://jcp.org/en/jsr/detail ?i d=88 and provides utilities
specific to the WebLogic Server environment in addition to extensible components for
any Java EE network client. These extended features include:

* Support for WebLogic features, such as starting in adni n mode or redeploying with
versioning.

* Fine grain control, such as:

2-3

http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/spi/DeploymentManager.html
http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/spi/DeploymentManager.html
http://jcp.org/en/jsr/detail?id=88
http://docs.oracle.com/javaee/7/api/overview-summary.html
http://docs.oracle.com/javaee/7/api/overview-summary.html
http://jcp.org/en/jsr/detail?id=88

Chapter 2
The Service Provider Interface Package

— Module level targeting
— Partial Redeployment, the redeployment or removal of parts of an application
— Dynamic configuration changes

» Support of WebLogic module extensions such as JMS, JDBC, Interception, and
Application Specific Configuration (Custom/Configuration) modules.

» Additional operations, such as the Depl oy verb which combines di stri bute and
start.

¢ Note:

The WebLogic Deployment API does not support an automated fallback
procedure for a failed application update. The policy and procedures for this
behavior must be defined and configured by the developers and administrators
for each deployment environment.

2.4 The Service Provider Interface Package

As a Java EE product provider, Oracle extends the j avax Service Provider Interface
(SPI) package to provide specific configuration and deployment control for WebLogic
Server. The core interface for this package is the Depl oynent Manager , from which all
other deployment activities are initiated, monitored, and controlled.

The WebLogi cDepl oynent Manager interface provides WebLogic Server extensions to the
javax. enterpri se. depl oy. spi . Depl oyment Manager interface. A WbLogi cDepl oynent Manager
object is a stateless interface for the WebLogic Server deployment framework. It
provides basic deployment features as well as extended WebLogic Server deployment
features such as production redeployment and partial deployment for modules in an
enterprise application. You generally acquire a WbLogi cDepl oynent Manager object using
Sessi onHel per . get Depl oyment Manager method from the Sessi onHel per helper class from
the Tools package. See Application Evaluation.

The following sections provide basic information on the functionality of the WebLogic
Server SPI:

e weblogic.deploy.api.spi

e weblogic.deploy.api.spi.factories

e Module Targeting

e Support for Querying WebLogic Target Types
e Server Staging Modes

e Deployment Plan Staging Modes

e DConfigBean Validation

2.4.1 weblogic.deploy.api.spi
The webl ogi c. depl oy. api . spi package provides the interfaces required to configure

and deploy applications to a target (see Support for Querying WebLogic Target Types
for valid target types). This package enables you to create deployment tools that can

ORACLE 2.4

Chapter 2
The Service Provider Interface Package

implement a WebLogic Server-specific deployment configuration for an enterprise
application or stand-alone module.

webl ogi c. depl oy. api . spi includes the WebLogi cDepl oynent Manager interface. Use this
deployment manager to perform all deployment-related operations such as
distributing, starting, and stopping applications in WebLogic Server. The

WebLogi cDepl oynment Manager also provides important extensions to the Java EE

Depl oyment Manager interface for features such as module-level targeting for enterprise
application modules, production redeployment, application versioning, application
staging modes, and constraints on Administrative access to deployed applications.

The WebLogi cDepl oynment Conf i gur ati on and WebLogi cDConf i gBean classes in the
webl ogi c. depl oy. api . spi package represent the deployment and configuration
descriptors (WebLogic Server deployment descriptors) for an application.

e A WbLogi cDepl oyment Confi gur ati on object is a wrapper for a deployment plan.

* A WbLlogi cDConf i gBean encapsulates the properties in WebLogic deployment
descriptors.

2.4.2 weblogic.deploy.api.spi.factories

This package contains only one interface, the WbLogi cDepl oynent Factory. This is a
WebLogic extension to j avax. ent er pri se. depl oy. spi . f act ori es. Depl oyment Fact ory. Use
this factory interface to select and allocate Depl oynent Manager objects that have
different characteristics. The WebLogi cDepl oynent Manager characteristics are defined by
public fields in the WebLogi cDepl oynent Factory.

2.4.3 Module Targeting

Module targeting is deploying specific modules in an application to different targets as
opposed to deploying all modules to the same set of targets as specified by JSR-88.
Module targeting is supported by the WebLogi cDepl oynent Manager . cr eat eTar get Modul el D
methods.

The WebLogi cTar get Modul el D class contains the WebLogic Server extensions to the
javax.enterprise. depl oy. spi . Tar get Modul el D interface. This class is closely related to
the configured Tar get | nf oMBeans (AppDepl oynent MBean and SubDepl oyment MBean). The
WebLogi cTar get Modul el D class provides more detailed descriptions of the application
modules and their relationship to targets than those in Tar get | nf oMBeans. See Module
Types.

2.4.4 Support for Querying WebLogic Target Types

For WebLogic Server, the WbLogi cTar get class provides a direct interface for
maintaining the target types available to WebLogic Server. Target accessor methods
are described in Table 2-1.

Table 2-1 Target Accessor Methods

Method Description

bool ean i sC uster() Indicates whether this target represents a cluster target.

ORACLE 2-5

Chapter 2
The Service Provider Interface Package

Table 2-1 (Cont.) Target Accessor Methods

Method Description

bool ean i sJMSSer ver () Indicates whether this target represents a JMS server
target.

bool ean i sSAFAgent () Indicates whether this target represents a SAF agent target.

bool ean isServer() Indicates whether this target represents a server target.

bool ean isVirtual Host () Indicates whether this target represents a virtual host
target.

2.4.5 Server Staging Modes

The staging mode of an application affects its deployment behavior. The application's
staging behavior is set using Depl oynent Opt i ons. set St ageMbde(st age nmode) where the
value of st age node is one of the following:

e STAGE—Force copying of files to target servers.
* NO STAGE—Files are not copied to target servers.

e EXTERNAL_STAGE—Files are staged manually.

2.4.6 Deployment Plan Staging Modes

An application's deployment plan can be staged independently of the application
archive, allowing you to stage a deployment plan when the application is not staged.
You can configure the staging behavior of the deployment plan by using

Depl oynent Opt i ons. set Pl anSt ageMbde (pl an stage node), where the value of pl an st age
node is one of the following:

e STAGE—Deployment plan is copied to target servers.
* NO STAGE—Deployment plan is not copied to target servers.
e EXTERNAL_STAGE—Deployment plan is copied manually to target servers.

If you do not specify a staging mode, the deployment plan uses the value specified for
application staging as the default. For example, if deployment plan staging is not
specified and application staging is set to STAGE, the deployment plan staging mode is
set to STAGE.

2.4.7 DConfigBean Validation

The property setters in a DConf i gBean reject attempts to set invalid values. This
includes property type validation such as attempting to set an integer property to a
non-numeric value. Some properties perform semantic validations, such as ensuring a
maximum value is not smaller than its associated minimum value.

ORACLE 2-6

Chapter 2
The Model Package

2.5 The Model Package

These classes are the WebLogic Server extensions to and implementations of the
javax. enterprise. depl oy. model interfaces (see http://docs. oracl e. conl j avaee/ 7/ api /
javax/ enterprise/ depl oy/ model / package- summary. ht ni). The model interfaces describes
the standard elements, such as deployment descriptors, of a Java EE application.

e weblogic.deploy.api.model

e Accessing Deployment Descriptors

2.5.1 weblogic.deploy.api.model

This package contains the interfaces used to represent the Java EE configuration of a
deployable object. A deployable object is a deployment container for an enterprise
application or stand-alone module.

The WebLogic Server implementation of the j avax. ent er pri se. depl oy. nodel interfaces
enable you to work with applications that are stored in a WebLogic Server application
installation directory, a formal directory structure used for managing application
deployment files, deployments, and external WebLogic deployment descriptors
generated during the configuration process. See Preparing Applications and Modules
for Deployment for more information about the layout of an application installation
directory. It supports any Java EE application, with extensions to support applications
residing in an application installation directory.

Note:

webl ogi c. depl oy. api . nodel does not support dynamic changes to Java EE
deployment descriptor elements during configuration and therefore does not
support registration and removal of XPath listeners. DDBean. addXPat hLi st ener
and renoveXPat hLi st ener are not supported.

The WbLogi cDepl oyabl ebj ect class and WebLogi cDDBean interface in the
webl ogi c. depl oy. api . model package represent the standard deployment descriptors in
an application.

2.5.2 Accessing Deployment Descriptors

ORACLE

Java EE Deployment API dictates that Java EE deployment descriptors be accessed
through a Depl oyabl eChj ect (see http://docs. oracl e. conl j avaee/ 7/ api / j avax/

enterpri se/ depl oy/ nodel / Depl oyabl eCbj ect. ht ni). A Depl oyabl eQbj ect represents a
module in an application. Elements in the descriptors are represented by DDBeans, one
for each element in a deployment descriptor. The root element of a descriptor is
represented by a DDBeanRoot object. All of these interfaces are implemented in
corresponding interfaces and classes in this package.

The WebLogi cDepl oyabl eQuj ect class, which is the WebLogic Server implementation of
Depl oyabl ebj ect , provides the cr eat eDepl oyabl eChj ect methods, which create the
WebLogi cDepl oyabl eQbj ect and WebLogi cDDBean for the application's deployment
descriptors. Basic configuration tasks are accomplished by associating the

2-7

http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/model/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/model/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/model/DeployableObject.html
http://docs.oracle.com/javaee/7/api/javax/enterprise/deploy/model/DeployableObject.html

Chapter 2
The Shared Package

WebLogi cDDBean with a WebLogi cDConf i gBean, which represent the server configuration
properties required for deploying the application on a WebLogic Server. See
Application Evaluation.

Unlike a DConf i gBean, which contain configuration information specifically for a server
environment (in this case WebLogic Server instance), a DDBean object takes in the
general deployment descriptor elements for the application. For example, if you were
deploying a Web application, the deployment descriptors in WebLogi cDDBeans come from
VEB- | NF/ web. xmi file in the . war archive. The information for the WebLogi cDConf i gBeans
would come from VEB- | NF/ webl ogi ¢. xm in the . war archive based on the

WebLogi cDDBeans. Though they serve the same fundamental purpose of holding
configuration information, they are logically separate as a DDBean describes the
application while a DConf i gBeans configures the application for a specific environment.

Both of these objects are generated during the initiation of a configuration session.
The WebLogi cDepl oyabl ebj ect , WebLogi cDDBeans, and WbLogi cDConf i gBeans are all
instantiated and manipulated in a configuration session. See Overview of the
Configuration Process.

2.6 The Shared Package

The following sections provide information on classes that represent WebLogic Server-
specific deployment commands, module types, and target types as classes:

* weblogic.deploy.api.shared

e Command Types for Deploy and Update

e Support for Module Types

e Support for all WebLogic Server Target Types

2.6.1 weblogic.deploy.api.shared

The webl ogi c. depl oy. api . shar ed package provides classes that represent the
WebLogic Server-specific deployment commands, module types, and target types as
classes. These objects can be shared by weblogic.deploy.api.model and
weblogic.deploy.api.spi packages.

The definitions of the standard j avax. ent erpri se. depl oy. shar ed classes Mdul eType and
ConmandType are extended to provide support for:

e The module type, see Support for Module Types
e Commands, see Command Types for Deploy and Update

The WebLogi cTar get Type class, which is not required by the Java EE Deployment API
specification (JSR-88, see http://jcp.org/en/jsr/detail ?i d=88), enumerates the
different types of deployment targets supported by WebLogic Server. This class does
not extend a j avax deployment class. See Support for all WebLogic Server Target
Types.

2.6.2 Command Types for Deploy and Update

The depl oy and updat e command types are added to the required command types
defined in the j avax. ent er pri se. spi . shar ed package and are available to a
\WebLogi cDepl oynent Manager .

ORACLE 2-8

http://jcp.org/en/jsr/detail?id=88

Chapter 2
The Tools Package

2.6.3 Support for Module Types

Supported module types include JMS, JDBC, Interception, WSEE, Config, and WLDF.
These are defined in the webl ogi c. depl oy. api . shar ed. WebLogi cMbdul eType class as
fields.

2.6.4 Support for all WebLogic Server Target Types

Targets, which were not implemented in the Java EE Deployment API specification,
are implemented in the WebLogic Deployment API. The valid target values are:

e Cluster

* JMS Server

* SAF (Store-and-Forward) Agent
* Server

* Virtual Host

These are enumerated field values in the
webl ogi c. depl oy. api . shar ed. WebLogi cTar get Type class.

