Oracle® Fusion Middleware

Developing Manageable Applications Using
JMX for Oracle WebLogic Server

ORACLE"

Oracle Fusion Middleware Developing Manageable Applications Using JMX for Oracle WebLogic Server, 12¢
(12.2.1.3.0)

E80433-02
Copyright © 2015, 2017, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Documentation Accessibility

Conventions
1 Introduction and Roadmap
1.1 Document Scope and Audience 1-1
1.2 Guide to this Document 1-1
1.3 Related Documentation 1-2
1.4 New and Changed Features in This Release 1-2
2 Understanding JMX
2.1 What Management Services Can You Develop with IMX? 2-1
2.2 Creating Management-Aware Applications 2-2
2.3 When Is It Appropriate to Use JMX? 2-2
2.4 What Management Services Have BEA Partners Developed? 2-3
2.5 JMX Layers 2-3
2.6 Indirection and Introspection 2-4
2.7 Notifications and Monitor MBeans 2-4
2.7.1 How JMX Notifications Are Broadcast and Received 2-5
2.7.2 Active Polling with Monitor MBeans 2-6
3 Designing Manageable Applications
3.1 Benefits of Oracle Best Practices 3-1
3.2 Use Standard MBeans 3-1
3.3 Registering Custom MBeans in the WebLogic Server Runtime Bean Server 3-2
3.4 Registering Custom MBeans in the Domain Runtime MBean Server 3-2
3.5 Use ApplicationLifecycleListener to Register Application MBeans 3-3
3.6 Unregister Application MBeans When Applications Are Undeployed 3-3
3.7 Place Management Logic for EJBs and Servlets in a Delegate Class 3-3
3.8 Use Open MBean Data Types 3-4

ORACLE

3.9 Emit Notifications Only When Necessary 3-5
3.10 Additional Design Considerations 3-5
3.10.1 Registering MBeans in the JVM Platform MBean Server 3-5
3.10.2 Registering Application MBeans by Using Only JDK Classes 3-5
3.10.3 Organizing Managed Objects and Business Objects 3-6
3.10.4 Packaging and Accessing Management Classes 3-6
3.10.5 Securing Custom MBeans with Roles and Policies 3-6
4 Instrumenting and Registering Custom MBeans
4.1 Overview of the MBean Development Process 4-1
4.2 Create and Implement a Management Interface 4-3
4.3 Modify Business Methods to Push Data 4-5
4.4 Register the MBean 4-6
4.5 Package Application and MBean Classes 4-8
5 Using the WebLogic Server JIMX Timer Service
5.1 Overview of the WebLogic Server JMX Timer Service 5-1
5.2 Creating the Timer Service: Main Steps 5-1
5.3 Configuring a Timer MBean to Emit Notifications 5-2
5.4 Creating Date Objects 5-4
5.5 Example: Generating a Notification Every Five Minutes After 9 AM 5-4
5.6 Removing Notifications 5-6
%) Accessing Custom MBeans
6.1 Accessing Custom MBeans from JConsole 6-1
6.2 Accessing Custom MBeans from WebLogic Scripting Tool 6-3
6.3 Accessing Custom MBeans from an Administration Console Extension 6-3

ORACLE

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Manageable Applications Using JMX for Oracle WebLogic
Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLSs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Introduction and Roadmap

This document describes how to use the Java Management Extensions (JMX) to how
to reduce the cost of operating and maintaining your applications by building
management facilities into your applications. The simplest facility is message logging,
which reports events within your applications as they occur and writes messages to a
file or other repository. Depending on the criticality of your application, the complexity
of the production environment, and the types of monitoring systems your organization
uses in its operations center, your needs might be better served by building richer
management facilities based on Java Management Extensions (JMX). JMX enables a
generic management system to monitor your application; raise notifications when the
application needs attention; and change the configuration or run-time state of your
application to remedy problems.

The following sections describe the contents and organization of this guide—
Developing Manageable Applications Using JMX for Oracle WebLogic Server.

e Document Scope and Audience
e Guide to this Document
* Related Documentation

 New and Changed Features in This Release

1.1 Document Scope and Audience

This document is a resource for software developers who develop management
services for Java EE applications. It also contains information that is useful for
business analysts and system architects who are evaluating WebLogic Server or
considering the use of JMX for a particular application.

It is assumed that the reader is familiar with Java EE and general application
management concepts.

The information in this document is relevant during the design and development
phases of a software project. This document does not address production phase
administration, monitoring, or performance tuning topics. For links to WebLogic Server
documentation and resources related to these topics, see Related Documentation.

This document emphasizes a hands-on approach to developing a limited but useful set
of IMX management services. For information on applying JMX to a broader set of
management problems, refer to the JMX specification or other documents listed in
Related Documentation.

1.2 Guide to this Document

ORACLE

e This chapter, Introduction and Roadmap, describes the scope and organization of
this guide.

e Understanding JMX, gives an overview of JMX and describes how Java EE
application developers can use JMX.

1-1

Chapter 1
Related Documentation

» Designing Manageable Applications, recommends design patterns for making
Java EE applications manageable through JMX.

* Instrumenting and Registering Custom MBeans, describes how to create your own
MBeans (custom MBeans), which enable you to promote your application to the
status of a managed object within a larger management system.

* Using the WebLogic Server JMX Timer Service, describes how to configure your
JMX client to carry out a task at a specified time or a regular time interval by using
WebLogic Server's implementation of the JMX timer service.

* Accessing Custom MBeans, describes options for accessing your MBeans (other
than through JMX).

1.3 Related Documentation

The Oracle Technology Network includes a Web site that provides links to books,
white papers, and additional information on JMX: htt p: // www. or acl e. conl t echnet wor k/
j aval javasel t ech/ j avananagenent - 140525. ht ni .

WebLogic Server supports JMX 1.4 by leveraging the JMX implementation in the JDK
on which it is running. To view the JMX 1.4 specification, download it from http://
docs. oracl e. conl j avase/ 7/ docs/ t echnot es/ gui des/ j mx/

To view the IMX Remote API 1.0 specification, download it from http://jcp. org/
about Java/ communi t yprocess/final /jsr160/index. htn .

You can view the API reference for the j avax. nanagenent * packages from: http://
docs. oracl e. conl j avase/ 7/ docs/ api / over vi ew sunmary. ht nl .

For guidelines on developing other types of management services for WebLogic
Server applications, see the following documents:

* Adding WebLogic Logging Services to Applications Deployed on Oracle WebLogic
Server describes WebLogic support for internationalization and localization of log
messages and shows you how to use the templates and tools provided with
WebLogic Server to create or edit message catalogs that are locale-specific.

» Configuring and Using the Diagnostics Framework for Oracle WebLogic Server
describes how system administrators can collect application monitoring data that
has not been exposed through JMX, logging, or other management facilities.

For guidelines on developing and tuning WebLogic Server applications, see
Developing Applications for Oracle WebLogic Server.

1.4 New and Changed Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server.

ORACLE 1-2

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://docs.oracle.com/javase/7/docs/technotes/guides/jmx/
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr160/index.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html
http://docs.oracle.com/javase/7/docs/api/overview-summary.html

Understanding JMX

This chapter provides an overview of Java Management Extensions (JMX), a
specification for monitoring and managing Java applications. JMX enables a generic
management system to monitor your application; raise notifications when the
application needs attention; and change the state of your application to remedy
problems. Like SNMP and other management standards, JMX is a public specification
and many vendors of commonly used monitoring products support it. WebLogic Server
uses the Java Management Extensions (JMX) 1.4 implementation that is included in
the JDK.

This chapter includes the following sections:

* What Management Services Can You Develop with IMX?

e Creating Management-Aware Applications

e When Is It Appropriate to Use JMX?

* What Management Services Have BEA Partners Developed?
« JMX Layers

e Indirection and Introspection

* Notifications and Monitor MBeans

For information about other APIs and utilities that you can use to manage Java EE
applications on WebLogic Server, see Overview of WebLogic Server System
Administration in Understanding Oracle WebLogic Server.

2.1 What Management Services Can You Develop with
JMX?

When used to monitor and manage applications, JMX typically provides management
applications access to properties in your Java classes that collect management data
(see Figure 2-1). Often, these class properties are simple counters that keep track of
the resources your application is consuming. JMX can also provide access to methods
in your Java classes that start or stop processes in the application or reset the value of
the class properties. Any class that exposes management data through JMX is called
a managed bean (MBean). Class properties that are exposed through MBeans are
called attributes and methods that are exposed through MBeans are called operations.

