Oracle® Fusion Middleware
Developing JDBC Applications for Oracle
WebLogic Server

12c (12.2.1.3.0)
E80438-01
August 2017

ORACLE"

Oracle Fusion Middleware Developing JDBC Applications for Oracle WebLogic Server, 12¢ (12.2.1.3.0)
E80438-01
Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility iX
Conventions iX
1 Introduction and Roadmap
1.1 Document Scope and Audience 1-1
1.2 Guide to this Document 1-1
1.3 Related Documentation 1-2
1.4 JDBC Samples and Tutorials 1-2
1.4.1 Avitek Medical Records Application (MedRec) 1-2
1.4.2 JDBC Examples in the WebLogic Server Distribution 1-2
1.5 New and Changed Features in This Release 1-2
2 Using WebLogic JDBC in an Application
2.1 Getting a Database Connection from a DataSource Object 2-1
2.1.1 Importing Packages to Access DataSource Objects 2-1
2.1.2 Obtaining a Client Connection Using a DataSource 2-1
2.1.3 Possible Exceptions When a Connection Request Fails 2-3
2.2 Pooled Connection Limitation 2-3
2.3 Getting a Connection from an Application-Scoped Data Source 2-4
3 Using DataSource Resource Definitions
3.1 Using Java EE DataSource Resource Definitions 3-1
3.1.1 Creating DataSource Resource Definitions Using Annotations 3-2
3.1.2 Creating DataSource Resource Definitions Using Deployment
Descriptors 3-3
3.2 Using WebLogic Configuration Attributes 3-3
3.3 Implementation Considerations When Using DataSource Resource Definitions
3-6
3.3.1 Naming Conventions 3-6
3.3.1.1 WebLogic Data Source Naming Conventions 3-7

ORACLE

3.3.1.2 Java EE Data Source Naming Conventions 3-7
3.3.2 Mapping the Java EE DataSource Resource Definition to WebLogic
Data Source Resources 3-7
3.3.3 Configuring Active GridLink DataSource Resource Definitions 3-8
3.3.4 Using an Encrypted Password in a DataSourceDefinition 3-10
3.3.5 Additional Considerations 3-11
3.4 Using Data Sources in Clients 3-12
3.5 Additional Resources 3-12
4 Performance Tuning Your JDBC Application
4.1 WebLogic Performance-Enhancing Features 4-1
4.1.1 How Pooled Connections Enhance Performance 4-1
4.1.2 Caching Statements and Data 4-1
4.2 Designing Your Application for Best Performance 4-1
4.2.1 Process as Much Data as Possible Inside the Database 4-2
4.2.2 Use Built-in DBMS Set-based Processing 4-2
4.2.3 Make Your Queries Smart 4-2
4.2.4 Make Transactions Single-batch 4-4
4.2.5 Never Have a DBMS Transaction Span User Input 4-4
4.2.6 Use In-place Updates 4-5
4.2.7 Keep Operational Data Sets Small 4-5
4.2.8 Use Pipelining and Parallelism 4-5
5 Using WebLogic-branded DataDirect Drivers
5.1 Using DataDirect Documentation 5-1
5.2 JDBC Specification Compliance 5-1
5.3 Installation 5-2
5.4 Supported Drivers and Databases 5-2
5.5 Connecting Through WebLogic JDBC Data Sources 5-3
5.6 Developing Your Own JDBC Code 5-3
5.7 Specifying Connection Properties 5-3
5.8 Using IP Addresses 5-3
5.9 Required Permissions for the Java Security Manager 5-3
5.10 For MS SQLServer Users 5-4
5.10.1 Installing MS SQLServer XA DLLs 5-4
5.10.2 Using instjdbc.sqgl with MS SQLServer 5-4
6 Using WebLogic Wrapper Drivers
6.1 Using the WebLogic RMI Driver (Deprecated) 6-1
ORACLE v

6.1.1 RMI Driver Client Interoperability 6-1
6.1.2 Security Considerations for WebLogic RMI Drivers 6-2
6.1.3 Setting Up WebLogic Server to Use the WebLogic RMI Driver 6-3
6.1.4 Sample Client Code for Using the RMI Driver 6-3
6.1.4.1 Import the Required Packages 6-3
6.1.4.2 Get the Database Connection 6-3
6.1.4.3 Using a JNDI Lookup to Obtain the Connection 6-3
6.1.4.4 Using Only the WebLogic RMI Driver to Obtain a Database
Connection 6-4
6.1.5 Row Caching with the WebLogic RMI Driver 6-5
6.1.5.1 Important Limitations for Row Caching with the WebLogic RMI
Driver 6-6
6.1.6 Limitations When Using Global Transactions 6-7
6.2 Using the WebLogic JTS Driver (Deprecated) 6-7
6.2.1 Sample Client Code for Using the JTS Driver 6-8
Using API Extensions in JDBC Drivers
7.1 Using API Extensions to JDBC Interfaces 7-1
7.1.1 Sample Code for Accessing API Extensions to JDBC Interfaces 7-1
7.1.1.1 Import Packages to Access API Extensions 7-1
7.1.1.2 Get a Connection 7-2
7.1.1.3 Cast the Connection as a Vendor Connection 7-2
7.1.1.4 Use API Extensions 7-2
7.2 Using API Extensions for Oracle JDBC Types 7-2
7.2.1 Sample Code for Accessing Oracle Thin Driver Extensions to JDBC
Interfaces 7-4
7.2.2 Programming with Arrays 7-5
7.2.2.1 Import Packages to Access Oracle Extensions 7-5
7.2.2.2 Establish the Connection 7-5
7.2.2.3 Creating an Array in the Database 7-6
7.2.2.4 Getting an Array 7-6
7.2.2.5 Updating an Array in the Database 7-7
7.2.2.6 Using Oracle Array Extension Methods 7-7
7.2.3 Programming with Structs 7-7
7.2.3.1 Creating Objects in the Database 7-8
7.2.3.2 Getting Struct Attributes 7-8
7.2.3.3 Using OracleStruct Extension Methods 7-9
7.2.3.4 Using a Struct to Update Objects in the Database 7-9
7.2.4 Programming with Refs 7-10
7.2.4.1 Creating a Ref in the Database 7-10
7.2.4.2 Getting a Ref 7-10

ORACLE

7.2.4.3 Using WebLogic OracleRef Extension Methods 7-11
7.2.4.4 Updating Ref Values 7-11
7.2.5 Programming with Large Objects 7-12
7.2.5.1 Creating Blobs in the Database 7-12
7.2.5.2 Updating Blobs in the Database 7-12
7.2.5.3 Using OracleBlob Extension Methods 7-12
7.2.5.4 Programming with Clob Values 7-13
7.2.5.5 Transaction Boundaries Using LOBs 7-13
7.2.5.6 Recovering LOB Space 7-13
7.2.6 Programming with Opaque Objects 7-13
7.3 Using Batching with the Oracle Thin Driver 7-14
7.4 Using the Java Security Manager with the Oracle Thin Driver 7-15
8 Getting a Physical Connection from a Data Source
8.1 Opening a Connection 8-1
8.2 Closing a Connection 8-2
8.2.1 Remove Infected Connections Enabled is True 8-3
8.2.2 Remove Infected Connections Enabled is False 8-4
8.3 Limitations for Using a Physical Connection 8-4
0 Using RowSets with WebLogic Server
9.1 Deprecation of weblogic.jdbc.rowsets 9-1
9.2 About RowSets 9-1
9.3 Types of RowSets 9-2
9.4 Programming with RowSets 9-2
9.5 CachedRowSets 9-3
9.5.1 Characteristics 9-3
9.5.2 Special Programming Considerations and Limitations for
CachedRowSets 9-4
9.5.2.1 Entire RowSet Query Results Stored in Memory 9-4
9.5.2.2 Data Contention 9-4
9.5.3 Code Example 9-4
9.5.4 Importing Classes and Interfaces for a CachedRowSet 9-6
9.5.5 Creating a CachedRowSet 9-6
9.5.6 Setting CachedRowSet Properties 9-6
9.5.7 Database Connection Options 9-6
9.5.8 Populating a CachedRowSet 9-7
9.5.9 Setting CachedRowSet MetaData 9-7
9.5.10 Working with Data in a CachedRowSet 9-8
9.5.10.1 Getting Data from a Row in a RowSet 9-8
ORACLE Vi

9.5.10.2 Updating a Row in a RowSet
9.5.10.3 Inserting a Row in a RowSet
9.5.10.4 Deleting a Row in a RowSet
9.5.11 Synchronizing RowSet Changes with the Database
9.6 RowSet MetaData Settings for Database Updates
9.7 WebLogic RowSet Extensions for Working with MetaData

9.7.1 executeAndGuessTableName and
executeAndGuessTableNameAndPrimaryKeys

9.7.2 Setting Table and Primary Key Information Using the MetaData
Interface

9.7.3 Setting the Write Table
9.8 RowSets and Transactions
9.8.1 Integrating with JTA Global Transactions
9.8.1.1 Behavior of Rowsets Using Global Transactions
9.8.2 Using Local Transactions
9.8.2.1 Behavior of Rowsets Using Local Transactions
9.8.3 Reusing a WebLogic RowSet After Completing a Transaction
9.9 FilteredRowSets
9.9.1 FilteredRowSet Characteristics
9.9.2 Special Programming Considerations
9.9.2.1 RowsSet Filters are Not Cumulative
9.9.2.2 No Pending Changes Before Setting or Changing a Filter
9.9.3 FilteredRowSet Code Example
9.9.4 Importing Classes and Interfaces for FilteredRowSets
9.9.5 Creating a FilteredRowSet
9.9.6 Setting FilteredRowSet Properties
9.9.7 Database Connection Options for a FilteredRowSet
9.9.8 Populating a FilteredRowSet
9.9.9 Setting FilteredRowSet MetaData
9.9.10 Setting the Filter for a FilteredRowSet
9.9.10.1 User-Defined RowSet Filter
9.9.10.2 WebLogic SQL-Style Filter
9.9.11 Working with Data in a FilteredRowSet
9.10 WebRowSets
9.10.1 Special Programming Considerations
9.11 JoinRowSets
9.12 JDBCRowSets
9.13 Handling SyncProviderExceptions with a SyncResolver
9.13.1 RowSet Data Synchronization Conflict Types
9.13.2 SyncResolver Code Example
9.13.3 Getting a SyncResolver Object
9.13.4 Navigating in a SyncResolver Object

ORACLE

9-8
9-9
9-9
9-9
9-10
9-11

9-11

9-11
9-12
9-12
9-12
9-13
9-13
9-13
9-13
9-14
9-14
9-15
9-15
9-15
9-15
9-17
9-17
9-17
9-17
9-17
9-18
9-18
9-18
9-19
9-19
9-19
9-20
9-20
9-21
9-21
9-22
9-24
9-25
9-25

Vii

9.13.5 Setting the Resolved Value for a RowSet Data Synchronization
Conflict 9-26
9.13.6 Synchronizing Changes 9-26
9.14 WLCachedRowSets 9-26
9.15 SharedRowSets 9-27
9.16 SortedRowSets 9-27
9.17 SQLPredicate, a SQL-Style RowSet Filter 9-27
9.17.1 What is SQLPredicate? 9-28
9.17.2 SQLPredicate Grammar 9-28
9.17.3 Code Example 9-28
9.18 Optimistic Concurrency Policies 9-28
9.18.1 VERIFY_READ_COLUMNS 9-29
9.18.2 VERIFY_MODIFIED_COLUMNS 9-30
9.18.3 VERIFY_SELECTED_COLUMNS 9-30
9.18.4 VERIFY_NONE 9-30
9.18.,5 VERIFY_AUTO_VERSION_COLUMNS 9-30
9.18.6 VERIFY_VERSION_COLUMNS 9-31
9.18.7 Optimistic Concurrency Control Limitations 9-31
9.18.8 Choosing an Optimistic Policy 9-31
9.19 Performance Options 9-32
9.19.1 JDBC Batching 9-32
9.19.1.1 Batching Limitations with and Oracle Database 9-33
9.19.2 Group Deletes 9-33

10 Troubleshooting JDBC

10.1 Problems with Oracle Database on UNIX 10-1
10.2 Thread-related Problems on UNIX 10-1
10.3 Closing JDBC Objects 10-1
10.3.1 Abandoning JDBC Objects 10-2
10.4 Using Microsoft SQL Server with Nested Triggers 10-2
10.4.1 Exceeding the Nesting Level 10-2
10.4.2 Using Triggers and EJBs 10-3
ORACLE viii

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing JDBC Applications for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/
| ookup?ct x=acc&i d=i nf o or visit ht t p: / / ww. or acl e. conf pl s/ t opi ¢/ | ookup?

ctx=acc&i d=trs if you are hearing impaired.

Conventions

ORACLE

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This chapter describes the contents and organization of this guide—Developing JDBC
Applications for Oracle WebLogic Server.
This chapter includes the following sections:

e Document Scope and Audience
* Guide to this Document

* Related Documentation

e JDBC Samples and Tutorials

 New and Changed Features in This Release

1.1 Document Scope and Audience

This document is a resource for software developers and system administrators who
develop and support applications that use the Java Database Connectivity (JDBC)
API. It also contains information that is useful for business analysts and system
architects who are evaluating WebLogic Server. The topics in this document are
relevant during the evaluation, design, development, pre-production, and production
phases of a software project.

It is assumed that the reader is familiar with Java EE and JDBC concepts. This
document emphasizes the value-added features provided by WebLogic Server JDBC
and key information about how to use WebLogic Server features and facilities to get
an JDBC application up and running.

1.2 Guide to this Document

ORACLE

* This chapter, Introduction and Roadmap, introduces the organization of this guide.

* Using WebLogic JDBC in an Application, explains how to use a JDBC connection
in your application.

* Using DataSource Resource Definitions, explains how to use a DataSource
resource definition in your application.

* Performance Tuning Your JDBC Application, describes how to design JDBC
connection usage in your applications for the best performance.

* Using WebLogic-branded DataDirect Drivers , describes how to use WebLogic-
branded DataDirect drivers in your applications.

» Using WebLogic Wrapper Drivers, describes how to use some alternative drivers
for getting a JDBC connection from a data source.

* Using API Extensions in JDBC Drivers, describes special programming
considerations for third-party drivers in your applications.

* Using RowSets with WebLogic Server, describes how to use rowsets in your
applications.

1-1

Chapter 1
Related Documentation

» Troubleshooting JDBC, describes some common JDBC problems and solutions.

1.3 Related Documentation

This document contains JDBC-specific programming information.

For comprehensive guidelines for developing, deploying, and monitoring WebLogic
Server applications, see the following documents:

e Administering JDBC Data Sources for Oracle WebLogic Server is a guide to JDBC
configuration and management for WebLogic Server.

e Developing Applications for Oracle WebLogic Server is a guide to developing
WebLogic Server applications.

e Deploying Applications to Oracle WebLogic Server is the primary source of
information about deploying WebLogic Server applications in development and
production environments.

1.4 JDBC Samples and Tutorials

In addition to this document, Oracle provides a variety of JDBC code samples that
show JDBC configuration and API use, and provide practical instructions on how to
perform key JDBC development tasks.

1.4.1 Avitek Medical Records Application (MedRec)

MedRec is an end-to-end sample Java EE application shipped with WebLogic Server
that simulates an independent, centralized medical record management system. The
MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients.

MedRec demonstrates WebLogic Server and Java EE features, and highlights Oracle-
recommended best practices. MedRec is optionally installed with the WebLogic Server
installation. You can start MedRec from the ORACLE_HOVE\ user _pr oj ect s\ donai ns\ medr ec
directory, where ORACLE_HOME is the directory you specified as the Oracle Home when
you installed Oracle WebLogic Server. See Sample Applications and Code
Examplesin Understanding Oracle WebLogic Server.

1.4.2 JDBC Examples in the WebLogic Server Distribution

WebLogic Server optionally installs API code examples in the ORACLE_HOVE\ wi ser ver
\ sanpl es\ server directory, where ORACLE_HOME represents the directory where you
installed WebLogic Server. See Sample Applications and Code Examples in
Understanding Oracle WebLogic Server.

1.5 New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

ORACLE 1-2

Using WebLogic JDBC in an Application

Learn how to use the WebLogic Server Administration Console to enable, configure,
and monitor features of WebLogic Server, including JDBC generic data sources, multi
data sources, or Active GridLink data sources.You can do the same tasks
programmatically using the JMX API and the WebLogic Scripting Tool (WLST). After
configuring JDBC connectivity components, you can use them in your applications.

» Getting a Database Connection from a DataSource Object
* Pooled Connection Limitation
* Getting a Connection from an Application-Scoped Data Source

For more information about configuring JDBC data sources, see Administering JDBC
Data Sources for Oracle WebLogic Server.

2.1 Getting a Database Connection from a DataSource
Object

Learn how to request a database connection from a DataSource object.
* Importing Packages to Access DataSource Objects
» Obtaining a Client Connection Using a DataSource

* Possible Exceptions When a Connection Request Fails

2.1.1 Importing Packages to Access DataSource Objects

To use the DataSource objects in your applications, import the following classes in
your client code:

inmport java.sql.*;
inmport java.util.*;
i mport javax.naming.*;

2.1.2 Obtaining a Client Connection Using a DataSource

To obtain a connection for a JDBC client, use a Java Naming and Directory Interface
(JNDI) lookup to locate the DataSource object, as shown in this code fragment.

Note:

When using a JDBC connection in a client-side application, the exact same
JDBC driver classes must be in the CLASSPATH on both the server and the
client. If the driver classes do not match, you may see

java.rm . Unnar shal Excepti on exceptions.

ORACLE 2-1

ORACLE

Chapter 2
Getting a Database Connection from a DataSource Object

Context ctx = null;
Hasht abl e ht = new Hashtabl e();
ht . put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.jndi.Wlnitial ContextFactory");
ht . put (Cont ext . PROVI DER_URL,
"t3://hostname: port");
Connection conn = null;
Statenent stnt = null;
ResultSet rs = null;
try {
ctx = new Initial Context(ht);
j avax. sql . DataSource ds
= (javax. sql . DataSource) ctx.|ookup ("myDataSource");
conn = ds. get Connection();
/1 You can now use the conn object to create
/] Statenments and retrieve result sets:
stnm = conn.createStatenent();
stnt.execute("select * fromsoneTable");
rs = stnt.getResultSet();

/1 C ose JDBC objects as soon as possible
stnt.close();
stnt=nul|;
conn. cl ose();
conn=nul | ;

}

catch (Exception e) {

/] a failure occurred
| og message;

1
finally {
try {
ctx.close();
} catch (Exception e) {
| og message; }
try {
if (rs!=null) rs.close();
} catch (Exception e) {
| og message; }
try {
if (stmt !'=null) stnt.close();
} catch (Exception e) {
| og message; }
try {
if (conn !=null) conn.close();
} catch (Exception e) {
| og message; }
}

(Substitute the correct hostname and port number for your WebLogic Server.)

Note:

The code above uses one of several available procedures for obtaining a JNDI
context. For more information on JNDI, see Developing JNDI Applications for
Oracle WebLogic Server.

2-2

Chapter 2
Pooled Connection Limitation

2.1.3 Possible Exceptions When a Connection Request Fails

The weblogic.jdbc.extensions package includes the following exceptions that can be
thrown when an application request fails. Each exception extends
java.sql . SQLExcepti on.

e Connecti onDeadSQLExcept i on—generated when an application request to get a
connection fails because the connection test on the reserved connection failed.
This typically happens when the database server is unavailable.

e ConnectionUnavai | abl eSQLExcept i on—generated when an application request to get
a connection fails because there are currently no connections available in the pool
to be allocated. This is a transient failure, and is generated if all connections in the
pool are currently in use. It can also be thrown when connections are unavailable
because they are being tested.

* Pool Di sabl edSQLExcept i on—generated when an application request to get a
connection fails because the JDBC Data Source has been administratively
disabled.

e Pool Li ni t SQLExcept i on—generated when an application request to get a
connection fails due to a configured threshold of the data source, such as
Hi ghest Numii t er s, Connect i onReser veTi meout Seconds, and so forth.

e Pool Perni ssi onsSQLExcept i on—generated when an application request to get a
connection fails a (security) authentication or authorization check.

2.2 Pooled Connection Limitation

ORACLE

When using pooled connections in a data source, it is possible to execute DBMS-
specific SQL code that will alter the database connection properties in a way which
WebLogic Server and the JDBC driver will be unaware of. When the connection is
returned to the pool, the characteristics of the connection may not be set back to a
valid state.

Note:

For example, with a Sybase DBMS, if you use a statement such as "set
rowcount 3 select * from y", the connection will only ever return a maximum of
3 rows from any subsequent query on this connection. When the connection is
returned to the pool and then reused, the next user of the connection will still
only get 3 rows returned, even if the table being selected from has 500 rows.

When using pooled connections in a data source, it is possible to execute DBMS-
specific SQL code that will alter the database connection properties and that
WebLogic Server and the JDBC driver will be unaware of. When the connection is
returned to the pool, the characteristics of the connection may not be set back to a
valid state. For example, with a Sybase DBMS, if you use a statement such as "set
rowcount 3 select * fromy", the connection will only ever return a maximum of 3 rows
from any subsequent query on this connection. When the connection is returned to the
pool and then reused, the next user of the connection will still only get 3 rows returned,
even if the table being selected from has 500 rows.

2-3

Chapter 2
Getting a Connection from an Application-Scoped Data Source

In most cases, there is standard JDBC code that can accomplish the same result. In
this example, you could use set MaxRows() instead of set rowcount. Oracle recommends
that you use the standard JDBC code instead of the DBMS-specific SQL code. When
you use standard JDBC calls to alter the connection, WebLogic Server returns the
connection to a standard state when the connection is returned to the data source.

If you use vendor-specific SQL code that alters the connection, you must set the
connection back to an acceptable state before returning the connection to the pool.

2.3 Getting a Connection from an Application-Scoped Data

Source

ORACLE

To get a connection from JDBC module packaged with an enterprise application, you
look up the data source defined in the JDBC module in the local environment or in the
JNDI tree and then request a connection from the data source or multi data source.
To get a connection from an application-scoped data source, see Getting a Database
Connection from a Packaged JDBC Module in Administering JDBC Data Sources for
Oracle WebLogic Server.

2-4

Using DataSource Resource Definitions

3.1 Using

ORACLE

Data source resources are used to define a set of properties required to identify and
access a database through the JDBC API. Learn how to create and use Java EE
DataSource resource definitions.

» Using Java EE DataSource Resource Definitions

» Using WebLogic Configuration Attributes

* Implementation Considerations When Using DataSource Resource Definitions
* Using Data Sources in Clients

» Additional Resources

Java EE DataSource Resource Definitions

Data source resources are used to define a set of properties required to identify and
access a database through the JDBC API. These properties include information such
as the URL of the database server, the name of the database, and the network
protocol to use to communicate with the server. You can declare data source
definitions by creating data source resource definitions using annotations or
deployment descriptor.

Dat aSour ce objects are registered with the Java Naming and Directory Interface (JNDI)
naming service so that applications can use the JNDI API to access a Dat aSour ce
object to make a connection with a database.

Prior to Java EE 7, DataSource resources were created administratively as described
in Configuring WebLogic JDBC Resources in Administering JDBC Data Sources for
Oracle WebLogic Server. Java EE 7 provides the option to programmatically define
DataSource resources for a more flexible and portable method of database
connectivity.

The name element uniquely identifies a Dat aSour ce and is registered with JNDI. The
value specified in the nane element begins with a namespace scope. Java EE 7
includes the following scopes:

* java: conp—Names in this namespace have per-component visibility.

* java: nodul e—Names in this namespace are shared by all components in a
module, for example, the EJB components defined in an a ejb-jar.xmil file.

» java: app—Names in this namespace are shared by all components and modules
in an application, for example, the application-client, web, and EJB components in
an .ear file.

* java: gl obal —Names in this namespace are shared by all the applications in the
server.

You can programmatically declare data source definitions using one of the following
methods:

» Creating DataSource Resource Definitions Using Annotations

3-1

Chapter 3
Using Java EE DataSource Resource Definitions

» Creating DataSource Resource Definitions Using Deployment Descriptors

3.1.1 Creating DataSource Resource Definitions Using Annotations

The javax.annotation.sql package provides @at aSour ceDef i ni ti on and

@at aSour ceDef i ni ti ons for defining DataSource resource definitions in application
component classes such as application clients, servlets, or Enterprise JavaBeans
(EJB).

When the DataSource resource is injected, a Dat aSour ce object is created and
registered with JNDI. Use annotation elements to configure the Dat aSour ce object. You
can specify additional Java EE and WebLogic configuration attributes in the properties
element of the annotation. See Using WebLogic Configuration Attributes.

Use @at aSour ceDefi ni tion to create a single datasource definition. For example:

@at aSour ceDef i nition(

nane = "java: modul e/ Exanpl eDS",
classNanme = "org. apache. derby. j dbc. d i ent Dat aSour ce",
port Nunber = 1527,
serverName = "l ocal host",

dat abaseNane = "exanpl eDB",

user = "exanpl es",

password = "exanpl es",

properties={"create=true", "webl ogic. Test Tabl eName=SQL SELECT 1 FROM
SYS. SYSTABLES'})

@ebServl et ("/dat aSourceServl et")
public class DataSourceServlet extends HtpServlet {

@resour ce(| ookup = "java: nodul e/ Exanpl eDS")

Use the @at aSour ceDef i ni tions to create multiple datasource definitions. For example:

@at aSour ceDef i nitions(
val ue = {

@at aSour ceDefinition(name = "java: app/ env/ DS1",

m nPool Si ze = 0,

initialPool Size = 0,

classNane = "org. apache. derby. jdbc. O i ent XADat aSour ce",

port Nunber = 1527,

serverName = "l ocal host",

user = "exanpl es",

password = "exanpl es",

dat abaseNane = "exanpl eDB",

properties={"create=true", "webl ogic. Test Tabl eNane=SQ.L SELECT 1 FROM
SYS. SYSTABLES"}

)

@at aSour ceDefinition(name = "java: conp/ env/ DS2",
m nPool Si ze = 0,

ORACLE 3-2

http://docs.oracle.com/javaee/6/api/javax/annotation/sql/package-summary.html

Chapter 3
Using WebLogic Configuration Attributes

initial Pool Size = 0,
classNane = "org. apache. derby. jdbc. C i ent Dat aSour ce",
port Nunber = 1527,
serverNane = "l ocal host",
user = "exanpl es",
password = "exanpl es",
dat abaseNane = "exanpl esDB",
properties={"create=true", "weblogic. Test Tabl eNane=SQL SELECT 1 FROM
SYS. SYSTABLES"}
)
1
)

For a complete example, see the "Creating a DataSource using the
@DataSourceDefinition Annotation" in the WebLogic Server Code Examples.