2.7 The Tools Package

The following sections provide information on API tools you can use to perform
common deployment tool tasks with a minimum number of controls and explicit object
manipulations:

* weblogic.deploy.api.tools
e SessionHelper

* Deployment Plan Creation

2.7.1 weblogic.deploy.api.tools

The webl ogi c. depl oy. api . t ool s package provides convenience classes that can help
you:

e Obtain a WbLogi cDepl oyment Manager
* Populate a configuration for an application
e Create a new or updated deployment plan

The classes in the tools package are not extensions of the Java EE Deployment API
specification (JSR-88, see http://jcp.orgl/en/jsr/detail ?i d=88) interfaces. They
provide easy access to deployment operations provided by the WebLogic Deployment
API.

2.7.2 SessionHelper

Although configuration sessions can be controlled from a WebLogi cDepl oynent Manager
directly, Sessi onHel per provides simplified methods. If your tools code directly to the

ORACLE 2-9

http://jcp.org/en/jsr/detail?id=88

Chapter 2
The Tools Package

WebLogic Server Java EE Deployment APl implementation, you should always use
Sessi onHel per.

Use Sessi onHel per to obtain a WebLogi cDepl oyment Manager with one method call. To do
this effectively, it must be able to locate the application. The Sessi onHel per views an
application and deployment plan artifacts using an "install root" abstraction, which
ideally is the actual organization of the application. The install root appears as follows:

install-root (eg nyapp)

--app

----- archive (eg nyapp. ear)

- plan

----- depl oynent plan (eg plan.xm)

----- external descriptors (eg META-1NF/ webl ogi c-application.xm...)

There is no requirement to mandate that this structure be used for applications. It is a
preferred approach because it serves to keep the application and its configuration
artifacts under a common root and provides Sessi onHel per with a format it can
interpret.

Sessi onHel per. get Modul el nf o() returns an object that is useful for understanding the
structure of an application without having to work directly with DDBeans and
Depl oyabl ebj ect s. It provides such information as:

* Names and types of modules and submodules in the application
* Names of Web services provided by the application

» Context roots for Web applications

* Names of enterprise beans in an EJB

Internally, the deployment descriptors are represented as descriptor bean trees and
trees of typed Java Bean objects that represent the individual descriptor elements.
These bean trees are easier to work with than the more generic DDBean and

DConf i gBean objects. The descriptor bean trees for each module are directly accessible
from the associated WbLogi cDDBeanRoot and WebLogi cDConf i gBeanRoot objects for each
module using their get Descri pt or Bean methods. Modifying the bean trees obtained from
a WebLogi cDConf i gBean has the same effect as modifying the associated DConf i gBean,
and therefore the application's deployment plan.

2.7.3 Deployment Plan Creation

ORACLE

webl ogi c. Pl anGener at or creates a deployment plan template based on the Java EE and
WebLogic Server descriptors included in an application. The resulting plan describes
the application structure, identifies all deployment descriptors, and exports a subset of
the application's configurable properties. Export properties to expose them to tools like
the WebLogic Server console which then uses the plan to assist the administrator in
providing appropriate values for those properties. By default, the

webl ogi c. Pl anGener at or tool only exports application dependencies; those properties
required for a successful deployment. This behavior can be overridden using of the
following options:

» Dependenci es: Export resources referenced by the application (default)
e Declarations: Export resources defined by the application
e Configurabl es: Export non-resource oriented configurable properties

* Dynanics: Export properties that may be changed in a running application

2-10

Chapter 2
The JMX API for Deployment Operations

e All: Export all changeable properties

+ None: Export no properties

2.8 The JMX API for Deployment Operations

The Java Management Extensions (JMX) API for deployment operations supports all
of the common functionality available in the Java EE Deployment API specification
(JSR-88). You can use the JMX API as an alternative to JSR-88 to perform
deployment tasks on specified target servers, such as:

e Starting

e Stopping

e Distributing

* Deploying

* Redeploying

« Undeploying

» Updating deployment plans without redeploying applications

The JMX API for deployment operations uses open MBean data types so that no
WebLogic Server classes are required on the client side. These new MBeans for
deployment are similar conceptually to JSR-88 and are located in the Domain Runtime
MBean Server. In this model, you must initiate deployment operations on the
Administration Server.

The following four runtime MBeans support the JMX API for deployment operations:

e Depl oynent Manager MBean

The Depl oynent Manager MBean provides deployment operations, including deploy and
distribute, and provides access to the AppDepl oynment Runti re MBeans for each
application deployed to the domain. It also manages the deployment progress
objects and emits notifications when an application is created or removed and
when the application state changes.

* AppDepl oynment Runt i neMBean

The AppDepl oynent Runt i meMBean provides the deployment operations for an
application, including start, stop, undeploy, redeploy, and updating a deployment
plan without redeploying the application.

e Depl oynent Progresshj ect MBean

The Depl oynment Progr esshj ect MBean monitors deployment operations initiated by
the AppDepl oynent Runti me MBeans.

e Li bDepl oyment Runt i neMBean

The Li bDepl oynent Runt i meMBean provides deployment operations for a library,
including undeploy and redeploy.

See the MBean Reference for Oracle WebLogic Server.

2.8.1 Supported Deployment Options

The JMX API for deployment operations supports all of the deployment options
available in JSR-88, which are specified as Property name-value pairs. By specifying

ORACLE 2-11

ORACLE

Chapter 2
The JMX API for Deployment Operations

deployment options, you can override the default values. Table 2-2 summarizes the
supported deployment option names and values.

Table 2-2 Deployment Options Supported by the JIMX API
|

Deployment Option

Description

adm nMbde

al t DD

al t WsDD

appVersi on

cl ust er Depl oynent Ti meout

createPl an

def aul t Subnodul eTar get s

depl oynment O der

depl oyment Pri nci pal Name

f or ceUndepl oyTi neout

graceful | gnor eSessi ons

gracef ul Producti onToAdni n

library

I'i bl npl Ver

| i bSpecVer

noVer si on

pl anVersi on

Option that indicates that a running application should
switch to ADM N mode and accept only administration
requests over a configured administration channel.

Location of the alternate application deployment
descriptor on the Administration Server.

Location of the alternate WebLogic application
deployment descriptor on the Administration Server.

Version identifier of the application.

Time, in milliseconds, granted for a cluster deployment
task on this application.

Boolean value indicating that the user wants to create a
default plan. The default value for this option is false.

Boolean value indicating that targeting for qualifying JMS
submodules should be derived by the system. The default
value for this option is true.

Option that controls the load order of deployments
relative to one another.

String value specifying the principal for deploying the file
or archive during server starts (static deployment; it does
not affect the current deployment task).

Force undeployment timeout value.

Boolean value specifying whether graceful production to
ADM N mode operation should ignore pending HTTP
sessions. The default value of this option is false and only
applies if gracef ul Product i onToAdni n is set to true.

Boolean value specifying whether the production to ADM N
mode operation should be graceful. The default value for
this option is false.

The deployment as a shared Java EE library or optional
package.

Implementation version of the library, if it is not present in
the manifest.

Specification version of the library, if it is not present in
the manifest.

Versioning information is ignored.

Version identifier of the deployment plan.

2-12

Chapter 2
The JMX API for Deployment Operations

Table 2-2 (Cont.) Deployment Options Supported by the JIMX API
|

Deployment Option

Description

retireGacefully

retireTi neout

rm GracePeri od

securit yModel

securityValidationEnabl ed

st ageMbde

subModul eTar get s

ti meout

useNonExcl usi velLock

versionldentifier

Retirement policy to gracefully retire an application only
after it completes all in-flight work. This policy is only
meaningful for stop and redeploy operations and is
mutually exclusive to the retire timeout policy.

Time (in seconds) WebLogic Server waits before retiring
an application that is replaced with a newer version. The
default value for this option is -1, which specifies graceful
timeout.

The amount of time, in seconds, that the Work Manager
accepts and schedules RMI calls until there are no more
RMI requests arriving within the RMI grace period during
agraceful shutdownoraretirenent.

Security model. Valid values include: DDOnl y,
Cust onRol es, Cust onRol esAndPol i ci es, and Advanced.

Boolean value specifying whether security validation is
enabled.

The staging mode for the application you are deploying.
Valid values are st age, nost age, and ext er nal _st age. If
not specified, WebLogic Server uses the default stage
mode. The default stage mode is nost age for the
Administration Server and st age for Managed Servers.

Submodule level targets for IMS modules. For example:
submod@rod- j mx. xnl @ar get | subnodul eNane @'t ar get .

Time (in milliseconds) WebLogic Server waits for the
deployment process to complete before canceling the
operation. A value of 0 indicates no timeout for the
operation. The default value for this argument is 300, 000
ms (or five minutes).

Deployment operation uses an existing lock, already
acquired by the same user, on the domain. This option is
helpful in environments where multiple deployment tools
are used simultaneously and one of the tools has already
acquired a lock on the domain configuration.

Version identifier.

2.8.2 Using the JMX API for Deployment Operations

Example 2-1 demonstrates the use of the WebLogic Server IMX API for deployment
operations. The example includes inline comments and demonstrates how to:

» deploy an application both synchronously and asynchronously

* monitor the progress of a deployment operation

» stop an application

ORACLE

2-13

Chapter 2
The JMX API for Deployment Operations

* undeploy an application

* handle notifications

Note:

This example uses JMX proxies for readability. The WebLogic Server IMX API
uses open types so it can be run in a JIMX client without WebLogic Server
classes. In addition, error handling has been omitted to keep the example as
small as possible.

For more information about understanding and using JMX, see Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server and Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

Example 2-1 Using the JMX API for Deployment Operations

i mport webl ogi c. management . nbeanser vers. donmai nrunt i me. Domai nRunt i meSer vi ceMBean;
i mport webl ogi c. management . runti ne. AppDepl oynent Runt i neMBean;

i mport webl ogi c. management . runti ne. Depl oynment Manager MBean;

i mport webl ogi c. management . runti ne. Depl oynent Progr essOhj ect MBean;

inmport java.util.Hashtable;
inmport java.util.Properties;

i nport javax. managenent. MBeanServer Connecti on;

i nport javax. managenent. Notification;

i mport javax. managenent. NotificationListener;

i mport j avax. managenent. Qbj ect Nane;

i mport j avax. managenent. renot e. JMXConnect or;

i nport javax. managenent. renmot e. JMXConnect or Fact ory;
i mport javax. managenent.remot e. JMXSer vi ceURL;

i mport javax. naming. Cont ext;

public class JMXDepl oyment Exanpl e {

/'l Depl oyment Manager JMX proxy
Depl oyment Manager MBean depl oynent Manager ;

/] Domain Runtime MBean Server connection
MBeanSer ver Connecti on connecti on;

private void setUp() throws Exception {
Systemout.println("*** Setting up...");

/] Get connection to the Domain Runtime MBean Server.

/1 For nore information, see Make Renpbte Connections to an MBean Server.

/1 in Devel oping Custom Managenent Uilities Using JMX for Oracle WebLogi ¢ Server.
connection = get Domai nRunt i meJMXConnection();

/1 Get Depl oyment Manager JMX proxy.
/1 For nmore information, see Oracle WeblLogi ¢ Server MBean Reference.
Domai nRunt i meSer vi ceMBean svcBean = (Domai nRunt i meSer vi ceMBean)
webl ogi c. management . j nx. MBeanSer ver | nvocat i onHandl er . newPr oxyl nst ance(
connection, new Obj ect Name(Domai nRunt i meSer vi ceMBean. OBJECT_NAME)) ;
depl oynment Manager = svcBean. get Domai nRunt i me() . get Depl oynent Manager () ;

/1 Add a JMX notification listener that outputs the JMX notifications generated during depl oyment

ORACLE 2-14

Chapter 2
The JMX API for Deployment Operations

operations.
connection. addNoti fi cati onLi stener (new
bj ect Name(" com bea: Nane=Depl oynent Manager, Type=Depl oynent Manager"),
new Depl oyLi stener(), null, null);
1

/*
* Denonstrates synchronously depl oying an application.
*/

private voi d depl oySynchronousl y() throws Exception {
Systemout. printlIn("*** Deploying SinpleApp...");

/1 This formof the deploy operation is synchronous.
[l Errors are still returned through a progress object.
/1 By default, the SinpleApp is deployed to all servers.

Depl oyment Progr essChj ect MBean progressChj = depl oynent Manager . depl oy(
"Si mpl eApp", "/apps/sinpleapp.war”, /* no plan */ null);
print Conpl etionStatus(progressj);
1

/*
* Denonstrates asynchronously depl oying an application to a server instance.
*/

private voi d depl oyASynchronously() throws Exception {
Systemout. printlIn("*** Depl oying VersionedApp...");

[l This formof the deploy operation is asynchronous.
/1 The caller should utilize the returned progress object to nmonitor the progress of the
depl oynent.

