Oracle® Fusion Middleware
Developing Security Providers for Oracle
WebLogic Server 12¢c

12c (12.2.1.3.0)
E80446-01
August 2017

ORACLE"

Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server 12c, 12c (12.2.1.3.0)
E80446-01
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility Xiii
Conventions Xiii
1 Introduction and Roadmap
1.1 Document Scope 1-1
1.2 Documentation Audience 1-1
1.3 Guide to this Document 1-1
1.4 Related Information 1-3
1.5 New and Changed Features in this Release 1-3
2 Introduction to Developing Security Providers for WebLogic Server
2.1 Prerequisites for This Guide 2-1
2.2 Overview of the Development Process 2-1
2.2.1 Designing the Custom Security Provider 2-1
2.2.2 Creating Runtime Classes for the Custom Security Provider by
Implementing SSPIs 2-2
2.2.3 Generating an MBean Type to Configure and Manage the Custom
Security Provider 2-3
2.2.4 Writing Console Extensions 2-3
2.2.5 Configuring the Custom Security Provider 2-4
2.2.6 Providing Management Mechanisms for Security Policies, Security
Roles, and Credential Maps 2-5
3 Design Considerations
3.1 General Architecture of a Security Provider 3-1
3.2 Security Services Provider Interfaces (SSPIs) 3-2
3.2.1 Understand Two Important Restrictions 3-2
3.2.2 Understand the Purpose of the Provider SSPIs 3-3
3.2.3 Understand the Purpose of the Bulk Access Providers 3-4
3.2.4 Determine Which Provider Interface You Will Implement 3-4

ORACLE

3.2.4.1 The DeployableAuthorizationProviderV2 SSPI 3-5

3.2.4.2 The DeployableRoleProviderV2 SSPI 3-5
3.2.4.3 The DeployableCredentialProvider SSPI 3-5
3.2.5 Understand the SSPI Hierarchy and Determine Whether You Will
Create One or Two Runtime Classes 3-6
3.2.6 SSPI Quick Reference 3-8
3.3 Security Service Provider Interface (SSPI) MBeans 3-9
3.3.1 Understand Why You Need an MBean Type 3-10
3.3.2 Determine Which SSPI MBeans to Extend and Implement 3-10
3.3.3 Understand the Basic Elements of an MBean Definition File (MDF) 3-11
3.3.3.1 Custom Providers and Classpaths 3-12
3.3.3.2 Throwing Exceptions from MBean Operations 3-13
3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes 3-13
3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console 3-13
3.3.5 Understand What the WebLogic MBeanMaker Provides 3-15
3.3.5.1 About the MBean Information File 3-16
3.3.6 SSPI MBean Quick Reference 3-17
3.4 Security Data Migration 3-19
3.4.1 Migration Concepts 3-20
3.41.1 Formats 3-20
3.4.1.2 Constraints 3-20
3.4.1.3 Migration Files 3-20
3.4.2 Adding Migration Support to Your Custom Security Providers 3-21
3.4.3 Administration Console Support for Security Data Migration 3-22
3.5 Management Utilities Available to Developers of Security Providers 3-24
3.6 Security Providers and WebLogic Resources 3-25
3.6.1 The Architecture of WebLogic Resources 3-26
3.6.2 Types of WebLogic Resources 3-27
3.6.3 WebLogic Resource Identifiers 3-27
3.6.3.1 The toString() Method 3-27
3.6.3.2 Resource IDs and the getID() Method 3-28
3.6.4 Creating Default Groups for WebLogic Resources 3-29
3.6.5 Creating Default Security Roles for WebLogic Resources 3-29
3.6.6 Creating Default Security Policies for WebLogic Resources 3-30
3.6.7 Looking Up WebLogic Resources in a Security Provider's Runtime
Class 3-31
3.6.8 Single-Parent Resource Hierarchies 3-32
3.6.8.1 Pattern Matching for URL Resources 3-33
3.6.9 ContextHandlers and WebLogic Resources 3-34
3.6.9.1 Providers and Interfaces that Support Context Handlers 3-37
3.7 Initialization of the Security Provider Database 3-39

ORACLE iv

3.7.1 Best Practice: Create a Simple Database If None Exists 3-40
3.7.2 Best Practice: Configure an Existing Database 3-40
3.7.3 Best Practice: Delegate Database Initialization 3-42
3.7.4 Best Practice: Use the JDBC Connection Security Service API to Obtain
Database Connections 3-42
3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps 3-43
3.8 Differences In Attribute Validators 3-44
3.8.1 Differences In Attribute Validators for Custom Validators 3-44
4 Authentication Providers
4.1 Authentication Concepts 4-1
4.1.1 Users and Groups, Principals and Subjects 4-1
4.1.1.1 Providing Initial Users and Groups 4-3
4.1.2 LoginModules 4-3
4.1.2.1 The LoginModule Interface 4-4
4.1.2.2 LoginModules and Multipart Authentication 4-4
4.1.3 Java Authentication and Authorization Service (JAAS) 4-5
4.1.3.1 How JAAS Works With the WebLogic Security Framework 4-6
4.1.3.2 Example: Standalone T3 Application 4-7
4.2 The Authentication Process 4-9
4.3 Do You Need to Develop a Custom Authentication Provider? 4-10
4.4 How to Develop a Custom Authentication Provider 4-11
4.4.1 Create Runtime Classes Using the Appropriate SSPIs 4-11
44.1.1 Implement the AuthenticationProviderV2 SSPI 4-11
4.4.1.2 Implement the JAAS LoginModule Interface 4-13
4.4.1.3 Throwing Custom Exceptions from LoginModules 4-14
4.4.1.4 Example: Creating the Runtime Classes for the Sample
Authentication Provider 4-15
4.4.2 Configure the Custom Authentication Provider Using the Administration
Console 4-20
4.4.2.1 Managing User Lockouts 4-21
4.4.2.2 Specifying the Order of Authentication Providers 4-22
5 Identity Assertion Providers
5.1 Identity Assertion Concepts 5-1
5.1.1 Identity Assertion Providers and LoginModules 5-1
5.1.2 Identity Assertion and Tokens 5-2
5.1.2.1 How to Create New Token Types 5-2
5.1.2.2 How to Make New Token Types Available for Identity Assertion
Provider Configurations 5-3

ORACLE

ORACLE

5.1.3 Passing Tokens for Perimeter Authentication 5-4
5.1.4 Common Secure Interoperability Version 2 (CSIv2) 5-5
5.2 The Identity Assertion Process 5-5
5.3 Do You Need to Develop a Custom Identity Assertion Provider? 5-6
5.4 How to Develop a Custom Identity Assertion Provider 5-8
5.4.1 Create Runtime Classes Using the Appropriate SSPIs 5-8
5.4.1.1 Implement the AuthenticationProviderV2 SSPI 5-9
5.4.1.2 Implement the ldentityAsserterV2 SSPI 5-10
5.4.1.3 Example: Creating the Runtime Class for the Sample Identity
Assertion Provider 5-11
5.4.2 Configure the Custom Identity Assertion Provider Using the
Administration Console 5-14
5.4.3 Challenge Identity Assertion 5-14
5.4.3.1 Challenge/Response Limitations in the Java Servlet APl 2.3
Environment 5-14
5.4.3.2 Filters and The Role of the
weblogic.security.services.Authentication Class 5-15
5.4.3.3 How to Develop a Challenge Identity Asserter 5-15
5.4.3.4 Implement the ChallengeldentityAsserterV2 Interface 5-15
5.4.3.5 Implement the ProviderChallengeContext Interface 5-16
5.4.3.6 Invoke the weblogic.security.services Challenge Identity Methods 5-16
5.4.3.7 Invoke the weblogic.security.services AppChallengeContext
Methods 5-17
5.4.3.8 Implementing Challenge Identity Assertion from a Filter 5-17
6 Principal Validation Providers
6.1 Principal Validation Concepts 6-1
6.1.1 Principal Validation and Principal Types 6-1
6.1.2 How Principal Validation Providers Differ From Other Types of Security
Providers 6-1
6.1.3 Security Exceptions Resulting from Invalid Principals 6-2
6.2 The Principal Validation Process 6-2
6.3 Do You Need to Develop a Custom Principal Validation Provider? 6-3
6.3.1 How to Use the WebLogic Principal Validation Provider 6-4
6.4 How to Develop a Custom Principal Validation Provider 6-4
6.4.1 Implement the PrincipalValidator SSPI 6-5
7 Authorization Providers
7.1 Authorization Concepts 7-1
7.1.1 Access Decisions 7-1
7.1.2 Using the Java Authorization Contract for Containers 7-2

Vi

7.2 The Authorization Process 7-2

7.3 Do You Need to Develop a Custom Authorization Provider? 7-5
7.3.1 Does Your Custom Authorization Provider Need to Support Application
Versioning? 7-5
7.4 Is Your Custom Authorization Provider Thread Safe? 7-5
7.5 How to Develop a Custom Authorization Provider 7-6
7.5.1 Create Runtime Classes Using the Appropriate SSPIs 7-6
7.5.1.1 Implement the AuthorizationProvider SSPI 7-7
7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI 7-7
7.5.1.3 Implement the AccessDecision SSPI 7-9
7.5.1.4 Example: Creating the Runtime Class for the Sample
Authorization Provider 7-9
7.5.2 Policy Consumer SSPI 7-14
7.5.2.1 Required SSPI Interfaces 7-14
7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface 7-14
7.5.2.3 Implement the PolicyConsumer SSPI Interface 7-15
7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface 7-16
7.5.2.5 Supporting an Updated Policy Collection 7-16
7.5.2.6 The PolicyConsumerMBean 7-16
7.5.3 PolicyStoreMBean 7-17
7.5.3.1 Examining the Format of a XACML Policy File 7-18
7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean 7-18
7.5.3.3 Using WLST to Read a PolicySet as a String 7-19
7.5.4 Bulk Authorization Providers 7-20
7.5.5 Configure the Custom Authorization Provider Using the Administration
Console 7-21
7.5.5.1 Managing Authorization Providers and Deployment Descriptors 7-21
7.5.5.2 Enabling Security Policy Deployment 7-22
7.5.6 Provide a Mechanism for Security Policy Management 7-22

7.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Policy
Management 7-23

7.5.6.2 Option 2: Integrate an Existing Security Policy Management Tool
into the Administration Console 7-23

8 Adjudication Providers

8.1 The Adjudication Process 8-1
8.2 Do You Need to Develop a Custom Adjudication Provider? 8-1
8.3 How to Develop a Custom Adjudication Provider 8-2
8.3.1 Create Runtime Classes Using the Appropriate SSPIs 8-2
8.3.1.1 Implement the AdjudicationProviderV2 SSPI 8-2

8.3.1.2 Implement the AdjudicatorV2 SSPI 8-3

8.3.2 Bulk Adjudication Providers 8-3

ORACLE vii

8.3.3 Configure the Custom Adjudication Provider Using the Administration
Console 8-4

o Role Mapping Providers

9.1 Role Mapping Concepts 9-1
9.1.1 Security Roles 9-1
9.1.2 Dynamic Security Role Computation 9-2

9.2 The Role Mapping Process 9-3

9.3 Is Your Custom Role Mapping Provider Thread Safe? 9-6

9.4 Do You Need to Develop a Custom Role Mapping Provider? 9-6
9.4.1 Does Your Custom Role Mapping Provider Need to Support Application

Versioning? 9-6

9.5 How to Develop a Custom Role Mapping Provider 9-7

9.5.1 Create Runtime Classes Using the Appropriate SSPIs 9-7
9.5.1.1 Implement the RoleProvider SSPI 9-7
9.5.1.2 Implement the DeployableRoleProviderV2 SSPI 9-8
9.5.1.3 Implement the RoleMapper SSPI 9-9
9.5.1.4 Implement the SecurityRole Interface 9-10
9.5.1.5 Example: Creating the Runtime Class for the Sample Role

Mapping Provider 9-10

9.5.2 Role Consumer SSPI 9-16
9.5.2.1 Required SSPI Interfaces 9-17
9.5.2.2 Implement the RoleConsumerFactory SSPI Interface 9-17
9.5.2.3 Implement the RoleConsumer SSPI Interface 9-17
9.5.2.4 Implement the RoleCollectionHandler SSPI Interface 9-18
9.5.2.5 Supporting an Updated Role Collection 9-19
9.5.2.6 The RoleConsumerMBean 9-19

9.5.3 PolicyStoreMBean 9-19
9.5.3.1 Examining the Format of a XACML Policy File 9-20
9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean 9-21
9.5.3.3 Using WLST to Read a PolicySet as a String 9-22

9.5.4 Bulk Role Mapping Providers 9-23

9.5.5 Configure the Custom Role Mapping Provider Using the Administration

Console 9-23

9.5.5.1 Managing Role Mapping Providers and Deployment Descriptors 9-24
9.5.5.2 Enabling Security Role Deployment 9-25
9.5.6 Provide a Mechanism for Security Role Management 9-25

9.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Role
Management 9-25

9.5.6.2 Option 2: Integrate an Existing Security Role Management Tool
into the Administration Console 9-26

ORACLE viii

10 Auditing Providers

10.1 Auditing Concepts 10-1
10.1.1 Audit Channels 10-1
10.1.2 Auditing Events From Custom Security Providers 10-1

10.2 The Auditing Process 10-2

10.3 Implementing the ContextHandler MBean 10-4
10.3.1 ContextHandlerMBean Methods 10-5
10.3.2 Example: Implementing the ContextHandlerMBean 10-5
10.3.3 Extend weblogic.management.security.audit. ContextHandlerImpl 10-6

10.4 Do You Need to Develop a Custom Auditing Provider? 10-7

10.5 How to Develop a Custom Auditing Provider 10-8
10.5.1 Create Runtime Classes Using the Appropriate SSPIs 10-8

10.5.1.1 Implement the AuditProvider SSPI 10-9
10.5.1.2 Implement the AuditChannel SSPI 10-9
10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing
Provider 10-9
10.5.2 Configure the Custom Auditing Provider Using the Administration
Console 10-11
10.5.2.1 Configuring Audit Severity 10-11

10.6 Security Framework Audit Events 10-12
10.6.1 Passing Additional Audit Information 10-12
10.6.2 Audit Event Interfaces and Audit Events 10-13

10.6.2.1 AuditApplicationVersionEvent 10-14
10.6.2.2 AuditAtnEventV2 10-14
10.6.2.3 AuditAtzEvent 10-16
10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent 10-16
10.6.2.5 AuditConfigurationEvent 10-17
10.6.2.6 AuditCredentialMappingEvent 10-18
10.6.2.7 AuditLifecycleEvent 10-18
10.6.2.8 AuditMgmtEvent 10-18
10.6.2.9 AuditPolicyEvent 10-19
10.6.2.10 AuditRoleDeploymentEvent 10-20
10.6.2.11 AuditRoleEvent 10-20
11 Credential Mapping Providers

11.1 Credential Mapping Concepts 11-1

11.2 The Credential Mapping Process 11-1

11.3 Do You Need to Develop a Custom Credential Mapping Provider? 11-3
11.3.1 Does Your Custom Credential Mapping Provider Need to Support

Application Versioning? 11-4

ORACLE

11.4 How to Develop a Custom Credential Mapping Provider 11-4

11.4.1 Create Runtime Classes Using the Appropriate SSPIs 11-4
11.4.1.1 Implement the CredentialProviderV2 SSPI 11-4
11.4.1.2 Implement the DeployableCredentialProvider SSPI 11-5
11.4.1.3 Implement the CredentialMapperV2 SSPI 11-6

11.4.2 Provide a Mechanism for Credential Map Management 11-6

11.4.2.1 Option 1: Develop a Stand-Alone Tool for Credential Map

Management 11-7

11.4.2.2 Option 2: Integrate an Existing Credential Map Management

Tool into the Administration Console 11-7

12 Auditing Events From Custom Security Providers

12.1 Security Services and the Auditor Service 12-1

12.2 How to Audit From a Custom Security Provider 12-2

12.2.1 Create an Audit Event 12-2

12.2.1.1 Implement the AuditEvent SSPI 12-3

12.2.1.2 Implement an Audit Event Convenience Interface 12-3

12.2.1.3 Audit Severity 12-6

12.2.1.4 Audit Context 12-7

12.2.1.5 Example: Implementation of the AuditRoleEvent Interface 12-7

12.2.2 Obtain and Use the Auditor Service to Write Audit Events 12-8
12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role

Audit Events 12-9

12.2.2.2 Auditing Management Operations from a Provider's MBean 12-10

12.2.2.3 Example: Auditing Management Operations from a Provider's
MBean 12-11
12.2.3 Best Practice: Posting Audit Events from a Provider's MBean 12-12

13 Servlet Authentication Filters

13.1 Authentication Filter Concepts 13-1
13.1.1 Why Filters are Needed 13-1
13.1.2 Servlet Authentication Filter Design Considerations 13-2

13.2 How Filters Are Invoked 13-2
13.2.1 Do Not Call Servlet Authentication Filters From Authentication

Providers 13-3

13.3 Example of a Provider that Implements a Filter 13-4

13.4 How to Develop a Custom Servlet Authentication Filter 13-4
13.4.1 Create Runtime Classes Using the Appropriate SSPIs 13-5
13.4.2 Implement the Servlet Authentication Filter SSPI 13-5
13.4.3 Implement the Filter Interface Methods 13-5
13.4.4 Implementing Challenge Identity Assertion from a Filter 13-6

ORACLE X

13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker 13-7
13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF) 13-7
13.4.6 Configure the Authentication Provider Using Administration Console 13-8
14 Versionable Application Providers
14.1 Versionable Application Concepts 14-1
14.2 The Versionable Application Process 14-1
14.3 Do You Need to Develop a Custom Versionable Application Provider? 14-2
14.4 How to Develop a Custom VersionableApplication Provider 14-2
14.4.1 Create Runtime Classes Using the Appropriate SSPIs 14-2
14.4.1.1 Implement the VersionableApplication SSPI 14-3
14.4.1.2 Example: Creating the Runtime Class for the Sample
VersionableApplication Provider 14-3
14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker 14-4
14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File
(MJF) 14-4
14.4.3 Configure the Custom Versionable Application Provider Using the
Administration Console 14-5
15 CertPath Providers
15.1 Certificate Lookup and Validation Concepts 15-1
15.1.1 The Certificate Lookup and Validation Process 15-1
15.1.2 Do You Need to Implement Separate CertPath Validators and
Builders? 15-2
15.1.3 CertPath Provider SPI MBeans 15-3
15.1.4 WebLogic CertPath Validator SSPI 15-4
15.1.5 WebLogic CertPath Builder SSPI 15-4
15.1.6 Relationship Between the WebLogic Server CertPath SSPI and the
JDK SPI 154
15.2 Do You Need to Develop a Custom CertPath Provider? 15-5
15.3 How to Develop a Custom CertPath Provider 15-6
15.3.1 Create Runtime Classes Using the Appropriate SSPIs 15-6
15.3.1.1 Implement the JDK CertPathBuilderSpi and/or
CertPathValidatorSpi Interfaces 15-7
15.3.1.2 Implement the CertPath Provider SSPI 15-7
15.3.1.3 Implement the JDK Security Provider SPI 15-8
15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your
CertPathBuilderSpi Implementation 15-9
15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation 15-10
15.3.1.6 Returning the Builder or Validator Results 15-11

ORACLE

Xi

15.3.1.7 Example: Creating the Sample Cert Path Provider 15-12
15.3.2 Configure the Custom CertPath Provider Using the Administration
Console 15-16
A MBean Definition File (MDF) Element Syntax
A.1 The MBeanType (Root) Element A-1
A.2 The MBeanAttribute Subelement A-3
A.3 The MBeanConstructor Subelement A-6
A.4 The MBeanOperation Subelement A-7
A.5 MBean Operation Exceptions A-9
A.6 Examples: Well-Formed and Valid MBean Definition Files (MDFs) A-10
B Generate an MBean Type Using the WebLogic MBeanMaker
B.1 Overview of Steps B-1
B.2 Create an MBean Definition File (MDF) B-2
B.3 Use the WebLogic MBeanMaker to Generate the MBean Type B-3
B.3.1 No Custom Operations B-3
B.3.2 No Optional SSPI MBeans and No Custom Operations B-4
B.3.3 Optional SSPI MBeans or Custom Operations B-5
B.3.4 About the Generated MBean Interface File B-7
B.4 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF) B-7
B.5 Install the MBean Type Into the WebLogic Server Environment B-8
ORACLE Xii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Security Providers for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://ww.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE Xiii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This chapter describes the contents and organization of this document.
This chapter includes the following sections:

e Document Scope

* Documentation Audience
* Guide to this Document
* Related Information

 New and Changed Features in this Release

1.1 Document Scope

This document provides security vendors and application developers with the
information needed to develop new security providers for use with WebLogic Server.

1.2 Documentation Audience

This document is written for independent software vendors (ISVs) who want to write
their own security providers for use with WebLogic Server. It is assumed that most
ISVs reading this documentation are sophisticated application developers who have a
solid understanding of security concepts, and that no basic security concepts require
explanation. It is also assumed that security vendors and application developers are
familiar with WebLogic Server and with Java (including Java Management eXtensions
(IMX)).

1.3 Guide to this Document

ORACLE

This document provides security vendors and application developers with the
information needed to develop new security providers for use with the WebLogic
Server.

The document is organized as follows:

* Introduction to Developing Security Providers for WebLogic Server prepares you
to learn more about developing security providers for use with WebLogic Server. It
specifies the audience and prerequisites for this guide, and provides an overview
of the development process.

» Design Considerations explains the general architecture of a security provider and
provides background information you should understand about implementing
SSPIs and generating MBean types. This section also includes information about
using optional management utilities and discusses how security providers interact
with WebLogic resources. Lastly, this section suggests ways in which your custom
security providers might work with databases that contain information security
providers require.

1-1

ORACLE

Chapter 1
Guide to this Document

Authentication Providers explains the authentication process (for simple logins)
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom authentication providers. This
topic also includes a discussion about JAAS LoginModules.

Identity Assertion Providers explains the authentication process (for perimeter
authentication using tokens) and provides instructions about how to implement
each type of security service provider interface (SSPI) associated with custom
identity assertion providers.

Principal Validation Providers explains how principal validation providers assist
authentication providers by signing and verifying the authenticity of principals
stored in a subject, and provides instructions about how to develop custom
principal validation providers.

Authorization Providers explains the authorization process and provides
instructions about how to implement each type of security service provider
interface (SSPI) associated with custom authorization providers.

Adjudication Providers explains the adjudication process and provides instructions
about how to implement each type of security service provider interface (SSPI)
associated with custom adjudication providers.

Role Mapping Providers explains the role mapping process and provides
instructions about how to implement each type of security service provider
interface (SSPI) associated with custom role mapping providers.

Auditing Providers explains the auditing process and provides instructions about
how to implement each type of security service provider interface (SSPI)
associated with custom auditing providers. This topic also includes information
about how to audit from other types of security providers.

Credential Mapping Providers explains the credential mapping process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom credential mapping providers.

Auditing Events From Custom Security Providers explains how to add auditing
capabilities to the custom security providers you develop.

Servlet Authentication Filters explains the Servlet authentication filter process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with Servlet authentication filters.

Versionable Application Providers explains the concept of versionable applications
and provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom versionable application
providers.

CertPath Providers explains the certificate lookup and validation process and
provides instructions about how to implement each type of security service
provider interface (SSPI) associated with custom CertPath provider.

MBean Definition File (MDF) Element Syntax which describes all the elements and
attributes that are available for use in a valid MDF. An MDF is an XML file used to
generate the MBean types, which enable the management of your custom security
providers.

Generate an MBean Type Using the WebLogic MBeanMaker explains how to
create the MBean type for your custom security provider.

1-2

Chapter 1
Related Information

1.4 Related Information

The Oracle corporate Web site provides all documentation for WebLogic Server. Other
WebLogic Server documents that may be of interest to security vendors and
application developers working with security providers are:

Understanding Security for Oracle WebLogic Server

Administering Security for Oracle WebLogic Server

Developing Applications with the WebLogic Security Service

Securing Resources Using Roles and Policies for Oracle WebLogic Server
Securing a Production Environment for Oracle WebLogic Server

Java API Reference for Oracle WebLogic Server

1.5 New and Changed Features in this Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE

1-3

Chapter 1

New and Changed Features in this Release

ORACLE" 1-4

Introduction to Developing Security
Providers for WebLogic Server

This chapter prepares you to learn more about developing security providers.
This chapter includes the following sections:

e Prerequisites for This Guide

e Overview of the Development Process

2.1 Prerequisites for This Guide

Prior to reading this guide, you should review the following sections in Understanding
Security for Oracle WebLogic Server:

* Security Providers
* WebLogic Security Framework

Additionally, WebLogic Server security includes many unique terms and concepts that
you need to understand. These terms and concepts—which you will encounter
throughout the WebLogic Server security documentation—are defined in Security
Fundamentals in Understanding Security for Oracle WebLogic Server.

2.2 Overview of the Development Process

This section is a high-level overview of the process for developing new security
providers, so you know what to expect. Details for each step are discussed later in this
guide.

The main steps for developing a custom security provider are:

e Designing the Custom Security Provider

e Creating Runtime Classes for the Custom Security Provider by Implementing
SSPIs

e Generating an MBean Type to Configure and Manage the Custom Security
Provider

e Configuring the Custom Security Provider

« Providing Management Mechanisms for Security Policies, Security Roles, and
Credential Maps

2.2.1 Designing the Custom Security Provider

The design process includes the following steps:

1. Review the descriptions of the WebLogic security providers to determine whether
you need to create a custom security provider.

ORACLE 2-1

Chapter 2
Overview of the Development Process

Descriptions of the WebLogic security providers are available under WebLogic
Security Providers in Understanding Security for Oracle WebLogic Server and in
later sections of this guide under the Do You Need to Create a Custom
<Provider_Type> Provider? headings.

Determine which type of custom security provider you want to create.

The type may be authentication, identity assertion, principal validation,
authorization, adjudication, role mapping, auditing, credential mapping,
versionable application, or CertPath, as described in Types of Security Providers
in Understanding Security for Oracle WebLogic Server. Your custom security
provider can augment or replace the WebLogic security providers that are already
supplied with WebLogic Server.

Identify which security service provider interfaces (SSPIs) you must implement to
create the runtime classes for your custom security provider, based on the type of
security provider you want to create.

The SSPIs for the different security provider types are described in Security
Services Provider Interfaces (SSPIs) and summarized in SSPI Quick Reference.

Decide whether you will implement the SSPIs in one or two runtime classes.

These options are discussed in Understand the SSPI Hierarchy and Determine
Whether You Will Create One or Two Runtime Classes .

Identify which required SSPI MBeans you must extend to generate an MBean type
through which your custom security provider can be managed. If you want to
provide additional management functionality for your custom security provider
(such as handling of users, groups, security roles, and security policies), you also
need to identify which optional SSPI MBeans to implement.

The SSPI MBeans are described in Security Service Provider Interface (SSPI)
MBeans and summarized in SSPI MBean Quick Reference.

Determine how you will initialize the database that your custom security provider
requires. You can have your custom security provider create a simple database, or
configure your custom security provider to use an existing, fully-populated
database.

These two database initialization options are explained in Initialization of the
Security Provider Database.

Identify any database seeding that your custom security provider will need to do as
part of its interaction with security policies on WebLogic resources. This seeding
may involve creating default groups, security roles, or security policies.

See Security Providers and WebLogic Resources.

2.2.2 Creating Runtime Classes for the Custom Security Provider by
Implementing SSPIs

ORACLE

In one or two runtime classes, implement the SSPIs you have identified by providing
implementations for each of their methods. The methods should contain the specific
algorithms for the security services offered by the custom security provider. The
content of these methods describe how the service should behave.

Procedures for this task are dependent on the type of security provider you want to
create, and are provided under the Create Runtime Classes Using the Appropriate
SSPIs heading in the sections that discuss each security provider in detail.

2-2

Chapter 2
Overview of the Development Process

2.2.3 Generating an MBean Type to Configure and Manage the
Custom Security Provider

Generating an MBean type includes the following steps:

1.

Create an MBean Definition File (MDF) for the custom security provider that
extends the required SSPI MBean, implements any optional SSPI MBeans, and
adds any custom attributes and operations that will be required to configure and
manage the custom security provider.

Information about MDFs is available in Understand the Basic Elements of an
MBean Definition File (MDF), and procedures for this task are provided under the
Create an MBean Definition File (MDF) heading in the sections that discuss each
security provider in detail.

Run the MDF through the WebLogic MBeanMaker to generate intermediate files
(including the MBean interface, MBean implementation, and MBean information
files) for the custom security provider's MBean type.

Information about the WebLogic MBeanMaker and how it uses the MDF to
generate Java files is provided in Understand What the WebLogic MBeanMaker
Provides , and procedures for this task are provided under the Use the WebLogic
MBeanMaker to Generate the MBean Type heading in the sections that discuss
each security provider in detail.

Edit the MBean implementation file to supply content for any methods inherited
from implementing optional SSPI MBeans, as well as content for the method stubs
generated as a result of custom attributes and operations added to the MDF-.

Run the modified intermediate files (for the MBean type) and the runtime classes
for your custom security provider through the WebLogic MBeanMaker to generate a
JAR file, called an MBean JAR File (MJF).

Procedures for this task are provided under the Use the WebLogic MBeanMaker to
Create the MBean JAR File (MJF) heading in the sections that discuss each
security provider in detail.

Install the MBean JAR File (MJF) into the WebLogic Server environment.

Procedures for this task are provided under the Install the MBean Type into the
WebLogic Server Environment heading in the sections that discuss each security
provider in detail.

2.2.4 Writing Console Extensions

ORACLE

Console extensions allow you to add JavaServer Pages (JSPs) to the WebLogic
Server Administration Console to support additional management and configuration of
custom security providers. Console extensions allow you to include Administration
Console support where that support does not yet exist, as well as to customize
administrative interactions as you see fit.

To get complete configuration and management support through the WebLogic Server
Administration Console for a custom security provider, you need to write a console
extension when:

You decide not to implement an optional SSPI MBean when you generate an
MBean type for your custom security provider, but still want to configure and

2-3

Chapter 2
Overview of the Development Process

manage your custom security provider via the Administration Console. (That is,
you do not want to use the WebLogic Server Command-Line Interface instead.)

Generating an MBean type (as described in Generating an MBean Type to
Configure and Manage the Custom Security Provider) is the Oracle-
recommended way for configuring and managing custom security providers.
However, you may want to configure and manage your custom security provider
completely through a console extension that you write.

* You implement optional SSPI MBeans for custom security providers that are not
custom authentication providers.

When you implement optional SSPI MBeans to develop a custom authentication
provider, you automatically receive support in the Administration Console for the
MBean type's attributes (inherited from the optional SSPI MBean). Other types of
custom security providers, such as custom authorization providers, do not receive
this support.

* You add a custom attribute that cannot be represented as a simple data type to
your MBean Definition File (MDF), which is used to generate the custom security
provider's MBean type.

The Details tab for a custom security provider will automatically display custom
attributes, but only if they are represented as a simple data type, such as a string,
MBean, boolean or integer value. If you have custom attributes that are
represented as atypical data types (for example, an image of a fingerprint), the
Administration Console cannot visualize the custom attribute without
customization.

* You add a custom operation to your MBean Definition File (MDF), which is used to
generate the custom security provider's MBean type.

Because of the potential variety involved with custom operations, the
Administration Console does not know how to automatically display or process
them. Examples of custom operations might be a microphone for a voice print, or
import/export buttons. The Administration Console cannot visualize and process
these operations without customization.

Some other (optional) reasons for extending the Administration Console include:

e Corporate branding—when, for example, you want your organization's logo or look
and feel on the pages used to configure and manage a custom security provider.

» Consolidation—when, for example, you want all the fields used to configure and
manage a custom security provider on one page, rather than in separate tabs or
locations.

2.2.5 Configuring the Custom Security Provider

Note:

The configuration process can be completed by the same person who
developed the custom security provider, or by a designated administrator.

The configuration process consists of using the WebLogic Server Administration
Console to supply the custom security provider with configuration information. If you

ORACLE 2.4

Chapter 2
Overview of the Development Process

generated an MBean type for managing the custom security provider, configuring the
custom security provider in the WebLogic Server Administration Console also means
that you are creating a specific instance of the MBean type.

See Administering Security for Oracle WebLogic Server.

2.2.6 Providing Management Mechanisms for Security Policies,
Security Roles, and Credential Maps

ORACLE

Certain types of security providers need to provide administrators with a way to
manage the security data associated with them. For example, an authorization
provider needs to supply administrators with a way to manage security policies.
Similarly, a role mapping provider needs to supply administrators with a way to
manage security roles, and a credential mapping provider needs to supply
administrators with a way to manage credential maps.

For the WebLogic Authorization, Role Mapping, and Credential Mapping providers,
there are already management mechanisms available for administrators in the
WebLogic Server Administration Console. However, do you not inherit these
mechanisms when you develop a custom version of one of these security providers;
you need to provide your own mechanisms to manage security policies, security roles,
and credential maps. These mechanisms must read and write the appropriate security
data to and from the custom security provider's database, but may or may not be
integrated with the WebLogic Server Administration Console.

For more information, refer to one of the following sections:

* Provide a Mechanism for Security Policy Management (for custom authorization
providers)

* Provide a Mechanism for Security Role Management (for custom role mapping
providers)

» Provide a Mechanism for Credential Map Management (for custom credential
mapping providers)

2-5

Chapter 2

Overview of the Development Process

ORACLE" 2-6

Design Considerations

This chapter describes security provider concepts and functionality in more detail to
help you get started. Careful planning of development activities can greatly reduce the
time and effort you spend developing custom security providers.

This chapter includes the following sections:

e General Architecture of a Security Provider

e Security Services Provider Interfaces (SSPIs)

» Security Service Provider Interface (SSPI) MBeans

e Security Data Migration

* Management Utilities Available to Developers of Security Providers
e Security Providers and WebLogic Resources

e Initialization of the Security Provider Database

» Differences In Attribute Validators

3.1 General Architecture of a Security Provider

Although there are different types of security providers you can create (see Types of
Security Providers in Understanding Security for Oracle WebLogic Server), all security
providers follow the same general architecture. Figure 3-1 illustrates the general
architecture of a security provider, and an explanation follows.

Figure 3-1 Security Provider Architecture

Runtime Class (.java files) MBean Type (.xmil files)
FooProviderSSPI ‘ ‘ FooOtherSSPI ‘ ‘ FooRegSSPIMBean H FooOptSSPIBean
4 I [
extends ——implemerts extends é---------implemerrts Serl\r:':rh;ggilg
R reads config date—— :
MyFooPraviderlmpl l:secur'rty frameswvork uses to creat;j MyFoahiBean ‘ Security Developer
\\ Implementations

Administrator uses to set configuration
data (for example, in the WehlLogic Server
Administration Consale)

ORACLE 3-1

Chapter 3
Security Services Provider Interfaces (SSPIS)

Note:

The SSPIs and the runtime classes (that is, implementations) you will create
using the SSPIs are shown on the left side of Figure 3-1 and are .java files.

Like the other files on the right side of Figure 3-1, MyFooMBean begins as

a .xml file, in which you will extend (and optionally implement) SSPI MBeans.
When this MBean Definition File (MDF) is run through the WebLogic
MBeanMaker utility, the utility generates the .java files for the MBean type, as
described in Generating an MBean Type to Configure and Manage the
Custom Security Provider .

Figure 3-1 shows the relationship between a single runtime class (MyFooProviderImpl)
and an MBean type (MyFooMBean) you create when developing a custom security
provider. The process begins when a WebLogic Server instance starts, and the
WebLogic Security Framework:

1. Locates the MBean type associated with the security provider in the security
realm.

2. Obtains the name of the security provider's runtime class (the one that implements
the Provider SSPI, if there are two runtime classes) from the MBean type.

3. Passes in the appropriate MBean instance, which the security provider uses to
initialize (read configuration data).

Therefore, both the runtime class (or classes) and the MBean type form what is called
the security provider.

3.2 Security Services Provider Interfaces (SSPIs)

As described in Overview of the Development Process, you develop a custom security
provider by first implementing a number of security services provider interfaces
(SSPIs) to create runtime classes. This section helps you:

e Understand Two Important Restrictions

e Understand the Purpose of the Provider SSPIs

e Understand the Purpose of the Bulk Access Providers

e Determine Which Provider Interface You Will Implement

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

Additionally, this section provides SSPI Quick Reference that indicates which SSPIs
can be implemented for each type of security provider.

3.2.1 Understand Two Important Restrictions

Security providers must adhere to the following restrictions:

* A custom security provider's runtime class implementation must not contain any
code that requires a security check to be performed by the WebLogic Security
Framework. Doing so causes infinite recursion, because the security providers are

ORACLE 3-2

Chapter 3
Security Services Provider Interfaces (SSPIS)

the components of the WebLogic Security Framework that actually perform the
security checks and grant access to WebLogic resources.

No local (where local refers to the same server, cluster, or domain) Java Platform,
Enterprise Edition (Java EE) Version 5 services are available for use within a
security provider's implementation. Any attempt to use them is unsupported. For
example, this prohibits calling an EJB in the current domain from your security
provider.

Java EE services in other domains are accessible and can be used within a
security provider.

3.2.2 Understand the Purpose of the Provider SSPIs

Each SSPI that ends in the suffix Provider (for example, CredentialProvider) exposes
the services of a security provider to the WebLogic Security Framework. This allows
the security provider to be manipulated (initialized, started, stopped, and so on).

ORACLE

Figure 3-2 "Provider" SSPIs

WebLogic Server

SSPIs
SecurityProvider java

all extend

AuditProvider java AdjudicationProviderV2 java AuthenticationProviderV2 java AuthorizationProvider java

CredentialProviderV2 java ‘ RoleProvider java

extends

extends extends
1 1

DeployableCredentialProvider java

(Deprecated) DeployableRoleProviderV2 java DeployableAuthorizationProviderV?2 java

As shown in Figure 3-2, the SSPIs exposing security services to the WebLogic
Security Framework are provided by WebLogic Server, and all extend the
SecurityProvider interface, which includes the following methods:

initialize

public void initialize(ProviderMBean providerMBean, SecurityServices
securityServices)

The initialize method takes as an argument a ProviderMBean, which can be
narrowed to the security provider's associated MBean instance. The MBean
instance is created from the MBean type you generate, and contains configuration
data that allows the custom security provider to be managed in the WebLogic
Server environment. If this configuration data is available, the initialize method
should be used to extract it.

The securityServices argument is an object from which the custom security
provider can obtain and use the Auditor Service. See Auditing Providers and
Auditing Events From Custom Security Providers.

getDescription

public String getDescription()

This method returns a brief textual description of the custom security provider.

3-3

Chapter 3
Security Services Provider Interfaces (SSPIs)

e shutdown

public void shutdown()

This method shuts down the custom security provider.

Because they extend SecurityProvider, a runtime class that implements any SSPI
ending in Provider must provide implementations for these inherited methods.

3.2.3 Understand the Purpose of the Bulk Access Providers

This release of WebLogic Server includes bulk access versions of the following
authorization, adjudication, and role mapping provider SSPI interfaces:

* BulkAuthorizationProvider
* BulkAccessDecision

* BulkAdjudicationProvider
* BulkAdjudicator

* BulkRoleProvider

* BulkRoleMapper

The bulk access SSPI interfaces allow authorization, adjudication, and role mapping
providers to receive multiple decision requests in one call rather than through multiple
calls, typically in a "for™ loop. The intent of the bulk SSPI variants is to allow provider
implementations to take advantage of internal performance optimizations, such as
detecting that many of the passed-in Resource objects are protected by the same policy
and will generate the same decision result.

See Bulk Authorization Providers, Bulk Adjudication Providers, and Bulk Role Mapping
Providers for additional information.

3.2.4 Determine Which Provider Interface You Will Implement

ORACLE

Implementations of SSPIs that begin with the prefix Deployable and end with the suffix
Provider (for example, DeployableRoleProviderV2) expose the services of a custom
security provider into the WebLogic Security Framework as explained in Understand
the Purpose of the Provider SSPIs. However, implementations of these SSPIs also
perform additional tasks. These SSPIs also provide support for security in deployment
descriptors, including the servlet deployment descriptors (web.xml, weblogic.xml), the
EJB deployment descriptors (ejb-jar.xml, weblogic-ejb.jar.xml) and the EAR
deployment descriptors (application.xml, weblogic-application.xml).

Authorization providers, role mapping providers, and credential mapping providers
have deployable versions of their Provider SSPIs.

Note:

If your security provider database (which stores security policies, security
roles, and credentials) is read-only, you can implement the non-deployable
version of the SSPI for your authorization, role mapping, and credential
mapping security providers. However, you will still need to configure
deployable versions of these security provider that do handle deployment.

3-4

Chapter 3
Security Services Provider Interfaces (SSPIS)

3.2.4.1 The DeployableAuthorizationProviderV2 SSPI

An authorization provider that supports deploying security policies on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableAuthorizationProviderV2 SSPI instead of the AuthorizationProvider SSPI.
(However, because the DeployableAuthorizationProviderV2 SSPI extends the
AuthorizationProvider SSPI, you actually will need to implement the methods from
both SSPIs.) This is because Web application and EJB deployment activities require
the authorization provider to perform additional tasks, such as creating and removing
security policies. In a security realm, at least one authorization provider must support
the DeployableAuthorizationProviderV2 SSPI, or else it will be impossible to deploy
Web applications and EJBs.

Note:

For more information about security policies, see Security Policies in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

3.2.4.2 The DeployableRoleProviderV2 SSPI

A role mapping provider that supports deploying security roles on behalf of Web
application or Enterprise JavaBean (EJB) deployments needs to implement the
DeployableRoleProviderv2 SSPI instead of the RoleProvider SSPI. (However, because
the DeployableRoleProviderV2 SSPI extends the RoleProvider SSPI, you will actually
need to implement the methods from both SSPIs.) This is because Web application
and EJB deployment activities require the role mapping provider to perform additional
tasks, such as creating and removing security roles. In a security realm, at least one
role mapping provider must support this SSPI, or else it will be impossible to deploy
Web applications and EJBs.

Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

3.2.4.3 The DeployableCredentialProvider SSPI

Note:

The DeployableCredentialProvider interface is deprecated in this release of
WebLogic Server.

A credential mapping provider that supports deploying security policies on behalf of
Resource Adapter (RA) deployments needs to implement the
DeployableCredentialProvider SSPI instead of the CredentialProvider SSPI. (However,

ORACLE 3-5

Chapter 3
Security Services Provider Interfaces (SSPIS)

because the DeployableCredentialProvider SSPI extends the CredentialProvider SSPI,
you will actually need to implement the methods from both SSPIs.) This is because
Resource Adapter deployment activities require the credential mapping provider to
perform additional tasks, such as creating and removing credentials and mappings. In
a security realm, at least one credential mapping provider must support this SSPI, or
else it will be impossible to deploy Resource Adapters.

Note:

See Credential Mapping Concepts. See Security Policies in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

3.2.5 Understand the SSPI Hierarchy and Determine Whether You Wil
Create One or Two Runtime Classes

ORACLE

Figure 3-3 uses a credential mapping provider to illustrate the inheritance hierarchy
that is common to all SSPIs, and shows how a runtime class you supply can
implement those interfaces. In this example, Oracle supplies the SecurityProvider
interface, and the CredentialProviderV2 and CredentialMapperV2 SSPIs. Figure 3-3
shows a single runtime class called MyCredentialMapperProviderImpl that implements
the CredentialProviderV2 and CredentialMapperV2 SSPIs.

3-6

Chapter 3
Security Services Provider Interfaces (SSPIS)

Figure 3-3 Credential Mapping SSPIs and a Single Runtime Class

SecurityProvider

initialize()
getDescription()
shutdowny)
extands
CredentialMapperv2
CredentialProvidery2
- > getCredential()
i getCredentialProvider() getCredential()
i getCredentials()
i extends *
i DeployableCredentialProvider
! {Deprecated)
s | e)
¥ / ;
WeblLogic
A Server S5Pls

i

i

i

i

i _ ; Security Developer
i “T‘F“E""E"HS II'I'iF'lBI'I"rﬁ'I'ItS- |mp|amantat|un$
i

i

i

i

i

i

i

MyCredentialMapperProviderimpl

impls for all inherited methods

However, Figure 3-3 illustrates only one way you can implement SSPIs: by creating a
single runtime class. If you prefer, you can have two runtime classes (as shown in
Figure 3-4): one for the implementation of the SSPI ending in Provider (for example,
CredentialProviderV2), and one for the implementation of the other SSPI (for example,
the CredentialMapperVv2 SSPI).

When there are separate runtime classes, the class that implements the SSPI ending
in Provider acts as a factory for generating the runtime class that implements the other
SSPI. For example, in Figure 3-4, MyCredentialMapperProviderImpl acts as a factory for
generating MyCredentialMapperImpl.

ORACLE 3.7

Chapter 3
Security Services Provider Interfaces (SSPIS)

Figure 3-4 Credential Mapping SSPIs and Two Runtime Classes

SecurityProvider

initialize()

getDescription(]

shutdown()

&xleinds
CredentialProviderv2 CredentialMappery'2
o >
i getCredentialProvider) getCredential()
i getCredential()
i axtands getCredentials()
i [y
i DeployableCredentialProvider
! {Deprecated)
i mplemerts depmyc.‘redenraajMappaf:g{)

i undeployCredentialMappings()
i implements WebLogic
: & Server SSPls
i : Security Developer
i Implements Implementations
i
i MyCredentialMapparProviderimpl MyCredentialMapperimpl
(S —Tactory—m

impls for all inherited methods impls for all inherited methods
Note:

If you decide to have two runtime implementation classes, you need to
remember to include both runtime implementation classes in the MBean JAR
File (MJF) when you generate the security provider's MBean type. See
Generating an MBean Type to Configure and Manage the Custom Security
Provider .

3.2.6 SSPI Quick Reference

Table 3-1 maps the types of security providers (and their components) with the SSPIs
and other interfaces you use to develop them.

Table 3-1 Security Providers, Their Components, and Corresponding SSPIs

__|
Type/Component SSPislInterfaces

Authentication provider AuthenticationProviderV2

ORACLE 3-8

Chapter 3
Security Service Provider Interface (SSPI) MBeans

Table 3-1 (Cont.) Security Providers, Their Components, and Corresponding

SSPIs

Type/Component

SSPIslinterfaces

LoginModule (JAAS)

LoginModule

Identity Assertion provider

AuthenticationProviderVv2

Identity Asserter

IdentityAsserterV2

Principal Validation provider

Principalvalidator

Authorization

AuthorizationProvider
DeployableAuthorizationProviderV2

Access Decision

AccessDecision

Adjudication provider

AdjudicationProviderV2

Adjudicator

AdjudicatorV2

Role Mapping provider

RoleProvider
DeployableRoleProviderV2

Role Mapper RoleMapper

Auditing provider AuditProvider

Audit Channel AuditChannel
Credential Mapping provider CredentialProviderVv2
Credential Mapper CredentialMapperVv2
Cert Path Provider CertPathProvider

Versionable Application Provider

VersionableApplicationProvider

Note:

Reference Javadoc.

The SSPIs you use to create runtime classes for custom security providers are
located in the weblogic.security.spi package. See WebLogic Server API

3.3 Security Service Provider Interface (SSPI) MBeans

As described in Overview of the Development Process, the second step in developing
a custom security provider is generating an MBean type for the custom security

ORACLE

provider. This section helps you:

e Understand Why You Need an MBean Type

3-9

Chapter 3
Security Service Provider Interface (SSPI) MBeans

* Determine Which SSPI MBeans to Extend and Implement
* Understand the Basic Elements of an MBean Definition File (MDF)

* Understand the SSPI MBean Hierarchy and How It Affects the Administration
Console

* Understand What the WebLogic MBeanMaker Provides

Additionally, this section provides SSPI MBean Quick Reference that indicates which
required SSPI MBeans must be extended and which optional SSPI MBeans can be
implemented for each type of security provider.

3.3.1 Understand Why You Need an MBean Type

In addition to creating runtime classes for a custom security provider, you must also
generate an MBean type. The term MBean is short for managed bean, a Java object
that represents a Java Management eXtensions (JMX) manageable resource.

Note:

JMX is a specification that defines a standard management architecture, APIs,
and management services. See Understanding JMX in Developing
Manageable Applications Using JMX for Oracle WebLogic Server.

An MBean type is a factory for instances of MBeans, the latter of which you or an
administrator can create using the WebLogic Server Administration Console. Once
they are created, you can configure and manage the custom security provider using
the MBean instance, through the WebLogic Server Administration Console.

Note:

All MBean instances are aware of their parent type, so if you modify the
configuration of an MBean type, all instances that you or an administrator may
have created using the WebLogic Server Administration Console will also
update their configurations. (For more information, see Understand the SSPI
MBean Hierarchy and How It Affects the Administration Console .)

3.3.2 Determine Which SSPI MBeans to Extend and Implement

ORACLE

You use MBean interfaces called SSPI MBeans to create MBean types. There are two
types of SSPI MBeans you can use to create an MBean type for a custom security
provider:

* Required SSPI MBeans, which you must extend because they define the basic
methods that allow a security provider to be configured and managed within the
WebLogic Server environment.

e Optional SSPI MBeans, which you can implement because they define additional
methods for managing security providers. Different types of security providers are
able to use different optional SSPI MBeans.

3-10

Chapter 3
Security Service Provider Interface (SSPI) MBeans

See SSPI MBean Quick Reference.

3.3.3 Understand the Basic Elements of an MBean Definition File
(MDF)

An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker
utility to generate the Java files that comprise an MBean type. All MDFs must extend a
required SSPI MBean that is specific to the type of the security provider you have
created, and can implement optional SSPI MBeans.

Example 3-1 shows a sample MBean Definition File (MDF), and an explanation of its
content follows. (Specifically, it is the MDF used to generate an MBean type for the
WebLogic Credential Mapping provider. Note that the DeployableCredentialProvider
interface is deprecated in this release of WebLogic Server.)

Note:

A complete reference of MDF element syntax is available in MBean Definition
File (MDF) Element Syntax.

Example 3-1 DefaultCredentialMapper.xml

<MBeanType

Name = "Defaul t Credenti al Mapper"

Di spl ayName = "Defaul t Credenti al Mapper "

Package = "weblogic.security.providers.credentials"

Extends = "webl ogi c. managenent . security.credentials. Depl oyabl eCredenti al Mapper"”

I npl ements = "webl ogi c. mnagenent . security.credentials. UserPasswordCredenti al MapEdi t or
weblogic.management.security.credentials.UserPasswordCredentialMapExtendedReader,
weblogic.management.security.ApplicationVersioner,
weblogic.management.security. Import,
weblogic.management.security.Export"

PersistPolicy = "OnUpdate™

Description = "This MBean represents configuration attributes for the WebLogic Credential
Mapping provider.&It;p>"
>
<MBeanAttribute

Name = "Provi der O assNane"

Type = "java.lang.String"

Writeable = "false"

Default = "é&gquot ;webl ogi c. security. providers.credentials. DefaultCredential Mapper Provi der | npl &uot ; "

Description = "The name of the Java class that loads the WebLogic Credential Mapping
provider."

/>
<MBeanAttribute

Name = "Description"

Type = "java.lang.String"

Writeable = "false"

Default = ""Provider that performs Default Credential Mapping""

Description = "A short description of the WebLogic Credential Mapping provider."

/>
<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

ORACLE 3-11

Chapter 3
Security Service Provider Interface (SSPI) MBeans

Default = ""1.0""
Description = "The version of the WebLogic Credential Mapping provider."

/>

</MBeanType>

The bold attributes in the <MBeanType> tag show that this MDF is named
DefaultCredentialMapper and that it extends the required SSPI MBean called
DeployableCredentialMapper. It also includes additional management capabilities by
implementing the UserPasswordCredentialMapEditor optional SSPI MBean.

The ProviderClassName, Description, and Version attributes defined in the
<MBeanAttribute> tags are required in any MDF used to generate MBean types for
security providers because they define the security provider's basic configuration
methods, and are inherited from the base required SSPI MBean called Provider (see
Figure 3-5). The ProviderClassName attribute is especially important. The value for the
ProviderClassName attribute is the Java filename of the security provider's runtime class
(that is, the implementation of the appropriate SSPI ending in Provider). The example
runtime class shown in Example 3-1 is DefaultCredentialMapperProviderimpl. java.

While not shown in Example 3-1, you can include additional attributes and operations
in an MDF using the <MBeanAttribute> and <MBeanOperation> tags. Most custom
attributes will automatically appear in the Provider Specific tab for your custom security
provider in the WebLogic Server Administration Console. To display custom
operations, however, you need to write a console extension.

Note:

The Sample Auditing provider provides an example of adding a custom
attribute.

3.3.3.1 Custom Providers and Classpaths

ORACLE

Classes loaded from WL_HOME\server\lib\mbeantypes are not visible to other JAR and
EAR files deployed on WebLogic Server. If you have common utility classes that you
want to share, you must place them in the system classpath.

Note:

WL_HOME\server\lib\mbeantypes is the default directory for installing MBean
types. Beginning with 9.0, security providers can be loaded from .. .\domaindir
\lib\mbeantypes as well. JAR files loaded from the ...\domaindir\lib
\mbeantypes directory can be shared across applications. They do not need to
be explicitly placed in the system classpath.

3-12

Chapter 3
Security Service Provider Interface (SSPI) MBeans

3.3.3.2 Throwing Exceptions from MBean Operations

Your custom provider MBeans must throw only JDK exception types or
weblogic.management.utils exception types. Otherwise, JMX clients may not include
the code necessary to receive your exceptions.

* For typed exceptions, you must throw only the exact types from the throw clause
of your MBean's method, as opposed to deriving and throwing your own exception
type from that type.

* For nested exceptions, you must throw only JDK exception types or
weblogic.management._utils exceptions.

« For runtime exceptions, you must throw or pass through only JDK exceptions.

3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes

As described in The MBeanAttribute Subelement, you can use the Encrypted attribute
to specify that the value of an MBean attribute should not be displayed as clear text.
For example, you encrypt the value of the MBean attribute when getting input for a
password. The following code fragment shows an example of using the Encrypted

attribute:

<MBeanAttribute

Name = "PrivatePassPhrase"
Type = "java.lang.String"
Encrypted = "true"

Default = """"
Description = "The Keystore password."
/>

3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the
Administration Console

All attributes and operations that are specified in the required SSPI MBeans that your
MBean Definition File (MDF) extends (all the way up to the Provider base SSPI
MBean) automatically appear in a WebLogic Server Administration Console page for
the associated security provider. You use these attributes and operations to configure
and manage your custom security providers.

Note:

For authentication security providers only, the attributes and operations that
are specified in the optional SSPI MBeans your MDF implements are also
automatically supported by the WebLogic Server Administration Console. For
other types of security providers, you must write a console extension in order
to make the attributes and operations inherited from the optional SSPI
MBeans available in the WebLogic Server Administration Console.

Figure 3-5 illustrates the SSPI MBean hierarchy for security providers (using the
WebLogic Credential Mapping MDF as an example), and indicates what attributes and

ORACLE 3-13

Chapter 3
Security Service Provider Interface (SSPI) MBeans

operations will appear in the WebLogic Server Administration Console for the
WebLogic Credential Mapping provider.

Figure 3-5 SSPI MBean Hierarchy for Credential Mapping Providers

Required Optional
Provider
ProviderClassName
Description
Varsion
extends
CredentialMapper UserPasswordCredentialMapReader
exiands implements
I I
DeployableCredentialMapper UserPasswordCredentialMapEditor
{Deprecated) +
CredeniiaiMappingDeploymentEnabled
t WebLogic Server
SSPI MBeans
axtends
Security Developer-
Supplied MDF
DefaultCredentialMapper
ProviderClassName implements
Dascription
Version
CredenfiaiMappingDeploymentEnabled

Implementing the hierarchy of SSPI MBeans in the DefaultCredentialMapper MDF
(shown in Figure 3-5) produces the page in the WebLogic Server Administration
Console that is shown in Figure 3-6. (A partial listing of the Defaul tCredentialMapper
MDF is shown in Example 3-1.)

Figure 3-6 DefaultCredentialMapper WebLogic Server Administration Console
Page

Configuration | Migration
Common = Provider Specific

This page displays basic information about this Credential Mapping Provider.