3.1.2 Creating DataSource Resource Definitions Using Deployment
Descriptors

You can create DataSource resource definitions using deployment descriptors in
application.xm , application-client.xm,web.xn, and ejb-jar.xn files. For example:

<dat a- sour ce>
<nane>j ava: nodul e/ Exanpl eDS</ nane>
<cl ass- name>or g. apache. derby. j dbc. C i ent Dat aSour ce</ cl ass- nanme>
<server - name>| ocal host </ ser ver - nane>
<por t - nunber >1527</ por t - nunber >
<dat abase- name>exanpl eDB</ dat abase- nanme>
<user >exanpl es</ user>
<passwor d>exanpl es</ passwor d>
<property>
<name>cr eat e</ nane>
<val ue>true</val ue>
</ property>
<property>
<name>webl ogi c. Test Tabl eName</ nane>
<val ue>SQL SELECT 1 FROM SYS. SYSTABLES</ val ue>
</ property>
</ dat a- sour ce>

3.2 Using WebLogic Configuration Attributes

The Java EE 7 Definition annotation @at aSour ceDef i ni ti on provides a basic standard
set of configuration attributes. Oracle extends support for WebLogic Server's rich set
of configuration attributes by supporting proprietary attributes using the property
element.

ORACLE 3-3

ORACLE

Note:

Chapter 3
Using WebLogic Configuration Attributes

Consider the following limitations when using WebLogic Server proprietary
attributes in the property element. WebLogic Server proprietary attributes:

« Cannot be used to configure a Multi data source. It is not possible to
embed a Multi data source in a EAR or WAR file.

* Do not overlap @at aSour ceDefi ni ti on annotation elements.

Do not include the data source level attributes nane and ver si on.

Table 3-1 summarizes WebLogic Server's extended support for Data Source
configuration attributes by mapping Wbl ogi c. Attri but e Name property values to
WebLogic configuration elements. For an example of a DataSource resource definition
using WebLogic configuration elements, see Configuring Active GridLink DataSource

Resource Definitions.

Table 3-1 WebLogic Configuration Attributes

Weblogic.Attribute Name

WebLogic Element

AffinityPolicy
AlgorithmType
Capacitylncrement

ConnectionCreationRetryFr
eguencySeconds

ConnectionPoolFailoverCal
IbackHandler

ConnectionReserveTimeou
tSeconds

CredentialMappingEnable
DataSourcelList
Driverinterceptor
FailoverRequestlfBusy
FanEnabled
GlobalTransactionsProtocol
HighestNumWaiters

IdentityBasedConnectionP
oolingEnabled

IgnorelnUseConnectionsEn
abled

JDBCOracleParams.setAffinityPolicy()
JDBCDataSourceParams.setAlgorithmType()
JDBCConnectionPoolParams.setCapacitylncrement()

JDBCConnectionPoolParams.setConnectionCreationRetryFreq
uencySeconds()

JDBCDataSourceParams.setConnectionPoolFailoverCallbackH
andler()

JDBCConnectionPoolParams.setConnectionReserveTimeoutS
econds()

JDBCConnectionPoolParams.setCredentialMappingEnabled()
JDBCDataSourceParams.setDataSourceList()
JDBCConnectionPoolParams.setDriverInterceptor()
JDBCDataSourceParams.setFailoverRequestlfBusy()
JDBCOracleParams.setFanEnabled()
JDBCDataSourceParams.setGlobalTransactionsProtocol()
JDBCConnectionPoolParams.setHighestNumWaiters()

JDBCConnectionPoolParams.setldentityBasedConnectionPooli
ngEnabled()

JDBCConnectionPoolParams.setlgnorelnUseConnectionsEnabl
ed()

3-4

ORACLE

Chapter 3
Using WebLogic Configuration Attributes

Table 3-1 (Cont.) WebLogic Configuration Attributes
|

Weblogic.Attribute Name

WebLogic Element

InactiveConnectionTimeout
Seconds

InitSql
JDBCXADebugLevel
KeepConnAfterLocalTx

KeepLogicalConnOpenOn
Release

KeepXaConnTillTxComplet
e

LoginDelaySeconds
NeedTxCtxOnClose
NewXaConnForCommit
OnsNodeList
OnsWalletFile
OnsWalletPassword

OracleOptimizeUtf8Conver
sion

PasswordEncrypted
PinnedToThread

ProfileHarvestFrequencySe
conds

ProfileType
RecoverOnlyOnce

RemovelnfectedConnectio
ns

ResourceHealthMonitoring

RollbackLocalTxUponConn
Close

RowPrefetch
RowPrefetchSize

SecondsToTrustAnldlePool
Connection

ShrinkFrequencySeconds

JDBCConnectionPoolParams.setlnactiveConnectionTimeoutSe
conds()

JDBCConnectionPoolParams.setInitSql()
JDBCConnectionPoolParams.setJDBCXADebugLevel()
JDBCDataSourceParams.setKeepConnAfterLocalTx()

JDBCXAParams.setKeepLogicalConnOpenOnRelease()

JDBCXAParams.setKeepXaConnTillTxComplete()

JDBCConnectionPoolParams.setLoginDelaySeconds()
JDBCXAParams.setNeedTxCtxOnClose()
JDBCXAParams.setNewXaConnForCommit()
JDBCOracleParams.setOnsNodeList()
JDBCOracleParams.setOnsWalletFile()
JDBCOracleParams.setOnsWalletPassword()

JDBCOracleParams.setOracleOptimizeUtf8Conversion()

JDBCDriverParams.setPassword
JDBCConnectionPoolParams.setPinnedToThread()

JDBCConnectionPoolParams.setProfileHarvestFrequencySeco
nds()

JDBCConnectionPoolParams.setProfileType()
JDBCXAParams.setRecoverOnlyOnce()

JDBCConnectionPoolParams.setRemovelnfectedConnections()

JDBCXAParams.setResourceHealthMonitoring()

JDBCXAParams.setRollbackLocalTxUponConnClose()

JDBCDataSourceParams.setRowPrefetch()
JDBCDataSourceParams.setRowPrefetchSize()

JDBCConnectionPoolParams.setSecondsToTrustAnldlePoolCo
nnection()

JDBCConnectionPoolParams.setShrinkFrequencySeconds()

3-5

Chapter 3

Implementation Considerations When Using DataSource Resource Definitions

Table 3-1 (Cont.) WebLogic Configuration Attributes
|

Weblogic.Attribute Name

WebLogic Element

StatementCacheSize
StatementCacheType
StatementTimeout
StreamChunkSize

TestConnectionsOnReserv
e

TestFrequencySeconds
TestTableName
UsePasswordIndirection
UseXaDataSourcelnterface
WrapTypes
XaEndOnlyOnce
XaRetryDurationSeconds
XaRetryIntervalSeconds
XaSetTransactionTimeout

XaTransactionTimeout

JDBCConnectionPoolParams.setStatementCacheSize()
JDBCConnectionPoolParams.setStatementCacheType()
JDBCConnectionPoolParams.setStatementTimeout()
JDBCDataSourceParams.setStreamChunkSize()

JDBCConnectionPoolParams.setTestConnectionsOnReserve()

JDBCConnectionPoolParams.setTestFrequencySeconds()
JDBCConnectionPoolParams.setTestTableName()
JDBCDriverParams.setUsePasswordindirection()
JDBCDriverParams.setUseXaDataSourcelnterface()
JDBCConnectionPoolParams.setWrapTypes()
JDBCXAParams.setXaEndOnlyOnce()
JDBCXAParams.setXaRetryDurationSeconds()
JDBCXAParams.setXaRetrylntervalSeconds()
JDBCXAParams.setXaSetTransactionTimeout()

JDBCXAParams.setXaTransactionTimeout()

3.3 Implementation Considerations When Using DataSource
Resource Definitions

Learn about the implementation details to consider when creating and using
DataSource resource definitions.

* Naming Conventions

* Mapping the Java EE DataSource Resource Definition to WebLogic Data Source

Resources

» Configuring Active GridLink DataSource Resource Definitions

* Using an Encrypted Password in a DataSourceDefinition

» Additional Considerations

3.3.1 Naming Conventions

This section provides information on Data Source haming conventions:

ORACLE 3-6

Chapter 3
Implementation Considerations When Using DataSource Resource Definitions

Note:

Pre-WebLogic Server 12.1.1 and Java EE Data Source naming conventions
are compatible. Existing applications do not need to change naming
conventions to upgrade from previous releases.

3.3.1.1 WebLogic Data Source Naming Conventions

The following conventions are used when naming Data Sources in releases prior to
WebLogic Server 12.1.1:

e dsnane - The system resource JDBC descriptor (confi g/ dbc/*-j dbc. xm)

e application@ul | @snane - deprecated (pre-9.x), application-scoped JDBC
descriptor in EAR

e applicati on@odul e@snane - application-scoped, packaged JDBC descriptor in
EAR

3.3.1.2 Java EE Data Source Naming Conventions

The following conventions are used to name Java EE Data Sources:

e appnane@odul ename@onponent name@snane - Component level
* appnane@odul ename@snane - Module level

e appnane@sname - Application level

e dsnane — Global

These names are compatible with earlier names because the Java EE names begin
with java:

3.3.2 Mapping the Java EE DataSource Resource Definition to
WebLogic Data Source Resources

Table 3-2 provides information on how to map Java EE DataSource Resource
definition elements to WebLogic Server resources.

Table 3-2 Mapping a DataSource Resource Definition to WebLogic Server
Resources

. ___|
DataSourceBean Default Value WebLogic Resource

String name() Required JDBCDataSourceParamsBean
.setJndiName

String className() Required JDBCDriverParamsBean.setDr
iverName

String description() Not Used

String url() JDBCDriverParamsBean.setUr

ORACLE .

Chapter 3

Implementation Considerations When Using DataSource Resource Definitions

Table 3-2 (Cont.) Mapping a DataSource Resource Definition to WebLogic
Server Resources

DataSourceBean

Default Value

WebLogic Resource

String user()

String password()

String databaseName()

int portNumber()

String serverName()

int isolationLevel()

boolean transactional()

int initialPoolSize()

int maxPoolSize()

int minPoolSize()

int maxldleTime()

int maxStatements()

String[] properties()

int loginTimeout()

"localhost"

true

-1

{

Added to
JDBCDriverParamsBean.getPr
operties()

JDBCDriverParamsBean.setP
assword

Used to generate URL; added
to properties

Used to generate URL; added
to properties

Used to generate URL; added
to properties

Sets desi redt xi sol evel
property which WebLogic
Server uses to call

Connecti on. set Transacti onl
sol ation()

Used to generate URL

JDBCConnectionPoolParams
Bean.setlnitialCapacity

JDBCConnectionPoolParams
Bean.setMaxCapacity

JDBCConnectionPoolParams
Bean.setMinCapacity (new)

JDBCConnectionPoolParams
Bean.setShrinkFrequencySec
onds

JDBCConnectionPoolParams
Bean.setStatementCacheSize

JDBCPropertiesBean

Not Used

3.3.3 Configuring Active GridLink DataSource Resource Definitions

An Active GridLink Data Source is defined by using the following name/value pair

ORACLE

within the DataSource resource definition:

FanEnabl ed is set to true

OnsNodeli st is a non-null value. A comma-separated list of ONS daemon listen
addresses and ports for receiving ONS-based FAN events. See ONS Client
Configuration in Administering JDBC Data Sources for Oracle WebLogic Server.

3-8

ORACLE

Chapter 3
Implementation Considerations When Using DataSource Resource Definitions

The following example shows a DataSource resource definition for an Active GridLink
Data Source using deployment descriptors:

<dat a- sour ce>
<nane>j ava: gl obal / DSD2</ name>
<cl ass-name>or acl e. j dbc. Oracl eDri ver </ cl ass- nane>
<url >j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS_L| ST=(ADDRESS=(PROTOCOL=TCP)
(HOST=I cr 01155-r) (PORT=1521))) (CONNECT_DATA=(SERVI CE_NAME=nydb))) </ ur| >
<user>| ef t y123</ user >
<passwor d>passwor d</ passwor d>
<proper t y><nane>webl ogi c. Capaci t yl ncr enent </ nane><val ue>2</ val ue></ property>
<proper t y><nanme>webl ogi c. H ghest Num4i t er s</ nane><val ue>2147483647</ val ue></
property>
<pr oper t y><nane>webl ogi c. Connect i onCr eat i onRet r yFr equencySeconds</ nane><val ue>0</
val ue></ property>
<pr oper t y><nane>webl ogi c. Connect i onReser veTi meout Seconds</ name><val ue>10</
val ue></ property>
<pr oper t y><nane>webl ogi c. Test Fr equencySeconds</ nanme><val ue>120</ val ue></ property>
<pr oper t y><nane>webl ogi c. Test Connect i onsOnReser ve</ nane><val ue>f al se</ val ue></
property>
<pr opert y><nane>webl ogi c. Prof i | eHar vest Fr equencySeconds</ nanme><val ue>300</
val ue></ property>
<pr oper t y><nane>webl ogi c. | gnor el nUseConnect i onsEnabl ed</ nane><val ue>t r ue</
val ue></ property>
<pr opert y><nane>webl ogi c. | nacti veConnect i onTi meout Seconds</ name><val ue>0</
val ue></ property>
<pr oper t y><nane>webl ogi c. Test Tabl eNane</ name><val ue></ val ue></ pr operty>
<proper t y><nane>webl ogi c. Logi nDel aySeconds</ nane><val ue>0</ val ue></ property>
<property><name>webl ogi c. I ni t Sgl </ name><val ue></ val ue></ property>
<pr oper t y><nane>webl ogi c. St at enent CacheType</ nane><val ue>LRU</ val ue></ pr operty>
<pr oper t y><nane>webl ogi c. Renovel nf ect edConnect i ons</ nane><val ue>t r ue</ val ue></
property>
<pr oper t y><nane>webl ogi c. SecondsToTr ust Anl dl ePool Connect i on</ nane><val ue>10</
val ue></ property>
<propert y><nane>webl ogi c. St at enent Ti meout </ name><val ue>- 1</ val ue></ property>
<property><name>webl ogi c. Profi | eType</ name><val ue>0</ val ue></ property>
<pr oper t y><nane>webl ogi c. JDBCXADebugLevel </ nane><val ue>10</ val ue></ property>
<pr oper t y><nane>webl ogi c. Cr edent i al Mappi ngEnabl ed</ nane><val ue>f al se</ val ue></
property>
<pr oper t y><nane>webl ogi c. Dri ver | nt er cept or </ nane><val ue></ val ue></ property>
<propert y><name>webl ogi c. Pi nnedToThr ead</ name><val ue>f al se</ val ue></ property>
<proper t y><nane>webl ogi c. | dent i t yBasedConnect i onPool i ngEnabl ed</
name><val ue>f al se</val ue></ property>
<pr oper t y><nane>webl ogi c. W apTypes</ nane><val ue>t r ue</ val ue></ property>
<proper t y><nane>webl ogi c. Connect i onLabel i ngCal | back</ name><val ue></ val ue></
property>
<propert y><nane>webl ogi c. Fat al Er r or Codes</ name><val ue></ val ue></ property>
<pr oper t y><nane>webl ogi c. Scope</ name><val ue>Q obal </ val ue></ property>
<pr oper t y><nane>webl ogi c. RowPr ef et ch</ nane><val ue>f al se</ val ue></ property>
<pr oper t y><nane>webl ogi c. RowPr ef et chSi ze</ name><val ue>48</ val ue></ property>
<pr oper t y><nane>webl ogi c. St r eanChunkSi ze</ name><val ue>256</ val ue></ property>
<pr oper t y><nane>webl ogi c. Al gori t hniType</ name><val ue>Fai | over </ val ue></ pr operty>
<pr oper t y><nane>webl ogi c. Connect i onPool Fai | over Cal | backHandl er </ nanme><val ue></
val ue></ property>
<proper t y><nane>webl ogi c. Fai | over Request | f Busy</ name><val ue>f al se</ val ue></
property>
<pr oper t y><nane>webl ogi c. G obal Transact i onsPr ot ocol </ nane><val ue>OnePhaseCommi t </
val ue></ property>
<pr oper t y><nane>webl ogi c. KeepConnAf t er Local Tx</ nanme><val ue>t r ue</ val ue></

3-9

Chapter 3
Implementation Considerations When Using DataSource Resource Definitions

property>

<propert y><nane>webl ogi c. KeepConnAf t er G obal Tx</ name><val ue>f al se</ val ue></
property>

<pr opert y><nane>webl ogi c. UseXaDat aSour cel nt er f ace</ name><val ue>t r ue</ val ue></
property>

<pr opert y><nane>webl ogi c. UsePasswor dl ndi r ect i on</ nane><val ue>f al se</ val ue></
property>

<property><nane>webl ogi ¢. FanEnabl ed</ nane><val ue>t r ue</ val ue></ property>

<propert y><nane>webl ogi ¢c. OnsNodeLi st </ nane><val ue>| cr 01155-r: 6200</ val ue></
property>

<property><nane>webl ogi c. Ons\l | et Fi | e</ name><val ue></ val ue></ property>

<property><nane>webl ogi ¢c. Ons\Wl | et Passwor d</ name><val ue></ val ue></ property>

<pr opert y><nane>webl ogi c. Oracl eOpti mi zeUt f 8Conver si on</ nane><val ue>f al se</
val ue></ property>

<propert y><nane>webl ogi c. Connectionl ni tializationCal | back</ name><val ue></ val ue></
property>

<propert y><nane>webl ogi c. Affi ni tyPol i cy</ name><val ue>Sessi on</ val ue></ property>

<property><nane>webl ogi c. Or acl ePr oxySessi on</ nane><val ue>f al se</ val ue></ property>

<pr opert y><nane>webl ogi c. KeepXaConnTi | | TxConpl et e</ name><val ue>t r ue</ val ue></
property>

<property><nane>webl ogi ¢c. NeedTxCt xOnCdl ose</ nane><val ue>f al se</ val ue></ property>

<property><nane>webl ogi ¢c. XaEndOnl yOnce</ name><val ue>f al se</ val ue></ property>

<property><nane>webl ogi ¢c. NewXaConnFor Conmi t </ nane><val ue>f al se</ val ue></ property>

<pr opert y><nane>webl ogi c. KeepLogi cal ConnOpenOnRel ease</ nane><val ue>f al se</
val ue></ property>

<pr opert y><nane>webl ogi c. Resour ceHeal t hMoni t ori ng</ name><val ue>t r ue</ val ue></
property>

<property><nane>webl ogi c. Recover Onl yOnce</ nane><val ue>f al se</ val ue></ property>

<propert y><nane>webl ogi c. XaSet Transact i onTi meout </ name><val ue>f al se</ val ue></
property>

<property><nane>webl ogi ¢. XaTransacti onTi neout </ nanme><val ue>0</ val ue></ property>

<pr opert y><nane>webl ogi c. Rol | backLocal TxUponConnC ose</ nane><val ue>f al se</
val ue></ property>

<property><nane>webl ogi ¢. XaRet r yDur at i onSeconds</ name><val ue>0</ val ue></ property>

<propert y><nane>webl ogi c. XaRet ryl nt er val Seconds</ name><val ue>60</ val ue></
property>

</ dat a- sour ce>

For additional information, see Using Active GridLink Data Sources in Administering
JDBC Data Sources for Oracle WebLogic Server.

3.3.4 Using an Encrypted Password in a DataSourceDefinition

ORACLE

You can provide an encrypted password in the Dat aSour ceDef i ni ti on. To do so you
need to generate the password as shown in the following example, and then copy it
into the Dat aSour ceDefi ni tion

needs to be run in the domain hone directory

java webl ogi c. security. Encrypt

Password: nypassword

{ AES} OQLCnXWSgTVQsxr HgpxMI7i Zwt 7wBBI r kLPSNVEAV NK="

This val ue needs to be pasted into the DataSourceDefinition

The encrypted password is domain specific. If you use an encrypted password that
does not match the domain, it will generate an error such as:

webl ogi c. appl i cation. Mbdul eException: comrsa. | saf e. JSAFE_Paddi ngExcepti on
I'nvalid padding.:comrsa.]jsafe. JSAFE_Paddi ngException: I nvalid paddi ng

3-10

Chapter 3
Implementation Considerations When Using DataSource Resource Definitions

The following code fragment defines a data source using an encrypted password in an
annotation in a Java servlet.

@at aSour ceDef i ni ti on(

name="j ava: conp/ ds",

cl assName="or acl e. j dbc. Oracl eDri ver",

por t Nunber =1521,

server Name="nyhost ",

user ="nyuser",

dat abaseNane="nydbnane",

initial Pool Size = 0,

m nPool Si ze = 0,

maxPool Si ze = 15,

maxSt atenents = 0,

transacti onal =f al se,

properties = {"webl ogi c. Test Tabl eNanme=SQL | SVALI D",
"webl ogi c. Passwor dEncr ypt ed={ AES} OQLCn XV gTVQsxr HqpxMI7i Zwt 7wBBlI r kLPSNVeAvNk="}

)
@\ebServlet (url Patterns = "/ Get Version")

public class GetVersion extends javax.servlet.http.HtpServlet
i npl enents javax.servlet.Servlet {
@Resour ce(l ookup = "java: conp/ds")
private DataSource ds;

3.3.5 Additional Considerations

Consider the following when using a Java EE DataSource resource definition with
WebLogic Server:

e If an annotation and a descriptor have the same Dat aSour ce name in the same
scope, the attributes are merged with values specified in the deployment
descriptor. The deployment descriptor value takes precedence over values
specified in a annotation.

» A nDataSource is not a module, it is a resource created as part of a module.

e A nDataSource is not a JDBCSyst enResour ces object associated with a domain and is
not in the WebLogic Server configuration bean tree.

* You can use the JSR88 API's to view applications that include Java EE 7 Data
Sources.

* There is one runtime MBean created for each datasource definition. The name of
the MBean is the decorated name.

* WLS has a limited set of known class nhames for which it can generate a URL. For
the non-XA case, the JDBC driver and not the datasource class is often known. An
error occurs when an unknown class name is specified with a dat abaseNane,
port Number , and/or server Nane. In this case, remove dat abaseNane, port Nunber,
server Nane, and specify the URL.

* URL generation is not supported for AGL data sources.

* URL generation in general is a problem for all Oracle drivers because of the
service, database, and Oracle RAC instance formats. The best practice is to
provide the URL for Oracle drivers

ORACLE 3-11

Chapter 3
Using Data Sources in Clients

3.4 Using Data Sources in Clients

WebLogic Server allows you to implement Java EE data sources in a Java EE client
with some limitations.
The limitations are as follows:

e Transactional =true is not supported. The transaction protocol is set to NONE.

» Data Sources that are global or application in scope are visible (created) both on
the client and the server. This has the downside of using more connections.

* No permission checking is performed on a Data Source. Operations such as
reserve and shrink can be used on a local Data Source.

3.5 Additional Resources

ORACLE

Learn about additional resources for review when implementing data source resource
definitions.

e Section EE.5.17 "DataSource Resource Definition" in the Java EE 7 Specification
at http://jcp.org/enl/jsr/detail?id=316.

e The Java EE 7 Tutorial at http://docs.oracle.com/javaee/6/tutorial/doc/.

e« JDBC™ 4.1 Specification at htt p: / / downl oad. or acl e. conf ot n- pub/j cp/ j dbc-4_1-
nrel -spec/j dbc4. 1-fr-spec. pdf .

e WebLogic Server Code Examples.

3-12

http://jcp.org/en/jsr/detail?id=316
http://docs.oracle.com/javaee/6/tutorial/doc/
http://download.oracle.com/otn-pub/jcp/jdbc-4_1-mrel-spec/jdbc4.1-fr-spec.pdf

Performance Tuning Your JDBC
Application

Learn how to design and configure WebLogic Server to get the best performance from
JDBC applications.

* WebLogic Performance-Enhancing Features

» Designing Your Application for Best Performance

4.1 WebLogic Performance-Enhancing Features

WebLogic has several features that enhance performance for JDBC applications
including pooled connections and caching statements.

4.1.1 How Pooled Connections Enhance Performance

Establishing a JDBC connection with a DBMS can be very slow. If your application
requires database connections that are repeatedly opened and closed, this can
become a significant performance issue. Connection pools in WebLogic data sources
offer an efficient solution to this problem.

When WebLogic Server starts, connections in the data sources are opened and are
available to all clients. When a client closes a connection from a data source, the
connection is returned to the pool and becomes available for other clients; the
connection itself is not closed. There is little cost to opening and closing pooled
connections.

4.1.2 Caching Statements and Data

DBMS access uses considerable resources. If your program reuses prepared or
callable statements or accesses frequently used data that can be shared among
applications or can persist between connections, you can cache prepared statements
or data by using the following:

« Statement Cache for a data source
* Read-Only Entity Beans

e« JNDI in a Clustered Environment

4.2 Designing Your Application for Best Performance

Most performance gained or lost in a database application are not determined by the
application language, but by how the application is designed. The number and location
of clients, size and structure of DBMS tables and indexes, and the number and types
of queries all affect application performance.

