Oracle® Fusion Middleware
Developing Applications for Oracle WebLogic
Server

12¢ (12.2.1.3.0)
E80408-05
June 2021

ORACLE"

Oracle Fusion Middleware Developing Applications for Oracle WebLogic Server, 12¢ (12.2.1.3.0)
E80408-05
Copyright © 2007, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface
Documentation Accessibility XVi
Conventions XVi
1 Overview of WebLogic Server Application Development
1.1 Document Scope and Audience 1-1
1.2 WebLogic Server and the Java EE Platform 1-1
1.3 Overview of Java EE Applications and Modules 1-2
1.4 Web Application Modules 1-3
1.41 Servlets 1-3
1.4.2 JavaServer Pages 1-3
1.4.3 More Information on Web Application Modules 1-4
1.5 Enterprise JavaBean Modules 1-4
1.5.1 EJB Documentation in WebLogic Server 1-4
1.5.2 Additional EJB Information 1-4
1.6 Connector Modules 1-5
1.7 Enterprise Applications 1-5
1.7.1 Java EE Programming Model 1-5
1.7.2 Packaging and Deployment Overview 1-5
1.8 WebLogic Web Services 1-6
1.9 JMS and JDBC Modules 1-7
1.10 WebLogic Diagnostic Framework Modules 1-7
1.10.1 Using an External Diagnostics Descriptor 1-8
1.10.1.1 Defining an External Diagnostics Descriptor 1-8
1.11 Coherence Grid Archive (GAR) Modules 1-8
1.12 Bean Validation 1-8
1.13 XML Deployment Descriptors 1-9
1.13.1 Automatically Generating Deployment Descriptors 1-14
1.13.2 EJBGen 1-14
1.13.3 Java-based Command-line Utilities 1-15
1.13.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and

WebLogic Server 1-15

ORACLE iii

1.14 Deployment Plans 1-16
1.15 Development Tools 1-17
1.15.1 Java API Reference and the wis-api.jar File 1-17
1.15.1.1 Using the wis-api.jar File 1-17
1.15.1.2 Using the weblogic.jar File 1-18
1.15.2 Apache Ant 1-18
1.15.2.1 Using a Third-Party Version of Ant 1-19
1.15.2.2 Changing the Ant Heap Size 1-19
1.15.3 Source Code Editor or IDE 1-19
1.15.4 Database System and JDBC Driver 1-19
1.15.5 Web Browser 1-20
1.15.6 Third-Party Software 1-20
1.16 New and Changed Features in this Release 1-20
Using Ant Tasks to Configure and Use a WebLogic Server Domain
2.1 Overview of Configuring and Starting Domains Using Ant Tasks 2-1
2.2 Starting Servers and Creating Domains Using the wiserver Ant Task 2-1
2.2.1 Basic Steps for Using wiserver 2-2
2.2.2 Sample build.xml Files for wiserver 2-3
2.2.3 wiserver Ant Task Reference 2-3
2.3 Configuring a WebLogic Server Domain Using the wiconfig Ant Task 2-7
2.3.1 What the wiconfig Ant Task Does 2-7
2.3.2 Basic Steps for Using wiconfig 2-8
2.3.3 wilconfig Ant Task Reference 2-9
2.3.4 Main Attributes 2-9
2.3.5 Nested Elements 2-9
2.3.5.1 create 2-10
2.3.5.2 delete 2-10
2353 set 2-10
2.35.4 get 2-11
2.3.55 query 2-11
2.3.5.6 invoke 2-12
2.4 Example of Creating a Security Realm with the wiconfig Ant Task 2-12
2.5 Using the libclasspath Ant Task 2-13
2.5.1 libclasspath Task Definition 2-13
2.5.2 libclasspath Ant Task Reference 2-13
2.5.3 Main libclasspath Attributes 2-13
2.5.4 Nested libclasspath Elements 2-14
2.5.4.1 librarydir 2-14
2.5.4.2 library 2-14