ORACLE 2-1

Chapter 2
Creating Management-Aware Applications

Figure 2-1 JMX Provides Access to Management Properties

Management JMX MyBean
System

simpleC ounter

resetCounter|)

Once you provide this type of access to JMX-enabled management utilities, system
administrators or the operations staff can integrate the data into their overall view of
the system. They can use a JMX management utility to view the current value of an
MBean attribute, or they can set up JMX monitors to periodically poll the value of your
MBean attributes and emit notifications to the management utility only when the values
exceed specific thresholds.

2.2 Creating Management-Aware Applications

Instead of placing all management responsibility on system administrators or the
operations staff, you can create management-aware applications that monitor MBeans
and then perform some automated task. For example:

* An application that monitors connection pools and grows or shrinks the pools to
meet demand.

* A portal application that monitors the set of deployed applications. If a new
application is deployed, the portal application automatically displays it as a new
portlet.

* An application that listens for deployments of connector modules and then
configures itself to use newly deployed modules.

2.3 When Is It Appropriate to Use JMX?

ORACLE

Any critical Java EE application that is a heavy consumer of resources, such as
database or JMS connections or caches, should provide some facility for monitoring
the application's resource consumption. For these kinds of applications, which might
be writing or reading from a database many times each minute, it is not feasible to use
logging facilities to output messages with each write and read operation. Using JMX
for this type of monitoring enables you to write management (instrumentation) code
that is easy to maintain and that optimizes your use of network resources.

If you want to monitor basic run-time metrics for your application, WebLogic Server
already provides a significant number of its own MBeans that you can use (see Best
Practices: Listening for WebLogic Server Events in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server). For example, you can use existing
WebLogic Server MBeans to track the hit rate on your application's servlets and the
amount of time it takes to process servlet requests.

Although WebLogic Server MBeans can indicate to an operations center the general
state of resources, it cannot provide detailed information about how a specific
application is using the resources. For example, WebLogic Server MBeans can

2-2

Chapter 2
What Management Services Have BEA Partners Developed?

indicate how many connections are being used in a connection pool, but they do not
indicate which applications are using the connection pools. If your domain contains
several active applications and you notice that some connections are always in use,
consider creating MBeans that monitor when each application session gets and
releases a connection. You could also include a management operation that ends
sessions that appear to be stuck.

In addition, if your application creates and maintains its own cache or writes to a data
repository that is outside the control of the application container, consider creating
MBeans to monitor the size of the cache or the amount of data written to the
repository.

2.4 What Management Services Have BEA Partners
Developed?

Oracle Partners have developed an extensive set of management consoles that can
monitor and analyze data from WebLogic Server MBeans and potentially from MBeans
that you develop for your own applications. These consoles can integrate WebLogic
Server into an overall management strategy for your network or data center
operations. To see the list of management software available, visit the Partners page
on www.bea.com.

2.5 JMX Layers

ORACLE

Like most of Java EE, JMX is a component-based technology in which different types
of software vendors provide different types of components. This division of labor
enables each type of vendor to focus on providing only the software that falls within its
area of expertise. JMX organizes its components into the following layers:

* Instrumentation

Consists of applications that you write, resources, and other manageable objects.
In this layer, application developers create managed beans (MBeans), which
contain the properties (attributes) and methods (operations) that they want to
expose to external management systems.

* Agent

Consists of the JVM and application servers such as WebLogic Server. This layer
includes a registry of MBeans and standard interfaces for creating, destroying, and
accessing MBeans.

The agent layer also provides services for remote clients as well as a monitoring
and a timer service. See Using the WebLogic Server JMX Timer Service, and
Using Notifications and Monitor MBeans in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.

» Distributed Services

Consists of Management consoles or other Java EE applications. A management
application sends or receives requests from the agent layer. Often this layer is
available as a plug-in or as an adapter that enables a management console to
support a variety of management protocols, such as JMX and SNMP.

2-3

Chapter 2
Indirection and Introspection

2.6 Indirection and Introspection

Two key concepts for understanding JMX are indirection and introspection, which
enable a JMX application to manage proprietary resources without requiring access to
proprietary class definitions.

The general model for IMX is that applications in the distributed services layer never
interact directly with classes in the instrumentation layer. Instead, under this model of
indirection, the JMX agent layer provides standard interfaces, such as

j avax. management . MBeanSer ver Connecti on, that:

* Expose a class management interface to management clients in the distributed
services layer

* Receive requests from management clients, such as a request to get the value of
a property that a class is exposing through JMX

» Interact with the class to carry out the request and return the result to the
management client

Each class describes to the MBean server the set of properties and methods that it
wants to expose through JMX. A property that a class exposes through JMX is called
an MBean attribute, and a method that it exposes is called an operation. JIMX
specifies multiple techniques (design patterns) that a class can use to describe its
attributes and operations, and these design patterns are formalized as the following
MBean types: standard, dynamic, model, and open.

A class that implements the standard MBean type describes its management interface
in way that is most like Java programming: a developer creates a JMX interface file
that contains getter and setter methods for each class property that is to be exposed
through JMX. The interface file also contains a wrapper method for each class method
that is to be exposed. Then the class declares the name of its IMX interface. When
you register a standard MBean with the MBean server, the MBean server introspects
the class and its JMX interface to determine which attributes and operations it will
expose to the distributed services layer. The MBean server also creates an object,
MBeanl nf o, that describes the interface. Management clients inspect this MBean! nf o
object to learn about a class's management interface.

A class that implements the model MBean type describes its management interface by
constructing its own MBeanl nf o object, which is a collection of metadata objects that
describe the properties and methods to expose through JMX. When you register a
model MBean with the MBean server, the MBean server uses the existing MBeanl nf o
object instead of introspecting the class.

2.7 Notifications and Monitor MBeans

ORACLE

JMX provides two ways to monitor changes in MBeans: MBeans can emit notifications
when specific events occur (such as a change in an attribute value), or monitor
MBeans can poll an MBean periodically to retrieve the value of an attribute.

The following sections describe JMX notifications and monitor MBeans:

 How JMX Notifications Are Broadcast and Received

* Active Polling with Monitor MBeans

2-4

Chapter 2
Notifications and Monitor MBeans

2.7.1 How JMX Notifications Are Broadcast and Received

ORACLE

As part of MBean creation, you can implement the

j avax. managenent . Noti ficationEnitter interface, which enables the MBean to emit
notifications when different types of events occur. For example, you create an MBean
that manages your application's use of a connection pool. You can configure the
MBean to emit a notification when the application creates a connection and another
notification when the application drops a connection.

To listen for notifications, you create a listener class that implements the

j avax. management . Noti fi cati onLi st ener. handl eNoti fication() method. Your
implementation of this method includes the logic that causes the listener to carry out
an action when it receives a notification. After you create the listener class, you create
another class that registers the listener with an MBean.

By default, an MBean broadcasts all its notifications to all its registered listeners.
However, you can create and register a filter for a listener. A filter is a class that
implements the j avax. managenment . Noti ficationFilter.isNotificationEnabl ed() method.
The implementation of this method specifies one or more notification types. (In this
case, type refers to a unique string within a notification object that identifies an event,
such as vendor A appB. event C.) When an event causes an MBean to generate a
notification, the MBean invokes a filter's i sNoti fi cati onEnabl ed() method before it
sends the natification to the listener. If the notification type matches one of the types
specified ini sNot i fi cati onEnabl ed(), then the filter returns t rue and the MBean
broadcasts the message to the associated listener.

For information on creating and registering listeners and filters, see Listening for
Notifications from WebLogic Server MBeans: Main Steps in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server. For a complete
description of JMX noatifications, refer to the IMX 1.4 specification. See Related
Documentation.

Figure 2-2 shows a basic system in which a notification listener receives only a subset
of the notifications that an MBean broadcasts.