Properties depl oynment Options = new Properties();
depl oynent Opt i ons. put ("appVersion", "V1");
depl oynent Opt i ons. put (" pl anVersion", "P1");

Depl oyment Progr essQhj ect MBean progressChj = depl oynent Manager . depl oy(" Ver si onedApp", "/apps/ app-
vl. war",
new String[] { "nyserver" },
"[apps/ app-v1l-plan.xm ", deploynent Options);

wai t For Conpl eti on(progressChj, 200);
1

/*
* Denonstrates using a depl oyment progress object to display the status of the depl oynent
operation.
*|
private void printConpletionStatus(Depl oynent ProgressChj ect MBean progressChj) throws Exception {
Systemout.printIn(" State: " + progressthj.getState());
if ("STATE_FAILED'. equal s(progressQhj.getState())) {
Exception[] exceptions = progressOj. get Root Exceptions();

for (int i =0; exceptions != null & i < exceptions.length; i++)
Systemout. println(" Exception: " + exceptions[i]);

/*

ORACLE 215

Chapter 2
The JMX API for Deployment Operations

* Denonstrates using a depl oyment progress object to wait for the conmpletion of the depl oyment
operation.
*/

private voi d waitFor Conpl eti on(Depl oynent Progresshj ect MBean progressCbj, int timeoutSecs) throws
Exception {

for (int i =0; i <tinmeoutSecs; i++) {
String state = progressbj.getState();
if ("STATE_COVPLETED'. equal s(state) || "STATE_FAILED'.equal s(state))
br eak;
try {

Thread. current Thread() . sl eep(1000);
} catch (InterruptedException ex) {
/lignore

}
}

print Conpl etionStatus(progressj);
1

/*

* Denonstrates stopping an application asynchronously.
*

/

private void stopAsynchonously() throws Exception {
Systemout. printIn("*** Stopping SinpleApp...");

/1 The Depl oynment Manager MBean is used for the initial deploynent of an application.

/] After the initial deploynent, the AppDepl oyment RuntineMBean i s used for stop, start,
/'l redepl oy, and undepl oy of an application.

AppDepl oynment Runt i meMBean appRuntine = depl oyment Manager . | ookupAppDepl oynent Runti ne(" Si npl eApp");

Properties depl oyment Options = new Properties();
depl oynent Opt i ons. put ("graceful | gnoreSessi ons", "true");

Depl oyment Progr essChj ect MBean progressChj = appRuntine. stop(new String[]{"myserver"},

depl oynent Opti ons) ;
wai t For Conpl eti on(progressChj, 200);

1

/*

* Denonstrates using an AppDepl oyment Runti meMBean to undepl oy an application.
*|

private voi d undepl oySynchronousl y() throws Exception {
Systemout. println("*** Undepl oying SinpleApp...");

/1 The Depl oyment Manager MBean is used for the initial deployment of an application.
/] After the initial deploynent, the AppDepl oyment RuntineMBean i s used for stop, start,
/'l redepl oy, and undepl oy of an application.

AppDepl oynent Runt i neMBean appRuntime = depl oynent Manager . | ookupAppDepl oynent Runti me(" Si npl eApp");

Depl oyment Progr essQhj ect MBean progressChj = appRunti me. undepl oy();
print Conpl etionStatus(progressj);

ORACLE 2-16

Chapter 2
Using a Deployment Validation Plug-In with WebLogic Server

/*

* Denonstrates the notifications that are generated by WeblLogi ¢ Server depl oyment operations.
*

/

private class Depl oyListener inplements NotificationListener {

public void handl eNotification(Notification notification, Object handback) {
Systemout. printIn(" Notification from Depl oyment Manager MBean");
Systemout.printin(" notification type: " + notification.getType());
String userData = (String)notification.getUserData();
Systemout.printIn(" wuserData: " + userData);

}
}

private MBeanServer Connection get Domai nRunti mneJMXConnection() throws Exception {

JMXSer vi ceURL serviceURL = new JMXServi ceURL("t3", "local host", 7001,
"/j ndi /webl ogi c. managenent . nbeanservers. domai nruntime");

Hasht abl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCI PAL, "webl ogi ¢");

h. put (Cont ext . SECURI TY_CREDENTI ALS, "password");

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES, "webl ogi ¢. managenent. renmote");

JMXConnect or connector = JMXConnect or Fact ory. connect (servi ceURL, h);
MBeanSer ver Connecti on connection = connector. get MBeanSer ver Connection();
return connection;

}

public static void main(String args[]) throws Exception {
JMXDepl oynent Exanpl e exanpl e = new JMXDepl oynent Exanpl e() ;

exanpl e. set Up();

exanpl e. depl oySynchronousl y();
exanpl e. depl oyASynchr onousl y();
exanpl e. st opAsynchonous| y();
exanpl e. undepl oySynchronousl y();

}

2.9 Using a Deployment Validation Plug-In with WebLogic
Server

You can validate applications before allowing them to be deployed to your WebLogic
Server domain by creating a deployment validation plug-in. At the start of the
deployment process, the Administration Server executes the plug-in, which determines
whether the application is valid for the domain. If validation passes, the application is
deployed. If validation fails, the application is not deployed, and there is no
configuration change or evidence of deployment.

When using a deployment validation plug-in, you determine what it should consider
invalid based on the specific needs of your domain. For example, you can configure
the plug-in to reject bad formats or EJBs. You can only register one deployment
validation plug-in per domain, and the plug-in must be unigue to the domain. You can
configure a new deployment validation plug-in to replace the original, but you cannot
add a second plug-in to the same domain.

ORACLE 217

Chapter 2
Using a Deployment Validation Plug-In with WebLogic Server

Using a deployment validation plug-in with WebLogic Server provides the following
capabilities:

* rejects invalid application code to protect your domain from malicious applications
* modifies the deployment plan of an application

» tailors the plug-in to suit your specific needs through configuration parameters

* logs messages

The deployment process is the same with or without a deployment validation plug-in,
as validation is an optional step. The validation process occurs when deploying an
application for the first time, not at server startup for applications that are already
deployed or during auto-deployment.

The following sections describe how to validate applications using a deployment
validation plug-in with WebLogic Server:

* Configuring the Deployment Validation Plug-In
* Using the Deployment Validation Plug-In

2.9.1 Configuring the Deployment Validation Plug-In

To enable the deployment validation plug-in to run with WebLogic Server, you must
add the <depl oynent - val i dat i on- pl ugi n> element to the confi g. xn file so that the
Administration Server can access and use the plug-in classes. The <depl oynent -

val i dati on- pl ugi n> element should contain the fully qualified class name of the plug-in
and declare any parameters. You can add the <depl oyment - val i dat i on- pl ugi n> element
manually or by using the Depl oynent Conf i gur ati onMBean available from the Dormai nMBean.

The following three configuration MBeans support the deployment validation plug-in:

* Depl oynent Confi gurati onMBean

The Depl oyment Confi gur ati onMBean contains the Depl oyment Val i dat i onPl ugl n
attribute. This attribute is a Depl oynent Val i dati onPl ugi nMBean and corresponds to
the <depl oynent - val i dati on- pl ugi n> element, which enables or disables the
deployment validation plug-in.

* Depl oynent Val i dati onPl ugi nMBean

The Depl oyment Val i dat i onPl ugi nMBean specifies the deployment validation plug-in
configuration information. This MBean includes the Fact or yd assnane attribute,
which is the fully qualified plug-in class name. This class must be available from
the Administration Server CLASSPATH. The Depl oynent Val i dat i onPl ugi nMBean also
includes parameters that can be passed to the plug-in. You declare these
parameters with the Par anet er MBean.

o Par anet er MBean

The Par anet er MBean specifies the configuration and user parameters for the
deployment validation plug-in, including Nane, Val ue, and Descri pti on.

2.9.2 Using the Deployment Validation Plug-In

ORACLE

WebLogic Server does not provide the code for the deployment validation plug-in

itself, but provides a way to run a plug-in as part of the deployment process to validate
and protect your domain from malicious applications. As the domain administrator, you
program and compile the code for your domain-specific plug-in according to the needs

2-18

ORACLE

Chapter 2
Using a Deployment Validation Plug-In with WebLogic Server

and specifications of your environment. The plug-in class and other classes it uses
need to be available from the Administration Server CLASSPATH.

The deployment validation plug-in must implement the plug-in factory interface,

webl ogi c. depl oynent . confi gur ati on. Depl oynent Val i dati onPl ugi n. The implementation
must contain an empty constructor in order to create an instance of the deployment
validation plug-in.

The webl ogi c. depl oyment . confi gur ati on interface includes an initialize method and a
validation method. The initialize method provides the parameters that are declared in
the <depl oynent - val i dat i on- pl ugi n> element of the confi g. xn file to the instance of the
deployment validation plug-in. The validation method provides the context of the
application information and returns the validation result for the application.

The validation result is a class that implements the Val i dati onResul t interface.
Implement the i sDepl oyment Val i d method to indicate whether the deployment is valid
and should proceed. Implement the get Excepti on method to provide an exception that
should be set as the cause if the deployment is not valid. The argument passed to the
validate method is Depl oynent Val i dat i onCont ext , which provides access to the
proposed application through an instance of Sessi onHel per. The deployment validation
plug-in can then use the get Sessi onHel per attribute on the Depl oynent Val i dat i onCont ext
argument to examine the application information that Sessi onHel per allows.

The Depl oynment Val i dati onCont ext argument also provides access to the

Depl oyment Val i dat i onLogger . The Depl oynent Val i dati onLogger logs messages about the
actions the plug-in takes to validate the application or the reasons the application is
invalid.

If the validation result indicates that the application is valid, the deployment passes
and continues the deployment process. If the validation result indicates that the
application is invalid, the plug-in sends an exception message describing the reason
the application failed to validate, and the application is not deployed. There is no
configuration change or evidence of deployment. Since the validation process occurs
on the Administration Server, if the deployment fails, the Managed Servers are not
aware of the deployment, and you would not have to undeploy or undo any
configuration.

2-19

Chapter 2

Using a Deployment Validation Plug-In with WebLogic Server

ORACLE" 2-20

Configuring Applications for Deployment

This chapter describes how to configure an application or deployable resource for
deployment to a WebLogic Server instance using deployment descriptors. Certain
elements in these descriptors refer to external objects and may require special
handling depending on the server vendor. WebLogic Server uses descriptor
extensions—WebLogic Server specific deployment descriptors. The mapping between
standard descriptors and WebLogic Server descriptors is managed using DDBeans and
DConf i gBeans.

This chapter includes the following sections:

e Overview of the Configuration Process
e Types of Configuration Information

* Application Evaluation

e Perform Front-end Configuration

e Customizing Deployment Configuration
e Deployment Preparation

* Session Cleanup

3.1 Overview of the Configuration Process

ORACLE

This section provides information on the basic steps a deployment tool must
implement to configure an application for deployment:

1. Application Evaluation—Inspection and evaluation of application files to
determine the structure of the application and content of the embedded
descriptors.

» Initialize a deployment session by obtaining a WbLogi cDepl oynent Manager . See
Application Evaluation.

e Create a WbLogi cJ2eeAppl i cati onChj ect or WebLogi cDepl oyabl eQbj ect to
represent the Java EE Configuration of an enterprise application (EAR) or
stand-alone module (WAR, EAR, RAR, or CAR). If the object is an EAR, child
objects are generated. See Java EE Deployment API standard (JSR-88) at
http://jcp.org/en/jsr/detail ?i d=88 and Create a Deployable Object.

2. Front-end Configuration—Creation of configuration information based on content
embedded within the application. This content may be in the form of WebLogic
Server descriptors, defaults, and user provided deployment plans.

e Create a \WebLogi cDepl oynent Confi guration object to represent the WebLogic
Server configuration of an application. This is the first step in creating a
deployment plan for this object. See Deployment Configuration.

* Restore existing WebLogic Server configuration values from an existing
deployment plan, if available. See Perform Front-end Configuration.

3-1

http://jcp.org/en/jsr/detail?id=88

Chapter 3
Types of Configuration Information

3. Deployment Configuration—Modification of individual WebLogic Server
configuration values based on user inputs and the selected WebLogic Server
targets.

A deployment tool must provide the ability to modify individual WebLogic Server
configuration values based on user inputs and selected WebLogic Server targets.
See Customizing Deployment Configuration.