ORACLE

2.5.5 Example libclasspath Ant Task 2-14

3 Using the WebLogic Maven Plug-In

3.1 Installing Maven 3-1
3.2 Configuring the WebLogic Maven Plug-In 3-2
3.2.1 How to use the WebLogic Maven Plug-in 3-2
3.2.2 Basic Configuration POM File 3-5
3.3 Maven Plug-In Goals 3-6
3.3.1 appc 3-7
3.3.2 create-domain 3-11
3.3.3 deploy 3-13
3.3.4 distribute-app 3-18
3.3.5 install 3-21
3.3.6 list-apps 3-26
3.3.7 purge-tasks 3-28
3.3.8 redeploy 3-30
3.3.9 remove-domain 3-33
3.3.10 start-app 3-34
3.3.11 start-server 3-37
3.3.12 stop-app 3-38
3.3.13 stop-server 3-41
3.3.14 undeploy 3-43
3.3.15 uninstall 3-46
3.3.16 update-app 3-47
3.3.17 wist 3-50
3.3.18 wist-client 3-54
3.3.19 ws-clientgen 3-60
3.3.20 wsgen 3-64
3.3.21 wsimport 3-68
3.3.22 ws-wsdlc 3-74
3.3.23 ws-jwsc 3-77
4 Creating a Split Development Directory Environment
4.1 Overview of the Split Development Directory Environment 4-1
4.1.1 Source and Build Directories 4-1
4.1.2 Deploying from a Split Development Directory 4-3
4.1.3 Split Development Directory Ant Tasks 4-4
4.2 Using the Split Development Directory Structure: Main Steps 4-4
4.3 Organizing Java EE Components in a Split Development Directory 4-5

ORACLE Y

4.3.1 Source Directory Overview 4-5

4.3.2 Enterprise Application Configuration 4-8
4.3.3 Web Applications 4-8
434 EJBs 4-9
4.3.5 Important Notes Regarding EJB Descriptors 4-10
4.4 Organizing Shared Classes in a Split Development Directory 4-11
4.4.1 Shared Utility Classes 4-11
4.4.2 Third-Party Libraries 4-11
4.4.3 Class Loading for Shared Classes 4-12
4.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen 4-12
4.5.1 weblogic.BuildXMLGen Syntax 4-13
4.6 Developing Multiple-EAR Projects Using the Split Development Directory 4-14
4.6.1 Organizing Libraries and Classes Shared by Multiple EARs 4-14
4.6.2 Linking Multiple build.xml Files 4-15
4.7 Best Practices for Developing WebLogic Server Applications 4-16

5 Building Applications in a Split Development Directory

5.1 Compiling Applications Using wlcompile 5-1
5.1.1 Using includes and excludes Properties 5-2
5.1.2 wlcompile Ant Task Attributes 5-2
5.1.3 Nested javac Options 5-2
5.1.4 Setting the Classpath for Compiling Code 5-3
5.1.5 Library Element for wicompile and wlappc 5-3

5.2 Building Modules and Applications Using wlappc 5-4
5.2.1 wlappc Ant Task Attributes 5-4
5.2.2 wlappc Ant Task Syntax 5-6
5.2.3 Syntax Differences between appc and wlappc 5-6
5.2.4 weblogic.appc Reference 5-6
5.2.5 weblogic.appc Syntax 5-7
5.2.6 weblogic.appc Options 5-7

6 Deploying and Packaging from a Split Development Directory

6.1 Deploying Applications Using wldeploy 6-1
6.2 Packaging Applications Using wlpackage 6-1
6.2.1 Archive versus Exploded Archive Directory 6-1
6.2.2 wlpackage Ant Task Example 6-2
6.2.3 wlpackage Ant Task Attribute Reference 6-2