ORACLE 4-1

Chapter 4
Designing Your Application for Best Performance

The following are general hints that apply to all DBMSs. It is also important to be
familiar with the performance documentation of the specific DBMS that you use in your
application.

4.2.1 Process as Much Data as Possible Inside the Database

Most serious performance problems in DBMS applications come from moving raw data
around needlessly, whether it is across the network or just in and out of cache in the
DBMS. A good method for minimizing this waste is to put your logic where the data is
—in the DBMS, not in the client —even if the client is running on the same box as the
DBMS. In fact, for some DBMSs a fat client and a fat DBMS sharing one CPU is a
performance disaster.

Most DBMSs provide stored procedures, an ideal tool for putting your logic where your
data is. There is a significant difference in performance between a client that calls a
stored procedure to update 10 rows, and another client that fetches those rows, alters
them, and sends update statements to save the changes to the DBMS.

Also review the DBMS documentation on managing cache memory in the DBMS.
Some DBMSs (Sybase, for example) provide the means to partition the virtual memory
allotted to the DBMS, and to guarantee certain objects exclusive use of some fixed
areas of cache. This means that an important table or index can be read once from
disk and remain available to all clients without having to access the disk again.

4.2.2 Use Built-in DBMS Set-based Processing

SQL is a set processing language. DBMSs are designed from the ground up to do set-
based processing. Accessing a database one row at a time is, without exception,
slower than set-based processing and, on some DBMSs is poorly implemented. For
example, it will always be faster to update each of four tables one at a time for all the
100 employees represented in the tables than to alter each table 100 times, once for
each employee.

Many complicated processes that were originally thought too complex to do any other
way but row-at-a-time have been rewritten using set-based processing, resulting in
improved performance. For example, a major payroll application was converted from a
huge slow COBOL application to four stored procedures running in series, and what
took hours on a multi-CPU machine now takes fifteen minutes with many fewer
resources used.

4.2.3 Make Your Queries Smart

ORACLE

Frequently customers ask how to tell how many rows will be coming back in a given
result set. The only way to find out without fetching all the rows is by issuing the same
query using the count keyword:

SELECT count(*) from myTabl e, yourTable where ...

This returns the number of rows the original query would have returned, assuming no
change in relevant data. The actual count may change when the query is issued if
other DBMS activity has occurred that alters the relevant data.

Be aware, however, that this is a resource-intensive operation. Depending on the
original query, the DBMS may perform nearly as much work to count the rows as it will
to send them.

4-2

ORACLE

Chapter 4
Designing Your Application for Best Performance

Make your application queries as specific as possible about what data it actually
wants. For example, tailor your application to select into temporary tables, returning
only the count, and then sending a refined second query to return only a subset of the
rows in the temporary table.

Learning to select only the data you really want at the client is crucial. Some
applications ported from ISAM (a pre-relational database architecture) will
unnecessarily send a query selecting all the rows in a table when only the first few
rows are required. Some applications use a 'sort by' clause to get the rows they want
to come back first. Database queries like this cause unnecessary degradation of
performance.

Proper use of SQL can avoid these performance problems. For example, if you only
want data about the top three earners on the payroll, the proper way to make this
query is with a correlated subquery. Table 4-1 shows the entire table returned by the
SQL statement

select * from payrol |

Table 4-1 Full Results Returned
]

Name Salary
Joe 10
Mike 20
Sam 30
Tom 40
Jan 50
Ann 60
Sue 70
Hal 80
May 80

A correlated subquery

sel ect p.nane, p.salary frompayroll p
where 3 >= (select count(*) from payroll pp
where pp.salary >= p.salary);

returns a much smaller result, shown in Table 4-2.

Table 4-2 Results from Subquery
|

Name Salary
Sue 70
Hal 80
May 80

4-3

Chapter 4
Designing Your Application for Best Performance

This query returns only three rows, with the name and salary of the top three earners.
It scans through the payroll table, and for every row, it goes through the whole payroll
table again in an inner loop to see how many salaries are higher than the current row
of the outer scan. This may look complicated, but DBMSs are designed to use SQL
efficiently for this type of operation.

4.2.4 Make Transactions Single-batch

Whenever possible, collect a set of data operations and submit an update transaction
in one statement in the form:

BEG N TRANSACTI ON
UPDATE TABLEL. ..
I NSERT | NTO TABLE2
DELETE TABLE3
COWM T

This approach results in better performance than using separate statements and
commits. Even with conditional logic and temporary tables in the batch, it is preferable
because the DBMS obtains all the locks necessary on the various rows and tables,
and uses and releases them in one step. Using separate statements and commits
results in many more client-to-DBMS transmissions and holds the locks in the DBMS
for much longer. These locks will block out other clients from accessing this data, and,
depending on whether different updates can alter tables in different orders, may cause
deadlocks.

Caution: If any individual statement in the preceding transaction fails, due, for
instance, to violating a unique key constraint, you should put in conditional SQL logic
to detect statement failure and to roll back the transaction rather than commit. If, in the
preceding example, the insert failed, most DBMSs return an error message about the
failed insert, but behave as if you got the message between the second and third
statement, and decided to commit anyway! Microsoft SQL Server offers a connection
option enabled by executing the SQL set xact _abort on, which automatically rolls back
the transaction if any statement fails.

4.2.5 Never Have a DBMS Transaction Span User Input

ORACLE

If an application sends a ' BEG N TRAN and some SQL that locks rows or tables for an
update, do not write your application so that it must wait on the user to press a key
before committing the transaction. That user may go to lunch first and lock up a whole
DBMS table until the user returns.

If you require user input to form or complete a transaction, use optimistic locking.
Briefly, optimistic locking employs timestamps and triggers in queries and updates.
Queries select data with timestamp values and prepare a transaction based on that
data, without locking the data in a transaction.

When an update transaction is finally defined by the user input, it is sent as a single
submission that includes time-stamped safeguards to make sure the data is the same
as originally fetched. A successful transaction automatically updates the relevant
timestamps for changed data. If an interceding update from another client has altered
data on which the current transaction is based, the timestamps change, and the
current transaction is rejected. Most of the time, no relevant data has been changed so
transactions usually succeed. When a transaction fails, the application can fetch the
updated data again to present to the user to reform the transaction if desired.

4-4

Chapter 4
Designing Your Application for Best Performance

4.2.6 Use In-place Updates

Changing a data row in place is much faster than moving a row, which may be
required if the update requires more space than the table design can accommodate. If
you design your rows to have the space they need initially, updates will be faster,
although the table may require more disk space. Because disk space is cheap, using a
little more of it can be a worthwhile investment to improve performance.

4.2.7 Keep Operational Data Sets Small

Some applications store operational data in the same table as historical data. Over
time and with accumulation of this historical data, all operational queries have to read
through lots of useless (on a day-to-day basis) data to get to the more current data.
Move non-current data to other tables and do joins to these tables for the rarer
historical queries. If this can't be done, index and cluster your table so that the most
frequently used data is logically and physically localized.

4.2.8 Use Pipelining and Parallelism

ORACLE

DBMSs are designed to work best when very busy with lots of different things to do.
The worst way to use a DBMS is as dumb file storage for one big single-threaded
application. If you can design your application and data to support lots of parallel
processes working on easily distinguished subsets of the work, your application will be
much faster. If there are multiple steps to processing, try to design your application so
that subsequent steps can start working on the portion of data that any prior process
has finished, instead of having to wait until the prior process is complete. This may not
always be possible, but you can dramatically improve performance by designing your
program with this in mind.

4-5

Chapter 4

Designing Your Application for Best Performance

ORACLE" 4-6

Using WebLogic-branded DataDirect

Drivers

5.1 Using

Learn about the WebLogic-branded DataDirect drivers that are included in the
WebLogic Server distribution.

» Using DataDirect Documentation

» JDBC Specification Compliance

* Installation

e Supported Drivers and Databases

e Connecting Through WebLogic JDBC Data Sources
* Developing Your Own JDBC Code

» Specifying Connection Properties

e Using IP Addresses

* Required Permissions for the Java Security Manager
e For MS SQLServer Users

DataDirect Documentation

Oracle provides WebLogic-branded versions of DataDirect drivers for DB2, Informix,
MS SQL Server, and Sybase. Learn how WebLogic-branded DataDirect drivers are
configured and used in a WebLogic Server environment.

For detailed information on these drivers, see "Progress DataDirect for JDBC User's
Guide Release 5.1" and "Progress DataDirect for JDBC Reference Release 5.1" at
http://www.datadirect.com/index.html. You will need to make the following adaptations
where appropriate when using DataDirect documentation:

e URLSs: substitute "weblogic" for "datadirect"

e Install directory: the fully qualified installation directory for WebLogic-branded
DataDirect drivers is ORACLE_HOME\ or acl e_conmon\ nodul es\ dat adi r ect .

5.2 JDBC Specification Compliance

ORACLE

WebLogic-branded Data Direct drivers are compliant with the JDBC 4.0 specification.

5-1

http://www.datadirect.com/index.html

Chapter 5
Installation

Note:

When comparing WebLogic Server behavior when using drivers from different
vendors, it is important to remember that even though the drivers are JDBC
specification compliant, a vendor may interpret the specification differently or
provide different implementations for a given situation.

For example: When using the WebLogic-branded SQL Server driver, if you
enter a negative value (-100) into a TI NYI NT column where the schema defines
the range as 0 to 256, the driver throws an exception, whereas the Microsoft
SQL Server driver ignores the minus sign.

5.3 Installation

Learn about the installation of DataDirect drivers with WebLogic Server.
WebLogic-branded DataDirect drivers are installed with WebLogic Server in the
ORACLE_HOME\ or acl e_conmon\ nodul es\ dat adi rect folder, where ORACLE_HOME is the
directory in which you installed WebLogic Server. Driver jar files are included in the
manifest classpath in webl ogi c. j ar, so the drivers are automatically added to your
classpath on the server.

Note:

WebLogic-branded DataDirect drivers are installed by default when you
perform a complete installation of WebLogic Server. If you choose a custom
installation, ensure that the WebLogic JDBC Drivers option is selected
(checked). If this option is unchecked, the drivers are not installed.

WebLogic-branded DataDirect drivers are not included in the manifest classpath of the
WebLogic client jar files (for example: wi client.jar). To use the drivers with a
WebLogic client, you must copy the following files to the client and add them to the
classpath on the client:

e ForDB2:wdb2.jar

e For Informix: winform x.jar

 For MS SQL Server: w sql server. jar
e For Sybase: w sybase. j ar

5.4 Supported Drivers and Databases

Learn about supported drivers and databases.
For information on driver and database support, see http: //ww. or acl e. cont
technet wor k/ mi ddl ewar e/ i as/ downl oads/ f usi on-certification-100350. htm .

ORACLE 5-2

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Chapter 5
Connecting Through WebLogic JDBC Data Sources

5.5 Connecting Through WebLogic JDBC Data Sources

To create a physical database connection in the data source, create a JDBC data
source in your WebLogic Server configuration and select the JDBC driver.
Applications can then look up the data source on the JNDI tree and request a
connection.

See the following related information:

e For information about JDBC and data sources in WebLogic Server, see
Administering JDBC Data Sources for Oracle WebLogic Server.

e For information about requesting a connection from a data source, see Obtaining a
Client Connection Using a DataSource in Developing JDBC Applications for
Oracle WebLogic Server.

5.6 Developing Your Own JDBC Code

You can develop JDBC code that uses the WebLogic-branded DataDirect drivers as
long as the code is included in the WebLogic Server CLASSPATH.

5.7 Specifying Connection Properties

5.8 Using

You specify connection properties for connections in a data source using the
WebLogic Server Administration Console, command line interface, or JIMX API.
Connection properties vary by DBMS.

For the list of the connection properties specific to each of the WebLogic-branded
DataDirect drivers, see the "Connection Properties" section for your driver in "Progress
DataDirect for JDBC User's Guide".

IP Addresses

WebLogic-branded DataDirect drivers support Internet Protocol (IP) addresses in IPv4
and IPv6 format.

For details, see"Progress DataDirect for JDBC User's Guide Release 5.1" at http://
www.datadirect.com/index.html. In a WebLogic environment, simply convert the

j dbc: dat adi rect portion of the URL to j dbc: webl ogi ¢. For example, the following
connection URL specifies the server using IPv4 format:

j dbc: webl ogi c: db2://123. 456. 78. 90: 50000; Dat abaseNane=j dbc; User =t est ;
Passwor d=secr et

5.9 Required Permissions for the Java Security Manager

ORACLE

Using WebLogic-branded DataDirect drivers with the Java Security Manager enabled
requires certain permissions to be set in the security policy file of the domain.
WebLogic Server provides a sample security policy file that you can edit and use.
The file is located at ORACLE_HOVE\ wl ser ver\server\lib. The webl ogi c. pol i cy file
includes all necessary permissions for the drivers.

If you use the webl ogi c. pol i cy file without changes, you may not need to grant any
further permissions. If you use another security policy file or if you use driver features

5-3

http://www.datadirect.com/index.html
http://www.datadirect.com/index.html

Chapter 5
For MS SQLServer Users

that require additional permissions, see the "Progress DataDirect for JDBC User's
Guide Release 5.1" at http://www.datadirect.com/index.html. Use ORACLE_HOVE
\oracl e_common\ modul es\ dat adi rect as the install_dir where ORACLE_HOVE is the
directory in which you installed WebLogic Server.

For more information about using the Java Security Manager with WebLogic Server,
see Using Java Security to Protect WebLogic Resources in Developing Applications
with the WebLogic Security Service.

5.10 For MS SQLServer Users

Learn about configuring MS SQLServer for use with DataDirect MS SQL Server driver.
e Installing MS SQLServer XA DLLs
e Using instjdbc.sql with MS SQLServer

5.10.1 Installing MS SQLServer XA DLLs

WebLogic Server provides the following XA dlls for MS SQL Server:

e sqljdbc.dll: for 32-bit Windows
e 64sqljdbc.dll: for 64-bit Windows
* X64sqljdbc.dl: for the X64 processors

To install, do the following:

1. cd to the ORACLE HOME\ or acl e_common\ nodul es\ dat adi rect directory
2. For:
e 32-bit Windows systems, install the sql j dbc. dI | file.

* 64-bit Windows systems, copy the 64sql j dbc. dl | file, rename as sql j dbc.dl |,
and then install the sql j dbc. dlI | file.

» X64 processors, copy the X64sql j dbc. dl | file, rename as sql j dbc. dl |, and then
install the sql j dbc. dI | file.

5.10.2 Using instjdbc.sqgl with MS SQLServer

There is a known error in some versions of the DataDirect i nstj dbc. sql script that
installs stored procedures into MS SQLServer versions 2008 and newer. The
workaround is to replace all instances of dunp tran master with no_| og in the

i nstjdbc. sgl script with DBCC SHRI NKFI LE(mast | og, 1).

ORACLE 5-4

http://www.datadirect.com/index.html

Using WebLogic Wrapper Drivers

Learn how to use deprecated WebLogic wrapper drivers with WebLogic Server.

Note:

Oracle recommends that you use DataSource objects to get database
connections in new applications. DataSource objects, along with the JNDI
tree, provide access to pooled connections in a data source for database
connectivity. The WebLogic wrapper drivers are deprecated. For existing or
legacy applications that use the JDBC 1.x API, you can use the WebLogic
wrapper drivers to get database connectivity.

This chapter includes the following sections:

e Using the WebLogic RMI Driver (Deprecated)
e Using the WebLogic JTS Driver (Deprecated)

6.1 Using the WebLogic RMI Driver (Deprecated)

A RMI driver client makes connections to the DBMS by looking up the DataSource
object. This lookup is accomplished by using a Java Naming and Directory Service
(JNDI) lookup, or by directly calling WebLogic Server which performs the JNDI lookup
on behalf of the client.

Note:

RMI driver client functionality is deprecated and will be removed in future
release. None of the features exposed in W.Connect i on and W.Dat aSour ce are
supported by RMI driver clients.

The RMI driver replaces the functionality of both the WebLogic t3 driver (deprecated)
and the Pool driver (deprecated), and uses the Java standard Remote Method
Invocation (RMI) to connect to WebLogic Server rather than the proprietary t3 protocol.

Because the details of the RMI implementation are taken care of automatically by the
driver, a knowledge of RMI is not required to use the WebLogic JDBC/RMI driver.

6.1.1 RMI Driver Client Interoperability

Interoperability with earlier WebLogic Server releases is limited. Participants (client/
server or servers-to-server) must be from the same major release. Early 10.x clients

ORACLE 6-1

Chapter 6
Using the WebLogic RMI Driver (Deprecated)

can be updated to interoperate with later point and patch set releases by adding the
ucp. j ar to the CLASSPATH.

6.1.2 Security Considerations for WebLogic RMI Drivers

ORACLE

Prior to WebLogic Server 10.3.2.0, RMI driver clients allowed unauthorized RMI
access to a DataSource object which is a potential security vulnerability as it may
provide a client uncontrolled access to a database. Oracle recommends replacing RMI
driver clients with WebLogic data sources in these environments or implementing
strong network security measures when RMI driver clients are used.

For servers in WebLogic Server 10.3.2.0 and later domains, RMI access to
DataSource objects is controlled at the server level by the webl ogi c. j dbc. r enpt eEnabl ed
system property and is enabled by default. To disable RMI driver clients to access
DataSource objects, set the value of the webl ogi c. j dbc. r emot eEnabl ed property to

fal se. Oracle recommends replacing RMI driver clients with WebLogic data sources or
implementing strong network security measures when RMI driver clients are used.

For servers in WebLogic Server 10.3.6.0 and higher domains, you can secure RMI
driver client communication with DataSource objects at the server level by setting the
RM JDBC Security parameter to Secure.

Valid values are:

* Secure—All incoming JDBC calls made over RMI by remote clients and servers
are disabled. All incoming JDBC calls using JTS have administrator authentication.
All other subjects, including anonymous, are rejected. This option requires one of
the following:

— For Intra-domain communication: A configured SSL listen port.

— For Inter-domain communication: Configured Cross-Domain security between
participating domains. See Enabling Cross Domain Security Between
WebLogic Server Domains in Administering Security for Oracle WebLogic
Server.

If security is not configured, all operations fail with an exception.

* Compatibility—Use an unsecure channel with the application's subject and no
administrator authentication when using RMI to access a data source. This setting
reflects the legacy implementation behavior for RMI access to a data source and is
a potential security vulnerability as it provides a client uncontrolled access to a
database. This setting should only be used when strong network security is in
place. Conpati bility is the default value.

See Enable RMI JDBC security in the Oracle WebLogic Server Administration Console
Online Help.

Note:

If the webl ogi c. j dbc. r enpt eEnabl ed system property is set to f al se, it overrides
the RM JDBC Security and provides backward compatibility with existing
applications.

6-2

Chapter 6
Using the WebLogic RMI Driver (Deprecated)

6.1.3 Setting Up WebLogic Server to Use the WebLogic RMI Driver

The RMI driver is accessible through DataSource objects, which are created in the
WebLogic Server Administration Console. You should create DataSource objects in
your WebLogic Server configuration before you use the RMI driver in your
applications.

6.1.4 Sample Client Code for Using the RMI Driver

The following code samples show how to use the RMI driver to get and use a
database connection from a WebLogic Server data source.

6.1.4.1 Import the Required Packages

Before you can use the RMI driver to get and use a database connection, you must
import the following packages:

j avax. sql . Dat aSour ce
java.sqgl.*
java.util.*

j avax. nam ng. *

6.1.4.2 Get the Database Connection

The WebLogic JDBC/RMI client obtains its connection to a DBMS from the
DataSource object that you defined in the WebLogic Server Administration Console.
There are two ways the client can obtain a DataSource object:

* Using a JNDI lookup. This is the preferred and most direct procedure.

* Passing the DataSource name to the RMI driver with the Dri ver. connect () method.
In this case, WebLogic Server performs the JNDI look up on behalf of the client.

6.1.4.3 Using a JNDI Lookup to Obtain the Connection

To access the WebLogic RMI driver using JNDI, obtain a context from the JNDI tree
by looking up the name of your DataSource object. For example, to access a
DataSource called "nyDat aSour ce" that is defined in the WebLogic Server
Administration Console:

Context ctx = null;
Hasht abl e ht = new Hashtabl e();
ht . put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"webl ogi c.jndi.Wlnitial ContextFactory");
ht . put (Cont ext . PROVI DER_URL,
"t3://hostname: port");
try {
ctx = new Initial Context(ht);
j avax. sql . DataSource ds
= (javax. sql . DataSource) ctx.|ookup ("myDataSource");
j ava. sql . Connection conn = ds. get Connection();
/1 You can now use the conn object to create
/] a Statement object to execute
/1 SQ statenents and process result sets:
Statenent stnt = conn.createStatenent();
stnt.execute("sel ect * from soneTable");

ORACLE 6-3

Chapter 6
Using the WebLogic RMI Driver (Deprecated)

ResultSet rs = stnt.getResultSet();
/] Do not forget to close the statement and connection objects
/1 when you are finished:

}
catch (Exception e) {

/I a failure occurred
| og message;

1
} finally {
try {
ctx.close();
} catch (Exception e) {
| og message; }
try {
if (rs!=null) rs.close();
} catch (Exception e) {
| og message; }
try {
if (stmt !'=null) stnt.close();
} catch (Exception e) {
| og message; }
try {
if (conn !=null) conn.close();
} catch (Exception e) {
| og message; }

}

(Where host nane is the name of the machine running your WebLogic Server and port
is the port number where that machine is listening for connection requests.)

In this example a Hashtable object is used to pass the parameters required for the
JNDI lookup. There are other ways to perform a JNDI lookup. See Developing JNDI
Applications for Oracle WebLogic Server.

Notice that the JNDI lookup is wrapped in a try/ cat ch block in order to catch a failed
look up and also that the context is closed in a final |y block.

Note:

It may be possible to access a vendor-specific interface. This is done without
RMI by casting to the vendor interface. For example:

O acl eConnection oc = (Oracl eConnection) cconn;

This may not work if the vendor interface is not Seri al i zabl e. When a server is
acting as a client, set net wor kGl assLoadi ngEnabl ed to t rue on the server so that
the generated RMI class is available (the default is t r ue for stand-alone
clients).

6.1.4.4 Using Only the WebLogic RMI Driver to Obtain a Database Connection

ORACLE

Instead of looking up a DataSource object to get a database connection, you can
access WebLogic Server using the Dri ver. connect () method, in which case the
JDBC/RMI driver performs the JNDI lookup. To access the WebLogic Server, pass the
parameters defining the URL of your WebLogic Server and the name of the
DataSource object to the Dri ver. connect () method. For example, to access a

6-4

Chapter 6
Using the WebLogic RMI Driver (Deprecated)

DataSource called "myDataSource" as defined in the WebLogic Server Administration
Console:

java.sql.Driver nyDriver = (java.sql.Driver)
C ass. forNanme("webl ogi c.jdbc.rm.Driver").new nstance();

String url = "jdbc:weblogic:rm";
java.util.Properties props = new java.util.Properties();
props. put ("webl ogi c. server.url", "t3://hostname: port");

props. put ("webl ogi c. j dbc. dat asour ce”, "nyDataSource");
java. sql . Connection conn = nyDriver.connect(url, props);

(Where host nane is the name of the machine running your WebLogic Server and port
is the port number where that machine is listening for connection requests.)

You can also define the following properties which will be used to set the JNDI user
information:

e webl ogi c. user—specifies a username

* webl ogi c. credent i al —specifies the password for the webl ogi c. user.

6.1.5 Row Caching with the WebLogic RMI Driver

ORACLE

Row caching is a WebLogic Server JDBC feature that improves the performance of
your application. Normally, when a client calls Resul t Set . next (), WebLogic Server
fetches a single row from the DBMS and transmits it to the client JVM. With row
caching enabled, a single call to Resul t Set . next () retrieves multiple DBMS rows, and
caches them in client memory. By reducing the number of trips across the wire to
retrieve data, row caching improves performance.

Note:

WebLogic Server will not perform row caching when the client and WebLogic
Server are in the same JVM.

You can enable and disable row caching and set the number of rows fetched per
Resul t Set . next () call with the data source attributes Row Prefetch Enabled and Row
Prefetch Size, respectively. You set data source attributes via the WebLogic Server
Administration Console. To enable row caching and to set the row prefetch size
attribute for a data source, follow these steps:

1. If you have not already done so, in the Change Center of the WebLogic Server
Administration Console, click Lock & Edit.

2. In the Domain Structure tree, expand Services > JDBC, then select Data Sources.
3. Onthe Summary of Data Sources page, click the data source name.
4. Select the Configuration: General tab and then do the following:.

a. Select the Row Prefetch Enabled check box.

b. In Row Prefetch Size, type the number of rows you want to cache for each
Resul t Set . next () call.

5. Click Save.

6-5

6.

Chapter 6
Using the WebLogic RMI Driver (Deprecated)

To activate these changes, in the Change Center of the WebLogic Server
Administration Console, click Activate Changes.

See the JDBC Data Source: Configuration: General page in the Oracle WebLogic

Server Administration Console Online Help.

6.1.5.1 Important Limitations for Row Caching with the WebLogic RMI Driver

ORACLE

Keep the following limitations in mind if you intend to implement row caching with the
RMI driver:

WebLogic Server only performs row caching if the result set type is both
TYPE_FORWARD_ONLY and CONCUR_READ_ONLY.