2-5

Chapter 2
Notifications and Monitor MBeans

Figure 2-2 Receiving Notifications from an MBean

MEean

Notification

implements

NotificationEmitter type=vendorli.appE.eventC

Filter and listener
registered with MBean

MyFilter

If a nofification satisfies

isNotificationEnakled ()

filter criteria, MBean
passes the notification
to the listener

MylNotificationListener

handlelNotification() -

2.7.2 Active Polling with Monitor MBeans

ORACLE

JMX includes specifications for a type of MBeans called monitor MBeans, which can
be instantiated and configured to periodically observe other MBeans. Monitor MBeans
emit JMX notifications only if a specific MBean attribute has changed beyond a
specific threshold. A monitor MBean can observe the exact value of an attribute in an
MBean, or optionally, the difference between two consecutive values of a numeric
attribute. The value that a monitor MBean observes is called the derived gauge.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean
emits a specific notification type. Monitors can also send notifications when certain
error cases are encountered while monitoring an attribute value.

To use monitor MBeans, you configure a monitor MBean and register it with the
MBean you want to observe. Then you create a listener class and register the class
with the monitor MBean. Because monitor MBeans emit only very specific types of
notification, you usually do not use filters when listening for notifications from monitor
MBeans.

Figure 2-3 shows a basic system in which a monitor MBean is registered with an
MBean. A Noti ficati onLi stener is registered with the monitor MBean, and it receives
natifications when the conditions within the monitor MBean are satisfied.

2-6

ORACLE

Figure 2-3 Monitor MBeans

Chzerved MEean

Monitor MBean registered
with an ohserved MBean.
Monitor MBean periodically
polls the observed MBean.

HyMonitor MEean

Chapter 2

Notifications and Monitor MBeans

Notification

Filter and listener
registered with the
ronitor MBean.

MyFilter

MyNotificationListener

If a notification satisfies
filter criteria, MBean
passes the notification
to the listener

2-7

Designing Manageable Applications

This chapter describes Oracle best practices for designing manageable applications.
The last section, Additional Design Considerations, provides alternatives to some
Oracle recommendations and discusses additional design considerations.

This chapter includes the following sections:

Benefits of Oracle Best Practices

Use Standard MBeans

Registering Custom MBeans in the WebLogic Server Runtime Bean Server
Registering Custom MBeans in the Domain Runtime MBean Server

Use ApplicationLifecycleListener to Register Application MBeans
Unregister Application MBeans When Applications Are Undeployed

Place Management Logic for EJBs and Servlets in a Delegate Class

Use Open MBean Data Types

Emit Notifications Only When Necessary

Additional Design Considerations

3.1 Benefits of Oracle Best Practices

Several viable JMX design patterns and deployment options can make your
application more manageable. The design patterns that Oracle recommends are
based on the assumption that the instrumentation of your Java classes should:

Use as few system resources as possible; management functions must not
interfere with business functions.

Be separate from your business code whenever possible.

Deploy along with the business code and share its life cycle; you should not
require the operations staff to take additional steps to enable the management of
your application.

3.2 Use Standard MBeans

Of the many design patterns that JMX defines, Oracle recommends that you use
standard MBeans, which are the easiest to code. To use the simplest design pattern
for standard MBeans:

ORACLE

1.

Create an interface for the management properties and operations that you want
to expose.

Implement the interface in your Java class.

Create and register the MBean in the WebLogic Server Runtime MBean Server by
invoking the Runtime MBean Server's

3-1

Chapter 3
Registering Custom MBeans in the WebLogic Server Runtime Bean Server

j avax. managenent . MBeanSer ver Connect i on. cr eat eMBean() method and passing your
management interface in the method's parameter.

When you invoke the creat eMBean() method, the Runtime MBean Server
introspects your interface, finds the implementation, and registers the interface
and implementation as an MBean.

In this design pattern, the management interface and its implementation must follow
strict naming conventions so that the MBean server can introspect your interface. You
can circumvent the naming requirements by having your Java class extend

j avax. managenent . St andar dMBean. See St andar dMBean in the Java SE 7 API Specification
at http://docs. oracl e. contjavase/ 7/ docs/ api / j avax/ managenent / St andar dMBean. ht mi .

3.3 Registering Custom MBeans in the WebLogic Server
Runtime Bean Server

A JVM can contain multiple MBean servers, and another significant design decision is
which MBean server you use to register your custom MBeans.

Oracle recommends that you register custom MBeans in the WebLogic Server
Runtime MBean Server. (Each WebLogic Server instance contains its own instance of
the Runtime MBean Server. See MBean Servers in Developing Custom Management
Utilities Using JMX for Oracle WebLogic Server.) As of WebLogic Server 10.3.3, the
WebLogic Runtime MBean Server is the JVM's platform MBean server. See
Registering MBeans in the JVM Platform MBean Server.

With this option:

* Your MBeans exist in the same MBean server as WebLogic Server MBeans.
Remote JMX clients need to maintain only a single connection to monitor your
application's MBeans and WebLogic Server MBeans.

* JMX clients must authenticate and be authorized through the WebLogic Server
security framework to access your custom MBeans and WebLogic Server
MBeans. See Securing Custom MBeans with Roles and Policies.

The WebLogic Server Runtime MBean Server registers its

j avax. management . MBeanSer ver interface in the JNDI tree. See Make Local Connections
to the Runtime MBean Server in Developing Custom Management Utilities Using JIMX
for Oracle WebLogic Server.

3.4 Registering Custom MBeans in the Domain Runtime
MBean Server

If you need to register aggregation-type MBeans whose implementation will invoke on
other MBeans located in Managed Servers, register those MBeans in the Domain
Runtime MBean Server.

The WebLogic Server Domain Runtime MBean Server registers its

j avax. management . MBeanSer ver interface in the JNDI tree. See Make Local Connections
to the Domain Runtime MBean Server in Developing Custom Management Ultilities
Using JMX for Oracle WebLogic Server.

ORACLE 3-2

http://docs.oracle.com/javase/7/docs/api/javax/management/StandardMBean.html

Chapter 3
Use ApplicationLifecycleListener to Register Application MBeans

3.5 Use ApplicationLifecycleListener to Register Application

MBeans

If you are creating MBeans for EJBs, servlets within Web applications, or other
modules that are deployed, and if you want your MBeans to be available as soon as
you deploy your application, listen for notifications from the deployment service. When
you deploy an application (and when you start a server on which you have already
deployed an application), the WebLogic Server deployment service emits notifications
at specific stages of the deployment process. When you receive a notification that the
application has been deployed, you can create and register your MBeans.

There are two steps for listening to deployment notifications with
ApplicationLifecyclelistener:

1. Create a class that extends webl ogi c. appl i cati on. Appl i cati onLi f ecycl eLi st ener.
Then implement the Appl i cati onLi f ecycl eLi st ener . post St art method to create and
register your MBean in the MBean server. The class invokes your post Start ()
method only after it receives a post St art notification from the deployment service.
See Programming Application Life Cycle Events in Developing Applications for
Oracle WebLogic Server.

2. Inthe webl ogi c-appl i cation. xnl deployment descriptor, register your class as an
application listener class.

If you do not want to use proprietary WebLogic Server classes and deployment
descriptors to register application MBeans, see Registering Application MBeans by
Using Only JDK Classes.

3.6 Unregister Application MBeans When Applications Are
Undeployed

Regardless of how you create your MBeans, Oracle recommends that you unregister
your MBeans whenever you receive a deployment notification that your application has
been undeployed. Failure to do so introduces a potential memory leak.

If you create a class that extends Appl i cati onLi f ecycl eLi st ener, you can implement
the Appl i cati onLi f ecycl eLi st ener. preSt op method to unregister your MBeans. For
information on implementing the preSt op method, see Register the MBean.

3.7 Place Management Logic for EJBs and Servlets in a
Delegate Class

ORACLE

If you want to expose management attributes or operations for any type of EJB
(session, entity, message-driven) or servlet, Oracle recommends that you implement
the management attributes and operations in a separate, delegate class so that your
EJB or servlet implementation classes contain only business logic, and so that their
business interfaces present only business logic. See Figure 3-1.

3-3

Chapter 3
Use Open MBean Data Types

Figure 3-1 Place Management Properties and Operations in a Delegate Class

=ession EJB

Push management
tata to MBean

-

MBEan senver \\

Wy standard MBean My standard MBean
implementation interface
(delegate class)

%/

R

Gets management
data through the \\

MBean server
el client

In Figure 3-1, business methods in the EJB push their data to the delegate class. For
example, each time a specific business method is invoked, the method increments a
counter in the delegate class, and the MBean interface exposes the counter value as
an attribute.