ORACLE vi

7 Developing Applications for Production Redeployment

7.1 What is Production Redeployment? 7-1
7.2 Supported and Unsupported Application Types 7-1
7.2.1 Additional Application Support 7-2
7.3 Programming Requirements and Conventions 7-2
7.3.1 Applications Should Be Self-Contained 7-2
7.3.2 Versioned Applications Access the Current Version JNDI Tree by Default 7-3
7.3.3 Security Providers Must Be Compatible 7-3
7.3.4 Applications Must Specify a Version Identifier 7-3
7.3.5 Applications Can Access Name and Identifier 7-3
7.3.6 Client Applications Use Same Version when Possible 7-4
7.4 Assigning an Application Version 7-4
7.4.1 Application Version Conventions 7-4
7.5 Upgrading Applications to Use Production Redeployment 7-5
7.6 Accessing Version Information 7-5
8 Using Java EE Annotations and Dependency Injection
8.1 Annotation Processing 8-1
8.1.1 Annotation Parsing 8-1
8.1.2 Deployment View of Annotation Configuration 8-1
8.1.3 Compiling Annotated Classes 8-2
8.1.4 Dynamic Annotation Updates 8-2
8.2 Dependency Injection of Resources 8-2
8.2.1 Application Life Cycle Annotation Methods 8-3
8.3 Standard JDK Annotations 8-3
8.3.1 javax.annotation.PostConstruct 8-4
8.3.2 javax.annotation.PreDestroy 8-4
8.3.3 javax.annotation.Resource 8-5
8.3.4 javax.annotation.Resources 8-6
8.4 Standard Security-Related JDK Annotations 8-6
8.4.1 javax.annotation.security.DeclareRoles 8-7
8.4.2 javax.annotation.security.DenyAll 8-7
8.4.3 javax.annotation.security.PermitAll 8-7
8.4.4 javax.annotation.security.RolesAllowed 8-7
8.4.5 javax.annotation.security.RunAs 8-8
O Using Contexts and Dependency Injection for the Java EE Platform
9.1 About CDI for the Java EE Platform 9-2
9.2 Defining a Managed Bean 9-3

ORACLE vii

9.3 Injecting a Bean 9-3

9.4 Defining the Scope of a Bean 9-4
9.5 Overriding the Scope of a Bean at the Point of Injection 9-5
9.6 Using Qualifiers 9-5
9.6.1 Defining Qualifiers for Implementations of a Bean Type 9-6
9.6.2 Applying Qualifiers to a Bean 9-7
9.6.3 Injecting a Qualified Bean 9-8
9.7 Providing Alternative Implementations of a Bean Type 9-9
9.7.1 Defining an Alternative Implementation of a Bean Type 9-9
9.7.2 Selecting an Alternative Implementation of a Bean Type for an Application 9-10
9.8 Applying a Scope and Qualifiers to a Session Bean 9-10
9.8.1 Applying a Scope to a Session Bean 9-11
9.8.2 Applying Qualifiers to a Session Bean 9-11
9.9 Using Producer Methods, Disposer Methods, and Producer Fields 9-11
9.9.1 Defining a Producer Method 9-12
9.9.2 Defining a Disposer Method 9-12
9.9.3 Defining a Producer Field 9-13
9.10 Initializing and Preparing for the Destruction of a Managed Bean 9-14
9.10.1 Initializing a Managed Bean 9-14
9.10.2 Preparing for the Destruction of a Managed Bean 9-14
9.11 Intercepting Method Invocations and Life Cycle Events of Bean Classes 9-15
9.11.1 Defining an Interceptor Binding Type 9-16
9.11.2 Defining an Interceptor Class 9-17
9.11.3 Identifying Methods for Interception 9-18
9.11.4 Enabling an Interceptor 9-19
9.12 Decorating a Managed Bean Class 9-20
9.12.1 Defining a Decorator Class 9-20
9.12.2 Enabling a Decorator Class 9-22
9.13 Assigning an EL Name to a CDI Bean Class 9-23
9.14 Defining and Applying Stereotypes 9-24
9.14.1 Defining a Stereotype 9-24
9.14.2 Applying Stereotypes to a Bean 9-25
9.15 Using Events for Communications Between Beans 9-25
9.15.1 Defining an Event Type 9-26
9.15.2 Sending an Event 9-26
9.15.3 Handling an Event 9-27
9.16 Injecting a Predefined Bean 9-28
9.17 Injecting and Qualifying Resources 9-29
9.18 Using CDI With JCA Technology 9-31
9.19 Configuring a CDI Application 9-32
9.20 Enabling and Disabling CDI 9-33