Certain data types in a result set may disable caching for that result set. These
include the following:

LONGVARCHAR/LONGVARBINARY

NULL
BLOB/CLOB
ARRAY

REF

STRUCT
JAVA_OBJECT

Certain ResultSet methods are not supported if row caching is enabled and active
for that result set. Most pertain to streaming data, scrollable result sets or data
types not supported for row caching. These include the following:

get Asci i Strean()
get Uni codeSt rean()
get Bi naryStream()
get Char act er Strean()
i sBef orelLast ()

i sAfterLast()
isFirst()

i sLast()

get Row()

get Cbj ect (Map)

get Ref ()

get Bl ob()/get d ob()
get Array()

get Date()

get Ti me()

get Ti nest anp()

6-6

Chapter 6
Using the WebLogic JTS Driver (Deprecated)

6.1.6 Limitations When Using Global Transactions

Populating a RowSet in a global transaction may fail with Fetch Qut O Sequency
exception. For example:

1. When the RMI call returns, the global transaction is suspended automatically by
the server instance.

2. The JDBC driver invalidates the pending Resul t Set object to release the system
resources.

3. The client tries to read data from the invalidated Resul t Set .

4. AFetch Qut O Sequency exception is thrown if that data has not been prefetched.
Since the number of rows prefetched is vendor specific, you may or may not
encounter this issue, especially when working with one or two rows.

If you encounter this exception, make sure to populate the RowSet on the server side
and then serialize it back to the client.

6.2 Using the WebLogic JTS Driver (Deprecated)

ORACLE

The Java Transaction Services or JTS driver is a server-side JDBC driver that
provides access to both data sources and global transactions from applications
running in WebLogic Server.Connections to a database are made from a data source
and use a JDBC driver in WebLogic Server to connect to the Database Management
System (DBMS) on behalf of your application.

Your application uses the JTS driver to access a connection from the data source.

WebLogic Server also uses the JTS driver internally when a connection from a data
source that uses a non-XA JDBC driver participates in a global transaction (Logging
Last Resource and Emulate Two-Phase Commit). This behavior enables a non-XA
resource to emulate XA and participate in a two-phase commit transaction. See JDBC
Data Source Transaction Options in Administering JDBC Data Sources for Oracle
WebL ogic Server.

Note:

The WebLogic Server JTS driver only supports T3 protocol when participating
connections that use Logging Last Resource (LLR).

Once a transaction begins, all database operations in an execute thread that get their
connection from the same data source share the same connection from that data
source. These operations can be made through services such as Enterprise
JavaBeans (EJB) or Java Messaging Service (JMS), or by directly sending SQL
statements using standard JDBC calls. All of these operations will, by default, share
the same connection and participate in the same transaction. When the transaction is
committed or rolled back, the connection is returned to the pool.

Although Java clients may not register the JTS driver themselves, they may participate
in transactions via Remote Method Invocation (RMI). You can begin a transaction in a
thread on a client and then have the client call a remote RMI object. The database
operations executed by the remote object become part of the transaction that was

6-7

Chapter 6
Using the WebLogic JTS Driver (Deprecated)

begun on the client. When the remote object is returned back to the calling client, you
can then commit or roll back the transaction. The database operations executed by the
remote objects must all use the same data source to be part of the same transaction.

For the JTS driver and your application to participate in a global transaction, the
application must call conn = nyDriver. connect ("j dbc: webl ogi c:jts", props); within a
global transaction. After the transaction completes (gets committed or rolled back),
WebLogic Server puts the connection back in the data source. If you want to use a
connection for another global transaction, the application must call conn =

nyDriver. connect ("j dbc: webl ogi c:jts", props); again within a new global transaction.

6.2.1 Sample Client Code for Using the JTS Driver

To use the JTS driver, you must first use the WebLogic Server Administration Console
to create a data source in WebLogic Server.

This explanation demonstrates creating and using a JTS transaction from a server-
side application and uses a data source named "myDat aSour ce."

1. Import the following classes:

i mport javax.transaction. User Transacti on;
import java.sql.*;

i mport javax. naming. *;

import java.util.*;

i mport webl ogic.jndi.*;

2. Establish the transaction by using the User Transact i on class. You can look up this
class on the JNDI tree. The User Transact i on class controls the transaction on the
current execute thread. Note that this class does not represent the transaction
itself. The actual context for the transaction is associated with the current execute
thread.

Context ctx = null;
Hasht abl e env = new Hasht abl e();

env. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"webl ogi c.jndi. W.Initial ContextFactory");

/| Paraneters for the WebLogic Server.

/1 Substitute the correct hostname, port nunber

/1 user name, and password for your environnent:

env. put (Cont ext. PROVIDER URL, "t3://local host: 7001");
env. put (Cont ext. SECURI TY_PRI NCI PAL, "Fred");

env. put (Cont ext . SECURI TY_CREDENTI ALS, "secret");

ctx = new I nitial Context(env);

User Transaction tx = (UserTransaction)
ctx. | ookup("javax.transaction. User Transaction");

3. Start a transaction on the current thread:

/1 Start the global transaction before getting a connection
tx. begin();

4. Load the JTS driver:

Driver nyDriver = (Driver)
C ass. forNanme("webl ogi c.jdbc.jts.Driver").new nstance();

ORACLE 6-8

ORACLE

Chapter 6
Using the WebLogic JTS Driver (Deprecated)

. Get a connection from the data source:

Properties props = new Properties();
props. put ("connecti onPool I D', "nyDat aSource");

conn = nyDriver.connect ("jdbc: weblogic:jts", props);

. Execute your database operations. These operations may be made by any service

that uses a database connection, including EJB, JMS, and standard JDBC
statements. These operations must use the JTS driver to access the same data
source as the transaction begun in step 3 in order to participate in that transaction.

If the additional database operations using the JTS driver use a different data
source than the one specified in step 5, an exception will be thrown when you try to
commit or roll back the transaction.

. Close your connection objects. Note that closing the connections does not commit

the transaction nor return the connection to the pool:

conn. cl ose();

. Complete the transaction by either committing the transaction or rolling it back. In

the case of a commit, the JTS driver commits all the transactions on all connection
objects in the current thread and returns the connection to the pool.

tx.commt();
Il or:

tx.roll back();

6-9

Chapter 6

Using the WebLogic JTS Driver (Deprecated)

ORACLE" 6-10

Using API Extensions in JDBC Drivers

7.1 Using

Learn how to configure and use third-party JDBC drivers, including using API
extensions and batch processing, with Oracle Thin Drivers.

» Using API Extensions to JDBC Interfaces
» Using API Extensions for Oracle JDBC Types
» Using Batching with the Oracle Thin Driver

* Using the Java Security Manager with the Oracle Thin Driver

API| Extensions to JDBC Interfaces

WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn
about the new interfaces and how they map to the deprecated Oracle concrete
classes.

To use the extension methods exposed in the JDBC driver, you must include these
steps in your application code:

* Import the driver interfaces from the JDBC driver used to create connections in the
data source.

» Get a connection from the data source.
» Cast the connection object as the vendor's connection interface.
* Use the API extensions as described in the vendor's documentation.

* Wrap the JNDI lookup in a try/ cat ch block in order to catch a failed look up and
ensure the context is closed in a final | y block.

The following sections provide details on using APl extensions and supporting code
examples. For information about specific extension methods for a particular JDBC
driver, refer to the documentation from the JDBC driver vendor.

7.1.1 Sample Code for Accessing API Extensions to JDBC Interfaces

The following code examples use extension methods available in the Oracle Thin
driver to illustrate how to use API extensions to JDBC. You can adapt these examples
to fit methods exposed in your JDBC driver.

7.1.1.1 Import Packages to Access API Extensions

ORACLE

Import the interfaces from the JDBC driver used to create the connection in the data
source. This example uses interfaces from the Oracle Thin Driver.

import java.sql.*;

import java.util.*;

i mport javax. naning. Cont ext;

i mport javax.naming.Initial Context;
i mport javax.sql. Dat aSour ce;

i mport oracle.jdbc.*;

7-1

Chapter 7
Using API Extensions for Oracle JDBC Types

[l Inport driver interfaces. The driver nust be the same driver
/1 used to create the database connection in the data source.

7.1.1.2 Get a Connection

Establish the database connection using JNDI, Dat aSour ce, and data source objects.

/] Get a valid DataSource object for a data source.

/] Here we assume that getDataSource() takes

Il care of those details.

javax. sql . DataSource ds = get Dat aSource(args);

/] get a java.sql.Connection object fromthe DataSource
java. sql . Connection conn = ds. get Connection();

7.1.1.3 Cast the Connection as a Vendor Connection

Now that you have the connection, you can cast it as a vendor connection. This
example uses the O acl eConnect i on interface from the Oracle Thin Driver.

Oracl eConnection = (oracle.jdbc. Oracl eConnection) conn;

7.1.1.4 Use API Extensions

7.2 Using

ORACLE

The following code fragment shows how to use the Oracle Row Pr ef et ch method
available from the Oracle Thin driver.

Example 7-1 Using an API Extension

/1 Cast to OracleConnection and retrieve the
/1 default row prefetch value for this connection.
int default_prefetch =

((oracle.jdbc. Oracl eConnection) conn). get Def aul t RowPr ef et ch();
/1 Cast to OracleStatement and set the row prefetch
/1 value for this statement. Note that this
Il prefetch value applies to the connection between
/| WeblLogic Server and the database.

((oracle.jdbc. Oracl eStatenment)stnt). set RowPref et ch(20);

/| Performa normal sql query and process the results...
String query = "sel ect enpno, enane fromenp";
java.sql.ResultSet rs = stnt.executeQuery(query);
while(rs.next()) {

java. mat h. Bi gDeci mal enpno = rs. get Bi gDeci mal (1);

String ename = rs.getString(2);

Systemout. printin(enpno + "\t" + enane);

rs.close();

stnt.close()
conn. cl ose()
conn = null;

API Extensions for Oracle JDBC Types

WebLogic Server has implemented new interfaces for Oracle JDBC Types. Learn
about the new interfaces and how they map to the deprecated Oracle concrete
classes.

When Oracle implemented JDBC, concrete classes were used instead of using
interfaces for Oracle JDBC Types. There are many of drawbacks in using concrete

7-2

ORACLE

Chapter 7
Using API Extensions for Oracle JDBC Types

classes and in the 11.2.0.3 driver there are new interfaces corresponding to the Oracle
types. The concrete classes now implement a public interface from the package

oracl e. j dbc. Programmers should use methods exposed in j ava. sql whenever
possible and for Oracle extension methods use oracl e. j dbc.

In the mean time, WebLogic Server implemented corresponding interfaces that could
be used to work around the limitations of the concrete classes. These are now
deprecated and should be replaced with the corresponding or acl e. j dbc interfaces.

In Database version 11.2.0.3 the following types have interfaces.

Old Oracle types Deprecated WLS Interface New interfaces

oracle.sql.ARRAY weblogic.jdbc.vendor.oracle. oracle.jdbc.OracleArray
OracleArray

oracle.sql.STRUCT weblogic.jdbc.vendor.oracle. oracle.jdbc.OracleStruct
OracleStruct

oracle.sql.CLOB weblogic.jdbc.vendor.oracle. oracle.jdbc.OracleClob
OracleThinClob
oracle.sql.BLOB weblogic.jdbc.vendor.oracle. oracle.jdbc.OracleBlob

OracleThinBlob

oracle.sql.REF weblogic.jdbc.vendor.oracle. oracle.jdbc.OracleRef
OracleRef

Changing the code to use new interfaces is not difficult, but should be handled with
care. The below examples use oracl e. sgl . ARRAY and similar changes apply to other
types as well. A list of suggested changes is mentioned below:

* Inport: Modify import statements to use the new interfaces (or acl e. j dbc) instead of
old interfaces (oracl e. sql or webl ogi c. j dbc. vendor . or acl e).

e Declaration: Use standard Java interfaces for declaration whenever possible. If
there is a need to use Oracle extension, use the new Oracle interfaces under
oracle.jdbc.

* Methods: Use standard Java interfaces whenever possible:

— (Oracle Types): Use methods in standard Java interfaces whenever possible.
If required use methods from Oracle interfaces under oracl e. j dbc.

— (Defines): Refrain from using Oracle specific methods such as get ARRAY;
instead use standard Java methods such as get Array or get Obj ect for those
that do have standard Java interfaces.

— (Binds): Refrain from using Oracle specific methods such as set ARRAY; instead
use standard Java methods such as set Array or set Obj ect for the ones that do
have standard Java interfaces.

Replacing import statements can be done by a script that uses find and sed. For
example:

find . -name "*.java" -exec egrep ... > files.list
for f in “cat files.list™; do

cat $f |sed 's@inport oracle\.sql\. ARRAY@racl e\ . dbc. OracleArray@' > /tnp/
tenp. txt

7-3

Chapter 7
Using API Extensions for Oracle JDBC Types

mv /tnp/tenp. txt $f

done

Programmers should use factory methods on oracl e. j dbc. Oracl eConnect i on to create
an instance of the types. For example:

int[] intArray = { 5, 7, 9};

oracle.sql. ArrayDescriptor aDescriptor = new
oracl e.sql.ArrayDescriptor("SCOIT. TYPEL", connection);

oracl e.sqgl . ARRAY array = new oracl e. sql . ARRAY(aDescriptor, connection, intArray);

should be changed to:

int[] intArray = { 5, 7, 9};
java.sql.Array array = connection.createOacl eArray("SCOTT. TYPEL", intArray);

Note:

Oracle does not support anonymous array types and so does not support the
standard Connect i on. cr eat eArray>f method. Instead, use creat eOracl eArray as
shown in the sample above.

There are some methods that are no longer available because:

e There is a way to accomplish the same end using standard or already
public methods.

e The method refers to a deprecated type.
e The method does not add significant value.

In these cases, the code needs to be modified to use standard API's.

7.2.1 Sample Code for Accessing Oracle Thin Driver Extensions to
JDBC Interfaces

The following code examples show how to access the interfaces for Oracle
extensions, including interfaces for:

* Arrays—See Programming with Arrays.

e Structs—See Programming with Structs.

* Refs—See Programming with Refs.

* Blobs and Clobs—See Programming with Large Objects.

If you selected the option to install server examples with WebLogic Server, see the
JDBC examples for more code examples, see JDBC Samples and Tutorials.

ORACLE 7-4

Chapter 7
Using API Extensions for Oracle JDBC Types

Note:

You can use Arrays, Structs, and Ref s in server-side applications only. You
cannot access them in remote clients using the deprecated JDBC over RMI
interface.

7.2.2 Programming with Arrays

In your WebLogic Server server-side applications, you can materialize an Oracle
Collection (a SQL Array) in a result set or from a callable statement as a Java array.

To use an Array in WebLogic Server applications:

1. Import the required classes.
2. Get a connection and then create a statement for the connection.

3. Create the Array type, a table that uses that type, and create some rows in the
table with arrays.

4. Getthe Array using a result set or a callable statement.
5. Use the standard Java methods (when used as a j ava. sql . Array) or Oracle
extension methods (when cast as j ava. j dbc. Or acl eArray) to work with the data.

The following sections provide more details for these actions:

* Import Packages to Access Oracle Extensions
» Establish the Connection

* Creating an Array in the Database

* Getting an Array

» Updating an Array in the Database

* Using Oracle Array Extension Methods

7.2.2.1 Import Packages to Access Oracle Extensions

Import the SQL and O acl e interfaces used in this example.

i nport java.nath. Bi gDeci nal ;

inport java.sql.*;

inport java.util.*;

i nport javax. naming. Cont ext;

import javax.naning.Initial Context;
i nport javax.sql.DataSource;

inmport oracle.jdbc.*;

7.2.2.2 Establish the Connection

ORACLE

Establish the database connection using JNDI and Dat aSour ce objects.

/] Get a valid DataSource object.

/] Here we assume that getDataSource() takes
/] care of those details.

j avax. sql . DataSource ds = get Dat aSour ce(args);

7-5

Chapter 7
Using API Extensions for Oracle JDBC Types

/1 get a java.sql.Connection object fromthe DataSource
j ava. sql . Connection conn = ds. get Connection();

7.2.2.3 Creating an Array in the Database

You must first create the array type and a table that uses the type. For example:

Statement stnt = conn.createStatenent();

stnt. execut e(" CREATE TYPE TEST_SCORES AS VARRAY(10)OF INT");
stnt. execut e(" CREATE TABLE STUDENTS (STUDENT_ID I NT, NAME VARCHAR2(100), SCORES
TEST_SCORES)");

The following example creates an array of up to 10 test scores to be associated with a
student:

e Create a row with an Array. You can use a Stat enent or create the Array using
Oracl eConnect i on. creat eOracl eArray for use in a Prepar edSt at enent .

¢ Note:

You cannot use Connect i on. creat eArrayxf because Oracle does not support
anonymous array types

e Insert two rows. The first one uses a SQL statement. The second creates an Arr ay
and binds it into a Prepar edSt at enent .

stmt. execute("I NSERT | NTO STUDENTS VALUES 1,' John Doe', TEST_SCORES(100, 99))");
PreparedSt at ement pstnmt = conn. prepareStat enent ("1 NSERT | NTO STUDENTS VALUES
(2.2.2)");

pstnt.setint(1,2);

pstnt.setString(2,"Jane Doe");

int scores[] = {94, 95};

Array array = ((Oracl eConnection)conn). createO acl eArray(" TEST_SCORES', scores);
pstnt.setArray(3,array);

pstnt.execute();

7.2.2.4 Getting an Array

ORACLE

You can use the get Array() methods for a callable statement or a result set to get a
Java array. You can then use the array as a j ava. sgl . array to use standard methods,
or you can cast the array as a oracl e. j dbc. Or acl eArray to use the Oracle extension
methods for an array.

The following example shows how to get aj ava. sql . Array from a result set that
contains an Array. In the example, the query returns a result set that contains an
object column—an Array of test scores for a student.

ResultSet rs = null;
rs = stnt.executeQuery("SELECT * FROM STUDENTS");
while (rs.next()) {
Systemout. print("Name="+rs.getString(2)+": ");
array = rs.getArray(3);
Bi gDeci mal scoresBD{] = (BigDecimal[])array.getArray();
Oacl eArray oracleArray = (Oracl eArray)rs. getArray(3);
scores = oracl eArray. getintArray();
for (int i =0; i < scores.length; i++) {
Systemout. print(""+scores[i]+" ");

7-6

Chapter 7
Using API Extensions for Oracle JDBC Types

}

Systemout. printin("");

}

Note:

The default return type for an integer is a Bi gDeci nal . We can cast the Array to
an Oracl eArray and use the Oracle extension method get | nt Array() to get
back integer values.

7.2.2.5 Updating an Array in the Database

To update an Array in a database, use the following steps:

1. Create an array in the database, see Creating an Array in the Database.

2. Update the array in the database using the set Array() method for a prepared
statement or a callable statement. For example:

String sql Update = "UPDATE STUDENTS SET SCORES = ? WHERE STUDENT_ID = ?";
int newscores[] = {94, 95, 96};

pstnt = conn. prepareSt at enent (sql Updat e) ;

array = ((Oracl eConnection)conn).createCOracl eArray(" TEST_SCORES", newscor es) ;
pstnt.setArray(1, array);

pstnt.setint(2, 1);

pst nt . execut eUpdat e();

7.2.2.6 Using Oracle Array Extension Methods

To use the Oracle Thin driver extension methods for an Array, you must first cast the
array as an oracl e. j dbc. Oracl eArray. You can then make calls to the Oracle Thin
driver extension methods for an Array in addition to the standard methods. For
example:

Oracl eArray oracleArray = (Oracl eArray)rs. getArray(3);
String sqltype = oracl eArray. get SQLTypeNane();

7.2.3 Programming with Structs

ORACLE

In your WebLogic Server applications, you can access and manipulate objects from an
Oracle database. When you retrieve objects from an Oracle database, you can cast
them as either custom Java objects or as a Struct (j ava. sql. Struct or

oracle.jdbc. Oracl eStruct). A Struct is a loosely typed data type for structured data
that takes the place of custom classes in your applications. The Struct interface in the
JDBC API includes several methods for manipulating the attribute values in a Struct.
Oracle extends the Struct interface with additional methods.

To use a Struct in WebLogic Server applications:
1. Import the required classes. (See Import Packages to Access Oracle Extensions.)

2. Get a connection. (See Establish the Connection.)

3. Create the Struct object type, a table that uses the object, and rows with St ruct
objects.

7-7

Chapter 7
Using API Extensions for Oracle JDBC Types

4. Cast the object as a Struct, either java. sql . Struct (to use standard methods) or
oracle.jdbc. Oracl eStruct (to use standard and Oracle extension methods).

5. Use the standard or Oracle Thin driver extension methods to work with the data.

The following sections provide more details for steps 3 through 5:
* Creating Objects in the Database

e Getting Struct Attributes

e Using OracleStruct Extension Methods

» Using a Struct to Update Objects in the Database

7.2.3.1 Creating Objects in the Database

A Struct is typically used to materialize database objects in your Java application in
place of custom Java classes that map to the database objects. You must first create
the type and table that uses the type. For example (this snippet is poorly designed and
used for demonstration purposes only):

conn = ds. get Connection();

Statenent stnt = conn.createStatenent();

stnt. execut e(" CREATE TYPE EMP_STRUCT AS OBJECT (DEPT | NT, NAVE VARCHAR2(100))"):
stnt. execut e(" CREATE TABLE EMP (1D INT, EMPLOYEE EMP_STRUCT)");

To create a row with a Struct object, you can use a SQL Statement or create the Struct
using Connect i on. creat eStruct and use it in a Prepar edSt at ement .

Insert two rows. The first one row uses a SQL statement. The second creates a St r uct
and binds it into a Prepar edSt at enent .

stnt. execut e(" | NSERT | NTO EMP VALUES (1001, EMP_STRUCT(10,' John Doe'))"):
PreparedSt at enent pstnt = conn. prepareStat enent ("1 NSERT | NTO EMP VALUES (?,?)");
oject attrs[] = { new Integer(20), "Jane Doe"};

Struct struct = conn.createStruct("EMP_STRUCT", attrs);

pstnt.setlnt(1,1002);

pstnt.set Object(2,struct);

pstnt.execute();

Note:

When creating a SQL structure using Connecti on. createStruct (), it is necessary
to unwrap all data types (C ob, Bl ob, Struct, Ref, Array, NCl ob, and SQLXM.).
Once the structure is created, there is no way to re-wrap them before returning
the structure to the application. The structure returned to the application has
unwrapped values for the data types.

7.2.3.2 Getting Struct Attributes

ORACLE

To get the value for an individual attribute in a Struct, you can use the standard JDBC
API methods get Attributes() and get Attributes(java.util.Dictionary nmap).

You can create a result set, get a Struct from the result set, and then use the
get Attributes() method. The method returns an array of ordered attributes. You can
assign the attributes from the Struct (object in the database) to an object in the

7-8

Chapter 7
Using API Extensions for Oracle JDBC Types

application, including Java language types. You can then manipulate the attributes
individually. For example:

conn = ds. get Connection();
stmt = conn.createStatenment();
rs = stnt.executeQuery("SELECT * FROM EMP WHERE | D = 1002");
/1 The second col unmn uses an obj ect data type.
if (rs.next()) {
struct = (Struct)rs.get Qbject(2);
attrs = struct.getAttributes();
String name = attrs[1];

}

In the preceding example, the second column in the enp table uses an object data
type. The example shows how to assign the results from the get bj ect method to a
Java object that contains an array of values, and then use individual values in the
array as necessary. Note that the type of the first integer attribute is actually a

j ava. mat h. Bi gDeci nal .

You can also use the get Attributes(java.util.Dictionary map) method to get the
attributes from a Struct . When you use this method, you must provide a hash table to
map the data types in the Oracle object to Java language data types. For example:

java.util.Hashtable map = new java.util.Hashtable();
map. put ("I NT", O ass.forName("java.lang.|nteger"));
map. put (" VARCHAR2", O ass.forNanme("java.lang. String"));
(oject[] attrs = struct.getAttributes(map);

String name = (String)attrs[1];

In this example, the value is returned as an I nt eger instead of a Bi gDeci mal .

7.2.3.3 Using OracleStruct Extension Methods

To use the Oracle Thin driver extension methods for a Struct, you must cast the
java.sqgl. Struct (or the original get Obj ect result) as a oracl e. j dbc. Oracl eStruct. When
you cast a Struct as an Oracl eStruct, you can use both the standard and extension
methods. For example:

OacleStruct oracleStruct =

(Oracl eStruct)rs. get Ghject(2);
String n = oracleStruct. get SQLTypeNane(); // Standard
oracl e.jdbc. Oracl eTypeMet aData otmd =

oracl eStruct. get Oracl eMetabData(); /] Extension

7.2.3.4 Using a Struct to Update Objects in the Database

ORACLE

To update an object in the database using a Struct, you can use the set Goj ect method
in a prepared statement. For example:

pstnt = conn. prepareSt at enent (" UPDATE EMP SET EMPLOYEE = ? WHERE I D =?");
attrs[0] = new Integer(30);

struct = conn.createStruct ("EMP_STRUCT", attrs);

pstnt.setObject (1, struct);

pstnt.setlnt (2, 1002);

pst nt. execut eUpdat e();

7-9

Chapter 7
Using API Extensions for Oracle JDBC Types

7.2.4 Programming with Refs

A Ref is a logical pointer to a row object. When you retrieve a Ref, you are actually
getting a pointer to a value in another table (or recursively to the same table). The Ref
target must be a row in an object table. You can use a Ref to examine or update the
object it refers to. You can also change a Ref so that it points to a different object of the
same object type or assign it a null value.

To use a Ref in WebLogic Server applications, use the following steps:

Import the required classes. (See Import Packages to Access Oracle Extensions.)
Get a database connection. (See Establish the Connection.)

Create a Ref using a SQL Statement.

Get the Ref using a result set or a callable statement.

Use the extended Oracle methods by casting to Oracl eRef.

@ o p W b B

Update a Ref in the database.