This separation of business logic from management logic might be less efficient than

combining the logic into the same class, especially if the counter in the delegate class
is incremented frequently. However, in practice, most JVMs can optimize the method

calls so that the potential inefficiency is negligible.

If this negligible difference is not acceptable for your application, your business class
in the EJB can contain the management value and the delegate class can retrieve the
value whenever a JMX client requests it.

3.8 Use Open MBean Data Types

ORACLE

If a remote JMX client will access your custom MBeans, Oracle recommends that you
limit the data types of your MBean attributes and the data types that your operations
return to those defined in j avax. managenent . opennbean. QpenType. All IVMs have access
to these basic types. See OpenType in the Java SE 7 API Specification at http://

docs. oracl e. coni j avase/ 7/ docs/ api / j avax/ managenent / opennbean/ CpenType. ht i .

3-4

http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/OpenType.html
http://docs.oracle.com/javase/7/docs/api/javax/management/openmbean/OpenType.html

Chapter 3
Emit Notifications Only When Necessary

If your MBeans expose other data types, the types must be serializable and the
remote JMX clients must include your types on their class paths.

3.9 Emit Notifications Only When Necessary

Each time an MBean emits a notification, it uses memory and network resources. For
MBean attributes whose values change frequently, such memory and resource uses
might be unacceptable.

Instead of configuring your MBeans to emit notifications each time its attributes
change, Oracle recommends that you use monitor MBeans to poll your custom
MBeans periodically to determine whether attributes have changed. You can configure
the monitor MBean to emit a notification only after an attribute changes in a specific
way or reaches a specific threshold.

See Best Practices: Listening Directly Compared to Monitoring in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

3.10 Additional Design Considerations

In addition to Oracle best practices, bear in mind the following considerations when
designing manageable applications.

3.10.1 Registering MBeans in the JVM Platform MBean Server

In this release of WebLogic Server, the WebLogic Runtime MBean Server is the JVM
platform MBean server. As such, JMX clients can monitor your custom MBeans,
WebLogic Server MBeans, and the JVM's platform MXBeans through a single MBean
server. With this option:

* Local applications can access all of the MBeans through the MBeanSer ver interface
that j ava. | ang. managenent . Managenent Fact ory. get Pl at f or nMBeanSer ver () returns.

* If you want to enable remote JMX clients to access custom MBeans, platform
MXBeans, and WebLogic Server MBeans, consider the following configuration:

— By the default, the WebLogic Server Runtime MBean Server is configured to
be the platform MBean server.

— Remote access to the platform MBean server is not enabled.

— Remote JMX clients access platform MXBeans by connecting to the Runtime
MBean Server.

See Using the Platform MBean Server in the Developing Custom Management Ultilities
Using JMX for Oracle WebLogic Server.

3.10.2 Registering Application MBeans by Using Only JDK Classes

ORACLE

Using Oracle's Appli cationLi f ecycl eLi st ener is the easiest technique for making an
MBean share the life cycle of its parent application. If you do not want to use
proprietary WebLogic Server classes and deployment descriptor elements for
managing a servlet or an EJB, you can do the following:

* For a servlet, configure a j avax. servl et. Fi | ter that creates and registers your
MBean when a servlet calls a specific method or when the servlet itself is

3-5

Chapter 3
Additional Design Considerations

instantiated. See Fil ter in the Java EE 7 API Specification at http://
docs. oracl e. coni javaeel/ 7/ api / javax/ servlet/Filter. htm .

* For an EJB, implement its j avax. ej b. Enti t yBean. ej bActi vat e() method to create
and register your MBean. For a session EJB whose instances share a single
MBean instance, include logic that creates and registers your MBean only if it does
not already exist. See EntityBean in the Java EE 7 API Specification at http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ ej b/ Enti tyBean. htm .

3.10.3 Organizing Managed Objects and Business Objects

While you might design one managed object for each business object, there is no
requirement for how your management objects should relate to your business objects.
One management object could aggregate information from multiple business objects
or conversely, you could split information from one business object into multiple
managed objects.

For example, if a servlet uses multiple helper classes and you want one MBean to
represent the servlet, each helper class should push its management data into a single
MBean implementation class.

The organization that you choose depends on the number of MBeans you want to
provide to the system administrator or operations staff contrasted with the difficulty of
maintaining a complex management architecture.

3.10.4 Packaging and Accessing Management Classes

If you package your management classes in an application's APP- | NF directory, all
other classes in the application can access them. If you package the classes in a
module's archive file, then only the module can access the management classes.

For example, consider an application that contains multiple Web applications, each of
which contains its own copy of a session EJB named EJB1. If you want one MBean to
collect information for all instances of the session EJB across all applications, you
must package the MBean's classes in the APP- | NF directory. If you want each Web
application’'s copy of the EJB to maintain its own copy of the MBean, then package the
MBean's classes in the EJB's JAR file. (If you package the classes in the EJB's JAR,
then you distribute the MBean classes to each Web application when you copy the
JAR to the Web application.)

3.10.5 Securing Custom MBeans with Roles and Policies

ORACLE

If you register your MBeans in the WebLogic Server Runtime MBean Server, in
addition to limiting access only to users who have authenticated and been authorized
through the WebLogic Server security framework, you can further restrict access by
creating roles and polices. A security role, like a security group, grants an identity to a
user. Unlike a group, however, membership in a role can be based on a set of
conditions that are evaluated at run time. A security policy is another set of run-time
conditions that specify which users, groups, or roles can access a resource.

Note the following restrictions to securing custom MBeans with roles and policies:

* Your MBean's object name must include a "Type=val ue" key property.

* You must describe your roles and policy in a XACML 2.0 document and then use
the WebLogic Scripting Tool to add the data to your realm.

3-6

http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/7/api/javax/servlet/Filter.html
http://docs.oracle.com/javaee/7/api/javax/ejb/EntityBean.html
http://docs.oracle.com/javaee/7/api/javax/ejb/EntityBean.html

ORACLE

Chapter 3
Additional Design Considerations

* If your XACML document describes authorization policies, your security realm
must use either the WebLogic Server XACML Authorization Provider or some
other provider that implements the
webl ogi c. management . security. aut hori zati on. Pol i cySt or eMBean interface.

e If your XACML document describes role assignments, your security realm must
use either the WebLogic Server XACML Role Mapping Provider or some other
provider that implements the
webl ogi c. management . security. aut hori zati on. Pol i cySt or eMBean interface.

For information about creating XACML roles policies and adding them to your realm,
see Using XACML Documents to Secure WebLogic Resources in Securing Resources
Using Roles and Policies for Oracle WebLogic Server.

3-7

Instrumenting and Registering Custom
MBeans

This chapter describes how to instrument and register standard MBeans for
application modules.
This chapter includes the following sections:

e Overview of the MBean Development Process
e Create and Implement a Management Interface
e Modify Business Methods to Push Data

* Register the MBean

e Package Application and MBean Classes

4.1 Overview of the MBean Development Process

Figure 4-1 illustrates the MBean development process. The steps in the process, and
the results of each are described in Table 4-1. Subsequent sections detail each step in
the process.

ORACLE 4-1

ORACLE

Chapter 4
Overview of the MBean Development Process

Figure 4-1 Standard MBean Development Overview

Creste and
implement a
matagerment

j=na files

— -

interface

hioclify
bLusiness methods
to push marnagement
clata to the
manacemeant
class

Create an
Application
Life Chle
Listener that
redisters woLr
MBean

Compile
SOLNE
files

rlass files

Redister

listenerin

weklooic-
application.xml

Fackage
classes

Aoplication Archive (BEARD

N

Ceplony

application

4-2

Chapter 4
Create and Implement a Management Interface

Table 4-1 Model MBean Development Tasks and Results

Step

1. Create and Implement a
Management Interface

Description Result

Create a standard Java interface that Source files that describe
describes the properties and implement your
(management attributes) and management interface.
operations you want to expose to

JMX clients.

Create a Java class that implements
the interface. Because management
logic should be separate from
business logic, the implementation
should not be in the same class that
contains your business methods.

2. Modify Business
Methods to Push Data

If your management attributes A clean separation
contain data about the number of between business logic
times a business method has been and management logic.
invoked, or if you want management

attributes to contain the same value

as a business property, modify your

business methods to push (update)

data into the management

implementation class.