Description: WiehlLogic Credential Mapping The description of your Credential Mapping
Provider Provider More infa...
Yersion: 1.0 The version of your Credential Mapping Provider
Mare info...
Name: DefaultCredentialMapper The name of your Credential Mapping Provider
Mare info...

The Name, Description, and Version fields come from attributes with these names
inherited from the base required SSPI MBean called Provider and specified in the
DefaultCredentialMapper MDF. Note that the DisplayName attribute in the

ORACLE 3-14

Chapter 3
Security Service Provider Interface (SSPI) MBeans

DefaultCredentialMapper MDF generates the value for the Name field, and that the
Description and Version attributes generate the values for their respective fields as
well. The Credential Mapping Deployment Enabled field is displayed (on the Provider
Specific page) because of the CredentialMappingDeploymentEnabled attribute in the
DeployableCredentialMapper required SSPI MBean, which the DefaultCredentialMapper
MDF extends. Notice that this WebLogic Server Administration Console page does not
display a field for the Defaul tCredentialMapper implementation of the
UserPasswordCredentialMapEditor optional SSPI MBean.

3.3.5 Understand What the WebLogic MBeanMaker Provides

ORACLE

The WebLogic MBeanMaker is a command-line utility that takes an MBean Definition
File (MDF) as input and outputs files for an MBean type. When you run the MDF you
created through the WebLogic MBeanMaker, the following occurs:

e Any attributes inherited from required SSPI MBeans—as well as any custom
attributes you added to the MDF—cause the WebLogic MBeanMaker to generate
complete getter/setter methods in the MBean type's information file. (The MBean
information file is not shown in Figure 3-7.) See About the MBean Information File.

Necessary developer action: None. No further work must be done for these
methods.

e Any operations inherited from optional SSPI MBeans cause the MBean
implementation file to inherit their methods, whose implementations you must
supply from scratch.

Necessary developer action: Currently, the WebLogic MBeanMaker does not
generate method stubs for these inherited methods, so you will need to supply the
appropriate implementations.

e Any custom operations you added to the MDF will cause the WebLogic
MBeanMaker to generate method stubs.

Necessary developer action: You must provide implementations for these
methods. (However, because the WebLogic MBeanMaker generates the stubs,
you do not need to look up the Java method signatures.)

This is illustrated in Figure 3-7.

3-15

Chapter 3
Security Service Provider Interface (SSPI) MBeans

Figure 3-7 What the WebLogic MBeanMaker Provides

Required S5PI MBean Cptional 25F1 MBean Cptional 25F1 MBean
Attribute T Operation 2 Operation 3
[
T implen‘uants4T
extends
implement=
MOF

" Custom Attribute 2
Dustom Operation 4

run through MBean Implementation File
W
(Wethgic MBeantlaker | autputs {Operation 2 (Methods from scratch)
exdencs Oparation 3 (Methods from scratoh)
outputs Custorn Operstion 4 (Method stubs)
T

MBean Interface File

Attribute 1

Custom Attrbute 2
Cperation 2
Ciperation 3
Dustorm Operation 4

3.3.5.1 About the MBean Information File

ORACLE

The MBean information file contains a compiled definition of the data in the MBean
Definition File in a form that IMX Model MBeans require. The format of this file is a list
of attributes, operations, and notifications, each of which also has a set of descriptor
tags that describe that entity. In addition, the MBean itself also has a set of descriptor
tags. An example of this format is as follows:

MBean + tags

attributel + tags, attribute2 + tags ...
operationl + tags, operation2 + tags ...
notificationl + tags, notification2 + tags ...

If desired, you can access this information at runtime by calling the standard JMX
server getMBeanInfo method to obtain the ModeIMBeanInfo.

Note:

Be sure to reference the JMX specification to determine how to interpret the
returned structure.

3-16

Chapter 3
Security Service Provider Interface (SSPI) MBeans

3.3.6 SSPI MBean Quick Reference

Based on the list of SSPIs you need to implement as part of developing your custom
security provider, locate the required SSPI MBeans you need to extend in Table 3-2.
Using Table 3-3 through Table 3-5, locate any optional SSPI MBeans you also want to
implement for managing your security provider.

ORACLE

Table 3-2 Required SSPI MBeans

Type Package Name Required SSPI MBean

Authentication provider authentication Authenticator

Identity Assertion provider authentication IdentityAsserter

Authorization provider authorization Authorizer or
DeployableAuthorizer

Adjudication provider authorization Adjudicator

Role Mapping provider authorization RoleMapper or
DeployableRoleMapper

Auditing provider audit Auditor

Credential Mapping provider credentials CredentialMapper or

DeployableCredentialMapper

Cert Path Provider

pk CertPathBuilder or
CertPathvalidator

Note:

The required SSPI MBeans shown in Table 3-2 are located in the
weblogic.management.security.<Package Name> package.

Table 3-3 Optional Authentication SSPI MBeans
|

Optional SSPI MBeans

Purpose

GroupEditor Create a group. If the group already exists, an
exception is thrown.

GroupMemberLister List a group's members.

GroupReader Read data about groups.

GroupRemover Remove groups.

MemberGroupLister List the groups containing a user or a group.

UserEditor Create, edit and remove users.

3-17

Chapter 3
Security Service Provider Interface (SSPI) MBeans

Table 3-3 (Cont.) Optional Authentication SSPI MBeans

Optional SSPI MBeans

Purpose

UserPasswordEditor Change a user's password.
UserReader Read data about users.
UserRemover Remove users.

Note:

The optional authentication SSPI MBeans shown in Table 3-3 are located in
the weblogic.management.security.authentication package. They are also
supported in the WebLogic Server Administration Console.

For an example of how to implement the optional authentication SSPI MBeans
shown in Table 3-4, review the code for the Manageable Sample
Authentication Provider.

Table 3-4 Optional Authorization SSPI MBeans

Optional SSPI MBeans

Purpose

PolicyAuxiliary

Auxiliary methods for creating, editing, and removing
policies.

PolicyConsumer

Indicates that the provider supports policy
consumption.

PolicyEditor

Create, edit and remove security policies.

PolicyLister

List data about policies.

PolicyReader

Read data about security policies.

PolicyStore Manages policies in a policy store.
RoleEditor Create, edit and remove security roles.
RoleReader Read data about security roles.
RoleLister List data about roles.

Note:

ORACLE

The optional authorization SSPI MBeans shown in Table 3-4 are located in the
weblogic.management.security.authorization package.

3-18

Chapter 3
Security Data Migration

Table 3-5 Optional Credential Mapping SSPI MBeans

Optional SSPI MBeans Purpose

UserPasswordCredentialMapEditor Edit credential maps that map a WebLogic
user to a remote username and password.

UserPasswordCredentialMapExtendedReader Read credential maps that map a WebLogic
user to a remote username and password.

UserPasswordCredentialMapReader Read credential maps that map a WebLogic
user to a remote username and password.

Note:

The optional credential mapping SSPI MBeans shown in Table 3-5 are located
in the weblogic.management.security.credentials package.

3.4 Security Data Migration

ORACLE

Several of the WebLogic security providers have been developed to support security
data migration. This means that administrators can export users and groups (for the
WebLogic Authentication provider), security policies (for the WebLogic Authorization
provider), security roles (for the WebLogic Role Mapping provider), or credential
mappings (for the credential mapping provider) from one security realm, and then
import them into another security realm. Administrators can migrate security data for
each of these WebLogic security providers individually, or migrate security data for all
the WebLogic security providers at once (that is, security data for the entire security
realm).

The migration of security data may be helpful to administrators when:

» Transitioning from development mode to production mode

» Proliferating production mode security configurations to security realms in new
WebLogic Server domains

* Moving data to a new security realm in the same WebLogic Server domain or in a
different WebLogic Server domain.

* Moving from one security realm to a new security realm in the same WebLogic
Server domain, where one or more of the WebLogic security providers will be
replaced with custom security providers. (In this case, administrators need to copy
security data for the security providers that are not being replaced.)

The following sections provide more information about security data migration:
* Migration Concepts
* Adding Migration Support to Your Custom Security Providers

* Administration Console Support for Security Data Migration

3-19

Chapter 3
Security Data Migration

3.4.1 Migration Concepts

Before you start to work with security data migration, you need to understand the
following concepts:

e Formats
e Constraints

* Migration Files

3.4.1.1 Formats

A format is simply a data format that specifies how security data should be exported
or imported. Currently, WebLogic Server does not provide any standard, public
formats for developers of security providers. Therefore, the format you use is entirely
up to you. Keep in mind, however, that for data to be exported from one security
provider and later imported to another security provider, both security providers must
understand how to process the same format. Supported formats are the list of data
formats that a given security provider understands how to process.

Note:

Because the data format used for the WebLogic security providers is
unpublished, you cannot currently migrate security data from a WebLogic
security provider to a custom security provider, or visa versa.

Additionally, security vendors wanting to exchange security data with security
providers from other vendors will need to collaborate on a standard format to
do so.

3.4.1.2 Constraints

Constraints are key/value pairs used to specify options to the export or import
process. Constraints allow administrators to control which security data is exported or
imported from the security provider's database. For example, an administrator may
want to export only users (not groups) from an authentication provider's database, or a
subset of those users. Supported constraints are the list of constraints that
administrators may specify during the migration process for a particular security
provider. For example, an authentication provider's database can be used to import
users and groups, but not security policies.

3.4.1.3 Migration Files

ORACLE

Export files are the files to which security data is written (in the specified format)
during the export portion of the migration process. Import files are the files from which
security data is read (also in the specified format) during the import portion of the
migration process. Both export and import files are simply temporary storage locations
for security data as it is migrated from one security provider's database to another.

3-20

Note:

Chapter 3
Security Data Migration

The migration files are not protected unless you take additional measures to
protect them. Because migration files may contain sensitive data, take extra
care when working with them.

3.4.2 Adding Migration Support to Your Custom Security Providers

If you want to develop custom security providers that support security data migration
like the WebLogic security providers do, you need to extend the
weblogic.management.security. ImportMBean and
weblogic.management.security.ExportMBean optional SSPI MBeans in the MBean
Definition File (MDF) that you use to generate MBean types for your custom security
providers, then implement their methods. These optional SSPI MBeans include the
attributes and operations described in Table 3-6 and Table 3-7, respectively.

Table 3-6 Attributes and Operations of the ExportMBean Optional SSPI MBean
|

Attributes/Operations

Description

SupportedExportFormats

A list of export data formats that the security
provider supports.

SupportedExportConstraints

A list of export constraints that the security
provider supports.

exportData

Exports provider-specific security data in a
specified format.

format

A parameter on the exportData operation
that specifies the format to use for exporting
provider-specific data.

filename

A parameter on the exportData operation
that specifies the full path to the filename
used to export provider-specific data.

Notes: The WebLogic security providers that
support security data migration are
implemented in a way that allows you to
specify a relative path (from the directory
relative to the server you are working on).
You must specify a directory that already
exists; WebLogic Server will not create one
for you.

constraints

A parameter on the exportData operation
that specifies the constraints to be used when
exporting provider-specific data.

ORACLE

3-21

Chapter 3
Security Data Migration

Note:

See ExportMBean interface in Java APl Reference for Oracle WebLogic
Server.

Table 3-7 Attributes and Operations of the ImportMBean Optional SSPI MBean

___|
Attributes/Operations Description

SupportedImportFormats A list of import data formats that the security
provider supports.

SupportedlImportConstraints A list of import constraints that the security
provider supports.

importData Imports provider-specific data from a specified
format.
format A parameter on the importData operation that

specifies the format to use for importing provider-
specific data.

filename A parameter on the importData operation that
specifies the full path to the filename used to
import provider-specific data.
Note: The WebLogic security providers that
support security data migration are implemented
in a way that allows you to specify a relative path
(from the directory relative to the server you are
working on). You must specify a directory that
already exists; WebLogic Server will not create
one for you.

constraints A parameter on the importData operation that
specifies the constraints to be used when
importing provider-specific data.

Note:

See Java API Reference for Oracle WebLogic Server for the ExportMBean
interface for the ImportMBean interface.

3.4.3 Administration Console Support for Security Data Migration

ORACLE

Unlike other optional SSPI MBeans you may extend in the MDF for your custom
security providers, the attributes and operations inherited from the ExportVMBean and
ImportMBean optional SSPI MBeans automatically appear in a WebLogic Server
Administration Console page for the associated security provider, under a Migration
tab (see Figure 3-8 for an example). This allows administrators to export and import
security data for each security provider individually.

3-22

Chapter 3
Security Data Migration

Note:

If a security provider does not have migration capabilities, the Migration tab for
that security provider will not appear in the WebLogic Server Administration
Console.

See Migrating Security Data in Administering Security for Oracle WebLogic
Server.

Figure 3-8 Migration Tab for the WebLogic Authentication Provider

This page allows you to import users and/or groups from a file to the Default Authentication provider's
database.

Import Format: Defaultitn « The format for
importing this Default
Authenticator provider
specific data. More

info...
'IST"P'th File on C:\diablodomaimDefaultAl ;Ihe full Pa”ﬂfmﬂﬁe N
erver: ilename used to wri
data. More info...
Supported Import None The list of constraints 1o
Constraints: be used when importing
data. Mare info...
Import Constraints The constraints o be
{key=value): uzed when importing

data, More info...

Additionally, if any of the security providers configured in your security realm have
migration capabilities, the Migration tab at the security realm level (see Figure 3-9 for
an example) allows administrators to export or import security data for all the security
providers configured in the security realm at once.

Note:

The Migration tab at the security realm level always appears in the WebLogic
Server Administration Console, whether or not any security providers with
migration capabilities are configured in the security realm. However, it is only
operational if one or more security providers have migration capabilities.

See Migrating Security Data in Administering Security for Oracle WebLogic
Server.

ORACLE 3-23

Chapter 3
Management Utilities Available to Developers of Security Providers

Figure 3-9 Migration Tab for a Security Realm

Save

A security provider database contains the users, groups, security policies, security roles, and credentials
used by some types of security providers to provide security services. For example: an suthentication
provider requires information about users and groups; an Autharization provider requires information about
security policies; a Role Mapping provider requires information about security roles, and a Credential
Mapping provider requires information about credentials. These security providers need this information to
be available in 2 database in order to function properly.

Import data into the security provider database of each security provider configured in this security realm.

Import Directory | | The directory located on the server from which data

on Server: should be imported into the security providers' data
stores, (This data should have previously been exported
fram a security realm.)) More Info...

Note:

Administrators can also use the WebLogic Scripting Tool (WLST) (rather than
the WebLogic Server Administration Console) to migrate security data when
you extend the ExportMBean and ImportMBean optional SSPI MBeans. See
Understanding the WebLogic Scripting Tool.

As always, if you add additional attributes or operations to your MDF, you must write a
console extension in order to make them available in the WebLogic Server
Administration Console.

3.5 Management Utilities Available to Developers of Security

Providers

ORACLE

The weblogic.management._utils package contains additional management interfaces
and exceptions that developers might find useful, particularly when generating MBean
types for their custom security providers. Implementation of these interfaces and
exceptions is not required to develop a custom security provider (unless you inherit
them by implementing optional SSPI MBeans in your custom security provider's MDF).

Note:

The interfaces and classes are located in this package (rather than in
weblogic.management.security) because they are general purpose utilities; in
other words, these utilities can also be used for non-security MBeans. The
various types of MBeans are described in Overview of WebLogic Server
Subsystem MBeans in Developing Custom Management Ultilities Using JMX
for Oracle WebLogic Server.

The weblogic.management.utils package contains the following utilities:

3-24

Chapter 3
Security Providers and WebLogic Resources

« Common exceptions.
* Interfaces that provide methods for handling large lists of data.

* Aninterface containing configuration attributes that are required to communicate
with an external LDAP server.

Note:

The Manageable Sample Authentication provider uses the
weblogic.management.utils package for exceptions as well as to handle lists of
data.

See Java API Reference for Oracle WebLogic Server for the ExportMBean interface
for the weblogic.management.utils package.

3.6 Security Providers and WebLogic Resources

A WebLogic resource is a structured object used to represent an underlying
WebLogic Server entity that can be protected from unauthorized access. Developers
of custom authorization, role mapping, and credential mapping providers need to
understand how these security providers interact with WebLogic resources and the
security policies used to secure those resources.

Note:

Security policies replace the access control lists (ACLs) and permissions that
were used to protect WebLogic resources in previous releases of WebLogic
Server.

The following sections provide information about security providers and WebLogic
resources:

* The Architecture of WebLogic Resources

* Types of WebLogic Resources

* WebLogic Resource Identifiers

e Creating Default Groups for WebLogic Resources

e Creating Default Security Roles for WebLogic Resources

» Creating Default Security Policies for WebLogic Resources
» Single-Parent Resource Hierarchies

e ContextHandlers and WebLogic Resources

ORACLE 3-25

Chapter 3
Security Providers and WebLogic Resources

Note:

See Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

3.6.1 The Architecture of WebLogic Resources

ORACLE

The Resource interface, located in the weblogic.security.spi package, provides the
definition for an object that represents a WebLogic resource, which can be protected
from unauthorized access. The ResourceBase class, located in the
weblogic.security.service package, is an abstract base class for more specific
WebLogic resource types, and facilitates the model for extending resources. (See
Figure 3-10 and Types of WebLogic Resources .)

Figure 3-10 Architecture of WebLogic Resources

Resource
implements
ResourceBase
getKeys()
getlDy)
getValues()
toString()
extands
AdminResource ElSResource RemoteResource
ApplicationResource JDECResource ServerResource
COMResource JMSResource URLResource
ControlResource JNDIResource WebServiceResource
EJBResource WorkCaontextResource

The ResourceBase class includes the Oracle-provided implementations of the getlD,
getKeys, getvalues, and toString methods. See WebLogic Server APl Reference
Javadoc for the ResourceBase class.

This architecture allows you to develop security providers without requiring that they
be aware of any particular WebLogic resources. Therefore, when new resource types
are added, you should not need to modify the security providers.

3-26

Chapter 3
Security Providers and WebLogic Resources

3.6.2 Types of WebLogic Resources

As shown in Figure 3-10, certain classes in the weblogic.security.service package

extend the ResourceBase class, and therefore provide you with implementations for

specific types of WebLogic resources. WebLogic resource implementations are
available for:

e Administrative resources
e Application resources
« COM resources

e Control resources

* EIS resources
 EJB resources

e JDBC resources

e JMS resources

* JNDI resources

* Remote resources

e Server resources

* URL resources

e Web service resources

e Work Context resources

Note:

See Securing Resources Using Roles and Policies for Oracle WebLogic
Server and the WebLogic Server API Reference Javadoc for the
weblogic.security.service package.

3.6.3 WebLogic Resource Identifiers

Each WebLogic resource (described in Types of WebLogic Resources) can identified
in two ways: by its toString() representation or by an ID obtained using the getID()

method.

3.6.3.1 The toString() Method

ORACLE

If you use the toString() method of any WebLogic resource implementation, a

description of the WebLogic resource will be returned in the form of a String. First, the
type of the WebLogic resource is printed in pointy-brackets. Then, each key is printed,
in order, along with its value. The keys are comma-separated. Values that are lists are

comma-separated and delineated by open and close curly braces. Each value is
printed as is, except that commas (,), open braces ({), close braces (}), and back
slashes (\) are each escaped with a back slash. For example, the EJB resource:

3-27

Chapter 3
Security Providers and WebLogic Resources

EJBResource ("myApp",
"MyJarFile",
*myEJB",
"myMethod",
“Home",
new String[] {"argumentTypel™, "argumentType2"}

);

will produce the following toString output:

type=<ejb>, app=myApp, module="MyJarFile", ejb=myEJB, method="myMethod",
methodInterface="Home", methodParams={argumentTypel, argumentType2}

The format of the WebLogic resource description provided by the toString() method is
public (that is, you can construct one without using a Resource object) and is reversible
(meaning that you can convert the String form back to the original WebLogic
resource).

Note:

Example 3-2 illustrates how to use the toString() method to identify a
WebLogic resource.

3.6.3.2 Resource IDs and the getlD() Method

The getID() method on each of the defined WebLogic resource types returns a 64-bit
hashcode that can be used to uniquely identify the WebLogic resource in a security
provider. The resource ID can be effectively used for fast runtime caching, using the
following algorithm:

Obtain a WebLogic resource.
Get the resource ID for the WebLogic resource using the getlD method.
Look up the resource ID in the cache.

If the resource ID is found, then return the security policy.

@ H w b P

If the resource ID is not found, then:

a. Use the toString() method to look up the WebLogic resource in the security
provider database.

b. Store the resource ID and the security policy in cache.

c. Return the security policy.

Note:

Example 3-3 illustrates how to use the get1D() method to identify a WebLogic
resource in an authorization provider, and provides a sample implementation
of this algorithm.

Because it is not guaranteed stable across multiple runs, you should not use the
resource ID to store information about the WebLogic resource in a security provider

ORACLE 3-28

Chapter 3
Security Providers and WebLogic Resources

database. Instead, Oracle recommends that you store any resource-to-security policy
and resource-to-security role mappings in their corresponding security provider
database using the WebLogic resource's toString() method.

Note:

See Initialization of the Security Provider Databaseand The toString() Method.

3.6.4 Creating Default Groups for WebLogic Resources

When writing a runtime class for a custom authentication provider, there are several
default groups that you are required to create. Table 3-8 provides information to assist
you with this task.

Table 3-8 Default Groups and Group Membership

Group Name Group Membership
Administrators Empty, or an administrative user.
Deployers Empty

Monitors Empty

Operators Empty

AppTesters Empty

OracleSystemGroup OracleSystemUser

3.6.5 Creating Default Security Roles for WebLogic Resources

ORACLE

When writing a runtime class for a custom role mapping provider, there are several

default global roles that you are required to create. Table 3-9 provides information to
assist you with this task.

Table 3-9 Default Global Roles and Group Associations

Global Role Name Group Association
Admin Administrators group
AdminChannelUser AdminChannelUsers, Administrators, Deployers,

Operators, Monitors, and AppTesters groups

Anonymous weblogic.security.WLSPrincipals.getEveryoneGro
upname() group

CrossDomainConnector CrossDomainConnectors group

Deployer Deployers group

3-29

Chapter 3
Security Providers and WebLogic Resources

Table 3-9 (Cont.) Default Global Roles and Group Associations

Global Role Name

Group Association

Monitor Monitors group

Operator Operators group

AppTester AppTesters group

OracleSystemRole OracleSystemGroup
Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

3.6.6 Creating Default Security Policies for WebLogic Resources

When writing a runtime class for a custom authorization provider, there are several
default security policies that you are required to create. These default security policies
initially protect the various types of WebLogic resources. Table 3-10 provides

ORACLE

information to assist you with this task.

Table 3-10 Default Security Policies for WebLogic Resources

WebLogic Resource Constructor

Security Policy

new AdminResource(null, null, null)

Admin global role

new AdminResource("'Configuration™, null,
null)

Admin, Deployer, Monitor, or Operator
global roles

new AdminResource("FileDownload”, null,
null)

Admin or Deployer global role

new AdminResource("FileUpload”, null,
null)

Admin or Deployer global role

New AdminResource("ViewLog", null, null)

Admin or Deployer global role

new ControlResource(null, null, null)

weblogic.security WLSPrincipals.getEv
eryoneGroupname() group

new EISResource(null, null, null)

weblogic.security.WLSPrincipals.getEv
eryoneGroupname() group

new EJBResource(null, null, null, null,
null, null)

weblogic.security.WLSPrincipals.getEv
eryoneGroupname() group

new JDBCResource(null, null, null, null,
null)

weblogic.security WLSPrincipals.getEv
eryoneGroupname() group

3-30

Chapter 3
Security Providers and WebLogic Resources

Table 3-10 (Cont.) Default Security Policies for WebLogic Resources

___|
WebLogic Resource Constructor Security Policy

new JNDIResource(null, null, null) weblogic.security_WLSPrincipals.getEv
eryoneGroupname() group

new JMSResource(null, null, null, null) weblogic.security WLSPrincipals.getEv
eryoneGroupname() group

new ServerResource(null, null, null) Admiin or Operator global roles
new URLResource(null, null, null, null, weblogic.security WLSPrincipals.getEv
null) eryoneGroupname() group

new WebServiceResource(null, null, null, weblogic.security_WLSPrincipals.getEv
null) eryoneGroupname() group

new WorkContext(null, null) weblogic.security WLSPrincipals.getEv
eryoneGroupname() group

Note:

Application and COM resources should not have default security policies (that
is, they should not grant permission to anyone by default).

3.6.7 Looking Up WebLogic Resources in a Security Provider's
Runtime Class

ORACLE

Example 3-2 illustrates how to look up a WebLogic resource in the runtime class of an
authorization provider. This algorithm assumes that the security provider database for
the authorization provider contains a mapping of WebLogic resources to security
policies. It is not required that you use the algorithm shown in Example 3-2, or that you
utilize the call to the getParentResource method. (See Single-Parent Resource
Hierarchies.)

Example 3-2 How to Look Up a WebLogic Resource in an Authorization
Provider: Using the toString Method

Policy findPolicy(Resource resource) {
Resource myResource = resource;
while (myResource != null) {
String resourceText = myResource.toString();
Policy policy = lookupInDB(resourceText);
if (policy != null) return policy;
myResource = myResource.getParentResource();

}

return null;

}

You can optimize the algorithm for looking up a WebLogic resource by using the getlID
method for the resource. (Use of the toString method alone, as shown in Example 3-2,

3-31

Chapter 3
Security Providers and WebLogic Resources

may impact performance due to the frequency of string concatenations.) The getlD
method may be quicker and more efficient because it is a hash operation that is
calculated and cached within the WebLogic resource itself. Therefore, when the getiD
method is used, the toString value only needs to be calculated once per resource (as
shown in Example 3-3).

Example 3-3 How to Look Up a WebLogic Resource in an Authorization
Provider: Using the getiD Method

Policy findPolicy(Resource resource) {
Resource myResource = resource;
while (myResource != null) {
long id = myResource.getID();
Policy policy = lookuplInCache(id);
if (policy !'= null) return policy;
String resourceText = myResource.toString();
Policy policy = lookupInDB(resourceText);
if (policy !'= null) {
addToCache(id, policy);
return policy;
}
myResource = myResource.getParentResource();
}

return null;

}

Note:

The getID method is not guaranteed between patch sets or future WebLogic
Server releases. Therefore, you should not store getID values in your security
provider database.

3.6.8 Single-Parent Resource Hierarchies

ORACLE

The level of granularity for WebLogic resources is up to you. For example, you can
consider an entire Web application, a particular Enterprise JavaBean (EJB) within that
Web application, or a single method within that EJB to be a WebLogic resource.

WebLogic resources are arranged in a hierarchical structure ranging from most
specific to least specific. You can use the getParentResource method for each of the
WebLogic resource types if you like, but it is not required.

The WebLogic security providers use the single-parent resource hierarchy as follows:
If a WebLogic security provider attempts to access a specific WebLogic resource and
that resource cannot be located, the WebLogic security provider will call the
getParentResource method of that resource. The parent of the current WebLogic
resource is returned, and allows the WebLogic security provider to move up the
resource hierarchy to protect the next (less-specific) resource. For example, if a caller
attempts to access the following URL resource:

type=<url>, application=myApp, contextPath="/mywebapp"”, uri=foo/bar/my.jsp

and that exact URL resource cannot be located, the WebLogic security provider will
progressively attempt to locate and protect the following resources (in order):

3-32

Chapter 3
Security Providers and WebLogic Resources

type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/bar/*

type=<url>, application=myApp, contextPath="/mywebapp", uri=/foo/*
type=<url>, application=myApp, contextPath="/mywebapp", uri=*.jsp
type=<url>, application=myApp, contextPath="/mywebapp"”, uri=/*

type=<url>, application=myApp, contextPath="/mywebapp"
type=<url>, application=myApp

type=<app>, application=myApp

type=<url>

Note:

See Java API Reference for Oracle WebLogic Server for any of the predefined
WebLogic resource types or the Resource interface.

3.6.8.1 Pattern Matching for URL Resources

Sections SRV.11.1 and SRV.11.2 of the Java Servlet 2.3 Specification (http://
Jjcp.org/aboutJava/communityprocess/first/jsr053/index.html) describe the servlet
container's pattern matching rules. These rules are used for URL resources as well.
The following examples illustrate some important concepts with regard to URL
resource pattern matching.

3.6.8.1.1 Example 1

ORACLE

For the URL resource type=<url>, application=myApp, contextPath=/mywebapp,
uri=/foo/my_jsp, httpMethod=GET, the resource hierarchy used is as follows. (Note lines
3 and 4, which contain URL patterns that may be different from what is expected.)

1. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp,
httpMethod=GET

2. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp

3. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*,
httpMethod=GET

4. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/my.jsp/*

5. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*,
httpMethod=GET

6. type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*

7. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp,
httpMethod=GET

8. type=<url>, application=myApp, contextPath=/mywebapp, uri=*.jsp
9. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*, httpMethod=GET
10. type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

11. type=<url>, application=myApp, contextPath=/mywebapptype=<url>,
application=myApp

12. type=<app>, application=myApp
13. type=<url>

3-33

http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html
http://jcp.org/aboutJava/communityprocess/first/jsr053/index.html

Chapter 3
Security Providers and WebLogic Resources

3.6.8.1.2 Example 2

For the URL resource type=<url>, application=myApp, contextPath=/mywebapp, uri=/
foo, the resource hierarchy used is as follows. (Note line 2, which contains a URL
pattern that may be different from what is expected.)

type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo
type=<url>, application=myApp, contextPath=/mywebapp, uri=/foo/*
type=<url>, application=myApp, contextPath=/mywebapp, uri=/*

type=<url>, application=myApp

1.
2
3
4. type=<url>, application=myApp, contextPath=/mywebapp
5
6. type=<app>, application=myApp

7

type=<url>

3.6.9 ContextHandlers and WebLogic Resources

ORACLE

A ContextHandler is a high-performing WebLogic class that obtains additional context
and container-specific information from the resource container, and provides that
information to security providers making access or role mapping decisions. The
ContextHandler interface provides a way for an internal WebLogic resource container to
pass additional information to a WebLogic Security Framework call, so that a security
provider can obtain contextual information beyond what is provided by the arguments
to a particular method. A ContextHandler is essentially a name/value list and as such,
it requires that a security provider know what names to look for. (In other words, use of
a ContextHandler requires close cooperation between the WebLogic resource
container and the security provider.) Each name/value pair in a ContextHandler is
known as a context element, and is represented by a ContextElement object.

Note:

See WebLogic Server API Reference Javadoc for the
weblogic.security.service package.

Resource types have different context elements whose values you can inspect as part
of developing a custom provider. That is, not all containers pass all context elements.

Table 3-11 lists the available ContextHandler entries.

Table 3-11 Context Handler Entries

Context Element Name Description and Type

com.bea.contextelement. A servlet access request or SOAP message via HTTP

servlet_HttpServletRequest javax.http.servlet.HttpServletRequest

com.bea.contextelement. A servlet access response or SOAP message via
HTTP

servlet._HttpServletResponse
Javax.http.servlet.HttpServletResponse

3-34

ORACLE

Chapter 3
Security Providers and WebLogic Resources

Table 3-11 (Cont.) Context Handler Entries
|

Context Element Name

Description and Type

com.bea.contextelement.
wli .Message

A WebLogic Integration message. The message is
streamed to the audit log.

java.io.InputStream

com.bea.contextelement.
channel .Port

The internal listen port of the network channel
accepting or processing the request

java.lang. Integer

com.bea.contextelement.
channel .PublicPort

The external listen port of the network channel
accepting or processing the request

java.lang. Integer

com.bea.contextelement.
channel .RemotePort

The port of the remote end of the TCP/IP connection of
the network channel accepting or processing the
request

java.lang. Integer

com.bea.contextelement.
channel .Protocol

The protocol used to make the request of the network
channel accepting or processing the request

java.lang.String

com.bea.contextelement.
channel .Address

The internal listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel .PublicAddress

The external listen address of the network channel
accepting or processing the request

java.lang.String

com.bea.contextelement.
channel .RemoteAddress

The remote address of the TCP/IP connection of the
network channel accepting or processing the request

java.lang.String

com.bea.contextelement.
channel .Channe IName

The name of the network channel accepting or
processing the request

java.lang.String

com.bea.contextelement.
channel .Secure

Is the network channel accepting or processing the
request using SSL?

java.lang.Boolean

com.bea.contextelement.
ejb20._Parameter[1-N]

Object based on parameter

com.bea.contextelement.
wsee . SOAPMessage

javax.xml .rpc_handler .MessageContext

com.bea.contextelement.
entitlement.EAuxiliarylID

Used by WebLogic Server internal process.
weblogic.entitlement.expression.EAuxiliary

3-35

ORACLE

Chapter 3
Security Providers and WebLogic Resources

Table 3-11 (Cont.) Context Handler Entries

]
Context Element Name

Description and Type

com.bea.contextelement.
security.ChainPreval idatedBySSL

The SSL framework has validated the certificate chain,
meaning that the certificates in the chain have signed
each other properly; the chain terminates in a
certificate that is one of the server's trusted CAs; the
chain honors the basic constraints rules; and the
certificates in the chain have not expired.

java.lang.Boolean

com.bea.contextelement.
xml .SecurityToken

Not used in this release of WebLogic Server.
weblogic.xml_crypto.wss.provider.SecurityToken

com.bea.contextelement.
xml .SecurityTokenAssertion

Not used in this release of WebLogic Server.
java.util .Map

com.bea.contextelement.
webservice. Integrity{id:XXXXX}

javax.security.auth.Subject

com.bea.contextelement.
saml .SSLClientCertificateChain

The SSL client certificate chain obtained from the SSL
connection over which a sender-vouches SAML
assertion was received.

jJava.security.cert.X509Certificate[]

com.bea.contextelement.
saml .MessageSignerCertificate

The certificate used to sign a Web service message.
java.security.cert_X509Certificate

com.bea.contextelement.
saml .subject._ConfirmationMethod

The type of SAML assertion: bearer, artifact, sender-
vouches, or holder-of-key.

java.lang.String

com.bea.contextelement.
saml.subject.dom.Keylnfo

The <ds:KeylInfo> element to be used for subject
confirmation with holder-of-key SAML assertions.

org.w3c.dom.Element

HttpServletRequest req =

Example 3-4 illustrates how you can access HttpServletRequest and
HttpServletResponse context element objects via a URL (Web) resource's
ContextHandler. For example, you might use this code in the isAccessAl lowed()
method of your AccessDecision SSPI implementation. See Implement the
AccessDecision SSPI.)

Example 3-4 Example: Accessing Context Elements in the URL Resource
ContextHandler

static final String SERVLETREQUESTNAME =
"com.bea.contextelement.servlet.HttpServletRequest”;
if (resource instanceof URLResource) {

(HttpServiletRequest)handler.getValue (SERVLETREQUESTNAME) ;

3-36

Note:

Chapter 3
Security Providers and WebLogic Resources

You might also want to access these context elements in the getRoles()
method of the RoleMapper SSPI implementation or the getContext() method of
the AuditContext interface implementation. See Implement the RoleMapper
SSPI and Audit Context, respectively.)

3.6.9.1 Providers and Interfaces that Support Context Handlers

ORACLE

The ContextHandler interface provides a way to pass additional information to a
WebLogic Security Framework call, so that a security provider or interface can obtain
additional context information beyond what is provided by the arguments to a

particular method.

Table 3-12 describes the context handler support.

Table 3-12 Methods and Classes that Support Context Handlers

Method

Description

AccessDecision.isAccessAl lowed(

)

The i1sAccessAllowed() method accepts a
ContextHandler object that can optionally be used by
an Access Decision to obtain additional information that
may be used in making the authorization decision. If
the caller is unable to provide additional information, a
null value should be specified.

AdjudicatorV2.adjudicate()

An implementation of the AdjudicatorV2 SSPI interface
is the part of an adjudication provider that is called after
all the Access Decisions' isAccessAllowed methods
have been called and returned successfully (that is,
without throwing exceptions). The AdjudicatorV2 SSPI
accepts the resource and ContextHandler as additional
arguments. When the AuthorizationManager calls the
Adjudicator, it passes the same resource and
ContextHandler as it passed to AccessDecision. This
allows the Adjudicator to have all of the information that
is available to AccessDecision.

AuditAtnEventV2.getContext()

Because the JAAS LoginModule. login() method and
the IdentityAsserter._assertldentity() method
have access to the ContextHandler, the
AuditAtnEventV2 interface also gets this data so it can
audit relevant information. The getContext() method is
inherited from weblogic.security.spi.AuditContext.
The getContext() method gets a ContextHandler
object from which additional audit information can be
obtained.

AuditCertPathBui lderEvent.getCo
ntext(),
AuditCertPathvalidatorEvent.get
Context()

The getContext method gets an optional
ContextHandler object that may specify additional data
on how to look up and validate the CertPath.

3-37

ORACLE

Chapter 3
Security Providers and WebLogic Resources

Table 3-12 (Cont.) Methods and Classes that Support Context Handlers

Method

Description

AuditConfigurationEvent.getCont
ext()

The AuditConfigurationEvent.getContext() method
gets a ContextHandler object from which additional
audit information can be obtained.

AuditContext.getContext()

The AuditContext.getContext() method gets a
ContextHandler object from which additional audit
information can be obtained.

AuditCredentialMappingEvent.get
Context()

The getContext method gets an optional
ContextHandler object that may specify additional
information about the credential mapping audit event.

CertPathBui lderParameterSpi .get
Context and
CertPathValidatorParameterSpi.g
etContext

The CertPathBui lderParameterSpi and
CertPathValidatorParameterSpi interfaces include a
getContext() method to get a ContextHandler that
may pass in extra parameters that can be used for
building and validating the Cert Path.

ChallengeldentityAsserterV2.ass
ertChallengeldentity(),
ChallengeldentityAsserterV2.con
tinueChal lengeldentity(), and
ChallengeldentityAsserterV2.get
Challengeldentity()

The ChallengeldentityAsserterV2 methods accept a
ContextHandler object that can optionally be user by
the Identity assertion provider to obtain additional
information that may be used in asserting the challenge
identity.

CredentialMapperV2.getCredentia
IsQ

The CredentialMapper.getCredentials() and
CredentialMapper.getCredential () methods include
a ContextHandler parameter with optional extra data.

IdentityAsserterV2_assertldenti

tyQ

The IdentityAsserterV2 provider allows the Security
Framework to pass a ContextHandler in the
assertldentity method. The ContextHandler object can
optionally be used to obtain additional information that
may be used in asserting the identity. For example, the
ContextHandler allows users to extract extra
information from the HttpServletRequest and to set
cookies in the HttpServletResponse.

3-38

Chapter 3
Initialization of the Security Provider Database

Table 3-12 (Cont.) Methods and Classes that Support Context Handlers

Method

Description

LoginModule._login()

A ContextHandler can be passed to the JAAS
CallbackHandler parameter. A Cal IbackHandler is a
variable-argument data structure that is passed to the
login() method. Adding the ContextHandler in this
manner allows users to extract extra information from
the HttpServletRequest and to set cookies in the
HttpServletResponse, for example. The implementation
includes LoginModules used both for authentication
and identity assertion.

The EJB and Servlet containers must add the
ContextHandler to the CallbackHandler when calling
the Principal Authenticator. Specifically, they must
instantiate and pass a

weblogic.security.auth.cal lback.ContextHandlerC
alIback to the invokeCal Iback method of a
CallbackHandler to retrieve the ContextHandler related
to this security operation. If no ContextHandler is
associated with this operation,
javax.security.auth.cal lback.UnsupportedCal Iback
Exception is thrown.

RoleMapper.getRoles()

The getRoles() method accepts a ContextHandler
object that can optionally be used by the role mapping
provider to obtain additional information that may be
used in making the authorization decision. If the caller
is unable to provide additional information, a null value
should be specified.

URLCal IbackHandler and
SimpleCal IbackHandler Classes

As of WebLogic Server version 9.0, the
weblogic.security.URLCal IbackHandler and
weblogic.security.SimpleCallbackHandler classes
were updated to handle the ContextHandler.

URLCallbackHandler is a CallbackHandler used by
application developers for returning a username,
password, URL, and ContextHandler as part of the
Authenticate API.

SimpleCal IbackHandler is a simple CallbackHandler
used by application developers for returning a
username, password and ContextHandler as part of the
Authenticate API.

3.7 Initialization of the Security Provider Database

Note:

ORACLE

Prior to reviewing this section, be sure you have read Security Provider
Databases in the Understanding Security for Oracle WebLogic Server.

3-39

Chapter 3
Initialization of the Security Provider Database

At minimum, you must initialize security providers' databases with the default users,
groups, security policies, security roles, or credentials that your authentication,
authorization, role mapping, and credential mapping providers expect. You will need to
initialize a given security provider's database before the security provider can be used,
and should think about how this will work as you are writing the runtime classes for
your custom security providers. The method you use to initialize a security provider's
database depends upon many factors, including whether or not an externally
administered database will be used to store the user, group, security policy, security
role, or credential information, and whether or not the database already exists or
needs to be created.

The following sections explain some best practices for initializing a security provider
database:

e Best Practice: Create a Simple Database If None Exists
e Best Practice: Configure an Existing Database
e Best Practice: Delegate Database Initialization

e Best Practice: Use the JDBC Connection Security Service API to Obtain Database
Connections

3.7.1 Best Practice: Create a Simple Database If None Exists

The first time an authentication, authorization, role mapping, or credential mapping
provider is used, it attempts to locate a database with the information it needs to
provide its security service. If the security provider fails to locate the database, you can
have it create one and automatically populate it with the default users, groups, security
policies, security roles, and credentials. This option may be useful for development
and testing purposes.

Both the WebLogic security providers and the sample security providers follow this
practice. The WebLogic Authentication, Authorization, Role Mapping, and Credential
Mapping providers store the user, group, security policy, security role, and credential
information in the embedded LDAP server. If you want to use any of these WebLogic
security providers, you will need to follow the Configuring the Embedded LDAP Server
instructions in Administering Security for Oracle WebLogic Server.

Note:

The sample security providers simply create and use a properties file as their
database. For example, the sample authentication provider creates a file
called SampleAuthenticatorDatabase. java that contains the necessary
information about users and groups.

3.7.2 Best Practice: Configure an Existing Database

ORACLE

If you already have a database (such as an external LDAP server), you can populate
that database with the users, groups, security policies, security roles, and credentials
that your authentication, authorization, role mapping, and credential mapping providers
require. (Populating an existing database is accomplished using whatever tools you
already have in place for performing these tasks.)

3-40

Chapter 3
Initialization of the Security Provider Database

Once your database contains the necessary information, you must configure the
security providers to look in that database. You accomplish this by adding custom
attributes in your security provider's MBean Definition File (MDF). Some examples of
custom attributes are the database's host, port, password, and so on. After you run the
MDF through the WebLogic MBeanMaker and complete a few other steps to generate
the MBean type for your custom security provider, you or an administrator use the
WebLogic Server Administration Console to set these attributes to point to the
database.

Note:

See Generating an MBean Type to Configure and Manage the Custom
Security Provider .

As an example, Example 3-5 shows some custom attributes that are part of the
WebLogic LDAP Authentication provider's MDF. These attributes enable an
administrator to specify information about the WebLogic LDAP Authentication
provider's database (an external LDAP server), so it can locate information about
users and groups.

Example 3-5 LDAPAuthenticator.xml

<MBeanAttribute
Name = "UserObjectClass"
Type = "java.lang.String"
Default = ""person""
Description = "The LDAP object class that stores users."
/>
<MBeanAttribute
Name = "UserNameAttribute"
Type = "java.lang.String"
Default = ""uid""
Description = "The attribute of an LDAP user object that specifies the name of
the user.”
/>
<MBeanAttribute
Name = "UserDynamicGroupDNAttribute"
Type = "java.lang.String"
Description = "The attribute of an LDAP user object that specifies the
distinguished names (DNs) of dynamic groups to which this user belongs.
If such an attribute does not exist, WebLogic Server determines if a
user is a member of a group by evaluating the URLs on the dynamic group.
If a group contains other groups, WebLogic Server evaluates the URLS on
any of the descendents of the group."
/>
<MBeanAttribute
Name = "UserBaseDN"
Type = "java.lang.String"
Default = ""ou=people, o=example.com""
Description = "The base distinguished name (DN) of the tree in the LDAP directory
that contains users."
/>
<MBeanAttribute
Name = "UserSearchScope"
Type = "java.lang.String"
Default = ""subtree""

ORACLE 3-41

Chapter 3
Initialization of the Security Provider Database

LegalValues = "subtree,onelevel”

Description = "Specifies how deep in the LDAP directory tree to search for Users.
Valid values are <code>subtree</codeégt;
and <code>onelevel</codedgt;."

/>

3.7.3 Best Practice: Delegate Database Initialization

If possible, initialization calls between a security provider and the security provider's
database should be done by an intermediary class, referred to as a database
delegator. The database delegator should interact with the runtime class and the
MBean type for the security provider, as shown in Figure 3-11.

Figure 3-11 Positioning of the Database Delegator Class

Security Provider

Runtime Class MBean Type

'

Database Delegator

k]

Databasze

A database delegator is used by the WebLogic Authentication and Credential Mapping
providers. The WebLogic Authentication provider, for example, calls into a database
delegator to initialize the embedded LDAP server with default users and groups, which
it requires to provide authentication services for the default security realm.

Use of a database delegator is suggested as a convenience to application developers
and security vendors who are developing custom security providers, because it hides
the security provider's database and centralizes calls into the database.

3.7.4 Best Practice: Use the JDBC Connection Security Service API to
Obtain Database Connections

As an alternative to the best practices for creating or configuring a database for your
custom security provider, you can use the JDBCConnectionService SSPI only during
provider initialization to access the JDBC data sources that are configured for your
WebLogic domain.

This capability enables your custom security providers to take advantage of full
database access and database connection management capabilities provided through
JDBC data sources, including multi data sources. See http://docs.oracle.con/
Jjavase/8/docs/api/java/sql/Connection.html for information about how SQL

ORACLE 3-42

http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html
http://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html

Chapter 3
Initialization of the Security Provider Database

statements are executed and how the results are returned within the context of a
connection.

When you use the JDBCConnectionService SSPI, note the following:

Obtain the JDBCConnectionService in the initialize() method of your custom
provider.

Data sources are identified by name (sqlConnectionName), not JNDI path.

During initialization, JDBC resources may not be available. Direct connections are
returned until the JNDI and JDBC subsystems are fully initialized and available.

When finished with the database connection returned by the JDBC data source,
the security provider must invoke the releaseConnection method (and specify the
Connection object) to release the connection.

Example 3-6 shows using the JDBCConnectionService SSPI to obtain a database
connection from a named JDBC data source.

Although not shown in the example, JDBCConnectionService.getConnection can throw
JDBCConnectionServiceException if the named JDBC data source is unavailable, or
SQLException if the database connection is unavailable.
JDBCConnectionService.releaseConnection can throw SQLException if the database
connection is unavailable.

Example 3-6 Using the JDBCConnectionService API to Access JDBC Data Sources

JDBCConnectionService dbService = null;
if (services instanceof SecurityServicesJDBC) {

try {

dbService = ((SecurityServicesJDBC)services).getJDBCConnectionService();

System.out.printIn(*Obtained the JDBCConnectionService, " + dbService);

Connection conn = dbService.getConnection(*oracle-database™);

PreparedStatement statement = conn.prepareStatement(‘'select sysdate from dual™);
ResultSet rs= statement.executeQuery();

while (rs.next()) {
String sl = rs.getString(1);
System.out.printIn("Sys date =" + sl);

}

dbService.releaseConnection(conn);
} catch(Exception e) {
e.printStackTrace();

}

3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps

To implement a security service for obtaining access to JDBC data sources:

1.

ORACLE

In your provider's initialize() method, invoke the getJDBCConnectionService
method of the SecurityServicesJDBC interface to obtain the JDBC connection
service.

Invoke the getConnection method on the JDBC connection service instance,
passing the name of a JDBC data source that is configured in your WebLogic
domain.

3-43

Chapter 3
Differences In Attribute Validators

3. Add appropriate database commands, such as prepared statements, queries, and
S0 on.

4. You must invoke the releaseConnection method on the JDBC connection service
instance to release the connection instance.

3.8 Differences In Attribute Validators

A validator is an interface that is implemented by a class that can validate various
types of expressions. In this release of WebLogic Server, the inheritance rules for
security provider attribute validator methods differ from the rules that existed in 8.1.

In 8.1, a derived MBean had only to customize an attribute validator method in its
MBean implementation file to make it take effect. As of version 9.0, the derived MBean
must also explicitly declare the attribute validator in its MDF file to make it take effect.
Otherwise, the customized method code is ignored.

Consider the following example of the base class of all identity assert MBean
implementations, weblogic.management.security.authentication. ldentityAsserterimpl.

IdentityAsserterimpl extends the authentication provider MBean implementation and
gives the authenticator's MBean implementation access to its configuration attributes.

In 8.1, you could do the following:

1. Write an Identity Asserter provider called IdentityAsserterl. In its MDF file, indicate
that it extends weblogic.management.security.authentication. IdentityAsserter.

2. Use the WebLogic MBeanMaker to generate the MBean type. The implementation
file created by the MBeanMaker, typically named IdentityAsserterlimpl.java,
extends weblogic.management.security.authentication. IdentityAsserterimpl.

Therefore, the MBean inherits the activeTypes attribute, which has an attribute
validator method. The validateActiveTypes(String[] activeTypes) method ensures
that activeTypes includes only supported types).

3. Modify the implementation file and specify a different implementation for the
validateActiveTypes method. For example, it could further restrict the active types
or loosen the rules.

4. In 8.1, IdentityAsserterl's validateActiveTypes implementation is used.

As of version 9.0, the base IdentityAsserter's val idateActiveTypes implementation
is used instead. That is, IdentityAsserterl's val idateActiveTypes implementation is
silently ignored.

To work around this difference in version 9.0 and later, redeclare the attribute validator
in IdentityAsserterl's MDF file in an MBeanOperation subelement.

3.8.1 Differences In Attribute Validators for Custom Validators

ORACLE

The difference in inheritance rules for security provider attribute validators also applies
to custom validators. You could have a provider declare an attribute with a custom
validator. Then you could derive another provider from that one and write another
implementation of the validator. In 8.1, the derived provider's validator would be used.
As of version 9.0, the base provider's validator is used instead, and the derived one is
silently ignored.

3-44

Authentication Providers

This chapter describes authentication provider concepts and functionality, and
provides step-by-step instructions for developing a custom authentication provider.
Authentication is the mechanism by which callers prove that they are acting on behalf
of specific users or systems. Authentication answers the question, "Who are you?"
using credentials such as username/password combinations.

In WebLogic Server, authentication providers are used to prove the identity of users or
system processes. Authentication providers also remember, transport, and make that
identity information available to various components of a system (via subjects) when
needed. During the authentication process, a principal validation provider provides
additional security protections for the principals (users and groups) contained within
the subject by signing and verifying the authenticity of those principals. (See Principal
Validation Providers.)

This chapter includes the following sections:

* Authentication Concepts

e The Authentication Process

* Do You Need to Develop a Custom Authentication Provider?

* How to Develop a Custom Authentication Provider

Note:

An identity assertion provider is a specific form of authentication provider that
allows users or system processes to assert their identity using tokens. See
Identity Assertion Providers.

4.1 Authentication Concepts

Before delving into the specifics of developing custom authentication providers, it is
important to understand the following concepts:

» Users and Groups, Principals and Subjects
* LoginModules

e Java Authentication and Authorization Service (JAAS)

4.1.1 Users and Groups, Principals and Subjects

ORACLE

A user is similar to an operating system user in that it represents a person. A group is
a category of users, classified by common traits such as job title. Categorizing users
into groups makes it easier to control the access permissions for large numbers of
users. See Users, Groups, and Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server.

4-1

Chapter 4
Authentication Concepts

Both users and groups can be used as principals by application servers like WebLogic
Server. A principal is an identity assigned to a user or group as a result of
authentication. The Java Authentication and Authorization Service (JAAS) requires
that subjects be used as containers for authentication information, including
principals. Each principal stored in the same subject represents a separate aspect of
the same user's identity, much like cards in a person's wallet. (For example, an ATM
card identifies someone to their bank, while a membership card identifies them to a
professional organization to which they belong.) See Java Authentication and
Authorization Service (JAAS).

Note:

Subjects replace WebLogic Server 6.x users.

Figure 4-1 illustrates the relationships among users, groups, principals, and subjects.

Figure 4-1 Relationships Among Users, Groups, Principals and Subjects

Principals

WLSUser
"Smith"

WL SGroup
"Developers”

Subject =4

WL SGroup
"Administrators”

MyPrincipal
“foobar"

—
As part of a successful authentication, principals are signed and stored in a subject for
future use. A principal validation provider signs principals, and an authentication
provider's LoginModule actually stores the principals in the subject. Later, when a
caller attempts to access a principal stored within a subject, a principal validation
provider verifies that the principal has not been altered since it was signed, and the
principal is returned to the caller (assuming all other security conditions are met).

Note:

See Principal Validation Providers and LoginModules, respectively.

ORACLE 4-2

Chapter 4
Authentication Concepts

Any principal that is going to represent a WebLogic Server user or group needs to
implement the WLSUser and WLSGroup interfaces, which are available in the
weblogic.security.spi package.

4.1.1.1 Providing Initial Users and Groups

Authentication providers need a list of users and groups before they can be used to
perform authentication in a running WebLogic Server. Some authentication providers
let the administrator configure an external database (for example, add the users and
groups to an LDAP server or a DBMS) and then configure the provider to use that
database. These providers don't have to worry about how the users and groups are
populated because the administrator does that first, using the external database's
tools.

However, some authentication providers create and manage their own list of users and
groups. This is the case for the ManageableSampleAuthenticator provider. These
providers need to worry about how their initial set of users and groups is populated.
One way to handle this is for the provider's "initialize" method to notice that the users
and groups don't exist yet, and then populate the list with an initial set of users and
groups.

Note that some providers have a separate list of users and groups for each security
realm, and therefore need to create an initial set of users and groups the first time the
list is used in a new realm. For example, the ManageableSampleAuthenticator
provider creates a separate properties file of users and groups for each realm. Its
initialize method gets the realm name, determines whether the properties file for that
realm exists and, if not, creates one, populating it with its initial set of users and
groups.

4.1.2 LoginModules

ORACLE

A LoginModule is a required component of an authentication provider, and can be a
component of an identity assertion provider if you want to develop a separate
LoginModule for perimeter authentication.

LoginModules are the work-horses of authentication: all LoginModules are
responsible for authenticating users within the security realm and for populating a
subject with the necessary principals (users/groups). LoginModules that are not used
for perimeter authentication also verify the proof material submitted (for example, a
user's password).

Note:

See Identity Assertion Providers.

If there are multiple authentication providers configured in a security realm, each of the
authentication providers' LoginModules will store principals within the same subject.
Therefore, if a principal that represents a WebLogic Server user (that is, an
implementation of the WLSUser interface) named "Joe" is added to the subject by one
authentication provider's LoginModule, any other authentication provider in the security
realm should be referring to the same person when they encounter "Joe". In other
words, the other authentication providers' LoginModules should not attempt to add
another principal to the subject that represents a WebLogic Server user (for example,

4-3

Chapter 4
Authentication Concepts

named "Joseph") to refer to the same person. However, it is acceptable for a another
authentication provider's LoginModule to add a principal of a type other than WLSUser
with the name "Joseph".

4.1.2.1 The LoginModule Interface

LoginModules can be written to handle a variety of authentication mechanisms,
including username/password combinations, smart cards, biometric devices, and so
on. You develop LoginModules by implementing the
javax.security.auth.spi.LoginModule interface, which is based on the Java
Authentication and Authorization Service (JAAS) and uses a subject as a container for
authentication information. The LoginModule interface enables you to plug in different
kinds of authentication technologies for use with a single application, and the
WebLogic Security Framework is designed to support multiple LoginModule
implementations for multipart authentication. You can also have dependencies across
LoginModule instances or share credentials across those instances. However, the
relationship between LoginModules and authentication providers is one-to-one. In
other words, to have a LoginModule that handles retina scan authentication and a
LoginModule that interfaces to a hardware device like a smart card, you must develop
and configure two authentication providers, each of which include an implementation
of the LoginModule interface. See Implement the JAAS LoginModule Interface.

Note:

You can also obtain LoginModules from third-party security vendors instead of
developing your own.