The following sections describe steps 3 through 6 in greater detail:

* Creating a Ref in the Database

* Getting a Ref

» Using WebLogic OracleRef Extension Methods
* Updating Ref Values

7.2.4.1 Creating a Ref in the Database

You cannot create Ref objects in your JDBC application—you can only retrieve existing
Ref objects from the database. However, you can create a Ref in the database using
statements or prepared statements. For example:

conn = ds. get Connection();

stmt = conn.createStatenent();

stnt. execut e(" CREATE TYPE OB AS OBJECT (OBl INT, OB2 IN)");
stnt. execut e(" CREATE TABLE T1 OF OB");

stnt. execut e("I NSERT | NTO T1 VALUES (5, 5)");

stnt. execut e(" CREATE TABLE T2 (COL REF OB)");

stnt. execute("| NSERT I NTO T2 SELECT REF(P) FROM T1 P WHERE P. OB1=5");

The preceding example creates an object type (0B), a table (T1) of that object type, a
table (T2) with a Ref column that can point to instances of OB objects, and inserts a Ref
into the Ref column. The Ref points to a row in T1 where the value in the first column is
5.

7.2.4.2 Getting a Ref

ORACLE

To get a Ref in an application, you can use a query to create a result set and then use
the get Ref method to get the Ref from the result set. For example:

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S WHERE S. OB1=5");
rs.next();

Ref ref = rs.getRef(1);

String name = ref.get BaseTypeNanme();

7-10

Chapter 7
Using API Extensions for Oracle JDBC Types

The WHERE clause in the preceding example uses dot notation to specify the attribute in
the referenced object. After you get the Ref , you can use the Java APl method
get BaseTypeNane.

7.2.4.3 Using WebLogic OracleRef Extension Methods

In order to use the Oracle Thin driver extension methods for Ref s, you must cast the
Ref as an O acl eRef . For example:

Oracl eTypeMet aData ndata = ((Oracl eRef)ref). getOracl eMetaData();

7.2.4.4 Updating Ref Values

ORACLE

To update a Ref , you change the location to which the Ref points with a
PreparedSt at enent or a Cal | abl eSt at ement .

To update the location to which a Ref points using a prepared statement, you can
follow these basic steps:

1. GetaRef that points to the new location. You use this Ref to replace the value of
another Ref .

2. Create a string for the SQL command to replace the location of an existing Ref with
the value of the new Ref .

3. Create and execute a prepared statement.

For example:

/1Get the Ref

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S WHERE S. OB1=5");
rs.next();

ref = rs.getRef(1);

//Create and execute the prepared statenent.

String sql Update = "UPDATE T2 S2 SET COL = ? WHERE S2. COL. 0Bl = 20";
pstnt = conn. prepareSt at enent (sql Updat e) ;

pstnt.setRef(1, ref);

pstnt . execut eUpdat e();

To use a callable statement to update the location to which a REF points, you prepare
the stored procedure, set any | N parameters and register any QUT parameters, and
then execute the statement. The stored procedure updates the REF value, which is
actually a location. For example:

rs = stnt.executeQuery("SELECT REF (S) FROM T1 S where S. 0B1=5");
rs.next();

ref = rs.getRef(1);

/1 Prepare the stored procedure

String sql = "{call SP1 (?,?)}";

Cal | abl eSt at ement cstnt = conn. prepareCal | (sql);
/1 Set IN and register OUT params

cstmt.setRef (1, ref);
cstnt.registerCQutParameter (2, Types.STRUCT, "OB");
/'l Execute

cstnt. execute();

7-11

Chapter 7
Using API Extensions for Oracle JDBC Types

7.2.5 Programming with Large Objects

This section contains information, including sample code, on how to work with Blob
and Clob objects. For additional information, refer to Working with LOBs in Database
SecureFiles and Large Objects Developer's Guide.

* Creating Blobs in the Database

e Updating Blobs in the Database

» Using OracleBlob Extension Methods
* Programming with Clob Values

e Transaction Boundaries Using LOBs

* Recovering LOB Space

7.2.5.1 Creating Blobs in the Database

The following code presumes the Connecti on is already established. It creates a table
with a Bl ob as the second column.

ResultSet rs = null;

Statenment stnt = null;

java.sql.Blob blob = null;

java.io.lnputStreamis = null;

stm = conn.createStatenent();

stnt. execut e(" CREATE TABLE TESTBLOB (I D INT, COL2 BLOB)");

The following code inserts a Bl ob value using a string converted to a byte array as the
data.

String insertsgl2 = "INSERT | NTO TESTBLOB VALUES (?,7?)";

PreparedSt at ement pstnt = conn. prepareSt at ement (" | NSERT | NTO TESTBLOB VALUES (?,7?)");
pstnt.setint(1, 1);

pstnt.setBytes(2, "initialvalue".getBytes());

pst nt . execut eUpdat e();

7.2.5.2 Updating Blobs in the Database

The following code updates the Bl ob value.

rs = stnt.execut eQuery("SELECT COL2 FROM TESTBLOB WHERE I D = 1 FOR UPDATE");
rs.next();

Blob blob = rs.getBlob(1);

bl ob. setBytes(1, "newdata".getBytes());

Note that you need the FOR UPDATE to be able to update the Bl ob value.

7.2.5.3 Using OracleBlob Extension Methods

ORACLE

The following code casts the Bl ob to an O acl eBl ob so that you can use an extension
method.

rs = stnt.executeQuery("SELECT COL1, COL2 FROM TESTBLCOB");

rs.next();
Bl ob blob = rs.getBlob(2);
is = blob.getBinaryStrean(); /1 Standard

7-12

Chapter 7
Using API Extensions for Oracle JDBC Types

is.close();
is = ((Oracl eBl ob) bl ob). getBi naryStrean(0); // Extended

Once you cast to the O acl eBl ob interface, you can access the Oracle supported
methods in addition to the standard methods. BLOB#f r eeTenpor ary should be replaced
with O acl eBl ob#free.

7.2.5.4 Programming with Clob Values

Using d ob values is similar to using Bl ob values except that the data is a string instead
of a binary array (use set String instead of set Byt es, get C ob instead of get Bl ob, and
get Char act er St reaminstead of get Bi nar yStrean).

If you use a prepared statement to update a d ob and the new value is shorter than the
previous value, the d ob retains the characters that were not specifically replaced
during the update. For example, if the current value of a d ob is abcdef ghij and you
update the d ob using a prepared statement with zxyw, the value in the d ob is updated
to zxywef ghi j . To correct values updated with a prepared statement, you should use
the dbns_| ob. tri mprocedure to remove the excess characters left after the update.
See DBMS_LOB in Oracle Database PL/SQL Packages and Types Reference for
more information about the dbns_| ob. t ri mprocedure. CLOB#f r eeTenpor ary must be
replaced with Oracl eC ob#free.

7.2.5.5 Transaction Boundaries Using LOBs

When using LOBs, you must take transaction boundaries into account; for example,
direct all read/writes to a particular LOB within a transaction.

7.2.5.6 Recovering LOB Space

To free up space used by a LOB, it's necessary to call | ob. cl ose() . This is not
automatically done when a Resul t Set, St at enent , or Connect i on is closed. For Oracle
data bases only, it is also necessary to execute al ter session set events ' 60025 trace
name context forever'; on the session so that other sessions can use the freed
memory.

7.2.6 Programming with Opaque Objects

ORACLE

This topic describes the use case of working with Opaque Objects.

The new Oracle type interfaces have only methods that are considered significant or
not available with standard JDBC API's. Here the oracl e. sql . OPAQUE has been replaced
with oracl e. j dbc. O acl eCpaque. The new interface only has a method to get the value
as an Object and two meta information methods to get meta data and type name.
Unlike the other Oracle type interfaces (oracl e. j dbc. Oracl eStruct extends
java.sqgl.Struct and oracle.jdbc. Oracl eArray extends j ava. sql . Array),

oracl e. jdbc. Oracl eCpaque does not extend a JDBC interface.

Since XMLType doesn't work with the replay datasource and the oracle.xdb package
uses XMLType extensively, this package is no longer usable for Application Continuity
replay.

There is one related very common use case that needs to be changed to work with
Application Continuity (AC). Early uses of SQLXML made use of the following XDB
API.

7-13

Chapter 7
Using Batching with the Oracle Thin Driver

SQLXM. sql Xml = oracl e. xdb. XMLType. cr eat eXM_(
((oracle.jdbc. Oracl eResul t Set)resul t Set). get OPAQUE("i ssue"));

oracl e. xdb. XM_Type extends oracl e. sql . OPAQUE and its use will disable AC replay. This
must be replaced with the standard JDBC API

SQLXM. sql Xml = resul t Set. get SQLXM_("i ssue");

The JDeveloper JPublisher feature has been deprecated and removed starting in
Release 12.2.1. Code generated by this feature includes concrete classes, requiring
the re-write of the code as described above. Here are several additional hints on doing
that re-write.

Mut abl eAr r ay#t oDat umshould be replaced with Or acl eDat aMut abl eArray. t 0JDBCOhj ect .

Mt abl eSt r uct #t oDat um should be replaced with Or acl eDat aMit abl eSt ruct . t 0JDBCObj ect .
The following are the additional classes that have new interfaces. They do not have
corresponding WLS interfaces and they do not map to JDBC types.

oracl e. sql . ORADat a oracle.jdbc. Oracl ebata

oracl e. sql . ORADat aFact ory oracl e.jdbc. O acl eDat aFact ory

oracl e. sql . OPAQUE oracl e.jdbc. Oracl eCpaque

oracl e. sql . NCLOB oracle.jdbc. Oracl eNd ob

oracl e.sql.BFILE oracle.jdbc. OracleBfile

oracl e. sqgl . Datum java. |l ang. Obj ect and then use i nst anceCf
for other interface types

oracle.jpub. runtime. Mitabl eStruct oracle.jpub.runtine. Oracl eDat aMut abl eSt
ruct

oracl e.jpub. runtine. Mitabl eArray oracl e.jpub. runtine. Oracl eDat aMut abl eAr
ray

7.3 Using Batching with the Oracle Thin Driver

In some situations, the Oracle Thin driver may not send updates to the DBMS if a
batch size has not been reached and waits until the statement is closed. When a
Prepared Statenent is closed, WebLogic Server returns the statement to a standard
JDBC state rather than closing it. It is then put back into the pool for the connection so
it can be re-delivered the next time it is needed.

To make sure all your updates are delivered, you need to call

O acl ePrepar edSt at enent . sendBat ch() explicitly after the last use of the statement,
before closing it or closing the connection.

ORACLE 7-14

Chapter 7
Using the Java Security Manager with the Oracle Thin Driver

7.4 Using the Java Security Manager with the Oracle Thin
Driver

Learn how to use Java Security Manager with Oracle Thin Driver to create a security

policy for an application.
When using the Oracle Thin Driver with the Java Security Manager enabled, it is

necessary to update privileges in your j ava. pol i cy file.
1. Download the Deno jar file for the Oracle JDBC driver from the Oracle Technology

Network.
2. Review the oj dbc. pol i cy file, it specifies the permissions required for the driver.

3. Add these privileges to the policy file used to run the server. For example,
java.util.PropertyPernission "oracle.jdbc.*", "read"; is required for the

oj dbc. j ar file.

ORACLE 7-15

http://www.oracle.com/pls/topic/lookup?ctx=fmw122100&id=wlsjdbcotn

Chapter 7

Using the Java Security Manager with the Oracle Thin Driver

ORACLE" 7-16

Getting a Physical Connection from a Data
Source

To directly access a physical connection from a data source, standard practice is to
cast a connection to the generic JDBC connection (a wrapped physical connection)
provided by WebLogic Server. Oracle strongly discourages directly accessing a
physical JDBC connection except for when it is absolutely required.

The standard practice of casting a connection to the generic JDBC connection allows
the server instance to manage the connection for the connection pool, enable
connection pool features, and maintain the quality of connections provided to
applications. Occasionally, a DBMS provides extra non-standard JDBC-related
classes that require direct access of the physical connection (the actual vendor JDBC
connection). To directly access a physical connection in a connection pool, you must
cast the connection using get Vendor Connect i on.

Note:

Oracle also provides another mechanism to access a physical connection

get Vendor Connect i onSaf e. This mechanism also returns the underlying physical
connection (the vendor connection) from a pooled database connection (a
logical connection). However, when the connection is closed, it is returned to
the pool, independent of the setting of Renove I nfected Connections Enabl ed.
See get Vendor Connect i onSaf e.

This chapter includes the following sections:

e Opening a Connection
e Closing a Connection

e Limitations for Using a Physical Connection

Note:

Oracle strongly discourages directly accessing a physical JDBC connection
except for when it is absolutely required.

8.1 Opening a Connection

To get a physical connection, you first need to get a connection from a connection pool
and then implicitly pass the physical connection or cast the connection.
After obtaining a connection from a connection pool, do one of the following:

ORACLE 8-1

Chapter 8
Closing a Connection

* Implicitly pass the physical connection (using get Vendor Connect i on) within a
method that requires the physical connection.

e Cast the connection as a W.Connect i on and call get Vendor Connect i on.

Always limit direct access of physical database connections to vendor-specific calls.
For all other situations, use the generic JDBC connection provided by WebLogic
Server. Sample code to open a connection for vendor-specific calls is provided below.

Example 8-1 Code Sample to Open a Connection for Vendor-specific Calls

[1/lnport this additional class and any vendor packages
//you may need.
i mport webl ogi c. j dbc. ext ensi ons. W.Connect i on

myJdbcMet hod()
{
/'l Connections froma connection pool should al ways be
/1 method-1evel variables, never class or instance nethods.
Connection conn = null;
try {
ctx = new Initial Context(ht);
/1 Look up the data source on the JNDI tree and request
/1 a connection.
javax. sql . Dat aSource ds
= (javax. sql . DataSource) ctx.|ookup ("myDataSource");
/1 Always get a pool ed connection in a try block where it is
Il used conpletely and is closed if necessary in the finally
Il bl ock.
conn = ds. get Connection();
/'l You can now cast the conn object to a WConnection
Il interface and then get the underlying physical connection.
java.sql . Connecti on vendor Conn =
((W.Connecti on) conn) . get Vendor Connecti on();
/1 do not close vendorConn
Il You could al so cast the vendorConn object to a vendor
/] interface, such as:
Il oracle.jdbc. Oacl eConnection vendor Conn = (Oracl eConnecti on)
Il ((W.Connecti on)conn) . get Vendor Connect i on()
/1 1f you have a vendor-specific method that requires the
Il physical connection, it is best not to obtain or retain
Il the physical connection, but sinply pass it inplicitly
/1 where needed, eg: //
vendor . speci al . met hodNeedi ngConnect i on(((W.Connecti on) conn)). get Vendor Connection());

8.2 Closing a Connection

ORACLE

Once you have completed the JDBC work, you should close the logical connection in
order to return the connection to the pool.
When you are done with the physical connection:

* Close any objects you have obtained from the connection.
* Do not close the physical connection. Set the physical connection to null.

* You determine how a connection closes by setting the value of the Remove | nf ect ed
Connecti ons Enabl ed property in the WebLogic Server Administration Console. See
the JDBC Data Source: Configuration: Connection Pool page in the Oracle
WebLogic Server Administration Console Online Help or see

8-2

Chapter 8
Closing a Connection

JDBCConnectionPoolParamsBean in the MBean Reference for Oracle WebLogic
Server for more details about these options

Note:

The Remove Infected Connections Enabl ed property applies only to applications
that explicitly call get Vendor Connect i on.

Example 8-2 Sample Code to Close a Connection for Vendor-specific Calls

/1 As soon as you are finished with vendor-specific calls,

{

}

[l nullify the reference to the connection.
/1 Do not keep it or close it.
/'l Never use the vendor connection for generic JDBC.
/1 Use the | ogical (pooled) connection for standard JDBC.
vendor Conn = nul | ;
. do all the JDBC needed for the whole nethod. ..
/1 close the logical (pooled) connection to returnit to
/1 the connection pool, and nullify the reference.
conn. cl ose();

conn = null;
}
catch (Exception e)
{
/1 Handl e the exception.
}
finally
/'l For safety, check whether the |ogical (pooled) connection
/1 was cl osed.
/] Always close the |ogical (pooled) connection as the
[l first step in the finally bl ock.
if (conn!=null) try {conn.close();} catch (Exception ignore){}
}

8.2.1 Remove Infected Connections Enabled is True

When Renove infected Connections Enabl ed=true (default value) and you close the
logical connection, the server instance discards the underlying physical connection
and creates a new connection to replace it. This action ensures that the pool can
guarantee to the next user that they are the sole user of the physical connection. This
configuration provides a simple and safe way to close a connection. However, there is
a performance loss because:

ORACLE

The physical connection is replaced with a new database connection in the
connection pool, which uses resources on both the application server and the
database server.

The statement cache for the original connection is closed and a new cache is
opened for the new connection. Therefore, the performance gains from using the
statement cache are lost.

8-3

Chapter 8
Limitations for Using a Physical Connection

8.2.2 Remove Infected Connections Enabled is False

Use Renove infected Connections Enabl ed=fal se only if you are sure that the exposed
physical connection will never be retained or reused after the logical connection is
closed.

When Renove infected Connections Enabl ed=f al se and you close the logical
connection, the server instance simply returns the physical connection to the
connection pool for reuse. Although this configuration minimizes performance losses,
the server instance does not guarantee the quality of the connection or to effectively
manage the connection after the logical connection is closed. You must make sure
that the connection is suitable for reuse by other applications before it is returned to
the connection pool.

8.3 Limitations for Using a Physical Connection

ORACLE

Learn about the limitations of using a physical connection instead of a logical
connection from a connection pool.

Oracle strongly discourages using a physical connection instead of a logical
connection from a connection pool. However, if you must use a physical connection,
for example, to create a STRUCT, consider the following costs and limitations:

* The physical connection can only be used in server-side code.

* When you use a physical connection, you lose all of the connection management
benefits that WebLogic Server offer, such as error handling and statement
caching.

* You should use the physical connection only for the vendor-specific methods or
classes that require it. Do not use the physical connection for generic JDBC, such
as creating statements or transactional calls.

8-4

Using RowSets with WebLogic Server

Learn about the characteristics and usage of WebLogic RowSets such as types of
RowSets, RowSet extensions, usage of RowSet in programming and so on.

» Deprecation of weblogic.jdbc.rowsets

* About RowSets

* Types of RowSets

* Programming with RowSets

* CachedRowSets

* RowSet MetaData Settings for Database Updates

* WebLogic RowSet Extensions for Working with MetaData
* RowSets and Transactions

* FilteredRowSets

* WebRowSets

e JoinRowSets

 JDBCRowSets

* Handling SyncProviderExceptions with a SyncResolver
* WLCachedRowSets

* SharedRowSets

* SortedRowSets

* SQLPredicate, a SQL-Style RowSet Filter

e Optimistic Concurrency Policies

e Performance Options

9.1 Deprecation of weblogic.jdbc.rowsets

The webl ogi c. j dbc. rowset interfaces and classes are deprecated in WebLogic Server
12.1.2.

Use the reference implementation, com sun. r owset , in the J2SE JRE/SDK. See

webl ogi c. j dbc. rowset

9.2 About RowSets

ORACLE

A RowsSet is an extension of a Java ResultSet. Like a ResultSet, a rowset is a Java
object that holds tabular data. However, a rowset adds significant flexibility to
ResultSet features and reduces or eliminates some ResultSet limitations.
WebLogic Server includes an implementation of Java RowSets according to the
specifications indicated in JSR-114. See (http: //ww. or acl e. com t echnet wor k/ j ava/

9-1

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Chapter 9
Types of RowSets

javaselj dbc/index. ht ni) for details about the specification. The WebLogic rowset
implementation also includes extensions to the RowSets specification. These
extensions make RowSets more useful in your applications.

9.3 Types of RowSets

The WebLogic Server implementation of rowsets includes standard RowSet types and
WebLogic RowSet extensions.
Standard RowSet Types:

e CachedRowSets
* FilteredRowSets
* WebRowSets

* JoinRowSets
 JDBCRowSets

WebLogic RowSet Extensions:

* WLCachedRowSets

* SharedRowSets

* SortedRowSets

* SQLPredicate, a SQL-Style RowSet Filter

9.4 Programming with RowSets

ORACLE

The WebLogic RowSet implementation includes a life cycle framework that prevents a
rowset object from getting into an unhealthy condition.

The WebLogic Server rowset implementation was designed with the expectation that
you would work with a rowset in the following manner:

1. Create and configure the rowset — define the query, database connection, and
other properties.

Populate the rowset with data — specify query parameters and execute the query.
Optionally, work with rowset metadata.
Optionally set the filter or sorter for the rowset.

Manipulate the data in the rowset — insert, update, and delete.

o o p W N

Synchronize data changes from the rowset to the database.

After synchronizing changes, the process can repeat starting with step 2 or 3,
depending on the way your application is designed. See Reusing a WebLogic RowSet
After Completing a Transaction.

Internally, WebLogic Server sets a life cycle stage for the RowSet as the RowSet
moves through the previously described process. To reduce the risk of data loss,
WebLogic Server limits the operations you can do on the rowset depending on the life
cycle stage of the rowset. For example, when the RowSet is in the Updating stage,
you can only call updat e XXX () methods, such as updateString() and updatelnt(), on
the RowSet until you call updat eRow() to complete the update phase.

Some important notes:

9-2

http://www.oracle.com/technetwork/java/javase/jdbc/index.html

Chapter 9
CachedRowSets

If you have pending changes, you cannot re-populate, filter, or sort the RowSet.
WebLogic Server prevents these operations on the RowSet when the RowSet
data has changed but the changes have not been synchronized with the database
to prevent the accidental loss of data changes.

There is no implicit movement of the cursor! You must explicitly move the cursor
from row to row.

RowsSet life cycle stage is an internal process. There are no public APIs to access
it. You cannot set the life cycle stage. When you call acceptChanges() or
restoreOriginal(), WebLogic Server rests the life cycle stage of the RowSet so you
can begin again.

Note:

When using a rowset in a client-side application, the exact same JDBC driver
classes must be in the CLASSPATH on both the server and the client. If the driver
classes do not match, you may see j ava. rni . Unmar shal Except i on exceptions.

See the comments in Example 9-1 for an illustration of the life cycle stages for a
rowset from when it is created to when data changes are synchronized with the
database.

9.5 CachedRowSets

Learn about using standard CachedRowSets with WebLogic Server.

Characteristics

Special Programming Considerations and Limitations for CachedRowSets
Code Example

Importing Classes and Interfaces for a CachedRowSet

Creating a CachedRowSet

Setting CachedRowSet Properties

Database Connection Options

Populating a CachedRowSet

Setting CachedRowSet MetaData

Working with Data in a CachedRowSet

Synchronizing RowSet Changes with the Database

Also see WLCachedRowsSets for information about using WebLogic extensions to the
standard CachedRowSet object.

9.5.1 Characteristics

A CachedRowSet is a disconnected Resul t Set object. Data in a CachedRowsSet is
stored in memory. CachedRowSets from the WebLogic Server implementation have
the following characteristics:

ORACLE

Can be used to insert, update, or delete data.

9-3

Chapter 9
CachedRowSets

* Are serializable, so they can be passed to various application components,
including wireless devices.

* Include transaction handling to enable rowset reuse. See Reusing a WebLogic
RowSet After Completing a Transaction.

» Use an optimistic concurrency control for synchronizing data changes in the
rowset with the database.

» Use a SyncResolver object from a SyncProvider exception to resolve conflicts
between data changes in the rowset and the database. See Handling
SyncProviderExceptions with a SyncResolver.

9.5.2 Special Programming Considerations and Limitations for
CachedRowSets

When designing your application, consider the following information:

» Entire RowSet Query Results Stored in Memory

e Data Contention

9.5.2.1 Entire RowSet Query Results Stored in Memory

Because a CachedRowSet does not hold a connection to the database, it must hold
the entire query results in memory. If the query result is very large, you may see
performance degradation or out-of-memory errors. For large data sets, a ResultSet
may be more appropriate because it keeps a connection to the database, so it can
hold partial query results in memory and return to the database for additional rows as
needed.

9.5.2.2 Data Contention

CachedRowSets are most suitable for use with data that is not likely to be updated by
another process between when the rowset is populated and when data changes in the
rowset are synchronized with the database. Database changes during that period will
cause data contention. See Handling SyncProviderExceptions with a SyncResolver for
more information about detecting and handling data contention.

9.5.3 Code Example

ORACLE

Example 9-1 shows the basic workflow of a CachedRowSet. It includes comments that
describe each major operation and its corresponding rowset life cycle stage. Following
the code example is a more detailed explanation of each of the major sections of the
example.