4. Deployment Preparation—Generation of the final deployment plan and
preliminary client-side validation of the application.

A deployment tool must have the ability to save the modified WebLogic Server
configuration information to a new deployment plan or to variable definitions in an
existing Deployment Plan.

3.2 Types of Configuration Information

The following sections provide background information on the types of configuration
information, how it is represented, and the relationship between Java EE and
WebLogic Server descriptors:

* Java EE Configuration
* WebLogic Server Configuration
* Representing Java EE and WebLogic Server Configuration Information

* The Relationship Between Java EE and WebLogic Server Descriptors

3.2.1 Java EE Configuration

ORACLE

The Java EE configuration for an application defines the basic semantics and run-time
behavior of the application, as well as the external resources that are required for the
application to function. This configuration information is stored in the standard Java EE
deployment descriptor files associated with the application, as listed in Table 3-1.

Table 3-1 Standard Java EE Deployment Descriptors
|

Application or Standalone Module Java EE Descriptor

Enterprise Application META- | NF/ appl i cation. xm

Web Application VAEB- | NF/ web. xm

Enterprise JavaBean VETA- | NF/ ej b. xmi

Resource Adapter META- I NF/ ra. xm

Client Application Archive META- | NF/ appl i cation-client.xm

Complete and valid Java EE deployment descriptors are a required input to any
application configuration session.

Because the Java EE configuration controls the fundamental behavior of an
application, the Java EE descriptors are typically defined only during the application
development phase, and are not modified when the application is later deployed to a
different environment. For example, when you deploy an application to a testing or
production domain, the application's behavior (and therefore its Java EE configuration)

3-2

Chapter 3
Types of Configuration Information

should remain the same as when application was deployed in the development
domain. See Perform Front-end Configuration for more information.

3.2.2 WebLogic Server Configuration

The WebLogic Server descriptors provide for enhanced features, resolution of external
resources, and tuning associated with application semantics. Applications may or may
not have these descriptors embedded in the application. The WebLogic Server
configuration for an application:

* Binds external resource names to resource definitions in the Java EE deployment
descriptor so that the application can function in a given WebLogic Server domain

» Defines tuning parameters for the application containers
» Provides enhanced features for Java EE applications and stand-alone modules

The attributes and values of a WebLogic Server configuration are stored in the
WebLogic Server deployment descriptor files, as shown in Table 3-2.

Table 3-2 WebLogic Server Deployment Descriptors
|

Application or Standalone Module WebLogic Server Descriptor
Enterprise Application META- | NF/ webl ogi c- appl i cati on. xm
Web Application VEB- | NF/ webl ogi ¢. xm

Enterprise JavaBean META- | NF/ webl ogi c- €] b-j ar. xm
Resource Adapter META- | NF/ webl ogi c-ra. xm

Client Archive META- | NF/ webl ogi c- appcl i ent. xm

Because different WebLogic Server domains provide different types of external
resources and different levels of service for the application, the WebLogic Server
configuration for an application typically changes when the application is deployed to a
new environment. For example, a production staging domain might use a different
database vendor and provide more usable memory than a development domain.
Therefore, when moving the application from development to the staging domain, the
application's WebLogic Server descriptor values need to be updated in order to make
use of the new database connection and available memory.

The primary job of a deployment configuration tool is to ensure that an application's
WebLogic Server configuration is valid for the selected WebLogic targets.

3.2.3 Representing Java EE and WebLogic Server Configuration

Information

ORACLE

Both the Java EE deployment descriptors and any available WebLogic Server
descriptors are used as inputs to the application configuration process. You use the
deployment API to represent both the Java EE configuration and WebLogic Server
configuration as Java objects.

The Java EE configuration for an application is obtained by creating either a
ViebLogi cJ2eeAppl i cati onbj ect for an EAR, or a bl ogi cDepl oyabl ebj ect for a stand-

3-3

Chapter 3
Types of Configuration Information

alone module. (A WbLogi cJ2eeAppl i cati onObj ect contains multiple Depl oyabl ebj ect
instances to represent individual modules included in the EAR.)

Each WebLogi cJ2eeAppl i cati onChj ect or Wbl ogi cDepl oyabl eChj ect contains a DDBeanRoot
to represent a corresponding Java EE deployment descriptor file. Java EE descriptor
properties for EARs and modules are represented by one or more DDBean objects that
reside beneath the DDBeanRoot . DDBean components provide standard getter methods to
access individual deployment descriptor properties, values, and nested descriptor
elements.

3.2.3.1 DDBeans

DDBeans are described by the j avax. ent erpri se. depl oy. model package. These objects
provide a generic interface to elements in standard deployment descriptors, but can
also be used as an XPath based mechanism to access arbitrary XML files that follow
the basic form of the standard descriptors. Examples of such files would be WebLogic
Server descriptors and Web services descriptors.

The DDBean representation of a descriptor is a tree of DDBeans, with a specialized DDBean,
a DDBeanRoot , at the root of the tree. DDBeans provide accessors for the element name,
ID attribute, root, and text of the descriptor element they represent.

The DDBeans for an application are populated by the model plug-in, the tool provider
implementation of j avax. ent erpri se. depl oy. model . An application is represented by the
Depl oyabl ebj ect interface. The WebLogic Server implementation of this interface is a
public class, weblogic.deploy.api.model.WbLogi cDepl oyabl eCbj ect . A WebLogic Server
based deployment tool acquires an instance of WbLogi cDepl oyabl ebj ect object for an
application using the cr eat eDepl oyabl ebj ect factory methods. This results in the
DDBean tree for the application being created and populated by the elements in the Java
EE descriptors embedded in the application. If the application is an EAR, multiple
WebLogi cDepl oyabl eQuj ect objects are created. The root WebLogi cDepl oyabl eQbj ect ,
extended as WebLogi cJ2eeAppl i cati onChj ect , would represent the EAR module, with its
child vebLogi cDepl oyabl eChj ect instances being the modules contained within the
application, such as WARs, EJBs, RARs and CARs.

3.2.4 The Relationship Between Java EE and WebLogic Server

Descriptors

ORACLE

Java EE descriptors and WebLogic Server descriptors are directly related in the
configuration of external resources. A Java EE descriptor defines the types of
resources that the application requires to function, but it does not identify the actual
resource names to use. The WebLogic Server descriptor binds the resource definition
in the Java EE descriptor name to the name of an actual resource in the target
domain.

The process of binding external resources is a required part of the configuration
process. Binding resources to the target domain ensures that the application can
locate resources and successfully deploy.

Java EE descriptors and WebLogic Server descriptors are also indirectly related in the
configuration of tuning parameters for WebLogic Server. Although no elements in the
standard Java EE descriptors require tuning parameters to be set in WebLogic Server,
the presence of individual descriptor files indicates which tuning parameters are of
interest during the configuration of an application. For example, although the ej b. xn
descriptor does not contain elements related to tuning the WebLogic Server EJB

3-4

Chapter 3
Application Evaluation

container, the presence of an ej b. xm file in the Java EE configuration indicates that
tuning properties can be configured before deployment.

3.2.4.1 DConfigBeans

DConf i gBeans (config beans) are the objects used to convey server configuration
requirements to a deployment tool, and are also the primary source of information
used to create deployment plans. Config beans are Java Beans and can be
introspected for their properties. They also provide basic property editing capabilities.

DConf i gBeans are created from information in embedded WebLogic Server descriptors,
deployment plans, and input from an IDE deployment tool.

A DConfi gBean is potentially created for every weblogic Descriptor element that is
associated with a dependency of the application. Descriptors are entities that describe
resources that are available to the application, represented by a JNDI name provided
by the server.

Descriptors are parsed into memory as a typed bean tree while setting up a
configuration session. The DConf i gBean implementation classes delegate to the
WebLogic Server descriptor beans. Only beans with dependency properties, such as
resource references, have a DConf i gBean. The root of descriptor always has a

DConf i gBeanRoot .

Bean Property accessors return a child DConf i gBean for elements that require
configuration or a descriptor bean for those that do not. Property accessors return data
from the descriptor beans.

Modifications to bean properties result in plan overrides. Plan overrides for existing
descriptors are handled using variable assignments. If the application does not come
with the relevant WebLogic Server descriptors, they are automatically created and
placed in an external plan directory. For external deployment descriptors, the change
is made directly to the descriptor. Embedded descriptors are never modified on disk.

3.3 Application Evaluation

ORACLE

Application evaluation consists of obtaining a deployment manager and a deployable
object container for your application. Use the following steps:

1. Obtain a deployment factory class by specifying its name,
webl ogi c. depl oyer. spi . factories.internal.Depl oynent Fact oryl npl .

2. Register the factory class with a
javax. ent erpri se. depl oy. spi . Depl oyment Fact or yManager instance.

For instance:

Cass WsFactoryd ass =
C ass. forname("webl ogi c. depl oyer. spi.factories.internal.Depl oynent Fact oryl npl");
Depl oyment Fact ory myDepl oynment Factory =
(Depl oynment Factory) W sFact oryd ass. newl nst ance();
Depl oyment Fact or yManager . get | nst ance() . r egi st er Depl oyment Fact or y(myDepl oynent Fact o

ry);
3. Obtain a Deployment Manager

4. Create a Deployable Object

3-5

Chapter 3
Application Evaluation

3.3.1 Obtain a Deployment Manager

The following sections provide information on how to obtain a deployment manager:
* Types of Deployment Managers
» Connected and Disconnected Deployment Manager URIs

* Using SessionHelper to Obtain a Deployment Manager

3.3.1.1 Types of Deployment Managers

WebLogic Server provides a single implementation for

javax. enterprise. depl oy. spi . Depl oynent Manager that behaves differently depending on
the UR specified when instantiating the class from a factory. WebLogic Server
provides two basic types of deployment manager:

* Adisconnected deployment manager has no connection to a WebLogic Server
instance. Use a disconnected deployment manager to configure an application on
a remote client machine. It cannot be used it to perform deployment operations.
(For example, a deployment tool cannot use a disconnected deployment manager
to distribute an application.)

* A connected deployment manager has a connection to the Administration Server
for the WebLogic Server domain, and by a deployment tool to both to configure
and deploy applications.

A connected deployment manager is further classified as being either local to the
Administration Server, or running on a remote machine that is connected to the
Administration Server. The local or remote classification determines whether file
references are treated as being local or remote to the Administration Server.

Table 3-3 summarizes deployment manager types.

Table 3-3 WebLogic Server Deployment Manager Usage

Deployment Type Usage Notes

Manager

Connectivity

Disconnected n/a Configuration tools only Cannot perform deployment operations

Connected Local Configuration and deployment tools All files are local to the Administration
local to the Administration Server Server machine

Connected Remote Configuration and Deployment for Distribution and Deployment

Tools on a remote machine (not on the operations cause local files to be
Administration Server) uploaded to the Administration Server

3.3.1.2 Connected and Disconnected Deployment Manager URIs

ORACLE

Each Depl oynent Manager obtained from the WebLogi cDepl oynent Fact ory supports
WebLogic Server extensions. When creating deployment tools, obtain a specific type
of deployment manager by calling the correct method on the deployment factory
instance and supplying a string constant defined in

webl ogi c. depl oyer. spi . factori es. WebLogi cDepl oynent Fact ory that describes the type of

3-6

Chapter 3
Application Evaluation

deployment manager required. Connected deployment managers require a valid
server URI and credentials to the method in order to obtain a connection to the
Administration Server.

Table 3-4 summarizes the method signatures and constants used to obtain the
different types of deployment managers.

Table 3-4 URIs for Obtaining a WebLogic Server Deployment Manager

Type of Method Argument
Deployment
Manager
disconnected get Di sconnect edDepl oyment Mana String value of
ger () VebLogi cDepl oynent Fact ory. LOCAL_DM URI
connected, local get Depl oynent Manager () URI consisting of:

e \WebLogi cDepl oynent Fact ory. LOCAL_DM URI
e Administration Server host name

e Administration Server port

e Administrator username

e Administrator password

connected, remote get Depl oynent Manager () URI consisting of:

e \ebLogi cDepl oynent Fact ory. REMOTE_DM URI
e Administration Server host name

e Administration Server port

e Administrator username

e Administrator password

The sample code in Example 3-1 shows how to obtain a disconnected deployment
manager.