For example, if you want to keep
track of how frequently your business
class writes to the database, modify
the business method that is
responsible for writing to the
database to also increment a counter
property in your management
implementation class. This design
pattern enables you to insert a
minimal amount of management
code in your business code.

3.Register the MBean

If you want to instantiate your A Java class and added
MBeans as part of application entries in webl ogi ¢c-
deployment, create a WebLogic application.xm.
Server

ApplicationLifecycl eLi st ener
class to register your MBean.

4. Package Application and
MBean Classes

Package your compiled classes into A JAR, WAR, EAR file or
a single archive. other deployable archive
file.

4.2 Create and Implement a Management Interface

One of the main advantages to the standard MBeans design pattern is that you define
and implement management properties (attributes) as you would any Java property
(using get xxx, set xxx, and i sxxx methods); similarly, you define and implement
management methods (operations) as you would any Java method.

When you register the MBean, the MBean server examines the MBean interface and
determines how to represent the data to JMX clients. Then, JMX clients use the
MBeanSer ver Connecti on. get Attribute() and set Attribute() methods to get and set the

ORACLE

4-3

ORACLE

Chapter 4
Create and Implement a Management Interface

values of attributes in your MBean and they use MBeanSer ver Connect i on. i nvoke() to
invoke its operations. See MBeanSer ver Connect i on in the Java SE 7 API Specification at
http://docs. oracl e. com j avase/ 7/ docs/ api / j avax/ managenent /

MBeanSer ver Connection. htn .

To create an interface for your standard MBean:

1.
2.

5.

Declare the interface as public.
Oracle recommends that you name the interface as follows:

Busi ness- obj ect MBean. j ava

where Busi ness- obj ect is the object that is being managed.

Oracle's recommended design pattern for standard MBeans enables you to follow
whatever naming convention you prefer. In other standard MBean design patterns
(patterns in which the MBean's implementation file does not extend

j avax. managenent . St andar dMBean), the file name must follow this pattern: | npl -
fileMBean.java where I npl -fil e is the name of the MBean's implementation file.

For each read-write attribute that you want to make available in your MBean,
define a getter and setter method that follows this haming pattern:

get Attri but e- nane
set Attribute-nane

where Attribut e- nane is a case-sensitive hame that you want to expose to JMX
clients.

If your coding conventions prefer that you use an i sAttri but e- nane as the getter
method for attributes of type Bool ean, you may do so. However, JMX clients use
the MBeanSer ver Connect i on. get Attri bute() method to retrieve an attribute's value
regardless of the attribute's data type; there is no

MBeanSer ver Connecti on. i sAttribute() method.

For each read-only attribute that you want to make available, define only anis ora
getter method.

For each write-only attribute, define only a setter method.

Define each management operation that you want to expose to JMX clients.

Example 4-1 is an MBean interface that defines a read-only attribute of type i nt and
an operation that JMX clients can use to set the value of the attribute to 0.

1.

Create a public class.

Oracle recommends the following pattern as a naming convention for
implementation files: MBean- I nt er f acel npl . j ava.

Extend j avax. nanagenent . St andar dMBean to enable this flexibility in the naming
requirements.

See Standar dMBean in the Java SE 7 API Specification at htt p: // docs. or acl e. com
j avase/ 7/ docs/ api / j avax/ nanagenent / St andar dMBean. ht ni .

Implement the St andar dMBean(Obj ect i npl ementation, O ass nmbeanl nterface)
constructor.

With Oracle's recommended design pattern in which you separate the
management logic into a delegate class, you must provide a public constructor

4-4

http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerConnection.html
http://docs.oracle.com/javase/7/docs/api/javax/management/MBeanServerConnection.html
http://docs.oracle.com/javase/7/docs/api/javax/management/StandardMBean.html
http://docs.oracle.com/javase/7/docs/api/javax/management/StandardMBean.html

Chapter 4
Modify Business Methods to Push Data

that implements the St andar dvMBean(Obj ect i npl ementation, O ass mhbeanlnterface)
constructor.

4. Implement the methods that you defined in the management interface.
Follow these guidelines:

e If you are using Oracle's recommended design pattern, in which business
objects push management data into the management object, provide a
method in this implementation class that the business methods use to set the
value of the management attribute. In Example 4-2, the i ncr ement Tot al Rx()
method is available to business methods but it is not part of the management
interface.

* If multiple instances of an EJB, servlet, or other class can set the value of a
management attribute, make sure to increment the property atomically and do
not make its getter and setter (or increment method) synchronized. While
synchronizing guarantees the accuracy of management data, it blocks
business threads until the management operation has completed.

Example 4-1 Management Interface

package com bea. nedrec. controller;
public interface RecordSessi onEJBMBean {
public int getTotal Rx();
public void resetTotal Rx();

}

To implement the interface:
Example 4-2 MBean Implementation

package com bea. nedrec. controller;

i nport j avax. managenent. St andar dvBean;

i nport com bea. nedrec. control | er. Recor dSessi onEJBMBean;

public class RecordSessi onEJBMBeanl npl ext ends Standar dMBean
i mpl enents Recor dSessi onEJBMBean {

public RecordSessi onEIBMBean! npl () throws

j avax. managenent . Not Conpl i ant MBeanExcepti on {
super (Recor dSessi onEJBMBean. cl ass) ;

}

public int Total Rx = O;
public int getTotal Rx() {
return Total Rx;

public void incrementTotal Rx() {
Tot al Rx++;

public void resetTotal Rx() {
Total Rx = 0;
1

}

4.3 Modify Business Methods to Push Data

If your management attributes contain data about the number of times a business
method has been invoked, or if you want management attributes to contain the same

ORACLE 4.5

Chapter 4
Register the MBean

value as a business property, modify your business methods to push (update) data
into the management implementation class.

Example 4-3 shows a method in an EJB that increments the integer in the Tot al Rx
property each time the method is invoked.

Example 4-3 EJB Method That Increments the Management Attribute

private Col |l ection addRxs(Col | ection rXs, RecordLocal recordLocal)

}

throws CreateException, Exception {

com bea. medrec. control | er. Recor dSessi onEJBMBeanl npl . i ncr ement Tot al Rx() ;

4.4 Register the MBean

If you want to instantiate your MBeans as part of application deployment, create an
Appl i cationLifecycl eLi st ener that registers your MBean when the application deploys
(see Use ApplicationLifecycleListener to Register Application MBeans):

ORACLE

1.
2.

Create a class that extends webl ogi c. appl i cati on. Appli cationLi fecycl eLi st ener .

In this Appl i cati onLi f ecycl eLi st ener class, implement the
Appl i cationLifecycl eLi stener. post Start (ApplicationLifecycl eEvent evt) method.

In your implementation of this method:

a.

C.

Construct an object name for your MBean.

Oracle recommends this naming convention:

your . conpany: Name=Par ent - nodul e, Type=MBean-i nt er f ace- cl assnane

To get the name of the parent module, use Appl i cati onLi f ecycl eEvent to get

an Appl i cati onCont ext object. Then use Appl i cati onCont ext to get the module's
identification.

If you are registering the MBean on the WebLogic Server Runtime MBean
Server:

Access the WebLogic Server Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Java EE module, such as an EJB
or Web application, the JNDI name for the Runtime MBeanServer is:

j ava: conp/ webl ogi ¢/ j mx/runti ne

For example:

Initial Context ctx = new Initial Context();
MBeanServer server = (MBeanServer)
ctx. | ookup("java: conp/ webl ogi c/j mx/runtine");

If the classes for the JMX client are not part of a Java EE module, the JNDI
name for the Runtime MBean Server is:

j ava: conp/j mx/runtine

See Make Local Connections to the Runtime MBean Server in Developing
Custom Management Utilities Using JMX for Oracle WebLogic Server.

If you are registering the MBean on the Domain Runtime MBean Server:

4-6

ORACLE

Chapter 4
Register the MBean

Access the Domain Runtime MBean Server through JNDI.

If the classes for the JMX client are part of a Java EE module, such as an EJB
or Web application, the JNDI name for the Domain Runtime MBean server is:

j ava: conp/ webl ogi ¢/ j mx/ domai nRunt i me

For example:

Initial context ctx = new Initial Context();
server = (MBeanServer)ctx. | ookup("java: conp/ webl ogi c/j mx/ domai nRunt i me");

If the classes for the JMX client are not part of a Java EE module, the JNDI
name for the Domain Runtime MBean Server is:

j ava: conp/ j mx/ domai nRunt i ne

¢’ Note:

The Domain Runtime MBean Server is present only on the Administration
Server. Therefore, since the ct x. | ookup() call returns a reference to the local
MBean Server, the lookup method can only be called when running on the
Administration Server. If called when running on a managed server, a
NaneNot Found exception is thrown.