ORACLE viii

9.20.1 Enabling and Disabling CDI for a Domain 9-33
9.21 Implicit Bean Discovery 9-34
9.21.1 Enabling and Disabling Implicit Bean Discovery for a Domain 9-34
9.22 Supporting Third-Party Portable Extensions 9-35
10 Java API for JSON Processing
10.1 About JavaScript Object Notation (JSON) 10-1
10.2 Object Model API 10-2
10.2.1 Creating an Object Model from JSON Data 10-2
10.2.2 Creating an Object Model from Application Code 10-2
10.2.3 Navigating an Object Model 10-3
10.2.4 Writing an Object Model to a Stream 10-5
10.3 Streaming API 10-5
10.3.1 Reading JSON Data Using a Parser 10-6
10.3.2 Writing JSON Data Using a Generator 10-7
11 Understanding WebLogic Server Application Classloading
11.1 Java Classloading 11-1
11.1.1 Java Classloader Hierarchy 11-1
11.1.2 Loading a Class 11-2
11.1.3 prefer-web-inf-classes Element 11-2
11.1.4 Changing Classes in a Running Program 11-3
11.1.5 Class Caching With the Policy Class Loader 11-3
11.1.6 Class Caching With Application Class Data Sharing 11-4
11.2 WebLogic Server Application Classloading 11-5
11.2.1 Overview of WebLogic Server Application Classloading 11-5
11.2.2 Application Classloader Hierarchy 11-6
11.2.3 Custom Module Classloader Hierarchies 11-7
11.2.4 Declaring the Classloader Hierarchy 11-8
11.2.5 User-Defined Classloader Restrictions 11-10
11.2.5.1 Servlet Reloading Disabled 11-10
11.2.5.2 Nesting Depth 11-11
11.2.5.3 Module Types 11-11
11.2.5.4 Duplicate Entries 11-11
11.2.5.5 Interfaces 11-11
11.2.5.6 Call-by-Value Semantics 11-11
11.2.5.7 In-Flight Work 11-11
11.2.5.8 Development Use Only 11-11
11.2.6 Individual EJB Classloader for Implementation Classes 11-11
ORACLE ix

11.2.7 Application Classloading and Pass-by-Value or Reference 11-13

11.2.8 Using a Filtering ClassLoader 11-13
11.2.9 What is a Filtering ClassLoader 11-14
11.2.10 Configuring a Filtering ClassLoader 11-14
11.2.11 Resource Loading Order 11-14
11.3 Resolving Class References Between Modules and Applications 11-16
11.3.1 About Resource Adapter Classes 11-16
11.3.2 Packaging Shared Utility Classes 11-16
11.3.3 Manifest Class-Path 11-16
11.4 Using the Classloader Analysis Tool (CAT) 11-17
11.4.1 Opening the CAT Interface 11-17
11.4.2 How CAT Analyzes Classes 11-18
11.4.3 Identifying Class References through Manifest Hierarchies 11-18
11.5 Sharing Applications and Modules By Using Java EE Libraries 11-19
11.6 Adding JARs to the Domain /lib Directory 11-20

12 Creating Shared Java EE Libraries and Optional Packages

12.1 Overview of Shared Java EE Libraries and Optional Packages 12-1
12.1.1 Optional Packages 12-2
12.1.2 Library Directories 12-3
12.1.3 Versioning Support for Libraries 12-3
12.1.4 Shared Java EE Libraries and Optional Packages Compared 12-4
12.1.5 Additional Information 12-5

12.2 Creating Shared Java EE Libraries 12-5
12.2.1 Assembling Shared Java EE Library Files 12-5
12.2.2 Assembling Optional Package Class Files 12-6
12.2.3 Editing Manifest Attributes for Shared Java EE Libraries 12-6
12.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment 12-8