Example 3-1 Obtaining a Disconnected Deployment Manager

Cass WsFactoryd ass =

C ass. forname("webl ogi c. depl oyer. spi . factories.internal.Depl oynent Fact oryl npl");

Depl oyment Fact ory myDepl oynment Factory = (Depl oynment Factory) W sFact oryC ass. newl nst ance();

Depl oyment Fact or yManager . get | nst ance() . r egi st er Depl oyment Fact or y(myDepl oynment Fact ory) ;

\ebLogi cDepl oynment Manager nyDi sconnect edManager =

(WebLogi cDepl oynent Manager) nyDepl oyment Fact ory. get Di sconnect edDepl oynment Manager (\ebLogi cDepl oynent Fact
ory.LOCAL_DM URI);

The deployment factory contains a helper method, createUri () to help you form the
URI argument for creating connected deployment managers. For example, to create a
disconnected remote deployment manager, replace the final line of code with:

(WebLogi cDepl oynent Manager) myDepl oynent Fact ory. get Depl oynment Manager (myDepl oynent Fact ory. creat eUri (WebL
ogi cDepl oynent Fact ory. REMOTE_DM URI, "l ocal host", "7001", "webl ogic", "weblogic"));

3.3.1.3 Using SessionHelper to Obtain a Deployment Manager

The Sessi onHel per helper class provides several convenience methods to help you
easily obtain a deployment manager without manually creating and registering the
deployment factories as shown in Example 3-1. The Sessi onHel per code required to
obtain a disconnected deployment manager consists of a single line:

ORACLE .

Chapter 3
Application Evaluation

Depl oyment Manager nyDi sconnect edManager =
Sessi onHel per. get Di sconnect edDepl oynent Manager () ;

You can use the Sessi onHel per to obtain a connected deployment manager, as shown
below:

Depl oyment Manager myConnect edManager =
Sessi onHel per. get Depl oynent Manager (" adm nhost", "7001", "weblogic", "weblogic"));

This method assumes a remote connection to an Administration Server (admi nhost).
See the Javadocs for more information about Sessi onHel per .

3.3.2 Create a Deployable Object

The following sections provide information on how to create a deployable object, which
is the container your deployment tool uses to deploy applications. Once you have
initialized a configuration session by Obtain a Deployment Manager, create a
deployable object for your deployment tool in one of the following ways:

» Using the WebLogicDeployableObject class

» Using SessionHelper to obtain a Deployable Object

3.3.2.1 Using the WebLogicDeployableObject class

The direct approach uses the WebLogi cDepl oyabl ebj ect class of the model package as
shown below:

ViebLogi cDepl oyabl eCbj ect nyDepl oyabl eChj ect =
VebLogi cDepl oyabl eChj ect . creat eWebLogi cDepl oyabl eQhj ect (" myAppFi | eNang") ;

Once the deployable object is created, a configuration can be created for the
applications deployment.

3.3.2.2 Using SessionHelper to obtain a Deployable Object

ORACLE

The Sessi onHel per helper class provides a convenient method to obtain a deployable
object. The Sessi onHel per code required to obtain a deployable object is shown below:

Sessi onHel per. set Appl i cationRoot (root);
VébLogi cDepl oyabl eCbj ect nyDepl oyabl eCbj ect = Sessi onHel per. get Depl oyabl eQbj ect () ;

There is no application specified in the get Depl oyabl eQbj ect () call. Sessi onHel per uses
the application in the root directory set by set Appl i cati onRoot () . Once the application
root directory is set, Sessi onHel per can be used to perform other operations, such as
explicitly naming the dispatch file location or the deployment plan location.

You can also set the application file name using the set Appl i cati on method as shown
below:

Sessi onHel per. set Appl i cati on(AppFi | eNane) ;

This method allows you to continue using Sessi onHel per independent of the directory
structure. The get Depl oyabl eObj ect method returns the application specified.

3-8

Chapter 3
Perform Front-end Configuration

3.4 Perform Front-end Configuration

Front-end configuration involves creating a WebLogi cDepl oynent Pl an and populating it
and its associated bean trees with configuration information:

* Whatis Front-end Configuration
* Deployment Configuration

* Validating a Configuration

3.4.1 What is Front-end Configuration

Front-end configuration phase consists of two logical operations:

* Loading information from a deployment plan to a deployment configuration. If a
deployment configuration does not yet exist, this includes creating a
WebLogi cDepl oyment Conf i gurat i on object to represent the WebLogic Server
configuration of an application. This is the first step in the process of process of
creating a deployment plan for this object.

* Restoring any existing WebLogic Server configuration values from an existing
deployment plan.

A deployment tool must be able to:

» Extract information from a deployment configuration. The deployment
configuration is the active Java object that is used by the Deployment Manager to
obtain configuration information. The deployment plan exists outside of the
application so that it can be changed without manipulating the application.

A deployment plan is an XML document that contains the environmental configuration
for an application and is sometimes referred to as an application's front-end
configuration. A deployment plan:

* Separates the environment specific details of an application from the logic of the
application.

* Is not required for every application. However, a deployment plan typically exists
for each environment an application is deployed to.

» Describes the application structure, such as what modules are in the application.

» Allows developers and administrators to update the configuration of an application
without modifying the application archive.

* Contains environment-specific descriptor override information (tunables). By
modifying a deployment plan, you can provide environment specific values for
tunable variables in an application.

3.4.2 Deployment Configuration

ORACLE

The server configuration for an application is encapsulated in the

javax. enterpri se. depl oy. spi . Depl oyment Confi gur ati on interface. A

Depl oyment Confi gur ati on provides an object representation of a deployment plan. A
Depl oyment Conf i gur ati on is associated with a Depl oyabl ebj ect using the

Depl oyment Manager . cr eat eConf i gur ati on method. Once a Depl oynent Confi guration
object is created, a DConf i gBean tree representing the configurable and tunable

3-9

Chapter 3
Perform Front-end Configuration

elements contained in any and all WebLogic Server descriptors is available. If there
are no WebLogic Server descriptors for an application, then a DConf i gBean tree is
created using available default values. Binding properties that have no defaults are left
unset.

When creating a deployment tool, you must ensure that the DConf i gBean tree is fully
populated before the tool distributes an application.

3.4.2.1 Example Code

The following code provides an example on how to populate DConf i gBeans:
Example 3-2 Example Code to Populate DConfigBeans

public class Depl oynent Session {
Depl oynent Manager dm
Depl oyabl etvj ect dObject = null;
Depl oynent Confi guration dConfig = null;
Map beanMap = new HashMap();

Il Assumes app is a Wb app.
public void initializeConfig(File app) throws Throwabl e {
/**
* Init the wapper for the DDBeans for this module. This exanpl e assunes
* it is using the WS inplenentation of the nodel api.
*/
dObj ect = WebLogi cDepl oyabl eCbj ect . cr eat eDepl oyabl eQbj ect (app) ;
/1 Get basic configuration for the nodul e
dConfig = dm createConfiguration(dject);
/**
* At this point the Depl oyabl eQbject is popul ated. Popul ate the
* Depl oynent Confi gurationbased on its content.
* W first ask the Depl oyabl eChject for its root.
*/
DDBeanRoot root = d(bj ect. get DDBeanRoot () ;
/**
* The root DDBean is used to start the process of identifying the
* necessary DConfigBeans for configuring this nodul e.
*/
System out. print!ln("Looking up DCB for "+root.getXpath());
DConf i gBeanRoot root Config = dConfi g. get DConfi gBeanRoot (root);
col | ect Confi gBeans(root, rootConfig);
/**
* The Depl oyment Configuration is now initialized, although not necessarily
* conpletely setup.
*/
Fil eQut put Stream fos = new Fil eQutput Stream("test.xm");
dConfig. save(fos);

}

I/ bean and dcb are a rel ated DDBean and DConfi gBean.

private void col | ect Confi gBeans(DDBean bean, DConfigBean dch) throws Throwabl e{
DConf i gBean confi gBean;
DDBean[] beans;
if (dcb == null) return;

/**

* Maintain sonme sort of mapping between DDBeans and DConfi gBeans

ORACLE 3-10

Chapter 3
Perform Front-end Configuration

* for |ater processing.
*/
beanMap. put (bean, dch);
/**
* The config bean advertises xpaths into the web.xm descriptor it
* needs to know about.
*/
String[] xpaths = dcb. get Xpat hs();
if (xpaths == null) return;
/**
* For each xpath get the associated DDBean and col | ect its associated
* DConfigBeans. Continue this recursively until we have all DDBeans and
* DConfigBeans col | ected.
*/
for (int i=0; i<xpaths.length; i++) {
beans = bean. get Chi | dBean(xpaths[i]);
for (int j=0; j<beans.length; j++) {
/**
* Init the DConfigBean associated with each DDBean
*/
System out. println("Looking up DCB for "+beans[j].getXpath());
configBean = dch. get DConfi gBean(beans[j]);
col I ect Confi gBeans(beans[j], configBean);

This example merely iterates through the DDBean tree, requesting the DConf i gBean for
each DDBean to be instantiated.

Depl oyment Conf i gur ati on objects may be persisted as deployment plans using

Depl oyment Confi gur ati on. save() . A deployment tool may allow the user to import a
saved deployment plan into the Depl oynent Confi gur ati on object instead of populating it
from scratch. Depl oyment Confi guration. restore() provides this capability. This supports
the idea of having a repository of deployment plans for an application, with different
plans being applicable to different environments.

Similarly the Depl oynent Confi gurati on may be pieced together using partial plans,
which were presumably saved in a repository from a previous configuration session. A
partial plan maps to a module-root of a DConf i gBean tree.

Depl oynent Confi gur ati on. saveDConf i gBean() and

Depl oyment Confi gurati on. rest oreDConfi gBean() provide this capability.

Parsing of the WebLogic Server descriptors in an application occurs automatically
when a Depl oyment Confi gurati on is created. The descriptors ideally conform to the
most current schema. For older applications that include descriptors based on
WebLogic Server 8.1 and earlier DTDs, a transformation is performed. Old descriptors
are supported but they cannot be modified using a deployment plan. Therefore, any
DOCTYPE declarations must be converted to name space references and element
specific transformations must be performed.

3.4.2.2 Reading In Information with SessionHelper

Sessi onHel per.initializeConfiguration processes all standard and WebLogic Server
descriptors in the application.

Prior to invoking i ni ti al i zeConfi gurati on, you can specify an existing deployment plan
to associate with the application using the Sessi onHel per . set Pl an() method. With a
plan set, you can read in a deployment plan using the

Depl oynent Confi guration. restore() method. In addition, the

ORACLE 3-11

Chapter 3
Customizing Deployment Configuration

Depl oyment Confi guration.initializeConfiguration() method automatically restores
configuration information once a plan is set.

When initiating a configuration session with the Sessi onHel per class, you can easily
initiate and fill a depl oyment Conf i gur ati on object with deployment plan information as
illustrated below:

Depl oyment Manager dm = Sessi onHel per. get Di sconnect edDepl oynent Manager () ;
Sessi onHel per hel per = Sessi onHel per. get | nstance(dn;
Il specify location of archive
hel per. set Appl i cati on(app);
Il specify location of existing deploynent plan
hel per. set Pl an(pl an);
/1l initialize the configuration session
hel per.initializeConfiguration();
Depl oynent Confi guration dc = hel per. get Configuration();

The above code produces the deployment configuration and its associated
\WebLogi cDDBeanTr ee.

3.4.3 Validating a Configuration

Validation of the configuration occurs mostly during the parsing of the descriptors
which occurs when an application's descriptors are processed. Validation consists of
ensuring the descriptors are valid XML documents and that the descriptors conform to
their respective schemas.

3.5 Customizing Deployment Configuration

The Customizing Deployment Configuration phase involves modifying individual
WebLogic Server configuration values based on user inputs and the selected
WebLogic Server targets.

* Modifying Configuration Values
e Targets

* Application Naming

3.5.1 Modifying Configuration Values

ORACLE

In this phase, a configuration is only as good as the descriptors or pre-existing plan
associated with the application. The DConfi gBeans are designed as Java Beans and
can be introspected, allowing a tool to present their content in some meaningful way.
The properties of a DConf i gBean are, for the most part, those that are configurable. Key
properties (those that provide uniqueness) are also exposed. Setters are only exposed
on those properties that can be safely modified. In general, properties that describe
application behavior are not modifiable. All properties are typed as defined by the
descriptor schemas.

The property getters return subordinate DConf i gBeans, arrays of DConf i gBeans,
descriptor beans, arrays of descriptor beans, simple values (primitives and j ava. | ang
objects), or arrays of simple values. Descriptor beans represent descriptor elements
that, while modifiable, do not require DConf i gBean features, meaning there are no
standard descriptor elements they are directly related to. Editing a configuration is
accomplished by invoking the property setters.