Example 9-1 Cached RowSet Code Example

import javax.sql.rowset.CachedRowSet ;

inport javax.sql.rowset.RowSet Factory;

public class CachedRowSet Deno {

public static void main (String[] args) {

/I DESIGNING lifecycle stage - Create the rowset and set properties

try {

//Create a RowSetFactory instance and fromthe factory,
/lcreate a FilteredRowSet.
RowSet Factory rsfact =

9-4

Chapter 9
CachedRowSets

RowSet Provi der . newFact or y("webl ogi c. j dbc. rowset . JdbcRowSet Fact ory", nul |');
CachedRowSet rs = rsfact.createCachedRowSet ();
/1 Set database access through a DataSource.
rs. set Dat aSour ceNane(exanpl es- dat aSour ce- demoPool) ;
/| See Database Connection Options for nore opti ons.
/1 Set query command
rs. set Conmand(" SELECT I D, FIRST_NAME, M DDLE_NAME, LAST NAME,
PHONE, EMAI L FROM PHYSI Cl AN WHERE | D>?");
[CONFI GURE QUERY |ifecycle operation
rs.setint(1, 0);
/I POPULATING lifecycle stage - Execute the command to popul ate the rowset
rs.execute();
}
/| CONFI GURI NG METADATA - Popul ate first, then set MetaDat a,
/l'including KeyCol ums
rs.setKeyCol ums(new int[] { 11});
while (rs.next ()) //NAVIGATING |ifecycle stage
{
Systemout. println
Systemout. println
Systemout. println
Systemout. println
Systemout. println
Systemout. println

}

}
[/\Wrking with data
//Delete rows in the rowset
try {
I/ MANI PULATING | i fecycle stage - navigate to a row
[/ (manual Iy moving the cursor)
rs.last();
rs. del eteRow();
I/ Note that the database is not updated yet.
}
//Update a row in the rowset
try {
I/ MANI PULATING | i fecycle stage - navigate to a row
[/ (manual Iy moving the cursor)
rs.first();
I/ UPDATING |ifecycle stage - call an update() method
rs.updateString(4, "Francis");
I/ MANI PULATING |i fecycle stage - finish update
rs. updat eRow();
I/ Note that the database is not updated yet.
}
[IT1NSERTING lifecycle stage - Insert rows in the rowset
try {
rs. moveTol nsert Row();
rs.updatelnt(1, 104);
rs.updateString("FI RST_NAME", "Yuri");
rs.updateString("M DDLE_NAME', "M);
rs.updateString("LAST_NAME", "Zhivago");
(
(

"ID " +rs.getint (1));
"FIRST_NAME: " +rs.getString (2));
"M DDLE_NAME: " +rs.getString (3));
"LAST_NAME: " +rs.getString (4));
"PHONE: " +rs.getString (5));

"EMAIL: " +rs.getString (6));

—~ o~~~ o~ —

rs.updateString("PHONE", "1234567812");
rs.updateString("EMAIL", "Yuri@oet.conl);
rs.insertRow(); //"Finish Update" action;

[/ MANI PULATI NG | i fecycle stage - navigate to a row
rs. moveToCurrent Row);

[/ Note that the database is not updated yet.

/1Send all changes (delete, update, and insert) to the database.

ORACLE 9-5

Chapter 9
CachedRowSets

[/ DESI GNI NG or POPULATING |ifecycle stage - after synchronizing changes
[Iwith the database, lifecycle stage depends on other environnment settings.
/| See Reusing a WebLogic RowSet After Completing a Transaction.
try {
rs. accept Changes();
rs.close();
}
}

9.5.4 Importing Classes and Interfaces for a CachedRowSet

For standard RowSets, you must import the following classes:

javax. sql . rowset . CachedRowSet ;
j avax. sql . rowset . RowSet Fact ory;

9.5.5 Creating a CachedRowSet

Rowsets are created from a factory interface. To create a rowset with WebLogic
Server, follow these main steps:

1. Create a RowSetFactory instance, which serves as a factory to create rowset
objects for use in your application.

RowSet Factory rsfact =
RowSet Provi der . newFact or y("webl ogi c. j dbc. rowset . JdbcRowSet Fact ory", nul I) ;

2. Create ajavax. sql.rowset.CachedRowSet object. For example:

CachedRowSet rs = rsfact.createCachedRowSet ();

9.5.6 Setting CachedRowSet Properties

There are numerous rowset properties, such as concurrency type, data source name,
transaction isolation level, and so forth, that you can set to determine the behavior of
the rowset. You are required to set only those properties that are needed for your
particular use of the rowset. For information about available properties, see the
Javadoc for the j avax. sgl . rowset . BaseRowSet class at http://docs. oracl e. cont j avase/
1. 5.0/ docs/ api / javax/ sql / rowset / BaseRowSet . ht ni .

9.5.7 Database Connection Options

ORACLE

In most applications, you populate a rowset with data from a database. You can set
rowset database connectivity in any of the following ways:

* Automatically with a data source—You can use the set Dat aSour ceNanme() method to
specify the INDI name of a JDBC data source. When you call execut e() and
accept Changes(), the rowset gets a database connection from the data source,
uses it, and returns it to the pool of connections in the data source. This is a
preferred method.

rs. set Dat aSour ceNane(exanpl es- dat aSour ce- demoPool) ;

e Manually get a database connection—In your application, you can get a database
connection before the rowset needs it, and then pass the connection object as a
parameter in the execut e() and accept Changes() methods. You must also close the
connection as necessary.

9-6

http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/rowset/BaseRowSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/rowset/BaseRowSet.html

Chapter 9
CachedRowSets

[/ Lookup DataSource and get a connection

ctx = new Initial Context(ht);

javax. sql . DataSource ds = (javax.sql.DataSource) ctx.lookup ("nyDS");
conn = ds. get Connection();

/I Pass the connection to the rowset
rs.execute(conn);

For more information about JDBC data sources, see Getting a Database
Connection from a DataSource Object.

* Load the JDBC driver for a direct connection—When you load the JDBC driver
and set the appropriate properties, the rowset creates a database connection
when you call execut ¢() and accept Changes() . The rowset closes the connection
immediately after it uses it. The rowset does not keep the connection between the
execut e() and accept Changes() method calls.

C ass. for Nane("or g. apache. derby. jdbc. CientDriver");
rs.setUrl ("jdbc:derby://local host: 1527/ dem");

rs. set User nane(" exanpl es");

rs. set Password("exanpl es");

rs.execute();

9.5.8 Populating a CachedRowSet

Populating a rowset is the act of filling the rowset with rows of data. The source of the
data is most commonly a relational database. To populate a rowset with data from a
database, you can use either of the following methods:

e Set an SQL command with the set Command() method, then execute the command
with the execut e() method:

rs.set Command(" SELECT 1D, FIRST_NAME, M DDLE NAME, LAST_NAME,
PHONE, EMAIL FROM PHYSI CI AN');
rs.execute();

e From an existing result set using the popul at ¢() method:

rs.popul ate(result Set);

Note:

If using a result set that is Resul t Set. TYPE_FORWARD ONLY, a SQLException will
be thrown if you attempt to populate a row set with the following conditions:

— If you call CachedRowset . popul at e(Resul t Set rs) when the result set cursor
is at a position beyond row 1.

— If you call CachedRowset . popul at e(Resul t Set rs, int newPosition) when
newPosi ti on is less than the current result set cursor position.

9.5.9 Setting CachedRowSet MetaData

In some cases, you may need to set metadata for the rowset in order to synchronize
data changes in the rowset with data in the database. See RowSet MetaData Settings
for Database Updates.

ORACLE o

Chapter 9
CachedRowSets

9.5.10 Working with Data in a CachedRowSet

After you populate the cached rowset with rows of data, you can work with the cached
data in much the same way as you would work with data in a result set, except that
before your changes are made in the database, you must explicitly call

accept Changes() .

Note:

Delimiter identifiers may not be used for column or table names in rowsets.
Delimiter identifiers are identifiers that need to be enclosed in double quotation
marks when appearing in a SQL statement. They include identifiers that are
SQL reserved words (e.g., USER, DATE, etc.) and names that are not identifiers.
A valid identifier must start with a letter and contain only letters, numbers, and
underscores.

9.5.10.1 Getting Data from a Row in a RowSet

To get data from a rowset, you use the get XXX methods just as you would with a result
set. For example:

while (rs.next ())
{
int id=rs.getlnt (1);
String fname = rs.getString ("FI RST_NAME");
String mame = rs.getString ("M DDLE_NAME");
String Iname = rs.getString ("LAST_NAME"));
}

9.5.10.2 Updating a Row in a RowSet

ORACLE

Data updates typically follow this course of events:

1. Navigate to the row or to an insert row.
2. Change the row with updat eXXX methods.

3. Complete the operation with updat eRow() orinsertRow() .

Note that completing the operation does not synchronize your changes with the
database. Changes are made to the rowset only. You must explicitly synchronize your
changes by calling accept Changes() . For details, see Synchronizing RowSet Changes
with the Database later in this section.

When working with a rowset, WebLogic Server internally sets the life cycle stage of the
rowset after each operation on the rowset, and then limits further operations you can
perform on the rowset based on its current life cycle stage. After you begin modifying a
row with update methods, you must complete the operation with updat eRow() or

i nsert Row() before you can work with data in any other rows, including moving the
cursor to another row. See Programming with RowSets for a complete discussion of
rowset life cycle stages and operations allowed for each stage.

9-8

Chapter 9
CachedRowSets

To update a row, you move the cursor to the row you want to update, call updat eXXX
methods on individual columns within the row, then call updat eRow() to complete the
operation. For example:

rs.first();
rs.updateString(4, "Francis");
rs. updat eRow();

Note:

If you are updating same-named columns from more than one table, you must
use the column index number to refer to the column in the update statement.

9.5.10.3 Inserting a Row in a RowSet

To insert a row, you move the cursor to a new insert row, update the column values
within the row, then call i nsert Row() to add the row to the rowset. For example:

rs. moveTol nsert Row() ;

rs.updatelnt(1, 104);

rs.updateString("FI RST_NAME", "Yuri");
rs.updateString("M DDLE_NAME', "M);
rs.updateString("LAST_NAME"', "Zhivago");
rs.updateString("PHONE", "1234567812");
rs.updateString("EMAIL", "Yuri @oet.conl);
rs.insertRow);

rs. moveToCurrent Row();

Note that you must explicitly move the cursor after inserting a row. There is no implicit
movement of the cursor.

9.5.10.4 Deleting a Row in a RowSet

To delete a row in the rowset, you move the cursor to the row and call del et eRow() . For
example:

rs.last();
rs. del eteRow();

9.5.11 Synchronizing RowSet Changes with the Database

ORACLE

After you make changes to individual rows in a rowset, you call accept Changes() to
propagate those changes to the database. For example:

rs.accept Changes();

When you call accept Changes(), the rowset connects to the database using the
database connection information already used by the rowset (see Database
Connection Options) or using a connection object passed with the

accept Changes(connect i on) method. You can call accept Changes() after making changes
to one row or several rows. Calling accept Changes() after making all changes to the
rowset is more efficient because the rowset connects to the database only once.

When using rowsets with WebLogic Server, WebLogic Server internally uses a
webl ogi c. j dbc. rowset . W.SyncPr ovi der object to read from and write to the database.

9-9

Chapter 9
RowSet MetaData Settings for Database Updates

The WLSyncProvider uses an optimistic concurrency algorithm for making changes to
the database, which means that the design assumes data in the database will not be
changed by another process during the time between when a rowset is populated to
when rowset data changes are propagated to the database. Before writing changes to
the database, the WLSyncProvider compares the data in the database against the
original values in the rowset (values read into the rowset when the rowset was created
or at the last synchronization). If any values in the database have changed, WebLogic
Server throws a j avax. sql . rowset . spi . SyncProvi der Except i on and does not write any
changes to the database. You can catch the exception in your application and
determine how to proceed. See Handling SyncProviderExceptions with a
SyncResolver.

The W.CachedRowSet interface, an extension to the standard CachedRowSet interface,
provides options for selecting an optimistic concurrency policy. See Optimistic
Concurrency Policies.

After propagating changes to the database, WebLogic Server changes the life cycle
stage of the rowset to Designing or Populating, depending on your application
environment. In the Designing stage, you must repopulate the rowset before you can
use it again; in the Populating stage, you can use the rowset with its current data. See
Reusing a WebLogic RowSet After Completing a Transaction for more details.

If you do not plan to use the rowset again, you should close it with the cl ose() method.
For example:

rs.close();

9.6 RowSet MetaData Settings for Database Updates

When populating a rowset with an SQL query, the WebLogic rowset implementation
uses the Resul t Set Met aDat a interface to automatically learn the table and column
names of the data in the rowset. In many cases, this is enough information for the
rowset to generate the required SQL to write changes back to the database. However,
some JDBC drivers do not include table and column metadata for the rows returned by
the query.

When you attempt to synchronize data changes in the rowset with the database, you
will see the following error:

java.sql . SQLException: Unable to determine the table name for col um:
col um_nane. Please ensure that you've cal | ed W.RowSet Met aDat a. set Tabl eNane to
set a table name for this col um.

Without the table name, you can use the rowset for read-only operations only. The
rowset cannot issue updates unless the table name is specified programmatically. You
may also need to set the primary key columns with the set KeyCol ums() method. For
example:

rs. set Tabl eName(PHYSI Cl AN) ;
rs.setKeyCol ums(new int[] { 11});

See the documentation for the j avax. sql . rowset . CachedRowSet interface for more
detalils.

ORACLE 9-10

Chapter 9
WebLogic RowSet Extensions for Working with MetaData

9.7 WebLogic RowSet Extensions for Working with
MetaData

Learn about WebLogic rowset extensions that you can use to obtain or set the
appropriate metadata for a rowset.

* executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys
» Setting Table and Primary Key Information Using the MetaData Interface
* Setting the Write Table

9.7.1 executeAndGuessTableName and
executeAndGuessTableNameAndPrimaryKeys

When populating a rowset with an SQL query, you typically use the execut e() method
to run the query and read the data. The W.CachedRowSet implementation provides the
execut eAndGuessTabl eName and execut eAndGuessTabl eNaneAndPr i mar yKeys methods that
extend the execut e method to also determine the associated table metadata.

The execut eAndGuessTabl eName method parses the associated SQL and sets the table
name for all columns as the first word following the SQL keyword FROM

The execut eAndGuessTabl eNameAndPri mar yKeys method parses the SQL command to
read the table name. It then uses the j ava. sql . Dat abaseMet aDat a to determine the
table's primary keys.

¢ Note:

These methods rely on support in the DBMS or JDBC driver. They do not work
with all DBMSs or all JDBC drivers.

9.7.2 Setting Table and Primary Key Information Using the MetaData
Interface

You can also choose to manually set the table and primary key information using the
W.RowSet Met aDat a interface.

W.RowSet Met aDat a netaData = (W.RowSet Met aData) rowSet. get MetaData();
Il Sets one table nane for all colums
met aDat a. set Tabl eNane(" enpl oyees");

or

met aDat a. set Tabl eNane("e_i d", "enpl oyees");
met aDat a. set Tabl eNane("e_nane", "enpl oyees");

You can also use the W.RowSet Met aDat a interface to identify primary key columns.

met aDat a. set Pri mar yKeyCol um("e_id", true);

ORACLE 9-11

Chapter 9
RowSets and Transactions

See the Javadoc for weblogic.jdbc.rowset. WLRowSetMetaData.

9.7.3 Setting the Write Table

The W.RowSet Met aDat a interface includes the set Wi t eTabl eName method to indicate the
only table that should be updated or deleted. This is typically used when a rowset is
populated with a join from multiple tables, but the rowset should only update one table.
Any column that is not from the write table is marked as read-only.

For instance, a rowset might include a join of orders and customers. The write table
could be set to orders. If deleteRow were called, it would delete the order row, but not
delete the customer row.

Note:

JSR-114 provides the CachedRowSet.setTableName (see http://

docs. oracl e. conl j avase/ 6/ docs/ api / j avax/ sql / r owset /

CachedRowSet . ht ni #set Tabl eName(j ava. | ang. Stri ng)) that provides the same
functionality as the WebLogic CachedRowSetMetaData.setWriteTableName
method. Calling either method marks those columns that do NOT belong to
the write table as read-only. WebLogic also provides the
CachedRowSetMetaData.setTableName method which is used to map which
table a column belongs to. When setting the write table using set Tabl eNane, be
careful to implement the method using the appropriate API for your
application.

9.8 RowSets and Transactions

Most database or JDBC applications use transactions, and RowSets support
transactions, including JTA transactions.

The common use case is to populate the RowSet in Transaction 1. Transaction 1
commits, and there are no database or application server locks on the underlying data.

The RowsSet holds the data in-memory, and it can be modified or shipped over the
network to a client. When the application wishes to commit the changes to the
database, it starts Transaction 2 and calls the RowSet's accept Changes method. It then
commits Transaction 2.

9.8.1 Integrating with JTA Global Transactions

The EJB container and the User Transact i on interface start transactions with the JTA
transaction manager. The RowSet operations can participate in this transaction. To
participate in the JTA transaction, the RowSet must use a transaction-aware
DataSource (TxDataSource). The DataSource can be configured in the WebLogic
Server console.

If an Optimistic conflict or other exception occurs during accept Changes, the RowSet
aborts the global JTA transaction. The application will typically re-read the data and
process the update again in a new transaction.

ORACLE 9-12

http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/CachedRowSet.html#setTableName(java.lang.String)

Chapter 9
RowSets and Transactions

9.8.1.1 Behavior of Rowsets Using Global Transactions

In the case of a failure or rollback, the data is rolled back from the database, but is not
rolled back from the rowset. Before proceeding you should do one of the following:

e Callrowset.refresh to update the rowset with data from the database.

e Create a new rowset with current data.

9.8.2 Using Local Transactions

If a JTA global transaction is not being used, the RowSet uses a local transaction. It
first calls set Aut oConmi t (f al se) on the connection, then it issues all of the SQL
statements, and finally it calls connecti on. commi t (). This attempts to commit the local
transaction. This method should not be used when trying to integrate with a JTA
transaction that was started by the EJB or JMS containers.

If an Optimistic conflict or other exception occurs during accept Changes, the RowSet
rolls back the local transaction. In this case, none of the SQL issued in accept Changes
will commit to the database.

9.8.2.1 Behavior of Rowsets Using Local Transactions

This section provides information on the behavior of rowsets in failed local
transactions. The behavior depends on the type of connection object:

9.8.2.1.1 Calling connection.commit

In this situation, the connection object is not created by the rowset and initiates a local
transaction by calling connecti on. commi t . If the transaction fails or if the connection
calls connecti on. rol | back, the data is rolled back from the database, but is not rolled
back in the rowset. Before proceeding, you must do one of the following:

* Callrowset.refresh to update the rowset with data from the database.

e Create a new rowset with current data.

9.8.2.1.2 Calling acceptChanges

In this situation, the rowset creates its own connection object and uses it to update the
data in rowset by calling accept Changes. In the case of failure or if the rowset calls
connecti on. rol | back, the data is be rolled back from the rowset and also from the
database.

9.8.3 Reusing a WebLogic RowSet After Completing a Transaction

In many cases, after you synchronize changes in the rowset with the database, you
may want to continue to use the rowset with its current data, which can improve
application performance by reducing the number of database round trips. However, to
reuse the rowset and its data, WebLogic Server needs to make sure that any
transaction in which the rowset participates has completed before allowing you to
make further changes to the data.

If you use a rowset in a local transaction and if aut ocommi t =t r ue is set on the
connection object before rowset data changes are synchronized with the database,

ORACLE 9-13

Chapter 9
FilteredRowSets

you can reuse the rowset with its current data after synchronizing the data because
the autocommit setting forces the local transaction to complete immediately. WebLogic
Server can be sure that the local transaction is complete before any further changes
are made to the rowset.

WebLogic Server cannot automatically be sure that all transactions are complete if you
use a rowset in either of the following scenarios:

e In a global transaction

e In alocal transaction using a connection object with aut ocommi t =f al se to
synchronize data changes with the database

With either of these conditions, before you can reuse a rowset with its current data,
after calling accept Changes() to synchronize your changes with the database, you must
call j avax. sql . rowset . CachedRowSet . conmi t () instead of t x. commit () or

java. sgl . Connection. conmit () to commit the transaction. The CachedRowSet . conmi t ()
method wraps the Connecti on. conmit () method and enables WebLogic Server to
ensure that the transaction is complete before allowing changes to the rowset.

9.9 FilteredRowSets

Learn how to use standard FilteredRowSets with WebLogic Server.
* FilteredRowSet Characteristics

e Special Programming Considerations

» FilteredRowSet Code Example

* Importing Classes and Interfaces for FilteredRowSets
* Creating a FilteredRowSet

e Setting FilteredRowSet Properties

- Database Connection Options for a FilteredRowSet

» Populating a FilteredRowSet

e Setting FilteredRowSet MetaData

e Setting the Filter for a FilteredRowSet

* Working with Data in a FilteredRowSet

9.9.1 FilteredRowSet Characteristics

ORACLE

A FilteredRowSet enables you to work with a subset of cached rows and change the
subset of rows while disconnected from the database. A filtered rowset is simply a
cached rowset in which only certain rows are available for viewing, navigating, and
manipulating. FilteredRowSets have the following characteristics:

e The rows available are determined by a j avax. sqgl . r owset . Predi cat e object
supplied by the application and set with the setFi | ter() method.

* The Predicate object must implement the j avax. sql . rowset . Predi cat e interface.
The Predicate interface includes the publ i ¢ bool ean eval uat e(RowSet rs) method,
which evaluates each row in the rowset

— If the method returns t rue, the row is available and visible.

— If the method returns f al se, the row is not available or visible.

9-14

Chapter 9
FilteredRowSets

See Setting the Filter for a FilteredRowSet.

* WebLogic Server provides the webl ogi c. j dbc. rowset . SQLPr edi cat e class, which is
an implementation of the j avax. sql . rowset . Predi cat e interface that you can use to
define a filter for a FilteredRowSet using SQL-like WHERE clause syntax. See
SQLPredicate, a SQL-Style RowSet Filter.

9.9.2 Special Programming Considerations

» RowSet Filters are Not Cumulative

* No Pending Changes Before Setting or Changing a Filter

9.9.2.1 RowSet Filters are Not Cumulative

Current behavior of WebLogic implementation of a FilteredRowSet is that when you
set a filter for the second time on a FilteredRowSet, the new filter replaces the old
filter. JSR-114 is not clear on this point. The reference implementation does not
behave the same way, it further filters the filtered rows in the rowset. You can
accomplish the same effect by changing the second filter to filter on all necessary
criteria.

9.9.2.2 No Pending Changes Before Setting or Changing a Filter

If you have pending changes in a rowset before you set or change the rowset filter,
you must either accept the changes (call accept Changes()) or restore the rowset data to
it pre-changed state (call restoreQri gi nal ()). WebLogic Server considers navigating
within a rowset to be indicative of a possible change and requires you to call either one
of these methods before allowing you to change the rowset filter. Note that

accept Changes() includes a round-trip to the database, whereas restoreQi gi nal ()

does not.

9.9.3 FilteredRowSet Code Example

The following example shows how to create a cached rowset and then apply and
change a filter using the WebLogic Server SQLPredicate.

Example 9-2 FilteredRowSet Code Example

inmport javax.sql.rowset.FilteredRowSet;
i mport javax.sql.rowset.RowSet Factory;
i mport webl ogi c. j dbc. rowset. SQLPredi cat e;
public class FilteredRowSet Demp {
public static void main (String[] args) {
//DESIGNING lifecycle stage - Create the rowset and set properties
try {
//Create a RowSetFactory instance and fromthe factory,
/lcreate a FilteredRowSet.
RowSet Factory rsfact = RowSet Provi der. newFact or y("webl ogi c. j dbc. rowset . JdbcRowSet Fact ory", nul |);
FilteredRowSet rs = rsfact.createFilteredRowSet();
/1 Set database access through a DataSource.
/| See Database Connection Options for nore options.
rs. set Dat aSour ceNane(exanpl es- dat aSour ce- demoPool) ;
rs.set Conmand(" SELECT | D, FI RST_NAME, M DDLE_NAME, LAST_NAME,
PHONE, EMAIL FROM PHYSI Cl AN WHERE | D>?");
[/ CONFI GURE QUERY |ifecycle operation - set values for query paraneters.
rs.setint(1, 0);

ORACLE 9-15

Chapter 9
FilteredRowSets

/I POPULATING | ifecycl e stage - Execute the command to popul ate the rowset
rs.execute();

/| CONFI GURI NG METADATA - Popul ate first, then set MetaData, including KeyCol ums
rs.setKeyCol ums(new int[] { 1});
while (rs.next ())
/I NAVI GATE operations put the rowset in the MANI PULATING |ifecycle stage
{
Systemout. println
Systemout. println 2));
Systemout.printin ("MDDLE NAME: " +rs.getString (3));
))

("ID: " +rs.getlnt (1));

(

(
Systemout.printin ("LAST_NAME: " +rs.getString (4

(

(

"FIRST_NAME: " +rs.getString (

Systemout.printin ("PHONE: " +rs.getString (5));
Systemout.printin ("EMAIL: " +rs.getString (6));
}

1

/I Need to accept changes or call restoreQriginal to put the rowset

/1into the DESI GNING or POPULATI NG st age.

[/ After navigating, the rowset is in MANI PULATI NG st age,

//and you cannot change properties in that |ifecycle stage.
rs.restoreQriginal ();

I[ISET FILTER

/luse SQ.Predicate class to create a SQLPredicate object,

//then pass the object in the setFilter method to filter the RowSet.
SQLPredicate filter = new SQLPredicate("ID >= 103");
rs.setFilter(filter);

Systemout.printin("Filtered data: ");
while (rs.next ())
{
Systemout. println
Systemout. println 2));
Systemout.printin ("MDDLE_ NAME: " +rs.getString (3));
))

("ID: " +rs.getlnt (1));

("

("
Systemout.printin ("LAST_NAME: " +rs.getString (4

("

("

("

FIRST_NAME: " +rs.getString (

Systemout.printin ("PHONE: " +rs.getString (5));
Systemout.printin ("EMAMIL: " +rs.getString (6));
Systemout. println ");

/I Need to accept changes or call restoreQriginal to put the rowset
[linto the DESI GNI NG or POPULATING lifecycle stage.
[/ After navigating, the rowset is in MANI PULATI NG st age,
//and you cannot change properties in that |ifecycle stage.
rs.restoreQriginal ();
/[ICHANGI NG FILTER
SQLPredicate filter2 = new SQLPredicate("ID <= 103");
rs.setFilter(filter2);
Systemout.printin("Filtered data: ");
while (rs.next ())
{
Systemout. println
Systemout. println 2));
Systemout.printin ("MDDLE_NAME: " +rs.getString (3));
))

("ID: " +rs.getlnt (1));

("

("
Systemout.printin ("LAST_NAME: " +rs.getString (4

("

("

("

FIRST_NAME: " +rs.getString (

Systemout.printin ("PHONE: " +rs.getString (5));
Systemout.printin ("EMAMIL: " +rs.getString (6));
Systemout. println ");

/I Need to accept changes or call restoreQriginal to put the rowset

[linto the DESIGNI NG or POPULATING lifecycle stage.