12.3 Referencing Shared Java EE Libraries in an Enterprise Application 12-8
12.3.1 Overriding context-roots Within a Referenced Enterprise Library 12-10
12.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module 12-11

12.4 Referencing Optional Packages from a Java EE Application or Module 12-11

12.5 Using weblogic.appmerge to Merge Libraries 12-13
12.5.1 Using weblogic.appmerge from the CLI 12-13
12.5.2 Using weblogic.appmerge as an Ant Task 12-14

12.6 Integrating Shared Java EE Libraries with the Split Development Directory

Environment 12-14

12.7 Deploying Shared Java EE Libraries and Dependent Applications 12-14

12.8 Web Application Shared Java EE Library Information 12-15

12.9 Using WebApp Libraries With Web Applications 12-16

ORACLE X

12.10 Accessing Registered Shared Java EE Library Information with

LibraryRuntimeMBean 12-16
12.11 Order of Precedence of Modules When Referencing Shared Java EE Libraries 12-17
12.12 Best Practices for Using Shared Java EE Libraries 12-17

13 Programming Application Life Cycle Events

13.1 Understanding Application Life Cycle Events 13-1
13.2 Registering Events in weblogic-application.xml 13-2
13.3 Programming Basic Life Cycle Listener Functionality 13-2
13.3.1 Configuring a Role-Based Application Life Cycle Listener 13-4
13.4 Examples of Configuring Life Cycle Events with and without the URI Parameter 13-4
13.5 Understanding Application Life Cycle Event Behavior During Redeployment 13-5
13.6 Programming Application Version Life Cycle Events 13-5
13.6.1 Understanding Application Version Life Cycle Event Behavior 13-6
13.6.2 Types of Application Version Life Cycle Events 13-6

13.6.3 Example of Production Deployment Sequence When Using Application
Version Life Cycle Events 13-7

14 Programming Context Propagation

14.1 Understanding Context Propagation 14-1
14.2 Programming Context Propagation: Main Steps 14-2
14.3 Programming Context Propagation in a Client 14-3
14.4 Programming Context Propagation in an Application 14-4

15 Programming JavaMail with WebLogic Server

15.1 Overview of Using JavaMail with WebLogic Server Applications 15-1
15.2 Understanding JavaMail Configuration Files 15-2
15.3 Configuring JavaMail for WebLogic Server 15-2
15.4 Sending Messages with JavaMalil 15-2
15.5 Reading Messages with JavaMail 15-3

16 Threading and Clustering Topics

16.1 Using Threads in WebLogic Server 16-1
16.2 Using the Work Manager API for Lower-Level Threading 16-2
16.3 Programming Applications for WebLogic Server Clusters 16-2

ORACLE Xi

17 Developing OSGi Bundles for WebLogic Server Applications

17.1 Understanding OSGi 17-1
17.2 Features Provided in WebLogic Server OSGi Implementation 17-2
17.3 Configuring the OSGi Framework 17-3
17.3.1 Configuring OSGi Framework Instances 17-3
17.3.1.1 Configuring OSGi Framework Instance From Administration Console 17-4
17.3.1.2 Configuring OSGi Framework Instance From config.xml 17-5
17.3.1.3 Configuring OSGi Framework Instance From WLST 17-5
17.3.1.4 Configuring OSGi Framework Instance from a Java Program 17-6
17.3.1.5 Parameter Required for Installing Bundles in the Framework 17-8

17.3.2 Configuring OSGi Framework Persistence 17-9
17.3.3 Using OSGi Services 17-9
17.3.4 Connecting to an OSGi Console 17-9
17.4 Creating OSGi Bundles 17-10
17.5 Deploying OSGi Bundles 17-10
17.5.1 Preparing to Deploy an OSGi Bundle on a Target System 17-10
17.5.1.1 Preparing to Deploy Bundles as Enterprise Applications 17-11
17.5.1.2 Preparing to Deploy Bundles as Web Applications 17-11
17.5.1.3 Global Work Managers 17-12
17.5.1.4 Global Data Sources 17-13