3-12

Chapter 3
Customizing Deployment Configuration

The Java JSR-88 DConfi gBean class allows a tool to access beans using the

get DConf i gBean(DDBean) method or introspection. The former approach is convenient for
a tool that presents the standard descriptor based on the DDBeans in the application's
Depl oyabl ebj ect and provides direct access to each DDBean's configuration (its

DConf i gBean). This provides configuration of the essential resource requirements an
application may have. Introspection allows a tool to present the application's entire
configuration, while highlighting the required resource requirements.

Introspection is required in both approaches in order to present or modify descriptor
properties. The difference is in how a tool presents the information:

» Driven by standard descriptor content or
* WebLogic Server descriptor content.

A system of modifying configuration information must include a user interface to ask
for configuration changes. See Example 3-3.

Example 3-3 Code Example to Modify Configuration Information

/1 Introspect the DConfigBean tree and ask for input on properties with setters
private void processBean(DConfigBean dch) throws Exception {
if (dcb instanceof DConfigBeanRoot) {
Systemout. println("Processing configuration for descriptor:
"+dch. get DDBean() . get Root () . get Fi | ename());
}
/] get property descriptor for the bean
Beanlnfo info =
I ntrospector. get Beanl nfo(dch. get G ass(), I ntrospector. USE_ALL_BEANI NFO);
PropertyDescriptor[] props = info.getPropertyDescriptors();
String bean = info.getBeanDescriptor().getDisplayNanme();
PropertyDescriptor prop;
for (int i=0;i<props.length;i++) {
prop = props[i];
I/ only allow prinitives to be updated
Met hod getter = prop. get ReadMet hod();
if (isPrimtive(getter.getReturnType())) // see isPrinitive method bel ow
{
writeProperty(dch, prop, bean); //see witeProperty nethod bel ow
1
Il recurse on child properties
Object child = getter.invoke(dch, new Qbject[]{});
if (child == null) continue;
Il traversable if child is a DConfigBean.
Cass cc = child. getdass();
if (YisPrimtive(ce)) {
if (cc.isArray()) {
oject[] cl = (Object[])child;
for (int j=0;j<cl.length;j++) {
if (cl[j] instanceof DConfigBean) processBean((DConfigBean) cl[j]);
1
} else {
if (child instanceof DConfigBean) processBean((DConfigBean) child);
}
1
}
1

ORACLE 3-13

Chapter 3
Customizing Deployment Configuration

[/ if the property has a setter then invoke it with user input
private void witeProperty(DConfigBean dch, PropertyDescriptor prop, String bean)
throws Exception {
Met hod getter = prop. get ReadMet hod();
Met hod setter = prop.getWiteMethod();
if (setter !'=null) {
PropertyEditor pe =
Propert yEdi t or Manager . fi ndEdi t or (prop. get PropertyType());
if (pe == null &&
String[].class.isAssignabl eFron{getter.getReturnType())) pe =
new StringArrayEditor(); // see StringArrayEditor class bel ow
if (pe!=null) {
oj ect ol dval ue = getter.invoke(dch, new Object[0]);
pe. set Val ue(ol dval ue);
String val =
get User | nput (bean, prop. get Di spl ayNane(), pe. get AsText ());
/1 see getUserlnput nmethod bel ow
if (val ==null || val.length() == 0) return;
pe. set AsText (val);
oj ect newval ue = pe. get Val ue();
prop. get WiteMethod().invoke(dch, new Object[]{newal ue});
1
}
1

private String getUserlnput(String elenment, String property, String curr) {
try {
Systemout.printIn("Enter value for "+elenent+"."+property+". Current value is: "+curr);
return br.readLine();
} catch (I OException ioe) {
return null;
}
1
[l Primtive means a java primtive or String object here
private boolean isPrinmtive(Cass cc) {
bool ean prim = fal se;
if (cc.isPrimtive() || String.class.isAssignableFrom(cc)) prim= true;
if (prim {
Il array of primtives?
if (cc.isArray()) {
Cass ccc = cc. get Conponent Type();
if (ccc.isPrimtive() || String.class.isAssignableFronm(ccc)) prim= true;
1
} .
return prim

}
/**

* Customeditor for string arrays. Input text is converted into tokens using
* commas as delimiters
*
/
private class StringArrayEditor extends PropertyEditorSupport {
String[] curr = null;

public StringArrayEditor() {super();}

/1 comma separated string

public String getAsText() {
if (curr ==null) return null;
StringBuffer sb = new StringBuffer();
for (int i=0;i<curr.length;i++) {

ORACLE 3-14

Chapter 3
Customizing Deployment Configuration

sh. append(curr[i]);
sh. append(',");

1
if (curr.length > 0) sb.deleteCharAt(sh.length()-1);
return sh.toString();

}

public Cbject getValue() { return curr; }

public bool ean isPaintable() { return false; }

public void setAsText(String text) {

if (text ==

null) curr = null;

StringTokeni zer st = new StringTokeni zer(text,",");
curr = new String[st.count Tokens()];
for (int i=0;i<curr.length;i++) curr[i] = new String(st.nextToken());

}

public void setVal ue(Qbject value) {

if (value

== null) {

curr = null;

} else {

String[] v = (String[])value; // let caller handle class cast issues
curr = new String[v.length];
for (int i=0;i<v.length;i++) curr[i] = new String(v[i]);

}
}
}

Beyond the mechanics of the rudimentary user interface, any interface that enables
changes to the configuration by an administrator or user can use the property setters
shown in Example 3-3.

3.5.2 Targets

Targets are associated with WebLogic Servers, clusters, Web servers, virtual hosts
and JMS servers. See webl ogi c. depl oy. api . spi . WbLogi cTar get and Support for
Querying WebLogic Target Types.

3.5.3 Application Naming

ORACLE

In WebLogic Server, application names are provided by a deployment tool. Names of
modules contained within an application are based on the associated archive or root
directory name of the modules. These names are persisted in the configuration MBeans
constructed for the application.

In Java EE deployment there is no mention of the configured name of an application or
its constituent modules, other than in the Tar get Modul el D object. Yet Tar get Modul el Ds
exist only for applications that have been distributed to a WebLogic Server domain.
Hence there is a need to represent application and module names in a deployment
tool prior to distribution. This representation should be consistent with the names
assigned by the server when the application is finally distributed.

Your deployment tool plug-in must construct a view of an application using the
Depl oyabl eObj ect and J2eeAppl i cati onuj ect classes. These classes represent stand-

3-15

Chapter 3
Deployment Preparation

alone modules and EARs, respectively. Each of these classes is directly related to a
DDBeanRoot object. When presented with a distribution where the name is not
configured, the deployment tool must create a name for the distribution. If the
distribution is a Fi | e object, use the filename of the distribution. If an archive is offered
as an input stream, a random name is used for the root module.

3.6 Deployment Preparation

The deployment preparation phase involves saving the resulting plan from a
configuration session. Use the Depl oynent Confi gurati on. save() method (a standard
Java EE Deployment APl method). You can also use the Sessi onHel per. savePl an()
method to save a new copy of deployment plan along with any external documents in
the plan directory.

The Depl oyment Confi gur ati on. save methods creates an XML file based on the
deployment plan schema that consists of a serialization of the current collection of
DConf i gBeans, along with any variable assignments and definitions. DConf i gBean trees
are always saved as external descriptors. These descriptors are only be saved if they
do not already exist in the application archive or the external configuration area,
meaning a save operation does not overwrite existing descriptors. The

Depl oynent Confi gur ati on. saveDConf i gBean method does overwrite files. This is does not
mean that any changes made to a configuration are lost, it means that they are
handled using variable assignments.

As noted before, the Depl oynent Confi gurati on. rest ore methods are used to create
configuration beans based on a previously saved deployment plan (see Perform Front-
end Configuration). You can restore an entire collection of configuration beans or you
can restore a subset of the configuration beans. It is also possible to save or restore
the configuration beans for a specific module in an application.

3.7 Session Cleanup

ORACLE

Temporary files are created during a configuration session. Archives are exploded into
the temp area and can only be removed after session configuration is complete. There
is no standard API defined to close out a session. Use the cl ose() methods to

ViebLogi cDepl oyabl eCbj ect and WebLogi cDepl oynment Confi gur ati on. Sessi onHel per. cl ose()
to clean up after a session. If you do not clean up after closing sessions, the disk
containing your temp directories may fill up over time.

3-16

Performing Deployment Operations

This chapter describes application deployment in WebLogic Server. Application
deployment distributes the information created inConfiguring Applications for
Deployment to the Administration Server for server-side processing and application
startup. Your deployment tool must be able to successfully complete the deployment
operations outlined in this chapter.

This chapter includes the following sections:

» Register Deployment Factory Objects
e Allocate a DeploymentManager

» Deployment Processing

e Production Redeployment

* Progress Reporting

e Target Objects

4.1 Register Deployment Factory Objects

Your deployment tool must instantiate and register the Depl oynent Fact ory objects it
uses. You can implement your own mechanism for managing Depl oyment Fact ory
objects. WebLogic Server Depl oynent Fact ory objects are advertised in a manifest file
stored in the wl depl oy. j ar file. The manifest contains entries of the fully qualified class
names of the factories, separated by whitespace. For example, if you assume that the
Depl oyment Fact or y- objects reside in a fixed location and are included in the
deployment tool classpath, the deployment tool registers any Depl oyment Fact ory
objects it recognizes at startup. See Example 4-1.

Example 4-1 Registered Deployment Factory in the Manifest File

MANI FEST. MF:

Mani f est-version: 1.0

| mpl ement ati on- Vendor: BEA Systens

I mpl ementation-Title: WbLogic Server 9.0 Mon May 29 08:16:47 PST 2006 221755
| npl ement ation-Version: 9.0.0.0

J2EE- Depl oyment Fact ory- | npl ement ati on- O ass:

webl ogi c. depl oy. spi . factori es. Depl oynent Fact or yl npl

ORACLE

The standard Depl oynent Fact ory interface is extended by
webl ogi c. depl oy. api . WebLogi cDepl oynent Fact ory. The additional methods provided in
the extension are:

e String[] getUris(): Returns an array of URI's that are recognized by
get Depl oynent Manager . The first URI in the array is guaranteed to be the default
Depl oyment Manager URI, depl oyer: WebLogi c. Only published URI's are returned in
this array.

4-1

Chapter 4
Allocate a DeploymentManager

e String createUri(String protocol, String host, String port): Returns a usable
URI based on the arguments.

4.2 Allocate a DeploymentManager

Your deployment tool must allocate a Depl oynent Manager from a Depl oynent Fact ory,
which is registered with the Depl oynent Fact or yManager class, in order to perform
deployment operations. In addition to configuring an application for deployment, the
Depl oyment Manager is responsible for establishing a connection to a Java EE server.
The Depl oyment Manager implementation is accessed using a Depl oynent Fact ory.

The following sections provide information on how a Depl oynent Manager connects to a
server instance:

* Getting a DeploymentManager Object
* Understanding DeploymentManager URI Implementations

* Server Connectivity

4.2.1 Getting a DeploymentManager Object

Use the Depl oynent Fact ory. get Depl oynent Manager method to get a Depl oyment Manager
object. This method takes a URI, user ID and password as arguments. The URI has
the following patterns:

e depl oyer: WebLogi c<: host: port >
* depl oyer: WebLogi c. renot e<: host : port >
* depl oyer: \WebLogi c. aut hent i cat ed<: host : port >

When connecting to an Administration Server, the URI must also include the host and
port, such as depl oyer: WebLogi c: | ocal host : 7001. See Understanding
DeploymentManager URI Implementations.

The following provides additional information on Depl oynment Manager arguments:

* When obtaining a disconnected Depl oyment Manager , you do not need to include the
host : port because there is no connection to an Administration Server. For
example, the URI can be depl oyer: WebLogi c.

e The user ID and password arguments are ignored if the deployment tool uses a
pre-authenticated Depl oynent Manager .

* You can access the URI of any Depl oynent Manager implementation using the
Depl oynent Fact ory. get Uri s() method. get Uri s is an extension of Depl oynenFact ory.

4.2.2 Understanding DeploymentManager URI Implementations

ORACLE

Depending on the URI specified during allocation, the Depl oyment Manager object will
have one of the following characteristics:

e depl oyer: WebLogi c: The Depl oynent Manager is running locally on an Administration
Server and any files referenced during the deployment session are treated as if
they are local to the Administration Server.

e depl oyer: WbLogi c. renot e: The Depl oynent Manager is running remotely to the
WebLogic Server Administration Server and any files referenced during the

4-2

Chapter 4
Deployment Processing

deployment session are treated as being remote to the Administration Server and
may require uploading. For example, a distribute operation includes uploading the
application files to the Administration Server.