See Make Local Connections to the Domain Runtime MBean Server in
Developing Custom Management Ultilities Using JMX for Oracle WebLogic
Server

d. Register your MBean using MBeanSer ver . r egi st er MBean(Obj ect obj ect
Qbj ect Nane nane) , where:

obj ect represents an instance of your MBean implementation class.
nane represents the JMX object name for your MBean.

When your application deploys, the WebLogic deployment service emits

Appl i cationLi f ecycl eEvent notifications to all its registered listeners. When the
listener receives a post Start notification, it invokes its post St art method. See
Programming Application Life Cycle Events in Developing Applications for Oracle
WebL ogic Server.

In the same class, implement the
Appl i cationLifecycl eLi stener. preSt op(Appl i cationLi f ecycl eEvent evt) method.

In your implementation of this method, invoke the
j avax. management . MBeanSer ver . unr egi st er (Obj ect Name MBean- nane) method to
unregister your MBean.

Register your class as an Appl i cati onLi f ecycl eLi st ener by adding the following
element to the webl ogi c-appl i cation. xn file of your application:

<listener>
<l istener-class>
fully-qualified-class-nane
</listener-class>
</[listener>

4-7

Chapter 4
Package Application and MBean Classes

4.5 Package Application and MBean Classes

Package your MBean classes in the application's APP- | NF directory or in a module's
JAR, WAR or other type of archive file depending on the access that you want to
enable for the MBean. See Additional Design Considerations.

ORACLE 4-8

Using the WebLogic Server IMX Timer
Service

This chapter describes how to use the WebLogic Server JMX timer service, which can
be used by JMX clients to carry out a task at a specified time or a regular time interval.
This chapter includes the following sections:

e Overview of the WebLogic Server JMX Timer Service

e Creating the Timer Service: Main Steps

e Configuring a Timer MBean to Emit Notifications

e Creating Date Objects

« Example: Generating a Notification Every Five Minutes After 9 AM

* Removing Notifications

5.1 Overview of the WebLogic Server JMX Timer Service

A JMX timer service can be configured to emit notifications, and a listener to respond
to the notifications with a specified action. For example, you want a JMX monitor to run
between 9am and 9pm each day. You configure the JMX timer service to emit a
notification daily at 9am, which triggers a JMX listener to start your monitor. The timer
service emits another notification at 9pm, which triggers the listener to stop the monitor
MBean.

The JDK includes an implementation of the JMX timer service (see

j avax. managenent . ti ner. Ti mer in the Java SE 7 API Specification at http://

docs. oracl e. com j avase/ 7/ docs/ api / j avax/ managenent / ti mer/ Ti ner . ht ml); however,
listeners for this timer service run in their own thread in a server's JVM.

WebLogic Server includes an extension of the standard timer service that causes timer
listeners to run in a thread that WebLogic Server manages and within the security
context of a WebLogic Server user account.

5.2 Creating the Timer Service: Main Steps

ORACLE

You construct and manage instances of the timer service for each JMX client.
WebLogic Server does not provide a centralized timer service that all IMX clients use.
Each time you restart a server instance, each JMX client must re-instantiate any timer
service configurations it needs.

To create the WebLogic Server timer service:

1. Create a JMX listener class in your application.

For general instructions on creating a JMX listener, see Creating a Notification
Listener in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

5-1

http://docs.oracle.com/javase/7/docs/api/javax/management/timer/Timer.html
http://docs.oracle.com/javase/7/docs/api/javax/management/timer/Timer.html

Chapter 5
Configuring a Timer MBean to Emit Notifications

2. Create a class that does the following:

a. Configures an instance of webl ogi c. management . ti ner. Ti mer MBean to emit
j avax. managenent . ti mer. Ti mer Not i fi cati on notifications at a specific time or at
a recurring interval. See Ti ner Not i fi cati on in the Java SE 7 API Specification
at http://docs. oracl e. conljavase/ 7/ docs/ api / j avax/ managenent/ ti mer/
TimerNotification. htnl.

For each notification that you configure, include a String in the notification's
Type attribute that identifies the event that caused the timer to emit the
notification.

See Configuring a Timer MBean to Emit Notifications.

b. Registers your listener and an optional filter with the timer MBean that you
configured.

c. Starts the timer in the timer MBean that you configured.

See Configuring a Notification Filter and Registering a Notification Listener
and Filter in Developing Custom Management Utilities Using JMX for Oracle
WebLogic Server.

d. Unregisters the timer MBean and closes its connection to the MBean server
when it finishes using the timer service.

3. Package and deploy the listener and other JMX classes to WebLogic Server. See
Packaging and Deploying Listeners on WebLogic Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

5.3 Configuring a Timer MBean to Emit Notifications

To configure a Ti mer MBean instance to emit a notification:

1. Initialize a connection to the Domain Runtime MBean Server.

See Make Remote Connections to an MBean Server in Developing Custom
Management Utilities Using JMX for Oracle WebLogic Server.

2. Create an Obj ect Nane for your timer MBean instance.

See j avax. managenent . Obj ect Name in the Java SE 8 API Specification at http://
docs. oracl e. conl j avase/ 8/ docs/ api / j avax/ nanagenent / Cbj ect Nanme. ht i .

Oracle recommends that your object name start with the name of your
organization and include key properties that clearly identify the purpose of the
timer MBean instance.

For example, " nyconpany: Nane=nyDai | yTi mer, Type=webl ogi cTi mer"
3. Create and register the timer MBean.

Use j avax. managenent . MBeanSer ver Connect i on. creat eMBean(String cl assname
Qbj ect Nane nane) method, where:

e classnane is webl ogi ¢c. managenent . ti mer. Ti mer

e nane represents the object name that you created for the timer MBean
instance.

ORACLE 5-2

http://docs.oracle.com/javase/7/docs/api/javax/management/timer/TimerNotification.html
http://docs.oracle.com/javase/7/docs/api/javax/management/timer/TimerNotification.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html
http://docs.oracle.com/javase/8/docs/api/javax/management/ObjectName.html

ORACLE

Note:

Chapter 5
Configuring a Timer MBean to Emit Notifications

The timer MBean that you create runs in the JMX agent on WebLogic Server
(it does not run in a client JVM even if you create the timer MBean from a
remote JMX client).

4. Configure the timer MBean to emit a notification.

Invoke the MBean's addNot i fi cati on operation. Table 5-1 describes each
parameter of the addNoti fi cati on operation. See webl ogi c. managenent . ti ner. Ti mer
in the WebLogic Server API Reference.

The addNot i fi cation operation creates a Ti mer Not i fi cati on object and returns a
handback object of type I nt eger, which contains an integer that uniquely identifies
the Ti ner Noti ficati on object.

5. Repeat step 4 for each timer notification that your JMX client needs to receive.

6. Start the timers in your timer MBean by invoking the timer MBean's start ()

operation.

When the time that you specify arrives, the timer service emits the Ti ner Noti fi cation
object along with a reference to the handback object.

Table 5-1 Parameters of the addNotification Operation

Parameter

Description

java.lang. String
type

A string that you use to identify the event that triggers this notification
to be broadcast. For example, you can specify ni dni ght for a
notification that you configure to be broadcast each day at midnight.

java.lang. String
nessage

Specifies the value of the Ti mer Not i fi cat i on object's message
attribute.

java. | ang. Qbj ect
user Dat a

Specifies the name of an object that contains whatever data you want
to send to your listeners. Usually, you specify a reference to the class
that registered the notification, which functions as a callback.

java.util.Date
startTime

Specifies a Dat e object that contains the time and day at which the
timer emits your notification.

See Creating Date Objects.

| ong period

(Optional) Specifies the interval in milliseconds between notification
occurrences. Repeating notifications are not enabled if this parameter
is zero or is not defined (nul |').

[ong nbCccurences

(Optional) Specifies the total number of times that the notification will
occur. If the value of this parameter is zero or is not defined (nul |) and
if the period is not zero or null, then the notification will repeat
indefinitely.