17.5.2 Deploying OSGi Bundles in the osgi-lib Directory 17-13
17.5.2.1 Setting the Start Level and Run Level for a Bundle 17-14

17.6 Accessing Deployed Bundle Objects From JNDI 17-14
17.7 Using OSGi Logging Via WebLogic Server 17-16
17.8 Configuring a Filtering ClassLoader for OSGi Bundles 17-17
17.9 OSGI Example 17-17

18 Using the WebSocket Protocol in WebLogic Server

18.1 Understanding the WebSocket Protocol 18-1
18.1.1 Limitations of the HTTP Request-Response Model 18-2
18.1.2 WebSocket Endpoints 18-2
18.1.3 Handshake Requests in the WebSocket Protocol 18-2
18.1.4 Messaging and Data Transfer in the WebSocket Protocol 18-3
18.2 Understanding the WebLogic Server WebSocket Implementation 18-3
18.2.1 WebSocket Protocol Implementation 18-4
18.2.2 WebLogic WebSocket Java API 18-4
18.2.3 Protocol Fallback for WebSocket Messaging 18-5
18.2.4 Sample WebSocket Applications 18-5
18.3 Overview of Creating a WebSocket Application 18-5
18.4 Creating an Endpoint 18-5

ORACLE

Xii

18.4.1 Creating an Annotated Endpoint
18.4.2 Creating a Programmatic Endpoint
18.4.3 Specifying the Path Within an Application to a Programmatic Endpoint
18.5 Handling Life Cycle Events for a WebSocket Connection
18.5.1 Handling Life Cycle Events in an Annotated WebSocket Endpoint
18.5.1.1 Handling a Connection Opened Event
18.5.1.2 Handling a Message Received Event
18.5.1.3 Handling an Error Event
18.5.1.4 Handling a Connection Closed Event
18.5.2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint
18.6 Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint
18.7 Sending a Message
18.7.1 Sending a Message to a Single Peer of an Endpoint
18.7.2 Sending a Message to All Peers of an Endpoint
18.7.3 Ensuring Thread Safety for WebSocket Endpoints
18.8 Encoding and Decoding a WebSocket Message
18.8.1 Encoding a Java Object as a WebSocket Message
18.8.2 Decoding a WebSocket Message as a Java Object
18.9 Specifying a Part of an Endpoint Deployment URI as an Application Parameter
18.10 Maintaining Client State
18.11 Configuring a Server Endpoint Programmatically
18.12 Building Applications that Use the Java API for WebSocket
18.13 Deploying a WebSocket Application
18.14 Monitoring WebSocket Applications
18.15 Using WebSockets with Proxy Servers
18.16 Writing a WebSocket Client
18.16.1 Writing a Browser-Based WebSocket Client
18.16.2 Writing a Java WebSocket Client
18.16.2.1 Configuring a WebSocket Client Endpoint Programmatically
18.16.2.2 Connecting a Java WebSocket Client to a Server Endpoint

18.16.2.3 Setting the Maximum Number of Threads for Dispatching Messages

from a WebSocket Client

18.17 Securing a WebSocket Application

18.17.1 Applying Verified-Origin Policies

18.17.2 Authenticating and Authorizing WebSocket Clients

18.17.2.1 Authorizing WebSocket Clients

18.17.3 Establishing Secure WebSocket Connections

18.17.4 Avoiding Mixed Content

18.17.5 Specifying Limits for a WebSocket Connection
18.18 Enabling Protocol Fallback for WebSocket Messaging

18.18.1 Using the JavaScript API for WebSocket Fallback in Client Applications

ORACLE

18-6

18-7

18-7

18-8

18-9

18-9
18-10
18-12
18-12
18-13
18-14
18-15
18-15
18-17
18-18
18-18
18-18
18-20
18-22
18-24
18-24
18-26
18-26
18-28
18-31
18-31
18-31
18-32
18-32
18-34