* depl oyer: WbLogi c. aut henti cat ed: This is an internal, unpublished URI, usable by
applications such as a console servlet that is already authenticated and has
access to the domain management information. The Depl oynent Manager is running
locally on a WebLogic Administration Server and any files referenced during the
deployment session are treated as if they are local to the Administration Server.

You can explicitly force the uploading of application files by using the
WebLogi cDepl oynment Manager net hod enabl eFi | eUpl oads() method.

4.2.3 Server Connectivity

Depl oyment Manager s are either connected or disconnected. Connected

Depl oyment Manager s imply a connection to a WebLogic Server Administration Server.
This connection is maintained until it is explicitly disconnected or the connection is lost.
If the connection is lost, the Depl oynent Manager reverts to a disconnected state.

Explicitly disconnecting a Depl oynent Manager is accomplished using the

Depl oyment Manager . r el ease method. There is no corresponding method for
reconnecting the Depl oynent Manager . Instead the deployment tool must allocate a new
Depl oynent Manager .

Note:

Allocating a new Depl oyment Manager does not affect any configuration
information being maintained within the tool through a Depl oynent Confi gurati on
object.

4.3 Deployment Processing

ORACLE

Most of the functional components of a Depl oynent Manager are defined in the Java EE
Deployment API specification. However, Oracle has extended the Depl oyment Manager
interface with the capabilities required by existing WebLogic Server-based deployment
tools. Oracle WebLogic Server deployment extensions are documented at

webl ogi ¢. depl oy. api . spi . WebLogi cDepl oynent Manager .

The JSR-88 programming model revolves around employing Tar get Mbdul el D objects
(Tar get Modul el Ds) and Pr ogr essObj ect objects. In general, target modules are specified
by a list of Tar get Mbdul el Ds which are roughly equivalent to deployable root modules
and sub-module level MBeans. The Depl oynent Manager applies the Tar get Mbdul el Ds to
deployment operations and tracks their progress. A deployment tool needs to query
progress using a ProgressObj ect returned for each operation. When the Progr essQj ect
indicates the operation is completed or failed, the operation is done.

The following sections provide an overview of WebLogic Depl oyment Manager features:
* DeploymentOptions
e Distribution

e Application Start

4-3

Chapter 4
Deployment Processing

* Application Deploy
e Application Stop
* Undeployment

4.3.1 DeploymentOptions

WebLogic Server allows for a Depl oynent Opt i ons argument

(webl ogi c. depl oy. api . spi . Depl oyment Opt i ons) which supports the overriding of certain
deployment behaviors. The argument may be nul |, which provides standard behavior.
Some of the options supported in this release are:

e adnin (test) mode
e Retirement Policy
e Staging

See DeploymentOptions Javadoc.

4.3.2 Distribution

Distribution of new applications results in:

» the application archive and plan is staged on all targets.

» the application being configured into the domain.

Note:

Redistribution honors the staging mode already configured for an application.

The standard distribute operations does not support version naming. WebLogic Server
provides WebLogi cDepl oynent Manager to extend the standard with a distribute operation
that allows you to associate a version name with an application.

The Progressbj ect returned from a distribute provides a list of Tar get Modul el Ds
representing the application as it exists on the target servers. The targets used in the
distribute are any of the supported targets. The Tar get Modul el D represents the
application's module availability on each target.

For new applications, Tar get Modul el Ds represent the top level AppDepl oynent MBean
objects. Tar get Mbdul el Ds do not have child Tar get Mdul el Ds based on the modules and
sub-modules in the application since the underlying MBeans would only represent the
root module. For pre-existing applications, the Tar get Modul el Ds are based on

Depl oyabl eMBeans and any AppDepl oynent MBean and SubAppDepl oyment MBean in the
configuration.

If you use the distribute(Target[], | nput Stream I nput Streanj method to distribute an
application, the archive and plan represented by the input streams are copied from the
streams into a temporary area prior to deployment which impacts performance.

ORACLE 4-4

Chapter 4
Deployment Processing

4.3.3 Application Start

The standard start operation only supports root modules; implying only entire
applications can be started. Consider the following configuration.

<AppDepl oynment Name="myapp" >
<SubDepl oynent Name="webappl", Targets="serverx"/>
<SubDepl oynent Name="webapp2", Targets="serverx"/>
</ AppDepl oynent >

The Tar get Mbdul el D returned from get Avai | abl eModul es(Modul eType. EAR) looks like:

myapp on serverx (inplied)
webappl on serverx
webapp2 on serverx

and start (tni d) would start webappl and webapp2 on serverx.

To start webappl, module level control is required. Configure module level control by
manually creating a Tar get Modul el D hierarchy.

\WebLogi cTar get Modul el D root =

dm creat eTar get Mbdul el D(" myapp", Modul eType. EAR, get Tar get (serverx));
WebLogi cTar get Modul el D web =

dm creat eTar get Mbdul el D(r oot , "webappl”, Mdul eType. WAR) ;
dm start(new Target Mdul el D[] {web});

This approach uses the Tar get Mvdul el D creation extension to manually create an
explicit Tar get Mbdul el D hierarchy. In this case the created Tar get Modul el D would look
like
myapp on serverx (inplied)

webappl on serverx

The start operation does not modify the application configuration. Version support is
built into the Tar get Mdul el Ds, allowing the user to start a specific version of an
application. Applications may be started in normal or administration (test) mode.

4.3.4 Application Deploy

The depl oy operation combines a di stribute and start operation. Web applications
may be deployed in normal or administration (test) mode. You can specify application
staging using the Depl oyment Opt i ons argument. depl oy operations use Tar get Modul el Ds
instead of Tar get s for targeting, allowing for module level configuration.

The depl oy operation may change the application configuration based on the
Tar get Modul el Ds provided.

4.3.5 Application Stop

ORACLE

The standard st op operation only supports root modules; implying only entire
applications can be stopped. See the Application Start.

Oracle provides versioning support, allowing you to stop a specific version of an
application. The st op operation does not modify the application configuration. See
Version Support.

4-5

Chapter 4
Production Redeployment

4.3.6 Undeployment

The standard undeploy operation removes an application from the configuration, as
specified by the Tar get Modul el Ds. Individual modules can be undeployed. The result is
that the application remains on the target, but certain modules are not actually
configured to run on it. See the Application Start section for more detail on module
level control.

The WebLogi cDepl oynent Manager extends undeploy in support of removing files from a
distribution. This is a form of in-place redeployment that is only supported in Web
applications, and is intended to allow you to remove static pages. See Version
Support.

4.4 Production Redeployment

Standard redeployment support only applies to entire applications and employs side-
by-side versioning to ensure uninterrupted session management. The

WebLogi cDepl oynment Manager extends the redepl oy() method and provides the following
additional support:

* In-Place Redeployment
* Module Level Targeting
* Retirement Policy

e Version Support

e Administration (Test) Mode

4.4.1 In-Place Redeployment

The in-place redeployment strategy works by immediately replacing a running
application's deployment files with updated deployment files, such as:

e Partial redeployment which involves adding or replacing specific files in an existing
deployment.

e Updating a configuration using a redeployment of a deployment plan

4.4.2 Module Level Targeting

A Depl oynent Manager implements the JSR-88 specification and restricts operations to
root modules. Module level control is provided by manually constructing a module
specific Tar get Modul el D hierarchy using

\WebLogi cDepl oynent Manager . cr eat eTar get Modul el D

4.4.3 Retirement Policy

When a new version of an application is redeployed, the old version should eventually
be retired and undeployed. There are 2 policies for retiring old versions of applications:

1. (Default) The old version is retired when new version is active and old version
finishes its in-flight operations.

ORACLE 4-6

Chapter 4
Progress Reporting

2. The old version is retired when new version is active, retiring the old after some
specified time limit of the new version being active.

Note:

The old version is not retired if the new version is in administration (test)
mode.

4.4.4 Version Support

Side-by-side versioning is used to provide retirement extensions, as suggested in the
JSR-88 redeployment specification. This ensures that an application can be
redeployed without interruption in service to its current clients. Details on deploying
side-by-side versions can be found in Redeploying Applications in a Production
Environment in Deploying Applications to Oracle WebLogic Server.

4.4.5 Administration (Test) Mode

A Web application may be started in normal or administration (test) mode. Normal
mode indicates the Web application is fully accessible to clients. Administration (test)
mode indicates the application only listens for requests using the adni n channel.
Administration (test) mode is specified by the Depl oyment Opti ons argument on the
WebLogic Server extensions for start, depl oy and redepl oy. See DeploymentOptions
Javadoc.

4.5 Progress Reporting

Use Progressbj ect s to determine deployment state of your applications. These
objects are associated with Depl oyment TaskRunt i meMBeans. Pr ogr essQbj ect s support the
cancel operation but not the stop operation.

ProgessObj ect s are associated with one or more Tar get Modul el Ds, each of which
represents an application and its association with a particular target. For any
ProgressQbj ect , its associated Tar get Modul el Ds represent the application that is being
monitored.

The ProgressObj ect maintains a connection with the deployment framework, allowing it
to provide a deployment tool with up-to-date deployment status. The deployment state
transitions from running to completed or failed only after all Tar get Modul el Ds involved
have completed their individual deployments. The resulting state is conpl et ed only if all
Tar get Modul el Ds are successfully deployed.

The rel eased state means that the Depl oynent Manager was disconnected during the
deployment. This may be due to a manual release, a network outage, or similar
communication failures.

Example 4-2 shows how a ProgressObj ect can be used to wait for a deployment to
complete:

Example 4-2 Example Code to Wait for Completion of a Deployment

package webl ogi c. depl oyer.tool s;

ORACLE 47

ORACLE

Chapter 4
Progress Reporting

import javax.enterprise. depl oy. shared. *;
i mport javax.enterprise.deploy.spi.*;
i mport javax.enterprise. deploy.spi.status.*;

/**

* Exanple of class that waits for the conpletion of a deploynent
* using ProgressEvent's.

*/

public class ProgressExanpl e inplenments ProgressListener {

private boolean failed = fal se;
private Depl oynent Manager dm
private Target Mdul el D[] tmids;

public void main(String[] args) {
/'l set up Depl oynent Manager, Target Modul el Ds, etc
try {
wait(dmstart(tmds));
} catch (Illegal StateException ise) {
[1... dmnot connected
}

}

if (failed) Systemout.println("oh no!");

voi d wait(ProgressChject po) {
ProgressHandl er ph = new ProgressHandl er();
if (!po.getDeploymentStatus().isRunning()) {
failed = po.getDepl oynent Status().isFailed();
return;

po. addPr ogr essLi st ener (ph) ;
ph.start();
whil e (ph.getConmpletionState() == null) {
try {
ph.join();
} catch (InterruptedException ie) {
if (!ph.isAive()) break;

}
}
StateType s = ph. get Conpl etionState();
failed = (s == null |]
s.getVal ue() == StateType. FAI LED. get Val ue());
po. removePr ogressLi st ener (ph);
}

class ProgressHandl er extends Thread inplenments ProgressListener {
bool ean progressDone = fal se;
StateType final State = nul | ;
public void run(){
whi | e(! progressDone) {
Thread. current Thread().yiel d();

}
}
public void handl eProgressEvent (ProgressEvent event){
Depl oynent Status ds = event. get Depl oynent Stat us() ;
if (ds.getState().getValue() != StateType. RUNNI NG get Val ue()) {
progressDone = true;
final State = ds.getState();
}
}

public StateType get ConpletionState(){

4-8

Chapter 4
Target Objects

return final State;

}
}
}

4.6 Target Objects

The following sections provide information on how to target objects:
e Module Types

* Extended Module Support

» Recognition of Target Types

e TargetModulelD Objects

* WebLogic Server TargetModulelD Extensions

* Example Module Deployment

4.6.1 Module Types

The standard modules types are defined by
javax. enterprise. depl oy. shared. Mdul eType. This is extended to support WebLogic
Server-specific module types: JMS, JDBC, INTERCEPT and CONFIG.

4.6.2 Extended Module Support

JSR-88 defines a secondary descriptor as additional descriptors that a module can
refer to or make use of. These descriptors are linked to the root DConf i gBean of a
module such that they are visible to a Java Beans based tool as they are child
properties of a DConf i gBeanRoot object. Secondary descriptors are automatically
included in the configuration process for a module.

4.6.2.1 Web Services

4.6.2.2 CMP

4.6.2.3 JDBC

ORACLE

An EJB or Web application may include a webservers. xn descriptor. If present, the
module is automatically configured with the WebLogic Server equivalent descriptor for
configuring Web services as secondary descriptors. The deployment plan includes
these descriptors as part of the module, not as a separate module.