If you specify this parameter, each time the Timer MBean emits the
associated notification, it decrements the number of occurrences by
one. You can use the timer MBean's get NoCccur r ences operation to
determine the number of occurrences that remain. When the number
of occurrences reaches zero, the timer MBean removes the notification
from its list of configured notifications.

5-3

Chapter 5
Creating Date Objects

5.4 Creating Date Objects

The constructor for the java. util . Dat e object initializes the object to represent the time
at which you created the Dat e object measured to the nearest millisecond. To specify a
different time or date:

1. Create an instance of java. util. Cal endar.
2. Configure the fields in the Cal endar object to represent the time or date.

3. Invoke the Cal endar object's get Ti me() method, which returns a Dat e object that
represents the time in the Cal endar object.

For example, the following code configures a Dat e object that represents midnight:

java.util.Cal endar cal = java.util.Calendar.getlnstance();
cal .set(java.util.Cal endar. HOUR_OF DAY, 24);
java.util.Date norning = cal.getTime();

Seejava. util. Cal endar in the Java SE 8 API Specification at http://docs. oracl e. conl
javase/ 8/ docs/ api/javalutil/Cal endar.htn .

5.5 Example: Generating a Notification Every Five Minutes
After 9 AM

ORACLE

The code in Example 5-1 creates an instance of webl ogi ¢. managenent . ti mer. Ti ner that
emits a notification every 5 minutes after 9am.

Note the following about the code:

* It creates and registers the timer MBean in the WebLogic Server Runtime MBean
Server, under the assumption that the JMX client runs alongside applications that
are deployed on multiple server instances. In this case, your JMX client would
register a timer MBean in each Runtime MBean Server in the domain.

* Even though it creates an instance of the WebLogic Server timer MBean, the class
does not import WebLogic Server classes. Only the MBean server needs access
to the WebLogic Server Ti ner class, not the JMX client.

* Any generic JMX listener can be used to listen for timer notifications, because all
timer notifications extend j avax. management . Noti fi cati on.

Example 5-1 Create, Register, and Configure a Timer MBean

inport java.util.Hashtable;
inport java.io.lCException;
import java.net. Mal formedURLException;

i nport javax. managenent. MBeanSer ver Connecti on;

i nport j avax. managenent. Cbj ect Nang;

i nport j avax. managenent. Mal f or medChj ect NaneExcepti on;
i nport javax. managenent. renot e. JMXConnect or;

i nport javax. managenent . renote. JMXConnect or Fact ory;

i nport javax. managenent. remote. JMXSer vi ceURL;

i nport javax. naming. Cont ext;

i nport javax. managenent. NotificationFilterSupport;

5-4

http://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
http://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html

ORACLE

Chapter 5
Example: Generating a Notification Every Five Minutes After 9 AM

public class RegisterTiner {

private static MBeanServerConnection connection;
private static JMXConnector connector;
private static final ObjectNane service;

[/ Initialize the object name for RuntimeServiceMBean
/] so it can be used throughout the class.
static {
try {
servi ce = new (bj ect Nang(
"com bea: Nane=Runt i meSer vi ce, Type=webl ogi c. managenent . nbeanservers.ru
ntine. Runti neServi ceMBean");
}catch (Mal for medChj ect NaneException e) {
t hrow new AssertionError(e.get Message());

}

/*
* Initialize connection to the Runtime MBean Server.
* This MBean is the root of the runtinme MBean hierarchy, and
* each server in the domain hosts its own instance.
*|
public static void initConnection(String hostname, String portString,
String username, String password) throws | CException,
Mal f or medURLException {
String protocol = "t3";
Integer portlnteger = Integer.valueCf (portString);
int port = portlnteger.intValue();
String jndiroot = "/jndi/";
String nserver = "webl ogi c. managenent . mheanservers. runtine";
JMXServi ceURL serviceURL = new JMXServi ceURL(protocol, hostname, port,
jndiroot + nserver);

Hasht abl e h = new Hashtabl e();

h. put (Cont ext . SECURI TY_PRI NCI PAL, usernane);

h. put (Cont ext . SECURI TY_CREDENTI ALS, password);

h. put (JMXConnect or Fact ory. PROTOCOL_PROVI DER_PACKAGES,
"webl ogi c. managenent . renote");

connector = JMXConnect or Fact ory. connect (servi ceURL, h);

connection = connect or. get MBeanSer ver Connecti on();

}

public static void main(String[] args) throws Exception {
String hostnanme = args[0];
String portString = args[1];
String usernane = args[2];
String password = args[3];

try {
/* Invokes a custom nethod that establishes a connection to the

* Runtime MBean Server and uses an instance of
* MBeanSer ver Connection to represents the connection. The custom
* method assigns the MBeanServerConnection to a class-w de, static
* variabl e naned "connection".

*/

i ni t Connection(hostname, portString, username, password);

//Creates and registers the tinmer Mean.
bj ect Nare timerON = new

oj ect Name(" myconpany: Name=nyDai | yTi ner, Type=webl ogi cTi mer");
String classnane = "webl ogi ¢. managenent. timer. Ti ner";

5-5

}

Chapter 5
Removing Notifications

connection. creat eMBean(cl assnane, tinerON);

Il Configures the timer MBean to enit a morning notification.
/1 Assigns the return value of addNotification to a variable so that
[/ it will be possible to invoke other operations for this specific
/1 notification.
java.util.Calendar cal = java.util.Calendar.getlnstance();
cal .set(java.util.Cal endar. HOUR_OF_DAY, 9);
java.util.Date norning = cal.getTinme();
String nyData = "Tiner notification";
I nteger norningTinerlD = (Integer) connection.invoke(timnerON,
"addNot i fication",
new Qbject[] { "myconpany.tiner.notification.after9ant ,
"After 9am", nyData, norning, new Long(300000) },
new String[] {"java.lang.String", "java.lang.String",
"java.lang. Chject", "java.util.Date", "long" });

Illnstantiates your listener class and configures a filter to

Il forward only tiner messages.

MyLi stener |istener = new MyListener();

NotificationFilterSupport filter = new NotificationFilterSupport();
filter.enabl eType("myconpany.tiner");

//'Uses the MBean server's addNotificationListener nethod to
/lregister the listener and filter with the tiner Mean.

connection. addNotificationListener(timerON, listener, filter, null);
Systemout. printIn("\n[nyListener]: Listener registered ...");

IlStarts the tiner.
connection.invoke(timerQN, "start", new Cbject[] { }, new String[] {});

|/ Keeps the renpte client active.
Systemout. println("Pausing. Press Returntoend........... ")
Systemin.read();

} catch(Exception e)

{
Systemout. println("Exception: " + ¢e);
e.printStackTrace();

5.6 Removing Notifications

The timer MBean removes notifications from its list when either of the following occurs:

ORACLE

A non-repeating notification is emitted.

A repeating notification exhausts its number of occurrences.

The timer MBean also provides the following operations to remove natifications:

renoveAl | Noti fications(), which removes all notifications that are registered with
the timer MBean instance.

renoveNoti fication(java.lang.nteger id), which removes the notification whose
handback object contains the integer value that you specify. The addNoti fication
method returns this handback object when you invoke it (see Step 4 in Configuring
a Timer MBean to Emit Notifications.

5-6

Chapter 5
Removing Notifications

e renoveNotifications(java.lang. String type), which removes all notifications
whose type corresponds to the type that you specify. You define a notification's
type value when you create the notification object. See Table 5-1.

See webl ogi ¢c. managenent . ti mer. Ti mer in the WebLogic Server API Reference.

ORACLE 5.7

Accessing Custom MBeans

This chapter describes ways to access your custom MBeans by means other than
programmatic JMX access to them. You can use any JMX-compliant management
system to access your MBeans. See the Oracle Technology Network Web site, which
provides links to books, white papers, and other information on IMX: http://

www. or acl e. conl t echnet wor k/ j aval j avase/ t ech/ j avamanagenent - 140525. ht ni .

This chapter includes the following sections:

e Accessing Custom MBeans from JConsole
e Accessing Custom MBeans from WebLogic Scripting Tool

e Accessing Custom MBeans from an Administration Console Extension

6.1 Accessing Custom MBeans from JConsole

The JDK includes JConsole, a Swing-based JMX client that you can use to browse
MBeans. You can browse the MBeans in any WebLogic Server MBean server and in
the JVM platform MBean server.