4.1.2.2 LoginModules and Multipart Authentication

The way you configure multiple authentication providers (and thus, multiple
LoginModules) can affect the overall outcome of the authentication process, which is
especially important for multipart authentication. First, because LoginModules are
components of authentication providers, they are called in the order in which the
authentication providers are configured. Generally, you configure authentication
providers using the WebLogic Server Administration Console. (See Specifying the
Order of Authentication Providers.) Second, the way each LoginModule's control flag is
set specifies how a failure during the authentication process should be handled.
Figure 4-2 illustrates a sample flow involving three different LoginModules (that are
part of three authentication providers), and illustrates what happens to the subject for
different authentication outcomes.

ORACLE 4-4

Chapter 4
Authentication Concepts

Figure 4-2 Sample LoginModule Flow

User Principal Control Flag .
Authenticated? Created? Setting Subject
Webl ogic Authentication Provider)
Yes Yes, pl Required p
Logintodule
Custom Authentication Provider £#1)
No No Optional A
Logintodule
Custom Authentication Provider #2)
Yes Yes, p2 Required p2
Logintodule

If the control flag for Custom Authentication Provider #1 had been set to Required, the
authentication failure in its User Authentication step would have caused the entire
authentication process to have failed. Also, if the user had not been authenticated by
the WebLogic Authentication provider (or custom authentication provider #2), the
entire authentication process would have failed. If the authentication process had
failed in any of these ways, all three LoginModules would have been rolled back and
the subject would not contain any principals.

Note:

See Java Authentication and Authorization Service (JAAS) LoginModule
Developer's Guide (http://docs.oracle.con/javase/8/docs/technotes/guides/
security/jaas/JAASLMDevGuide.html) and the LoginModule interface (http://
docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/
LoginModule.html), respectively.

4.1.3 Java Authentication and Authorization Service (JAAS)

ORACLE

Whether the client is an application, applet, Enterprise JavaBean (EJB), or servlet that
requires authentication, WebLogic Server uses the Java Authentication and
Authorization Service (JAAS) classes to reliably and securely authenticate to the
client. JAAS implements a Java version of the Pluggable Authentication Module (PAM)
framework, which permits applications to remain independent from underlying
authentication technologies. Therefore, the PAM framework allows the use of new or
updated authentication technologies without requiring modifications to your
application.

WebLogic Server uses JAAS for remote fat-client authentication, and internally for
authentication. Therefore, only developers of custom authentication providers and
developers of remote fat client applications need to be involved with JAAS directly.
Users of thin clients or developers of within-container fat client applications (for
example, those calling an Enterprise JavaBean (EJB) from a servlet) do not require
the direct use or knowledge of JAAS.

4-5

http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

Chapter 4
Authentication Concepts

4.1.3.1 How JAAS Works With the WebLogic Security Framework

Generically, authentication using the JAAS classes and WebLogic Security Framework
is performed in the following manner:

ORACLE

1.

A client-side application obtains authentication information from a user or system
process. The mechanism by which this occurs is different for each type of client.

The client-side application can optionally create a Cal IbackHandler containing the
authentication information.

a. The client-side application passes the Cal IbackHandler to a local (client-side)
LoginModule using the LoginContext class. (The local LoginModule could be
UsernamePasswordLoginModule, which is provided as part of WebLogic Server.)

b. The local LoginModule passes the Cal lbackHandler containing the
authentication information to the appropriate WebLogic Server container (for
example, RMI, EJB, servlet, or IIOP).

¢’ Note:

A CallbackHandler is a highly-flexible JAAS standard that allows a variable
number of arguments to be passed as complex objects to a method. There are
three types of CallbackHandlers: NameCallback, PasswordCallback, and
TextlnputCallback, all of which reside in the javax.security.auth.callback
package. The NameCallback and PasswordCallback return the username and
password, respectively. TextinputCallback can be used to access the data
users enter into any additional fields on a login form (that is, fields other than
those for obtaining the username and password). When used, there should be
one TextInputCallback per additional form field, and the prompt string of each
TextInputCallback must match the field name in the form. WebLogic Server
only uses the TextInputCallback for form-based Web application login. See the
CallbackHandler interface (http://docs.oracle.com/javase/8/docs/api/javax/
security/auth/cal Iback/Cal IbackHandler.html).

See the LoginContext class (http://docs.oracle.con/javase/8/docs/api/javax/
security/auth/login/LoginContext.html).

See WebLogic Server API Reference Javadoc for the
UsernamePasswordLoginModule class.

If you do not want to use a client-side LoginModule, you can specify the
username and password in other ways: for example, as part of the initial INDI
lookup.

The WebLogic Server container calls into the WebLogic Security Framework. If
there is a client-side CallbackHandler containing authentication information, this is
passed into the WebLogic Security Framework.

For each of the configured authentication providers, the WebLogic Security
Framework creates a Cal lbackHandler using the authentication information that
was passed in. (These are internal CallbackHandlers created on the server-side by
the WebLogic Security Framework, and are not related to the client's
CallbackHandler.)

4-6

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/LoginContext.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/LoginContext.html

Chapter 4
Authentication Concepts

5. The WebLogic Security Framework calls the LoginModule associated with the
authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

Note:

See LoginModules.

The LoginModule attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a principal validation provider to
ensure their authenticity between programmatic server invocations. See
Principal Validation Providers.

b. The LoginModule associates the signed principals with a subject, which
represents the user or system process being authenticated. See Users and
Groups, Principals and Subjects.

Note:

For authentication performed entirely on the server-side, the process would
begin at step 3, and the WebLogic Server container would call the
weblogic.security.services.authentication.login method prior to step 4.

4.1.3.2 Example: Standalone T3 Application

Figure 4-3 illustrates how the JAAS classes work with the WebLogic Security
Framework for a standalone, T3 application, and an explanation follows.

ORACLE 47

ORACLE

Chapter 4
Authentication Concepts

Figure 4-3 Authentication Using JAAS Classes and WebLogic Server

authentication status, Subject

@

Client-Side Server-Side
b
Standalone T3 Application RMI Container
@CallbackHandler: USEIMame, @ Client CallbackHandler:

pazsword, URL uzername, password, URL

CallbackHandler: username,
password, URL

LoginCorntext | Webl ogic Security Framework
CallbackHandler: username, Server CallbsckHandler:
pasaword, URL username, password, URL

l yisubjed

Authentication Provider

(UsernamePasswordLnginMndulej

@ ’ principals
Logintdadule T stored in
[Cliert-side JaAs Server-side JAAS 1
LoginModule Logintodule [Ba } principals
— Figned

Principal Yalidation \ml

Provider

For this example, authentication using the JAAS classes and WebLogic Security
Framework is performed in the following manner:

1.

The T3 application obtains authentication information (username, password, and
URL) from a user or system process.

The T3 application creates a Cal IbackHandler containing the authentication
information.

a.

The T3 application passes the CallbackHandler to the
UsernamePasswordLoginModule using the LoginContext class.

Note:

The weblogic.security.auth. login.UsernamePasswordLoginModule implements
the standard JAAS javax.security.auth.spi.LoginModule interface and uses
client-side APIs to authenticate a WebLogic client to a WebLogic Server
instance. It can be used for both T3 and IIOP clients. Callers of this
LoginModule must implement a CallbackHandler to pass the username
(NamecCallback), password (PasswordCallback), and a URL (URLCallback).

The UsernamePasswordLoginModule passes the CallbackHandler containing the
authentication information (that is, username, password, and URL) to the
WebLogic Server RMI container.

The WebLogic Server RMI container calls into the WebLogic Security Framework.
The client-side CallbackHandler containing authentication information is passed
into the WebLogic Security Framework.

4-8

Chapter 4
The Authentication Process

4. For each of the configured authentication providers, the WebLogic Security

Framework creates a Cal IbackHandler containing the username, password, and
URL that was passed in. (These are internal Cal IbackHandlers created on the
server-side by the WebLogic Security Framework, and are not related to the
client's Cal IbackHandler.)

5. The WebLogic Security Framework calls the LoginModule associated with the

authentication provider (that is, the LoginModule that is specifically designed to
handle the authentication information).

The LoginModule attempts to authenticate the client using the authentication
information.

6. If the authentication is successful, the following occurs:

a. Principals (users and groups) are signed by a principal validation provider to
ensure their authenticity between programmatic server invocations.

b. The LoginModule associates the signed principals with a subject, which
represents the user or system being authenticated.

c. The WebLogic Security Framework returns the authentication status to the T3
client application, and the T3 client application retrieves the authenticated
subject from the WebLogic Security Framework.

4.2 The Authentication Process

ORACLE

Figure 4-4 shows a behind-the-scenes look of the authentication process for a fat-
client login. JAAS runs on the server to perform the login. Even in the case of a thin-
client login (that is, a browser client) JAAS is still run on the server.

Figure 4-4 The Authentication Process

Usernamel/passwiord
& JAAS Login > LoginModules
Client WeblLogic
Application Server Principal
=ign Validation
Frovider
Subject

Note:

Only developers of custom authentication providers will be involved with this
JAAS process directly. The client application could either use JNDI initial
context creation or JAAS to initiate the passing of the username and
password.

4-9

Chapter 4
Do You Need to Develop a Custom Authentication Provider?

When a user attempts to log into a system using a username/password combination,
WebLogic Server establishes trust by validating that user's username and password,
and returns a subject that is populated with principals per JAAS requirements. As
Figure 4-4 also shows, this process requires the use of a LoginModule and a principal
validation provider, which are discussed in detail in LoginModules and Principal
Validation Providers respectively.

After successfully proving a caller's identity, an authentication context is established,
which allows an identified user or system to be authenticated to other entities.
Authentication contexts may also be delegated to an application component, allowing
that component to call another application component while impersonating the original
caller.

4.3 Do You Need to Develop a Custom Authentication

Provider?

ORACLE

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authentication provider.

Note:

In conjunction with the WebLogic Authorization provider, the WebLogic
Authentication provider replaces the functionality of the File realm that was
available in 6.x releases of WebLogic Server.

The WebLogic Authentication provider supports delegated username/password
authentication, and utilizes an embedded LDAP server to store user and group
information. The WebLogic Authentication provider allows you to edit, list, and manage
users and group membership.

WebLogic Server also provides the following additional authentication providers that
you can use instead of or in conjunction with the WebLogic Authentication provider in
the default security realm:

* A set of LDAP authentication providers that access external LDAP stores
(including Open LDAP, iPlanet, Microsoft Active Directory, and Novell NDS).

» A set of Database Base Management System (DBMS) authentication providers
that access user, password, group, and group membership information stored in
databases for authentication

A Windows NT Authentication provider that uses Windows NT users and groups
for authentication purposes.

* An LDAP X509 Identity Assertion provider.

By default, these additional authentication providers are available but not configured in
the WebLogic default security realm.

If you want to perform additional authentication tasks, then you need to develop a
custom authentication provider.

4-10

Chapter 4
How to Develop a Custom Authentication Provider

Note:

If you want to perform perimeter authentication using a token type that is not
supported out of the box (for example, a new, custom, or third party token
type), you might need to develop a custom identity assertion provider. See
Identity Assertion Providers.

4.4 How to Develop a Custom Authentication Provider

If the WebLogic Authentication provider does not meet your needs, you can develop a
custom authentication provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom authentication provider by completing
the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

3. Configure the Custom Authentication Provider Using the Administration Console

4.4.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom authentication provider by following these steps:

* Implement the AuthenticationProviderV2 SSPI
* Implement the JAAS LoginModule Interface

For an example of how to create a runtime class for a custom authentication provider,
see Example: Creating the Runtime Classes for the Sample Authentication Provider .

4.4.1.1 Implement the AuthenticationProviderV2 SSPI

ORACLE

Note:

The AuthenticationProvider SSPI is deprecated in this release of WebLogic
Server. Use the AuthenticationProviderv2 SSPI instead.

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
methods:

e getLoginModuleConfiguration

public AppConfigurationEntry getLoginModuleConfiguration()

4-11

ORACLE

Chapter 4
How to Develop a Custom Authentication Provider

The getLoginModuleConfiguration method obtains information about the
authentication provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java Authentication and
Authorization Service (JAAS) class that contains the classname of the
LoginModule; the LoginModule's control flag (which was passed in via the
authentication provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into
the LoginModule).

To know about the AppConfigurationEntry class (located in the
javax.security.auth. login package) and the control flag options for LoginModules,
see the AppConfigurationEntry class (http://docs.oracle.con/javase/8/docs/api/
javax/security/auth/login/AppConfigurationEntry.html) and the Configuration
class (http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/
Configuration._html). See LoginModulesand Understand Why You Need an MBean

Type .
getAssertionModuleConfiguration

public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an identity
assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that contains
the classname of the LoginModule; the LoginModule's control flag (which was
passed in via the identity assertion provider's associated MBean); and a
configuration options map for the LoginModule (which allows other configuration
information to be passed into the LoginModule).

Note:

The implementation of the getAssertionModuleConfiguration method can be to
return null, if you want the identity assertion provider to use the same
LoginModule as the authentication provider.

The assertldentity() method of an identity assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just that
the token is valid, but also that the user is still valid (for example, the user has
not been deleted).

To use the EJB <run-as-principal> element with a custom authentication
provider, use the getAssertionModuleConfiguration() method. This method
performs the identity assertion that validates the principal specified in the
<run-as-principal>element.

getPrincipalValidator

public Principalvalidator getPrincipalvalidator()

The getPrincipalvalidator method obtains a reference to the principal validation
provider's runtime class (that is, the Principalvalidator SSPI implementation). In

4-12

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

Chapter 4
How to Develop a Custom Authentication Provider

most cases, the WebLogic Principal Validation provider can be used (see
Example 4-1 for an example of how to return the WebLogic Principal Validation
provider). See Principal Validation Providers.

getldentityAsserter
public ldentityAsserterV2 getldentityAsserter()
The AuthenticationProviderV2 getldentityAsserter method obtains a reference to

the new identity assertion provider's runtime class (that is, the IdentityAsserterV2
SSPI implementation).

In most cases, the return value for this method will be null (see Example 4-1 for
an example). See Identity Assertion Providers.

See Java API Reference for Oracle WebLogic Server to know more about the
AuthenticationProviderV2 SSPI and the methods described above.

4.4.1.2 Implement the JAAS LoginModule Interface

To implement the JAAS javax.security.auth.spi.LoginModule interface, provide
implementations for the following methods:

ORACLE

initialize
public void initialize (Subject subject, CallbackHandler callbackHandler, Map
sharedState, Map options)

The initialize method initializes the LoginModule. It takes as arguments a
subject in which to store the resulting principals, a CallbackHandler that the
authentication provider will use to call back to the container for authentication
information, a map of any shared state information, and a map of configuration
options (that is, any additional information you want to pass to the LoginModule).

A CallbackHandler is a highly-flexible JAAS standard that allows a variable number
of arguments to be passed as complex objects to a method. See the Java SE 8.0
API Specification for the CallbackHandler interface (http://docs.oracle.com/
Jjavase/8/docs/api/javax/security/auth/cal Iback/Cal IbackHandler.html).

login

public boolean login() throws LoginException

The login method attempts to authenticate the user and create principals for the
user by calling back to the container for authentication information. If multiple
LoginModules are configured (as part of multiple authentication providers), this
method is called for each LoginModule in the order that they are configured.

Information about whether the login was successful (that is, whether principals
were created) is stored for each LoginModule.

commit

public boolean commit() throws LoginException
The commit method attempts to add the principals created in the login method to
the subject. This method is also called for each configured LoginModule (as part of

the configured authentication providers), and executed in order. Information about
whether the commit was successful is stored for each LoginModule.

abort

4-13

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html

Chapter 4
How to Develop a Custom Authentication Provider

public boolean abort() throws LoginException

The abort method is called for each configured LoginModule (as part of the
configured authentication providers) if any commits for the LoginModules failed (in
other words, the relevant REQUIRED, REQUISITE, SUFFICIENT and OPTIONAL
LoginModules did not succeed). The abort method will remove that LoginModule's
principals from the subject, effectively rolling back the actions performed. See the
LoginModule interface (http://docs.oracle.con/javase/8/docs/api/javax/security/
auth/spi/LoginModule.html).

e logout

public boolean logout() throws LoginException

The logout method attempts to log the user out of the system. It also resets the
subject so that its associated principals are no longer stored.

Note:

The LoginModule. logout method is never called for the WebLogic
Authentication providers or custom authentication providers. This is simply
because once the principals are created and placed into a subject, the
WebLogic Security Framework no longer controls the lifecycle of the subject.
Therefore, the developer-written, user code that creates the JAAS
LoginContext to login and obtain the subject should also call the
LoginContext.logout method. When the user code runs in a Java client that
uses JAAS directly, that code has the option of calling the LoginContext.logout
method, which clears the subject. When the user code runs in a servlet, the
servlet has the ability to logout a user from a servlet session, which clears the
subject.

See the Java Authentication and Authorization Service (JAAS) Developer's Guide
(http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/
JAASLMDevGuide.html) and the LoginModule interface (http://docs.oracle.comn/javase/8/
docs/api/javax/security/auth/spi/LoginModule.html).

4.4.1.3 Throwing Custom Exceptions from LoginModules

ORACLE

You may want to throw a custom exception from a LoginModule you write. The custom
exception can then be caught by your application and appropriate action taken. For
example, if a PasswordChangeRequiredException is thrown from your LoginModule, you
can catch that exception within your application, and use it to forward users to a page
that allows them to change their password.

When you throw a custom exception from a LoginModule and want to catch it within
your application, you must ensure that:

1. The application catching the exception is running on the server. (Fat clients cannot
catch custom exceptions.)

2. Your servlet has access to the custom exception class at both compile time and
deploy time. You can do this using either of the following methods, depending on
your preference:

* Method 1: Make Custom Exceptions Available via the System and Compiler
Classpath

4-14

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASLMDevGuide.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/spi/LoginModule.html

Chapter 4
How to Develop a Custom Authentication Provider

* Method 2: Make Custom Exceptions Available via the Application Classpath

4.4.1.3.1 Method 1: Make Custom Exceptions Available via the System and Compiler

Classpath

Write an exception class that extends LoginException.

Use the custom exception class in your classes that implement the LoginModule
and AuthenticationProvider interfaces.

Put the custom exception class in both the system and compiler classpath when
compiling the security provider's runtime class.

Generate an MBean type for your custom authentication provider, as explained in
Generate an MBean Type Using the WebLogic MBeanMaker.

4.4.1.3.2 Method 2: Make Custom Exceptions Available via the Application Classpath

6.

Write an exception class that extends LoginException.

Use the custom exception class in your classes that implement the LoginModule
and AuthenticationProvider interfaces.

Put the custom exception's source in the classpath of the application's build, and
include it in the classpath of the application's JAR/WAR file.

Generate an MBean type for your custom authentication provider, as explained in
Generate an MBean Type Using the WebLogic MBeanMaker.

Add the custom exception class to the MJF (MBean JAR File) generated by the
WebLogic MBeanMaker.

Include the MJF when compiling your application.

4.4.1.4 Example: Creating the Runtime Classes for the Sample Authentication

Provider

Example 4-1 shows the SimpleSampleAuthenticationProviderlmpl.java class, which is
one of two runtime classes for the sample authentication provider. This runtime class
includes implementations for:

ORACLE

The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the
Provider SSPIs.)

The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,
getPrincipalvalidator, and getldentityAsserter methods (as described in
Implement the AuthenticationProviderV2 SSPI).

Note:

The bold face code in Example 4-1 highlights the class declaration and the
method signatures.

4-15

Chapter 4
How to Develop a Custom Authentication Provider

Example 4-1 SimpleSampleAuthenticationProviderimpl.java

package examples.security.providers.authentication.simple;
import java.util.HashMap;
import javax.security.auth.login.AppConfigurationEntry;
import javax.security.auth.login.AppConfigurationEntry.LoginModuleControlFlag;
import weblogic.management.security.ProviderMBean;
import weblogic.security.spi.AuthenticationProviderV2;
import weblogic.security.spi.ldentityAsserterV2;
import weblogic.security.spi.PrincipalValidator;
import weblogic.security.spi.SecurityServices;
import weblogic.security.principal .WLSGrouplmpl;
import weblogic.security.principal .WLSUserImpl;
public final class SinpleSanpl eAuthenticationProviderlnpl inplements AuthenticationProviderV2
{
private String description;
private SimpleSampleAuthenticatorDatabase database;
private LoginModuleControlFlag controlFlag;
public void initialize(Provider©MBean nbean, SecurityServices services)
{
System.out.printIn("SimpleSampleAuthenticationProvideriImpl.initialize™);
SimpleSampleAuthenticatorMBean myMBean = (SimpleSampleAuthenticatorMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SimpleSampleAuthenticatorDatabase(myMBean);
String flag = myMBean.getControlFlag();
it (flag.equalslgnoreCase(""REQUIRED™)) {
controlFlag = LoginModuleControlFlag.REQUIRED;
} else if (flag.equalslgnoreCase("OPTIONAL™)) {
controlFlag = LoginModuleControlFlag.OPTIONAL;
} else if (flag.equalslgnoreCase(""REQUISITE™)) {
controlFlag = LoginModuleControlFlag.REQUISITE;
} else if (flag.equalslgnoreCase(""SUFFICIENT™)) {
controlFlag = LoginModuleControlFlag.SUFFICIENT;

} else {
throw new IllegalArgumentException("invalid flag value" + flag);
}
public String getDescription()

{

return description;

public void shutdown()

{
System.out.printIn("’SimpleSampleAuthenticationProviderImpl.shutdown™);
}
private AppConfigurationEntry getConfiguration(HashMap options)
{
options.put(“database”, database);
return new
AppConfigurationEntry(
"examples.security.providers.authentication.Simple.Simple.SampleLoginModulelmpl™,
controlFlag,
options
);
}
public AppConfigurationEntry getLogi nMdul eConfiguration()
{

HashMap options = new HashMap();
return getConfiguration(options);

public AppConfigurationEntry getAssertionMdul eConfiguration()

ORACLE 4-16

{

Chapter 4
How to Develop a Custom Authentication Provider

HashMap options = new HashMap();
options.put("ldentityAssertion”, "true™);
return getConfiguration(options);

}

public Principal Validator getPrincipal Validator()

{

return new Principalvalidatorimpl();

public IdentityAsserterV2 getldentityAsserter()

{

return null;

}
}

Example 4-2 shows the SampleLoginModulelmpl . java class, which is one of two runtime
classes for the sample authentication provider. This runtime class implements the
JAAS LoginModule interface (as described in Implement the JAAS LoginModule
Interface), and therefore includes implementations for its initialize, login, commit,
abort, and logout methods.

Note:

The bold face code in Example 4-2 highlights the class declaration and the
method signatures.

Example 4-2 SimpleSampleLoginModulelmpl.java

package examples.security.providers.authentication.simple;
import java.io.lOException;

import java.util.Enumeration;

import java.util.Map;

import java.util.Vector;

import javax.security.auth.Subject;

import javax.security.auth.callback.Callback;

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.NameCal Iback;

import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.login.LoginException;

import javax.security.auth.login.FailedLoginException;
import javax.security.auth.spi.LoginModule;

import weblogic.
import weblogic.
import weblogic.
import weblogic.
import weblogic.

management.utils.NotFoundException;
security.spi.WLSGroup;
security.spi.WLSUser;
security.principal .\WLSGrouplmpl;
security.principal .WLSUserImpl;

final public class SinpleSanpl eLogi nModul el npl i npl enents Logi nModul e

{

private Subject subject;

private CallbackHandler callbackHandler;

private SimpleSampleAuthenticatorDatabase database;

// Determine whether this is a login or assert identity
private boolean isldentityAssertion;

// Authentication status

private boolean loginSucceeded;

private boolean principalsinSubject;

ORACLE

4-17

Chapter 4
How to Develop a Custom Authentication Provider

private Vector principalsForSubject = new Vector();
public void initialize(Subject subject, CallbackHandl er callbackHandl er, Map
sharedState, Map options)
{
// only called (once!) after the constructor and before login
System.out.printin('SimpleSampleLoginModulelmpl . initialize™);
this.subject = subject;
this.callbackHandler = callbackHandler;
// Check for ldentity Assertion option
isldentityAssertion =
"true".equalslgnoreCase((String)options.get("ldentityAssertion™));
database = (SimpleSampleAuthenticatorDatabase)options.get(*'database);

public boolean login() throws LoginException

{
// only called (once!) after initialize
System.out.printIn("'SimpleSampleLoginModulelmpl._login™);
// loginSucceeded should be false
// principalsinSubject should be false

Callback[] callbacks = getCallbacks();
String userName = getUserName(cal lbacks);
if (userName.length() > 0) {
if (ldatabase.userExists(userName)) {
throwFailedLoginException("'Authentication Failed: User " + userName
+ " doesn"t exist.");
}
if (lisldentityAssertion) {
String passwordWant = null;
try {
passwordWant = database.getUserPassword(userName);
} catch (NotFoundException shouldNotHappen) {}
String passwordHave = getPasswordHave(userName, callbacks);
if (passwordWant == null || !passwordWant.equals(passwordHave)) {
throwFailedLoginException(
"Authentication Failed: User " + userName + " bad password."
):
}
}
} else {
// anonymous login - let it through?
System.out._printin(*"\tempty userName");
}
loginSucceeded = true;
principalsForSubject.add(new WLSUserImpl(userName));
addGroupsForSubject(userName);
return loginSucceeded;

public boolean comit() throws Logi nException
{
// only called (once!) after login
// loginSucceeded should be true or false
// principalsinSubject should be false
// user should be null if !loginSucceeded, null or not-null otherwise
// group should be null if user == null, null or not-null otherwise

System.out.printIn(*'SimpleSampleLoginModule.commit™);

if (loginSucceeded) {
subject.getPrincipals().addAll(principalsForSubject);
principalsinSubject = true;
return true;

ORACLE 4-18

Chapter 4
How to Develop a Custom Authentication Provider

} else {
return false;
}

public bool ean abort() throws Logi nException

{
// The abort method is called to abort the authentication process. This is
// phase 2 of authentication when phase 1 fails. It is called if the
// LoginContext"s overall authentication failed.
// loginSucceeded should be true or false
// user should be null if !loginSucceeded, otherwise null or not-null
// group should be null if user == null, otherwise null or not-null
// principalsinSubject should be false if user is null, otherwise true
// or false

System.out.printIn(*SimpleSampleLoginModule.abort™);

if (principalsinSubject) {
subject.getPrincipals().removeAll (principalsForSubject);
principalsinSubject = false;

}

return true;
public bool ean |ogout() throws Logi nException
// should never be called

System.out.printIn(*SimpleSampleLoginModule.logout™);
return true;

}
private void throwLoginException(String msg) throws LoginException
{
System.out.printIn("Throwing LoginException(* + msg + ")");
throw new LoginException(msg);
}

private void throwFailedLoginException(String msg) throws FailedLoginException
{

System.out.printin(""Throwing FailedLoginException("" + msg + '")");

throw new FailedLoginException(msg);

private Callback[] getCallbacks() throws LoginException

if (callbackHandler == null) {
throwLoginException("No CallbackHandler Specified™);

}
if (database == null) {
throwLoginException(*'database not specified");

}
Callback[] callbacks;
if (isldentityAssertion) {
callbacks = new Callback[1];
} else {
callbacks = new Callback[2];
callbacks[1] = new PasswordCallback("'password: ",false);

callbacks[0] = new NameCallback(''username: ");

try {
callbackHandler.handle(cal Ibacks);

} catch (10Exception e) {
throw new LoginException(e.toString());

} catch (UnsupportedCal IbackException ¢e) {
throwLoginException(e.toString() + " " + e.getCallback().toString());

}

ORACLE 4-19

}

Chapter 4
How to Develop a Custom Authentication Provider

return callbacks;
}
private String getUserName(Callback[] callbacks) throws LoginException
{
String userName = ((NameCallback)callbacks[0]).getName();
if (userName == null) {
throwLoginException(*Username not supplied.™);
}
System.out.printIn(‘"\tuserName\t= " + userName);
return userName;
}
private void addGroupsForSubject(String userName)
{
for (Enumeration e = database.getUserGroups(userName);
e.hasMoreElements();) {
String groupName = (String)e.nextElement();
System.out.printIn('"\tgroupName\t= " + groupName);
principalsForSubject.add(new WLSGrouplmpl(groupName));
}
}
private String getPasswordHave(String userName, Callback[] callbacks) throws
LoginException
{
PasswordCalIback passwordCallback = (PasswordCallback)callbacks[1];
char[] password = passwordCal Iback.getPassword();
passwordCal Iback.clearPassword();
if (password == null || password.length < 1) {
throwLoginException("Authentication Failed: User " + userName + "
Password not supplied");
}
String passwd = new String(password);
System.out.printIn(‘"\tpasswordHave\t= " + passwd);
return passwd;

}

4.4.2 Configure the Custom Authentication Provider Using the
Administration Console

Configuring a custom authentication provider means that you are adding the custom
authentication provider to your security realm, where it can be accessed by
applications requiring authentication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
authentication providers:

e Managing User Lockouts

e Specifying the Order of Authentication Providers

ORACLE 4-20

Chapter 4
How to Develop a Custom Authentication Provider

Note:

The steps for configuring a custom authentication provider using the WebLogic
Server Administration Console are described in Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

4.4.2.1 Managing User Lockouts

As part of using a custom authentication provider, you need to consider how you will
configure and manage user lockouts. You have two choices for doing this:

* Rely on the Realm-Wide User Lockout Manager

* Implement Your Own User Lockout Manager

4.4.2.1.1 Rely on the Realm-Wide User Lockout Manager

The WebLogic Security Framework provides a realm-wide User Lockout Manager that
works directly with the WebLogic Security Framework to manage user lockouts.

Note:

Both the realm-wide User Lockout Manager and a WebLogic Server 6.1
PasswordPolicyMBean (at the Realm Adapter level) may be active. See
WebLogic Server APl Reference Javadoc.

If you decide to rely on the realm-wide User Lockout Manager, then all you must do to
make it work with your custom authentication provider is use the WebLogic Server
Administration Console to:

1. Ensure that User Lockout is enabled. (It should be enabled by default.)

2. Modify any parameters for User Lockout (as necessary).

Note:

Changes to the User Lockout Manager do not take effect until you reboot the
server. Instructions for using the WebLogic Server Administration Console to
perform these tasks are described in Protecting User Accounts in
Administering Security for Oracle WebLogic Server.

4.4.2.1.2 Implement Your Own User Lockout Manager

If you decide to implement your own User Lockout Manager as part of your custom
authentication provider, then you must:

1. Disable the realm-wide User Lockout Manager to prevent double lockouts from
occurring. (When you create a new security realm using the WebLogic Server
Administration Console, a User Lockout Manager is always created.) Instructions

ORACLE 4-21

Chapter 4
How to Develop a Custom Authentication Provider

for performing this task are provided in Protecting User Accounts in Administering
Security for Oracle WebLogic Server.

2. Because you cannot borrow anything from the WebLogic Security Framework's
realm-wide implementation, you must also perform the following tasks:

a. Provide the implementation for your User Lockout Manager. Note that there is
no security service provider interface (SSPI) provided for User Lockout
Managers.

b. Modify an MBean by which the User Lockout Manager can be managed.

c. If you plan to manage your User Lockout Manager from the console,
incorporate the User Lockout Manager into the WebLogic Server
Administration Console using console extensions.

4.4.2.2 Specifying the Order of Authentication Providers

ORACLE

As described in LoginModules and Multipart Authentication, the order in which you
configure multiple authentication providers (and thus LoginModules) affects the
outcome of the authentication process.

You can configure authentication providers in any order. However, if you need to
reorder your configured authentication providers, follow the steps described in
Changing the Order of Authentication Providers in Administering Security for Oracle
WebLogic Server.

4-22

|ldentity Assertion Providers

This chapter describes identity assertion provider concepts and functionality, and
provides step-by-step instructions for developing a custom identity assertion provider.
An identity assertion provider is a specific form of authentication provider that allows
users or system processes to assert their identity using tokens (in other words,
perimeter authentication). identity assertion providers enable perimeter authentication
and support single sign-on. You can use an identity assertion provider in place of an
authentication provider if you create a LoginModule for the identity assertion provider,
or in addition to an authentication provider if you want to use the authentication
provider's LoginModule.

If you want to allow the identity assertion provider to be configured separately from the
authentication provider, write two providers. If your identity assertion provider and
authentication provider cannot work independently, then write one provider.

This chapter includes the following sections:

* Identity Assertion Concepts

* The Identity Assertion Process

* Do You Need to Develop a Custom ldentity Assertion Provider?

* How to Develop a Custom Identity Assertion Provider

5.1 Identity Assertion Concepts

Before you develop an identity assertion provider, you need to understand the
following concepts:

* Identity Assertion Providers and LoginModules
» ldentity Assertion and Tokens
e Passing Tokens for Perimeter Authentication

e Common Secure Interoperability Version 2 (CSiv2)

5.1.1 Identity Assertion Providers and LoginModules

ORACLE

When used with a LoginModule, identity assertion providers support single sign-on.
For example, an identity assertion provider can generate a token from a digital
certificate, and that token can be passed around the system so that users are not
asked to sign on more than once.

The LoginModule that an identity assertion provider uses can be:

» Part of a custom authentication provider you develop. For more information, see
Authentication Providers.

* Part of the WebLogic Authentication provider Oracle developed and packaged with
WebLogic Server. See Do You Need to Develop a Custom Authentication
Provider?.

5-1

Chapter 5
Identity Assertion Concepts

» Part of a third-party security vendor's authentication provider.

Unlike in a simple authentication situation (described in The Authentication Process),
the LoginModules that identity assertion providers use do not verify proof material
such as usernames and passwords; they simply verify that the user exists.

The LoginModules in this configuration must:

e Populate the Subject with required Principals, such as those of type WLSGroup.

e Must trust that the user has submitted sufficient proof to login and not require a
password or some other proof material.

You must implement the AuthenticationProviderV2.getAssertionModuleConfiguration
method in your custom authentication provider, as described in Implement the
AuthenticationProviderV2 SSPI. This method is called for identity assertion, such as
when an X.509 certificate is being used, and to process the run-as tag in deployment
descriptors. Other single signon strategies use it as well.

Note:

See LoginModules.

5.1.2 Identity Assertion and Tokens

You develop identity assertion providers to support the specific types of tokens that
you will be using to assert the identities of users or system processes. You can
develop an identity assertion provider to support multiple token types, but you or an
administrator configure the identity assertion provider so that it validates only one
active token type. While you can have multiple identity assertion providers in a
security realm with the ability to validate the same token type, only one identity
assertion provider can actually perform this validation.

Note:

Supporting token types means that the identity assertion provider's runtime
class (that is, the IdentityAsserter SSPI implementation) can validate the token
type in its assertldentity method. See Implement the ldentityAsserterV2 SSPI.

The following sections will help you work with new token types:

* How to Create New Token Types

* How to Make New Token Types Available for Identity Assertion Provider
Configurations

5.1.2.1 How to Create New Token Types

ORACLE

If you develop a custom identity assertion provider, you can also create new token
types. A token type is simply a piece of data represented as a string. The token types
you create and use are completely up to you. The token types currently defined for the
WebLogic Identity Assertion provider include: AuthenticatedUser, X.509,

5-2

Chapter 5
Identity Assertion Concepts

CSI.PrincipalName, CSI.1TTAnonymous, CSI.X509CertChain, CSI.DistinguishedName, and
wsse:PasswordDigest.

To create new token types, you create a new Java file and declare any new token
types as variables of type String., as shown in Example 5-1. The
PerimeterldentityAsserterTokenTypes.java file defines the names of the token types
Test 1, Test 2, and Test 3 as strings.

Note:

If you are defining only one new token type, you can also do it right in the
identity assertion provider's runtime class, as shown in Example 5-4.

Example 5-1 PerimeterldentityAsserterTokenTypes.java

package sample._security.providers.authentication.perimeterATN;
public class PerimeterldentityAsserterTokenTypes

{

public final static String TEST1_TYPE = "Test 1";
public final static String TEST2_TYPE = "Test 2";
public final static String TEST3_TYPE = "Test 3";

}

5.1.2.2 How to Make New Token Types Available for Identity Assertion
Provider Configurations

ORACLE

When you or an administrator configure a custom identity assertion provider (see
Configure the Custom Identity Assertion Provider Using the Administration Console),
the Supported Types field displays a list of the token types that the identity assertion
provider supports. You enter one of the supported types in the Active Types field, as
shown in Figure 5-1.

Figure 5-1 Configuring the Sample Identity Assertion Provider

Active Types: availahle Chosen Returns the token types
- that the Identity
w509 ~ Authenticatedlser Assertion provider is
CElPrincipalMame m currently configured to

CSLITTAROnymous
CS1.X509CenChain (e
C3l DistinguishedMan %

process. More info...

The content for the Supported Types field is obtained from the SupportedTypes attribute
of the MBean Definition File (MDF), which you use to generate your custom identity
assertion provider's MBean type. An example from the sample identity assertion
provider is shown in Example 5-2. (See Generate an MBean Type Using the
WebLogic MBeanMaker.)

Example 5-2 SampleldentityAsserter MDF: SupportedTypes Attribute
<MBeanType>
B -<MBeanAttribute

Name = "SupportedTypes"
Type = "java.lang.String[]"

5-3

Chapter 5
Identity Assertion Concepts

Writeable = "false"
Default = "new String[] {"Sanpl ePeri net er At nToken"}"
/>

</MBeanType>

Similarly, the content for the Active Types field is obtained from the ActiveTypes
attribute of the MBean Definition File (MDF). You or an administrator can default the
ActiveTypes attribute in the MDF so that it does not have to be set manually with the
WebLogic Server Administration Console. An example from the sample identity
assertion provider is shown in Example 5-3.

Example 5-3 SampleldentityAsserter MDF: ActiveTypes Attribute with Default

<MBeanAttribute

Nane= "ActiveTypes"

Type= "java.lang.String[]"

Default = "new String[] { " Sanpl ePeri net er At nToken" ; }"
/>

While defaulting the ActiveTypes attribute is convenient, you should only do this if no
other identity assertion provider will ever validate that token type. Otherwise, it would
be easy to configure an invalid security realm (where more than one identity assertion
provider attempts to validate the same token type). Best practice dictates that all
MDFs for identity assertion providers turn off the token type by default; then an
administrator can manually make the token type active by configuring the identity
assertion provider that validates it.

Note:

If an identity assertion provider is not developed and configured to validate
and accept a token type, the authentication process will fail. For more
information about configuring an identity assertion provider, see Configure the
Custom Identity Assertion Provider Using the Administration Console .

5.1.3 Passing Tokens for Perimeter Authentication

ORACLE

An identity assertion provider can pass tokens from Java clients to servlets for the
purpose of perimeter authentication. Tokens can be passed using HTTP headers,
cookies, SSL certificates, or other mechanisms. For example, a string that is base 64-
encoded (which enables the sending of binary data) can be sent to a servlet through
an HTTP header. The value of this string can be a username, or some other string
representation of a user's identity. The identity assertion provider used for perimeter
authentication can then take that string and extract the username.

If the token is passed through HTTP headers or cookies, the token is equal to the
header or cookie name, and the resource container passes the token to the part of the
WebLogic Security Framework that handles authentication. The WebLogic Security
Framework then passes the token to the identity assertion provider, unchanged.

WebLogic Server is designed to extend the single sign-on concept all the way to the
perimeter through support for identity assertion. Identity assertion allows WebLogic
Server to use the authentication mechanism provided by perimeter authentication
schemes such as the Security Assertion Markup Language (SAML), the Simple and

5-4

Chapter 5
The Identity Assertion Process

Protected GSS-API Negotiation Mechanism (SPNEGO), or enhancements to protocols
such as Common Secure Interoperability (CSI) v2 to achieve this functionality.

5.1.4 Common Secure Interoperability Version 2 (CSIv2)

WebLogic Server provides support for an Enterprise JavaBean (EJB) interoperability
protocol based on Internet Inter-ORB (IIOP) (GIOP version 1.2) and the CORBA
Common Secure Interoperability version 2 (CSIv2) specification. CSIv2 support in
WebLogic Server:

* Interoperates with the Java 2 Enterprise Edition (Java EE) version 1.4 reference
implementation.

» Allows WebLogic Server IIOP clients to specify a username and password in the
same manner as T3 clients.

e Supports Generic Security Services Application Programming Interface (GSSAPI)
initial context tokens. For this release, only usernames and passwords and
GSSUP (Generic Security Services Username Password) tokens are supported.

Note:

The CSIv2 implementation in WebLogic Server passed Java 2 Enterprise
Edition (Java EE) Compatibility Test Suite (CTS) conformance testing.

The external interface to the CSIv2 implementation is a JAAS LoginModule that
retrieves the username and password of the CORBA object. The JAAS LoginModule
can be used in a WebLogic Java client or in a WebLogic Server instance that acts as a
client to another Java EE application server. The JAAS LoginModule for the CSlv2
support is called UsernamePasswordLoginModule, and is located in the
weblogic.security.auth. login package.

CSlIv2 works in the following manner:

1. When creating a Security Extensions to Interoperable Object Reference (IOR),
WebLogic Server adds a tagged component identifying the security mechanisms
that the CORBA object supports. This tagged component includes transport
information, client authentication information, and identity token/authorization
token information.

2. The client evaluates the security mechanisms in the IOR and selects the
mechanism that supports the options required by the server.

3. The client uses the SAS protocol to establish a security context with WebLogic
Server. The SAS protocol defines messages contained within the service context
of requests and replies. A context can be stateful or stateless.

For information about using CSIv2, see Common Secure Interoperability Version 2 in
Understanding Security for Oracle WebLogic Server. See LoginModules.

5.2 The Identity Assertion Process

In perimeter authentication, a system outside of WebLogic Server establishes trust
via tokens (as opposed to the type of authentication described in The Authentication
Process, where WebLogic Server establishes trust via usernames and passwords).

ORACLE 5-5

Chapter 5
Do You Need to Develop a Custom Identity Assertion Provider?

Identity assertion providers are used as part of perimeter authentication process,
which works as follows (see Figure 5-2):

1. A token from outside of WebLogic Server is passed to an identity assertion
provider that is responsible for validating tokens of that type and that is configured
as active.

2. If the token is successfully validated, the identity assertion provider maps the
token to a WebLogic Server username, and sends that username back to
WebLogic Server, which then continues the authentication process as described in
The Authentication Process. Specifically, the username is sent via a Java
Authentication and Authorization Service (JAAS) Cal IbackHandler and passed to
each configured authentication provider's LoginModule, so that the LoginModule
can populate the subject with the appropriate principals.

Figure 5-2 Perimeter Authentication

ldentity

Get ldentity Assertion
Tokens Froviders
Client WebLogic JAAS Login Logindodules
Application Server

Principal
Sign Validation
Frovider

As Figure 5-2 also shows, perimeter authentication requires the same components as
the authentication process described in The Authentication Process, but also adds an
identity assertion provider.

5.3 Do You Need to Develop a Custom Identity Assertion

Provider?

ORACLE

The WebLogic Identity Assertion providers support certificate authentication using
X509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common
Secure Interoperability version 2 (CSIv2) identity assertion.

The LDAP X509 Identity Assertion provider receives an X509 certificate, looks up the

LDAP object for the user associated with that certificate, ensures that the certificate in
the LDAP object matches the presented certificate, and then retrieves the name of the
user from the LDAP object for the purpose of authentication.

The Negotiate Identity Assertion provider is used for SSO with Microsoft clients that
support the SPNEGO protocol. The Negotiate Identity Assertion provider decodes
SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps
Kerberos tokens to WebLogic users. The Negotiate Identity Assertion provider utilizes
the Java Generic Security Service (GSS) Application Programming Interface (API) to
accept the GSS security context via Kerberos. The Negotiate Identity Assertion
provider is for Windows NT Integrated Login.

5-6

ORACLE

Chapter 5
Do You Need to Develop a Custom Identity Assertion Provider?

The SAML Identity Assertion providers handle SAML assertion tokens when WebLogic
Server acts as a SAML destination site. The SAML Identity Assertion providers
consume and validate SAML assertion tokens and determines if the assertion is to be
trusted (using either the proof material available in the SOAP message, the client
certificate, or some other configuration indicator).

The default WebLogic Identity Assertion provider validates the token type, then maps
X509 digital certificates and X501 distinguished names to WebLogic usernames. It
also specifies a list of trusted client principals to use for CSIv2 identity assertion. The
wildcard character (*) can be used to specify that all principals are trusted. If a client is
not listed as a trusted client principal, the CSIv2 identity assertion fails and the invoke
is rejected.

Note:

To use the WebLogic Identity Assertion provider for X.501 and X.509
certificates, you have the option of using the default user name mapper that is
supplied with the WebLogic Server product
(weblogic.security.providers.authentication.DefaultUserNameMapperImpl) or
providing you own implementation of the
weblogic.security.providers.authentication.UserNameMapper interface.

This interface maps a X.509 certificate to a WebLogic Server user name
according to whatever scheme is appropriate for your needs. You can also use
this interface to map from an X.501 distinguished name to a user name. You
specify your implementation of this interface when you use the WebLogic
Server Administration Console to configure an identity assertion provider.

The WebLogic Identity Assertion providers support the following token types:

* AU_TYPE, for a WebLogic AuthenticatedUser used as a token.

e X509 _TYPE, for an X509 client certificate used as a token.

* CSI_PRINCIPAL_TYPE, for a CSIv2 principal name identity used as a token.
e CSI_ANONYMOUS_TYPE, for a CSlv2 anonymous identity used as a token.

e CSI_X509_CERTCHAIN_TYPE, for a CSlIv2 X509 certificate chain identity used as a
token.

e CSI_DISTINGUISHED NAME_TYPE, for a CSIv2 distinguished name identity used as a
token.

e AUTHORIZATION_NEGOTIATE, for a SPNEGO internal token used as a token.

e SAML_ASSERTION B64 TYPE, for a Base64 encoded SAML.assertion used as a token.
* SAML_ASSERTION_DOM_TYPE, for a SAML DOM element used as a token.

* SAML_ASSERTION_TYPE, for a SAML string XML form used as a token.

e SAML2_ASSERTION_DOM_TYPE, for a SAML2 DOM element used as a token.

° SAML2_ASSERTION_TYPE, for a SAML2 string XML form used as a token.

e SAML_SSO_CREDENTIAL_TYPE, for a SAML string consisting of the TARGET parameter
concatenated with the assertion itself and used as a token.

5-7

Chapter 5
How to Develop a Custom Identity Assertion Provider

e WSSE_PASSWORD_DIGEST_TYPE, for a username token with a password type of
password digest used as a token.

* WWW_AUTHENTICATE_NEGOTIATE, for a SPNEGO internal token used as a token.

If you want to perform additional identity assertion tasks or create new token types,
then you need to develop a custom identity assertion provider.

5.4 How to Develop a Custom |dentity Assertion Provider

If the WebLogic Identity Assertion provider does not meet your needs, you can
develop a custom identity assertion provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom identity assertion provider by completing
the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

3. Configure the Custom Identity Assertion Provider Using the Administration
Console

4. Consider whether you need to implement challenge identity assertion, as
described in Challenge Identity Assertion.

5.4.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom identity assertion provider by following these
steps:

* Implement the AuthenticationProviderV2 SSPI
* Implement the IdentityAsserterV2 SSPI

Note:

If you want to create a separate LoginModule for your custom identity
assertion provider (that is, not use the LoginModule from your authentication
provider), you also need to implement the JAAS LoginModule interface, as
described in Implement the JAAS LoginModule Interface.

For an example of how to create a runtime class for a custom identity assertion
provider, see Example: Creating the Runtime Class for the Sample Identity Assertion
Provider .

ORACLE 5-8

Chapter 5
How to Develop a Custom Identity Assertion Provider

5.4.1.1 Implement the AuthenticationProviderV2 SSPI

ORACLE

Note:

The AuthenticationProvider SSPI is deprecated in this release of WebLogic
Server. Use the AuthenticationProviderv2 SSPI instead.

To implement the AuthenticationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
methods:

getLoginModuleConfiguration

public AppConfigurationEntry getLoginModuleConfiguration()

The getLoginModuleConfiguration method obtains information about the
authentication provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a Java Authentication and
Authorization Service (JAAS) class that contains the classname of the
LoginModule; the LoginModule's control flag (which was passed in via the
authentication provider's associated MBean); and a configuration options map for
the LoginModule (which allows other configuration information to be passed into
the LoginModule).

For more information about the AppConfigurationEntry class (located in the
javax.security.auth. login package) and the control flag options for LoginModules,
see the AppConfigurationEntry class (http://docs.oracle.con/javase/8/docs/api/
Jjavax/security/auth/login/AppConfigurationEntry.html) and the Configuration
class (http://docs.oracle.con/javase/8/docs/api/javax/security/auth/login/
Configuration.html). For more information about LoginModules, see
LoginModules. For more information about security providers and MBeans, see
Understand Why You Need an MBean Type .

getAssertionModuleConfiguration

public AppConfigurationEntry
getAssertionModuleConfiguration()

The getAssertionModuleConfiguration method obtains information about an identity
assertion provider's associated LoginModule, which is returned as an
AppConfigurationEntry. The AppConfigurationEntry is a JAAS class that contains
the classname of the LoginModule; the LoginModule's control flag (which was
passed in via the identity assertion provider's associated MBean); and a
configuration options map for the LoginModule (which allows other configuration
information to be passed into the LoginModule).

The LoginModules in this configuration must populate the Subject with required
Principals, such as those of type WLSGroup, and must trust that the user has
submitted sufficient proof to login and not require a password or some other proof
material.

5-9

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/AppConfigurationEntry.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/login/Configuration.html

Chapter 5
How to Develop a Custom Identity Assertion Provider

Note:

The assertldentity() method of an identity assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security. identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just that
the token is valid, but also that the user is still valid (for example, the user has
not been deleted).

e getPrincipalValidator

public Principalvalidator getPrincipalvalidator()

The getPrincipalvalidator method obtains a reference to the principal validation
provider's runtime class (that is, the Principalvalidator SSPI implementation). For
more information, see Principal Validation Providers.

e getldentityAsserter

public ldentityAsserterV2 getldentityAsserter()

The getldentityAsserter method obtains a reference to the identity assertion
provider's runtime class (that is, the IdentityAsserterV2 SSPI implementation). For
more information, see Implement the IdentityAsserterV2 SSPI.

Note:

When the LoginModule used for the identity assertion provider is the same as
that used for an existing authentication provider, implementations for the
methods in the AuthenticationProviderV2 SSPI (excluding the
getldentityAsserter method) for identity assertion providers can just return
null. An example of this is shown in Example 5-4.

For more information about the AuthenticationProvider SSPI and the methods
described above, see Java API Reference for Oracle WebLogic Server.

5.4.1.2 Implement the IdentityAsserterV2 SSPI

ORACLE

Note:

The IdentityAsserterV2 SSPI includes additional token types and a handler
parameter to the assertldentity method that can optionally be used to obtain
additional information when asserting the identity. Although the
IdentityAsserter SSPI is still supported, you should consider using the
IdentityAsserterV2 SSPI instead.

5-10

Chapter 5
How to Develop a Custom Identity Assertion Provider

To implement the IdentityAsserterV2 SSPI, provide implementations for the following
method:

assertldentity

public CallbackHandler assertldentity(String type, Object token, ContextHandler
handler) throws ldentityAssertionException;

The assertldentity method asserts an identity based on the token identity
information that is supplied. In other words, the purpose of this method is to
validate any tokens that are not currently trusted against trusted client principals.
The type parameter represents the token type to be used for the identity assertion.
Note that identity assertion types are case insensitive. The token parameter
contains the actual identity information. The handler parameter is a ContextHandler
object that can optionally be used to obtain additional information that may be
used in asserting the identity. The CallbackHandler returned from the
assertldentity method is passed to all configured authentication providers'
LoginModules to perform principal mapping, and should contain the asserted
username. If the CallbackHandler is null, this signifies that the anonymous user
should be used.

A CallbackHandler is a highly-flexible JAAS standard that allows a variable number
of arguments to be passed as complex objects to a method. For more information
about Cal lbackHandlers, see the CallbackHandler interface (http://
docs.oracle.com/javase/8/docs/api/javax/security/auth/cal lback/
CallbackHandler.html).

Note:

The assertldentity() method of an identity assertion provider is called every
time identity assertion occurs, but the LoginModules may not be called if the
Subject is cached. The -Dweblogic.security.identityAssertionTTL flag can be
used to affect this behavior (for example, to modify the default TTL of 5
minutes or to disable the cache by setting the flag to -1).

It is the responsibility of the identity assertion provider to ensure not just that
the token is valid, but also that the user is still valid (for example, the user has
not been deleted).

For more information about the IdentityAsserterV2 SSPI and the method described
above, see the Java API Reference for Oracle WebLogic Server.

5.4.1.3 Example: Creating the Runtime Class for the Sample Identity Assertion

Provider

ORACLE

Example 5-4 shows the SampleldentityAsserterProviderImpl.java class, which is the
runtime class for the sample identity assertion provider. This runtime class includes
implementations for:

The three methods inherited from the SecurityProvider interface: initialize,
getDescription, and shutdown (as described in Understand the Purpose of the
Provider SSPIs.)

The four methods in the AuthenticationProviderV2 SSPI: the
getLoginModuleConfiguration, getAssertionModuleConfiguration,

5-11

http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html
http://docs.oracle.com/javase/8/docs/api/javax/security/auth/callback/CallbackHandler.html

Chapter 5
How to Develop a Custom Identity Assertion Provider

getPrincipalVvalidator, and getldentityAsserter methods (as described in
Implement the AuthenticationProviderV2 SSPI.

e The method in the IdentityAsserterV2 SSPI: the assertldentity method (described
in Implement the IdentityAsserterV2 SSPI).

Note:

The bold face code in Example 5-4 highlights the class declaration and the
method signatures.

Example 5-4 SampleldentityAsserterProviderimpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.CallbackHandler;

import javax.security.auth.login.AppConfigurationEntry;
import weblogic.management.security.ProviderMBean;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuthenticationProviderV2;

import weblogic.security.spi.ldentityAsserterV2;

import weblogic.security.spi.ldentityAssertionException;
import weblogic.security.spi.Principalvalidator;

import weblogic.security.spi.SecurityServices;

public final class SinpleSanpleldentityAsserterProviderlnpl inplements AuthenticationProviderV2
| dentityAsserterV2

{

final static private String TOKEN.TYPE = "Sanpl ePeri neter At nToken";

final static private String TOKEN_PREFIX = "username=";

private String description;

public void initialize(ProviderMean nbean, SecurityServices services)

{
System.out.printin("SimpleSampleldentityAsserterProviderimpl.initialize™);
SimpleSampleldentityAsserterMBean myMBean = (SimpleSampleldentityAsserterMBean)mbean;
description = myMBean.getDescription() + '"\n" + myMBean.getVersion();

}

public String getDescription()

{

return description;

public void shutdown()

{
System.out.printin("SimpleSampleldentityAsserterProviderimpl.shutdown™);

public IdentityAsserterV2 getldentityAsserter()
{

return this;

public CallbackHandl er assertldentity(String type, Object token, ContextHandler context) throws
| dentityAssertionException
{
System.out.printin("SimpleSampleldentityAsserterProviderImpl._assertldentity");
System.out.printin("\tType\t\t= " + type);
System.out.printin(""\tToken\t\t= " + token);
if (1(TOKEN_TYPE.equals(type))) {
String error = "SimpleSampleldentityAsserter received unknown token type \""
+ type + "\"." + " Expected " + TOKEN_TYPE;
System.out.printin("\tError: " + error);
throw new ldentityAssertionException(error);

}

ORACLE 5-12

Chapter 5
How to Develop a Custom Identity Assertion Provider

if (!(token instanceof byte[])) {
String error = "SimpleSampleldentityAsserter received unknown token class \""
+ token.getClass() + "\"." + " Expected a byte[].";
System.out.printin("\tError: " + error);
throw new ldentityAssertionException(error);
}
byte[] tokenBytes = (byte[])token;
if (tokenBytes == null || tokenBytes.length < 1) {
String error = "SimpleSampleldentityAsserter received empty token byte array";
System.out.printin(""\tError: " + error);
throw new ldentityAssertionException(error);
}
String tokenStr = new String(tokenBytes);
if (!(tokenStr._startsWith(TOKEN_PREFIX))) {
String error = "SimpleSampleldentityAsserter received unknown token string \""
+ type + "\"." + " Expected " + TOKEN_PREFIX + "username";
System.out.printin("\tError: " + error);
throw new ldentityAssertionException(error);
}
String userName = tokenStr.substring(TOKEN_PREFIX. length());
System.out.printIn(‘"\tuserName\t= " + userName);
return new SimpleSampleCal IbackHandlerImpl(userName);

public AppConfigurationEntry getLoginModuleConfiguration()
{

return null;

public AppConfigurationEntry getAssertionModuleConfiguration()
{

}
public Principalvalidator getPrincipalvalidator()

{

}
}

return null;

return null;

Example 5-5 shows the sample Cal IbackHandler implementation that is used along with
the SampleldentityAsserterProviderimpl.java runtime class. This Cal lbackHandler
implementation is used to send the username back to an authentication provider's
LoginModule.