CMP support in EJBs is configured using RDBMS descriptors that are identified for
CMP beans in the webl ogi c-ej b-j ar. xni descriptor. The RDBMS descriptors support
CMP11 and CMP20. Any number of RDBMS descriptors may be included with an EJB
module. Provide these descriptors in the application archive or configuration area
(appr oot/ pl an). Although they are not created by the configuration process, they may
be modified like any other descriptor. RDBMS descriptors are treated as secondary
descriptors in the deployment plan.

JDBC modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JDBC descriptors are specified in webl ogi c-

4-9

4.6.2.4 IMS

Chapter 4
Target Objects

appl i cation. xm as configurable properties. You can deploy JDBC modules to
WebLogic servers and clusters. Configuration changes to JDBC descriptors are
handled as overrides to the descriptor.

If a JIDBC module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

JMS modules are described by a single deployment descriptor with no archive. If the
module is part of an EAR, the JMS descriptors are specified in webl ogi c-

appl i cation. xm as configurable properties. IMS modules are deployed to JMS
servers. Configuration changes to JMS descriptors are handled as overrides to the
descriptor. JMS descriptors may identify "targetable groups". These groups are treated
as sub-modules during deployment.

If the IMS module is part of an EAR, its configuration overrides are incorporated in the
deployment plan as part of the EAR, not as separate modules.

4.6.2.5 INTERCEPT

Intercept modules are described by a single deployment descriptor with no archive. If
the module is part of an EAR, the Intercept descriptors are specified in webl ogi c-
application. xm as configurable properties. Intercept modules are deployed to
WebLogic Server servers and clusters. Configuration changes to Intercept descriptors
are handled as overrides to the descriptor.

If the Intercept module is part of an EAR, its configuration overrides are incorporated in
the deployment plan as part of the EAR, not as separate modules.

4.6.3 Recognition of Target Types

The Java EE Deployment API specification's definition of a target does not include any
notion of its type. WebLogic Server supports standard modules and Oracle-specific
module types as valid deployment targets. Target support is provided by the

webl ogi c. depl oy. api . spi . WebLogi cTar get and

webl ogi c. depl oy. api . spi . WebLogi cTar get Type classes. See Module Types.

4.6.4 TargetModulelD Objects

ORACLE

The Tar get Mbdul el D objects uniquely identify a module and a target it is associated
with. Tar get Modul el Ds are the objects that specify where modules are to be started and
stopped. The object name used to identify the Tar get Mbdul el D is of the form:

Appl i cati on=par ent - nane, Nane=conf i gur ed- nane, Tar get =t ar get -
nane, TWebLogi cTar get Type=t ar get - t ype

where

* parent-nane is the name of the ear this module is part of.

e configured-name is the name used in the WebLogic Server configuration for this
application or module

* target-nane is the server, cluster or virtual host where there module is targeted

e target-type is the description of the target derived from Tar get . get Descri pti on.

4-10

Chapter 4
Target Objects

Tar get Modul el D. t oSt ri ng() will return this object name.

4.6.5 WebLogic Server TargetModulelD Extensions

ORACLE

Tar get Modul el D is extended by webl ogi c. depl oy. api . spi . WebLogi cTar get Modul el D. This
class provides the following additional functionality:

e get Servers—servers associated with the Tar get Mbdul el D's target

* isOnd ust er—whether target is a cluster

e isnServer—whether target is a server

* isOnHost —whether target is a virtual host

e isOnJmsServer—whether target is a JMS server

e get Versi on—the version name

e createTarget Modul el D—factory for creating module specific targeting

WebLogi cTar get Modul el D is defined in more detail in the Javadocs.

The WbLogi cDepl oynent Manager is also extended with convenience methods that
simplify working with Tar get Modul el Ds. They are:

e filter—returns a list of Tar get Modul el Ds that match on application, module, and
version

* get Modul es—creates Tar get Modul el Ds based on an AppDepl oyment MBean

Tar get Modul el Ds have a hierarchical relationship based on the application upon which
they are based. The root Tar get Modul el D of an application represents an EAR module
or a stand-alone module. Child Tar get Modul el Ds are modules that are defined by the
root module's descriptor. For EARS, these are the modules identified in the

appl i cation. xm descriptor for the EAR. JMS modules may have child Tar get Modul el Ds
(sub-modules) as dictated by the JIMS deployment descriptor. These may be children
of an embedded module or the root module. Therefore, JMS modules can have three
levels of Tar get Mbdul el Ds for an application.

Typically, you get Tar get Mbdul el Ds in a deployment operation or one of the

Depl oyment Manager . get * Mbdul es() methods. These operations provide Tar get Modul el Ds
based on the existing configuration. In certain scenarios where more specific targeting
is desired than is currently defined in the configuration, you may use the

creat eTar get Modul el D method. This method creates a root Tar get Modul el D that is
specific to a module or sub-module within the application. This Tar get Modul el D can
then be used in any deployment operation. For operations that include the application
archive, such as depl oy(), using one of these Tar get Mbdul el Ds may result in the
application being reconfigured. For example:

<AppDepl oyment Name="nyapp", Targets="sl,s2"/>

The application is currently configured for all modules to run on s1 and s2. To provide
more specific targeting, a deployment tool can do the following:

Target s1 = find("s1",dm getTargets());
[/ find() is not part of this api
\ebLogi cTar get Mbdul el D root =

dm creat eTar get Modul el D(" myapp”, Modul eType. EAR, s1);
\ebLogi cTar get Modul el D web =

dm creat eTar get Modul el D(r oot , "webappl”, Modul eType. WAR) ;
dm depl oy(new Tar get Modul el D[] { web}, nyapp, mypl an, nul I);

4-11

Chapter 4
Target Objects

nyapp is reconfigured and webapp is specifically targeted to only run on s1. The new
configuration is:

<AppDepl oynent Nanme="nyapp", Targets="s1,s2">
<SubDepl oynent Name="webapp", Targets="s1"/>
</ AppDepl oynent >

4.6.6 Example Module Deployment

ORACLE

Consider the deployment of a stand-alone JMS module, one that employs sub-
modules. The module is defined by the file, simple-j ms. xnl , which defines sub-
modules, subl and sub2. The descriptor is fully configured for the environment hence
no deployment plan is required, although the scenario described here would be the
same if there was a deployment plan.

The tool to deploy this module performs the following steps:

[/ init the jsr88 session. This uses a WS specific hel per class,
/1 which does not enploy any WS extensions
Depl oyment Manager dm = Sessi onHel per. get Depl oynent Manager (host, port, user, pword);

/1 get list of all configured targets
[/ The filter method is a |ocation where you coul d ask the user
/1 to select fromthe list of all configured targets

Target[] targets = filter(dm getTargets());

/1 the nmodul e is distributed to the selected targets
ProgressCbject po = dmdistribute(targets,new File("jms.xm"), plan);

/1 when the wait comes back the task is done
wai t For Conpl eti on(po);

/1 1t is assumed here that it worked (there is no exception handling)

/1 the TargetMdul elDs (tnmids) returned fromthe PO correspond to all the
/1 configured app/ modul e nbeans for each target the app was distributed to.
[/ This should include 3 tnmids per target: the root nodule tnid and the

/1 subrmodul es' tnids.

Target Modul el O[] tnids = po.getResul t Tar get Modul el Ds() ;

/1 then to deploy the whole thing everywhere you would do this

po = dmstart(tmids);

/1 the result is that all sub-nodules woul d be depl oyed on all the selected
/] targets, since they are inplicitly targeted wherever the their parent is
/'l targeted

/1 To get sub-nodul e |evel deploynent you need to use WeblLogic Server
/] extensions to create TargetMdul el Ds that support module |evel targeting.
/1 The fol l owing deploys the topic "xyz" on a JMS server
\ebLogi cTar get Mbdul el D root =

dm creat eTar get Modul el D(tmi ds[i].get Mdul el D(),tnids[i],]nsServer);
\ebLogi cTar get Mbdul el D topic =

dm creat eTar get Modul el D(r oot , "xyz", WebLogi cMdul eType. IMS);

/1 now we can take the original list of tnmids and let the user select

/1 specific tmds to deploy
po = dmstart(topic);

4-12

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to This Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Understanding the WebLogic Deployment API
	2.1 The WebLogic Deployment API
	2.1.1 WebLogic Deployment API Deployment Phases
	2.1.1.1 Configure an Application for Deployment
	2.1.1.2 Deploy an Application

	2.1.2 weblogic.Deployer Implementation of the WebLogic Deployment API
	2.1.3 When to Use the WebLogic Deployment API

	2.2 Java EE Deployment API Compliance
	2.3 WebLogic Server Value-Added Deployment Features
	2.4 The Service Provider Interface Package
	2.4.1 weblogic.deploy.api.spi
	2.4.2 weblogic.deploy.api.spi.factories
	2.4.3 Module Targeting
	2.4.4 Support for Querying WebLogic Target Types
	2.4.5 Server Staging Modes
	2.4.6 Deployment Plan Staging Modes
	2.4.7 DConfigBean Validation

	2.5 The Model Package
	2.5.1 weblogic.deploy.api.model
	2.5.2 Accessing Deployment Descriptors

	2.6 The Shared Package
	2.6.1 weblogic.deploy.api.shared
	2.6.2 Command Types for Deploy and Update
	2.6.3 Support for Module Types
	2.6.4 Support for all WebLogic Server Target Types

	2.7 The Tools Package
	2.7.1 weblogic.deploy.api.tools
	2.7.2 SessionHelper
	2.7.3 Deployment Plan Creation

	2.8 The JMX API for Deployment Operations
	2.8.1 Supported Deployment Options
	2.8.2 Using the JMX API for Deployment Operations

	2.9 Using a Deployment Validation Plug-In with WebLogic Server
	2.9.1 Configuring the Deployment Validation Plug-In
	2.9.2 Using the Deployment Validation Plug-In

	3 Configuring Applications for Deployment
	3.1 Overview of the Configuration Process
	3.2 Types of Configuration Information
	3.2.1 Java EE Configuration
	3.2.2 WebLogic Server Configuration
	3.2.3 Representing Java EE and WebLogic Server Configuration Information
	3.2.3.1 DDBeans

	3.2.4 The Relationship Between Java EE and WebLogic Server Descriptors
	3.2.4.1 DConfigBeans

	3.3 Application Evaluation
	3.3.1 Obtain a Deployment Manager
	3.3.1.1 Types of Deployment Managers
	3.3.1.2 Connected and Disconnected Deployment Manager URIs
	3.3.1.3 Using SessionHelper to Obtain a Deployment Manager

	3.3.2 Create a Deployable Object
	3.3.2.1 Using the WebLogicDeployableObject class
	3.3.2.2 Using SessionHelper to obtain a Deployable Object

	3.4 Perform Front-end Configuration
	3.4.1 What is Front-end Configuration
	3.4.2 Deployment Configuration
	3.4.2.1 Example Code
	3.4.2.2 Reading In Information with SessionHelper

	3.4.3 Validating a Configuration

	3.5 Customizing Deployment Configuration
	3.5.1 Modifying Configuration Values
	3.5.2 Targets
	3.5.3 Application Naming

	3.6 Deployment Preparation
	3.7 Session Cleanup

	4 Performing Deployment Operations
	4.1 Register Deployment Factory Objects
	4.2 Allocate a DeploymentManager
	4.2.1 Getting a DeploymentManager Object
	4.2.2 Understanding DeploymentManager URI Implementations
	4.2.3 Server Connectivity

	4.3 Deployment Processing
	4.3.1 DeploymentOptions
	4.3.2 Distribution
	4.3.3 Application Start
	4.3.4 Application Deploy
	4.3.5 Application Stop
	4.3.6 Undeployment

	4.4 Production Redeployment
	4.4.1 In-Place Redeployment
	4.4.2 Module Level Targeting
	4.4.3 Retirement Policy
	4.4.4 Version Support
	4.4.5 Administration (Test) Mode

	4.5 Progress Reporting
	4.6 Target Objects
	4.6.1 Module Types
	4.6.2 Extended Module Support
	4.6.2.1 Web Services
	4.6.2.2 CMP
	4.6.2.3 JDBC
	4.6.2.4 JMS
	4.6.2.5 INTERCEPT

	4.6.3 Recognition of Target Types
	4.6.4 TargetModuleID Objects
	4.6.5 WebLogic Server TargetModuleID Extensions
	4.6.6 Example Module Deployment