18-36
18-36
18-36
18-37
18-38
18-38
18-39
18-39
18-39
18-40

Xiii

18.18.1.1 Configuring WebSocket Fallback 18-40

18.18.1.2 Creating a WebhSocket Object 18-42
18.18.1.3 Handling Life Cycle Events for a JavaScript WebSocket Client 18-43
18.18.1.4 Sending a Message from a JavaScript WebSocket Client 18-45
18.18.2 Packaging and Specifying the Location of the WebSocket Fallback Client
Library 18-46
18.18.3 Enabling WebSocket Fallback 18-46
18.19 Migrating an Application to the JSR 356 Java API for WebSocket from the
Deprecated API 18-46
18.19.1 Comparison of the JSR 356 API and Proprietary WebLogic Server
WebSocket API 18-47
18.19.2 Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356
API 18-49
18.19.3 Replacing the /* Suffix in a Path Pattern String 18-51
18.19.3.1 Replacing a /* Suffix that Represents Variable Path Parameters in an
Endpoint URI 18-51
18.19.3.2 Replacing a /* Suffix that Represents Additional Data for an Endpoint 18-51
18.19.4 Example of Converting a Proprietary WebSocket Server Endpoint to Use the
JSR 356 API 18-52
18.20 Example of Using the Java API for WebSocket with WebLogic Server 18-53

A Enterprise Application Deployment Descriptor Elements

A.1 weblogic-application.xml Deployment Descriptor Elements A-1
A.1.1 weblogic-application A-1
Al2 ejb A-9

A.1.2.1 entity-cache A-10
A.1.3 max-cache-size A-12
Al4 xml A-12

A.1.4.1 parser-factory A-12

A.1.4.2 entity-mapping A-13
A.1.5 jdbc-connection-pool A-14

A.1.5.1 connection-factory A-14

A.1.5.2 pool-params A-15

A.1.5.3 driver-params A-19
A.1.6 security A-21
A.1.7 application-param A-22
A.1.8 classloader-structure A-22
A.1.9 listener A-22
A.1.10 singleton-service A-23
A.1.11 startup A-23
A.1.12 shutdown A-24
A.1.13 work-manager A-24

ORACLE Xiv

A.1.14 session-descriptor A-26
A.1.15 library-ref A-28
A.1.16 library-context-root-override A-29
A.1.17 fast-swap A-29
A.2 weblogic-application.xml Schema A-30
A.3 application.xml Schema A-30
B wldeploy Ant Task Reference
B.1 Overview of the wideploy Ant Task B-1
B.2 Basic Steps for Using wideploy B-1
B.3 Sample build.xml Files for wideploy B-2
B.4 wldeploy Ant Task Attribute Reference B-3
B.4.1 Main Attributes B-3
B.4.2 Nested <files> Child Element B-9
ORACLE

XV

Preface

Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing Applications for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: / / www. or acl e. cont pl s/ t opi ¢/ | ookup?
ct x=acc& d=docacc.

Accessible Access to Oracle Support

Oracle customers who have purchased support have access to electronic support
through My Oracle Support. For information, visit ht t p: / / www. or acl e. com pl s/t opi c/
| ookup?ct x=accé&i d=i nf o or visit htt p: // www. or acl e. com pl s/t opi ¢/ | ookup?
ctx=acc& d=trs if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Overview of WebLogic Server Application
Development

Learn basic concepts about WebLogic Server applications, modules, and deployment
descriptors.
This chapter includes the following sections:

e Document Scope and Audience

* WebLogic Server and the Java EE Platform
e Overview of Java EE Applications and Modules
* Web Application Modules

e Enterprise JavaBean Modules

* Connector Modules

» Enterprise Applications

* WebLogic Web Services

¢ JMS and JDBC Modules

* WebLogic Diagnostic Framework Modules
e Coherence Grid Archive (GAR) Modules.

* Bean Validation.

e XML Deployment Descriptors

e Deployment Plans

e Development Tools

 New and Changed Features in this Release

1.1 Document Scope and Audience

This document is written for application developers who want to build WebLogic Server
applications using the Java Platform, Enterprise Edition (Java EE). It is assumed that readers
know Web technologies, object-oriented programming techniques, and the Java
programming language.