Example 5-5 SampleCallbackHandlerimpl.java

package examples.security.providers.identityassertion.simple;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCal lback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
/*package*/ class SimpleSimpleSampleCallbackHandler implements CallbackHandler
{
private String userName;
/*package*/ SimpleSampleCallbackHandlerImpl(String user)
{

userName = user;

public void handle(Callback[] callbacks) throws UnsupportedCallbackException

{
for (int i = 0; 1 < callbacks._length; i++) {
Callback callback = callbacks[i];
if (Y(callback instanceof NameCallback)) {

ORACLE 5-13

Chapter 5
How to Develop a Custom Identity Assertion Provider

throw new UnsupportedCal IbackException(callback, "Unrecognized

Callback™);

NameCal Iback nameCallback = (NameCalIback)callback;
nameCal Iback.setName(userName);

}
}
}

5.4.2 Configure the Custom Identity Assertion Provider Using the
Administration Console

Configuring a custom identity assertion provider means that you are adding the
custom identity assertion provider to your security realm, where it can be accessed by
applications requiring identity assertion services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note:

The steps for configuring a custom identity assertion provider using the
WebLogic Server Administration Console are described under Configuring
WebLogic Security Providers in Administering Security for Oracle WebLogic
Server.

5.4.3 Challenge Identity Assertion

The Challenge Identity Asserter interface supports challenge response schemes in
which multiple challenges, responses messages, and state are required. The
Challenge Identity Asserter interface allows identity assertion providers to support
authentication protocols such as Microsoft's Windows NT Challenge/Response
(NTLM), Simple and Protected GSS-API Negotiation Mechanism (SPNEGO), and
other challenge/response authentication mechanisms.

5.4.3.1 Challenge/Response Limitations in the Java Servlet APl 2.3

Environment

ORACLE

The WebLogic Security Framework allows you to provide a custom authentication and
identity assertion provider. However, due to the nature of the Java Servlet API 2.3
specification, the interaction between the authentication provider and the client or
other servers is architecturally limited during the authentication process. This restricts
authentication mechanisms to those that are compatible with the authentication
mechanisms the Servlet container offers: basic, form, and certificate.

Servlet authentication filters, which are described in Servlet Authentication Filters have
fewer architecturally-dependence limitations; that is, they are not dependent on the
authentication mechanisms offered by the servlet container. By allowing filters to be
invoked prior to the container beginning the authentication process, a security realm
can implement a wider scope of authentication mechanisms. For example, a servlet
authentication filter could redirect the user to a SAML provider site for authentication.

5-14

Chapter 5
How to Develop a Custom Identity Assertion Provider

Servlet authentication filters provide a convenient way to implement a challenge/
response protocol in your environment. Filters allow your Challenge Identity Assertion
interface to loop through your challenge/response mechanism as often as needed to
complete the challenge.

5.4.3.2 Filters and The Role of the weblogic.security.services.Authentication

Class

Servlet authentication filters allow you to implement a challenge/response protocol
without being limited to the authentication mechanisms compatible with the Servlet
container. However, because servlet authentication filters operate outside of the
authentication environment provided by the Security Framework, they cannot depend
on the Security Framework to determine provider context, and require an API to drive
the multiple-challenge identity assertion process.

The weblogic.security.services.Authentication class has been extended to allow
multiple challenge/response identity assertion from a servlet authentication filter. The
methods and interface provide a wrapper for the Chal lengeldentityAsserterV2 and
ProviderChal lengeContext interfaces so that you can invoke them from a servlet
authentication filter.

There is no other documented way to perform a multiple challenge/response dialog
from a servlet authentication filter within the context of the Security Framework. Your
servlet authentication filter cannot directly invoke the ChallengeldentityAsserterV2 and
ProviderChal lengeContext interfaces.

Therefore, you need to implement the Chal lengeldentityAsserterv2 and

ProviderChal lengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and AppChal lengeContext interface
to invoke them from a servlet authentication filter.

5.4.3.3 How to Develop a Challenge Identity Asserter

To develop a Challenge Identity Asserter:

e Implement the AuthenticationProviderV2 SSPI

e Implement the IdentityAsserterV2 SSPI

e Implement the ChallengeldentityAsserterV2 Interface

e Invoke the weblogic.security.services Challenge Identity Methods

e Invoke the weblogic.security.services AppChallengeContext Methods

5.4.3.4 Implement the ChallengeldentityAsserterV2 Interface

ORACLE

The ChallengeldentityAsserterV2 interface extends the IdentityAsserterv2 SSPI. You
must implement the Chal lengeldentityAsserterV2 interface in addition to the
IdentityAssertervV2 SSPI.

Provide an implementation for all of the IdentityAsserterV2 methods, and the following
methods:

e assertChallengeldentity

ProviderChal lengeContext assertChallengeldentity(String tokenType, Object token,
ContextHandler handler)

5-15

Chapter 5
How to Develop a Custom Identity Assertion Provider

Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns your implementation of the

ProviderChal lengeContext interface. The ProviderChal lengeContext interface
provides a means to query the state of the challenges.

continueChallengeldentity

void continueChallengeldentity(ProviderChallengeContext context, String
tokenType, Object token,
ContextHandler handler)

Use the supplied provider context and client token to continue establishing client
identity.

getChallengeToken

Object getChallengeToken(String type, ContextHandler handler)

This method returns the identity assertion provider's challenge token.

5.4.3.5 Implement the ProviderChallengeContext Interface

The ProviderChal lengeContext interface provides a means to query the state of the
challenges. It allows the assertChallengeldentity and continueChal lengeldentity
methods of the ChallengeldentityAsserterV2 interface to return either the callback
handler or a new challenge to which the client must respond.

To implement the ProviderChal lengeContext interface, provide implementations for the
following methods:

getCallbackHandler
CallbackHandler getCallbackHandler()

This method returns the callback handler for the challenge identity assertion. Call
this method only when the hasChal lengeldentityCompleted method returns true.

getChallengeToken
Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call
this method only when the hasChallengeldentityCompleted method returns false.

hasChallengeldentityCompleted

boolean hasChallengeldentityCompleted

This method returns whether the challenge identity assertion has completed. It
returns true if the challenge identity assertion has completed, false if not. If true,
the caller should use the getCallbackHandler method. If false, then the caller should
use the getChal lengeToken method.

5.4.3.6 Invoke the weblogic.security.services Challenge Identity Methods

Have your servlet authentication filter invoke the following
weblogic.security.services.Authentication methods instead of calling the
ChallengeldentityAsserterV2 SSPI directly:

ORACLE

assertChallengeldentity

5-16

Chapter 5
How to Develop a Custom Identity Assertion Provider

AppChallengeContext assertChallengeldentity(String tokenType, Object token,
AppContext appContext)

Use the supplied client token to establish client identity, possibly with multiple
challenges. This method returns the context of the challenge identity assertion.
This result may contain either the authenticated subject or an additional challenge
to which the client must respond. The AppChal lengeContext interface provides a
means to query the state of the challenges.

continueChallengeldentity

void continueChallengeldentity(AppChallengeContext context, String tokenType,
Object token, AppContext appContext)

Use the supplied provider context and client token to continue establishing client
identity.

getChallengeToken
Object getChallengeToken

This method returns the initial challenge token for the challenge identity assertion.

5.4.3.7 Invoke the weblogic.security.services AppChallengeContext Methods

Have your servlet authentication filter invoke the following AppChallengeContext
methods instead of invoking the ProviderChal lengeContext interface directly:

getAuthenticatedSubject

Subject getAuthenticatedSubject()

Returns the authenticated subject for the challenge identity assertion. Call this
method only when the hasChal lengeldentityCompleted method returns true.
getChallengeToken

Object getChallengeToken()

This method returns the challenge token for the challenge identity assertion. Call
this method only when the hasChal lengeldentityCompleted method returns false.
hasChallengeldentityCompleted

boolean hasChallengeldentityCompleted()

This method returns whether the challenge identity assertion has completed. It
returns true if the challenge identity assertion has completed, false if not. If true,

the caller should use the getCallbackHandler method. If false, then the caller
should use the getChal lengeToken method.

5.4.3.8 Implementing Challenge Identity Assertion from a Filter

ORACLE

In the following code flow, assume that the servlet authentication filter, which is
described in Servlet Authentication Filters handles the HTTP level interactions
(Authorization and WWW-Authenticate) and is also responsible for calling the

weblogic.security.services.Authentication methods and interfaces to drive the

Challenge Identity Assertion process.

1.

Browser sends a request

5-17

ORACLE

Chapter 5
How to Develop a Custom Identity Assertion Provider

Filter sees requests and no authorization header, so it calls the
weblogic.security.services.Authentication getChal lengeToken method to get an
initial token and sends a 401 response with a WWW-Authenticate negotiate
header back

Browser sees 401 with WWW-Authenticate and responds with a new request and
a Authorization Negotiate token.

a.

Filter sees this and calls the weblogic.security.services.Authentication
assertChallengeldentity method. assertChallengeldentity takes the token as
input, processes it according to whatever rules it needs to follow for the
assertion process it is following (for example, if NTLM, then do whatever
NTLM requires to process the token), and determine if that succeeded or not.
assertChallengeldentity returns your implementation of the

AppChal lengeContext interface.

Filter calls appChallengeContext hasChal lengeCompleted method. Use the
AppChallengeContext hasChal lengeldentityCompleted method to see if the
challenge has completed. For example, it can determine if the callback handler
is not null, meaning that it contains a username, and return true. In this use it
returns false, so it must issue another challenge to the client. The filter then
calls AppChallengeContext getChal lengeToken to get the token to challenge
back with.

Filter likely stores the AppChallengeContext somewhere such as a session
attribute.

Filter sends a 401 response with an WWW-Authenticate negotiate and the
new token.

Browser sees the new challenge and responds again with an authorization header.

a.

Filter sees this and calls the weblogic.security.services.Authentication
continueChal lengeldentity method.

Filter calls the AppChallengeContext hasChal lengeCompleted method. If it
returns false another challenge is in order, so call the AppChallengeContext
getChallengeToken method to get the token to challenge back with, and so
forth. If it returned true, then the challenge has completed and the filter would
then call AppChallengeContext getAuthenticatedSubject method and perform
a runAs(subject, request).

5-18

Principal Validation Providers

This chapter describes principal validation provider concepts and functionality, and
provides step-by-step instructions for developing a custom principal validation
provider.

Authentication providers rely on principal validation providers to sign and verify the
authenticity of principals (users and groups) contained within a subject. Such
verification provides an additional level of trust and may reduce the likelihood of
malicious principal tampering. Verification of the subject's principals takes place during
the WebLogic Server's demarshalling of RMI client requests for each invocation. The
authenticity of the subject's principals is also verified when making authorization
decisions.

This chapter includes the following sections:

* Principal Validation Concepts

e The Principal Validation Process

* Do You Need to Develop a Custom Principal Validation Provider?

* How to Develop a Custom Principal Validation Provider

6.1 Principal Validation Concepts

Before you develop a principal validation provider, you need to understand the
following concepts:

* Principal Validation and Principal Types
* How Principal Validation Providers Differ From Other Types of Security Providers

* Security Exceptions Resulting from Invalid Principals

6.1.1 Principal Validation and Principal Types

Like identity assertion providers support specific types of tokens, principal validation
providers support specific types of principals. For example, the WebLogic Principal
Validation provider (described in Do You Need to Develop a Custom Principal
Validation Provider?) signs and verifies the authenticity of WebLogic Server principals.

The principal validation provider that is associated with the configured authentication
provider (as described in How Principal Validation Providers Differ From Other Types
of Security Providers) will sign and verify all the principals stored in the subject that
are of the type the principal validation provider is designed to support.

6.1.2 How Principal Validation Providers Differ From Other Types of
Security Providers

A principal validation provider is a special type of security provider that primarily acts
as a helper to an authentication provider. The main function of a principal validation

ORACLE 6-1

Chapter 6
The Principal Validation Process

provider is to prevent malicious individuals from tampering with the principals stored in
a subject.

The AuthenticationProvider SSPI (as described in Implement the
AuthenticationProviderV2 SSPI) includes a method called getPrincipalVvalidator. In
this method, you specify the principal validation provider's runtime class to be used
with the authentication provider. The principal validation provider's runtime class can
be the one Oracle provides (called the WebLogic Principal Validation provider) or one
you develop (called a custom principal validation provider). An example of using the
WebLogic Principal Validation provider in an authentication provider's
getPrincipalVvalidator method is shown in Figure 4-1.

Because you generate MBean types for authentication providers and configure
authentication providers using the WebLogic Server Administration Console, you do
not have to perform these steps for a principal validation provider.

6.1.3 Security Exceptions Resulting from Invalid Principals

When the WebLogic Security Framework attempts an authentication (or authorization)
operation, it checks the subject's principals to see if they are valid. If a principal is not
valid, the WebLogic Security Framework throws a security exception with text
indicating that the subject is invalid. A subject may be invalid because:

e A principal in the subject does not have a corresponding principal validation
provider configured (which means there is no way for the WebLogic Security
Framework to validate the subject).

Note:

Because you can have multiple principals in a subject, each stored by the
LoginModule of a different authentication provider, the principals can have
different principal validation providers.

* A principal was signed in another WebLogic Server security domain (with a
different credential from this security domain) and the caller is trying to use it in the
current domain.

* A principal with an invalid signature was created as part of an attempt to
compromise security.

* A subject never had its principals signed.

6.2 The Principal Validation Process

As shown in Figure 6-1, a user attempts to log into a system using a username/
password combination. WebLogic Server establishes trust by calling the configured
authentication provider's LoginModule, which validates the user's username and
password and returns a subject that is populated with principals per Java
Authentication and Authorization Service (JAAS) requirements.

ORACLE 6-2

Chapter 6
Do You Need to Develop a Custom Principal Validation Provider?

Figure 6-1 The Principal Validation Process

Usernamefpassword
b JAAS Login > LoginModules
Client WebLogic
Application Server Principal
Sign Validation
FProvider
Subject

WebLogic Server passes the subject to the specified principal validation provider,
which signs the principals and then returns them to the client application via WebLogic
Server. Whenever the principals stored within the subject are required for other
security operations, the same principal validation provider will verify that the principals
stored within the subject have not been modified since they were signed.

6.3 Do You Need to Develop a Custom Principal Validation

Provider?

ORACLE

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Principal Validation provider. Much like an identity assertion provider supports a
specific type of token, a principal validation provider signs and verifies the authenticity
of a specific type of principal. The WebLogic Principal Validation provider signs and
verifies WebLogic Server principals. In other words, it signs and verifies principals that
represent WebLogic Server users or WebLogic Server groups.

Note:

You can use the WLSPrincipals class (located in the
weblogic.security.principal package) to determine whether a principal (user
or group) has special meaning to WebLogic Server. (That is, whether it is a
predefined WebLogic Server user or WebLogic Server group.) Furthermore,
any principal that is going to represent a WebLogic Server user or group
needs to implement the WLSUser and WLSGroup interfaces (available in the
weblogic.security.spi package).

WLSPrincipals is used only by PrincipalVvalidatorimpl, not by the Security
Framework. An authentication provider can implement its own principal
validator, or it can use the Principalvalidatorimpl. If you configure an
authentication provider with custom principal validators, then the WLSPrincipals
interface is not used.

An authentication provider needs to implement the WLSPrincipals interface if
the provider is going to use PrincipalVvalidatorimpl.

6-3

Chapter 6
How to Develop a Custom Principal Validation Provider

The WebLogic Principal Validation provider includes implementations of the WLSUser
and WLSGroup interfaces, named WLSUser Impl and WLSGrouplImpl. These are located in the
weblogic.security.principal package.

It also includes an implementation of the Principalvalidator SSPI called
com.bea.common.security.provider.Principalvalidatorimpl. The sign() method in the
PrincipalVvalidatorlmpl class generates a random seed and computes a digest based
on that random seed. (See Implement the PrincipalValidator SSPI.)

6.3.1 How to Use the WebLogic Principal Validation Provider

If you have simple user and group principals (that is, they only have a name), and you
want to use the WebLogic Principal Validation provider:

» Use the existing weblogic.security.principal .WLSUserImpl and
weblogic.security.principal .WLSGrouplImpl classes. See the WLSUser and WLSGroup
interfaces in the weblogic.security.spi package for usage information.

e Use the com.bea.common.security.provider.Principalvalidatorimpl class. See the
PrincipalVvalidator SSPI for usage information.

If you have user or group principals with extra data members (that is, in addition to a
name), and you want to use the WebLogic Principal Validation provider:

e Write your own Userlmpl and Grouplmpl classes.
e Extend the weblogic.security.principal .WLSAbstractPrincipal class.

* Implement the weblogic.security.spi.WLSUser and weblogic.security.spi.WLSGroup
interfaces.

e Implement the equals() method to include your extra data members. Your
implementation should call the super.equals() method when complete so the
WLSAbstractPrincipal can validate the remaining data.

Note:

By default, only the user or group name will be validated. If you want to
validate your extra data members as well, then implement the getSignedData()
method.

* Use the com.bea.common.security.provider.PrincipalValidatorimpl class. See the
Principalvalidator SSPI for usage information.

If you have your own validation scheme and do not want to use the WebLogic
Principal Validation provider, or if you want to provide validation for principals other
than WebLogic Server principals, then you need to develop a custom principal
validation provider.

6.4 How to Develop a Custom Principal Validation Provider

To develop a custom principal validation provider:

e Write your own Userlmpl and Grouplmpl classes by:

— Implementing the weblogic.security.spi.WLSUser and
weblogic.security.spi. WLSGroup interfaces.

ORACLE 6-4

Chapter 6
How to Develop a Custom Principal Validation Provider

— Implementing the java.io.Serializable interfaces.

Write your own PrincipalValidationlmpl class by implementing the
weblogic.security.spi.Principalvalidator SSPI. (See Implement the
PrincipalValidator SSPI.)

6.4.1 Implement the PrincipalValidator SSPI

To implement the Principalvalidator SSPI, provide implementations for the following
methods:

ORACLE

validate
public boolean validate(Principal principal) throws SecurityException;
The validate method takes a principal as an argument and attempts to validate it.

In other words, this method verifies that the principal was not altered since it was
signed.

sign

public boolean sign(Principal principal);

The sign method takes a principal as an argument and signs it to assure trust. This
allows the principal to later be verified using the validate method.

Your implementation of the sign method should be a secret algorithm that
malicious individuals cannot easily recreate. You can include that algorithm within
the sign method itself, have the sign method call out to a server for a token it
should use to sign the principal, or implement some other way of signing the
principal.

getPrincipalBaseClass

public Class getPrincipalBaseClass();

The getPrincipalBaseClass method returns the base class of principals that this
principal validation provider knows how to validate and sign.

See Java API Reference for Oracle WebLogic Server.

6-5

Chapter 6

How to Develop a Custom Principal Validation Provider

ORACLE" 6-6

Authorization Providers

This chapter describes authorization provider concepts and functionality, and provides
step-by-step instructions for developing a custom authorization provider.
Authorization is the process whereby the interactions between users and WebLogic
resources are controlled, based on user identity or other information. In other words,
authorization answers the question, "What can you access?" In WebLogic Server, an
authorization provider is used to limit the interactions between users and WebLogic
resources to ensure integrity, confidentiality, and availability.

This chapter includes the following sections:

* Authorization Concepts

* The Authorization Process

* Do You Need to Develop a Custom Authorization Provider?
* Is Your Custom Authorization Provider Thread Safe?

* How to Develop a Custom Authorization Provider

7.1 Authorization Concepts

Before you develop an authorization provider, you need to understand the following
concepts:

* Access Decisions
* Using the Java Authorization Contract for Containers

e Security Providers and WebLogic Resources

7.1.1 Access Decisions

Like LoginModules for authentication providers, an Access Decision is the
component of an authorization provider that actually answers the "is access allowed?"
guestion. Specifically, an Access Decision is asked whether a subject has permission
to perform a given operation on a WebLogic resource, with specific parameters in an
application. Given this information, the Access Decision responds with a result of
PERMIT, DENY, or ABSTAIN.

Note:

See Implement the AccessDecision SSPI.

ORACLE 7-1

Chapter 7
The Authorization Process

7.1.2 Using the Java Authorization Contract for Containers

The Java Authorization Contract for Containers (JACC) is part of Java EE. JACC
extends the permission-based security model to EJBs and Servlets. JACC is defined
by JSR-115 (http://www.jcp.org/en/jsr/detail?id=115).

JACC provides an alternate authorization mechanism for the EJB and Servlet
containers in a WebLogic Server domain. When JACC is configured, the WebLogic
Security framework access decisions, adjudication, and role mapping functions are not
used for EJB and Servlet authorization decisions.

Note:

You cannot use the JACC framework in conjunction with the WebLogic
Security framework. The JACC classes used by WebLogic Server do not
include an implementation of a Policy object for rendering decisions but
instead rely on the java.security.Policy (http://docs.oracle.con/javase/8/
docs/api/java/security/Policy.html) object.

WebLogic Server implements a JACC provider that, although fully compliant with
JSR-115, is not as optimized as the WebLogic Authentication provider. The Java
JACC classes are used for rendering access decisions. Because JSR-115 does not
define how to address role mapping, WebLogic JACC classes are used for role-to-
principal mapping. See http://docs.oracle.com/javaee/7/api/javax/security/jacc/
package-frame.html for information on developing a JACC provider.

7.2 The Authorization Process

ORACLE

Figure 7-1 illustrates how authorization providers (and the associated adjudication and
role mapping providers) interact with the WebLogic Security Framework during the
authorization process, and an explanation follows.

7-2

http://www.jcp.org/en/jsr/detail?id=115
http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html
http://docs.oracle.com/javase/8/docs/api/java/security/Policy.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html
http://docs.oracle.com/javaee/7/api/javax/security/jacc/package-frame.html

Chapter 7
The Authorization Process

Figure 7-1 Authorization Providers and the Authorization Process

Resource Container @

(1)|Request > EJB Servlet JSP

subject, resource, T
ContextHandler TRUE

) |®

WebLogic Security Framework

F

Security Providers ()

subject, resource,
ContextHandler @

Fole Mapping Providers
PRing lizt of applicakblg

Fole Mappers ' roles

subject,
o] resource,
Authorization Providers ContextHandler,
roles
Access Decisions |
PERMIT,
DENY o TRLE
ABSTAIN
Adjudication Provider
C Adjudicator)

Generally, authorization is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being
requested receives the request (for example, the EJB container receives the
request for an EJB resource).

Note:

The resource container could be the container that handles any one of the
WebLogic Resources described in Security Providers and WebLogic
Resources.

ORACLE 7-3

ORACLE

Chapter 7
The Authorization Process

The resource container constructs a ContextHandler object that may be used by
the configured role mapping providers and the configured authorization providers'
Access Decisions to obtain information associated with the context of the request.

" Note:

See ContextHandlers and WebLogic Resources, Access Decisions, and Role
Mapping Providers.

The resource container calls the WebLogic Security Framework, passing in the
subject, the WebLogic resource, and optionally, the ContextHandler object (to
provide additional input for the decision).

The WebLogic Security Framework calls the configured role mapping providers.

The role mapping providers use the ContextHandler to request various pieces of
information about the request. They construct a set of Cal Iback objects that
represent the type of information being requested. This set of Cal Iback objects is
then passed as an array to the ContextHandler using the handle method.

The role mapping providers use the values contained in the Callback objects, the
subject, and the resource to compute a list of security roles to which the subject
making the request is entitled, and pass the list of applicable security roles back to
the WebLogic Security Framework.

The WebLogic Security Framework delegates the actual decision about whether
the subject is entitled to perform the requested action on the WebLogic resource to
the configured authorization providers.

The authorization providers' Access Decisions also use the ContextHandler to
request various pieces of information about the request. They too construct a set
of Cal lback objects that represent the type of information being requested. This set
of Callback objects is then passed as an array to the ContextHandler using the
handle method. (The process is the same as described for role mapping providers
in Step 5.)

The isAccessAllowed method of each configured authorization provider's Access
Decision is called to determine if the subject is authorized to perform the
requested access, based on the ContextHandler, subject, WebLogic resource, and
security roles. Each isAccessAllowed method can return one of three values:

e PERMIT, indicates that the requested access is permitted.
* DENY, indicates that the requested access is explicitly denied.

e ABSTAIN, indicates that the Access Decision was unable to render an explicit
decision.

This process continues until all Access Decisions are used.

The WebLogic Security Framework delegates the job of reconciling any
discrepancies among the results rendered by the configured authorization
providers' Access Decisions to the adjudication provider. The adjudication provider
determines the ultimate outcome of the authorization decision.

7-4

Chapter 7
Do You Need to Develop a Custom Authorization Provider?

Note:

See Adjudication Providers.

9. The adjudication provider returns either a TRUE or FALSE verdict, which is forwarded
to the resource container through the WebLogic Security Framework.

e If the decision is TRUE, the resource container dispatches the request to the
protected WebLogic resource.

» If the decision is FALSE, the resource container throws a security exception that
indicates that the requestor was not authorized to perform the requested
access on the protected WebLogic resource.

7.3 Do You Need to Develop a Custom Authorization

Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Authorization provider. The WebLogic Authorization provider supplies the default
enforcement of authorization for this version of WebLogic Server. The WebLogic
Authorization provider returns an access decision using a policy-based authorization
engine to determine if a particular user is allowed access to a protected WebLogic
resource. The WebLogic Authorization provider also supports the deployment and
undeployment of security policies within the system. If you want to use an
authorization mechanism that already exists within your organization, you could create
a custom authorization provider to tie into that system.

7.3.1 Does Your Custom Authorization Provider Need to Support
Application Versioning?

All authorization, role mapping, and credential mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for authorization, role
mapping, or credential mapping and need to support versioned applications, you must
implement the Versionable Application SSPI, as described in Versionable Application
Providers.

7.4 1s Your Custom Authorization Provider Thread Safe?

ORACLE

For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable authorization and role mapping providers configured in the
security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable authorization and role mapping providers may or may
not support parallel calls. If your custom deployable authorization or role mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.

7-5

Chapter 7
How to Develop a Custom Authorization Provider

Note:

Enabling the synchronization mechanism affects every deployable provider
configured in the realm, including the predefined WebLogic Server providers.
Enabling the synchronization mechanism may negatively impact the
performance of these providers.

See Administering Security for Oracle WebLogic Server for information on how to turn
on this synchronization enforcement mechanism.

7.5 How to Develop a Custom Authorization Provider

If the WebLogic Authorization provider does not meet your needs, you can develop a
custom authorization provider by following these steps:

1.

5.
6.

Create Runtime Classes Using the Appropriate SSPIs, or, optionally, implement
the Bulk Authorization Providers

Optionally, implement the Policy Consumer SSPI
Optionally, implement the PolicyStoreMBean

Generate an MBean type for your custom authorization provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

Configure the Custom Authorization Provider Using the Administration Console

Provide a Mechanism for Security Policy Management

7.5.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

ORACLE

Understand the Purpose of the Provider SSPIs
Determine Which Provider Interface You Will Implement

Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom authorization provider by following these steps:

Implement the AuthorizationProvider SSPI or Implement the
DeployableAuthorizationProviderV2 SSPI

Implement the AccessDecision SSPI

Note:

At least one authorization provider in a security realm must implement the
DeployableAuthorizationProvider SSPI, or else it will be impossible to deploy
Web applications and EJBs.

7-6

Chapter 7
How to Develop a Custom Authorization Provider

For an example of how to create a runtime class for a custom authorization provider,
see Example: Creating the Runtime Class for the Sample Authorization Provider .

7.5.1.1 Implement the AuthorizationProvider SSPI

To implement the AuthorizationProvider SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

getAccessDecision

public AccessDecision getAccessDecision();

The getAccessDecision method obtains the implementation of the AccessDecision
SSPI. For a single runtime class called MyAuthorizationProviderimpl.java, the
implementation of the getAccessDecision method would be:

return this;

If there are two runtime classes, then the implementation of the getAccessDecision
method could be:

return new MyAccessDecisionlmpl;

This is because the runtime class that implements the AuthorizationProvider SSPI
is used as a factory to obtain classes that implement the AccessDecision SSPI.

See Java API Reference for Oracle WebLogic Server.

7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI

To implement the DeployableAuthorizationProviderV2 SSPI, provide implementations
for the methods described in Understand the Purpose of the Provider SSPIs,
Implement the AuthorizationProvider SSPI, and the following methods:

ORACLE

deleteApplicationPolicies

public void deleteApplicationPolicies(Applicationinfo application) throws
ResourceRemovalException

The deleteApplicationPolicies method deletes all policies for an application. The
deleteApplicationPolicies method is called only on the Administration Server.
deployExcludedPolicy

public void deleteApplicationPolicies(DeployPolicyHandle handle, Resource
resource) throws ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.
deployPolicy

public void deployPolicy(DeployPolicyHandle handle, Resource resource,
String[] roleNames) throws ResourceCreationException

The deployPoliicy method creates a security policy on behalf of a deployed Web
application or EJB, based on the WebLogic resource to which the security policy
should apply and the security role names that are in the security policy.

deployUncheckedPolicy

7-7

Chapter 7
How to Develop a Custom Authorization Provider

public void deployUncheckedPolicy(DeployPolicyHandle handle, Resource
resource) throws ResourceCreationException

The deployUncheckedPolicy method deploys a policy that always grants access. If
a policy already exists, it is removed and replaced by this policy.
« endDeployPolicies

public void endDeployPolicies(DeployPolicyHandle handle) throws
ResourceCreationException

The deployExcludedPolicy method deploys a policy that always denies access. If a
policy already exists, it is removed and replaced by this policy.
» startDeployPolicies

public deployPolicyHandle startDeployPolicies(Applicationinfo application)
throws DeployHandleCreationException

The startDeployPolicies method marks the beginning of an application policy
deployment and is called on all servers within a WebLogic Server domain where
an application is targeted.

e undeployAllPolicies

public void undeployAllPolicies(DeployPolicyHandle handle) throws
ResourceRemovalException

The undeployAlIPolicies method deletes a set of policy definitions on behalf of an
undeployed Web application or EJB.

See Java API Reference for Oracle WebLogic Server.

7.5.1.2.1 The Applicationinfo Interface

ORACLE

The Applicationinfo interface passes data about an application deployment to a
security provider. You can use this data to uniquely identity the application.

The Security Framework implements the Applicationinfo interface for your
convenience. You do not need to implement any methods for this interface.

The DeployableAuthorizationProviderV2 and DeployableRoleProviderV2 interfaces use
Applicationinfo. For example, consider an implementation of the
DeployableAuthorizationProviderV2 methods. The Security Framework calls the
DeployableAuthorizationProviderV2 startDeployPolicies method and passes in the
Applicationinfo interface for this application. The ApplicationInfo data is determined
based on the information supplied in the WebLogic Server Administration Console
when an application is deployed.

The startDeployPolicies method returns DeployPolicyHandle, which you can then use
in the other DeployableAuthorizationProviderV2 methods.

You use the Applicationinfo interface to get the application identifier, the component
name, and the component type for this application. Component type can be
APPLICATION, CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the
Applicationinfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployPolicyHandle startDeployPolicies(Applicationinfo applnfo)
throws DeployHandleCreationException

7-8

Chapter 7
How to Develop a Custom Authorization Provider

// Obtain the application information...
String appld = applInfo.getApplicationldentifier();
ComponentType compType = applInfo.getComponentType();
String compName = applnfo.getComponentName();

The Security Framework calls the DeployableAuthorizationProviderV2
deleteApplicationPolicies method and passes in the Applicationinfo interface for this
application. The deleteApplicationPolicies method deletes all policies for an
application and is called (only on the Administration Server within a WebLogic Server
domain) at the time an application is deleted.

7.5.1.3 Implement the AccessDecision SSPI

When you implement the AccessDecision SSPI, you must provide implementations for
the following methods:

e isAccessAllowed

public Result isAccessAllowed(Subject subject, Map roles,
Resource resource, ContextHandler handler, Direction direction) throws
InvalidPrincipalException

The isAccessAl lowed method utilizes information contained within the subject to
determine if the requestor should be allowed to access a protected method. The
isAccessAllowed method may be called prior to or after a request, and returns
values of PERMIT, DENY, or ABSTAIN. If multiple Access Decisions are configured and
return conflicting values, an adjudication provider will be needed to determine a
final result. For more information, see Adjudication Providers.

* isProtectedResource

public boolean isProtectedResource(Subject subject, Resource resource) throws
InvalidPrincipalException

The isProtectedResource method is used to determine whether the specified
WebLogic resource is protected, without incurring the cost of an actual access
check. It is only a lightweight mechanism because it does not compute a set of
security roles that may be granted to the caller's subject.

SeeJava API Reference for Oracle WebLogic Server.

7.5.1.4 Example: Creating the Runtime Class for the Sample Authorization

Provider

ORACLE

Example 7-1 shows the SampleAuthorizationProviderImpl.java class, which is the
runtime class for the sample authorization provider. This runtime class includes
implementations for:

e The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the
Provider SSPIs.)

e The method inherited from the AuthorizationProvider SSPI: the getAccessDecision
method (as described in Implement the AuthorizationProvider SSPI).

* The seven methods in the DeployableAuthorizationProviderv2 SSPI: the
deleteApplicationPolicies, deployExcludedPolicy, deployPolicy,
deployUncheckedPolicy, endDeployPolicies, starteployPolicies, and

7-9

Chapter 7
How to Develop a Custom Authorization Provider

undeployAllPolicies methods (as described in Implement the
DeployableAuthorizationProviderV2 SSPI).

e The two methods in the AccessDecision SSPI: the isAccessAl lowed and
isProtectedResource methods (as described in Implement the AccessDecision
SSPI).

Note:

The bold face code in Example 7-1 highlights the class declaration and the
method signatures.

Example 7-1 SimpleSampleAuthorizationProviderimpl.java

package examples.security.providers.authorization.simple;
import java.security.Principal;

import java.util.Date;

import java.util.Enumeration;

import java.util.lterator;

import java.util.Map;

import java.util.Set;

import javax.security.auth.Subject;

import weblogic.management.security.ProviderMBean;

import weblogic.security.SubjectUtils;

import weblogic.security.WLSPrincipals;

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AccessDecision;

import weblogic.security.spi.Applicationinfo;

import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableAuthorizationProviderV2;
import weblogic.security.spi.DeployPolicyHandle;

import weblogic.security.spi.Direction;

import weblogic.security.spi.InvalidPrincipalException;

import weblogic.security.spi.Resource;

import weblogic.security.spi.Result;

import weblogic.security.spi.SecurityServices;

import weblogic.security.spi.VersionableApplicationProvider;
public final class SinpleSanpl eAuthorizationProviderlnpl inplenents
Depl oyabl eAut hori zati onProvi der V2, AccessDeci si on, Versionabl eAppli cationProvider

{

private static String[] NO_ACCESS = new String[0];
private static String[] ALL_ACCESS = new String[] {WLSPrincipals.getEveryoneGroupname()};
private String description;
private SimpleSampleAuthorizerDatabase database;
public void initialize(ProviderMBean nbean, SecurityServices services)
{
System.out.printin(*SimpleSampleAuthorizationProviderimpl_initialize™);
SimpleSampleAuthorizerMBean myMBean = (SimpleSampleAuthorizerMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
database = new SimpleSampleAuthorizerDatabase(myMBean);

}
public String getDescription()

{

return description;

public void shutdown()

{

System.out.printin(**SampleAuthorizationProviderimpl.shutdown™);

ORACLE 7-10

Chapter 7
How to Develop a Custom Authorization Provider

}

public AccessDeci sion get AccessDeci sion()

{

return this;

public Result isAccessAl | owed(Subject subject, Map roles, Resource resource
Cont ext Handl er handl er, Direction direction)
{
System.out.printin("'SimpleSampleAuthorizationProviderImpl.isAccessAl lowed™);
System.out.printin("\tsubject\t= " + subject);
System.out.printin("\troles\t= " + roles);
System.out.printIn(‘"\tresource\t= " + resource);
System.out.printIn("\tdirection\t= " + direction);
Set principals = subject.getPrincipals();
for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {
Result result = isAccessAllowed(res, subject, roles);
System.out.printin("\tallowed\t= " + result);
return result;
}
}
Result result = Result.ABSTAIN;
System.out.printin("\tallowed\t= " + result);
return result;

publi c bool ean isProtectedResource(Subject subject, Resource resource) throws
I'nval i dPrinci pal Exception
{
System.out.printIn("SimpleSampleAuthorizationProviderimpl.
isProtectedResource™);
System.out.printin("\tsubject\t= " + subject);
System.out.printIn(‘"\tresource\t= " + resource);
for (Resource res = resource; res != null; res = res.getParentResource()) {
if (database.policyExists(res)) {
System.out.printin("\tprotected\t= true");
return true;
}
}
System.out.printin(""\tprotected\t= false");
return false;

}

public Depl oyPol i cyHandl e start Depl oyPolicies(Applicationlnfo application)

{

String appld = application.getApplicationldentifier();

String compName = application.getComponentName();

ComponentType compType = application.getComponentType();

DeployPolicyHandle handle = new SampleDeployPolicyHandle(appld,compName,compType);
database.removePoliciesForComponent(appld, compName, compType);

return handle;

public void depl oyPol i cy(Depl oyPol i cyHandl e handl e

Resource resource, String[] rol eNanesAl | owed)

{

}

System.out.printIn(*'SimpleSampleAuthorizationProviderimpl.deployPolicy");

System.out.printin(‘\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());

System.out.printIn(‘"\tresource\t= " + resource);

for (int 1 = 0; roleNamesAllowed != null && 1 < roleNamesAllowed.length; i++) {
System.out._printin(""\troleNamesAllowed[" + i + "]J\t= " + roleNamesAllowed[i]);

database.setPolicy(resource, roleNamesAllowed);

}

public void depl oyUncheckedPol i cy(Depl oyPol i cyHandl e handl e, Resource resource)

ORACLE 7-11

Chapter 7
How to Develop a Custom Authorization Provider

System.out.printIn(“SimpleSampleAuthorizationProviderimpl.deployUncheckedPolicy");
System.out.printin(""\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
System.out.printIn(‘*"\tresource\t= " + resource);

database.setPolicy(resource, ALL_ACCESS);

public void depl oyExcl udedPol i cy(Depl oyPol i cyHandl e handl e, Resource resource)
{
System.out.printIn(*SimpleSampleAuthorizationProviderimpl.deployExcludedPolicy™);
System.out.printin(*\thandle\t= " + ((SampleDeployPolicyHandle)handle).toString());
System.out.printIn(‘"\tresource\t= " + resource);
database.setPolicy(resource, NO_ACCESS);

public void endDepl oyPol i ci es(Depl oyPol i cyHandl e handl e)
{

database.savePolicies();

public void undepl oyAl | Pol i ci es(Depl oyPol i cyHandl e handl e)

{
System.out.printIn(*'SimpleSampleAuthorizationProviderimpl._undeployAllPolicies™);
SampleDeployPolicyHandle myHandle = (SampleDeployPolicyHandle)handle;
System.out.printin(‘\thandle\t= " + myHandle.toString());

// remove policies

database. removePoliciesForComponent(myHandle.getApplication(),
myHandle.getComponent(),
myHandle.getComponentType());

public void del eteApplicationPolicies(Applicationlnfo application)

{
System.out.printIn("SimpleSampleAuthorizationProviderimpl.deleteApplicationPolicies");
String appld = application.getApplicationldentifier();
System.out.printIn(*\tapplication identifier\t= " + appld);

// clear out policies for the application

database.removePoliciesForApplication(appld);
}
private boolean rolesOrSubjectContains(Map roles, Subject subject, String roleOrPrincipalWant)
{

// first, see if it"s a role name match
if (roles.containsKey(roleOrPrincipalWant)) {

return true;

}
// second, see if it"s a group name match
if (SubjectUtils.isUserInGroup(subject, roleOrPrincipalWant)) {
return true;
}
// third, see if it"s a user name match
if (roleOrPrincipalWant.equals(SubjectUtils.getUsername(subject))) {
return true;
}
// didn"t match
return false;
}

private Result isAccessAllowed(Resource resource, Subject subject, Map roles)

{

// loop over the principals and roles in our database who are allowed to access this resource

ORACLE 7-12

}

Chapter 7
How to Develop a Custom Authorization Provider

for (Enumeration e = database.getPolicy(resource); e.hasMoreElements();) {
String roleOrPrincipalAllowed = (String)e.nextElement();
if (rolesOrSubjectContains(roles, subject, roleOrPrincipalAllowed)) {
return Result.PERMIT;

}
}

// the resource was explicitly mentioned and didn"t grant access
return Result.DENY;

public void createApplicationVersion(String appld, String sourceAppld)

{

System.out.printIn(“SimpleSampleAuthorizationProviderimpl.createApplicationVersion™);
System.out.printIn(*\tapplication identifier\t= " + appld);
System.out.printIn(*"\tsource app identifier\t= " + ((sourceAppld != null) ? sourceAppld : "None™));

// create new policies when existing application is specified
if (sourceAppld != null) {
database.clonePoliciesForApplication(sourceAppld,appld);

}

public void deleteApplicationVersion(String appld)

{

}

System.out.printIn(“SimpleSampleAuthorizationProviderimpl.deleteApplicationVersion™);
System.out.printIn(‘\tapplication identifier\t= " + appld);

// clear out policies for the application
database.removePoliciesForApplication(appld);

public void deleteApplication(String appName)

{

}

System.out.printIn(“SimpleSampleAuthorizationProviderimpl._deleteApplication™);
System.out.printIn(‘\tapplication name\t= " + appName);

// clear out policies for the application
database.removePoliciesForApplication(appName);

class SampleDeployPolicyHandle implements DeployPolicyHandle

{

Date date;

String application;

String component;
ComponentType componentType;

SampleDeployPolicyHandle(String app, String comp, ComponentType type)

this.application = app;
this.component = comp;
this.componentType = type;
this.date = new Date();

public String getApplication() { return application; }
public String getComponent() { return component; }
public ComponentType getComponentType() { return componentType; }

public String toString()
{

String name = component;

ORACLE 7-13

Chapter 7
How to Develop a Custom Authorization Provider

if (componentType == ComponentType.APPLICATION)
name = application;
return componentType +" "+ name +" ["+ date.toString() +"1";

}
}
}

7.5.2 Policy Consumer SSPI

WebLogic Server implements a policy consumer for JIMX (MBean) default policies and
Web service annotations. This release of WebLogic Server includes an SSPI that
authorization providers can use to obtain the policy collections.

The PolicyConsumer SSPI is optional; only those authorization providers that implement
the SSPI are called to consume a policy collection.

The SSPI supports both the delivery of initial policy collections and the delivery of
updated policy collections.

All authorization providers that support the PolicyConsumer SSPI are called to consume
a policy collection. Each authorization provider can choose to skip or obtain the policy
collection for a given policy set. In the case where a provider persists policy, the
provider need only collect the policy once. However, providers keeping policy in
memory can obtain the policy collection again.

The out-of-the-box WebLogic Server Authorization providers persist the policy into
LDAP.

7.5.2.1 Required SSPI Interfaces

If you want your custom authorization provider to support the delivery of policy
collections, you must implement three interfaces:

* weblogic.security.spi.PolicyConsumerFactory
* weblogic.security.spi.PolicyConsumer
* weblogic.security.spi.PolicyCollectionHandler

* These interfaces are described in the sections that follow.

7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface

ORACLE

An authorization provider implements the PolicyConsumerFactory interface so that an
instance of a PolicyConsumer is available to the WebLogic Security Framework. The
WebLogic Security Framework calls your PolicyConsumerFactory implementation to
obtain the provider's implementation of the policy consumer.

The PolicyConsumerFactory SSPI has one method, which returns your implementation
of the PolicyConsumer SSPI interface.

public interface PolicyConsumerFactory

{

/**

* Obtain the implementation of the PolicyConsumer
* security service provider interface (SSPI).

*

* @return a PolicyConsumer SSPI implementation.
*/

7-14

Chapter 7
How to Develop a Custom Authorization Provider

public PolicyConsumer getPolicyConsumer();

}

7.5.2.3 Implement the PolicyConsumer SSPI Interface

The PolicyConsumer SSPI returns a policy collection handler for consumption of a policy
collection. It has one method, getPolicyCollectionHandler(), which takes a
PolicyCollectionInfo implementation as an argument and returns your implementation
of the PolicyCollectionHandler interface.

public interface PolicyConsumer

{
/**

* Obtain a policy handler for consumption of a policy set.

*

* @param info the PolicyCollectioninfo for the policy set.

*

* @return a PolicyCollectionHandler or NULL which indicates

* that the policy set is not needed.

*

* @exception ConsumptionException if an error occurs

* obtaining the handler and the policy set cannot be consumed.
*/

public PolicyCollectionHandler getPolicyCollectionHandler(
PolicyCollectionlnfo info)
throws ConsumptionException;

ORACLE

The WebLogic Security Framework calls the getPolicyCol lectionHandler() method
and passes data about a policy collection to a security provider as an implementation
of the PolicyCollectionlInfo interface. (This interface implementation is provided for
you, you do not have to implement it.)

You use the PolicyCollectionInfo getName(), getVersion(), getTimestamp(), and
getResourceTypes() methods to discover information about this policy set. You then
return a PolicyCollectionHandler, or NULL to indicate that the policy collection is not
needed.

public interface PolicyCollectioninfo

{
/**
* Get the name of the collection.
*/
public String getName();
/**
* Get the runtime version of the policy.
*/
public String getVersion();
/**
* Get the timestamp of the policy.
*/
public String getTimestamp();
/**
* Get the resource types used in the policy collection.
*/
public Resource[] getResouceTypes();
}

7-15

Chapter 7
How to Develop a Custom Authorization Provider

7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface

The PolicyConsumer.getPolicyCol lectionHandler() method returns your implementation
of the PolicyCollectionHandler interface. PolicyCollectionHandler has three methods:
setPolicy, setUncheckedPolicy, and done(). The setPolicy() method takes a resource
and role names and sets a policy based on the role. The setUncheckedPolicy() method
opens access to everyone.

The done() method signals the completion of the policy collection. We recommend that
the done() method remove all old policies for the policy set.

public interface PolicyCollectionHandler

{

}

/**

* Set a policy for the specified resource.

*/

public void setPolicy(Resource resource, String[] roleNames)
throws ConsumptionException;

/**

* Sets a policy which always grants access.

*/

public void setUncheckedPolicy(Resource resource)
throws ConsumptionException;

/**
* Signals the completion of the policy collection.
*/
public void done()
throws ConsumptionException;

7.5.2.5 Supporting an Updated Policy Collection

To support the delivery of an updated policy collection, all authorization providers that
support the PolicyConsumer SSPI need to examine the contents of the
PolicyCollectioninfo passed in the PolicyConsumer.getPolicyCollectionHandler()
method to determine if a policy set has changed. Each provider must decide (possibly
by configuration) how to perform conflict resolution with the initial policy collection and
any customized policy received outside of the SSPI.

For the WebLogic Server supplied authorization providers, customized policy will not
be replaced by the updated policy collection: all policy from the initial policy collection
will be removed and only the customized policies, plus the updated policy collection,
will be in effect. If the policy collection info has a different timestamp or version, it's
treated as an updated policy collection. The collection name is used as a persistence
key.

7.5.2.6 The PolicyConsumerMBean

Authorization providers that implement the Policy Consumer SSPI must also
implement the weblogic.management.security.authorization.PolicyConsumerMBean to
indicate that the provider supports policy consumption.

ORACLE 7-16

Chapter 7
How to Develop a Custom Authorization Provider

7.5.3 PolicyStoreMBean

This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that allows for
standard management (add, delete, get, list, modify, read) of administrator-generated
XACML policies and policy sets. An authorization or role mapping provider MBean can
optionally implement this MBean interface.

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the out-of-
the-box XACML providers, and you can write your own implementation of this MBean
for use with your own custom authorization or role mapping providers. The WebLogic
Server out-of-the-box XACML providers support the mandatory features of XACML, as
described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific usage
described in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom
authorization providers should expect standard Policy or PolicySet documents as
described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf). Custom role mapping
providers should expect Policy or PolicySet documents consistent with role
assignment policies described by the Core and hierarchical role based access control
(RBAC) profile of XACML v2.0 (http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-rbac-profilel-spec-os.pdf).

Specifically, the Target must contain:

e An ActionAttributeDesignator with the id, urn:oasis:names:tc:xacml:
1.0:action:action-id, and the value, urn:oasis:names:tc:xacml:
2.0:actions:enableRole, according to anyURl-equal. For example:

<Action>
<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:anyURl-equal'>

<AttributeValue DataType="http://www.w3.0rg/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:2.0
:actions:enableRole
</AttributeValue>

<ActionAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www.w3.0rg/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

* A ResourceAttributeDesignator with the id, urn:oasis:names:tc:xacml:
2.0:subject:role, and a value naming the role being assigned, according to string-
equal. For example:

ORACLE 7-17

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf

Chapter 7
How to Develop a Custom Authorization Provider

<ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:
2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.0rg/2001/XMLSchema#string" MustBePresent="true"/>

7.5.3.1 Examining the Format of a XACML Policy File

The XACML 2.0 Core Specification (http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server are the
definitive sources of information for the XACML policy files used by the supplied
XACML Authorization and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format
of a supported XACML file, perhaps the most convenient way is to use the WebLogic
Server Administration Console to export the data from the XACML Authorization or
Role Mapping provider's database as a XACML file. Copy this exported XACML file to
a file with some other name and use the tool of your choice to review the copy.

Note:

Treat the exported file as read-only. If you do make changes, do not import the
file back into WebLogic Server. Editing exported files might result in an
unusable WebLogic Server configuration and is not supported.

7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean

Example 7-2 shows an example of using WLST to add a single policy to an instance of
the PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

Example 7-2 Using WLST to Add a Policy to the PolicyStoreMBean

try:

protocol = System.getProperty(“protocol™)
host = System.getProperty(*'host™)

user = System.getProperty("authuser™)
passwd = System.getProperty(“authpwd™)
port = System.getProperty(*'port™)

dom = System.getProperty(*'domain')
rim = System.getProperty(“'realm™)
fil = System.getProperty("'file™)

prov = System.getProperty(*'provider™)
stat = System.getProperty(*'status')

def configure():

try:

url = protocol + "://" + host + ":" + port

connect(user,passwd, url)

path = "/SecurityConfiguration/" + dom + "/Realms/" + rlm + "/" + prov
print("cd"ing to " + path)

ORACLE 7-18

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Chapter 7
How to Develop a Custom Authorization Provider

cd(path)
print(*'calling open()")
xacmlFile = open(fil,"r")
print(*'calling read()")
xacmlDoc = xacmlFile.read()
print(“calling cmo.addPolicy™)
if stat == "none":
cmo.addPolicy(xacmlDoc)
else:
cmo.addPolicy(xacmlDoc, stat)
print(*"Add error handling™)

As described in the Navigating and Interrogating MBeans section of Understanding the
WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Obiject), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this case to
an Authorizer MBean that implements the PolicyStoreMBean, identified in the example
by the variable prov, WLST changes the value of cmo to be the current MBean
instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy
read from a XACML file to the policy store. Two variants of the addPolicy() method
(without and with status) are shown.

If you use an addPolicy() method that does not specify status, it defaults to ACTIVE,
which indicates that the policy is evaluated for any decision to which its target applies.
You can explicitly set status to be ACTIVE, INACTIVE, or BYREFERENCE. The
INACTIVE status indicates that the policy will never be evaluated and is only being
stored. The BYREFERENCE status indicates that the policy will only be evaluated
when referenced by a policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar to
the following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"
-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policyl2.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

7.5.3.3 Using WLST to Read a PolicySet as a String

Example 7-3 shows an example of using WLST to read a PolicySet as a string.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<sysproperty key="identifier"

value="urn:sample:xacml:2.0:wlssecqa:resource: type@E@Fejb@GAM@Oapplication@EN0OD
DRolesOrPoliciesEar@@Oomodule@EejbllinEarMiniAppBean. jar@M@0e jb@EMiniAppBean@
M@Omethod@EgetSubject@@OmethodInterface@ERemote" />

<sysproperty key="version" value="1.0"/>

ORACLE 7-19

Example 7-3 Using WLST to Read a PolicySet as a String

try:

print(“'start XACMLreadPolicySet.py™)
protocol = System.getProperty("'protocol™)
host = System.getProperty("host™)

user = System.getProperty("authuser™)
passwd = System.getProperty("authpwd™)
port = System.getProperty(“port™)

dom = System.getProperty(*'domain')

rim = System.getProperty("'realm')

prov = System.getProperty(“provider™)
id = System.getProperty("identifier")
vers = System.getProperty(*'version™)

def configure():

try:

url = protocol + "://" + host + ":"
connect(user,passwd, url)

+ port

Chapter 7
How to Develop a Custom Authorization Provider

path = "/SecurityConfiguration/" + dom + "/Realms/" + rim + "/" + prov

print(*'cd"ing to "
cd(path)
polset = cmo.readPolicySetAsString(id, vers)

+ path)

print("readPolicySetAsString() returned the following policy set: "

print"Add error handling."”

+ polset)

As described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element
contains a set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. See the XACML 2.0 Core Specification for

complete information.

7.5.4 Bulk Authorization Providers

This release of WebLogic Server includes bulk access versions of the following

authorization provider SSPI interfaces:

e BulkAuthorizationProvider

* BulkAccessDecision

The bulk access SSPI interfaces allow authorization providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a "for" loop.
The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the

same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI

interfaces are used.

Note that the BulkAccessDecision. isAccessAl lowed() method takes a Map of roles,
indexed first by Resource object and then by role name (Map<Resource, Map<String,
SecurityRole>> roles), that are associated with the subject and should be taken into
consideration when making the authorization decision.

ORACLE

7-20

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Chapter 7
How to Develop a Custom Authorization Provider

The BulkAccessDecision. isAccessAllowed() method returns a Map (indexed by Resource,
result) that indicates whether the authorization policies defined for the resources
allow the requested methods to be performed.

7.5.5 Configure the Custom Authorization Provider Using the
Administration Console

Configuring a custom authorization provider means that you are adding the custom
authorization provider to your security realm, where it can be accessed by applications
requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom
authorization providers:

* Managing Authorization Providers and Deployment Descriptors

» Enabling Security Policy Deployment

¢ Note:

The steps for configuring a custom authorization provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

7.5.5.1 Managing Authorization Providers and Deployment Descriptors

ORACLE

Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java EE and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called
web.xml and weblogic.xml) contain information for implementing the Java EE security
model, including declarations of security policies. Typically, you will want to include
this information when first configuring your authorization providers in the WebLogic
Server Administration Console.

Because the Java EE platform standardizes Web application and EJB security in
deployment descriptors, WebLogic Server integrates this standard mechanism with its
Security Service to give you a choice of techniques for securing Web application and
EJB resources. You can use deployment descriptors exclusively, the WebLogic Server
Administration Console exclusively, or you can combine the techniques for certain
situations.

Depending on the technigue you choose, you also need to apply a Security Model.
WebLogic supports different security models for individual deployments, and a security
model for realm-wide configurations that incorporate the technique you want to use.

When configured to use deployment descriptors, WebLogic Server reads security
policy information from the web.xml and weblogic.xml deployment descriptor files
(examples of web.xml and weblogic.xml files are shown in Example 7-4 and

Example 7-5). This information is then copied into the security provider database for
the authorization provider.