[/ After navigating, the rowset is in MANI PULATI NG st age,

//and you cannot change properties in that |ifecycle stage.
rs.restoreOiginal ();

ORACLE 9-16

Chapter 9
FilteredRowSets

/[IREMOVI NG FILTER
rs.setFilter(null);
while (rs.next ())

{

System out .
System out .
System out .
System out .
System out .
System out .
System out .

}
rs.close();
1
}

printin ("ID " +rs.getlnt (1));
println ("FIRST_NAME: " +rs.getString (2));
printin ("MDDLE_NAME: " +rs.getString (3));
println ("LAST_NAME: " +rs.getString (4))
printin ("PHONE " +rs.getString (5));
printin ("EMAIL: " +rs.getString (6));

("

println

")

9.9.4 Importing Classes and Interfaces for FilteredRowSets

For standard FilteredRowSets, you must import the following classes:

javax. sql . rowset . FilteredRowSet;
j avax. sql . rowset . RowSet Fact ory;

The preceding code example also uses the webl ogi c. j dbc. rowset . SQLPr edi cat e class to
create a filter. In your application, you can use the webl ogi c. j dbc. rowset . SQLPr edi cat e
class or you can create your own filter class. See Setting the Filter for a
FilteredRowSet.

9.9.5 Creating a FilteredRowSet

Rowsets are created from a factory interface. To create a FilteredRowSet with
WebLogic Server, follow these main steps:

1. Create a RowSetFactory instance, which serves as a factory to create rowset
objects for use in your application. For example:

RowSet Factory rsfact =
RowSet Provi der . newFact or y("webl ogi c. j dbc. rowset . JdbcRowSet Fact ory", nul I');

2. Create ajavax.sql.rowset. FilteredRowSet object. For example:

FilteredRowSet rs = rsfact.createCachedRowSet ();

9.9.6 Setting FilteredRowSet Properties

Property options for a FilteredRowSet are the same as those for a CachedRowSet.
See Setting CachedRowSet Properties.

9.9.7 Database Connection Options for a FilteredRowSet

Database connection options for a FilteredRowSet are the same as those for a
CachedRowSet. See Database Connection Options.

9.9.8 Populating a FilteredRowSet

ORACLE

Data population options for a FilteredRowSet are the same as those for a
CachedRowSet. See Populating a CachedRowSet.

9-17

Chapter 9
FilteredRowSets

9.9.9 Setting FilteredRowSet MetaData

In some cases, you may need to set metadata for the rowset in order to synchronize
data changes in the rowset with data in the database. See RowSet MetaData Settings
for Database Updates.

9.9.10 Setting the Filter for a FilteredRowSet

To filter the rows in a FilteredRowSet, you must call the set Fi | ter method and pass a
predicate (filter) object as a parameter of the method. The predicate object is an
instance of a class that implements the j avax. sql . rowset . Predi cat e interface. With the
WebLogic implementation of FilteredRowSets, you can define your own filter or use an
instance of the webl ogi c. j dbc. rowset . SQLPr edi cat e class.

9.9.10.1 User-Defined RowSet Filter

When defining the filter for a FilteredRowSet, you follow these main steps:

1. Define a class that implements the j avax. sql . rowset . Predi cat e interface with the
filtering behavior you plan to use, such as limiting displayed rows to rows with a
value in a particular column. For example, you may want to limit displayed rows
based on a range of values for the ID column. The class you define would include
logic to filter values for the ID column

2. Create an instance of the class (a filter) to specify the filtering criteria that you want
to use. For example, you may want to see only rows with values in the ID column
between 100 and 199.

3. Callrowset.setFilter() and pass the class as a parameter of the method.

Example 9-3 Filter Class that Implements javax.sql.rowset.Predicate

package exanpl es.jdbc.rowsets;
import javax.sql.rowset.Predicate;
import javax.sql.rowset.CachedRowSet ;
import javax.sql.RowSet;
inport java.sql.SQ.Exception;
public class SearchPredicate inplements Predicate, java.io.Serializable {
private bool ean DEBUG = fal se;
private String col = null;
private String criteria = null;
//Constructor to create case-insensitive colum - value conparison.
public SearchPredicate(String col, String criteria) {
this.col = col;
this.criteria = criteria;

public bool ean eval uate(RowSet rs) {
CachedRowSet crs = (CachedRowSet)rs;
bool ean bool = fal se;
try {
debug("eval uate(): "+crs.getString(col).toUpperCase()+" contains "+
criteria.toUpperCase()+" = "+
crs.getString(col).toUpperCase().contains(criteria.toUpperCase()));
if (crs.getString(col).toUpperCase().contains(criteria.toUpperCase()))
bool = true;
} catch(Throwable t) {
t.printStackTrace();

ORACLE 9-18

Chapter 9
WebRowSets

throw new Runti meException(t.get Message());

}

return bool;

public bool ean eval uate(bject o, String s) throws SQException {
t hrow new SQLException("String evaluation is not supported.");

public bool ean eval uate(bject o, int i) throws SQ.Exception {
throw new SQLException("Int evaluation is not supported.");
1
}

Example 9-4 Code to Set a Filter for a FilteredRowSet

Sear chPredi cate pred = new Sear chPredi cat e(RONSET_LASTNAME, | ast Nane);
rs.setFilter(pred);

Example 9-3 shows an example of a class that implements the

javax. sgl . rowset . Predi cat e interface. This example shows a class that enables you to
create a filter that evaluates a case-insensitive version of the value in a column.
Example 9-4 shows code to create an instance of the class, which determines the filter
criteria, and then set the filter object as the filter for a FilteredRowSet.

9.9.10.2 WebLogic SQL-Style Filter

WebLogic Server provides the webl ogi c. j dbc. rowset . SQLPr edi cat e class, which
implements the j avax. sql . rowset . Predi cat e interface. You can use the SQLPr edi cat e
class to define a filter using SQL-like WHERE clause syntax to filter rows in a rowset.
For example:

SQ.Predicate filter = new SQ.Predicate("ID >= 103");
rs.setFilter(filter);

See SQLPredicate, a SQL-Style RowSet Filter.

9.9.11 Working with Data in a FilteredRowSet

Working with data in a FilteredRowSet is much the same as working with data in a
CachedRowsSet, except that when you insert a row or update a row, the changes that
you make must be within the filtering criteria so that the row will remain in the set of
rows displayed. For example, if the filter on the rowset allowed only rows with an ID
column value of less than 105 to be displayed, if you tried to insert a row with a value
of 106 in the ID column or update an ID value to 106, that operation would fail and
throw an SQLException.

For more details about working with data, see Working with Data in a CachedRowSet.

9.10 WebRowSets

A WebRowsSet is a cached rowset that can read and write a rowset in XML format.
WebRowSets have the following characteristics:

* UsesthereadXnl (java.io.|nputStreami Strean) method to populate the rowset
from an XML source.

ORACLE 9-19

Chapter 9
JoinRowSets

Uses the writeXn (j ava.i 0. Qut put Stream oSt reany method to write data and
metadata in XML for use by other application components or to send to a remote
client.

The XML code used to populate the rowset or written from the rowset conforms to
the standard WebRowSet XML Schema definition available at http://
www. or acl e. comf webf ol der/t echnet wor k/ j sc/ xm / ns/j dbc/ webr owset . xsd.

See http://ww. oracl e. com t echnet wor k/ j aval j avase/ j dbc/ i ndex. ht i and the Javadoc
for the j avax. sql . rowset . WebRowSet interface at http:// docs. oracl e. con j avase/ 6/
docs/ api / j avax/ sql / rowset / WebRowSet . ht i .

Note:

WebLogic Server supports two schemas for rowsets: one for the standard
WebRowSet and one for the WLCachedRowSet, which was implemented
before JSR-114 was finalized.

9.10.1 Special Programming Considerations

The WebLogic WebRowSets implementation supports two XML schemas (and
APIs): one for the standard WebRowSet specification (available at http://

wwv. or acl e. conf webf ol der/t echnet work/ j sc/ xnl / ns/ j dbc/ webr owset . xsd.) and one for
the WLCachedRowSet, which was implemented before JSR-114 was finalized.

If you are using only WebLogic Server rowsets, you can use either schema. The
proprietary schema has more element types.

To interact with other rowset implementations, you must use the standard schema.

0.11 JoinRowSets

A JoinRowSet is a number of disconnected RowSet objects joined together in a single
rowset by a SQL JOIN.
JoinRowSets have the following characteristics:

ORACLE

Each rowset added to the JoinRowSet must have a "match” column specified in
the addRowSet method used to add the rowset to the JoinRowSet. For example:

addRowSet (j avax. sql . RowSet[] rowset,java.lang. String[] col unmName);

You can set the join type using setJoinType method. The following join types are
supported:

CROSS_JOIN
FULL_JON

I NNER JOIN
LEFT_QUTER JOI N
RI GHT_QUTER JOI N

Enables you to join data while disconnected from the database.

JoinRowSets are for read-only use. JoinRowSets cannot be used to update data in
the database.

9-20

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/WebRowSet.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/WebRowSet.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/jdbc/webrowset.xsd

Chapter 9
JDBCRowSets

* Match columns in a JoinRowSet are limited to four data types: Number, Boolean,
Date, and String. Table 9-1 provides more details about data types allowed for a
match column in a JoinRowSet.

Table 9-1 Data Types Allowed for Match Columns
|

Left Data Type in the Join Allowed Right Data Types in the Join
Number Number
String
Boolean Boolean
String
Date Date
String
String String
Number
Boolean
Date

For more information about JoinRowSets, see the Javadoc for the
javax.sql.rowset. Joi nabl e (http://docs. oracl e. conlj avase/ 6/ docs/ api / j avax/ sql /
rowset / Joi nabl e. ht 1) and Joi nRowSet interfaces (http://docs. oracl e. conl j avase/ 6/
docs/ api/j avax/ sql / rowset / Joi nRowSet . ht i).

9.12 JDBCRowSets

A JDBCRowSet is a wrapper around a ResultSet object that enables you to use the
result set as a JavaBeans component. Note that a JDBCRowSet is a connected
rowset. All other rowset types are disconnected rowsets.

See the Javadoc for the j avax. sql . rowset . JdbcRowSet interface athttp://

docs. oracl e. conl j avase/ 6/ docs/ api / j avax/ sql / rowset / JdbcRowSet . ht mi .

9.13 Handling SyncProviderExceptions with a SyncResolver

Learn about the steps for handling SyncPr ovi der Except i on with a SyncResolver. The
SyncProvi der Except i on throws an error when it encounters violations in reading from or
writing to the originating data source. The SyncResolver object may be used to
examine and resolve each conflict in a row and then go to the next row with a conflict
to repeat the procedure.

When you call accept Changes() to propagate changes in a rowset to the database,
WebLogic Server compares the original data in the rowset (data since the last
synchronization) based on an optimistic concurrency policy with the data in the
database. If it detects data changes, it throws a

javax. sgl . rowset . spi . SyncProvi der Excepti on. By default, your application does not
have to do anything, but the changes in the rowset will not be synchronized in the
database.You can design your application to handle these exceptions and process the
data changes as is suitable for your system.

ORACLE 9-21

http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/Joinable.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/Joinable.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/JoinRowSet.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/JoinRowSet.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/JdbcRowSet.html
http://docs.oracle.com/javase/6/docs/api/javax/sql/rowset/JdbcRowSet.html

Chapter 9
Handling SyncProviderExceptions with a SyncResolver

Note:

For j avax. sql . rowset . CachedRowSet s, WebLogic Server compares all original
values in all rows in the rowset with the corresponding rows in the database.
For webl ogi c. j dbc. rowset . W.CachedRowSet or other WebLogic extended rowset
types, WebLogic Server makes the data comparison based on the optimistic
concurrency setting. See Optimistic Concurrency Policies.

The main steps for handling a SyncProvi der Except i on are:

1. Catch the j avax. sql . rowset. spi . SyncProvi der Except i on.

2. Get the SyncResolver object from the exception. See Getting a SyncResolver
Object.

3. Page through conflicts using next Conflict () or any other navigation method. See
Navigating in a SyncResolver Object.

4. Determine the correct value, then set it with set Resol vedVal ue(), which sets the
value in the rowset. See Setting the Resolved Value for a RowSet Data
Synchronization Conflict.

5. Repeat steps 3 and 4 for each conflicted value.

6. Call rowset. accept Changes() on the rowset (not the SyncResolver) to synchronize
changes with the database using the new resolved values. See Synchronizing
Changes.

For more details about SyncResolvers and the SyncProvi der Excepti on, see the
RowSets specification or the Javadoc for the SyncResol ver interface.

Note:

Before you begin to resolve the SyncProviderException, make sure that no
other processes will update the data.

9.13.1 RowSet Data Synchronization Conflict Types

Table 9-2 lists the types of conflict scenarios that can occur when synchronizing data
changes from a rowset to the database.

ORACLE 9-22

Chapter 9
Handling SyncProviderExceptions with a SyncResolver

Table 9-2 Conflict Types When Synchronizing RowSet Changes in the
Database

RowSet Data Database Data Notes
Change Type Change Type

Update Update Values in the same row in the rowset and database have
changed. The syncresolver status is
SyncResolver. UPDATE_ROW_CONFLICT.

Your application may need to supply logic to resolve the
conflict or may need to present the new data to the user.

Update Delete Values in the row in the rowset have been updated, but the
row has been deleted in the database. The syncresolver
status is SyncResolver. UPDATE_ROW_CONFLICT.

Your application may need to supply logic to decide
whether to leave the row as deleted (as it is in the
database) or to restore the row and persist changes from
the rowset.

* To leave the row as deleted, revert the changes to the
row in the rowset.

e To restore the row with changes, insert a new row with
the desired values.

Note that if the row is deleted in the database, there is no

conflict value. When you call get Conf | i ct Val ue(),

WebLogic Server throws a

webl ogi c. j dbc. rowset . RowNot FoundExcept i on.

Delete Update The row has been deleted in the rowset, but the row has
been updated in the database. The syncresolver status is
SyncResolver.DELETE_ROW_CONFLICT.

Your application may need to supply logic to decide
whether to delete the row (as it is in the rowset) or to keep
the row and persist changes currently in the database.

Note that in this scenario, all values in the row will be
conflicted values. To keep the row with the current values
in the database, call set Resol vedVal ue to set the resolved
value for each column in the row to the current value in the
database. To proceed with the delete, call

syncprovi der . del et eRow() .

Delete Delete The row has been deleted in the rowset and has been
deleted in the database by another process.The
syncresolver status is
SyncResolver.DELETE_ROW_CONFLICT.

To resolve the SyncProviderException, you must revert the
delete operation on the row in the rowset.

Note that there will be no conflict value (not nul | , either)
for any column in the row. When you call

get ConflictVal ue(), WebLogic Server throws a

webl ogi c. j dbc. r owset . RowNot FoundExcept i on.

ORACLE 9-23

Chapter 9
Handling SyncProviderExceptions with a SyncResolver

Table 9-2 (Cont.) Conflict Types When Synchronizing RowSet Changes in the
Database

RowSet Data Database Data Notes
Change Type Change Type

Insert Insert If a row is inserted in the rowset and a row is inserted in
the database, a primary key conflict may occur, in which
case an SQL exception will be thrown. You cannot directly
handle this conflict type using a SyncResolver because a
SyncProviderException is not thrown.

9.13.2 SyncResolver Code Example

Example 9-5 shows an abbreviated example of how to use a SyncResolver to resolve
conflicting values between the rowset and the database. This example checks the
value for known column names in each row in the SyncResolver in which there is a
conflict. Details about the example are explained in the sections that follow the
example.

Example 9-5 SyncResolver Abbreviated Code Example

try {
rs.accept Changes();

} catch (SyncProviderException spex) {
SyncResol ver syncresol ver = spex. get SyncResol ver();
while (syncresolver.nextConflict()) {
int status = syncresol ver.getStatus();
int rownum = syncresol ver. get Row();
rs. absol ut e(rownun;
//check for null in each colum
[/wite out the conflict
//set resolved value to value in the db for this exanple
//handl e exception for deleted rowin the database
try {
Obj ect idConflictValue = syncresol ver.getConflictValue("ID");
if (idConflictValue !'=null) {
Systemout.printIn("ID value in db: " + idConflictValue)
Systemout.printIn("ID value in rowset: " + rs.getint("l
syncresol ver. set Resol vedVal ue("I D', idConflictValue);
Systemout. printIn("Set resolved value to " + idConflictValue);

b'));

}
el se {
Systemout. printIn("ID: NULL - no conflict");

}

} catch (RowNot FoundException e) {
Systemout. println("An exception was thrown when requesting a ");
Systemout. printIn("value for ID. This row was ");
Systemout.printin("deleted in the database.");

}
}
try {
rs.accept Changes();

} catch (Exception ignore2) {

ORACLE 9-24

Chapter 9
Handling SyncProviderExceptions with a SyncResolver

9.13.3 Getting a SyncResolver Object

To handle a SyncProvi der Except i on, you can catch the exception and get a
SyncResol ver object from it. For example:

try {
rowset . accept Changes();

} catch (SyncProviderException spex) {
SyncResol ver syncresol ver = spex. get SyncResol ver();

j .

A SyncResolver is a rowset that implements the SyncResol ver interface. A
SyncResolver object contains a row for every row in the original rowset. For values
without a conflict, the value in the SyncResolver is null. For values with a conflict, the
value is the current value in the database.

9.13.4 Navigating in a SyncResolver Object

ORACLE

With a SyncResolver object, you can page through all conflicts and set the appropriate
value for each conflict value. The SyncResolver interface includes the next Confli ct ()
and previ ousConflict() methods that you can use to navigate directly to the next row
in the SyncResolver that has a conflict value other than nul | . Because a SyncResolver
object is a rowset, you can also use all of the rowset navigation methods to move the
cursor to any row in the SyncResolver. However, the next Conflict() and

previ ousConflict () methods enable you to easily skip rows that do not contain conflict
values.

After you move the cursor to a conflict row, you must check the value in each column
with the get Conf | i ct Val ue() method to find the values in the database that conflict with
the values in the rowset, and then compare values to determine how to handle the
conflict. For rows with values that do not conflict, the return value is nul | . If the row
was deleted in the database, there is no value to return, so an exception is thrown.

Note:

In the WebLogic rowsets implementation, a value conflict occurs if any value in
a row in the database differs from the values read into the rowset when the
rowset was created or when it was last synchronized.

An example of code to compare values in the rowset and database:

syncresol ver. next Conflict ()
for (int i = 1; i <= colCount; i++) {
if (syncresolver.getConflictValue(i) !'=null) {
rsValue = rs.getQbject(i);
resol verVal ue = syncresol ver. get ConflictVal ue(i);

/'l conpare values in the rowset and SyncResol ver to determne
/1 which should be the resolved value (the value to persist)

}
}

9-25

Chapter 9
WLCachedRowSets

9.13.5 Setting the Resolved Value for a RowSet Data Synchronization
Conflict

To set the appropriate value to persist in the database, you call set Resol vedVal ue() .
For example:

syncresol ver. set Resol vedVal ue(i, resol vedVal ue);

The set Resol vedVal ue() method makes the following changes:

e Sets the value to persist in the database. That is, it sets the current value in the
rowset. When changes are synchronized, the new value will be persisted to the
database.

e Changes the original value for the rowset data to the current value in the
database. The original value was the value since the last synchronization. After
calling set Resol vedVal ue(), the original value becomes the current value in the
database.

* Changes the WHERE clause in the synchronization call so that updates are made
to appropriate rows in the database.

9.13.6 Synchronizing Changes

After resolving conflicting values in the SyncResolver, you must synchronize your
changes with the database. To do that, you call r owset . accept Changes() . again. The
accept Changes() call closes the SyncResolver object and releases locks on the
database after the synchronization completes.

9.14 WLCachedRowSets

A W.CachedRowSet is an extension of CachedRowSet s, Fi | t er edRowSet s, WebRowSet s, and
Sort edRowSet s.

W.CachedRowSet hasthe following characteristics:

* Inthe WebLogic Server RowSets implementation, all rowsets originate as a
W.CachedRowset . W.CachedRowSet can be interchangeably used as any of the
standard rowset types that it extends.

* WCachedRowSet include convenience methods that help make using rowsets easier
and also include methods for setting optimistic concurrency options and data
synchronization options.

e It may not be possible to read or update an SQLXM. datatype object. The JDBC 4.0
specification does not require vendors to make SQLXM. objects readable after they
have been set. Once WebLogic Server sets the value for an SQLXM. datatype
object, it cannot be read or updated.

See the Javadoc for the weblogic.jdbc.rowset.WLCachedRowSet interface.

ORACLE 9-26

Chapter 9
SharedRowSets

9.15 SharedRowSets

Rowsets can be used by a single thread. They cannot be shared by multiple threads.
A SharedRowSet extends CachedRowSets so that additional CachedRowSets can be
created for use in other threads based on the data in an original CachedRowSet.
SharedRowSets have the following characteristics:

» Each SharedRowsSet is a shallow copy of the original rowset (with references to
data in the original rowset instead of a copy of the data) with its own context
(cursor, filter, sorter, pending changes, and sync provider).

* When data changes from any of the SharedRowSets are synchronized with the
database, the base CachedRowSet is updated as well.

» Using SharedRowSets can increase performance by reducing the number of
database round-trips required by an application.

To create a SharedRowSet, you use the creat eShared() method in the
WLCachedRowSet interface and cast the result as a WLCachedRowSet. For example:

W.CachedRowSet sharedrowset = (W.CachedRowSet)rowset . createShared();

9.16 SortedRowSets

A SortedRowSet extends CachedRowSets so that rows in a CachedRowSet can be
sorted based on the Comparator object provided by the application.
SortedRowSets have the following characteristics:

e Sorting is set in a way similar to way filtering is set for a FilteredRowSet, except
that sorting is based on a j ava. util . Conparat or object instead of a
javax. sgl . rowset. Predi cat e object:

1. The application creates a Conpar at or object with the desired sorting behavior.

2. The application then sets the sorting criteria with the
set Sorter(java.util.Conparator) method.

e Sorting is done in memory rather than depending on the database management
system for sort processing. Using SortedRowSets can increase application
performance by reducing the number of database round-trips.

e WebLogic Server provides the SQLComparator object, which implements
java.util. Conparator. You can use it to sort rows in a SortedRowSet by passing
the list of columns that you want use as sorting criteria. For example:

rs.setSorter(new webl ogic. j dbc. rowset. SQLConpar at or (" col umA, col umB, col umcC'));
See the Javadocs for the following:
e weblogic.jdbc.rowset.SortedRowSet interface

« weblogic.jdbc.rowset.SQLComparator class

9.17 SQLPredicate, a SQL-Style RowSet Filter

The SQLPredicate class is used to define a filter for a FilteredRowSet using SQL-like
WHERE clause syntax.

e What is SQLPredicate?

ORACLE 9-27

Chapter 9
Optimistic Concurrency Policies

e SQLPredicate Grammar

e Code Example

9.17.1 What is SQLPredicate?

WebLogic Server provides the webl ogi c. j dbc. rowset . SQLPr edi cat e class, which is an
implementation of the j avax. sql . rowset . Predi cat e interface. You can use the

SQLPr edi cat e class to define a filter for a FilteredRowSet using SQL-like WHERE
clause syntax.

9.17.2 SQLPredicate Grammar

The SQLPredicate class borrows its grammar from the JMS selector grammar, which
is very similar to the grammar for an SQL select WHERE clause.

Some important notes:

* When referencing a column, you must use the column name; you cannot use
column index number.

* The grammar supports the use of operators and mathematical operations, for
example:

(col A + Col B) >=100.

* In constructing the WHERE clause, you can use simple datatypes only, including:

String
— Int

Boolean

— Float
» Complex data types are not supported:
— Array
— BLOB
- CLOB
— Date

9.17.3 Code Example

I[ISET FILTER

/luse SQLPredicate class to create a SQLPredicate object,

//then pass the object in the setFilter method to filter the RowSet.
SQLPredicate filter = new SQLPredicate("ID >= 103");
rs.setFilter(filter);

See the Javadoc for the weblogic.jdbc.rowset.SQLPredicate class.

9.18 Optimistic Concurrency Policies

With optimistic concurrency, RowSets work on the assumption that multiple users are
unlikely to change the same data at the same time. Therefore, as part of the
disconnected rowset model, the rowset does not lock database resources.

ORACLE 9-28

Chapter 9
Optimistic Concurrency Policies

In most cases, populating a rowset with data and updating the database occur in
separate transactions. The underlying data in the database can change in the time
between the two transactions. The WebLogic Server rowset implementation
(WLCachedRowSet) uses optimistic concurrency control to ensure data consistency.

With optimistic concurrency, RowSets work on the assumption that multiple users are
unlikely to change the same data at the same time. Therefore, as part of the
disconnected rowset model, the rowset does not lock database resources. However,
before writing changes to the database, the rowset must check to make sure that the
data to be changed in the database has not already changed since the data was read
into the rowset.

The UPDATE and DELETE statements issued by the rowset include WHERE clauses
that are used to verify the data in the database against what was read when the
rowset was populated. If the rowset detects that the underlying data in the database
has changed, it issues an pti i sticConflict Exception. The application can catch this
exception and determine how to proceed. Typically, applications will refresh the
updated data and present it to the user again.