Oracle recommends that you use JConsole only in a development environment; it
consumes significant amounts of resources. See Using JConsole to Monitor
Applications at ht t p: / / www. or acl e. conf t echnet work/ arti cl es/j ava/

j consol e-1564139. ht ni . Also, see Managing WebLogic Servers With JConsole at
https://bl ogs. oracl e. conf WebLogi cServer/ entry/ managi ng_webl ogi ¢_servers_wi th.

To access custom MBeans from JConsole:

1. Ifwjmclient.jar andw client.jar are notin the JConsole classpath:

a. Enable the IIOP protocol for the WebLogic Server instance that hosts your
MBeans.

b. Configure the default IIOP user to be a WebLogic Server user with
Administrator privileges. In this scenario, the login and password you provide
in Step 5d or Step 6d is irrelevant, and the default IOP user will be associated
with each request.

See Enable and Configure 1IOP in the Oracle WebLogic Server Administration
Console Online Help.

Ifwjnxclient.jar andw client.jar are in the JConsole classpath, there is no
need to enable the default IIOP user. Go to Step 2.

ORACLE 6-1

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
http://www.oracle.com/technetwork/articles/java/jconsole-1564139.html
https://blogs.oracle.com/WebLogicServer/entry/managing_weblogic_servers_with

4

Chapter 6
Accessing Custom MBeans from JConsole

Note:

wiclient.jar isincluded inw jnmxclient.jar's MANIFEST ClassPath entry, so
wiclient.jar andw jnxclient.jar need to be in the same directory, or both
jars need to be specified on the classpath.

Ensure that webl ogic.jar orw fullclient.jar is notincluded in the classpath if
w jmxclient.jar isincluded. Only the thin clientw jnxclient.jar/iclient.jar
or the thick client w ful I client.jar should be used, but not a combination of
both.

From a command prompt, make sure that the JDK is on the path.

JConsole can be invoked with either wl j mxcl i ent.jar orwebl ogic.jar in the
JConsole classpath.

To start JConsole with wi j nxclient.jar in the classpath:

Unix:

$ jconsol e -J-Djava. cl ass. pat h=$JAVA HOME/ | i b/ j consol e. j ar: $ORACLE_HOVE/ wl server/server/lib/
W jnxclient.jar

Windows:

c:> jconsol e -J-Dava. cl ass. pat h=00 AVA HOVE% | i b\ j consol e. | ar; “ORACLE_HOVE% W ser ver\ ser ver
\lib\wjnmclient.jar

ORACLE

4.

To start JConsole with webl ogi c. j ar in the classpath:
Unix:

$ jconsol e -J-D ava. cl ass. pat h=$JAVA_HOVE/ | i b/ j consol e. j ar : $ORACLE_HOVE/
wl server/server/lib/weblogic.jar

Windows:

c:> jconsol e -J-Djava. cl ass. pat h=0%0 AVA_ HOVE% | i b\ j consol e. | ar ; “ORACLE_HOVE%
\'w server\server\lib\weblogic.jar

Note:

Note the following:

* You must explicitly set the classpath using - J- Dj ava. cl ass. pat h=opt i on.
The current classpath is not taken by JConsole.

» If your configuration is as described in Step 4, you can start JConsole
simply by executing the command j consol e. If you start JConsole this way,
however, only the user who started the WLS process can connect locally.

If your custom MBeans are registered in the JVM platform MBean server (or if you
have configured the WebLogic Server Runtime MBean Server to be the JVM
platform MBean server) and you are running JConsole on the same machine as
your WebLogic Server instance:

a.

In the JConsole window, select Connection > New Connection.

6-2

b.

Chapter 6
Accessing Custom MBeans from WebLogic Scripting Tool

In the New Connection window, select the Local Process tab, select

WebLogic.Server, and click Connect.

5. If your custom MBeans are registered in the WebLogic Server Runtime MBean

Server:

a. Inthe JConsole window, select Connection > New Connection.

b. Inthe New Connection window, select the Remote Process option.

c. Inthe Remote Process JMX URL text box, enter the following:
service:jmx:iiop://host:port/jndi/webl ogi c. managenent . nbeanservers. runtime
where host : port represents the host name and port of the WebLogic Server
instance that hosts your MBeans. For example, | ocal host : 7001.

d. Inthe User Name and Password fields, enter the user name and password of

€.

any user account that is assigned the admin role. This login will be used to
authenticate the client and create the Subject that will be associated with each
JMX request coming from the client.

Click Connect.

6. If your custom MBeans are registered in the WebLogic Server Domain Runtime
MBean Server:

a.
b.

C.

In the Console window, select Connection > New Connection.

In the New Connection window, select the Remote Process option.

In the Remote Process JMX URL text box, enter the following:
service:jnmx:iiop://host:port/jndi/

webl ogi ¢c. management . nheanservers. domai nrunti me

where host : port represents the host name and port of the WebLogic Server
instance that hosts your MBeans. For example, | ocal host : 7001.

In the User Name and Password fields, enter the user name and password of
any user account that is assigned the admin role. This login will be used to
authenticate the client and create the Subject that will be associated with each
JMX request coming from the client.

Click Connect.

6.2 Accessing Custom MBeans from WebLogic Scripting

Tool

If you register your MBeans in the Runtime MBean Server or Domain Runtime MBean
Server, you can use WebLogic Scripting Tool to access your custom MBeans. See
Accessing Other WebLogic MBeans and Custom MBeans in Understanding the
WebLogic Scripting Tool.

6.3 Accessing Custom MBeans from an Administration
Console Extension

You can extend the WebLogic Server Administration Console by creating Java Server
Pages (JSPs) that conform to a specific template. Your JSP can include JMX code

ORACLE

6-3

Chapter 6
Accessing Custom MBeans from an Administration Console Extension

that connects to the JVM platform MBean server, the WebLogic Server Runtime
MBean Server, or the Domain Runtime MBean Server and looks up your MBeans.

ORACLE 6-4

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Introduction and Roadmap
	1.1 Document Scope and Audience
	1.2 Guide to this Document
	1.3 Related Documentation
	1.4 New and Changed Features in This Release

	2 Understanding JMX
	2.1 What Management Services Can You Develop with JMX?
	2.2 Creating Management-Aware Applications
	2.3 When Is It Appropriate to Use JMX?
	2.4 What Management Services Have BEA Partners Developed?
	2.5 JMX Layers
	2.6 Indirection and Introspection
	2.7 Notifications and Monitor MBeans
	2.7.1 How JMX Notifications Are Broadcast and Received
	2.7.2 Active Polling with Monitor MBeans

	3 Designing Manageable Applications
	3.1 Benefits of Oracle Best Practices
	3.2 Use Standard MBeans
	3.3 Registering Custom MBeans in the WebLogic Server Runtime Bean Server
	3.4 Registering Custom MBeans in the Domain Runtime MBean Server
	3.5 Use ApplicationLifecycleListener to Register Application MBeans
	3.6 Unregister Application MBeans When Applications Are Undeployed
	3.7 Place Management Logic for EJBs and Servlets in a Delegate Class
	3.8 Use Open MBean Data Types
	3.9 Emit Notifications Only When Necessary
	3.10 Additional Design Considerations
	3.10.1 Registering MBeans in the JVM Platform MBean Server
	3.10.2 Registering Application MBeans by Using Only JDK Classes
	3.10.3 Organizing Managed Objects and Business Objects
	3.10.4 Packaging and Accessing Management Classes
	3.10.5 Securing Custom MBeans with Roles and Policies

	4 Instrumenting and Registering Custom MBeans
	4.1 Overview of the MBean Development Process
	4.2 Create and Implement a Management Interface
	4.3 Modify Business Methods to Push Data
	4.4 Register the MBean
	4.5 Package Application and MBean Classes

	5 Using the WebLogic Server JMX Timer Service
	5.1 Overview of the WebLogic Server JMX Timer Service
	5.2 Creating the Timer Service: Main Steps
	5.3 Configuring a Timer MBean to Emit Notifications
	5.4 Creating Date Objects
	5.5 Example: Generating a Notification Every Five Minutes After 9 AM
	5.6 Removing Notifications

	6 Accessing Custom MBeans
	6.1 Accessing Custom MBeans from JConsole
	6.2 Accessing Custom MBeans from WebLogic Scripting Tool
	6.3 Accessing Custom MBeans from an Administration Console Extension