7-21

Chapter 7
How to Develop a Custom Authorization Provider

Example 7-4 Sample web.xml File

<web-app>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<security-constraint>
<web-resource-col lection>
<web-resource-name>Success</web-resource-name>
<url-pattern>/welcome. jsp</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>developers</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>defaul t</realm-name>
</login-config>
<security-role>
<role-name>developers</role-name>
</security-role>
</web-app>

Example 7-5 Sample weblogic.xml File

<weblogic-web-app>
<security-role-assignment>
<role-name>developers</role-name>
<principal-name>myGroup</principal-name>
</security-role-assignment>
</weblogic-web-app>

7.5.5.2 Enabling Security Policy Deployment

If you implemented the DeployableAuthorizationProviderV2 SSPI as part of developing
your custom authorization provider and want to support deployable security policies,
the person configuring the custom authorization provider (that is, you or an
administrator) must be sure that the Policy Deployment Enabled check box in the
WebLogic Server Administration Console is checked. Otherwise, deployment for the
authorization provider is considered turned off. Therefore, if multiple authorization
providers are configured, the Policy Deployment Enabled check box can be used to
control which authorization provider is used for security policy deployment.

7.5.6 Provide a Mechanism for Security Policy Management

ORACLE

While configuring a custom authorization provider via the WebLogic Server
Administration Console makes it accessible by applications requiring authorization
services, you also need to supply administrators with a way to manage this security
provider's associated security policies. The WebLogic Authorization provider, for
example, supplies administrators with a Policy Editor page that allows them to add,
modify, or remove security policies for various WebLogic resources.

Neither the Policy Editor page nor access to it is available to administrators when you
develop a custom authorization provider. Therefore, you must provide your own
mechanism for security policy management. This mechanism must read and write

7-22

Chapter 7
How to Develop a Custom Authorization Provider

security policy data (that is, expressions) to and from the custom authorization
provider's database.

You can accomplish this task in one of three ways:

e Option 1: Develop a Stand-Alone Tool for Security Policy Management

e Option 2: Integrate an Existing Security Policy Management Tool into the
Administration Console

7.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Policy Management

You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom
authorization provider, nor do you need to develop any management MBeans.
However, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. See WebLogic Resource ldentifiers.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom authorization provider's
database.

7.5.6.2 Option 2: Integrate an Existing Security Policy Management Tool into
the Administration Console

You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
WebLogic Server Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. See WebLogic Resource ldentifiers.

2. Determine how to represent the expressions that make up a security policy. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom authorization provider's
database.

4. Link into the WebLogic Server Administration Console using basic console
extension techniques.

ORACLE 7-23

Chapter 7

How to Develop a Custom Authorization Provider

ORACLE" 7-24

Adjudication Providers

This chapter describes adjudication provider concepts and functionality, and provides
step-by-step instructions for developing a custom adjudication provider.

Adjudication involves resolving any authorization conflicts that may occur when more
than one authorization provider is configured, by weighing the result of each
authorization provider's Access Decision. In WebLogic Server, an adjudication
provider is used to tally the results that multiple Access Decisions return, and
determines the final PERMIT or DENY decision. An adjudication provider may also specify
what should be done when an answer of ABSTAIN is returned from a single
authorization provider's Access Decision.

This chapter includes the following sections:

* The Adjudication Process
* Do You Need to Develop a Custom Adjudication Provider?

* How to Develop a Custom Adjudication Provider

8.1 The Adjudication Process

The use of adjudication providers is part of the authorization process, and is described
in The Authorization Process.

8.2 Do You Need to Develop a Custom Adjudication

Provider?

ORACLE

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Adjudication provider. The WebLogic Adjudication provider is responsible for
adjudicating between potentially differing results rendered by multiple authorization
providers' Access Decisions, and rendering a final verdict on whether or not access
will be granted to a WebLogic resource.

The WebLogic Adjudication provider has an attribute called Require Unanimous
Permit that governs its behavior. By default, the Require Unanimous Permit attribute is
set to TRUE, which causes the WebLogic Adjudication provider to act as follows:

» If all the authorization providers' Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

» If some authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of FALSE (that is, deny access to the WebLogic
resource).

» If any of the authorization providers' Access Decisions return ABSTAIN or DENY, then
return a final verdict of FALSE (that is, deny access to the WebLogic resource).

If you change the Require Unanimous Permit attribute to FALSE, the WebLogic
Adjudication provider acts as follows:

8-1

Chapter 8
How to Develop a Custom Adjudication Provider

If all the authorization providers' Access Decisions return PERMIT, then return a final
verdict of TRUE (that is, permit access to the WebLogic resource).

If some authorization providers' Access Decisions return PERMIT and others return
ABSTAIN, then return a final verdict of TRUE (that is, permit access to the WebLogic
resource).

If any of the authorization providers' Access Decisions return DENY, then return a
final verdict of FALSE (that is, deny access to the WebLogic resource).

Note:

You set the Require Unanimous Permit attributes when you configure the
WebLogic Adjudication provider. See Configuring the WebLogic Adjudication
Provider in Administering Security for Oracle WebLogic Server.

If you want an adjudication provider that behaves in a way that is different from what is
described above, then you need to develop a custom adjudication provider. (Keep in
mind that an adjudication provider may also specify what should be done when an
answer of ABSTAIN is returned from a single authorization provider's Access Decision,
based on your specific security requirements.)

8.3 How to Develop a Custom Adjudication Provider

If the WebLogic Adjudication provider does not meet your needs, you can develop a
custom adjudication provider by following these steps:

1.

3.

Create Runtime Classes Using the Appropriate SSPIs, or, optionally, use the Bulk
Adjudication Providers

Generate an MBean type for your custom adjudication provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

Configure the Custom Adjudication Provider Using the Administration Console

8.3.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

Understand the Purpose of the Provider SSPIs

Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom adjudication provider by following these steps:

Implement the AdjudicationProviderV2 SSPI
Implement the AdjudicatorV2 SSPI

8.3.1.1 Implement the AdjudicationProviderV2 SSPI

To implement the AdjudicationProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

ORACLE

8-2

Chapter 8
How to Develop a Custom Adjudication Provider

getAdjudicator
public AdjudicatorV2 getAdjudicator()
The getAdjudicator method obtains the implementation of the AdjudicatorVv2 SSPI.

For a single runtime class called MyAdjudicationProviderimpl.java, the
implementation of the getAdjudicator method would be:

return this;

If there are two runtime classes, then the implementation of the getAdjudicator
method could be:

return new MyAdjudicatorimpl;

This is because the runtime class that implements the AdjudicationProviderV2
SSPI is used as a factory to obtain classes that implement the Adjudicatorv2 SSPI.

See Java API Reference for Oracle WebLogic Server.

8.3.1.2 Implement the AdjudicatorV2 SSPI

To implement the AdjudicatorV2 SSPI, provide implementations for the following
methods:

initialize
public void initialize(AuthorizerMBean[] accessDecisionClassNames)

The initialize method initializes the names of all the configured authorization
providers' Access Decisions that will be called to supply a result for the "is access
allowed?" question. The accessDecisionClassNames parameter may also be used by
an adjudication provider in its adjudicate method to favor a result from a particular
Access Decision. For more information about authorization providers and Access
Decisions, see Authorization Providers.

adjudicate

public boolean adjudicate(Result[] results, Resource resource,
ContextHandler handler)

The adjudicate method determines the answer to the "is access allowed?"
guestion, given all the results from the configured authorization providers' Access
Decisions.

See Java API Reference for Oracle WebLogic Server.

8.3.2 Bulk Adjudication Providers

ORACLE

This release of WebLogic Server includes bulk access versions of the following
adjudication provider SSPI interfaces:

BulkAdjudicationProvider

BulkAdjudicator

The bulk access SSPI interfaces allow adjudication providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a *for* loop.
The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the

8-3

Chapter 8
How to Develop a Custom Adjudication Provider

passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used.

The BulkAdjudicator.adjudicate() method takes a List of Map (Resource, Result)
instances, as passed in by the WebLogic Server Authorization Manager, which contain
the results of each bulk access decision. The order of results is the same as the order
of the Access Decision class names that were passed in the
BulkAdjudicator.initialize() method.

Note too that the BulkAdjudicator.adjudicate() method returns a Set of Resource
objects. If a Resource object is present in the set, access has been granted for that
object; otherwise, access has been denied.

8.3.3 Configure the Custom Adjudication Provider Using the
Administration Console

ORACLE

Configuring a custom adjudication provider means that you are adding the custom
adjudication provider to your security realm, where it can be accessed by applications
requiring adjudication services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. The steps for
configuring a custom adjudication provider using the WebLogic Server Administration
Console are described under Configuring WebLogic Security Providers in
Administering Security for Oracle WebLogic Server.

8-4

Role Mapping Providers

This chapter describes role mapping provider concepts and functionality, and provides
step-by-step instructions for developing a custom role mapping provider.

Role mapping is the process whereby principals (users or groups) are dynamically
mapped to security roles at runtime. In WebLogic Server, a role mapping provider
determines what security roles apply to the principals stored a subject when the
subject is attempting to perform an operation on a WebLogic resource. Because this
operation usually involves gaining access to the WebLogic resource, role mapping
providers are typically used with authorization providers.

This chapter includes the following sections:

* Role Mapping Concepts

e The Role Mapping Process

e Is Your Custom Role Mapping Provider Thread Safe?

* Do You Need to Develop a Custom Role Mapping Provider?

* How to Develop a Custom Role Mapping Provider

9.1 Role Mapping Concepts

Before you develop a role mapping provider, you need to understand the following
concepts:

e Security Roles
* Dynamic Security Role Computation

e Security Providers and WebLogic Resources

9.1.1 Security Roles

ORACLE

A security role is a named collection of users or groups that have similar permissions
to access WebLogic resources. Like groups, security roles allow you to control access
to WebLogic resources for several users at once. However, security roles are scoped
to specific resources in a WebLogic Server domain (unlike groups, which are scoped
to an entire WebLogic Server domain), and can be defined dynamically (as described
in Dynamic Security Role Computation).

Note:

See Users, Groups, and Security Roles in Securing Resources Using Roles
and Policies for Oracle WebLogic Server, Security Providers and WebLogic
Resources, and Resource Types You Can Secure with Policies in Securing
Resources Using Roles and Policies for Oracle WebLogic Server.

9-1

Chapter 9
Role Mapping Concepts

The SecurityRole interface in the weblogic.security.service package is used to
represent the abstract notion of a security role. (See Java API Reference for Oracle
WebLogic Server for the SecurityRole interface.)

Mapping a principal to a security role grants the defined access permissions to that
principal, as long as the principal is in the security role. For example, an application
may define a security role called AppAdmin, which provides write access to a small
subset of that application's resources. Any principal in the AppAdmin security role would
then have write access to those resources. See Dynamic Security Role Computation
and Users, Groups, and Security Roles in Securing Resources Using Roles and
Policies for Oracle WebLogic Server.

Many principals can be mapped to a single security role. See Users and Groups,
Principals and Subjects.

Security roles are specified in Java EE deployment descriptor files and/or in the
WebLogic Server Administration Console. See Managing Role Mapping Providers and
Deployment Descriptors.

9.1.2 Dynamic Security Role Computation

ORACLE

Security roles can be declarative (that is, Java 2 Enterprise Edition roles) or
dynamically computed based on the context of the request.

Dynamic security role computation is the term for this late binding of principals (that
is, users or groups) to security roles at runtime. The late binding occurs just prior to an
authorization decision for a protected WebLogic resource, regardless of whether the
principal-to-security role association is statically defined or dynamically computed.
Because of its placement in the invocation sequence, the result of any principal-to-
security role computations can be taken as an authentication identity, as part of the
authorization decision made for the request.

This dynamic computation of security roles provides a very important benefit: users or
groups can be granted a security role based on business rules. For example, a user
may be allowed to be in a Manager security role only while the actual manager is away
on an extended business trip. Dynamically computing this security role means that you
do not need to change or redeploy your application to allow for such a temporarily
arrangement. Further, you would not need to remember to revoke the special
privileges when the actual manager returns, as you would if you temporarily added the
user to a Managers group.

Note:

You typically grant users or groups security roles using the role conditions
available in the WebLogic Server Administration Console. (In this release of
WebLogic Server, you cannot write custom role conditions.) See Users,
Groups, and Security Roles in Securing Resources Using Roles and Policies
for Oracle WebLogic Server.

The computed security role is able to access a number of pieces of information that
make up the context of the request, including the identity of the target (if available) and
the parameter values of the request. The context information is typically used as
values of parameters in an expression that is evaluated by the WebLogic Security
Framework. This functionality is also responsible for computing security roles that

9-2

Chapter 9
The Role Mapping Process

were statically defined through a deployment descriptor or through the WebLogic
Server Administration Console.

Note:

The computation of security roles for an authenticated user enhances the
Role-Based Access Control (RBAC) security defined by the Java EE
specification.

You create dynamic security role computations by defining role statements in
the WebLogic Server Administration Console. See Users, Groups, and
Security Roles in Securing Resources Using Roles and Policies for Oracle
WebLogic Server.

9.2 The Role Mapping Process

ORACLE

The WebLogic Security Framework calls each role mapping provider that is configured
for a security realm as part of an authorization decision. For related information, see
The Authorization Process.

The result of the dynamic security role computation (performed by the role mapping
providers) is a set of security roles that apply to the principals stored in a subject at a
given moment. These security roles can then be used to make authorization decisions
for protected WebLogic resources, as well as for resource container and application
code. For example, an Enterprise JavaBean (EJB) could use the Java EE
isCallerInRole method to retrieve fields from a record in a database, without having
knowledge of the business policies that determine whether access is allowed.

Figure 9-1 shows how the role mapping providers interact with the WebLogic Security
Framework to create dynamic security role computations, and an explanation follows.

9-3

Chapter 9
The Role Mapping Process

Figure 9-1 Role Mapping Providers and the Role Mapping Process

Resource Container (2]

(1}|Request > EJB Servet JSP

subject. userfgroup principals
@ resource identifier,
CortextHandler

!

WebLogic Security Framework

subject, rezource, ContextHandler

|®

g q list of
Security Providers k @ applicable
. . rolez
Security ‘ Fole Mapping Providers |
Folicies { Role Mappers i

Generally, role mapping is performed in the following manner:

1. A user or system process requests a WebLogic resource on which it will attempt to
perform a given operation.

2. The resource container that handles the type of WebLogic resource being
requested receives the request (for example, the EJB container receives the
request for an EJB resource).

Note:

The resource container could be the container that handles any one of the
WebLogic Resources described in Security Providers and WebLogic
Resources.

3. The resource container constructs a ContextHandler object that may be used by
role mapping providers to obtain information associated with the context of the
request.

Note:

See ContextHandlers and WebLogic Resources.

ORACLE 9-4

ORACLE

Chapter 9
The Role Mapping Process

The resource container calls the WebLogic Security Framework, passing in the
subject (which already contains user and group principals), an identifier for the
WebLogic resource, and optionally, the ContextHandler object (to provide additional
input).

4

Note:

See Users and Groups, Principals and Subjects. See WebLogic Resource
Identifiers.

The WebLogic Security Framework calls each configured role mapping provider to
obtain a list of the security roles that apply. This works as follows:

a.

The role mapping providers use the ContextHandler to request various pieces
of information about the request. They construct a set of Cal Iback objects that
represent the type of information being requested. This set of Cal Iback objects
is then passed as an array to the ContextHandler using the handle method.

The role mapping providers may call the ContextHandler more than once in
order to obtain the necessary context information. (The number of times a role
mapping provider calls the ContextHandler is dependent upon its
implementation.)

Using the context information and their associated security provider databases
containing security policies, the subject, and the WebLogic resource, the role
mapping providers determine whether the requestor (represented by the user
and group principals in the subject) is entitled to a certain security role.

The security policies are represented as a set of expressions or rules that are
evaluated to determine if a given security role is to be granted. These rules
may require the role mapping provider to substitute the value of context
information obtained as parameters into the expression. In addition, the rules
may also require the identity of a user or group principal as the value of an
expression parameter.

Note:

The rules for security policies are set up in the WebLogic Server
Administration Console and in Java EE deployment descriptors. See Security
Policies in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

If a security policy specifies that the requestor is entitled to a particular security
role, the security role is added to the list of security roles that are applicable to
the subject.

This process continues until all security policies that apply to the WebLogic
resource or the resource container have been evaluated.

The list of security roles is returned to the WebLogic Security Framework, where it
can be used as part of other operations, such as access decisions.

9-5

Chapter 9
Is Your Custom Role Mapping Provider Thread Safe?

9.3 Is Your Custom Role Mapping Provider Thread Safe?

For the best performance, and by default, Weblogic Server supports parallel
modification to security policy and roles during application and module deployment.
For this reason, deployable authorization and role mapping providers configured in the
security realm should support parallel calls. The WebLogic deployable XACML
Authorization and Role Mapping providers meet this requirement.

However, custom deployable authorization and role mapping providers may or may
not support parallel calls. If your custom deployable authorization or role mapping
providers do not support parallel calls, you need to disable the parallel security policy
and role modification and instead enforce a synchronization mechanism that results in
each application and module being placed in a queue and deployed sequentially.

Note:

Enabling the synchronization mechanism affects every deployable provider
configured in the realm, including the predefined WebLogic Server providers.
Enabling the synchronization mechanism may negatively impact the
performance of these providers.

See Administering Security for Oracle WebLogic Server for information on how to turn
on this synchronization enforcement mechanism.

9.4 Do You Need to Develop a Custom Role Mapping

Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Role Mapping provider. The WebLogic Role Mapping provider computes dynamic
security roles for a specific user (subject) with respect to a specific protected
WebLogic resource for each of the default users and WebLogic resources. The
WebLogic Role Mapping provider supports the deployment and undeployment of
security roles within the system. The WebLogic Role Mapping provider uses the same
security policy engine as the WebLogic Authorization provider. If you want to use a
role mapping mechanism that already exists within your organization, you could create
a custom role mapping provider to tie into that system.

9.4.1 Does Your Custom Role Mapping Provider Need to Support
Application Versioning?

ORACLE

All authorization, role mapping, and credential mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for authorization, role
mapping, or credential mapping and need to support versioned applications, you must
implement the Versionable Application SSPI, as described in Versionable Application
Providers.

9-6

Chapter 9
How to Develop a Custom Role Mapping Provider

9.5 How to Develop a Custom Role Mapping Provider

If the WebLogic Role Mapping provider does not meet your needs, you can develop a
custom role mapping provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs, or, optionally, implement
the Bulk Role Mapping Providers

2. Optionally, implement the Role Consumer SSPI

3. Generate an MBean type for your custom role mapping provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

4. Configure the Custom Role Mapping Provider Using the Administration Console

5. Provide a Mechanism for Security Role Management

9.5.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs
e Determine Which Provider Interface You Will Implement

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom role mapping provider by following these steps:

* Implement the RoleProvider SSPI or Implement the DeployableRoleProviderV2
SSPI

* Implement the RoleMapper SSPI

* Implement the SecurityRole Interface

Note:

At least one role mapping provider in a security realm must implement the
DeployableRoleProviderV2 SSPI, or else it will be impossible to deploy Web
applications and EJBs.

For an example of how to create a runtime class for a custom role mapping provider,
see Example: Creating the Runtime Class for the Sample Role Mapping Provider .

9.5.1.1 Implement the RoleProvider SSPI

To implement the RoleProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following method:

» getRoleMapper
public RoleMapper getRoleMapper()

ORACLE 9-7

ORACLE

Chapter 9
How to Develop a Custom Role Mapping Provider

The getRoleMapper method obtains the implementation of the RoleMapper SSPI. For
a single runtime class called MyRoleProviderlmpl.java, the implementation of the
getRoleMapper method would be:

return this;

If there are two runtime classes, then the implementation of the getRoleMapper
method could be:

return new MyRoleMapperImpl;

This is because the runtime class that implements the RoleProvider SSPI is used
as a factory to obtain classes that implement the RoleMapper SSPI.

See Java API Reference for Oracle WebLogic Server.

9.5.1.2 Implement the DeployableRoleProviderV2 SSPI

Note:

The DeployableRoleProvider SSPI is deprecated in this release of WebLogic
Server. Use the DeployableRoleProviderV2 SSPI instead.

To implement the DeployableRoleProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs, Implement the
RoleProvider SSPI, and the following methods:

deleteApplicationRoles

void deleteApplicationRoles(Applicationinfo application)

Deletes all roles for an application and is called only on the Administration Server
within a WebLogic Server domain at the time an application is deleted.

deployRole

void deployRole(DeployRoleHandle handle, Resource resource, String roleName,
String[] userAndGroupNames)

Creates a role on behalf of a deployed Web application or EJB. If the role already
exists, it is removed and replaced by this role.

endDeployRoles

void endDeployRoles(DeployRoleHandle handle)

Marks the end of an application role deployment.
startDeployRoles

DeployRoleHandle startDeployRoles(Applicationinfo application)

Marks the beginning of an application role deployment and is called on all servers
within a WebLogic Server domain where an application is targeted.

undeployAllRoles
void undeployAllRoles(DeployRoleHandle handle)

9-8

Chapter 9
How to Develop a Custom Role Mapping Provider

Deletes a set of roles on behalf of an undeployed Web application or EJB.

For more information about the DeployableRoleProvider SSPI and the deployRole and
undeployRole methods, see the Java API Reference for Oracle WebLogic Server.

9.5.1.2.1 The Applicationinfo Interface

The Applicationinfo interface passes data about an application deployment to a
security provider. You can use this data to uniquely identity the application.

The Security Framework implements the Applicationinfo interface for your
convenience. You do not need to implement any methods for this interface.

The DeployableAuthorizationProviderv2 and DeployableRoleProviderV2 interfaces use
Applicationlnfo. For example, consider an implementation of the
DeployableRoleProviderV2 methods. The Security Framework calls the
DeployableRoleProviderV2 startDeployRoles method and passes in the Applicationinfo
interface for this application. The Applicationinfo data is determined based on the
information supplied in the WebLogic Server Administration Console when an
application is deployed.

The startDeployRoles method returns DeployRoleHandle, which you can then use in the
other DeployableRoleProviderV2 methods.

You use the Applicationinfo interface to get the application identifier, the component
name, and the component type for this application. Component type can be
APPLICATION, CONTROL_RESOURCE, EJB, or WEBAPP, as defined in the
Applicationlnfo.ComponentType class.

The following example shows one way to accomplish this task:

public DeployRoleHandle startDeployRoles(Applicationinfo applnfo)
throws DeployHandleCreationException

// Obtain the application information...
String appld = applInfo.getApplicationldentifier();
ComponentType compType = applnfo.getComponentType();
String compName = applnfo.getComponentName();

The Security Framework calls the DeployableRoleProviderV2 deleteApplicationRoles
method and passes in the Applicationinfo interface for this application. The
deleteApplicationRoles method deletes all roles for an application and is called (only
on the Administration Server within a WebLogic Server domain) at the time an
application is deleted.

9.5.1.3 Implement the RoleMapper SSPI

ORACLE

To implement the RoleMapper SSPI, provide implementations for the following methods:

e getRoles

public Map getRoles(Subject subject, Resource resource, ContextHandler handler)
The getRoles method returns the security roles associated with a given subject for
a specified WebLogic resource, possibly using the optional information specified in

the ContextHandler. For more information about ContextHandlers, see
ContextHandlers and WebLogic Resources.

9-9

Chapter 9
How to Develop a Custom Role Mapping Provider

For more information about the RoleMapper SSPI and the getRoles methods, see the
Java API Reference for Oracle WebLogic Server.

9.5.1.4 Implement the SecurityRole Interface

The methods on the SecurityRole interface allow you to obtain basic information about
a security role, or to compare it to another security role. These methods are designed
for the convenience of security providers.

Note:

SecurityRole implementations are returned as a Map by the getRoles()
method (see Implement the RoleProvider SSPI).

To implement the SecurityRole interface, provide implementations for the following
methods:

equals

public boolean equals(Object another)

The equals method returns TRUE if the security role passed in matches the security
role represented by the implementation of this interface, and FALSE otherwise.

toString
public String toString()

The toString method returns this security role, represented as a String.
hashCode
public int hashCode()

The hashCode method returns a hashcode for this security role, represented as an
integer.

getName

public String getName()

The getName method returns the name of this security role, represented as a String.
getDescription

public String getDescription()

The getDescription method returns a description of this security role, represented
as a String. The description should describe the purpose of this security role.

9.5.1.5 Example: Creating the Runtime Class for the Sample Role Mapping

Provider

Example 9-1 shows the SimpleSampleRoleMapperProviderImpl.java class, which is the
runtime class for the sample role mapping provider. This runtime class includes
implementations for:

ORACLE

9-10

Chapter 9
How to Develop a Custom Role Mapping Provider

e The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the
Provider SSPIs).

* The method inherited from the RoleProvider SSPI: the getRoleMapper method (as
described in Implement the RoleProvider SSPI).

e The five methods in the DeployableRoleProviderv2 SSPI: the
deleteApplicationRoles, deployRole, endDeployRoles, startDeployRoles, and
undeployAllRoles methods (as described in Implement the
DeployableRoleProviderV2 SSPI).

e The method in the RoleMapper SSPI: the getRoles method (as described in
Implement the RoleProvider SSPI).

Note:

The bold face code in Example 9-1 highlights the class declaration and the
method signatures.

Example 9-1 SimpleSampleRoleMapperProviderimpl.java

package examples.security.providers.roles.simple;

import java.security.Principal;

import java.util.Collections;

import java.util.Date;

import java.util.Enumeration;

import java.util.HashMap;

import java.util.HashSet;

import java.util.lterator;

import java.util.Map;

import java.util.Properties;

import java.util.Set;

import javax.security.auth.Subject;

import weblogic.management.security.ProviderMBean;
import weblogic.security.SubjectUtils;

import weblogic.security.WLSPrincipals;

import weblogic.security.service.ContextHandler;
import weblogic.security.spi.Applicationinfo;

import weblogic.security.spi.ApplicationInfo.ComponentType;
import weblogic.security.spi.DeployableRoleProviderV2;
import weblogic.security.spi.DeployRoleHandle;

import weblogic.security.spi.Resource;

import weblogic.security.spi.RoleMapper;

import weblogic.security.spi.SecurityServices;

import weblogic.security.spi.VersionableApplicationProvider;

public final class SimpleSampleRoleMapperProviderimpl
implements DeployableRoleProviderV2, RoleMapper, VersionableApplicationProvider
{
private String description;
// a description of this provider
private SimpleSampleRoleMapperDatabase database;
// manages the role definitions for this provider
private static final Map NO_ROLES = Collections.unmodifiableMap(new HashMap(1));
// used when no roles are found

public void initialize(ProviderMBean nbean, SecurityServices services)

ORACLE 9-11

Chapter 9
How to Develop a Custom Role Mapping Provider

{

System.out.printin("'SimpleSampleRoleMapperProviderimpl._initialize");

// Cast the mbean from a generic ProviderMBean to a SimpleSampleRoleMapperMBean.

{
}

{
}

SimpleSampleRoleMapperMBean myMBean = (SimpleSampleRoleMapperMBean)mbean;

// Set the description to the simple sample role mapper®s mbean"s description and version
description = myMBean.getDescription() + "\n" + myMBean.getVersion();

// Instantiate the helper that manages this provider®s role definitions
database = new SimpleSampleRoleMapperDatabase(myMBean);

public String getDescription()

return description;
public void shutdown()
System.out.printin(*SimpleSampleRoleMapperProviderImpl.shutdown™);
public Rol eMapper get Rol eMapper ()
{
// Since this class implements both the DeployableRoleProvider
// and RoleMapper interfaces, this object is the
// role mapper object so just return "this".
return this;
}

public Map getRol es(Subject subject, Resource resource, ContextHandler handler)

{

System.out._printIn("SimpleSampleRoleMapperProviderimpl.getRoles™);
System.out.printin(*\tsubject\t= " + subject);
System.out.printIn(‘"\tresource\t= " + resource);

// Make a list for the roles
Map roles = new HashMap();

// Make a list for the roles that have already been found and evaluated
Set rolesEvaluated = new HashSet();

// since resources scope roles, and resources are hierarchical,
// loop over the resource and all its parents, adding in any roles
// that match the current subject.
for (Resource res = resource; res != null; res = res.getParentResource()) {
getRoles(res, subject, roles, rolesEvaluated);

}

// try global resources too
getRoles(null, subject, roles, rolesEvaluated);

// special handling for no matching roles
if (roles.isEmpty()) {
return NO_ROLES;

}

// return the roles we found.
System.out.printin(*\troles\t= " + roles);
return roles;

ORACLE 9-12

Chapter 9
How to Develop a Custom Role Mapping Provider

}

public DeployRoleHandle startDeployRoles(Applicationinfo application)
{
String appld = application.getApplicationldentifier();
String compName = application.getComponentName();
ComponentType compType = application.getComponentType();
DeployRoleHandle handle = new SampleDeployRoleHandle(appld,compName,compType);

// ensure that previous roles have been removed so that
// the most up to date deployment roles are in effect
database. removeRolesForComponent(appld, compName, compType);

// A null handle may be returned if needed
return handle;

}

public void depl oyRol e(Depl oyRol eHandl e handl e, Resource resource

String rol eName, String[] principal Nanes)

{
System.out.printIn(*'SimpleSampleRoleMapperProviderimpl.deployRole™);
System.out.printin(*\thandle\t\t= " + ((SampleDeployRoleHandle)handle).toString());
System.out.printIn(‘"\tresource\t\t= " + resource);
System.out.printIn(*\troleName\t\t= " + roleName);

for (int i1 = 0; principalNames != null && i1 < principalNames.length; i++) {
System.out.printin("\tprincipalNames[" + i + "]J\t= " + principalNames[i]);
}

database.setRole(resource, roleName, principalNames);

}

public voi d endDepl oyRol es(Depl oyRol eHandl e handl e)
{

database.saveRoles();

}

public void undepl oyAl | Rol es(Depl oyRol eHandl e handl e)

{
System.out.printIn(*'SimpleSampleRoleMapperProviderimpl._undeployAlIRoles™);
SampleDeployRoleHandle myHandle = (SampleDeployRoleHandle)handle;
System.out.printin(*\thandle\t= " + myHandle.toString());

// remove roles
database. removeRolesForComponent(myHandle.getApplication(),
myHandle.getComponent(),
myHandle.getComponentType());

}

public void deleteApplicationRoles(Applicationinfo application)

{
System.out.printIn(“SimpleSampleRoleMapperProviderimpl.deleteApplicationRoles™);
String appld = application.getApplicationldentifier();
System.out.printIn(‘\tapplication identifier\t= " + appld);

// clear out roles for the application
database.removeRolesForApplication(appld);

private void getRoles(Resource resource, Subject subject,
Map roles, Set rolesEvaluated)

ORACLE 9-13

}

Chapter 9
How to Develop a Custom Role Mapping Provider

{

// loop over all the roles in our "database" for this resource

for (Enumeration e = database.getRoles(resource); e.hasMoreElements();) {
String role = (String)e.nextElement();

// Only check for roles not already evaluated
if (rolesEvaluated.contains(role)) {
continue;

// Add the role to the evaluated list
rolesEvaluated.add(role);

// 1f any of the principals is on that role, add the role to the list.
if (roleMatches(resource, role, subject)) {

// Add a simple sample role mapper role instance to the list of roles.
roles.put(role, new SimpleSampleSecurityRolelmpl(role));
}
}

private boolean roleMatches(Resource resource, String role, Subject subject)

{

// loop over the the principals that are in this role.
for (Enumeration e = database.getPrincipalsForRole(resource, role); e_hasMoreElements();) {

// get the next principal in this role
String principalWant = (String)e.nextElement();

// see if any of the current principals match this principal
if (subjectMatches(principalWant, subject)) {
return true;
}
}

return false;

}

private boolean subjectMatches(String principalWant, Subject subject)

{

}

// first, see if it"s a group name match

if (SubjectUtils.isUserInGroup(subject, principalWant)) {
return true;

}

// second, see if it"s a user name match

if (principalWant.equals(SubjectUtils.getUsername(subject))) {
return true;

}

// didn"t match

return false;

public void createApplicationVersion(String appld, String sourceAppld)

{

System.out.printIn(“SimpleSampleRoleMapperProvideriImpl.createApplicationVersion™);
System.out.printIn(*\tapplication identifier\t= " + appld);
System.out.printin(*"\tsource app identifier\t= " + ((sourceAppld != null) ? sourceAppld : "None"));

// create new roles when existing application is specified
if (sourceAppld != null) {
database.cloneRolesForApplication(sourceAppld,appld);

}

ORACLE 9-14

Chapter 9
How to Develop a Custom Role Mapping Provider

public void deleteApplicationVersion(String appld)

{
System.out.printIn("SimpleSampleRoleMapperProviderimpl.deleteApplicationVersion™);
System.out.printIn(*\tapplication identifier\t= " + appld);

// clear out roles for the application
database.removeRolesForApplication(appld);

}

public void deleteApplication(String appName)

{
System.out.printIn(*'SimpleSampleRoleMapperProviderimpl.deleteApplication™);
System.out.printIn(‘\tapplication name\t= " + appName);

// clear out roles for the application
database.removeRolesForApplication(appName);

}

class SampleDeployRoleHandle implements DeployRoleHandle
{

Date date;

String application;

String component;

ComponentType componentType;

SampleDeployRoleHandle(String app, String comp, ComponentType type)

this.application = app;
this.component = comp;
this.componentType = type;
this.date = new Date();

}

public String getApplication() { return application; }
public String getComponent() { return component; }
public ComponentType getComponentType() { return componentType; }

public String toString()

{
String name = component;
if (componentType == ComponentType.APPLICATION)
name = application;
return componentType +" "+ name +" ["+ date.toString() +"1";
}
}
}

Example 9-2 shows the sample SecurityRole implementation that is used along with
the SimpleSampleRoleMapperProviderimpl. java runtime class.

Example 9-2 SimpleSampleSecurityRolelmpl.java

package examples.security.providers.roles._simple;
import weblogic.security.service.SecurityRole;
/*package*/ class SimpleSampleSecurityRolelmpl implements SecurityRole
{
private String roleName; // the role®s name
private int hashCode; // the role"s hash code

ORACLE 0-15

/*package*/ SimpleSampleSecurityRolelmpl(String roleName)
{

roleName;
roleName.hashCode() + 17;

this.roleName
this.hashCode

public boolean equals(Object genericRole)

// if the other role is null, we"re not the same
if (genericRole == null) {
return false;

// if we"re the same java object, we"re the same
if (this == genericRole) {
return true;

}

// if the other role is not a simple sample role mapper role,
// we"re not the same

if (1(genericRole instanceof SimpleSampleSecurityRolelmpl)) {
return false;

}

// Cast the other role to a simple sample role mapper role.
SimpleSampleSecurityRolelmpl sampleRole =
(SimpleSampleSecurityRolelmpl)genericRole;
// if our names don"t match, we"re not the same
if (YroleName.equals(sampleRole.getName())) {

return false;
}

// we"re the same
return true;

public String toString()
{

return roleName;

}

public int hashCode()
{

return hashCode;

}
public String getName()
{

return roleName;

public String getDescription()
{

}
}

9.5.2 Role Consumer SSPI

return "";

Chapter 9
How to Develop a Custom Role Mapping Provider

WebLogic Server implements a role consumer for Web service annotations. This
release of WebLogic Server includes an SSPI that role mapping providers can use to

obtain the role collections.

The RoleConsumer SSPI is optional; only those role mapping providers that implement
the SSPI are called to consume a role collection.

ORACLE

9-16

Chapter 9
How to Develop a Custom Role Mapping Provider

The SSPI supports both the delivery of initial role collections and the delivery of
updated role collections.

All role mapping providers that support the RoleConsumer SSPI are called to consume a
role collection. Each role mapping provider can choose to skip or obtain the role
collection for a given role set. In the case where a provider persists roles, the provider
need only collect the role once. However, providers keeping roles in memory can
obtain the role collection again.

The out-of-the-box WebLogic Server Role Mapping providers persist the role into
LDAP.

9.5.2.1 Required SSPI Interfaces

If you want your custom role mapping provider to support the delivery of role
collections, you must implement three interfaces:

* weblogic.security.spi.RoleConsumerFactory
* weblogic.security.spi.RoleConsumer
* weblogic.security.spi.RoleCollectionHandler

These interfaces are described in the sections that follow.

9.5.2.2 Implement the RoleConsumerFactory SSPI Interface

A role mapping provider implements the RoleConsumerFactory interface so that an
instance of a RoleConsumer is available to the WebLogic Security Framework. The
WebLogic Security Framework calls your RoleConsumerFactory implementation to obtain
the provider's implementation of the role consumer.

The RoleConsumerFactory SSPI has one method, which returns your implementation of
the RoleConsumer SSPI interface.

public interface RoleConsumerFactory

{
/**
* Obtain the implementation of the RoleConsumer
* security service provider interface (SSPI).<P>
*
* @return a RoleConsumer SSPI implementation.<P>
*/
public RoleConsumer getRoleConsumer();

}

9.5.2.3 Implement the RoleConsumer SSPI Interface

ORACLE

The RoleConsumer SSPI returns a role collection handler for consumption of a role
collection. It has one method, getRoleCol lectionHandler(), which takes a
RoleCollectionInfo implementation as an argument and returns your implementation of
the RoleCollectionHandler interface.

public interface RoleConsumer

{
/**
* Obtain a role handler for consumption of a role collection.

*

* @param info the RoleCollectionlinfo for the role collection.

9-17

Chapter 9
How to Develop a Custom Role Mapping Provider

@return a RoleCollectionHandler or NULL which indicates
that the role collection is not needed.

@exception ConsumptionException if an error occurs
obtaining the handler and the role collection cannot be consumed.

% % ok X

*/
public RoleCollectionHandler getRoleCollectionHandler(
RoleCollectioninfo info)
throws ConsumptionException;

}

The WebLogic Security Framework calls the getRoleCollectionHandler() method and
passes data about a role collection to a security provider as an implementation of the
RoleCollectioninfo interface. (This interface implementation is provided for you, you
do not have to implement it.)

You use the RoleCollectionlInfo getName(), getVersion(), getTimestamp(), and
getResourceTypes() methods to discover information about this role collection. You then
return a RoleCol lectionHandler, or NULL to indicate that the role collection is not
needed.

public interface RoleCollectioninfo

{

/**

* Get the name of the collection.

*/

public String getName();

/**

* Get the runtime version of the role.
*/

public String getVersion();
/**

* Get the timestamp of the role.

*/

public String getTimestamp();
/**

* Get the resource types used in the role collection.
*/

public Resource[] getResouceTypes();

¥

9.5.2.4 Implement the RoleCollectionHandler SSPI Interface

ORACLE

The RoleConsumer.getRoleCollectionHandler() method returns your implementation of
the RoleCollectionHandler interface. RoleCol lectionHandler has two methods:
setRole() and done(). The setRole() method takes a resource, a role name, and an

array of user and group names that defines what user names and group names are to
be assigned to that role for the given resource.

The done() method signals the completion of the role collection.

public interface RoleCollectionHandler

{

/**
* Set a role for the specified resource.
*/

9-18

Chapter 9
How to Develop a Custom Role Mapping Provider

public void setRole(Resource resource, String roleName, String[] userAndGroupNames)
throws ConsumptionException;

/**
* Signals the completion of the role collection.
*/
public void done()
throws ConsumptionException;

}

9.5.2.5 Supporting an Updated Role Collection

To support the delivery of an updated role collection, all role mapping providers that
support the RoleConsumer SSPI need to examine the contents of the RoleCollectionlInfo
passed in the RoleConsumer.getRoleCol lectionHandler() method to determine if a role
collection has changed. Each provider must decide (possibly by configuration) how to
perform conflict resolution with the initial role collection and any customized role
received outside of the SSPI.

For the WebLogic Server supplied role mapping providers, customized roles will not be
replaced by the updated role collection: all roles from the initial role collection will be
removed and only the customized roles, plus the updated role collection, will be in
effect. If the role collection info has a different timestamp or version, it's treated as an
updated role collection. The collection name is used as a persistence key.

9.5.2.6 The RoleConsumerMBean

Role mapping providers that implement the Role Consumer SSPI must also implement
the weblogic.management.security.authorization.RoleConsumerMBean to indicate that the
provider supports policy consumption.

9.5.3 PolicyStoreMBean

ORACLE

This release of WebLogic Server includes support for a new MBean
(weblogic.management.security.authorization.PolicyStoreMBean) that allows for
standard management (add, delete, get, list, modify, read) of administrator-generated
XACML policies and policy sets. An authorization or role mapping provider MBean can
optionally implement this MBean interface.

The PolicyStoreMBean methods allow security administrators to manage policy in the
server as XACML documents. This includes creating and managing a domain that
uses the default XACML provider, as well as managing XACML documents that the
administrator has created. The administrator can then use WLST to manage these
XACML policies in WebLogic Server.

WebLogic Server includes an implementation of this MBean for use with the out-of-
the-box XACML providers, and you can write your own implementation of this MBean
for use with your own custom authorization or role mapping providers. The WebLogic
Server out-of-the-box XACML providers support the mandatory features of XACML, as
described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), with the Oracle-specific usage
described in Securing Resources Using Roles and Policies for Oracle WebLogic
Server.

9-19

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Chapter 9
How to Develop a Custom Role Mapping Provider

Policies are expressed as XACML 2.0 Policy or PolicySet documents. Custom
authorization providers should expect standard Policy or PolicySet documents as
described in the XACML 2.0 Core Specification. Custom role mapping providers
should expect Policy or PolicySet documents consistent with role assignment policies
described by the Core and hierarchical role based access control (RBAC) profile of
XACML v2.0 (http://docs.oasis-open.org/xacml/2_0/access_control-xacml-2.0-rbac-
profilel-spec-os.pdf).

Specifically, the Target must contain:

e An ActionAttributeDesignator with the id, urn:oasis:names:tc:xacml:
1.0:action:action-id, and the value, urn:oasis:names:tc:xacml:
2.0:actions:enableRole, according to anyURI-equal. For example:

<Action>
<ActionMatch Matchld="urn:oasis:names:tc:xacml:1.0:function:anyURI-equal'>

<AttributeValue
DataType="http://www.w3.0rg/2001/XMLSchema#anyURI">urn:oasis:names:tc:xacml:
2.0:actions:enableRole

</Attributevalue>

<ActionAttributeDesignator
Attributeld="urn:oasis:names:tc:xacml:1.0:action:action-id"
DataType="http://www._w3.0rg/2001/XMLSchema#anyURI" MustBePresent="true"/>

</ActionMatch>
</Action>

e A ResourceAttributeDesignator with the id, urn:oasis:names:tc:xacml:
2.0:subject:role, and a value naming the role being assigned, according to string-
equal. For example:

<ResourceAttributeDesignator Attributeld="urn:oasis:names:tc:xacml:
2.0:resource:resource-ancestor-or-self"
DataType="http://www.w3.0rg/2001/XMLSchema#string” MustBePresent="true"/>

9.5.3.1 Examining the Format of a XACML Policy File

ORACLE

The XACML 2.0 Core Specification (http://docs.oasis-open.org/xacml/2.0/
access_control-xacml-2.0-core-spec-os.pdf) and the Oracle extensions described in
Securing Resources Using Roles and Policies for Oracle WebLogic Server are the
definitive sources of information for the XACML policy files used by the supplied
XACML Authorization and Role Mapping Providers.

However, if as part of your development process you want to take a look at the format
of a supported XACML file, perhaps the most convenient way is to use the WebLogic
Server Administration Console to export the data from the XACML Authorization or
Role Mapping provider's database as a XACML file. Copy this exported XACML file to
a file with some other name and use the tool of your choice to review the copy.

Note:

Treat the exported file as read-only. If you do make changes, do not import the
file back into WebLogic Server. Editing exported files might result in an
unusable WebLogic Server configuration and is not supported.

9-20

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Chapter 9
How to Develop a Custom Role Mapping Provider

9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean

Example 9-3 shows an example of using WLST to add a single policy to an instance of
the PolicyStoreMBean from a XACML file.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<property name="xacml-docs-dir" value="${xacmldir}/xacml-docs"/>
<sysproperty key="file" value="${xacml-docs-dir}/policy-getSubject.xacml"/>

ORACLE

Example 9-3 Using WLST to Add a Policy to the PolicyStoreMBean

try:
protocol = System.getProperty(“'protocol’™)
host = System.getProperty(*'host™)
user = System.getProperty(*'authuser™)
passwd = System.getProperty(*“authpwd™)
port = System.getProperty(*'port™)
dom = System.getProperty(*'domain'™)
rim = System._getProperty(*“'realm™)
fil = System.getProperty("'file™)
prov = System.getProperty(*'provider™)
stat = System.getProperty(*'status™)

def configure():
try:
url = protocol + "™://" + host + ":" + port
connect(user,passwd, url)
path = "/SecurityConfiguration/" + dom + "/Realms/" + rim + "/" + prov
print(cd*ing to " + path)
cd(path)
print(*'calling open()™)
xacmlFile = open(fil,"r")
print(*'calling read()")
xacmlDoc = xacmlFile.read()
print(*'calling cmo.addPolicy")
if stat == "none":
cmo.addPolicy(xacmlDoc)
else:
cmo.addPolicy(xacmlDoc, stat)
print(’Add error handling™)

As described in the Navigating and Interrogating MBeans section of Understanding the
WebLogic Scripting Tool, when WLST first connects to an instance of WebLogic
Server, the variable, cmo (Current Management Object), is initialized to the root of all
configuration management objects, DomainMBean. When you navigate to an MBean
type, in this case SecurityConfigurationMBean, the value of cmo reflects
SecurityConfigurationMBean. When you navigate to an MBean instance, in this case to
an Authorizer MBean that implements the PolicyStoreMBean, identified in the example
by the variable prov, WLST changes the value of cmo to be the current MBean
instance.

The example uses the addPolicy() method of the PolicyStoreMBean to add a policy
read from a XACML file to the policy store. Two variants of the addPolicy() method
(without and with status) are shown.

9-21

Chapter 9
How to Develop a Custom Role Mapping Provider

If you use an addPolicy() method that does not specify status, it defaults to ACTIVE,
which indicates that the policy is evaluated for any decision to which its target applies.
You can explicitly set status to be ACTIVE, INACTIVE, or BYREFERENCE. The
INACTIVE status indicates that the policy will never be evaluated and is only being
stored. The BYREFERENCE status indicates that the policy will only be evaluated
when referenced by a policy set that is being evaluated.

You can invoke this type of WLST script from the command line, in a manner similar to
the following:

java -Dhost="localhost " -Dprotocol="t3" -Dauthuser="weblogic"
-Dauthpwd="weblogic" -Dport="7001" -Ddomain="mydomain" -Drealm="myrealm"
-Dprovider="Authorizers/XACMLAuthorizer"
-Dfile="C:/XACML/xacml-docs/policyl2.xml" -Dstatus="none" weblogic.WLST
XACML/scripts/XACMLaddPolicy.py

9.5.3.3 Using WLST to Read a PolicySet as a String

Example 9-4 shows an example of using WLST to read a PolicySet as a string.

The example assumes that you have defined the properties used in this script
elsewhere, in a manner similar to the following lines from an ant script:

<sysproperty key="identifier"

value="urn:sample:xacml:2_0:wlssecqga:resource: type@E@Fejb@G@M@0application@ENoD
DRolesOrPoliciesEar@@module@EejbllinEarMiniAppBean. jar@@0ejb@EMiniAppBean@
M@Oomethod@EgetSubject@@OmethodInterface@ERemote™/>

<sysproperty key="version" value="1.0"/>

Example 9-4 Using WLST to Read a PolicySet as a String

try:

print("'start XACMLreadPolicySet._py')
protocol = System.getProperty(“protocol’™)
host = System.getProperty(*'host™)

user = System.getProperty(*'authuser™)
passwd = System.getProperty(*authpwd™)
port = System.getProperty(*'port™)

dom = System.getProperty(*'domain'™)

rim = System_getProperty(*“'realm™)

prov = System.getProperty(*'provider™)
id = System.getProperty(“identifier™)
vers = System.getProperty(*'version™)

def configure():
try:

url = protocol + "://" + host + ":" + port

connect(user,passwd, url)

path = "/SecurityConfiguration/" + dom + "/Realms/" + rim + "/" + prov
print(cd*ing to " + path)

cd(path)

polset = cmo.readPolicySetAsString(id, vers)
print("'readPolicySetAsString() returned the following policy set: " + polset)
print”Add error handling."

ORACLE

9-22

Chapter 9
How to Develop a Custom Role Mapping Provider

As described in the XACML 2.0 Core Specification (http://docs.oasis-open.org/
xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf), the <PolicySet> element
contains a set of <Policy> or other <PolicySet> elements and a specified procedure for
combining the results of their evaluation. See the XACML 2.0 Core Specification for
complete information.

9.5.4 Bulk Role Mapping Providers

This release of WebLogic Server includes bulk access versions of the following role
mapping provider SSPI interfaces:

* BulkRoleProvider
* BulkRoleMapper

The bulk access SSPI interfaces allow role mapping providers to receive multiple
decision requests in one call rather than through multiple calls, typically in a "for' loop.
The intent of the bulk SSPI variants is to allow provider implementations to take
advantage of internal performance optimizations, such as detecting that many of the
passed-in Resource objects are protected by the same policy and will generate the
same decision result.

There are subtle differences in how the non-bulk and bulk versions of the SSPI
interfaces are used. For example, the BulkRoleMapper.getRoles() method returns a Map
of roles indexed first by resource and then by their names (Map<Resource, Map<String,
SecurityRole>>), representing the security roles associated with the specified
resources that have been granted to the subject.

9.5.5 Configure the Custom Role Mapping Provider Using the
Administration Console

Configuring a custom role mapping provider means that you are adding the custom
role mapping provider to your security realm, where it can be accessed by applications
requiring role mapping services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom role
mapping providers:

e Managing Role Mapping Providers and Deployment Descriptors

* Enabling Security Role Deployment

Note:

The steps for configuring a custom role mapping provider using the WebLogic
Server Administration Console are described underConfiguring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

ORACLE 9-23

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Chapter 9
How to Develop a Custom Role Mapping Provider

9.5.5.1 Managing Role Mapping Providers and Deployment Descriptors

ORACLE

Some application components, such as Enterprise JavaBeans (EJBs) and Web
applications, store relevant deployment information in Java EE and WebLogic Server
deployment descriptors. For Web applications, the deployment descriptor files (called
web.xml and weblogic.xml) contain information for implementing the Java EE security
model, including security roles. Typically, you will want to include this information when
first configuring your role mapping providers in the WebLogic Server Administration
Console.

Because the Java EE platform standardizes Web application and EJB security in
deployment descriptors, WebLogic Server integrates this standard mechanism with its
Security Service to give you a choice of techniques for securing Web application and
EJB resources. You can use deployment descriptors exclusively, the WebLogic Server
Administration Console exclusively, or you can combine the techniques for certain
situations.

Depending on the technigue you choose, you also need to apply a Security Model.
WebLogic supports different security models for individual deployments, and a security
model for realm-wide configurations that incorporate the technique you want to use.

See Options for Securing EJB and Web Application Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

When configured to use deployment descriptors, WebLogic Server reads security role
information from the web.xml and weblogic.xml deployment descriptor files (examples of
web.xml and weblogic.xml files are shown in Example 9-5 and Example 9-6. This
information is then copied into the security provider database for the role mapping
provider.

Example 9-5 Sample web.xml File

<web-app>
<welcome-file-list>
<welcome-file>welcome.jsp</welcome-file>
</welcome-file-list>
<security-constraint>
<web-resource-collection>
<web-resource-name>Success</web-resource-name>
<url-pattern>/welcome.jsp</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>developers</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>
</login-config>
<security-role>
<role-name>developers</role-name>
</security-role>
</web-app>

9-24

Chapter 9
How to Develop a Custom Role Mapping Provider

Example 9-6 Sample weblogic.xml File

<weblogic-web-app>
<security-role-assignment>
<role-name>developers</role-name>
<principal-name>myGroup</principal-name>
</security-role-assignment>
</weblogic-web-app>

9.5.5.2 Enabling Security Role Deployment

If you implemented the DeployableRoleProviderv2 SSPI as part of developing your
custom role mapping provider and want to support deployable security roles, the
person configuring the custom role mapping provider (that is, you or an administrator)
must be sure that the Role Deployment Enabled box in the WebLogic Server
Administration Console is checked. Otherwise, deployment for the role mapping
provider is considered turned off. Therefore, if multiple role mapping providers are
configured, the Role Deployment Enabled box can be used to control which role
mapping provider is used for security role deployment.

9.5.6 Provide a Mechanism for Security Role Management

While configuring a custom role mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring role mapping
services, you also need to supply administrators with a way to manage this security
provider's associated security roles. The WebLogic Role Mapping provider, for
example, supplies administrators with a Role Editor page that allows them to add,
modify, or remove security roles for various WebLogic resources.

Neither the Role Editor page nor access to it is available to administrators when you
develop a custom role mapping provider. Therefore, you must provide your own
mechanism for security role management. This mechanism must read and write
security role data (that is, expressions) to and from the custom role mapping provider's
database.

You can accomplish this task in one of two ways:

e Option 1: Develop a Stand-Alone Tool for Security Role Management

* Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console

9.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Role Management

ORACLE

You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom role
mapping provider, nor do you need to develop any management MBeans. However,
your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. For more information, see WebLogic Resource
Identifiers.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

9-25

Chapter 9
How to Develop a Custom Role Mapping Provider

3. Read and write the expressions from and to the custom role mapping provider's
database.

9.5.6.2 Option 2: Integrate an Existing Security Role Management Tool into the
Administration Console

ORACLE

You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
WebLogic Server Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. See WebLogic Resource ldentifiers.

2. Determine how to represent the expressions that make up a security role. (This
representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom role mapping provider's
database.

4. Link into the WebLogic Server Administration Console using basic console
extension techniques.

9-26

Auditing Providers

This chapter describes Auditing provider concepts and functionality, and provides
step-by-step instructions for developing a custom Auditing provider.

Auditing is the process whereby information about operating requests and the
outcome of those requests are collected, stored, and distributed for the purposes of
non-repudiation. In WebLogic Server, an Auditing provider provides this electronic trail
of computer activity.

This chapter includes the following sections:

* Auditing Concepts

e The Auditing Process

* Extend weblogic.management.security.audit. ContextHandlerimpl
* How to Develop a Custom Auditing Provider

e Security Framework Audit Events

10.1 Auditing Concepts

Before you develop an Auditing provider, you need to understand the following
concepts:

e Audit Channels

* Auditing Events From Custom Security Providers

10.1.1 Audit Channels

An Audit Channel is the component of an Auditing provider that determines whether a
security event should be audited, and performs the actual recording of audit
information based on Quality of Service (QoS) policies.

Note:

See Implement the AuditChannel SSPI.

10.1.2 Auditing Events From Custom Security Providers

ORACLE

Each type of security provider can call the configured Auditing providers with a request
to write out information about security-related events, before or after these events take
place. For example, if a user attempts to access a withdraw method in a bank account
application (to which they should not have access), the authorization provider can
request that this operation be recorded. Security-related events are only recorded
when they meet or exceed the severity level specified in the configuration of the
Auditing providers.

10-1

Chapter 10
The Auditing Process

For information about how to post audit events from a custom security provider, see
Auditing Events From Custom Security Providers.

10.2 The Auditing Process

Figure 10-1 shows how Auditing providers interact with the WebLogic Security
Framework and other types of security providers (using authentication providers as an
example) to audit selected events. An explanation follows.

Figure 10-1 Auditing Providers, the WebLogic Security Framework, and Other
Security Providers

Resource Container

Feguest EJB Servlet J5F

[
@ login request;
Lzername/passward

¥

WeblL ogic Security Framework

securitySenices

AuditorService

L J

login regquest: @ -1 @
uzernameaipasaword AvditEvent: login AuditEvent: login

Security Providers

YWiehlLaogic . _
.| Authentication Provider Auditing Providers
(Loginhdodule) Audit Channels
Custam

Authentication Provider

Loginhodule]

1F

Audit Data

Auditing providers interact with the WebLogic Security Framework and other types of
security providers in the following manner:

ORACLE 10-2

ORACLE

4

Chapter 10
The Auditing Process

Note:

In Figure 10-1 and the explanation below, the other types of security providers
are a WebLogic Authentication provider and a custom authentication provider.
However, these can be any type of security provider that is developed as
described in Auditing Events From Custom Security Providers.

A resource container passes a user's authentication information (for example, a
username/password combination) to the WebLogic Security Framework as part of
a login request.

The WebLogic Security Framework passes the information associated with the
login request to the configured authentication providers.

If, in addition to providing authentication services, the authentication providers are
designed to post audit events, the authentication providers will each:

a.

4

Instantiate an AuditEvent object. At minimum, the AuditEvent object includes
information about the event type to be audited and an audit severity level.