The WLCachedRowSet implementation offers several optimistic concurrency policies
that determine what SQL the rowset issues to verify the underlying database data:

* VERIFY_READ_COLUMNS

* VERIFY_MODIFIED_COLUMNS

* VERIFY_SELECTED_COLUMNS

* VERIFY_NONE

* VERIFY_AUTO_VERSION_COLUMNS
* VERIFY_VERSION_COLUMNS

To illustrate the differences between these policies, we will use an example that uses
the following:

* A very simple employees table with 3 columns:

CREATE TABLE enpl oyees (
e_id integer primary key,
e_sal ary integer,
e_name var char (25)

);
e Asingle row in the table:
e_id =1, e_salary = 10000, and e_nane = 'John Snith'

In the example for each of the optimistic concurrency policies listed below, the rowset
will read this row from the employees table and set John Smith's salary to 20000. The
example will then show how the optimistic concurrency policy affects the SQL code
issued by the rowset.

9.18.1 VERIFY_READ_COLUMNS

ORACLE

The default rowset optimistic concurrency control policy is
VERIFY_READ_COLUMNS. When the rowset issues an UPDATE or DELETE, it
includes all columns that were read from the database in the WHERE clause. This
verifies that the value in all columns that were initially read into the rowset have not
changed.

9-29

Chapter 9
Optimistic Concurrency Policies

In our example update, the rowset issues:

20000
10000 AND e_name = 'John Smith';

UPDATE enpl oyees SET e_sal ary
WHERE e_id = 1 AND e_sal ary

9.18.2 VERIFY_MODIFIED_COLUMNS

The VERIFY_MODIFIED_COLUMNS policy only includes the primary key columns
and the updated columns in the WHERE clause. It is useful if your application only
cares if its updated columns are consistent. It does allow your update to commit if
columns that have not been updated have changed since the data has been read.

In our example update, the rowset issues:

UPDATE enpl oyees SET e_sal ary = 20000
VWHERE e_id = 1 AND e_sal ary=10000

The e_i d column is included since it is a primary key column. The e_sal ary column is a
modified column so it is included as well. The e_name column was only read so it is not
verified.

9.18.3 VERIFY_SELECTED_COLUMNS

The VERIFY_SELECTED_COLUMNS includes the primary key columns and columns
you specify in the WHERE clause.

W.RowSet Met aDat a net aData = (W.RowSet Met aData) rowSet. get Met aDat a();
met aDat a. set Opt i mi sti cPol i cy(W.RowSet Met aDat a. VERI FY_SELECTED COLUWNS) ;
[l Only verify the e_salary colum

met aDat a. set Veri f ySel ect edCol urm(" e_sal ary", true);

met aDat a. accept Changes() ;

In our example update, the rowset issues:

UPDATE enpl oyees SET e_sal ary = 20000
VWHERE e_id = 1 AND e_sal ary=10000

The e_i d column is included since it is a primary key column. The e_sal ary column is a
selected column so it is included as well.

9.18.4 VERIFY_NONE

The VERIFY_NONE policy only includes the primary key columns in the WHERE
clause. It does not provide any additional verification on the database data.

In our example update, the rowset issues:

UPDATE enpl oyees SET e_sal ary = 20000 WHERE e_id = 1

9.18.5 VERIFY_AUTO_VERSION_COLUMNS

ORACLE

The VERIFY_AUTO_VERSION_COLUMNS includes the primary key columns as well
as a separate version column that you specify in the WHERE clause. The rowset will
also automatically increment the version column as part of the update. This version
column must be an integer type. The database schema must be updated to include a

9-30

Chapter 9
Optimistic Concurrency Policies

separate version column (e_versi on). Assume for our example this column currently
has a value of 1.

met aDat a. set Opti mi sti cPol i cy(W.RowSet Met aDat a.
VER! FY_AUTO_VERSI ON_COLUMNS) ;

met aDat a. set Aut oVer si onCol um("e_version", true);
met aDat a. accept Changes() ;

In our example update, the rowset issues:

UPDATE enpl oyees SET e_sal ary = 20000, e_version = 2
VWHERE e_id = 1 AND e_version = 1

The e_versi on column is automatically incremented in the SET clause. The WHERE
clause verified the primary key column and the version column.

9.18.6 VERIFY_VERSION_COLUMNS

The VERIFY_VERSION_COLUMNS has the rowset check the primary key columns as
well as a separate version column. The rowset does not increment the version column
as part of the update. The database schema must be updated to include a separate
version column (e_versi on). Assume for our example this column currently has a value
of 1.

met aDat a. set Opt i mi sti cPol i cy(W.RowSet Met aDat a. VERI FY_VERSI ON_COLUWNS) ;
met aDat a. set Ver si onCol um("e_version", true);
met aDat a. accept Changes() ;

In our example update, the rowset issues:

UPDATE enpl oyees SET e_sal ary = 20000
WHERE e_id = 1 AND e_version = 1

The WHERE clause verifies the primary key column and the version column. The
rowset does not increment the version column so this must be handled by the
database. Some databases provide automatic version columns that increment when
the row is updated. It is also possible to use a database trigger to handle this type of
update.

9.18.7 Optimistic Concurrency Control Limitations

The Optimistic policies only verify UPDATE and DELETE statements against the row
they are changing. Read-only rows are not verified against the database.

Most databases do not allow BLOB or CLOB columns in the WHERE clause so the
rowset never verifies BLOB or CLOB columns.

When multiple tables are included in the rowset, the rowset only verifies tables that
have been updated.

9.18.8 Choosing an Optimistic Policy

The default VERIFY_READ_COLUMNS provides a strong-level of consistency at the
expense of some performance. Since all columns that were initially read must be sent
to the database and compared in the database, there is some additional overhead to

ORACLE 9-31

Chapter 9
Performance Options

this policy. VERIFY_READ_COLUMNS is appropriate when strong levels of
consistency are needed, and the database tables cannot be modified to include a
version column.

The VERIFY_SELECTED_COLUMNS is useful when the developer needs complete
control over the verification and wants to use application-specific knowledge to fine-
tune the SQL.

The VERIFY_AUTO_VERSION_COLUMNS provides the same level of consistency as
VERIFY_READ_COLUMNS but only has to compare a single integer column. This
policy also handles incrementing the version column so it requires a minimal amount
of database setup.

The VERIFY_VERSION_COLUMNS is recommended for production systems that
want the highest level of performance and consistency. Like
VERIFY_AUTO_VERSION_COLUMNS, it provides a high level of consistency while
only incurring a single column comparison in the database.
VERIFY_VERSION_COLUMNS requires that the database handle incrementing the
version column. Some databases provide a column type that automatically increments
itself on updates, but this behavior can also be implemented with a database trigger.

The VERIFY_MODIFIED_COLUMNS and VERIFY_NONE decrease the consistency
guarantees, but they also decrease the likelihood of an optimistic conflict. You should
consider these policies when performance and avoiding conflicts outweigh the need
for higher level of data consistency.

9.19 Performance Options

Learn about the RowSets performance options such as JDBC Batching and Group
Deletes.

» JDBC Batching

* Group Deletes

9.19.1 JDBC Batching

The rowset implementation includes support for JDBC batch operations. Instead of
sending each SQL statement individually to the JDBC driver, a batch sends a
collection of statements in one bulk operation to the JDBC driver. Batching is disabled
by default, but it generally improves performance when large numbers of updates
occur in a single transaction. It is worthwhile to benchmark with this option enabled
and disabled for your application and database.

The WLCachedRowSet interface contains the methods set Bat chl nsert s(bool ean) ,
set Bat chDel et es(bool ean) , and set Bat chUpdat es(bool ean) to control batching of
INSERT, DELETE, and UPDATE statements.

Note:

The set Bat chl nserts, set Bat chDel et es, Or set Bat chUpdat es methods must be
called before the accept Changes method is called.

ORACLE 9-32

Chapter 9
Performance Options

9.19.1.1 Batching Limitations with and Oracle Database

Since the WLCachedRowSet relies on optimistic concurrency control, it needs to
determine whether an update or delete command has succeeded or an optimistic
conflict occurred. The WLCachedRowSet implementation relies on the JDBC driver to
report the number of rows updated by a statement to determine whether a conflict
occurred or not. In the case where 0 rows were updated, the WLCachedRowSet
knows that a conflict did occur.

Oracle JDBC drivers return j ava. sql . St at enent . SUCCESS_NO_| NFOwhen batch updates
are executed, so the rowset implementation cannot use the return value to determine
whether a conflict occurred.

When the rowset detects that batching is used with an Oracle database, it
automatically changes its batching behavior:

Batched inserts perform as usual since they are not verified.

Batched updates run as normal, but the rowset issues an extra SELECT query to
check whether the batched update encountered an optimistic conflict.

Batched deletes use group deletes since this is more efficient than executing a
batched delete followed by a SELECT verification query.

9.19.2 Group Deletes

When multiple rows are deleted, the rowset would normally issue a DELETE
statement for each deleted row. When group deletes are enabled, the rowset issues a
single DELETE statement with a WHERE clause that includes the deleted rows.

For instance, if we were deleting 3 employees from our table, the rowset would
normally issue:

DELETE FROM enpl oyees WHERE e_id = 3 AND e_version = 1;
DELETE FROM enpl oyees WHERE e_id = 4 AND e_version = 3;
DELETE FROM enpl oyees WHERE e_id = 5 AND e_version = 10;

When group deletes are enabled, the rowset issues:

DELETE FROM enpl oyees

WHERE e_id = 3 AND e_version = 1 OR
e id=4 AND e_version = 3 R
e id =5 AND e_version = 10;

You can use the W.RowSet Met aDat a. set G oupDel et eSi ze to determine the number of
rows included in a single DELETE statement. The default value is 50.

ORACLE 9-33

Chapter 9

Performance Options

ORACLE" 9-34

Troubleshooting JDBC

Learn about common issues such as problems with Oracle Database on UNIX, thread-
related problems on UNIX and so on.

* Problems with Oracle Database on UNIX

e Thread-related Problems on UNIX

* Closing JDBC Objects

e Using Microsoft SQL Server with Nested Triggers

10.1 Problems with Oracle Database on UNIX

If you have problems with an Oracle database running on Unix, check the threading
model being used. When using Oracle drivers, WebLogic recommends that you use
native threads. You can specify this by adding the - nat i ve flag when you start Java.

10.2 Thread-related Problems on UNIX

On UNIX, two threading models are available: green threads and native threads. You
can determine what type of threads you are using by checking the environment
variable called THREADS TYPE.

For more information, read about the JDK for the Solaris operating environment at
http://wwmv. oracl e. con't echnetwork/javal/index. htni .

To determine the type of threads you are using check the environment variable called
THREADS_TYPE. . If this variable is not set, you can check the shell script in your Java
installation bin directory.

Some of the problems are related to the implementation of threads in the JVM for each
operating system. Not all JVMs handle operating-system specific threading issues
equally well. If you are using Oracle drivers, use native threads.

10.3 Closing JDBC Objects

ORACLE

Oracle recommends—and good programming practice dictates—that you always close
JDBC objects, such as Connecti ons, St at ements, and Resul t Set's, in a final |y block to
make sure that your program executes efficiently.

Here is a general example:

Example 10-1 Closing a JDBC Object
try {

Driver d =
(Driver)C ass. forNane("oracle.jdbc. Oracl eDriver").new nstance();

Connection conn = d.connect (" dbc: webl ogi c: oracl e: nyserver",
"scott", "tiger");

10-1

http://www.oracle.com/technetwork/java/index.html

Chapter 10
Using Microsoft SQL Server with Nested Triggers

Statement stnt = conn.createStatenent();
stnt.execute("select * fromenp");
ResultSet rs = stnt.getResultSet();

/1 do work

}
catch (Exception e) {

/1 handl e any exceptions as appropriate

}

finally {

try {rs.close();}

catch (Exception rse) {}
try {stnt.close();}
catch (Exception sse) {}
try {conn.close();
catch (Exception cse) {}

}
10.3.1 Abandoning JDBC Objects

You should also avoid the following practice, which creates abandoned JDBC objects:

//Do not do this.
stnt. executeQuery();
rs = stnt.getResultSet();

//Do this instead
rs = stnt.executeQuery();

The first line in this example creates a result set that is lost and can be garbage
collected immediately.

10.4 Using Microsoft SQL Server with Nested Triggers

Learn about the troubleshooting information when using nested triggers with some
Microsoft SQL Server databases.

» Exceeding the Nesting Level
» Using Triggers and EJBs

For information on supported data bases and data base drivers, see the Oracle Fusion
Middleware Supported System Configurations page at http://www. or acl e. con
technet wor k/ ni ddl ewar e/ i as/ downl oads/ f usi on-certification-100350. htni.

10.4.1 Exceeding the Nesting Level

You may encounter a SQL Server error indicating that the nesting level has been
exceeded on some SQL Server databases.

For example:

ORACLE 10-2

http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html
http://www.oracle.com/technetwork/middleware/ias/downloads/fusion-certification-100350.html

Chapter 10
Using Microsoft SQL Server with Nested Triggers

CREATE TABLE Enpl oyeeEJBTabl e (nanme varchar(50) not null,salary int, card
varchar (50), prinmary key (nane))

CREATE TABLE Car dEJBTabl e (cardno varchar(50) not null, enployee
varchar (50), primary key (cardno), foreign key (enployee) references
Enpl oyeeEJB Tabl e(nane) on del ete cascade)

CREATE TRIGGER card on Enpl oyeeEJBTabl e for delete as delete Car dEJBTabl e
where enpl oyee in (select name from del et ed)

CREATE TRIGGER enp on CardEJBTable for delete as del ete Enpl oyeeEJBTabl e
where card in (select cardno from del et ed)

insert into Enpl oyeeEJBTabl e values ('1',1000,'1")

1
insert into CardEJBTable values ('1','1")
DELETE FROM Car dEJBTabl e WHERE cardno = 1

Results in the following error message:

Maxi mum stored procedure, function, trigger, or view nesting |evel exceeded (limt
32).

To work around this issue, do the following:

1. Run the following script to reset the nested trigger level to 0:

- Start batch

exec sp_configure 'nested triggers', 0 -- This set's the new val ue.
reconfigure with override -- This makes the change pernmanent
- End batch

2. Verify the current value the SQL server by running the following script:

exec sp_configure 'nested triggers'

10.4.2 Using Triggers and EJBs

ORACLE

Applications using EJBs with a Microsoft driver may encounter situations when the
return code from the execut e() method is 0, when the expected value is 1 (1 record
deleted).

For example:

CREATE TABLE Enpl oyeeEJBTabl e (nanme varchar(50) not null,salary int, card
varchar (50), primary key (nane))

CREATE TABLE Car dEJBTabl e (cardno varchar(50) not null, enployee
varchar (50), primary key (cardno), foreign key (enployee) references
Enpl oyeeEJB Tabl e(nane) on del ete cascade)

CREATE TRIGGER enp on CardEJBTable for delete as del ete Enpl oyeeEJBTabl e
where card in (select cardno from del et ed)

insert into Enpl oyeeEJBTabl e values ('1',1000,'1")

insert into CardEJBTable values ('1','1")

DELETE FROM Car dEJBTabl e WHERE cardno = 1
The EJB code assumes that the record is not found and throws an appropriate error
message.
To work around this issue, run the follow ng script:

exec sp_configure 'show advanced options', 1

reconfigure with override

exec sp_configure 'disallowresults fromtriggers',1

reconfigure with override

10-3

Chapter 10

Using Microsoft SQL Server with Nested Triggers

ORACLE" 10-4

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 JDBC Samples and Tutorials
	1.4.1 Avitek Medical Records Application (MedRec)
	1.4.2 JDBC Examples in the WebLogic Server Distribution

	1.5 New and Changed Features in This Release

	2 Using WebLogic JDBC in an Application
	2.1 Getting a Database Connection from a DataSource Object
	2.1.1 Importing Packages to Access DataSource Objects
	2.1.2 Obtaining a Client Connection Using a DataSource
	2.1.3 Possible Exceptions When a Connection Request Fails

	2.2 Pooled Connection Limitation
	2.3 Getting a Connection from an Application-Scoped Data Source

	3 Using DataSource Resource Definitions
	3.1 Using Java EE DataSource Resource Definitions
	3.1.1 Creating DataSource Resource Definitions Using Annotations
	3.1.2 Creating DataSource Resource Definitions Using Deployment Descriptors

	3.2 Using WebLogic Configuration Attributes
	3.3 Implementation Considerations When Using DataSource Resource Definitions
	3.3.1 Naming Conventions
	3.3.1.1 WebLogic Data Source Naming Conventions
	3.3.1.2 Java EE Data Source Naming Conventions

	3.3.2 Mapping the Java EE DataSource Resource Definition to WebLogic Data Source Resources
	3.3.3 Configuring Active GridLink DataSource Resource Definitions
	3.3.4 Using an Encrypted Password in a DataSourceDefinition
	3.3.5 Additional Considerations

	3.4 Using Data Sources in Clients
	3.5 Additional Resources

	4 Performance Tuning Your JDBC Application
	4.1 WebLogic Performance-Enhancing Features
	4.1.1 How Pooled Connections Enhance Performance
	4.1.2 Caching Statements and Data

	4.2 Designing Your Application for Best Performance
	4.2.1 Process as Much Data as Possible Inside the Database
	4.2.2 Use Built-in DBMS Set-based Processing
	4.2.3 Make Your Queries Smart
	4.2.4 Make Transactions Single-batch
	4.2.5 Never Have a DBMS Transaction Span User Input
	4.2.6 Use In-place Updates
	4.2.7 Keep Operational Data Sets Small
	4.2.8 Use Pipelining and Parallelism

	5 Using WebLogic-branded DataDirect Drivers
	5.1 Using DataDirect Documentation
	5.2 JDBC Specification Compliance
	5.3 Installation
	5.4 Supported Drivers and Databases
	5.5 Connecting Through WebLogic JDBC Data Sources
	5.6 Developing Your Own JDBC Code
	5.7 Specifying Connection Properties
	5.8 Using IP Addresses
	5.9 Required Permissions for the Java Security Manager
	5.10 For MS SQLServer Users
	5.10.1 Installing MS SQLServer XA DLLs
	5.10.2 Using instjdbc.sql with MS SQLServer

	6 Using WebLogic Wrapper Drivers
	6.1 Using the WebLogic RMI Driver (Deprecated)
	6.1.1 RMI Driver Client Interoperability
	6.1.2 Security Considerations for WebLogic RMI Drivers
	6.1.3 Setting Up WebLogic Server to Use the WebLogic RMI Driver
	6.1.4 Sample Client Code for Using the RMI Driver
	6.1.4.1 Import the Required Packages
	6.1.4.2 Get the Database Connection
	6.1.4.3 Using a JNDI Lookup to Obtain the Connection
	6.1.4.4 Using Only the WebLogic RMI Driver to Obtain a Database Connection

	6.1.5 Row Caching with the WebLogic RMI Driver
	6.1.5.1 Important Limitations for Row Caching with the WebLogic RMI Driver

	6.1.6 Limitations When Using Global Transactions

	6.2 Using the WebLogic JTS Driver (Deprecated)
	6.2.1 Sample Client Code for Using the JTS Driver

	7 Using API Extensions in JDBC Drivers
	7.1 Using API Extensions to JDBC Interfaces
	7.1.1 Sample Code for Accessing API Extensions to JDBC Interfaces
	7.1.1.1 Import Packages to Access API Extensions
	7.1.1.2 Get a Connection
	7.1.1.3 Cast the Connection as a Vendor Connection
	7.1.1.4 Use API Extensions

	7.2 Using API Extensions for Oracle JDBC Types
	7.2.1 Sample Code for Accessing Oracle Thin Driver Extensions to JDBC Interfaces
	7.2.2 Programming with Arrays
	7.2.2.1 Import Packages to Access Oracle Extensions
	7.2.2.2 Establish the Connection
	7.2.2.3 Creating an Array in the Database
	7.2.2.4 Getting an Array
	7.2.2.5 Updating an Array in the Database
	7.2.2.6 Using Oracle Array Extension Methods

	7.2.3 Programming with Structs
	7.2.3.1 Creating Objects in the Database
	7.2.3.2 Getting Struct Attributes
	7.2.3.3 Using OracleStruct Extension Methods
	7.2.3.4 Using a Struct to Update Objects in the Database

	7.2.4 Programming with Refs
	7.2.4.1 Creating a Ref in the Database
	7.2.4.2 Getting a Ref
	7.2.4.3 Using WebLogic OracleRef Extension Methods
	7.2.4.4 Updating Ref Values

	7.2.5 Programming with Large Objects
	7.2.5.1 Creating Blobs in the Database
	7.2.5.2 Updating Blobs in the Database
	7.2.5.3 Using OracleBlob Extension Methods
	7.2.5.4 Programming with Clob Values
	7.2.5.5 Transaction Boundaries Using LOBs
	7.2.5.6 Recovering LOB Space

	7.2.6 Programming with Opaque Objects

	7.3 Using Batching with the Oracle Thin Driver
	7.4 Using the Java Security Manager with the Oracle Thin Driver

	8 Getting a Physical Connection from a Data Source
	8.1 Opening a Connection
	8.2 Closing a Connection
	8.2.1 Remove Infected Connections Enabled is True
	8.2.2 Remove Infected Connections Enabled is False

	8.3 Limitations for Using a Physical Connection

	9 Using RowSets with WebLogic Server
	9.1 Deprecation of weblogic.jdbc.rowsets
	9.2 About RowSets
	9.3 Types of RowSets
	9.4 Programming with RowSets
	9.5 CachedRowSets
	9.5.1 Characteristics
	9.5.2 Special Programming Considerations and Limitations for CachedRowSets
	9.5.2.1 Entire RowSet Query Results Stored in Memory
	9.5.2.2 Data Contention

	9.5.3 Code Example
	9.5.4 Importing Classes and Interfaces for a CachedRowSet
	9.5.5 Creating a CachedRowSet
	9.5.6 Setting CachedRowSet Properties
	9.5.7 Database Connection Options
	9.5.8 Populating a CachedRowSet
	9.5.9 Setting CachedRowSet MetaData
	9.5.10 Working with Data in a CachedRowSet
	9.5.10.1 Getting Data from a Row in a RowSet
	9.5.10.2 Updating a Row in a RowSet
	9.5.10.3 Inserting a Row in a RowSet
	9.5.10.4 Deleting a Row in a RowSet

	9.5.11 Synchronizing RowSet Changes with the Database

	9.6 RowSet MetaData Settings for Database Updates
	9.7 WebLogic RowSet Extensions for Working with MetaData
	9.7.1 executeAndGuessTableName and executeAndGuessTableNameAndPrimaryKeys
	9.7.2 Setting Table and Primary Key Information Using the MetaData Interface
	9.7.3 Setting the Write Table

	9.8 RowSets and Transactions
	9.8.1 Integrating with JTA Global Transactions
	9.8.1.1 Behavior of Rowsets Using Global Transactions

	9.8.2 Using Local Transactions
	9.8.2.1 Behavior of Rowsets Using Local Transactions
	9.8.2.1.1 Calling connection.commit
	9.8.2.1.2 Calling acceptChanges

	9.8.3 Reusing a WebLogic RowSet After Completing a Transaction

	9.9 FilteredRowSets
	9.9.1 FilteredRowSet Characteristics
	9.9.2 Special Programming Considerations
	9.9.2.1 RowSet Filters are Not Cumulative
	9.9.2.2 No Pending Changes Before Setting or Changing a Filter

	9.9.3 FilteredRowSet Code Example
	9.9.4 Importing Classes and Interfaces for FilteredRowSets
	9.9.5 Creating a FilteredRowSet
	9.9.6 Setting FilteredRowSet Properties
	9.9.7 Database Connection Options for a FilteredRowSet
	9.9.8 Populating a FilteredRowSet
	9.9.9 Setting FilteredRowSet MetaData
	9.9.10 Setting the Filter for a FilteredRowSet
	9.9.10.1 User-Defined RowSet Filter
	9.9.10.2 WebLogic SQL-Style Filter

	9.9.11 Working with Data in a FilteredRowSet

	9.10 WebRowSets
	9.10.1 Special Programming Considerations

	9.11 JoinRowSets
	9.12 JDBCRowSets
	9.13 Handling SyncProviderExceptions with a SyncResolver
	9.13.1 RowSet Data Synchronization Conflict Types
	9.13.2 SyncResolver Code Example
	9.13.3 Getting a SyncResolver Object
	9.13.4 Navigating in a SyncResolver Object
	9.13.5 Setting the Resolved Value for a RowSet Data Synchronization Conflict
	9.13.6 Synchronizing Changes

	9.14 WLCachedRowSets
	9.15 SharedRowSets
	9.16 SortedRowSets
	9.17 SQLPredicate, a SQL-Style RowSet Filter
	9.17.1 What is SQLPredicate?
	9.17.2 SQLPredicate Grammar
	9.17.3 Code Example

	9.18 Optimistic Concurrency Policies
	9.18.1 VERIFY_READ_COLUMNS
	9.18.2 VERIFY_MODIFIED_COLUMNS
	9.18.3 VERIFY_SELECTED_COLUMNS
	9.18.4 VERIFY_NONE
	9.18.5 VERIFY_AUTO_VERSION_COLUMNS
	9.18.6 VERIFY_VERSION_COLUMNS
	9.18.7 Optimistic Concurrency Control Limitations
	9.18.8 Choosing an Optimistic Policy

	9.19 Performance Options
	9.19.1 JDBC Batching
	9.19.1.1 Batching Limitations with and Oracle Database

	9.19.2 Group Deletes

	10 Troubleshooting JDBC
	10.1 Problems with Oracle Database on UNIX
	10.2 Thread-related Problems on UNIX
	10.3 Closing JDBC Objects
	10.3.1 Abandoning JDBC Objects

	10.4 Using Microsoft SQL Server with Nested Triggers
	10.4.1 Exceeding the Nesting Level
	10.4.2 Using Triggers and EJBs