Note:

An AuditEvent class is created by implementing either the AuditEvent SSPI or
an AuditEvent convenience interface in the authentication provider's runtime
class, in addition to the other security service provider interfaces (SSPIs) the
custom authentication provider must already implement. See Create an Audit
Event.

Make a trusted call to the Auditor Service, passing in the AuditEvent object.

Note:

This is a trusted call because the Auditor Service is already passed to the
security provider's initialize method as part of its Provider SSPI
implementation. See Understand the Purpose of the Provider SSPIs.

The Auditor Service passes the AuditEvent object to the configured Auditing
providers' runtime classes (that is, the AuditChannel SSPI implementations),
enabling audit event recording.

4

Note:

Depending on the authentication providers' implementations of the AuditEvent
convenience interface, audit requests may occur both pre and post event, as
well as just once for an event.

The Auditing providers' runtime classes use the event type, audit severity and
other information (such as the Audit Context) obtained from the AuditEvent object

10-3

Chapter 10
Implementing the ContextHandler MBean

to control audit record content. Typically, only one of the configured Auditing
providers will meet all the criteria for auditing.

Note:

See Audit Severity and Audit Context, respectively.

6. When the criteria for auditing specified by the authentication providers in their
AuditEvent objects is met, the appropriate Auditing provider's runtime class (that is,
the AuditChannel SSPI implementation) writes out audit records in the manner their
implementation specifies.

Note:

Depending on the AuditChannel SSPI implementation, audit records may be
written to a file, a database, or some other persistent storage medium when
the criteria for auditing is met.

10.3 Implementing the ContextHandler MBean

ORACLE

The ContextHandlerMBean, weblogic.management.security.audit.ContextHandler,
provides a set of attributes for ContextHandler support. You use this interface to
manage audit providers that support context handler entries in a standard way.

An Auditor provider MBean can optionally implement the ContextHandlerMBean MBean.
The Auditor provider can then use the MBean to determine the supported and active
ContextHandler entries.

The WebLogic Server Administration Console detects when an Auditor provider
implements this MBean and automatically provides a tab for using these attributes.

Note:

The ContextHandler entries associated with the ContextHandlerMBean are not
related to, nor do they affect, the contents of an AuditEvent that is passed to
the Audit providers. An AuditEvent received by a provider may or may not
include a ContextHandler with ContextElements. If a ContextHandler is
included, an Audit provider can get the ContextHandler from the AuditEvent,
regardless of whether you implemented the ContextHandlerMBean
management interface. In particular, the AuditContext getContext method
returns a weblogic.security.service.ContextHandler interface that is
independent of the context handler implemented by the
ContextHandlerMBean.

You can choose to implement the ContextHandlerMBean context handler in a
manner that compliments the AuditContext getContext method. (The
SimpleSampleAuditProviderimpl.java sample takes this approach.) However,
there is no requirement that you do so.

10-4

Chapter 10
Implementing the ContextHandler MBean

10.3.1 ContextHandlerMBean Methods

The ContextHandlerMBean interface implements the following methods:

* getActiveContextHandlerEntries

public String[] getActiveContextHandlerEntries()

Returns the ContextHandler entries that the Audit provider is currently configured
to process.

» getSupportedContextHandlerEntries
public String[] getSupportedContextHandlerEntries()

Returns the list of all ContextHandler entries supported by the auditor.
* setActiveContextHandlerEntries

public void setActiveContextHandlerEntries(String[] types) throws
InvalidAttributevalueException

Sets the ContextHandler entries that the Audit provider will process. The entries
you specify must be listed in the Audit provider's SupportedContextHandlerEntries
attribute.

10.3.2 Example: Implementing the ContextHandlerMBean

ORACLE

Example 10-5 shows the SimpleSampleAuditProviderimpl.java class, which is the
runtime class for the sample Auditing provider. This sample Auditing provider has
been enhanced to implement the ContextHandlerMBean.

An MBean Definition File (MDF) is an XML file used by the WebLogic MBeanMaker
utility to generate the Java files that comprise an MBean type. All MDFs must extend a
required SSPI MBean that is specific to the type of the security provider you have
created, and can implement optional SSPI MBeans.

Example 10-1 shows the key sections of the MDF for the sample Auditing provider,
which implements the optional ContexthandlerMBean.

Example 10-1 Example: SimpleSampleAuditor.xml

<MBeanType

Name = "SimpleSampleAuditor”

DisplayName = "SimpleSampleAuditor”

Package = "examples.security.providers.audit.simple”

Extends = "weblogic.management.security.audit.Auditor"”
Implements = "weblogic.management.security.audit.ContextHandler"

PersistPolicy
>

"OnUpdate"

<MBeanAttribute

Name = "SupportedContextHandlerEntries"
Type = "java.lang.String[]"

Writeable = "false"

Default = "new String[] {

"com.bea.contextelement.servlet.HttpServletRequest" }"
Description = "List of all ContextHandler entries

10-5

Chapter 10
Implementing the ContextHandler MBean

supported by the auditor.”
/>

10.3.3 Extend
weblogic.management.security.audit.ContextHandlerimpl

ORACLE

The ContextHandlerMBean has an setActiveContextHandlerEntries attribute that sets
the ContextHandler entries that the Audit provider is currently configured to process.
The entries you specify must be listed in the Audit provider's
SupportedContextHandlerEntries attribute. However, this requirement is not actually
enforced by the MBean. Additional work is required to validate that this attribute can
set only values from the SupportedContextHandlerEntries attribute.

You must also create an MBean customizer (for example, you might call it
MyAuditorImpl . java) file that extends
weblogic.management.security.audit.ContextHandlerImpl. Extending
weblogic.management.security.audit.ContextHandlerImpl gives the provider access to
the ActiveContextHandlerEntries attribute validator, which ensures that the entries
include only SupportedContextHandlerEntries.

An example of extending ContextHandlerImpl is available in SimpleSampleAuditorImpl,
which is shown in Example 10-2.

After you implement code similar to that in SimpleSampleAuditorimpl, add code to your
Audit runtime provider to get the ActiveContextHandlerEntries. One possible way to do
this is shown in Example 10-3.

Example 10-2 SimpleSampleAuditorimpl

package examples.security.providers.audit.simple;

import javax.management._MBeanException;

import javax.management.modelmbean.RequiredModelMBean;

import weblogic.management.security.audit.ContextHandlerimpl;

*
*

The simple sample auditor®s mbean implementation.

<p>

It is needed to inherit the ContextHandlerMBean®"s ActiveContextHandlerEntries
attribute validator that ensures that the ActiveContextHandlerEntries
attribute only contains values from the SupportedContextHandlerEntries
attribute.

@author Copyright © 1996, 2008, Oracle and/or its affiliates.
All rights reserved.

ok X 3k o % ok Xk N\

*/

public class SimpleSampleAuditorimpl extends ContextHandlerlImpl

// Note: extend ContextHandlerlmpl instead of Auditorimpl to inherit
// the ActiveContextHandlerEntries attribute validator.

{

/**

* Standard mbean impl constructor.

*

* @throws MBeanException

*/

public SimpleSampleAuditorImpl(RequiredModelMBean base) throws MBeanException
{

super(base);

}

}

10-6

Chapter 10
Do You Need to Develop a Custom Auditing Provider?

Example 10-3 Getting Active Context Handler Entries

String [] activeHandlerEntries = myMBean.getActiveContextHandlerEntries();
if (activeHandlerEntries != null) {
for (int i=0; i<activeHandlerEntries.length; i++) {
if ((activeHandlerEntries[i] = null) &&
(activeHandlerEntries[i].equalslgnoreCase(HTTP_REQUEST_ELEMENT))) {
handlerEnabled = true;
break;

3
}
3

10.4 Do You Need to Develop a Custom Auditing Provider?

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Auditing provider. The WebLogic Auditing provider records information from a number
of security requests, which are determined internally by the WebLogic Security
Framework. The WebLogic Auditing provider also records the event data associated
with these security requests, and the outcome of the requests.

The WebLogic Auditing provider makes an audit decision in its writeEvent method,
based on the audit severity level it has been configured with and the audit severity
contained within the AuditEvent object that is passed into the method. See Create an
Audit Event.

Note:

You can change the audit severity level that the WebLogic Auditing provider is
configured with using the WebLogic Server Administration Console. See
Configuring a WebLogic Auditing Provider in Administering Security for Oracle
WebLogic Server.

If there is a match, the WebLogic Auditing provider writes audit information to the
DefaultAuditRecorder. log file, which is located in the WL_HOME\yourdomain\ yourserver
\logs directory. Example 10-4 is an excerpt from the DefaultAuditRecorder.log file.

Example 10-4 DefaultAuditRecorder.log File: Sample Output

VWhen Aut hentication suceeds. [SUCCESS

#i## Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ###

VWhen Authentication fails. [FA LURE]

#i## Audit Record Begin <Feb 23, 2005 11:42:01 AM> <Severity=FAILURE>
<<<Event Type = Authentication Audit Event><TestUser><AUTHENTICATE>>> Audit
Record End ####When Operations are invoked.[SUCCESS]

VWhen a user account is unlocked. [SUCCESS]

#i## Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authentication Audit Event><TestUser><USERUNLOCKED>>> Audit
Record End ####

VWhen an Authorization request succeeds. [SUCCESS]

#i## Audit Record Begin <Feb 23, 2005 11:42:17 AM> <Severity=SUCCESS>
<<<Event Type = Authorization Audit Event ><Subject: 1

Principal = class weblogic.security._principal .WLSUserImpl("TestUser™)

ORACLE 10-7

Chapter 10
How to Develop a Custom Auditing Provider

><ONCE><<jndi>><type=<jndi>, application=, path={weblogic}, action=lookup>>>
Audit Record End ####

Specifically, Example 10-4 shows the Role Manager (a component in the WebLogic
Security Framework that deals specifically with security roles) recording an audit event
to indicate that an authorized administrator has accessed a protected method in a
certificate servlet.

You can specify a new directory location for the DefaultAuditRecorder. log file on the
command line with the following Java startup option:

-Dweblogic.security.audit.auditLogDir=c:\foo

The new file location will be c:\foo\yourserver\DefaultAuditRecorder.log.

If you want to write audit information in addition to that which is specified by the
WebLogic Security Framework, or to an output repository that is not the
DefaultAuditRecorder.log (that is, to a simple file with a different name/location or to an
existing database), then you need to develop a custom Auditing provider.

10.5 How to Develop a Custom Auditing Provider

If the WebLogic Auditing provider does not meet your needs, you can develop a
custom Auditing provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom auditing provider by completing the
steps described in Generate an MBean Type Using the WebLogic MBeanMaker.

3. Configure the Custom Auditing Provider Using the Administration Console

Note:

After creating a custom Auditing provider, if you are using WLST to manage
your custom Auditing provider configuration, you must ensure that the provider
interface jar is specified in the WLST_EXT_CLASSPATH environment variable.
Optionally, you can set the location of the directory containing the provider jar
using the -Dweblogic.alternateTypesDirectory system property in the
CONFIG_JVM_ARGS environment variable.

10.5.1 Create Runtime Classes Using the Appropriate SSPIs

ORACLE

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs.

» Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom Auditing provider by following these steps:

e Implement the AuditProvider SSPI
e Implement the AuditChannel SSPI

10-8

Chapter 10
How to Develop a Custom Auditing Provider

For an example of how to create a runtime class for a custom Auditing provider, see
Example: Creating the Runtime Class for the Sample Auditing Provider.

10.5.1.1 Implement the AuditProvider SSPI

To implement the AuditProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following method:

e getAuditChannel
public AuditChannel getAuditChannel();
The getAuditChannel method obtains the implementation of the AuditChannel SSPI.

For a single runtime class called MyAuditProviderImpl.java, the implementation of
the getAuditChannel method would be:

return this;

If there are two runtime classes, then the implementation of the getAuditChannel
method could be:

return new MyAuditChannellmpl;

This is because the runtime class that implements the AuditProvider SSPI is used
as a factory to obtain classes that implement the AuditChannel SSPI.

See Java API Reference for Oracle WebLogic Server.

10.5.1.2 Implement the AuditChannel SSPI

To implement the AuditChannel SSPI, provide an implementation for the following
method:

* writeEvent

public void writeEvent(AuditEvent event)

The writeEvent method writes an audit record based on the information specified
in the AuditEvent object that is passed in. See Create an Audit Event.

See Java API Reference for Oracle WebLogic Server.

10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing

Provider

ORACLE

Example 10-5 shows the SimpleSampleAuditProviderimpl.java class, which is the
runtime class for the sample Auditing provider. This runtime class includes
implementations for:

e The three methods inherited from the SecurityProvider interface: initialize,
getDescription and shutdown (as described in Understand the Purpose of the
Provider SSPIs.)

e The method inherited from the AuditProvider SSPI: the getAuditChannel method
(as described in Implement the AuditProvider SSPI).

* The method in the AuditChannel SSPI: the writeEvent method (as described in
Implement the AuditChannel SSPI).

10-9

Chapter 10
How to Develop a Custom Auditing Provider

Note:

The bold face code in Example 10-5 highlights the class declaration and the
method signatures.

Example 10-5 SimpleSampleAuditProviderimpl.java

package examples.security.providers.audit.simple;
import java.io.File;

import java.io.FileOutputStreanm;

import java.io.lOException;

import java.io.PrintStream;

import javax.servlet.http.HttpServletRequest;
import weblogic.management.security.ProviderMBean;
import weblogic.security.service.ContextHandler;
import weblogic.security.spi.AuditChannel;

import weblogic.security.spi.AuditContext;

import weblogic.security.spi.AuditEvent;

import weblogic.security._spi.AuditProvider;
import weblogic.security.spi.SecurityServices;

public final class SinpleSanpl eAuditProviderlnpl inplenments AuditProvider, AuditChanne
{

private String description; // a description of this provider
private PrintStream log; // the log file that events are written to
private boolean handlerEnabled = false;

private final static String HTTP_REQUEST_ELEMENT =
"com.bea.contextelement._servlet._HttpServletRequest”;
public void initialize(ProviderMBean nbean, SecurityServices services)
{
System.out.printin(*SimpleSampleAuditProvideriImpl.initialize™);
SimpleSampleAuditorMBean myMBean = (SimpleSampleAuditorMBean)mbean;
description = myMBean.getDescription() + "\n" + myMBean.getVersion();
String [] activeHandlerEntries = myMBean. get ActiveCont ext Handl er Entries()
if (activeHandlerEntries != null) {
for (int i=0; i<activeHandlerEntries.length; i+t) {
if ((activeHandlerEntries[i] != null) &&
(activeHandlerEntries[i].equalslgnoreCase(HTTP_REQUEST_ELEMENT))) {
handlerEnabled = true;
break;
}
}

}
File file = new File(myMBean.getLogFileName());

System.out.printin(*"\tlogging to " + file.getAbsolutePath());
try {

log = new PrintStream(new FileOutputStream(file), true);
} catch (I10Exception e) {

throw new RuntimeException(e.toString());

}
}
public String getDescription()
{ return description;
gublic voi d shut down()
{

System.out.printin(*"SimpleSampleAuditProviderImpl.shutdown™);

ORACLE 10-10

Chapter 10
How to Develop a Custom Auditing Provider

log.close();

public AuditChannel getAuditChannel ()
{

return this;

public void witeEvent (AuditEvent event)

{
log.printin(event);

if (("handlerEnabled) || ('(event instanceof AuditContext)))
return;

AuditContext auditContext = (AuditContext)event;
ContextHandler handler = auditContext.getContext();

if ((handler == null) || (handler.size() == 0))
return;

Object requestValue = handler.getValue(*'com.bea.contextelement.servlet.HttpServletRequest™);
if ((requestvValue == null) || (!(requestValue instanceof HttpServletRequest)))

return;
HttpServletRequest request = (HttpServletRequest) requestValue;
log.printin(" " + HTTP_REQUEST_ELEMENT + " method: " + request.getMethod());
log.printin(" " + HTTP_REQUEST_ELEMENT + "™ URL: " + request.getRequestURL());
log.printin(" " + HTTP_REQUEST_ELEMENT + "™ URI: " + request.getRequestURI());
return;

}
}

10.5.2 Configure the Custom Auditing Provider Using the
Administration Console

Configuring a custom Auditing provider means that you are adding the custom
Auditing provider to your security realm, where it can be accessed by security
providers requiring audit services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers. This section
contains information that is important for the person configuring your custom Auditing
providers:

e Configuring Audit Severity

Note:

The steps for configuring a custom Auditing provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

10.5.2.1 Configuring Audit Severity

During the configuration process, an Auditing provider's audit severity must be set to
one of the following severity levels:

ORACLE 10-11

e INFORMATION

* WARNING
* ERROR

e SUCCESS
* FAILURE

Chapter 10
Security Framework Audit Events

10.6 Security Framework Audit Events

This section describes the audit events that are posted by the WebLogic Server
Security Framework. If you write a custom audit provider, it should be prepared to
handle these events. The following topics are covered in this section:

ORACLE

» Passing Additional Audit Information

e Audit Event Interfaces and Audit Events

10.6.1 Passing Additional Audit Information

The WebLogic Security providers implement the appropriate AuditEvent interfaces and
post those events to the Audit provider. The audit events that also implement the
AuditContext interface can provide more information via a ContextHandler.

Table 10-1 lists the weblogic.security.spi subinterfaces that extend the AuditEvent
SSPI, and indicates which subinterfaces implement the AuditContext interface.

Table 10-1 Audit Events

Audit Event Name Interface Class Audit Event Audit
Context

Application Version Event weblogic.security.spi.AuditAppl Yes No
icationVersionEvent

Authentication Audit Event weblogic.security.spi.AuditAtnE Yes No
vent

Authentication Audit Event weblogic.security.spi.AuditAtnE Yes Yes

V2 ventv2

Authorization Audit Event weblogic.security._spi.AuditAtzE Yes Yes
vent

CertPathBuilder Audit weblogic.security.spi.AuditCert Yes Yes

Event

PathBui lderEvent

CertPathValidator Audit weblogic.security.spi.AuditCert Yes Yes

Event PathValidatorEvent

Configuration Audit Event weblogic.security.spi.AuditConf Yes Yes
igurationEvent

Credential Mapping Audit weblogic.security.spi.AuditCred Yes Yes

Event entialMappingEvent

10-12

Chapter 10
Security Framework Audit Events

Table 10-1 (Cont.) Audit Events

Audit Event Name Interface Class Audit Event Audit
Context

Life Cycle Event weblogic.security._spi.AuditLife Yes No
cycleEvent

Audit Management Event weblogic.security.spi.AudithMgmt Yes No
Event

Policy Audit Event weblogic.security.spi.AuditPoli Yes No
cyEvent

Policy Consumer Audit weblogic.security.service.inter AuditPolicy No

Event nal .PolicyConsumerAuditEvent Event

Provider Audit Record com.bea.security.spi.ProviderAu Yes Yes
ditRecord

Role Consumer Audit weblogic.security.service.inter AuditRoleE Yes

Event nal .RoleConsumerAuditEvent vent

Role Deployment Audit weblogic.security.spi.AuditRole Yes No

Event DeploymentEvent

Role Mapping Audit Event weblogic.security.spi.AuditRole Yes Yes
Event

10.6.2 Audit Event Interfaces and Audit Events

In the weblogic.security.spi package, WebLogic Security defines one top-level base
interface (AuditEvent) with derived interfaces that represent the different types of audit
events.

ORACLE

Subsequent sections describe when the security framework and security providers
post the following audit events:

AuditApplicationVersionEvent

AuditAtnEventV2

AuditAtzEvent

AuditCerPathBuilderEvent, AuditCertPathValidatorEvent

AuditConfigurationEvent (AuditCreateConfigurationEvent,
AuditDeleteConfigurationEvent, AuditlnvokeConfigurationEvent,
AuditSetAttributeConfigurationEvent)

AuditCredentialMappingEvent
AuditLifecycleEvent
AuditMgmtEvent

AuditPolicyEvent (AuditEndPolicyDeployEvent, AuditPolicyDeleteAppEvent,
AuditPolicyDeployEvent, AuditPolicyUndeployEvent, AuditResourceProtectedEvent,
AuditStartPolicyDeployEvent, PolicyConsumerAuditEvent)

10-13

Chapter 10
Security Framework Audit Events

* AuditRoleDeploymentEvent (AuditStartRoleDeployEvent, AuditEndRoleDeployEvent,
AuditRoleUndeployEvent, AuditRoleDeleteAppEvent)

* AuditRoleEvent (RoleConsumerAuditEvent)

10.6.2.1 AuditApplicationVersionEvent

Application version audit events are posted by the security framework. You can use
the getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String = "Application Version Audit Event".

Table 10-2 describes the conditions under which the event is posted and severity level
of the event.

Table 10-2 Application Version Events

Component Description Severity
Security The security framework posts these events Success or Failure
Framework for the following reasons:

e Authorization Manager application
version creation has succeeded or failed.

e Authorization Manager application
version deletion has succeeded or failed.

e Authorization Manager non-versioned
application deletion has succeeded or
failed.

* Role Manager application version
creation has succeeded or failed.

* Role Manager application version
deletion has succeeded or failed.

¢ Role Manager non-versioned application
deletion has succeeded or failed.

e Credential Manager application version
creation has succeeded or failed.

» Credential Manager application version
deletion has succeeded or failed.

e Credential Manager non-versioned
application deletion has succeeded or
failed.

10.6.2.2 AuditAtnEventV2

Authentication audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string returned
by getEventType is String eventType = "Event Type = Authentication Audit Event".

Table 10-3 describes the conditions under which the event is posted and severity level
of the event.

ORACLE 10-14

ORACLE

Chapter 10

Security Framework Audit Events

Table 10-3 Authentication Audit Events
]

Component

Description

Severity

Security Framework

Posted after successful
authentication of a user.

Success

Security Framework

Posted after unsuccessful
authentication (a LoginException
thrown from JAAS login method).
This LoginException can be thrown
by either JAAS framework or by
JAAS LoginModule of WebLogic
Server authentication provider.

Failure

Security Framework

Posted after an identity assertion to
an anonymous user.

Success

Security Framework

Posted after an unsuccessful
identity assertion
(IdentityAssertionException thrown
from identity assertion method)

Failure

Security Framework

Posted after an unsuccessful
identity assertion (IOException is
thrown by identity assertion callback
handler when retrieving username
from callback).

Failure

Security Framework

Posted after an unsuccessful
identity assertion
(UnsupportedCallbackException is
thrown by identity assertion callback
handler when retrieving username
from callback).

Failure

Security Framework

Posted after an unsuccessful
identity assertion (when username
returned from identity assertion
callback handler is null or zero
length).

Failure

Security Framework

Posted after a successful identity
assertion.

Success

Security Framework

Posted after an unsuccessful
identity assertion.

Failure

Security Framework

Posted after a successful
impersonate identity (anonymous
identity).

Success

Security Framework

Posted after a successful
impersonate identity.

Success

Security Framework

Posted after an unsuccessful
impersonate identity.

Failure

10-15

Chapter 10
Security Framework Audit Events

Table 10-3 (Cont.) Authentication Audit Events

Component Description Severity
Security Framework Posted after a failure of principal Failure
validation.
10.6.2.3 AuditAtzEvent

Authorization audit events are posted by the security framework. You can use the
getEventType method to get the type of the audit event. The actual audit string returned
by getEventType is String eventType = "Event Type = Authorization Audit Event V2 .

Table 10-4 describes the conditions under which the events are posted and severity
level of the event.

Table 10-4 Authorization Audit Events
]

Component Description Severity

Security Framework Posted if access is not allowed to Failure
resource (exception thrown by
authorization provider).

Security Framework Posted if access is allowed to resource. Success
Security Framework Posted if access is not allowed to Failure
resource.

10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent

ORACLE

CertPath Builder and Validation audit events are posted by the security framework.
You can use the getEventType method to get the type of the audit event. The actual
audit strings returned by getEventType are as follows:

e String eventType = "Event Type = CertPathBuilder Audit Event "
° String eventType = "Event Type = CertPathValidator Audit Event "

Table 10-5 describes the conditions under which the events are posted and severity
level of the event.

Table 10-5 CertPath Builder and Validation Events
]

Component Description Severity

Security Framework Posted if the Certificate Path is Success
successfully built.

Security Framework Posted if the Certificate Path is Failure
not successfully built.

Security Framework Posted if the Certificate Path is Success
successfully validated.

10-16

Chapter 10
Security Framework Audit Events

Table 10-5 (Cont.) CertPath Builder and Validation Events

___|
Component Description Severity

Security Framework Posted if the Certificate Path is Failure
not successfully validated.

10.6.2.5 AuditConfigurationEvent

Configuration audit events are posted by the security framework. The following events
are posted:

* AuditConfigurationEvent

e AuditCreateConfigurationEvent (The actual audit string returned by getEventType is
String CREATE_EVENT = "Create Configuration Audit Event™)

e AuditDeleteConfigurationEvent (The actual audit string returned by getEventType is
String DELETE_EVENT = "Delete Configuration Audit Event")

* AuditlnvokeConfigurationEvent (The actual audit string returned by getEventType is
String INVOKE_EVENT = "Invoke Configuration Audit Event™)

* AuditSetAttributeConfigurationEvent (The actual audit string returned by
getEventType is String SETATTRIBUTE_EVENT = "SetAttribute Configuration Audit
Event")

Table 10-6 describes the conditions under which the events are posted and severity
level of the events.

Table 10-6 Audit Configuration Events

Component Description Severity
WebLogic Management The WebLogic Management Success or Failure
Infrastructure infrastructure implements this

interface and may post
configuration audit events for the
following configuration change
events:

* Arequest to create a new
configuration artifact has
been allowed or disallowed.

* Arequestto delete an
existing configuration artifact
has been allowed or
disallowed.

* Arequest to modify an
existing configuration artifact
has been allowed or
disallowed.

* Ainvoke an operation on an
existing configuration artifact
has been allowed or
disallowed.

ORACLE 10-17

Chapter 10
Security Framework Audit Events

10.6.2.6 AuditCredentialMappingEvent

Credential mapping audit events are posted by the security framework. You can use
the getEventType method to get the type of the audit event. The actual audit string
returned by getEventType is String EVENT_TYPE = "Event Type = Credential apping
Audit Event".

Table 10-7 describes the condition under which the events are posted and severity
level of the event.

Table 10-7 Credential Mapping Audit Events

__|
Component Description Severity

Security Framework The WebLogic Security Framework Success
implements this interface and may post
audit events for the following security
events:

Credentials for a WebLogic Server User
are requested

Credentials for a Subject are requested

10.6.2.7 AuditLifecycleEvent

The AuditLifecycleEvent interface is used to post audit lifecycle events. The WebLogic
Security Framework implements this interface and may post audit events for the
following security events:

» After the auditing service in the framework is started.
- Before the auditing service in the framework is stopped.

The actual audit string returned by getEventType is String eventType = "Event Type =
AuditLifecycle Audit Event".

The AuditLifecycleEventType class describes the audit service lifecycle event types
that are supported. Possible values are START_AUDIT and STOP_AUDIT.

An Auditing provider can use this interface to get additional information about the audit
lifecycle event. The AuditSeverity and AuditLifecycleEventType attributes can be used
to determine which of the above audit events has been posted.

10.6.2.8 AuditMgmtEvent

ORACLE

Management audit events are not currently posted by either the Security Framework
or by the supplied providers. However, a custom security provider may implement this
interface and post different audit events for the various management operations
performed by the custom security provider.

An Auditing provider can use this interface to get additional information about the
management audit event. The AuditSeverity attribute can be used to determine
whether the management operation succeeded or failed.

10-18

Chapter 10
Security Framework Audit Events

10.6.2.9 AuditPolicyEvent

ORACLE

AuditPolicyEvent is posted by the security framework and the WebLogic Authorization
provider. The security framework posts audit policy events when policies are deployed
to or undeployed from an authorization provider. The WebLogic Server authorization
provider posts audit policy events when creating, deleting, or updating policies. You
can use the getEventType method to get the type of the audit event. The audit events
and the actual audit strings returned by getEventType are as follows:

* AuditStartPolicyDeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization Start Policy Deploy Audit Event

")
e AuditPolicyUndeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization Policy Undeploy Audit Event ".)

e AuditPolicyDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = Authorization Policy Deploy Audit Event ".)

* AuditPolicyDeleteAppEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization Delete Application Policies
Audit Event ".)

e AuditEndPolicyDeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = Authorization End Policy Deploy Audit Event

")

For PolicyConsumerAuditEvent, which implements AuditPolicyEvent, the actual audit
strings returned by getEventType are:

° String eventType = "Event Type = Policy Consumer Get Handler"

e String eventType = "Event Type = Policy Consumer Set Policy"

° String eventType = "Event Type = Policy Consumer Set Unchecked Policy"

e String eventType = "Event Type = Policy Consumer Done"

Table 10-8 describes the conditions under which the events are posted and lists the
event severity level.

Table 10-8 Audit Policy Events
|

Component Description Severity
WebLogic Authorization * The WebLogic Authorization provider Success or
Provider implements this interface and posts audit Failure

events for the following security events:
* Security policy creation has succeeded.
* Security policy creation has failed.
e Security policy removal has succeeded.
» Security policy removal has failed.
* A security policy update has succeeded.
* A security policy update has failed.
» Application deletion of security policies
has succeeded.

» Application deletion of security policies
has failed.

10-19

Chapter 10
Security Framework Audit Events

10.6.2.10 AuditRoleDeploymentEvent

The security framework posts audit role deployment events when roles are deployed
to or undeployed from a role mapping provider. You can use the getEventType method
to get the type of the audit event. The following events are posted:

* AuditRoleDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager Deploy Audit Event ".)

* AuditStartRoleDeployEvent (The actual audit string returned by getEventType is
String eventType = "Event Type = RoleManager Start Deploy Role Audit Event ".)

* AuditEndRoleDeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager End Deploy Role Audit Event ™.)

* AuditRoleUndeployEvent (The actual audit string returned by getEventType is String
eventType = "Event Type = RoleManager Undeploy Audit Event ".)

Table 10-9 describes the conditions under which the events are posted and lists the
event severity level.

Table 10-9 Audit Role Deployment Events

___|
Component Description Severity

Security Framework The WebLogic Security Framework Success or
implements this interface and may post audit ~ Failure
events for the following security events:

e Security role deployment to a role
mapping provider has succeeded.

e Security role deployment to a role
mapping provider has failed.

e Security role undeployment to a role
mapping provider has succeeded.

e Security role undeployment to a role
mapping provider has failed.

e Application deletion of security roles to a
role mapping provider has succeeded.

e Application deletion of security roles to a
role mapping provider has failed.

10.6.2.11 AuditRoleEvent

ORACLE

The WebLogic Authorization provider posts audit role events when roles are created,
deleted, or updated. You can use the getEventType method to get the type of the audit
event. The actual audit strings returned by getEventType are as follows:

° String eventType = "Event Type = RoleManager Audit Event "

e String eventType = "Event Type = RoleManager Delete Application Roles Audit
Event ™

For RoleConsumerAuditEvent, which implements AuditRoleEvent, the actual audit strings
returned by getEventType are:

° String eventType = "Event Type = Role Consumer Get Handler"

e String eventType = "Event Type = Role Consumer Set Role"

10-20

ORACLE

Chapter 10
Security Framework Audit Events

e String eventType = "Event Type = Role Consumer Done"

Table 10-10 describes the conditions under which the events are posted and lists the
event severity level.

Table 10-10 Audit Role Events
]

Component Description Severity
WebLogic Authorization The WebLogic Authorization provider Success
Provider implements this interface and posts audit

events for the following security events:

e Security role creation has succeeded.
e Security role creation has failed.

e Security role removal has succeeded.
e Security role removal has failed.

e A security role update has succeeded.
e A security role update has failed.

10-21

Chapter 10

Security Framework Audit Events

ORACLE" 10-22

Credential Mapping Providers

This chapter describes credential mapping provider concepts and functionality, and
provides step-by-step instructions for developing a custom credential mapping
provider.

Credential mapping is the process whereby a legacy system's database is used to
obtain an appropriate set of credentials to authenticate users to a target resource. In
WebLogic Server, a credential mapping provider is used to provide credential mapping
services and bring new types of credentials into the WebLogic Server environment.

This chapter includes the following sections:

e Credential Mapping Concepts

e The Credential Mapping Process

* Do You Need to Develop a Custom Credential Mapping Provider?

* How to Develop a Custom Credential Mapping Provider

11.1 Credential Mapping Concepts

A subject, or source of a WebLogic resource request, has security-related attributes
called credentials. A credential may contain information used to authenticate the
subject to new services. Such credentials include username/password combinations,
Kerberos tickets, and public key certificates. Credentials might also contain data that
allows a subject to perform certain activities. Cryptographic keys, for example,
represent credentials that enable the subject to sign or encrypt data.

A credential map is a mapping of credentials used by WebLogic Server to credentials
used in a legacy (or any remote) system, which tell WebLogic Server how to connect
to a given resource in that system. In other words, credential maps allow WebLogic
Server to log in to a remote system on behalf of a subject that has already been
authenticated. You can map credentials in this way by developing a credential
mapping provider.

11.2 The Credential Mapping Process

ORACLE

Figure 11-1 illustrates how credential mapping providers interact with the WebLogic
Security Framework during the credential mapping process, and an explanation
follows.

11-1

Chapter 11
The Credential Mapping Process

Figure 11-1 Credential Mapping Providers and the Credential Mapping Process

Resource Container

J5Ps Senlets EJBs Resource Adapters)
| use credentials

to access

Target
Resource

&)

pazses credentials to

request. passes
subject, resource

idertifier,

credential type
h J

WehlLogic Security Framework

Security Providers

Q)

getCredentials()
returns matching credentials
B _
Credential Mapping & Database
; consults *
Provider

Legacy System

Generally, credential mapping is performed in the following manner:

1.

ORACLE

Application components, such as JavaServer Pages (JSPs), servlets, Enterprise
JavaBeans (EJBs), or Resource Adapters call into the WebLogic Security
Framework through the appropriate resource container. As part of the call, the
application component passes in the subject (that is, the who making the request),
the WebLogic resource (that is, the what that is being requested) and information
about the type of credentials needed to access the WebLogic resource.

The WebLogic Security Framework sends the application component's request for
credentials to a configured credential mapping provider. It is up to the credential
mapper to decide whether it supports the token or not. If it supports the token, it
performs its processing.

The credential mapping provider consults the legacy system's database to obtain
a set of credentials that match those requested by the application component.

The credential mapping provider returns the credentials to the WebLogic Security
Framework.

The WebLogic Security Framework passes the credentials back to the requesting
application component through the resource container.

The application component uses the credentials to access the external system.
The external system might be a database resource, such as an Oracle or SQL
Server.

11-2

Chapter 11
Do You Need to Develop a Custom Credential Mapping Provider?

11.3 Do You Need to Develop a Custom Credential Mapping

Provider?

ORACLE

The default (that is, active) security realm for WebLogic Server includes a WebLogic
Credential Mapping provider. The WebLogic Credential Mapping provider maps
WebLogic Server users and groups to the appropriate username/password credentials
that may be required by other, external systems. If the type of credential mapping you
want is between WebLogic Server users and groups and username/password
credentials in another system, then the WebLogic Credential Mapping provider is
sufficient.

WebLogic Server includes a PKI Credential Mapping provider. The PKI (Public Key
Infrastructure) Credential Mapping provider included in WebLogic Server maps a
WebLogic Server subject (the initiator) and target resource (and an optional credential
action) to a key pair or public certificate that should be used by the application when
using the targeted resource. The PKI Credential Mapping provider uses the subject
and resource name to retrieve the corresponding credential from the keystore. The
PKI Credential Mapping provider supports the CredentialMapperV2._PKI_KEY_PAIR_TYPE
and CredentialMapperV2_.PKI_TRUSTED_CERTIFICATE_TYPE token types.

WebLogic Server also includes the SAML Credential Mapping provider. The SAML
Credential Mapping provider generates SAML 1.1 and 2.0 assertions for authenticated
subjects based on a target site or resource. If the requested target has not been
configured and no defaults are set, an assertion will not be generated. User
information and group membership (if configured as such) are put in the
AttributeStatement.

As described in Configuring SAML SSO Attribute Support in Developing Applications
with the WebLogic Security Service, WebLogic Server enhanced the SAML 1.1 and
2.0 Credential Mapping provider and Identity Assertion provider mechanisms to
support the use of a custom attribute mapper that can obtain additional attributes
(other than group information) to be written into SAML assertions, and to then map
attributes from incoming SAML assertions.

The SAML Credential Mapping provider supports the
CredentialMapperV2.SAML_ASSERTION_B64 TYPE,
CredentialMapperV2.SAML_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML_ASSERTION_TYPE token types.

The SAML 2.0 Credential Mapping provider supports the
CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE, and
CredentialMapperV2.SAML2_ASSERTION_TYPE token types.

If the out-of-the-box credential mapping providers do not meet your needs, then you
need to develop a custom credential mapping provider. Note, however, that only the
following token types are ever requested by the WebLogic Server resource containers:

* CredentialMapperV2_PASSWORD_TYPE

* CredentialMapperV2.PKI_KEY_PAIR_TYPE

« CredentialMapperV2.PKI_TRUSTED_CERTIFICATE_TYPE
* CredentialMapperVv2.SAML_ASSERTION_B64_TYPE

+ CredentialMapperV2.SAML_ASSERTION_DOM_TYPE

11-3

Chapter 11
How to Develop a Custom Credential Mapping Provider

* CredentialMapperV2._SAML_ASSERTION_TYPE

* CredentialMapperV2.SAML2_ASSERTION_DOM_TYPE
« CredentialMapperV2.SAML2_ASSERTION_TYPE

* CredentialMapperV2.USER_PASSWORD_TYPE

11.3.1 Does Your Custom Credential Mapping Provider Need to
Support Application Versioning?

All authorization, role mapping, and credential mapping providers for the security
realm must support application versioning in order for an application to be deployed
using versions. If you develop a custom security provider for authorization, role
mapping, or credential mapping and need to support versioned applications, you must
implement the Versionable Application SSPI, as described in Versionable Application
Providers.

11.4 How to Develop a Custom Credential Mapping Provider

If the WebLogic Credential Mapping provider does not meet your needs, you can
develop a custom credential mapping provider by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs

2. Generate an MBean type for your custom credential mapping provider by
completing the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

3. Provide a Mechanism for Credential Map Management

11.4.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

* Understand the Purpose of the Provider SSPIs
* Determine Which Provider Interface You Will Implement

* Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom credential mapping provider by following these
steps:

* Implement the CredentialProviderV2 SSPI or Implement the
DeployableCredentialProvider SSPI

* Implement the CredentialMapperV2 SSPI

11.4.1.1 Implement the CredentialProviderV2 SSPI

ORACLE

To implement the CredentialProviderV2 SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
method:

» getCredentialProvider

11-4

Chapter 11
How to Develop a Custom Credential Mapping Provider

public CredentialMapperV2 getCredentialProvider();

The getCredentialProviderV2 method obtains the implementation of the
CredentialMapperV2 SSPI. For a single runtime class called
MyCredentialMapperProviderImpl.java (as in Figure 3-3), the implementation of the
getCredentialProvider method would be:

return this;

If there are two runtime classes, then the implementation of the
getCredentialProvider method could be:

return new MyCredentialMapperimpl;

This is because the runtime class that implements the CredentialProviderv2 SSPI
is used as a factory to obtain classes that implement the CredentialMapperV2 SSPI.

See Java API Reference for Oracle WebLogic Server.

11.4.1.2 Implement the DeployableCredentialProvider SSPI

ORACLE

Note:

The DeployableCredentialProvider SSPI is deprecated in this release of
WebLogic Server.

To implement the DeployableCredentialProvider SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs, Implement the
CredentialProviderV2 SSPI, and the following methods:

deployCredentialMapping

public void deployCredentialMapping(Resource resource, String
initiatingPrincipal, String eisUsername, String eisPassword)throws
ResourceCreationException;

The deployCredentialMapping method deploys credential maps. If the mapping
already exists, it is removed and replaced by this mapping. The resource
parameter represents the WebLogic resource to which the initiating principal
(represented as a String) is requesting access. The Enterprise Information System
(EIS) username and password are the credentials in the legacy (remote) system to
which the credential maps are being made.

undeployCredentialMappings

public void undeployCredentialMappings(Resource resource) throws
ResourceRemovalException;

The undeployCredentialMappings method undeploys credential maps (that is,
deletes a credential mapping on behalf of an undeployed Resource Adapter from a
database). The resource parameter represents the WebLogic resource for which
the mapping should be removed.

11-5

Chapter 11
How to Develop a Custom Credential Mapping Provider

Note:

The deployCredentialMapping/undeployCredentialMappings methods operate
on username/password credentials only.

See Java API Reference for Oracle WebLogic Server.

11.4.1.3 Implement the CredentialMapperV2 SSPI

The CredentialMapperV2 interface defines the security service provider interface (SSPI)
for objects capable of obtaining the appropriate set of credentials for a particular
resource that is scoped within an application.

Only the following credential types are supported and passed to the
CredentialMapperV2 interface:

- PASSWORD_TYPE
- PKI_KEY_PAIR_TYPE

« PKI_TRUSTED_CERTIFICATE_TYPE
- SAML_ASSERTION_B64 TYPE

- SAML_ASSERTION_DOM_TYPE

- SAML_ASSERTION_TYPE

- SAML2_ASSERTION_DOM_TYPE

- SAML2_ASSERTION_TYPE

- USER_PASSWORD_TYPE

To implement the CredentialMapperV2 SSPI, you must provide implementations for the
following methods:

e getCredential

public Object getCredential (Subject requestor, String initiator, Resource
resource, ContextHandler handler, String credType);

The getCredential method returns the credential of the specified type from the
target resource associated with the specified initiator.

e getCredentials

public Object[] getCredentials(Subject requestor, Subject initiator, Resource
resource, ContextHandler handler, String credType);

The getCredentials method returns the credentials of the specified type from the
target resource associated with the specified initiator.

See Java API Reference for Oracle WebLogic Server.

11.4.2 Provide a Mechanism for Credential Map Management

ORACLE

While configuring a custom credential mapping provider via the WebLogic Server
Administration Console makes it accessible by applications requiring credential
mapping services, you also need to supply administrators with a way to manage this
security provider's associated credential maps. The WebLogic Credential Mapping

11-6

Chapter 11
How to Develop a Custom Credential Mapping Provider

provider, for example, supplies administrators with a credential mappings page that
allows them to add, modify, or remove credential mappings for various Connector
modules.

Neither the credential mapping page nor access to it is available to administrators
when you develop a custom credential mapping provider. Therefore, you must provide
your own mechanism for credential map management. This mechanism must read and
write credential maps to and from the custom credential mapping provider's database.

You can accomplish this task in one of two ways:

e Option 1: Develop a Stand-Alone Tool for Credential Map Management

e Option 2: Integrate an Existing Credential Map Management Tool into the
Administration Console

11.4.2.1 Option 1: Develop a Stand-Alone Tool for Credential Map
Management

You would typically select this option if you want to develop a tool that is entirely
separate from the WebLogic Server Administration Console.

For this option, you do not need to write any console extensions for your custom
credential mapping provider, nor do you need to develop any management MBeans.
However, your tool needs to:

1. Determine the WebLogic resource's ID, since it is not automatically provided to
you by the console extension. See WebLogic Resource ldentifiers.

2. Determine how to represent the represent the local-to-remote user relationship.
(This representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom credential mapping
provider's database.

11.4.2.2 Option 2: Integrate an Existing Credential Map Management Tool into
the Administration Console

You would typically select this option if you have a tool that is separate from the
WebLogic Server Administration Console, but you want to launch that tool from the
WebLogic Server Administration Console.

For this option, your tool needs to:

1. Determine the WebLogic resource's ID. See WebLogic Resource Identifiers.

2. Determine how to represent the represent the local-to-remote user relationship.
(This representation is entirely up to you and need not be a string.)

3. Read and write the expressions from and to the custom credential mapping
provider's database.

4. Link into the WebLogic Server Administration Console using basic console
extension techniques.

ORACLE 11-7

Chapter 11

How to Develop a Custom Credential Mapping Provider

ORACLE" 11-8

Auditing Events From Custom Security
Providers

This chapter describes the background information you need to understand before
adding auditing capability to your custom security providers, and provides step-by-step
instructions for adding auditing capability to a custom security provider.

As described in Auditing Providers auditing is the process whereby information about
operating requests and the outcome of those requests are collected, stored, and
distributed for the purposes of non-repudiation. Auditing providers provide this
electronic trail of computer activity.

Each type of security provider can call the configured Auditing providers with a request
to write out information about security-related events, before or after these events take
place. For example, if a user attempts to access a withdraw method in a bank account
application (to which they should not have access), the authorization provider can
request that this operation be recorded. Security-related events are only recorded
when they meet or exceed the severity level specified in the configuration of the
Auditing providers.

This chapter includes the following sections:

e Security Services and the Auditor Service

e How to Audit From a Custom Security Provider

12.1 Security Services and the Auditor Service

ORACLE

The SecurityServices interface, located in the weblogic.security.spi package, is a
repository for security services (currently just the Auditor Service). As such, the
SecurityServices interface is responsible for supplying callers with a reference to the
Auditor Service via the following method:

e getAuditorService

public AuditorService getAuditorService

The getAuditorService method returns the AuditService if an Auditing provider is
configured.

The AuditorService interface, also located in the weblogic.security.spi package,
provides other types of security providers (for example, authentication providers) with
limited (write-only) auditing capabilities. In other words, the Auditor Service fans out
invocations of each configured Auditing provider's writeEvent method, which simply
writes an audit record based on the information specified in the AuditEvent object that
is passed in.

See Implement the AuditChannel SSPland Create an Audit Event. The AuditorService
interface includes the following method:

e providerAuditWriteEvent

public void providerAuditWriteEvent (AuditEvent event)

12-1

Chapter 12
How to Audit From a Custom Security Provider

The providerAuditWriteEvent method gives security providers write access to the
object in the WebLogic Security Framework that calls the configured Auditing
providers. The event parameter is an AuditEvent object that contains the audit
criteria, including the type of event to audit and the audit severity level. See Create
an Audit Event and Audit Severity respectively.

The Auditor Service can be called to write audit events before or after those events
have taken place, but does not maintain context in between pre and post operations.
Security providers designed with auditing capabilities will need to obtain the Auditor
Service as described in Obtain and Use the Auditor Service to Write Audit Events.

¢ Note:

Implementations for both the SecurityServices and AuditorService interfaces
are created by the WebLogic Security Framework at boot time if an Auditing
provider is configured. (See Configure the Custom Auditing Provider Using the
Administration Console.) Therefore, you do not need to provide your own
implementations of these interfaces.

Additionally, SecurityServices objects are specific to the security realm in
which your security providers are configured. Your custom security provider's
runtime class automatically obtains a reference to the realm-specific
SecurityServices object as part of its initialize method. (See Understand the
Purpose of the Provider SSPIs.)

See Java API Reference for Oracle WebLogic Server for the SecurityServices
interface and the AuditorService interface.

12.2 How to Audit From a Custom Security Provider

Add auditing capability to your custom security provider by following these steps:

e Create an Audit Event
e Obtain and Use the Auditor Service to Write Audit Events

Examples for each of these steps are provided in Example: Implementation of the
AuditRoleEvent Interface and Example: Obtaining and Using the Auditor Service to
Write Role Audit Events , respectively.

Note:

If your custom security provider is to record audit events, be sure to include
any classes created as a result of these steps into the MBean JAR File (MJF)
for the custom security provider (that is, in addition to the other files that are
required).

12.2.1 Create an Audit Event

Security providers must provide information about the events they want audited, such
as the type of event (for example, an authentication event) and the audit severity (for

ORACLE 12-2

Chapter 12
How to Audit From a Custom Security Provider

example, error). Audit Events contain this information, and can also contain any other
contextual data that is understandable to a configured Auditing provider. To create an
Audit Event, either:

Implement the AuditEvent SSPI or

Implement an Audit Event Convenience Interface

12.2.1.1 Implement the AuditEvent SSPI

To implement the AuditEvent SSPI, provide implementations for the following methods:

getEventType

public java.lang.String getEventType()

The getEventType method returns a string representation of the event type that is to
be audited, which is used by the Audit Channel (that is, the runtime class that
implements the AuditChannel SSPI). For example, the event type for the Oracle-

provided implementation is Authentication Audit Event. See Audit Channels and
Implement the AuditChannel SSPI.

getFailureException

public java.lang.Exception getFailureException()

The getFailureException method returns an Exception object, which is used by the
Audit Channel to obtain audit information, in addition to the information provided
by the tostring method.

getSeverity

public AuditSeverity getSeverity()
The getSeverity method returns the severity level value associated with the event
type that is to be audited, which is used by the Audit Channel. This allows the

Audit Channel to make the decision about whether or not to audit. See Audit
Severity.

toString
public java.lang.String toString()

The toString method returns preformatted audit information to the Audit Channel.

Note:

The toString method can produce any character and no escaping is used. If
your Audit provider is writing the toString value into a format that uses
characters for syntax, escape the toString value before writing it.

See Java API Reference for Oracle WebLogic Server.

12.2.1.2 Implement an Audit Event Convenience Interface

There are several subinterfaces of the AuditEvent SSPI that are provided for your
convenience, and that can assist you in structuring and creating Audit Events.

ORACLE

12-3

Chapter 12
How to Audit From a Custom Security Provider

Each of these Audit Event convenience interfaces can be used by an Audit Channel
(that is, a runtime class that implements the AuditChannel SSPI) to more effectively
determine the instance types of extended event type objects, for a certain type of
security provider. For example, the AuditAtnEventV2 convenience interface can be used
by an Audit Channel that wants to determine the instance types of extended
authentication event type objects. (See Audit Channels and Implement the
AuditChannel SSPI.)

The Audit Event convenience interfaces are:

¢ The AuditAtnEventV2 Interface

e The AuditAtzEvent and AuditPolicyEvent Interfaces
e The AuditMgmtEvent Interface

e The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

Note:

It is recommended, but not required, that you implement one of the Audit
Event convenience interfaces.

12.2.1.2.1 The AuditAtnEventV2 Interface

ORACLE

The AuditAtnEventV2 convenience interface helps Audit Channels to determine
instance types of extended authentication event type objects.

Note:

The AuditAtnEvent interface is deprecated in this release of WebLogic Server.

To implement the AuditAtnEventV2 interface, provide implementations for the methods
described in Implement the AuditEvent SSPI and the following methods:

e getUsername

public String getUsername()

The getUsername method returns the username associated with the authentication
event.

* getAtnEventType
public AuditAtnEventV2._AtnEventTypeV2 getAtnEventType()

The getAtnEventType method returns an event type that more specifically
represents the authentication event. The specific authentication event types are:

AUTHENTICATE: simple authentication using a username and password occurred.
ASSERTIDENTITY: perimeter authentication based on tokens occurred.
CREATEDERIVEDKEY: represents the creation of the Derived key.
CREATEPASSWORDDIGEST: represents the creation of the Password Digest.

12-4

Chapter 12
How to Audit From a Custom Security Provider

IMPERSONATEIDENTITY: client identity has been established using the supplied client
username (requires kernel identity).

USERLOCKED: a user account has been locked because of invalid login attempts.
USERUNLOCKED: a lock on a user account has been cleared.
USERLOCKOUTEXPIRED: a lock on a user account has expired.

VALIDATEIDENTITY: authenticity (trust) of the principals within the supplied subject
has been validated.

toString

public String toString()

The toString method returns the specific authentication information to audit,
represented as a string.

Note:

The toString method can produce any character and no escaping is used. If
your Audit provider is writing the toString value into a format that uses
characters for syntax, escape the toString value before writing it.

The AuditAtnEventV2 convenience interface extends both the AuditEvent and
AuditContext interfaces. For more information about the AuditContext
interface, see Audit Context.

See Java API Reference for Oracle WebLogic Server.

12.2.1.2.2 The AuditAtzEvent and AuditPolicyEvent Interfaces

The AuditAtzEvent and AuditPolicyEvent convenience interfaces help Audit Channels
to determine instance types of extended authorization event type objects.

ORACLE

Note:

The difference between the AuditAtzEvent convenience interface and the
AuditPolicyEvent convenience interface is that the latter only extends the
AuditEvent interface. (It does not also extend the AuditContext interface.) See
Audit Context.

To implement the AuditAtzEvent or AuditPolicyEvent interface, provide
implementations for the methods described in Implement the AuditEvent SSPI and the
following methods:

getSubject
public Subject getSubject()

The getSubject method returns the subject associated with the authorization event
(that is, the subject attempting to access the WebLogic resource).

getResource

12-5

Chapter 12
How to Audit From a Custom Security Provider

public Resource getResource()

The getResource method returns the WebLogic resource associated with the
authorization event that the subject is attempting to access.

See Java API Reference for Oracle WebLogic Server for the AuditAtzEvent interface
or the AuditPolicyEvent interface.

12.2.1.2.3 The AuditMgmtEvent Interface

The AuditMgmtEvent convenience interface helps Audit Channels to determine instance
types of extended security management event type objects, such as a security
provider's MBean. It contains no methods that you must implement, but maintains the
best practice structure for an Audit Event implementation.

Note:

See Security Service Provider Interface (SSPI) MBeans.

See Java API Reference for Oracle WebLogic Server.

12.2.1.2.4 The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

The AuditRoleDeploymentEvent and AuditRoleEvent convenience interfaces help Audit
Channels to determine instance types of extended role mapping event type objects.
They contain no methods that you must implement, but maintain the best practice
structure for an Audit Event implementation.

Note:

The difference between the AuditRoleEvent convenience interface and the
AuditRoleDeploymentEvent convenience interface is that the latter only extends
the AuditEvent interface. (It does not also extend the AuditContext interface.)
See Audit Context.

See Java API Reference for Oracle WebLogic Server for the AuditRoleEvent interface
or the AuditRoleDeploymentEvent interface.

12.2.1.3 Audit Severity

The audit severity is the level at which a security provider wants audit events to be
recorded. When the configured Auditing providers receive a request to audit, each will
examine the severity level of events taking place. If the severity level of an event is
greater than or equal to the level an Auditing provider was configured with, that
Auditing provider will record the audit data.

ORACLE 12-6

Chapter 12
How to Audit From a Custom Security Provider

Note:

Auditing providers are configured using the WebLogic Server Administration
Console. See Configure the Custom Auditing Provider Using the
Administration Console.

The AuditSeverity class, which is part of the weblogic.security.spi package, provides
audit severity levels as both numeric and text values to the Audit Channel (that is, the
AuditChannel SSPI implementation) through the AuditEvent object. The numeric
severity value is to be used in logic, and the text severity value is to be used in the
composition of the audit record output. See Implement the AuditChannel SSPI and
Create an Audit Eventrespectively.

12.2.1.4 Audit Context

Some of the Audit Event convenience interfaces extend the AuditContext interface to
indicate that an implementation will also contain contextual information. This
contextual information can then be used by Audit Channels. See Audit Channels and
Implement the AuditChannel SSPI.

The AuditContext interface includes the following method:
e getContext

public ContextHandler getContext()

The getContext method returns a ContextHandler object, which is used by the
runtime class (that is, the AuditChannel SSPI implementation) to obtain additional
audit information. See ContextHandlers and WebLogic Resources.

12.2.1.5 Example: Implementation of the AuditRoleEvent Interface

ORACLE

Example 12-1 shows the MyAuditRoleEventlmpl.java class, which is a sample
implementation of an Audit Event convenience interface (in this case, the
AuditRoleEvent convenience interface). This class includes implementations for:

e The four methods inherited from the AuditEvent SSPI: getEventType,
getFai lureException, getSeverity and toString (as described in Implement the
AuditEvent SSPI).

¢ One additional method: getContext, which returns additional contextual information
via the ContextHandler. (See ContextHandlers and WebLogic Resources.)

¢ Note:

The bold face code in Example 12-1 highlights the class declaration and the
method signatures.

Example 12-1 MyAuditRoleEventimpl.java
package mypackage;

import javax.security.auth.Subject;
import weblogic.security.SubjectUtils;

12-7

Chapter 12
How to Audit From a Custom Security Provider

import weblogic.security.service.ContextHandler;

import weblogic.security.spi.AuditRoleEvent;

import weblogic.security.spi.AuditSeverity;

import weblogic.security.spi.Resource;

[*package*/ class MyAudit Rol eEvent | npl inplenments AuditRol eEvent

{

private Subject subject;

private Resource resource;

private ContextHandler context;

private String details;

private Exception failureException;

/ *package*/ MyAudit Rol eEvent | npl (Subj ect subject, Resource resource
Cont ext Handl er context, String details, Exception
failureException) {

this.subject = subject;

this.resource = resource;

this.context = context;

this.details = details;
this.failureException = failureException;

}

public Exception getFailureException()

{
return failureException;

}

public AuditSeverity getSeverity()

{
return (failureException == null) ? AuditSeverity.SUCCESS :

AuditSeverity.FAILURE;

public String getEvent Type()

{
return "MyAuditRoleEventType";

publi ¢ ContextHandl er getContext()

{
return context;

}

public String toString()

{

StringBuffer buf = new StringBuffer();

buf.append("EventType:" + getEventType() + "\n");

buf.append(‘"\tSeverity: " +
getSeverity().getSeverityString());

buf.append(*\tSubject: " +
SubjectUtils.displaySubject(getSubject());

buf.append(‘*"\tResource: " + resource.toString());

buf.append(*"\tDetails: " + details);

if (getFailureException() = null) {
buf.append(*"\n\tFailureException:" +

getFailureException());
}
return buf.toString();
}
}

12.2.2 Obtain and Use the Auditor Service to Write Audit Events

To obtain and use the Auditor Service to write audit events from a custom security
provider, follow these steps:

ORACLE 12-8

Chapter 12
How to Audit From a Custom Security Provider

1. Use the getAuditorService method to return the Audit Service.

Note:

Recall that a SecurityServices object is passed into a security provider's
implementation of a Provider SSPI as part of the initialize method. (For more
information, see Understand the Purpose of the Provider SSPIs.) An
AuditorService object will only be returned if an Auditing provider has been
configured.

2. Instantiate the Audit Event you created in Implement the AuditEvent SSPI and
send it to the Auditor Service through the AuditService.providerAuditWriteEvent
method.

12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role Audit

Events

Example 12-2 illustrates how a custom role mapping provider's runtime class (called
MyRoleMapperProviderImpl . java) would obtain the Auditor Service and use it to write out
audit events.

Note:

The MyRoleMapperProviderlImpl . java class relies on the
MyAuditRoleEventImpl.java class from Example 12-1.

Example 12-2 MyRoleMapperProviderimpl.java

package mypackage;
import javax.security.auth.Subject;

import
import
import
import
import
import
import
import

weblogic.
weblogic.
weblogic.
weblogic.
weblogic.
weblogic.
weblogic.
weblogic.

management.security.ProviderMBean;
security._SubjectUtils;
security.service.ContextHandler;
security.spi.AuditorService;
security.spi.-RoleMapper;
security._spi-RoleProvider;
security.spi.-Resource;
security.spi.SecurityServices;

public final class MyRoleMapperProviderimpl implements RoleProvider, RoleMapper

{

private AuditorService auditor;
public void initialize(ProviderMBean mbean, SecurityServices

{

}

services)

auditor =

servi ces. get Audi t or Servi ce()

public Map getRoles(Subject subject, Resource resource,
ContextHandler handler)

{

ORACLE

if (auditor != null)

12-9

Chapter 12
How to Audit From a Custom Security Provider

audi tor. provi der Audi t Wi t eEvent (
new MyRol eEvent | npl (subj ect, resource, context,
"why logging this event",
null); // no exception occurred

}
}

12.2.2.2 Auditing Management Operations from a Provider's MBean

ORACLE

A SecurityServices object is passed into a security provider's implementation of a
"Provider" SSPI as part of the initialize method. (See Understand the Purpose of the
Provider SSPIs.) The provider can use this object's auditor to audit provider-specific
security events, such as when a user is successfully logged in.

A security provider's MBean implementation is not passed a SecurityServices object.
However, the provider may need to audit its MBean operations, such as a user being
created.

To work around this, the provider's runtime implementation can cache the
SecurityServices object and use a provider-specific mechanism to pass it to the
provider's MBean implementation. This allows the provider to audit its MBean
operations.

The Manageable Sample Authentication Provider shows one way to accomplish this
task. The sample provider contains three major implementation classes:

* ManageableSampleAuthenticationProviderImpl contains its security runtime
implementation.

* ManageableSampleAuthenticatorimpl contains its MBean implementation.

» UserGroupDatabase is a helper class used by
ManageableSampleAuthenticationProvidermpl and
ManageableSampleAuthenticatorimpl.

The code flow to cache and obtain the SecurityServices object is as follows:

1. The ManageableSampleAuthenticationProviderimpl's initialize method is
passed a SecurityServices object.

2. The initialize method creates a UserGroupDataBase object and passes it the
SecurityServices object.

3. The UserGroupDataBaseObject caches the SecurityServices object. The
initialize method also puts the UserGroupDatabase object into a hash table
using the realm's name as the lookup key.

4. The ManageableSampleAuhenticatorimpl's init method finds its realm name from
its MBean.

5. The init method uses the realm name to find the corresponding
UserGroupDataBase object from the hash table.

6. The init method then retrieves the SecurityServices object from the
UserGroupDatabase object, and uses its auditor to audit management operations
such as "createUser."

12-10

Chapter 12
How to Audit From a Custom Security Provider

Note:

A provider's runtime implementation is initialized only if the provider is part of
the default realm when the server is booted. Therefore, if the provider is not in
the default realm when the server is booted, its runtime implementation is
never initialized, and the provider's MBean implementation cannot gain access
to the SecurityServices object. That is, if the provider is not in the default realm
when the server is booted, the provider cannot audit its MBean operations.

12.2.2.3 Example: Auditing Management Operations from a Provider's MBean

Example 12-3 illustrates how the ManageableSampleAuhenticatorimpl's init method
finds its realm name from its MBean, how it uses the realm name to find the
corresponding UserGroupDataBase object from the hash table (via the UserGroupDatabase
helper class), and how it then retrieves the SecurityServices object from the
UserGroupDatabase object.

Example 12-3 also shows how ManageableSampleAuhenticatorImpl uses its auditor to
audit management operations such as "createUser."

Example 12-3 ManageableSampleAuthenticatorimpl.java

package examples.security.providers.authentication.manageable;

import java.util.Enumeration;

import javax.management.MBeanException;

import javax.management.modelmbean.ModelMBean;

import weblogic.management.security.authentication.Authenticatorimpl;
import weblogic.management.utils.AlreadyExistsException;

import weblogic.management.utils. InvalidCursorException;

import weblogic.management.utils.NotFoundException;

import weblogic.security.spi.AuditorService;

import weblogic.security.spi.SecurityServices;

public class ManageableSampleAuthenticatorimpl extends Authenticatorimpl

{

// Manages the user and group definitions for this provider:
private UserGroupDatabase database;

// Manages active queries (see listUsers, listGroups, listMemberGroups):
private ListManager listManager = new ListManager();

// The name of the realm containing this provider:
private String realm;

// The name of this provider:
private String provider;

// The auditor for auditing user/group management operations.
// This is only available if this provider was configured in
// the default realm when the server was booted.

private AuditorService auditor;

public ManageableSampleAuthenticatorimpl(ModelMBean base) throws MBeanException

{

super(base);

ORACLE 12-11

Chapter 12
How to Audit From a Custom Security Provider

private synchronized void init() throws MBeanException

{

if (database == null) {

try {

ManageableSampleAuthenticatorMBean myMBean = (ManageableSampleAuthenticatorMBean)getProxy();
database = UserGroupDatabase.getDatabase(myMBean);

realm = myMBean.getRealm() .getName();

provider = myMBean.getName();

SecurityServices services = database.getSecurityServices();

auditor = (services 1= null) ? services.getAuditorService() : null;
}

catch(Exception e) {

throw new MBeanException(e, "SampleAuthenticatorimpl.init failed");
}

}

}

public void createUser(String user, String password, String description)
throws MBeanException, AlreadyExistsException

{

initQ;

String details = (auditor = null) ?

"createUser(user = " + user + ", password = " + password + ",
description = " + description + ")" : null;

try {

// we don"t support descriptions so just ignore it
database.checkDoesntExist(user);
database.getUser(user) .create(password);
database.updatePersistentState();
auditOperationSucceeded(details);

catch (AlreadyExistsException) { auditOperationFailed(details, e); throw e; }
catch (lllegalArgumentException e) { auditOperationFailed(details, e); throw e; }

}

private void auditOperationSucceeded(String details)

{
if (auditor = null) {

auditor.providerAuditWriteEvent(

new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, null)
);

}

}

private void auditOperationFailed(String details, Exception failureException)
{
if (auditor = null) {

auditor.providerAuditWriteEvent(
new ManageableSampleAuthenticatorManagementEvent(realm, provider, details, failureException)

);
}
}
}

12.2.3 Best Practice: Posting Audit Events from a Provider's MBean

Provider's management operations that do writes (for example, create user, delete
user, remove data) should post audit events, regardless of whether or not the
operation succeeds.

ORACLE 12-12

ORACLE

Chapter 12
How to Audit From a Custom Security Provider

If your provider audits MBean operations, you should keep the following Best Practice
guidelines in mind.

If the write operation succeeds, post an INFORMATION audit event.

If the write operation fails because of a bad parameter (for example, because the
user already exists, or due to a bad import format name, a non-existent file name,
or the wrong file format), do not post an audit event.

If the write operation fails because of an error (for example, LDAPException,
RuntimeException), post a FAILURE audit event.

Import operations can partially succeed. For example, some of the users are
imported, but others are skipped because there are already users with that name
in the provider.

If you can easily detect that the data you are skipping is identical to the data
already in the provider (for example, the username, description, and password are
the same) then consider posting a WARNING event.

If you are skipping data because there is a partial collision (for example, the
username is the same but the password is different), you should post a FAILURE
event.

If it is too difficult to distinguish the import data from the data already stored in the
provider, post a FAILURE event.

12-13

Chapter 12

How to Audit From a Custom Security Provider

ORACLE" 12-14

Servlet Authentication Filters

This chapter describes Servlet Authentication Filter interface concepts and
functionality, and provides step-by-step instructions for developing a Servlet
Authentication Filter.

A Servlet Authentication Filter is a provider type that performs pre- and post-
processing for authentication functions, including identity assertion. A Servlet
Authentication Filter is a special type of security provider that primarily acts as a helper
to an authentication provider.

The ServletAuthenticationFilter interface defines the security service provider
interface (SSPI) for authentication filters that can be plugged in to WebLogic Server.
You implement the ServletAuthenticationFilter interface as part of an authentication
provider, and typically as part of the identity assertion form of authentication provider,
to signal that the authentication provider has authentication filters that it wants the
servlet container to invoke during the authentication process.

This chapter includes the following sections:

» Authentication Filter Concepts

* How Filters Are Invoked

* Example of a Provider that Implements a Filter

* How to Develop a Custom Servlet Authentication Filter

13.1 Authentication Filter Concepts

Filters, as defined by the Java Servlet API 2.3 specification, are preprocessors of the
request before it reaches the servlet, and/or postprocessors of the response leaving

the servlet. Filters provide the ability to encapsulate recurring tasks in reusable units

and can be used to transform the response from a servlet or JSP page.

Servlet Authentication filters are an extension to of the filter object that allows filters to
replace or extend container-based authentication.

13.1.1 Why Filters are Needed

ORACLE

The WebLogic Security Framework allows you to provide a custom authentication
provider. However, due to the nature of the Java Servlet API 2.3 specification, the
interaction between the authentication provider and the client or other servers is
architecturally limited during the authentication process. This restricts authentication
mechanisms to those that are compatible with the authentication mechanisms the
Servlet container offers: basic, form, and certificate.

Filters have fewer architecturally-dependence limitations; that is, they are not
dependent on the authentication mechanisms offered by the Servlet container. By
allowing filters to be invoked prior to the container beginning the authentication
process, a security realm can implement a wider scope of authentication mechanisms.

13-1

Chapter 13
How Filters Are Invoked

For example, a Servlet Authentication Filter could redirect the user to a SAML provider
site for authentication.

JAAS LoginModules (within a WebLogic Authentication provider) can be used for
customization of the login process. Customizing the location of the user database, the
types of proof material required to execute a login, or the population of the Subject
with groups is implemented via a LoginModule.

Conversely, redirecting to a remote site to execute the login, extracting login
information out of the query string, and negotiating a login mechanism with a browser
are implemented via a Servlet Authentication Filter.

13.1.2 Servlet Authentication Filter Design Considerations

You should consider the following design considerations when writing Servlet
Authentication Filters:

* Do you need to allow multiple filters to be specified? You might want to allow this
so that administrative decisions can be made at configuration time.

* Do you depend on a particular order of-execution? Servlet Authentication Filters
must not be dependent on the order in which filters are executed.

» Have you considered allowing each filter to process the request both before and
after authentication? If so, the filter should not make any assumptions about when
it is being invoked.

» Consider allowing each filter to have the option of stopping the execution of the
remaining filters and the Servlet's authentication process by not calling the Filter
doFilter method.

* Do you need to allow a filter to cause the browser to redirect?

* Consider allowing a filter to work for 1-way SSL, 2-way SSL, identity assertion,
form authentication, and basic authentication. For example, Form authentication is
a two-request process and the filter is called twice for form authentication.

13.2 How Filters Are Invoked

ORACLE

The Servlet Authentication Filter interface allows an authentication provider to
implement zero or more Servlet Authentication Filter classes. The filters are invoked
as follows:

1. The servlet container calls the Servlet Authentication Filters prior to authentication
occurring.

The servlet container gets the configured chain of Servlet Authentication Filters
from the WebLogic Security Framework.

The Security Framework returns the Servlet Authentication Filters in the order of
the authentication providers. If one provider has multiple Servlet Authentication
Filters, the Security Framework uses the ordered list of javax.servlet.Filters
returned by the ServletAuthenticationFilter getAuthenticationFilters method.

Duplicate filters are allowed because they might need to execute multiple times to
correctly manipulate the request.

2. For each filter, the servlet container calls the Filter init method to indicate to a
filter that it is being placed into service.

13-2

Chapter 13
How Filters Are Invoked

3. The servlet container calls the Filter doFilter method on the first filter each time a
request/response pair is passed through the chain due to a client request for a
resource at the end of the chain.

The FilterChain object passed in to this method allows the Filter to pass on the
request and response to the next entity in the chain. Filters use the FilterChain
object to invoke the next filter in the chain, or if the calling filter is the last filter in
the chain, to invoke the resource at the end of the chain.

4. If all Servlet Authentication Filters call the Filter doFilter method then, when the
final one calls the doFilter method, the servlet container then performs
authentication as it would if the filters were not present.

However, if any of the Servlet Authentication Filters do not call the doFilter
method, the remaining filters, the servlet, and the servlet container's authentication
procedure are not called. This allows a filter to replace the servlet's authentication
process. This typically involves authentication failure or redirecting to another URL
for authentication.

13.2.1 Do Not Call Servlet Authentication Filters From Authentication

Providers

ORACLE

Although you implement the Servlet Authentication Filter interface as part of an
authentication provider, authentication providers do not actually call Servlet
Authentication Filters directly. The implementation of Servlet Authentication Filters
depends upon particular features of the WebLogic Security Framework that know how
to locate and invoke the filters.

If you develop a custom Servlet Authentication Filter, make sure that your custom
authentication providers do not call the WLS-specific classes (for example,
weblogic.servlet.*) and the Java EE-specific classes (for example, javax.servlet.*).
Following this rule ensures maximum portability with WebLogic Security.

Figure 13-1 illustrates this requirement.

13-3

Chapter 13
Example of a Provider that Implements a Filter

Figure 13-1 Authentication Providers Do Not Call Servlet Authentication Filters

MEEAHN
A
Jr M"ﬂ
’ "
-
’I‘ ‘\-H
- ™
+ -
- -
P ™
F 4 Sk
Standard ATN and AV . Servlet
[4 code /\ Authentication
Filter code
pol
Key
Inditect reference by cdlasshatme as a String ——---a- .
Direct (calls or uses) or indirect reference —
Mot permitted %’

13.3 Example of a Provider that Implements a Filter

WebLogic Server includes a Servlet Authentication Filter that handles the header
manipulation required by the Simple and Protected Negotiate (SPNEGO). This Servlet
Authentication Filter, called the Negotiate Servlet Authentication Filter, is configured to
support the WWW-Authenticate and Authorization HTTP headers.

The Negotiate Servlet Authentication Filter generates the appropriate WWW-
Authenticate header on unauthorized responses for the negotiate protocol and handles
the authorization headers on subsequent requests. The filter is available through the
Negotiate Identity Assertion Provider.

By default, the Negotiate Identity Assertion provider is available, but not configured, in
the WebLogic default security realm. The Negotiate Identity Assertion provider can be
used instead of, or in addition to, the WebLogic Identity Assertion provider.

13.4 How to Develop a Custom Servlet Authentication Filter

You can develop a custom Servlet Authentication Filter by following these steps:

1. Create Runtime Classes Using the Appropriate SSPIs
2. Generate an MBean Type Using the WebLogic MBeanMaker

3. Configure the Authentication Provider Using Administration Console

ORACLE 13-4

Chapter 13
How to Develop a Custom Servlet Authentication Filter

13.4.1 Create Runtime Classes Using the Appropriate SSPIs

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs

» Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your Servlet Authentication Filter by following these steps:

e Implement the AuthenticationProviderV2 SSPI or Implement the
IdentityAsserterV2 SSPI

e Implement the Servlet Authentication Filter SSPI
e Implement the Filter Interface Methods

For an example of how to create a runtime class for a custom Servlet Authentication
Filter provider, see Generate an MBean Type Using the WebLogic MBeanMaker.

13.4.2 Implement the Servlet Authentication Filter SSPI

You implement the ServletAuthenticationFilter interface as part of an authentication
provider to signal that the authentication provider has authentication filters that it wants
the servlet container to invoke during the authentication process.

To implement the Servlet Authentication Filter SSPI, provide an implementation for the
following method:

* get Servlet Authentication Filters

public Filter[] getServletAuthenticationFilters

The getServletAuthenticationFilters method returns an ordered list of the
javax.servlet.Filters that are executed during the authentication process of the
Servlet container. The container may call this method multiple times to get multiple
instances of the Servlet Authentication Filter. On each call, this method should
return a list of new instances of the filters.

13.4.3 Implement the Filter Interface Methods

ORACLE

To implement the Filter interface methods, provide implementations for the following
methods. In typical use, you would call init() once, doFilter() possibly many times,
and destroy() once.

e destroy

public void destroy()

The destroy method is called by the web container to indicate to a filter that it is
being taken out of service. This method is only called once all threads within the
filter's doFilter method have exited, or after a timeout period has passed. After the
web container calls this method, it does not call the doFilter method again on this
instance of the filter.

13-5

Chapter 13
How to Develop a Custom Servlet Authentication Filter

This method gives the filter an opportunity to clean up any resources that are
being held (for example, memory, file handles, threads) and make sure that any
persistent state is synchronized with the filter's current state in memory

e doFilter

public void doFilter(ServletRequest request, ServletResponse response,
FilterChain chain)

The doFilter method of the Filter is called by the container each time a request/
response pair is passed through the chain due to a client request for a resource at
the end of the chain. The FilterChain passed in to this method allows the Filter to
pass on the request and response to the next entity in the chain.

A typical implementation of this method would follow the following pattern:
1. Examine the request.

2. Optionally, wrap the request object with a custom implementation to filter
content or headers for input filtering.

3. Optionally, wrap the response object with a custom implementation to filter
content or headers for output filtering.

4. Either invoke the next entity in the chain using the FilterChain object
(chain.doFilter()), or do not pass on the request/response pair to the next entity
in the filter chain to block the request processing.

5. Directly set headers on the response after invocation of the next entity in the
filter chain.

e init
public void init(FilterConfig filterConfig)

The init method is called by the web container to indicate to a filter that it is being
placed into service. The servlet container calls the init method exactly once after
instantiating the filter. The init method must complete successfully before the filter
is asked to do any filtering work.

13.4.4 Implementing Challenge Identity Assertion from a Filter

ORACLE

As described in Identity Assertion Providers the Challenge Identity Assertion interface
supports challenge response schemes in which multiple challenges, responses
messages, and state are required. The Challenge Identity Asserter interface allows
identity assertion providers to support authentication protocols such as Microsoft's
Windows NT Challenge/Response (NTLM), Simple and Protected GSS-API
Negotiation Mechanism (SPNEGO), and other challenge/response authentication
mechanisms.

Servlet Authentication Filters allow you to implement a challenge/response protocol
without being limited to the authentication mechanisms compatible with the Servlet
container. However, because Servlet Authentication Filters operate outside of the
authentication environment provided by the Security Framework, they cannot depend
on the Security Framework to determine provider context, and require an API to drive
the multiple-challenge identity assertion process.

The weblogic.security.services.Authentication class has been extended to allow
multiple challenge/response identity assertion from a Servlet Authentication Filter. The
methods and interface provide a wrapper for the Chal lengeldentityAsserterV2 and

13-6

Chapter 13
How to Develop a Custom Servlet Authentication Filter

ProviderChal lengeContext SSPI interfaces so that you can invoke them from a Servlet
Authentication Filter.

There is no other documented way to perform a multiple challenge/response dialog
from a Servlet Authentication Filter within the context of the Security Framework. Your
Servlet Authentication Filter cannot directly invoke the ChallengeldentityAsserterV2
and ProviderChal lengeContext interfaces.

Therefore, if you plan to implement multiple challenge/response identity assertion from
a filter, you need to implement the Chal lengeldentityAsserterv2 and

ProviderChal lengeContext interfaces, and then use the
weblogic.security.services.Authentication methods and AppChal lengeContect interface
to invoke them from a Servlet Authentication Filter.

The steps to accomplish this process are described in Identity Assertion Providers and
are summarized here:

* Implement the AuthenticationProviderV2 SSPI or Implement the
IdentityAsserterV2 SSPI

* Implement the ChallengeldentityAsserterV2 Interface
* Implement the ProviderChallengeContext Interface
* Invoke the weblogic.security.services Challenge Identity Methods

* Invoke the weblogic.security.services AppChallengeContext Methods

13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker

When you generate the MBean type for your custom authentication provider as
described in Authentication Providers you must also implement the MBean for your
Servlet Authentication Filter.

The ServletAuthenticationFilter MBean extends the AuthenticationProvider MBean.
The ServletAuthenticationFilter MBean is a marker interface and has no methods.

<?xml version="1.0" ?>
<IDOCTYPE MBeanType SYSTEM "‘commo.dtd">

<MBeanType

Name = "ServletAuthenticationFilter"

Package = "weblogic.management.security.authentication”

Extends = "weblogic.management.security.authentication.AuthenticationProvider"
PersistPolicy = "OnUpdate"

Abstract = "true"

Description = "The SSPI MBean that all Servlet Authentication Filter providers

must extend.
This MBean is just a marker interface. It has no methods on it."
>

</MBeanType>

13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

ORACLE

Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom authentication provider, including
the Servlet Authentication Filter, into an MBean JAR File (MJF).

13-7

Chapter 13
How to Develop a Custom Servlet Authentication Filter

These steps are described in Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF).

13.4.6 Configure the Authentication Provider Using Administration
Console

Configuring a custom authentication provider that implements a Servlet Authentication
Filter means that you are adding the custom authorization provider to your security
realm, where it can be accessed by applications requiring authorization services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

The steps for configuring a custom authorization provider using the WebLogic Server
Administration Console are described under Configuring WebLogic Security Providers
in Administering Security for Oracle WebLogic Server.

ORACLE 13-8

Versionable Application Providers

This chapter describes the background information you need to understand before
adding application versioning capability to your custom security providers, and
provides step-by-step instructions for adding application versioning capability to a
custom security provider.

A versionable application is an application that has an application archive version
specified in the manifest of the application archive (EAR file). Versionable applications
can be deployed side-by-side and active simultaneously. Versionable applications
allow multiple versions of an application, where security constraints can vary between
the application versions.

The versionable application provider SSPI enables all security providers that support
application versioning to be notified when versions are created and deleted. It also
enables all security providers that support application versioning to be notified when
non-versioned applications are removed.

This chapter includes the following sections:

* Versionable Application Concepts
» The Versionable Application Process
* Do You Need to Develop a Custom Versionable Application Provider?

* How to Develop a Custom VersionableApplication Provider

14.1 Versionable Application Concepts

Redeployment of versionable applications is always done via side-by-side versions,
unless the same archive version is specified in the subsequent redeployments.
However, a versionable application has to be written in such a way that multiple
versions of it can be run side-by-side without conflicts; that is, it does not make any
assumption of the uniqueness of the application name, and so forth. For example, in
the case where an applications may use the application name as a unique key for
global data structures, such as database tables or LDAP stores, the applications would
need to change to use the application identifier instead.

Production Redeployment is allowed only if the configured security providers support
the application versioning security SSPI. All authorization, role mapping, and
credential mapping providers for the security realm must support application
versioning for an application to be deployed using versions.

See Developing Applications for Production Redeployment in Developing Applications
for Oracle WebLogic Server for detailed information on how an application assigns an
application version.

14.2 The Versionable Application Process

For a security provider to support application versioning, it must implement the
versionable application SSPI. The WebLogic Security Framework calls the versionable

ORACLE 14-1

Chapter 14
Do You Need to Develop a Custom Versionable Application Provider?

application provider SSPI when an application version is created and deleted so that
the provider can take any required actions to create, copy or removed data associated
with the application version. It is up to the provider to determine the appropriate action
to take, if any.

In addition, the versionable application provider SSPI is also called when a non-
versioned application is deleted so that the provider can perform cleanup actions.

The WebLogic Security Framework passes the versionable application provider the
application identifier for the new version and the application identifier of the version
used as the source of application data. When the source identifier is not supplied, the
initial version of the application is being created.

14.3 Do You Need to Develop a Custom Versionable
Application Provider?

The WebLogic Server out-of-the-box security providers for authorization, role mapping,
and credential mapping support the application versioning SSPI. When a new version
is created, all the customized roles, policies and credential maps are cloned with new
resource identifiers representing the new application version. In addition, when an
application version is deleted, resources associated with the deleted version are
removed.

If you develop a custom security provider for authorization, role mapping, or credential
mapping and need to support versioned applications, you must implement the
versionable application SSPI.

14.4 How to Develop a Custom VersionableApplication

Provider

If you need to support the versionable application SSPI, you can develop a custom
versionable application provider by following these steps:

* Implement your custom authorization, role mapping, or credential mapping
providers. All authorization, role mapping, or credential mapping providers for the
security realm must support application versioning for an application to be
deployed using versions.

e Create Runtime Classes Using the Appropriate SSPIs
* Generate an MBean Type Using the WebLogic MBeanMaker

14.4.1 Create Runtime Classes Using the Appropriate SSPIs

ORACLE

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom versionable application provider by following these
steps:

14-2

Chapter 14
How to Develop a Custom VersionableApplication Provider

* Implement your custom authorization, role mapping, or credential mapping
providers.

* Implement the VersionableApplication SSPI

14.4.1.1 Implement the VersionableApplication SSPI

To implement the VersionableApplication SSPI, provide implementations for the
methods described in Understand the Purpose of the Provider SSPIs and the following
methods:

* createApplicationVersion

void createApplicationVersion(String appldentifier, String sourceAppldentifier)

Marks the creation of a new application version and is called (only on the
Administration Server within a WebLogic Server domain) on one server within a
WebLogic Server domain at the time the version is created. The WebLogic
Security Framework passes the createApplicationVersion method the application
identifier for the new version (appldentifier) and the application identifier of the
version used as the source of application data (sourceAppldentifier). When the
source identifier is not supplied, the initial version of the application is being
created.

e deleteApplication
void deleteApplication(String appName)
Marks the deletion of a non-versioned application and is called (only on the

Administration Server within a WebLogic Server domain) at the time the
application is deleted.

e deleteApplicationVersion
void deleteApplicationVersion(String appldentifier)
Marks the deletion of an application version and is only called (only on the

Administration Server within a WebLogic Server domain) at the time the version is
deleted.

14.4.1.2 Example: Creating the Runtime Class for the Sample
VersionableApplication Provider

ORACLE

Example 14-1 shows how the versionable application SSPI is implemented in the
sample authorization provider.

Example 14-1 SimpleSampleAuthorizationProviderimpl

public final class SimpleSampleAuthorizationProviderimpl
implements DeployableAuthorizationProviderV2, AccessDecision,
VersionableApplicationProvider

public void createApplicationVersion(String appld, String sourceAppld)

{
System.out.printin("SimpleSampleAuthorizationProviderimpl.createApplicationVersion™);
System.out.printin(""\tapplication identifier\t= " + appld);
System.out.printIn(""\tsource app identifier\t= " + ((sourceAppld = null) ?
sourceAppld : "None™));

14-3

Chapter 14
How to Develop a Custom VersionableApplication Provider

// create new policies when existing application is specified
it (sourceAppld != null) {
database.clonePoliciesForApplication(sourceAppld,appld);

}

public void deleteApplicationVersion(String appld)

{
System.out.printin("SimpleSampleAuthorizationProviderimpl.deleteApplicationVersion™);
System.out.printIn("\tapplication identifier\t= " + appld);

// clear out policies for the application
database.removePoliciesForApplication(appld);

}

public void deleteApplication(String appName)

{
System.out.printIn("SimpleSampleAuthorizationProviderimpl.deleteApplication™);
System.out.printin(""\tapplication name\t= " + appName);

// clear out policies for the application
database.removePoliciesForApplication(appName);

}

14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker

When you generate the MBean type for your custom authorization, role mapping, and
credential mapping providers, you must also implement the MBean for your
versionable application provider. The ApplicationVersionerMBean is a marker interface
and has no methods.

Example 14-2 shows how the SimpleSampleAuthorizer MBean Definition File (MDF)
implements the ApplicationVersionerMBean MBean.

Example 14-2 Implementing the ApplicationVersionerMBean

<MBeanType

Name = "SimpleSampleAuthorizer"

DisplayName = "SimpleSampleAuthorizer"

Package = "examples.security.providers.authorization.simple"

Extends = "weblogic.management.security.authorization.DeployableAuthorizer"
Implements = "weblogic.management.security.ApplicationVersioner"

PersistPolicy = "OnUpdate"

14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

ORACLE

Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the runtime classes for the custom authorization, role mapping, or
credential mapping provider, including the versionable application provider, into an
MBean JAR File (MJF).

These steps are described in Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF).

14-4

Chapter 14
How to Develop a Custom VersionableApplication Provider

14.4.3 Configure the Custom Versionable Application Provider Using
the Administration Console

Configuring a custom versionable application provider means that you are adding the
custom versionable application provider to your security realm, where it can be
accessed by applications requiring application version services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

The steps for configuring a custom versionable application provider using the
WebLogic Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

ORACLE 14-5

Chapter 14

How to Develop a Custom VersionableApplication Provider

ORACLE" 14-6

CertPath Providers

This chapter describes the background information you need to understand before
adding certificate lookup and validation capability to your custom security providers,
and provides step-by-step instructions for adding certificate lookup and validation
capability to a custom security provider.

The WebLogic Security service provides a framework that finds and validates X509
certificate chains for inbound 2-way SSL, outbound SSL, application code, and
WebLogic Web services. The Certificate Lookup and Validation (CLV) framework is a
new security plug-in framework that finds and validates certificate chains. The
framework extends and completes the JDK CertPath functionality, and allows you to
create a custom CertPath provider.

This chapter includes the following sections:

* Certificate Lookup and Validation Concepts
* Do You Need to Develop a Custom CertPath Provider?

* How to Develop a Custom CertPath Provider

15.1 Certificate Lookup and Validation Concepts

A CertPath is a JDK class that stores a certificate chain in memory. The term CertPath
is also used to refer to the JDK architecture and framework that is used to locate and
validate certificate chains.

There are two distinct types of providers, CertPath Validators and CertPath Builders:

* The purpose of a certificate validator is to determine if the presented certificate
chain is valid and trusted. As the CertPath Validator provider writer, you decide
how to validate the certificate chain and determine whether you need to use the
trusted CA's.

* The purpose of a certificate builder is to use a selector (which holds the selection
criteria for finding the CertPath) to find a certificate chain. Certificate builders often
to validate the certificate chain as well. As the CertPath Builder provider writer, you
decide which of the four selector types you support and whether you also validate
the certificate chain. You also decide how much of the certificate chain you fill in
and whether you need to use the trusted CA's.

The WebLogic CertPath providers are built using both the JDK and WebLogic
CertPath SPI's.

15.1.1 The Certificate Lookup and Validation Process

The certificate lookup and validation process is shown in Figure 15-1.

ORACLE 15-1

Builders?

ORACLE

Figure 15-1 Certificate Lookup and Validation Process

.
Wehbervice
cliett

cettificate

walidation

Chapter 15
Certificate Lookup and Validation Concepts

L —

T o
=5l

cettificate
walidation

¥

TLE o
IDE
> CextPath

inside a
LA Server

L —

Builder ¥
Validator
APIRFI

Y

Application
Code

N 0

Cine
WLa
Certificate
Walidation
Fram ew otk

Cie

Or
More

Fealm MEBean

Confiz xml &

Bulder = Provider]l MEBean
e.g. ZEMS server UREL

WValidators= Provider2 MBean
e.g. LDAP server host & port

WLE & TOE

CorPath

il [EIE ath

AFLTFL Builder
Provwiderl

WWLE

Semurity

Provider

MEean |2 viz ZEMS

. server

Fantime

ZPI

LS & TDE]

CertPath CertPath

Walidator .

ATTLEDT v al1|:.1at::|r
Providerd

WLS

Senmity

Prowider |z wia CRLs

IfEar. from external

LDAP server
5PI

—

15.1.2 Do You Need to Implement Separate CertPath Validators and

You can implement the CertPath provider in several ways:

You can implement a CertPath Builder that performs both building and validation.
In this case, you are responsible for:

1.
2.
3.

Implementing the Builder SPI.

Implementing the Validator SPI.

You must validate the certificate chain you build as part of the Builder SPI.

Your provider will be called only once; you will not be called a second time
specifically for validation.

to use trusted CA's.

You decide the validation algorithm, which selectors to support, and whether

You can implement a CertPath Validator that performs only validation. In this case,
you are responsible for:

1.
2.

Implementing the Validator SPI.

You decide the validation algorithm and whether to use trusted CA's.

You can implement a CertPath Builder that performs only building. In this case,
you are responsible for:

15-2

Chapter 15
Certificate Lookup and Validation Concepts

1. Implementing the Builder SPI.
2. You decide whether to validate the chain you build.

3. You decide which selectors to support and whether to use trusted CA's.

15.1.3 CertPath Provider SPI MBeans

ORACLE

WebLogic Server includes two CertPath provider SPI MBeans, both of which extend
CertPathProviderMBean:

» CertPathBuilderMBean indicates that the provider can look up certificate chains. It
adds no attributes or methods. CertPathBuilder providers must implement a
custom MBean that extends this MBean.

e CertPathValidatorMBean indicates that the provider can validate a certificate
chain. It adds no attributes or methods. CertPathValidator providers must
implement a custom MBean that extends this MBean.

Your CertPath provider, depending on its type, must extend one or both of the
MBeans. A security provider that supports both building and validating should write an
MBean that extends both of these MBeans, as shown in Example 15-1.

Example 15-1 Sample CertPath MBean MDF

<?xml version="1.0" ?>
<IDOCTYPE MBeanType SYSTEM "commo.dtd">

<MBeanType

Name = "MyCertPathProvider"

DisplayName = "MyCertPathProvider"

Package = "com.acme"

Extends = "weblogic.management.security.pk.CertPathBuilder"
Implements = "weblogic.management.security.pk.CertPathvalidator"
PersistPolicy = "OnUpdate"

>

<MBeanAttribute

Name = "ProviderClassName"

Type = "java.lang.String"

Writeable = "false"

Default = ""com.acme.MyCertPathProviderRuntimelmpl""
/>

<MBeanAttribute

Name = "Description”

Type = "java.lang.String"

Writeable = "false"

Default = ""My CertPath Provider""

/>

<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

Default = ""1.0""

/>

<l-- add custom attributes for the configuration data needed by this provider -->
<MBeanAttribute
Name = "CustomConfigData"

15-3

Chapter 15
Certificate Lookup and Validation Concepts

Type = "java.lang.String"

/>

15.1.4 WebLogic CertPath Validator SSPI

The WebLogic CertPath Validator SSPI has four parts:

An MBean SSPI, described in CertPath Provider SPI MBeans.

The JDK CertPathvalidatorSPl interface, as described inimplement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

The WebLogic Server CertPathProvider SSPI interface, as described in Implement
the CertPath Provider SSPI.

The JDK security provider that registers your CertPathvalidatorSPI
implementation with the JDK, as described in Implement the JDK Security
Provider SPI.

15.1.5 WebLogic CertPath Builder SSP!

The WebLogic CertPath Builder SSPI has four parts:

An MBean SSPI, described in CertPath Provider SPI MBeans.

The JDK CertPathBui lderSPI interface, as described inimplement the JDK
CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

The WebLogic Server CertPathProvider SSPI interface, as described in Implement
the CertPath Provider SSPI.

The JDK security provider that registers your CertPathBuilderSPI with the JDK, as
described in Implement the JDK Security Provider SPI.

15.1.6 Relationship Between the WebLogic Server CertPath SSPI and
the JDK SPI

Unlike other WebLogic Security Framework providers, your implementation of the
CertPath provider relies on a tightly-coupled integration of WebLogic and JDK
interfaces. This integration might best be shown in the tasks you perform to create a
CertPath provider.

ORACLE

If you are writing a CertPath Validator, you must perform the following tasks:

1.

Create a CertPathValidatorMBean that extends CertPathProviderMBean, as
described in Generate an MBean Type Using the WebLogic MBeanMaker.

Implement the JDK java.security.cert.CertPathvalidatorSpi, as described in
Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

Your JDK implementation will be passed a JDK CertPathParameters object that you
can cast to a WebLogic CertPathvalidatorParametersSpi. You can then access its
WebLogic methods to get the trusted CA's and ContextHandler. You can also use
it to access your WebLogic CertPath provider object.

Use the CertPathvalidatorParametersSpi to provide the data you need to validate
the certificate chain, such as Trusted CA's, the ContextHandler, and your CertPath
provider SSPI implementation, which gives access to any custom configuration
data provided by your MBean, as described in Use the

15-4

Chapter 15
Do You Need to Develop a Custom CertPath Provider?

CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi
Implementation .

Your WebLogic CertPath provider is important because your CertPathVal idatorSpi
implementation has no direct way to get the custom configuration data in your
MBean. Your WebLogic CertPath provider can provide a proprietary mechanism to
make your custom MBean data available to your JDK implementation.

Implement the WebLogic CertPath provider SSPI, as described in Implement the
CertPath Provider SSPI. In particular, you use the initialize method of the
CertPath provider SSPI to hook into the MBean and make its custom configuration
data available to your CertPathvalidatorSpi implementation, as shown in

Example 15-2.

Implement a JDK security provider that registers your CertPathValidatorSpi
implementation, as described in Implement the JDK Security Provider SPI. This
coding might not be intuitive, and is called out in Example 15-5.

If you are writing a CertPath Builder, you must perform the following tasks:

1.

Create a CertPathBuilderMBean that extends CertPathProviderMBean, as
described in Generate an MBean Type Using the WebLogic MBeanMaker.

Implement the JDK java.security.cert.CertPathBuilderSpi, as described in
Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces .

Your JDK implementation will be passed a JDK CertPathParameters object that you
can cast to a WebLogic CertPathBui lderParametersSpi. You can then access its
WebLogic methods to get the trusted CA's, selector, and ContextHandler. You can
also use it to access your WebLogic CertPath provider object.

Use the CertPathBui lderParametersSpi to provide the data you need to build the
CertPath, such as Trusted CA's, ContextHandler, the CertPathSelector, and your
CertPath provider SSPI implementation, which gives access to any custom
configuration data provided by your MBean, as described in Use the
CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation .

Your WebLogic CertPath provider is important because your CertPathBuilderSpi
implementation has no direct way to get the custom configuration data in your
MBean. Your WebLogic CertPath provider can provide a proprietary mechanism to
make your custom MBean data available to your JDK implementation.

Implement a WebLogic CertPath provider SSPI, as described in Implement the
CertPath Provider SSPI. In particular, you use the initialize method of the
CertPath provider SSPI to hook into the MBean and make its custom configuration
data available to your CertPathBuilderSpi implementation, as shown in

Example 15-2.

Implement the JDK security provider that registers your CertPathBuilderSpi
implementation, as described in Implement the JDK Security Provider SPI. This
coding might not be intuitive, and is called out in Example 15-5.

15.2 Do You Need to Develop a Custom CertPath Provider?

WebLogic Server includes a CertPath provider and the Certificate Registry.

ORACLE

The WebLogic Server CertPath provider is both a CertPath Builder and a CertPath
Validator. The provider completes certificate paths and validates the certificates using
the trusted CA configured for a particular WebLogic Server instance. It can build only
chains that are self-signed or are issued by a self-signed certificate authority, which

15-5

Chapter 15
How to Develop a Custom CertPath Provider

must be listed in the server's trusted CA's. If a certificate chain cannot be completed, it
is invalid. The provider uses only the EndCertificateSelector selector.

The WebLogic Server CertPath provider also checks the signatures in the chain,
ensures that the chain has not expired, and checks that one of the certificates in the
chain is issued by one of the trusted CAs configured for the server. If any of these
checks fail, the chain is not valid. Finally, the provider checks each certificate's basic
constraints (that is, the ability of the certificate to issue other certificates) to ensure the
certificate is in the proper place in the chain.

The WebLogic Server CertPath provider can be used as a CertPath Builder and a
CertPath Validator in a security realm.

The WebLogic Server Certificate Registry is an out-of-the-box CertPath provider that
allows the administrator to configure a list of trusted end certificates via the WebLogic
Server Administration Console. The Certificate Registry is a builder/validator. The
selection criteria can be EndCertificateSelector, SubjectDNSelector,
IssuerDNSerialNumberSelector, or Subjectkeyldentifier. The certificate chain that is
returned has only the end certificate. When it validates a chain, it makes sure only that
the end certificate is registered; no further checking is done.

You can configure both the CertPath provider and the Certificate Registry. You might
do this to make sure that a certificate chain is valid only if signed by a trusted CA, and
that the end certificate is in the registry.

If the supplied WebLogic Server CertPath providers do not meet your needs, you can
develop a custom CertPath provider.

15.3 How to Develop a Custom CertPath Provider

If the WebLogic CertPath provider or Certificate Registry does not meet your needs,
you can develop a custom CertPath provider by following these steps:

15.3.1 Create Runtime Classes Using the Appropriate SSPIs

ORACLE

Before you start creating runtime classes, you should first:

e Understand the Purpose of the Provider SSPIs

e Understand the SSPI Hierarchy and Determine Whether You Will Create One or
Two Runtime Classes

When you understand this information and have made your design decisions, create
the runtime classes for your custom CertPath provider by completing the steps
described in the following sections:

* Generate an MBean type for your custom authentication provider by completing
the steps described in Generate an MBean Type Using the WebLogic
MBeanMaker.

* Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
* Implement the CertPath Provider SSPI
* Implement the JDK Security Provider SPI

* Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi
Implementation and/or Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation

15-6

Chapter 15
How to Develop a Custom CertPath Provider

15.3.1.1 Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi

Interfaces

The java.security.cert.CertPathBuilderSpi interface is the Service Provider Interface
(SPI) for the CertPathBuilder class. All CertPathBuilder implementations must include a
class that implements this interface (CertPathBui lderSpi).

The java.security.cert.CertPathValidatorSpi interface is the Service Provider
Interface (SPI) for the CertPathvalidator class. All CertPathvalidator implementations
must include a class that implements this interface (CertPathvalidatorSpi).

Example 15-6 shows an example of implementing the CertPathBuilderSpi and
CertPathvalidatorSpi interfaces.

15.3.1.2 Implement the CertPath Provider SSPI

ORACLE

The CertPathProvider SSPI interface exposes the services provided by both the JDK
CertPathvalidator and CertPathBuilder SPIs and allows the provider to be manipulated
(initialized, started, stopped, and so on).

In particular, you use the initialize method of the CertPath provider SSPI to hook
into the MBean and make its custom configuration data available to your
CertPathBuilderSpi or CertPathvalidatorSpi implementation, as shown in

Example 15-2.

A more complete example is available in Example 15-6.

Example 15-2 Code Fragment: Obtaining Custom Configuration Data From
MBean

public class MyCertPathProviderRuntimelmpl implements CertPathProvider

{

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;
description = myMBean.getDescription();
customConfigData = myMBean.getCustomConfigData();

}
// make my config data available to my JDK CertPathBuilderSpi and
// CertPathvalidatorSpi impls
private String getCustomConfigData() { return customConfigData; }
}

static public class MyJDKCertPathBuilder extends CertPathBuilderSpi
{

//get my runtime implementation instance which holds the configuration
//data needed to build and validate the cert path
MyCertPathProviderRuntimelmpl runtime =
(MyCertPathProviderRuntimelmpl)params.getCertPathProvider();

String myCustomConfigData = runtime.getCustomConfigData();

Example 15-5 shows how to register your JDK implementation with the JDK.

15-7

Chapter 15
How to Develop a Custom CertPath Provider

To implement the CertPathProvider SSPI, provide implementations for the methods
described in Understand the Purpose of the Provider SSPIs and the following
methods:

e getCertPathBuilder
public CertPathBuilder getCertPathBuilder()

Gets a CertPath Provider's JDK CertPathBuilder that invokes your JDK
CertPathBuilderSpi implementation, as shown in Example 15-3. A CertPathBuilder
finds, and optionally validates, a certificate chain.

Example 15-3 Code Fragment: getCertPathBuilder

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
// get my JDK cert path impls

try {
certPathBuilder = CertPathBuilder.getinstance(BUILDER_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new AssertionError(*..."); }

e getCertPathValidator

public CertPathValidator getCertPathValidator()

Gets a CertPath Provider's JDK CertPathValidator that invokes your JDK
CertPathvalidatorSpi implementation, as shown in Example 15-4. A
CertPathValidator validates a certificate chain.

Example 15-4 Code Fragment: getCertPathValidator

public void initialize(ProviderMBean mBean, SecurityServices securityServices)
{
// get my JDK cert path impls

try {
certPathvalidator = CertPathValidator.getlnstance(VALIDATOR_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new AssertionError(*..."); }
}

15.3.1.3 Implement the JDK Security Provider SPI

Implement the JDK security provider SPI and use it to register your CertPathBuilderSpi
or CertPathvalidatorSpi implementations with the JDK. Use it to register your JDK
implementation in your provider's initialize method.

Example 15-6 shows an example of creating the runtime class for a sample CertPath
provider. Example 15-5 shows the fragment from that larger example that implements
the JDK security provider.

Example 15-5 Implementing the JDK Security Provider

public class MyCertPathProviderRuntimelmpl implements CertPathProvider

{
private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";

private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME + "CertPathBuilder";
private static final String VALIDATOR_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME + "CertPathValidator";

public void initialize(ProviderMBean mBean, SecurityServices securityServices)

ORACLE 15-8

Chapter 15
How to Develop a Custom CertPath Provider

MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;
description = myMBean.getDescription();
customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.
if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
AccessController._doPrivileged(
new PrivilegedAction() {
public Object run() {
Security.addProvider(new MyJDKSecurityProvider());
return null;

}
}
);
}

// This class implements the JDK security provider that registers

// this provider®s cert path builder and cert path validator implementations
// with the JDK.

private class MyJDKSecurityProvider extends Provider

{
private MyJDKSecurityProvider()

{
super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, "MyCertPathProvider JDK CertPath provider™);

put(“CertPathBuilder." + BUILDER_ALGORITHM,
"com.acme .MyPathProviderRuntime ImpI$MyJDKCertPathBuilder™);
put(“CertPathvalidator.” + VALIDATOR_ALGORITHM,
"com.acme.MyCertPathProviderRuntimelImpl$MyJDKCertPathvalidator');

}
}
}

15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your
CertPathBuilderSpi Implementation

Your JDK implementation will be passed a JDK CertPathParameters object that you can
cast to a WebLogic CertPathBui lderParametersSpi. You can then access its WebLogic
methods to get the trusted CA's, selector, and ContextHandler. You can also use it to
access your WebLogic CertPath provider object. The following methods are provided:

e getCertPathProvider
CertPathProvider getCertPathProvider()
Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and

make its custom configuration data available to your CertPathBui lderSpi
implementation, as shown in Example 15-2.

e getCertPathSelector

CertPathSelector getCertPathSelector()

ORACLE 15-9

Chapter 15
How to Develop a Custom CertPath Provider

Gets the CertPathSelector interface that holds the selection criteria for finding the
CertPath.

WebLogic Server provides a set of classes in weblogic.security.pk that implement
the CertPathSelector interface, one for each supported type of certificate chain
lookup. Therefore, the getCertPathSelector method returns one of the following
derived classes:

EndCertificateSelector — used to find and validate a certificate chain given its end
certificate.

IssuerDNSerialNumberSelector — used to find and validate a certificate chain from its
end certificate's issuer DN and serial number.

SubjectDNSelector — used to find and validate a certificate chain from its end
certificate's subject DN.

SubjectKeyldentifierSelector — used to find and validate a certificate chain from its
end certificate's subject key identifier (an optional field in X509 certificates).

Each selector class has one or more methods to retrieve the selection data and a
constructor.

Your CertPathBuilderSpi implementation decides which selectors it supports. The
CertPathBui lderSpi implementation must use the getCertPathSelector method of
the CertPathBuilderParametersSpi SSPI to get the CertPathSelector that holds the
selection criteria for finding the CertPath. If your CertPathBuilderSpi
implementation supports that type of selector, it then uses the selector to build and
validate the chain. Otherwise, it must throw an
InvalidAlgorithmParameterException, which is propagated back to the caller.

getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for
building and validating the CertPath.

getTrustedCAs()
X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for building the
certificate chain. If your CertPathBui lderSpi implementation needs Trusted CA's to
build the chain, it should use these Trusted CA's.

clone

Object clone()

This interface is not cloneable.

15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your
CertPathValidatorSpi Implementation

ORACLE

Your JDK implementation will be passed a JDK CertPathParameters object that you can
cast to a WebLogic CertPathvalidatorParametersSpi. You can then access its
WebLogic methods to get the trusted CA's and ContextHandler. You can also use it to
access your WebLogic CertPath provider object. The CLV framework ensures that the
certificate chain passed to the validator SPI is in order (starting at the end certificate),
and that each cert has signed the next. The following methods are provided:

15-10

Chapter 15
How to Develop a Custom CertPath Provider

getCertPathProvider

CertPathProvider getCertPathProvider()

Gets the CertPath Provider SSPI interface that exposes the services provided by a
CertPath provider to the WebLogic Security Framework. In particular, you use the
initialize method of the CertPath provider SSPI to hook into the MBean and
make its custom configuration data available to your CertPathvalidatorSpi
implementation, as shown in Example 15-2.

getContext()

ContextHandler getContext()

Gets a ContextHandler that may pass in extra parameters that can be used for
building and validating the CertPath.

SSL performs some built-in validation before it calls one or more CertPathValidator
objects to perform additional validation. A validator can reduce the amount of
validation it must do by discovering what validation has already been done.

For example, the WebLogic CertPath Provider performs the same validation that
SSL does, and there is no need to duplicate that validation when invoked by SSL.
Therefore, SSL puts some information into the context it hands to the validators to
indicate what validation has already occurred. The
weblogic.security.SSL.SSLValidationConstants CHAIN_PREVALIDATED BY SSL field is a
Boolean that indicates whether SSL has pre-validated the certificate chain. Your
application code can test this field, which is set to true if SSL has pre-validated the
certificate chain, and is false otherwise.

getTrustedCAs()
X509Certificate[] getTrustedCAs()

Gets a list of trusted certificate authorities that may be used for validating the
certificate chain. If your CertPathBuilderSpi implementation needs Trusted CA's to
validate the chain, it should use these Trusted CA's.

clone

Object clone()

This interface is not cloneable.

15.3.1.6 Returning the Builder or Validator Results

ORACLE

Your JDK CertPathBuilder or CertPathValidator implementation must return an object
that implements the java.security.cert.CertPathvalidatorResult or
java.security.cert.CertPathvalidatorResult interface.

You can write your own results implementation or you can use the WebLogic Server
convenience routines.

WebLogic Server provides two convenience results-implementation classes,
WLSCertPathBui lderResult and WLSCertPathval idatorResult, both of which are located in
weblogic.security.pk, that you can use to return instances of
jJava.security.cert._CertPathValidatorResult or
java.security.cert.CertPathValidatorResult.

15-11

Chapter 15
How to Develop a Custom CertPath Provider

Note:

The results you return are not passed through the WebLogic Security
framework.

15.3.1.7 Example: Creating the Sample Cert Path Provider

Example 15-6 shows an example CertPath builder/validator provider. The example
includes extensive comments that explain the code flow.

Example 15-1 shows the CertPath MBean that Example 15-6 uses.

Example 15-6 Creating the Sample Cert Path Provider

package com.

acme;

import weblogic.management.security.ProviderMBean;

import weblogic.security.pk.CertPathSelector;

import weblogic.security.pk.SubjectDNSelector;

import weblogic.security.pk.WLSCertPathBuilderResult;
import weblogic.security.pk.WLSCertPathValidatorResult;
import weblogic.security.service.ContextHandler;

import weblogic.security.spi.CertPathBuilderParametersSpi;
import weblogic.security.spi.CertPathProvider;

import weblogic.security.spi.CertPathValidatorParametersSpi;
import weblogic.security.spi.SecurityServices;

import weblogic.security.SSL.SSLValidationConstants;

import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.
import java.

security. InvalidAlgorithmParameterException;
security.NoSuchAlgorithmException;
security.AccessController;
security._PrivilegedAction;
security.Provider;

security.Security;

security.cert._CertPath;
security.cert._CertPathBuilder;

security.cert.
security.cert.
security.cert.
security.cert.
security.cert.
security.cert.
security.cert.
security.cert.
security.cert.

CertPathBuilderResult;
CertPathBuilderSpi;
CertPathBuilderException;
CertPathParameters;
CertPathValidator;
CertPathValidatorResult;
CertPathvalidatorSpi;
CertPathvalidatorException;
X509Certificate;

public class MyCertPathProviderRuntimelmpl implements CertPathProvider

{

private static final String MY_JDK_SECURITY_PROVIDER_NAME = "MyCertPathProvider";

private static final String BUILDER_ALGORITHM = MY_JDK_SECURITY_PROVIDER_NAME + "CertPathBuilder™;

private static final String VALIDATOR ALGORITHM = MY_JDK_SECURITY_PROVIDER NAME +

"CertPathvalidator";

// Used to invoke my JDK cert path builder / validator implementations
private CertPathBuilder

certPathBuilder;

private CertPathvalidator certPathvalidator;

// remember my custom configuration data from my mbean

ORACLE

15-12

Chapter 15
How to Develop a Custom CertPath Provider

private String customConfigData;
private String description;

public void initialize(ProviderMBean mBean, SecurityServices securityServices)

{
MyCertPathProviderMBean myMBean = (MyCertPathProviderMBean)mBean;

description = myMBean.getDescription();
customConfigData = myMBean.getCustomConfigData();

// register my cert path impls with the JDK
// so that the CLV framework may invoke them via
// the JDK cert path apis.
if (Security.getProvider(MY_JDK_SECURITY_PROVIDER_NAME) == null) {
AccessController._doPrivileged(
new PrivilegedAction() {
public Object run() {
Security.addProvider(new MyJDKSecurityProvider());
return null;

}
);
}

// get my JDK cert path impls
try {
certPathBuilder = CertPathBuilder.getinstance(BUILDER_ALGORITHM);
} catch (NoSuchAlgorithmException e) { throw new AssertionError(*"..."); }

try {
certPathvalidator = CertPathValidator.getinstance(VALIDATOR_ALGORITHM);

} catch (NoSuchAlgorithmException e) { throw new AssertionError(*"..."); }

}
public void shutdown O{ }
public String getDescription () { return description; }

public CertPathBuilder getCertPathBuilder () { return certPathBuilder;}
public CertPathValidator getCertPathValidator () { return certPathValidator;}

// make my config data available to my JDK CertPathBuilderSpi and
// CertPathValidatorSpi impls
private String getCustomConfigData() { return customConfigData; }

/**
* This class contains JDK cert path builder implementation for this provider.
*/

static public class MyJDKCertPathBuilder extends CertPathBuilderSpi

public CertPathBuilderResult
engineBuild(CertPathParameters genericParams)
throws CertPathBuilderException, InvalidAlgorithmParameterException

{

// narrow the CertPathParameters to the WLS ones so we can get the
// data needed to build and validate the cert path
if (Y(genericParams instanceof CertPathBuilderParametersSpi)) {
throw new InvalidAlgorithmParameterException(*'The CertPathParameters must be a
weblogic.security.pk.CertPathBuilderParametersSpi instance.");

ORACLE 15-13

Chapter 15
How to Develop a Custom CertPath Provider

}

CertPathBui lderParametersSpi params = (CertPathBuilderParametersSpi)genericParams;

// get my runtime implementation instance which holds the configuration

// data needed to build and validate the cert path

MyCertPathProviderRuntimelmpl runtime =
(MyCertPathProviderRuntimelmpl)params.getCertPathProvider();

String myCustomConfigData = runtime.getCustomConfigData();

// get the selector which indicates which cert path the caller wants built.
// it can be an EndCertificateSelector, SubjectDNSelector,

// 1ssuerDNSerialNumberSelector

// or a SubjectKeyldentifier.

CertPathSelector genericSelector = params.getCertPathSelector();

// decide which kinds of selectors this builder wants to support.
if (genericSelector instanceof SubjectDNSelector) {

// get the subject dn of the end certificate of the cert path the caller
// wants built

SubjectDNSelector selector = (SubjectDNSelector)genericSelector;

String subjectDN = selector.getSubjectDN();

// if your implementation requires trusted CAs, get them.

// otherwise, ignore them. that is, it"s a quality of service
// issue whether or not you require trusted CAs.
X509Certificate[] trustedCAs = params.getTrustedCAs();

// if your implementation requires looks for extra data in
// the context handler, get it. otherwise ignore it.
ContextHandler context = params.getContext();

if (context = null) {

/...

}

// use my custom configuration data (ie. myCustomConfigData),
// the trusted CAs (if applicable to my implementation),

// the context (if applicable to my implementation),

// and the subject DN to build and validate the cert path
CertPath certpath = ...

// or X509Certificate[] chain = ...

// if not found, throw an exception:

if (.. {

throw new CertPathBuilderException(*'Could not build a cert path for " + subjectDN);
}

// if not valid, throw an exception:

if (.. {

throw new CertPathBuilderException(*'Could not validate the cert path for " + subjectDN);
}

// if found and valid, return the cert path.
// for convenience, use the WLSCertPathBuilderResult class

return new WLSCertPathBuilderResult(certpath);
// or return new WLSCertPathBuilderResult(chain);

} else {

ORACLE 15-14

Chapter 15
How to Develop a Custom CertPath Provider

// the caller passed in a selector that my implementation does not support
throw new InvalidAlgorithmParameterException("'MyCertPathProvider only
supports weblogoic.security.pk.SubjectDNSelector™);

}

/**
* This class contains JDK cert path validator implementation for this provider.
*/

static public class MyJDKCertPathValidator extends CertPathValidatorSpi

public CertPathValidatorResult
engineValidate(CertPath certPath, CertPathParameters genericParams)
throws CertPathvalidatorException, InvalidAlgorithmParameterException

{

// narrow the CertPathParameters to the WLS ones so we can get the
// data needed to build and validate the cert path
if (1(genericParams instanceof CertPathValidatorParametersSpi)) {
throw new InvalidAlgorithmParameterException(''The CertPathParameters must be a
weblogic.security.pk.CertPathValidatorParametersSpi instance.");

}

CertPathValidatorParametersSpi params = (CertPathValidatorParametersSpi)genericParams;

// get my runtime implementation instance which holds the configuration

// data needed to build and validate the cert path

MyCertPathProviderRuntimelmpl runtime =
(MyCertPathProviderRuntimelmpl)params.getCertPathProvider();

String myCustomConfigData = runtime.getCustomConfigData();

// if your implementation requires trusted CAs, get them.

// otherwise, ignore them. that is, it"s a quality of service
// issue whether or not you require trusted CAs.
X509Certificate[] trustedCAs = params.getTrustedCAs();

// if your implementation requires looks for extra data in
// the context handler, get it. otherwise ignore it.
ContextHandler context = params.getContext();
if (context != null) {

/...

}

// The CLV framework has already done some minimal validation
// on the cert path before sending it to your provider:

// 1) the cert path is not empty

// 2) the cert path starts with the end cert

// 3) each certificate in the cert path was issued and

// signed by the next certificate in the chain

// So, your validator can rely on these checks having
// already been performed (vs your validator needing to
// do these checks to00).

// Use my custom configuration data (ie. myCustomConfigData),
// the trusted CAs (if applicable to my implementation),

// and the context (if applicable to my implementation)

// to validate the cert path

ORACLE 15-15

Chapter 15
How to Develop a Custom CertPath Provider

// if not valid, throw an exception:

if (.. {
throw new CertPathValidatorException(*'Could not validate the cerpath " + certPath);

// if valid, return success
// For convenience, use the WLSCertPathValidatorResult class

return new WLSCertPathValidatorResult();

}
}

// This class implements the JDK security provider that registers this // provider's
// cert path builder and cert path validator implementations with the JDK.
private class MyJDKSecurityProvider extends Provider

{
private MyJDKSecurityProvider()

{
super(MY_JDK_SECURITY_PROVIDER_NAME, 1.0, “MyCertPathProvider JDK CertPath provider');
put(*CertPathBuilder." + BUILDER_ALGORITHM,
"'com.acme.MyPathProviderRuntimeImpl$MyJDKCertPathBuilder™);
put(“*CertPathvalidator.™ + VALIDATOR_ALGORITHM,
"com.acme .MyCertPathProviderRuntime ImpI$MyJDKCertPathvalidator™);

}
}
}

15.3.2 Configure the Custom CertPath Provider Using the
Administration Console

Configuring a custom CertPath provider means that you are adding the custom
CertPath provider to your security realm, where it can be accessed by applications
requiring CertPath services.

Configuring custom security providers is an administrative task, but it is a task that
may also be performed by developers of custom security providers.

Note:

The steps for configuring a custom CertPath provider using the WebLogic
Server Administration Console are described under Configuring WebLogic
Security Providers in Administering Security for Oracle WebLogic Server.

ORACLE 15-16

MBean Definition File (MDF) Element

Syntax

This appendix describes the elements and attributes that are available for use in a
valid MBean Definition File (MDF). An MBean Definition File (MDF) is an input file to
the WebLogic MBeanMaker utility, which uses the file to create an MBean type for
managing a custom security provider. An MDF must be formatted as a well-formed
and valid XML file that describes a single MBean type.

This appendix includes the following sections:

e The MBeanType (Root) Element

e The MBeanAttribute Subelement

e The MBeanConstructor Subelement
* The MBeanOperation Subelement

e Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A.1 The MBeanType (Root) Element

ORACLE

All MDFs must contain exactly one root element called MBeanType, which has the
following syntax:

<MBeanType Name= string optional_attributes>
subelements
</MBeanType>

The MBeanType element must include a Name attribute, which specifies the internal,
programmatic name of the MBean type. (To specify a name that is visible in a user
interface, use the DisplayName attribute.) Other attributes are optional.

The following is a simplified example of an MBeanType (root) element:

<MBeanType Name="MyMBean" Package="com.mycompany">
<MBeanAttribute Name="MyAttr" Type="java.lang.String" Default="Hello World"/>
</MBeanType>

Attributes specified in the MBeanType (root) element apply to the entire set of MBeans
instantiated from that MBean type. To override attributes for specific MBean instances,
you need to specify attributes in the MBeanAttribute subelement. See The
MBeanAttribute Subelement.

Table A-1 describes the attributes available to the MBeanType (root) element. The JIMX
Specification/Oracle Extension column indicates whether the attribute is an Oracle
extension to the JMX specification or a standard JMX attribute. Note that Oracle
extensions might not function on other Java EE Web servers.

A-1

Appendix A
The MBeanType (Root) Element

Table A-1 MBeanType (Root) Element Attributes

Attribute

JMX Specification
IOracle Extension

Allowed
Values

Description

Abstract

Oracle Extension

true/false

A true value specifies that the
MBean type cannot be instantiated
(like any abstract Java class), though
other MBean types can inherit its
attributes and operations. If you
specify true, you must create other
non-abstract MBean types for
carrying out management tasks. If
you do not specify a value for this
attribute, the assumed value is
false.

Deprecated

Oracle Extension

true/false

Indicates that the MBean type is
deprecated. This information
appears in the generated Java
source, and is also placed in the
ModeIMBeanInfo object for possible
use by a management application. If
you do not specify this attribute, the
assumed value is false.

Description

JMX Specification

String

An arbitrary string associated with
the MBean type that appears in
various locations, such as the
Javadoc for generated classes.
There is no default or assumed
value.

Note: To specify a description that is

visible in a user interface, use the
DisplayName attribute.

DisplayName

JMX Specification

String

The name that a user interface
displays to identify instances of
MBean types. For an instance of
type X, the default DisplayName is
instance of type X. This value is
typically overridden when instances
are created.

Extends

Oracle Extension

Pathname

A fully qualified MBean type name
that this MBean type extends.

Implements

Oracle Extension

Comma-

separated
list

A comma-separated list of fully
qualified MBean type names that this
MBean type implements.

See also Extends.

Name

JMX Specification

String

Mandatory attribute that specifies the
internal, programmatic name of the
MBean type.

ORACLE

A-2

Appendix A
The MBeanAttribute Subelement

Table A-1 (Cont.) MBeanType (Root) Element Attributes

Attribute JMX Specification Allowed Description
IOracle Extension Values

Package Oracle Extension String Specifies the package name of the
MBean type and determines the
location of the class files that the
WebLogic MBeanMaker creates. If
you do not specify this attribute, the
MBean type is placed in the Java
default package.

Note: MBean type names can be the
same as long as the package name
varies.

PersistPolicy JMX Specification /OnUpdate Specifies how persistence will occur:

OnUpdate. The attribute is stored
every time the attribute is updated.

Note: When specified in the
MBeanType element, this value
overrides any setting within an
individual MBeanAttribute
subelement.

A.2 The MBeanAttribute Subelement

ORACLE

You must supply one instance of an MBeanAttribute subelement for each attribute in
your MBean type. The MBeanAttribute subelement must be formatted as follows:

<MBeanAttribute Name=string optional _attributes />

The MBeanAttribute subelement must include a Name attribute, which specifies the
internal, programmatic name of the Java attribute in the MBean type. (To specify a
name that is visible in a user interface, use the DisplayName attribute.) Other
attributes are optional.

The following is a simplified example of an MBeanAttribute subelement within an
MBeanType element:

<MBeanType Name=""MyMBean" Package="'com.mycompany'">
<MBeanAttribute Name= "WhenToCache"
Type="java.lang.String"
LegalValues=""cache-on-reference”, "cache-at-initialization®, "cache-never"™"
Default= "cache-on-reference"
/>
</MBeanType>

Attributes specified in an MBeanAttribute subelement apply to a specific MBean
instance. To set attributes for the entire set of MBeans instantiated from an MBean
type, you need to specify attributes in the MBeanType (root) element. See The
MBeanType (Root) Element.

Table A-2 describes the attributes available to the MBeanAttribute subelement. The
JMX Specification/Oracle Extension column indicates whether the attribute is an

A-3

Appendix A
The MBeanAttribute Subelement

Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

Table A-2 MBeanAttribute Subelement Attributes
]

Attribute

JMX Specification
IOracle Extension

Allowed
Values

Description

Default

JMX Specification

String

The value to be returned if the
MBeanAttribute subelement does
not provide a getter method or a
cached value. The string represents
a Java expression that must
evaluate to an object of a type that is
compatible with the provided data
type for this attribute.

If you do not specify this attribute,
the assumed value is null. If you
use this assumed value, and if you
set the LegalNull attribute to false,
then an exception is thrown by
WebLogic MBeanMaker and
WebLogic Server.

Deprecated

Oracle Extension

true/false

Indicates that the MBean attribute is
deprecated. This information
appears in the generated Java
source, and is also placed in the
Mode IMBeanInfo object for possible
use by a management application. If
you do not specify this attribute, the
assumed value is false.

Description

JMX Specification

String

An arbitrary string associated with
the MBean attribute that appears in
various locations, such as the
Javadoc for generated classes.
There is no default or assumed
value.

Note: To specify a description that is
visible in a user interface, use the
DisplayName attribute.

Dynamic

Oracle Extension

true/false

Changes made to dynamic MBeans
take effect without rebooting the
server. By default, all custom
security provider MBean attributes
are non-dynamic.

Note that in 8.1 and 7.0, all custom
security provider MBean attributes
were dynamic.

Encrypted

Oracle Extension

true/false

A true value indicates that this
MBean attribute will be encrypted
when it is set. If you do not specify
this attribute, the assumed value is
false.

ORACLE

A-4

Appendix A
The MBeanAttribute Subelement

Table A-2 (Cont.) MBeanAttribute Subelement Attributes
|

Attribute

JMX Specification
IOracle Extension

Allowed
Values

Description

InterfaceType

Oracle Extension

String

Classname of an interface to be
used instead of the MBean interface
generated by the WebLogic
MBeanMaker. InterfaceType can
be

° int

 long

o float

e double

e char

* byte

Do not specify if Type is
java.lang.String,
java.lang.String[], or
java.lang.Properties.

Isls

JMX Specification

true/false

Specifies whether a generated Java
interface uses the JMX
is<AttributeName> method to
access the boolean value of the
MBean attribute (as opposed to the
get<AttributeName> method). If you
do not specify this attribute, the
assumed value is false.

LegalNull

Oracle Extension

true/false

Specifies whether null is an
allowable value for the current
MBeanAttribute subelement. If you
do not specify this attribute, the
assumed value is true.

Legalvalues

Oracle Extension

Comma-
separated
list

Specifies a fixed set of allowable
values for the current
MBeanAttribute subelement. If you
do not specify this attribute, the
MBean attribute allows any value of
the type that is specified by the Type
attribute.

Note: The items in the list must be
convertible to the data type that is
specified by the subelement's Type
attribute.

Max

Oracle Extension

Integer

For numeric MBean attribute types
only, provides a numeric value that
represents the inclusive maximum

value for the attribute. If you do not
specify this attribute, the value can
be as large as the data type allows.

ORACLE

A-5

Appendix A
The MBeanConstructor Subelement

Table A-2 (Cont.) MBeanAttribute Subelement Attributes
|

Attribute JMX Specification

IOracle Extension

Allowed
Values

Description

Min Oracle Extension

Integer

For numeric MBean attribute types
only, provides a numeric value which
represents the inclusive minimum
value for the attribute. If you do not
specify this attribute, the value can
be as small as the data type allows.

Name JMX Specification

String

Mandatory attribute that specifies
the internal, programmatic name of
the MBean attribute.

Type JMX Specification

Java class
name

The fully qualified classname of the
data type of this attribute. This
corresponding class must be
available on the classpath. If you do
not specify this attribute, the
assumed value is
java.lang.String. Type can be
e java.lang.Integer

* java.lang.Integer[]

* java.lang.Long

e java.lang.Long[]

* java.lang.Float

* java.lang.Float[]

e java.lang.Double

e java.lang.Double[]

e java.lang.Char

e java.lang.Char[]

* java.lang.Byte

» java.lang.Byte[]

e java.lang.String

e java.lang.String[]

e java.util_.Properties

Writeable JMX Specification

true/false

A true value allows the MBean API
to set an MBeanAttribute's value. If
you do not specify this attribute in
MBeanType or MBeanAttribute, the
assumed value is true.

When specified in the MBeanType
element, this value is considered the
default for individual
MBeanAttribute subelements.

A.3 The MBeanConstructor Subelement

MBeanConstructor subelements are not currently used by the WebLogic MBeanMaker,
but are supported for compliance with the Java Management eXtensions 1.0
specification (http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html)

ORACLE

A-6

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Appendix A
The MBeanOperation Subelement

and upward compatibility. Therefore, attribute details for the MBeanConstructor
subelement (and its associated MBeanConstructorArg subelement) are omitted from this
documentation.

A.4 The MBeanOperation Subelement

You must supply one instance of an MBeanOperation subelement for each operation
(method) that your MBean type supports. The MBeanOperation must be formatted as
follows:

<MBeanOperation Name=string optional_attributes >
<MBeanOperationArg Name=string optional_attributes />
</MBeanOperation>

The MBeanOperation subelement must include a Name attribute, which specifies the
internal, programmatic name of the operation. (To specify a name that is visible in a
user interface, use the DisplayName attribute.) Other attributes are optional.

Within the MBeanOperation element, you must supply one instance of an
MBeanOperationArg subelement for each argument that your operation (method) uses.
The MBeanOperationArg must be formatted as follows:

<MBeanOperationArg Name=string optional_attributes />

The Name attribute must specify the name of the operation. The only optional attribute
for MBeanOperationArg is Type, which provides the Java class name that specifies
behavior for a specific type of Java attribute. If you do not specify this attribute, the
assumed value is java.lang.String.

The following is a simplified example of an MBeanOperation and MBeanOperationArg
subelement within an MBeanType element:

<MBeanType Name=""MyMBean' Package="'com.mycompany"'>
<MBeanOperation
Name= "findParserSelectVMBeanByKey"
ReturnType="XMLParserSelectRegistryEntryMBean"
Description="Given a public ID, system ID, or root element tag, returns the
object name of the corresponding XMLParserSelectRegistryEntryMBean."
>
<MBeanOperationArg Name="publiclD" Type="java.lang.String"/>
<MBeanOperationArg Name="systemID" Type="java.lang.String"/>
<MBeanOperationArg Name="rootTag" Type="java.lang.String"/>
</MBeanOperation>
</MBeanType>

Table A-3 describes the attributes available to the MBeanOperation subelement. The
JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

ORACLE e

ORACLE

Appendix A
The MBeanOperation Subelement

Table A-3 MBeanOperation Subelement Attributes
|

Attribute

JMX Specification
IOracle Extension

Allowed
Values

Description

Deprecated

Oracle Extension

true/false

Indicates that the MBean
operation is deprecated. This
information appears in the
generated Java source, and is
also placed in the ModeIMBeanInfo
object for possible use by a
management application. If you do
not specify this attribute, the
assumed value is false.

Description

JMX Specification

String

An arbitrary string associated with
the MBean operation that appears
in various locations, such as the
Javadoc for generated classes.
There is no default or assumed
value.

Note: To specify a description that

is visible in a user interface, use
the DisplayName attribute.

Name

JMX Specification

String

Mandatory attribute that specifies
the internal, programmatic name
of the MBean operation.

ReturnType

JMX Specification

String

A string containing the fully
qualified classname of the Java
object returned by the operation
being described. ReturnType can
be void or the following:

e int

e int[]

« long

« long[]
« float

* Tfloat[]
e double
e double[]
e char

» char[]
° byte

* byte[]

e java.lang.String
e java.lang.String[]
e java.util.Properties

Table A-4 describes the attributes available to the MBeanOperationArg subelement. The
JMX Specification/Oracle Extension column indicates whether the attribute is an
Oracle extension to the JMX specification. Note that Oracle extensions might not
function on other Java EE Web servers.

A-8

Appendix A
MBean Operation Exceptions

Table A-4 MBeanOperationArg Subelement Attributes

Attribute JMX Specification Allowed Description
IOracle Extension Values

Description JMX Specification String An arbitrary string associated with
the MBean operation argument
that appears in various locations,
such as the Javadoc for generated
classes. There is no default or
assumed value.

Name JMX Specification String Mandatory attribute that specifies
the name of the argument.

Type JMX Specification String The type of the MBean operation
argument. If you do not specify
this attribute, the assumed value is
java.lang.String. Type can be

« int

e int[]

« long

« long[]
« float

o Tfloat[]
* double
e double[]
e char

e char[]
* byte

* byte[]

e java.lang.String
e java.lang.String[]
e java.util.Properties

A.5 MBean Operation Exceptions

ORACLE

Your MBean Definition Files (MDFs) must use only JDK exception types or
weblogic.management._utils exception types. The following is a code fragment from
Example A-1 that shows the use of an MBeanException within an MBeanOperation
subelement:

<MBeanOperation

Name = "registerPredicate”

ReturnType = "void"

Description = "Registers a new predicate with the specified class name."

>

<MBeanOperationArg

Name = "predicateClassName"

Type = "java.lang.String"

Description = "The name of the Java class that implements the predicate.”

/>

<MBeanException>weblogic.management.utils. InvalidPredicateException</MBeanException>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

A-9

Appendix A
Examples: Well-Formed and Valid MBean Definition Files (MDFs)

A.6 Examples: Well-Formed and Valid MBean Definition
Files (MDFs)

ORACLE

Example A-1 and Example A-2 provide examples of MBean Definition Files (MDFs)
that use many of the attributes described in this Appendix. Example A-1 shows the
MDF used to generate an MBean type that manages predicates and reads data about
predicates and their arguments.Example A-2 shows the MDF used to generate the
MBean type for the WebLogic (default) Authorization provider.

Example A-1 PredicateEditor.xml

<?xml version="1.0" ?>
<IDOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType
Name = "PredicateEditor"
Package = "weblogic.security.providers.authorization”
Implements = "weblogic.security.providers.authorization.PredicateReader"
PersistPolicy = "OnUpdate"
Abstract = "false"
Description = "This MBean manages predicates and reads data about predicates and
their arguments.<pé>"”
>
<MBeanOperation
Name = "registerPredicate"
ReturnType = "void"
Description = "Registers a new predicate with the specified class name."
>
<MBeanOperationArg
Name = "predicateClassName"
Type = "java.lang.String"
Description = "The name of the Java class that implements the predicate."
/>
<MBeanException>weblogic.management._utils. Inval idPredicateException</
MBeanException>
<MBeanException>weblogic.management.utils.AlreadyExistsException</MBeanException>
</MBeanOperation>

<MBeanOperation

Name = "unregisterPredicate"

ReturnType = "void"

Description = "Unregisters the currently registered predicate." >

<MBeanOperationArg

Name = "predicateClassName"

Type = "java.lang.String"

Description = "The name of the Java class that implements predicate to be
unregistered."”

/>
<MBeanException>weblogic.management.utils.NotFoundException</MBeanException>
</MBeanOperation>

</MBeanType>

Example A-2 DefaultAuthorizer.xml

<?xml version="1.0" ?>

<IDOCTYPE MBeanType SYSTEM "commo.dtd">
<MBeanType

Name = "DefaultAuthorizer"

A-10

ORACLE

Appendix A
Examples: Well-Formed and Valid MBean Definition Files (MDFs)

DisplayName = "DefaultAuthorizer"

Package = "weblogic.security.providers.authorization"

Extends ="weblogic.management.security.authorization.DeployableAuthorizer"
Implements = "weblogic.management.security.authorization.PolicyEditor,
weblogic.security.providers.authorization.PredicateEditor"
PersistPolicy = "OnUpdate"

Description = "This MBean represents configuration attributes

for the WeblLogic Authorization provider. <p>"

>

<MBeanAttribute

Name = "ProviderClassName"

Type = "java.lang.String"

Writeable = "false"
Default""weblogic.security.providers.authorization.DefaultAuthorizationProviderl
mpl""

Description = "The name of the Java class used to load the WebLogic
Authorization provider."

/>

<MBeanAttribute

Name = "Description”

Type = "java.lang.String"

Writeable = "false"

Default = ""Weblogic Default Authorization Provider"" Description =
"A short description of the WebLogic Authorization provider." />
<MBeanAttribute

Name = "Version"

Type = "java.lang.String"

Writeable = "false"

Default = ""1.0""

Description = "The version of the WebLogic Authorization provider."
/>

</MBeanType>

A-11

Appendix A

Examples: Well-Formed and Valid MBean Definition Files (MDFs)

ORACLE" A-12

Generate an MBean Type Using the
WebLogic MBeanMaker

This appendix explains how to create the MBean type for your custom security
provider.
This appendix includes the following sections:

Overview of Steps

Create an MBean Definition File (MDF)

Use the WebLogic MBeanMaker to Generate the MBean Type

Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Install the MBean Type Into the WebLogic Server Environment

B.1 Overview of Steps

Before you start generating an MBean type for your custom security provider, you
should first:

ORACLE

General Architecture of a Security Provider
Security Services Provider Interfaces (SSPIs)
Security Service Provider Interface (SSPI) MBeans
Security Data Migration

Management Utilities Available to Developers of Security Providers

When you understand this information and have made your design decisions, create
the MBean type for your custom security provider by completing the following steps:

1
2
3.
4

Create an MBean Definition File (MDF)
Use the WebLogic MBeanMaker to Generate the MBean Type
Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

Install the MBean Type Into the WebLogic Server Environment

Note:

Several sample security providers are available to illustrate how to perform
these steps.

All instructions provided in this section assume that you are working in a
Windows environment.

B-1

Appendix B
Create an MBean Definition File (MDF)

B.2 Create an MBean Definition File (MDF)

To create an MBean Definition File (MDF), follow these steps:

ORACLE

1. Copy the MDF for the sample security provider to a text file.

For each of the sample security providers, note the following MDF file names:

Sample Security Provider Type

MDF File Name

Authentication provider

Identity Assertion provider

Authorization provider

Adjudication provider

Role Mapping provider

Auditing provider

Credential Mapping provider

CertPath provider

SimpleSampleAuthenticator.xml

SampleldentityAsserter.xml

SimpleSampleAuthorizer.xml

There is currently no sample adjudication
provider, but you can use the MDF file for the
sample authentication provider,
SimpleSampleAuthenticator.xml.

SimpleSampleRoleMapper.xml

SampleAuditor._xml

There is currently no sample credential mapping
provider, but you can use the MDF file for the
sample authentication provider,
SimpleSampleAuthenticator.xml.

There is currently no sample CertPath provider,
but you can use the MDF file for the sample
authentication provider,
SimpleSampleAuthenticator.xml.

2. Modify the content of the <MBeanType> and <MBeanAttribute> elements in your MDF
so that they are appropriate for your custom security provider.

Note the following:

» If you are creating a custom identity assertion provider, consider the following
fragment to set the Base64DecodingRequired attribute to false:

<MBeanAttribute
Name =
Type = "boolean™
Writeable = "false"
Default = "false"
Description =

/>

"Base64DecodingRequired”

"See MyldentityAsserter-doc.xml._"

e If you are creating a custom CertPath provider, you need to extend or
implement CertPathBuilderMBean or CertPathValidatorMBean.

B-2

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

3. Add any custom attributes and operations (that is, additional <MBeanAttribute> and
<MBeanOperation> elements) to your MDF.

4, Save the file.

Note:

A complete reference of MDF element syntax is available in MBean Definition
File (MDF) Element Syntax.

B.3 Use the WebLogic MBeanMaker to Generate the
MBean Type

Once you create your MDF, you are ready to run it through the WebLogic
MBeanMaker. The WebLogic MBeanMaker is currently a command-line utility that
takes as its input an MDF, and generates a set of intermediate Java files, including the
following:

« An MBean interface
* An MBean implementation
* An associated MBean information file

Together, these intermediate files form the MBean type for your custom security
provider.

The instructions for generating an MBean type differ based on the design of your
custom security provider. Follow the instructions that are appropriate to your situation:

* No Custom Operations
* No Optional SSPI MBeans and No Custom Operations

e Optional SSPI MBeans or Custom Operations

B.3.1 No Custom Operations

ORACLE

This section applies to custom adjudication, role mapping, and auditing providers.

If the MDF for your custom security provider does not include any custom operations,
complete the following steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=Ffilesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

* The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

* xmliFile represents the XML MBean description file (MDF).

B-3

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

» filesdir represents the location where the WeblLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Whenever xni fil e is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

The WebLogic MBeanMaker processes one MDF at a time. Therefore, you
may have to repeat this process if you have multiple MDFs for a given security
provider type (for example, multiple adjudication providers).

3. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

B.3.2 No Optional SSPI MBeans and No Custom Operations

This section applies to the following custom security provider types:

ORACLE

Authentication providers
Identity assertion providers
Authorization providers
Credential mapping providers

CertPath providers

If the MDF for your custom security provider does not implement any optional SSPI
MBeans and does not include any custom operations, complete the following steps:

1. Create a new DOS shell.

2. Type the following command:

java -DMDF=xmlfile -Dfiles=Ffilesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

* The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

e xmliFile represents the XML MBean description file (MDF).

e filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

B-4

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory that
contains multiple MDFs by using the -DMDFDIR <MDF di rect ory nane> option. In
prior versions of WebLogic Server, the WebLogic MBeanMaker processed
only one MDF at a time. Therefore, you had to repeat this process if you had
multiple MDFs for a given security provider type (for example, multiple
authentication providers).

3. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

B.3.3 Optional SSPI MBeans or Custom Operations

This section applies to all custom security provider types.

If the MDF for your custom security provider does implement some optional SSPI
MBeans or does include custom operations, consider the following:

Are you creating an MBean type for the first time? If so, follow these steps:

1.
2.

ORACLE

Create a new DOS shell.

Type the following command:

java -DMDF=xmlfile -Dfiles=Ffilesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

xmliFile represents the XML MBean description file (MDF).

filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory that
contains multiple MDFs by using the -DMDFDIR <MDF di rect ory nanme> option. In
prior versions of WebLogic Server, the WebLogic MBeanMaker processed
only one MDF at a time. Therefore, you had to repeat this process if you had
multiple MDFs for a given security provider type (for example, multiple
authentication providers).

If you implemented optional SSPI MBeans in your MDF, follow these steps:

a.

Locate the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named MBeanNamelmpl . java. For example, for the MDF named

B-5

ORACLE

5.
6.

Appendix B
Use the WebLogic MBeanMaker to Generate the MBean Type

SampleAuthenticator, the MBean implementation file to be edited is named
SampleAuthenticatorlImpl.java.

b. For each optional SSPI MBean that you implemented in your MDF, implement
each method. Be sure to also provide implementations for any methods that
the optional SSPI MBean inherits.

If you included any custom attributes or operations in your MDF, implement the
methods using the method stubs.

Save the file.
Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

Are you updating an existing MBean type? If so, follow these steps:

1.

4.

Copy your existing MBean implementation file to a temporary directory so that
your current method implementations are not overwritten by the WebLogic
MBeanMaker.

Create a new DOS shell.
Type the following command:

java -DMDF=xmlIfile -Dfiles=Ffilesdir -DcreateStubs=true
weblogic.management.commo.WebLogicMBeanMaker

In the preceding command:

* The -DMDF flag indicates that the WebLogic MBeanMaker should translate the
MDF into code.

* xmliFile represents the XML MBean description file (MDF).

» filesdir represents the location where the WebLogic MBeanMaker places the
intermediate files for the MBean type.

Whenever xmlfile is provided, a new set of output files is generated.

Each time you use the -DcreateStubs=true flag, it overwrites any existing MBean
implementation file.

Note:

As of version 9.0 of WebLogic Server, you can also provide a directory that
contains multiple MDF's by using the -DMDFDIR <MDF di rect ory name> option. In
prior versions of WebLogic Server, the WebLogic MBeanMaker processed
only one MDF at a time. Therefore, you had to repeat this process if you had
multiple MDFs for a given security provider type (for example, multiple
authentication providers).

If you implemented optional SSPI MBeans in your MDF, follow these steps:
a. Locate and open the MBean implementation file.

The MBean implementation file generated by the WebLogic MBeanMaker is
named <MBeanName>Impl . java. For example, for the MDF named
SampleAuthenticator, the MBean implementation file to be edited is named
SampleAuthenticatorlImpl.java.

b. Open your existing MBean implementation file (which you saved to a
temporary directory in step 1).

B-6

Appendix B
Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

c. Synchronize the existing MBean implementation file with the MBean
implementation file generated by the WebLogic MBeanMaker.

Accomplishing this task may include, but is not limited to: copying the method
implementations from your existing MBean implementation file into the newly-
generated MBean implementation file (or, alternatively, adding the new
methods from the newly-generated MBean implementation file to your existing
MBean implementation file); and verifying that any changes to method
signatures are reflected in the version of the MBean implementation file that
you are going to use (for methods that exist in both MBean implementation
files).

d. If you modified the MDF to implement optional SSPI MBeans that were not in
the original MDF, implement each method. Be sure to also provide
implementations for any methods that the optional SSPI MBean inherits.

5. If you modified the MDF to include any custom operations that were not in the
original MDF, implement the methods using the method stubs.

6. Save the version of the MBean implementation file that is complete (that is, has all
methods implemented).

7. Copy this MBean implementation file into the directory where the WebLogic
MBeanMaker placed the intermediate files for the MBean type. You specify this as
filesdir in step 3. (You override the MBean implementation file generated by the
WebLogic MBeanMaker as a result of step 3.)

8. Proceed to Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF).

B.3.4 About the Generated MBean Interface File

The MBean interface file is the client-side API to the MBean that your run-time class
or your MBean implementation uses to obtain configuration data. It is typically used in
the initialize method as described in Understand the Purpose of the Provider SSPIs.

Because the WebLogic MBeanMaker generates MBean types from the MDF you
created, the generated MBean interface file has the name of the MDF along with the
text MBean appended to it. For example, the result of running the
SimpleSampleAuthenticator MDF through the WebLogic MBeanMaker yields the
MBean interface file SimpleSampleAuthenticatorMBean. java.

B.4 Use the WebLogic MBeanMaker to Create the MBean
JAR File (MJF)

ORACLE

Once your have run your MDF through the WebLogic MBeanMaker to generate your
intermediate files, and you have edited the MBean implementation file to supply
implementations for the appropriate methods within it, you need to package the
MBean files and the run-time classes for the custom security provider into an MBean
JAR File (MJF). The WebLogic MBeanMaker also automates this process.

To create an MJF for your custom security provider, complete the following steps:

1. Create a new DOS shell.
2. Type the following command:

java -DMIF=jarfile -Dfiles=Ffilesdir
weblogic.management.commo.WebLogicMBeanMaker

B-7

Appendix B
Install the MBean Type Into the WebLogic Server Environment

In the preceding command:

» The -DMJF flag indicates that the WebLogic MBeanMaker should build a JAR
file containing the new MBean types.

e jarfile represents the name for the MJF.

e filesdir represents the location where the WebLogic MBeanMaker looks for the
files to JAR into the MJF.

Compilation occurs at this point, so errors are possible. If jarfile is provided, and no
errors occur, an MJF is created with the specified name.

Note:

When you create a JAR file for a custom security provider, a set of XML
binding classes and a schema are also generated. You can choose a
namespace to associate with that schema. Doing so avoids the possibility that
your custom classes conflict with those provided by Oracle. The default for the
namespace is vendor. You can change this default by passing the -
targetNameSpace argument to the WebLogicMBeanMaker or the associated
WLMBeanMaker ant task.

If you want to update an existing MJF, simply delete the MJF and regenerate
it. The WebLogic MBeanMaker also has a -DIncludeSource option, which
controls whether source files are included into the resulting MJF. Source files
include both the generated source and the MDF itself. The default is false.
This option is ignored when -DMJF is not used.

The resulting MJF can be installed into your WebLogic Server environment, or
distributed to your customers for installation into their WebLogic Server environments.

B.5 Install the MBean Type Into the WebLogic Server
Environment

ORACLE

To install an MBean type into the WebLogic Server environment, copy the MJF into
the WL_HOME\server\lib\mbeantypes directory, where WL_HOME is the top-level
WebLogic Server installation directory. This deploys your custom security provider —
that is, it makes the custom security provider manageable from the WebLogic Server
Administration Console.

B-8

ORACLE

Appendix B
Install the MBean Type Into the WebLogic Server Environment

Note:

WL_HOME\server\lib\mbeantypes is the default directory for installing MBean
types. (Beginning with WebLogic Server 9.0, security providers can be loaded
from .. .\domaindir\lib\mbeantypes as well.) However, if you want WebLogic
Server to look for MBean types in additional directories, use the -
Dweblogic.alternateTypesDirectory=di r command-line flag when starting your
server, where di r is a comma-separated list of directory names. When you
use this flag, WebLogic Server always loads MBean types from WL_HOME\server
\lib\mbeantypes first, then looks in the additional directories and loads all valid
archives present in those directories (regardless of their extension).

For example, if -Dweblogic.alternateTypesDirectory = dirX,dirY, WebLogic
Server first loads MBean types from WL_HOME\server\lib\mbeantypes, then any
valid archives present in dirx and dirY. If you instruct WebLogic Server to look
in additional directories for MBean types and are using the Java Security
Manager, you must also update the weblogic.policy file to grant appropriate
permissions for the MBean type (and thus, the custom security provider). See
Using Java Security to Protect WebLogic Resources in Developing
Applications with the WebLogic Security Service.

You can create instances of the MBean type by configuring your custom security
provider using the WebLogic Server Administration Console, and then use those
MBean instances from a GUI, from other Java code, or from APIs. For example, you
can use the WebLogic Server Administration Console to get and set attributes and
invoke operations, or you can develop other Java objects that instantiate MBeans and
automatically respond to information that the MBeans supply. We recommend that you
back up these MBean instances.

B-9

Appendix B

Install the MBean Type Into the WebLogic Server Environment

ORACLE" B-10

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope
	1.2 Documentation Audience
	1.3 Guide to this Document
	1.4 Related Information
	1.5 New and Changed Features in this Release

	2 Introduction to Developing Security Providers for WebLogic Server
	2.1 Prerequisites for This Guide
	2.2 Overview of the Development Process
	2.2.1 Designing the Custom Security Provider
	2.2.2 Creating Runtime Classes for the Custom Security Provider by Implementing SSPIs
	2.2.3 Generating an MBean Type to Configure and Manage the Custom Security Provider
	2.2.4 Writing Console Extensions
	2.2.5 Configuring the Custom Security Provider
	2.2.6 Providing Management Mechanisms for Security Policies, Security Roles, and Credential Maps

	3 Design Considerations
	3.1 General Architecture of a Security Provider
	3.2 Security Services Provider Interfaces (SSPIs)
	3.2.1 Understand Two Important Restrictions
	3.2.2 Understand the Purpose of the Provider SSPIs
	3.2.3 Understand the Purpose of the Bulk Access Providers
	3.2.4 Determine Which Provider Interface You Will Implement
	3.2.4.1 The DeployableAuthorizationProviderV2 SSPI
	3.2.4.2 The DeployableRoleProviderV2 SSPI
	3.2.4.3 The DeployableCredentialProvider SSPI

	3.2.5 Understand the SSPI Hierarchy and Determine Whether You Will Create One or Two Runtime Classes
	3.2.6 SSPI Quick Reference

	3.3 Security Service Provider Interface (SSPI) MBeans
	3.3.1 Understand Why You Need an MBean Type
	3.3.2 Determine Which SSPI MBeans to Extend and Implement
	3.3.3 Understand the Basic Elements of an MBean Definition File (MDF)
	3.3.3.1 Custom Providers and Classpaths
	3.3.3.2 Throwing Exceptions from MBean Operations
	3.3.3.3 Specifying Non-Clear Text Values for MBean Attributes

	3.3.4 Understand the SSPI MBean Hierarchy and How It Affects the Administration Console
	3.3.5 Understand What the WebLogic MBeanMaker Provides
	3.3.5.1 About the MBean Information File

	3.3.6 SSPI MBean Quick Reference

	3.4 Security Data Migration
	3.4.1 Migration Concepts
	3.4.1.1 Formats
	3.4.1.2 Constraints
	3.4.1.3 Migration Files

	3.4.2 Adding Migration Support to Your Custom Security Providers
	3.4.3 Administration Console Support for Security Data Migration

	3.5 Management Utilities Available to Developers of Security Providers
	3.6 Security Providers and WebLogic Resources
	3.6.1 The Architecture of WebLogic Resources
	3.6.2 Types of WebLogic Resources
	3.6.3 WebLogic Resource Identifiers
	3.6.3.1 The toString() Method
	3.6.3.2 Resource IDs and the getID() Method

	3.6.4 Creating Default Groups for WebLogic Resources
	3.6.5 Creating Default Security Roles for WebLogic Resources
	3.6.6 Creating Default Security Policies for WebLogic Resources
	3.6.7 Looking Up WebLogic Resources in a Security Provider's Runtime Class
	3.6.8 Single-Parent Resource Hierarchies
	3.6.8.1 Pattern Matching for URL Resources
	3.6.8.1.1 Example 1
	3.6.8.1.2 Example 2

	3.6.9 ContextHandlers and WebLogic Resources
	3.6.9.1 Providers and Interfaces that Support Context Handlers

	3.7 Initialization of the Security Provider Database
	3.7.1 Best Practice: Create a Simple Database If None Exists
	3.7.2 Best Practice: Configure an Existing Database
	3.7.3 Best Practice: Delegate Database Initialization
	3.7.4 Best Practice: Use the JDBC Connection Security Service API to Obtain Database Connections
	3.7.4.1 Implementing a JDBC Connection Security Service: Main Steps

	3.8 Differences In Attribute Validators
	3.8.1 Differences In Attribute Validators for Custom Validators

	4 Authentication Providers
	4.1 Authentication Concepts
	4.1.1 Users and Groups, Principals and Subjects
	4.1.1.1 Providing Initial Users and Groups

	4.1.2 LoginModules
	4.1.2.1 The LoginModule Interface
	4.1.2.2 LoginModules and Multipart Authentication

	4.1.3 Java Authentication and Authorization Service (JAAS)
	4.1.3.1 How JAAS Works With the WebLogic Security Framework
	4.1.3.2 Example: Standalone T3 Application

	4.2 The Authentication Process
	4.3 Do You Need to Develop a Custom Authentication Provider?
	4.4 How to Develop a Custom Authentication Provider
	4.4.1 Create Runtime Classes Using the Appropriate SSPIs
	4.4.1.1 Implement the AuthenticationProviderV2 SSPI
	4.4.1.2 Implement the JAAS LoginModule Interface
	4.4.1.3 Throwing Custom Exceptions from LoginModules
	4.4.1.3.1 Method 1: Make Custom Exceptions Available via the System and Compiler Classpath
	4.4.1.3.2 Method 2: Make Custom Exceptions Available via the Application Classpath

	4.4.1.4 Example: Creating the Runtime Classes for the Sample Authentication Provider

	4.4.2 Configure the Custom Authentication Provider Using the Administration Console
	4.4.2.1 Managing User Lockouts
	4.4.2.1.1 Rely on the Realm-Wide User Lockout Manager
	4.4.2.1.2 Implement Your Own User Lockout Manager

	4.4.2.2 Specifying the Order of Authentication Providers

	5 Identity Assertion Providers
	5.1 Identity Assertion Concepts
	5.1.1 Identity Assertion Providers and LoginModules
	5.1.2 Identity Assertion and Tokens
	5.1.2.1 How to Create New Token Types
	5.1.2.2 How to Make New Token Types Available for Identity Assertion Provider Configurations

	5.1.3 Passing Tokens for Perimeter Authentication
	5.1.4 Common Secure Interoperability Version 2 (CSIv2)

	5.2 The Identity Assertion Process
	5.3 Do You Need to Develop a Custom Identity Assertion Provider?
	5.4 How to Develop a Custom Identity Assertion Provider
	5.4.1 Create Runtime Classes Using the Appropriate SSPIs
	5.4.1.1 Implement the AuthenticationProviderV2 SSPI
	5.4.1.2 Implement the IdentityAsserterV2 SSPI
	5.4.1.3 Example: Creating the Runtime Class for the Sample Identity Assertion Provider

	5.4.2 Configure the Custom Identity Assertion Provider Using the Administration Console
	5.4.3 Challenge Identity Assertion
	5.4.3.1 Challenge/Response Limitations in the Java Servlet API 2.3 Environment
	5.4.3.2 Filters and The Role of the weblogic.security.services.Authentication Class
	5.4.3.3 How to Develop a Challenge Identity Asserter
	5.4.3.4 Implement the ChallengeIdentityAsserterV2 Interface
	5.4.3.5 Implement the ProviderChallengeContext Interface
	5.4.3.6 Invoke the weblogic.security.services Challenge Identity Methods
	5.4.3.7 Invoke the weblogic.security.services AppChallengeContext Methods
	5.4.3.8 Implementing Challenge Identity Assertion from a Filter

	6 Principal Validation Providers
	6.1 Principal Validation Concepts
	6.1.1 Principal Validation and Principal Types
	6.1.2 How Principal Validation Providers Differ From Other Types of Security Providers
	6.1.3 Security Exceptions Resulting from Invalid Principals

	6.2 The Principal Validation Process
	6.3 Do You Need to Develop a Custom Principal Validation Provider?
	6.3.1 How to Use the WebLogic Principal Validation Provider

	6.4 How to Develop a Custom Principal Validation Provider
	6.4.1 Implement the PrincipalValidator SSPI

	7 Authorization Providers
	7.1 Authorization Concepts
	7.1.1 Access Decisions
	7.1.2 Using the Java Authorization Contract for Containers

	7.2 The Authorization Process
	7.3 Do You Need to Develop a Custom Authorization Provider?
	7.3.1 Does Your Custom Authorization Provider Need to Support Application Versioning?

	7.4 Is Your Custom Authorization Provider Thread Safe?
	7.5 How to Develop a Custom Authorization Provider
	7.5.1 Create Runtime Classes Using the Appropriate SSPIs
	7.5.1.1 Implement the AuthorizationProvider SSPI
	7.5.1.2 Implement the DeployableAuthorizationProviderV2 SSPI
	7.5.1.2.1 The ApplicationInfo Interface

	7.5.1.3 Implement the AccessDecision SSPI
	7.5.1.4 Example: Creating the Runtime Class for the Sample Authorization Provider

	7.5.2 Policy Consumer SSPI
	7.5.2.1 Required SSPI Interfaces
	7.5.2.2 Implement the PolicyConsumerFactory SSPI Interface
	7.5.2.3 Implement the PolicyConsumer SSPI Interface
	7.5.2.4 Implement the PolicyCollectionHandler SSPI Interface
	7.5.2.5 Supporting an Updated Policy Collection
	7.5.2.6 The PolicyConsumerMBean

	7.5.3 PolicyStoreMBean
	7.5.3.1 Examining the Format of a XACML Policy File
	7.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
	7.5.3.3 Using WLST to Read a PolicySet as a String

	7.5.4 Bulk Authorization Providers
	7.5.5 Configure the Custom Authorization Provider Using the Administration Console
	7.5.5.1 Managing Authorization Providers and Deployment Descriptors
	7.5.5.2 Enabling Security Policy Deployment

	7.5.6 Provide a Mechanism for Security Policy Management
	7.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Policy Management
	7.5.6.2 Option 2: Integrate an Existing Security Policy Management Tool into the Administration Console

	8 Adjudication Providers
	8.1 The Adjudication Process
	8.2 Do You Need to Develop a Custom Adjudication Provider?
	8.3 How to Develop a Custom Adjudication Provider
	8.3.1 Create Runtime Classes Using the Appropriate SSPIs
	8.3.1.1 Implement the AdjudicationProviderV2 SSPI
	8.3.1.2 Implement the AdjudicatorV2 SSPI

	8.3.2 Bulk Adjudication Providers
	8.3.3 Configure the Custom Adjudication Provider Using the Administration Console

	9 Role Mapping Providers
	9.1 Role Mapping Concepts
	9.1.1 Security Roles
	9.1.2 Dynamic Security Role Computation

	9.2 The Role Mapping Process
	9.3 Is Your Custom Role Mapping Provider Thread Safe?
	9.4 Do You Need to Develop a Custom Role Mapping Provider?
	9.4.1 Does Your Custom Role Mapping Provider Need to Support Application Versioning?

	9.5 How to Develop a Custom Role Mapping Provider
	9.5.1 Create Runtime Classes Using the Appropriate SSPIs
	9.5.1.1 Implement the RoleProvider SSPI
	9.5.1.2 Implement the DeployableRoleProviderV2 SSPI
	9.5.1.2.1 The ApplicationInfo Interface

	9.5.1.3 Implement the RoleMapper SSPI
	9.5.1.4 Implement the SecurityRole Interface
	9.5.1.5 Example: Creating the Runtime Class for the Sample Role Mapping Provider

	9.5.2 Role Consumer SSPI
	9.5.2.1 Required SSPI Interfaces
	9.5.2.2 Implement the RoleConsumerFactory SSPI Interface
	9.5.2.3 Implement the RoleConsumer SSPI Interface
	9.5.2.4 Implement the RoleCollectionHandler SSPI Interface
	9.5.2.5 Supporting an Updated Role Collection
	9.5.2.6 The RoleConsumerMBean

	9.5.3 PolicyStoreMBean
	9.5.3.1 Examining the Format of a XACML Policy File
	9.5.3.2 Using WLST to Add a Policy to the PolicyStoreMBean
	9.5.3.3 Using WLST to Read a PolicySet as a String

	9.5.4 Bulk Role Mapping Providers
	9.5.5 Configure the Custom Role Mapping Provider Using the Administration Console
	9.5.5.1 Managing Role Mapping Providers and Deployment Descriptors
	9.5.5.2 Enabling Security Role Deployment

	9.5.6 Provide a Mechanism for Security Role Management
	9.5.6.1 Option 1: Develop a Stand-Alone Tool for Security Role Management
	9.5.6.2 Option 2: Integrate an Existing Security Role Management Tool into the Administration Console

	10 Auditing Providers
	10.1 Auditing Concepts
	10.1.1 Audit Channels
	10.1.2 Auditing Events From Custom Security Providers

	10.2 The Auditing Process
	10.3 Implementing the ContextHandler MBean
	10.3.1 ContextHandlerMBean Methods
	10.3.2 Example: Implementing the ContextHandlerMBean
	10.3.3 Extend weblogic.management.security.audit.ContextHandlerImpl

	10.4 Do You Need to Develop a Custom Auditing Provider?
	10.5 How to Develop a Custom Auditing Provider
	10.5.1 Create Runtime Classes Using the Appropriate SSPIs
	10.5.1.1 Implement the AuditProvider SSPI
	10.5.1.2 Implement the AuditChannel SSPI
	10.5.1.3 Example: Creating the Runtime Class for the Sample Auditing Provider

	10.5.2 Configure the Custom Auditing Provider Using the Administration Console
	10.5.2.1 Configuring Audit Severity

	10.6 Security Framework Audit Events
	10.6.1 Passing Additional Audit Information
	10.6.2 Audit Event Interfaces and Audit Events
	10.6.2.1 AuditApplicationVersionEvent
	10.6.2.2 AuditAtnEventV2
	10.6.2.3 AuditAtzEvent
	10.6.2.4 AuditCerPathBuilderEvent, AuditCertPathValidatorEvent
	10.6.2.5 AuditConfigurationEvent
	10.6.2.6 AuditCredentialMappingEvent
	10.6.2.7 AuditLifecycleEvent
	10.6.2.8 AuditMgmtEvent
	10.6.2.9 AuditPolicyEvent
	10.6.2.10 AuditRoleDeploymentEvent
	10.6.2.11 AuditRoleEvent

	11 Credential Mapping Providers
	11.1 Credential Mapping Concepts
	11.2 The Credential Mapping Process
	11.3 Do You Need to Develop a Custom Credential Mapping Provider?
	11.3.1 Does Your Custom Credential Mapping Provider Need to Support Application Versioning?

	11.4 How to Develop a Custom Credential Mapping Provider
	11.4.1 Create Runtime Classes Using the Appropriate SSPIs
	11.4.1.1 Implement the CredentialProviderV2 SSPI
	11.4.1.2 Implement the DeployableCredentialProvider SSPI
	11.4.1.3 Implement the CredentialMapperV2 SSPI

	11.4.2 Provide a Mechanism for Credential Map Management
	11.4.2.1 Option 1: Develop a Stand-Alone Tool for Credential Map Management
	11.4.2.2 Option 2: Integrate an Existing Credential Map Management Tool into the Administration Console

	12 Auditing Events From Custom Security Providers
	12.1 Security Services and the Auditor Service
	12.2 How to Audit From a Custom Security Provider
	12.2.1 Create an Audit Event
	12.2.1.1 Implement the AuditEvent SSPI
	12.2.1.2 Implement an Audit Event Convenience Interface
	12.2.1.2.1 The AuditAtnEventV2 Interface
	12.2.1.2.2 The AuditAtzEvent and AuditPolicyEvent Interfaces
	12.2.1.2.3 The AuditMgmtEvent Interface
	12.2.1.2.4 The AuditRoleEvent and AuditRoleDeploymentEvent Interfaces

	12.2.1.3 Audit Severity
	12.2.1.4 Audit Context
	12.2.1.5 Example: Implementation of the AuditRoleEvent Interface

	12.2.2 Obtain and Use the Auditor Service to Write Audit Events
	12.2.2.1 Example: Obtaining and Using the Auditor Service to Write Role Audit Events
	12.2.2.2 Auditing Management Operations from a Provider's MBean
	12.2.2.3 Example: Auditing Management Operations from a Provider's MBean

	12.2.3 Best Practice: Posting Audit Events from a Provider's MBean

	13 Servlet Authentication Filters
	13.1 Authentication Filter Concepts
	13.1.1 Why Filters are Needed
	13.1.2 Servlet Authentication Filter Design Considerations

	13.2 How Filters Are Invoked
	13.2.1 Do Not Call Servlet Authentication Filters From Authentication Providers

	13.3 Example of a Provider that Implements a Filter
	13.4 How to Develop a Custom Servlet Authentication Filter
	13.4.1 Create Runtime Classes Using the Appropriate SSPIs
	13.4.2 Implement the Servlet Authentication Filter SSPI
	13.4.3 Implement the Filter Interface Methods
	13.4.4 Implementing Challenge Identity Assertion from a Filter
	13.4.5 Generate an MBean Type Using the WebLogic MBeanMaker
	13.4.5.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	13.4.6 Configure the Authentication Provider Using Administration Console

	14 Versionable Application Providers
	14.1 Versionable Application Concepts
	14.2 The Versionable Application Process
	14.3 Do You Need to Develop a Custom Versionable Application Provider?
	14.4 How to Develop a Custom VersionableApplication Provider
	14.4.1 Create Runtime Classes Using the Appropriate SSPIs
	14.4.1.1 Implement the VersionableApplication SSPI
	14.4.1.2 Example: Creating the Runtime Class for the Sample VersionableApplication Provider

	14.4.2 Generate an MBean Type Using the WebLogic MBeanMaker
	14.4.2.1 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)

	14.4.3 Configure the Custom Versionable Application Provider Using the Administration Console

	15 CertPath Providers
	15.1 Certificate Lookup and Validation Concepts
	15.1.1 The Certificate Lookup and Validation Process
	15.1.2 Do You Need to Implement Separate CertPath Validators and Builders?
	15.1.3 CertPath Provider SPI MBeans
	15.1.4 WebLogic CertPath Validator SSPI
	15.1.5 WebLogic CertPath Builder SSPI
	15.1.6 Relationship Between the WebLogic Server CertPath SSPI and the JDK SPI

	15.2 Do You Need to Develop a Custom CertPath Provider?
	15.3 How to Develop a Custom CertPath Provider
	15.3.1 Create Runtime Classes Using the Appropriate SSPIs
	15.3.1.1 Implement the JDK CertPathBuilderSpi and/or CertPathValidatorSpi Interfaces
	15.3.1.2 Implement the CertPath Provider SSPI
	15.3.1.3 Implement the JDK Security Provider SPI
	15.3.1.4 Use the CertPathBuilderParametersSpi SSPI in Your CertPathBuilderSpi Implementation
	15.3.1.5 Use the CertPathValidatorParametersSpi SSPI in Your CertPathValidatorSpi Implementation
	15.3.1.6 Returning the Builder or Validator Results
	15.3.1.7 Example: Creating the Sample Cert Path Provider

	15.3.2 Configure the Custom CertPath Provider Using the Administration Console

	A MBean Definition File (MDF) Element Syntax
	A.1 The MBeanType (Root) Element
	A.2 The MBeanAttribute Subelement
	A.3 The MBeanConstructor Subelement
	A.4 The MBeanOperation Subelement
	A.5 MBean Operation Exceptions
	A.6 Examples: Well-Formed and Valid MBean Definition Files (MDFs)

	B Generate an MBean Type Using the WebLogic MBeanMaker
	B.1 Overview of Steps
	B.2 Create an MBean Definition File (MDF)
	B.3 Use the WebLogic MBeanMaker to Generate the MBean Type
	B.3.1 No Custom Operations
	B.3.2 No Optional SSPI MBeans and No Custom Operations
	B.3.3 Optional SSPI MBeans or Custom Operations
	B.3.4 About the Generated MBean Interface File

	B.4 Use the WebLogic MBeanMaker to Create the MBean JAR File (MJF)
	B.5 Install the MBean Type Into the WebLogic Server Environment