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create modules that implement the
business and presentation logic for the application. Application assemblers assemble the
modules into applications that are ready to deploy on WebLogic Server.

1.2 WebLogic Server and the Java EE Platform

WebLogic Server Java EE applications are based on standardized, modular components.
WebLogic Server provides a complete set of services for those modules and handles many

ORACLE 1-1

Chapter 1
Overview of Java EE Applications and Modules

details of application behavior automatically, without requiring programming. Java EE
defines module behaviors and packaging in a generic, portable way, postponing run-
time configuration until the module is deployed on an application server.

WebLogic Server implements Java Platform, Enterprise Edition (Java EE) Version 7.0
technologies (see http: // www. or acl e. com' t echnet wor k/ j ava/ j avaee/ over vi ew

i ndex. ht m). Java EE is the standard platform for developing multi-tier enterprise
applications based on the Java programming language. The technologies that make
up Java EE were developed collaboratively by several software vendors.

Java EE 7 Programming Model: Increased Productivity

An important aspect of the Java EE programming model is the continued evolution of
metadata annotations. Annotations simplify the application development process by
allowing a developer to specify within the Java class itself how the application
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older
versions of enterprise applications.

With Java EE 7, there is a continuing focus on ease of development. There is less
code to write — much of the boilerplate code has been removed, defaults are used
whenever possible, and annotations are used extensively to reduce the need for
deployment descriptors. Also, improvements to development tooling and open source
support expand developer choices and simplify creation of development environments.
For information about all the new Java EE 7 updates supported in WebLogic Server,
see Java EE 7 Support in What's New in Oracle WebLogic Server 12.2.1.3.0.

WebLogic Server and Java EE Applications

WebLogic Server Java EE applications are based on standardized, modular
components. WebLogic Server provides a complete set of services for those modules
and handles many details of application behavior automatically, without requiring
programming. Java EE defines module behaviors and packaging in a generic, portable
way, postponing run-time configuration until the module is actually deployed on an
application server.

Java EE includes deployment specifications for Web applications, EJB modules, Web
services, enterprise applications, client applications, and connectors. Java EE does
not specify how an application is deployed on the target server—only how a standard
module or application is packaged. For each module type, the specifications define the
files required and their location in the directory structure.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Refer to the Java EE specification at: htt p: / / ww. or acl e. conf t echnet wor k/ j ava/
j avaeel/ tech/index-jsp-142185. htni .

1.3 Overview of Java EE Applications and Modules

ORACLE

A WebLogic Server Java EE application consists of one of the following modules or
applications running on WebLogic Server: Web application modules, Enterprise
JavaBeans (EJB) modules, connector modules, enterprise applications, or Web
services.

1-2

http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html
http://www.oracle.com/technetwork/java/javaee/tech/index-jsp-142185.html

Chapter 1
Web Application Modules

Web application modules—HTML pages, servlets, JavaServer Pages, and related files.
See Web Application Modules.

Enterprise JavaBeans (EJB) modules—entity beans, session beans, and message-driven
beans. See Enterprise JavaBean Modules.

Connector modules—resource adapters. See Connector Modules.

Enterprise applications—Web application modules, EJB modules, resource adapters and
Web services packaged into an application. See Enterprise Applications.

Web services—See WebLogic Web Services.

A WebLogic application can also include the following WebLogic-specific modules:

JDBC and JMS modules—See JMS and JDBC Modules.

WebLogic Diagnostic FrameWork (WLDF) modules—See WebLogic Diagnostic
Framework Modules.

Coherence Grid Archive (GAR) Modules—See Coherence Grid Archive (GAR) Modules.

1.4 Web Application Modules

A Web application on WebLogic Server includes some required and typically, some optional
files.

1.4.1 Servlets

At least one servlet or JSP, along with any helper classes.

Optionally, a web. xm deployment descriptor, a Java EE standard XML document that
describes the contents of a WAR file.

Optionally, a webl ogi c. xm deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web application can also include HTML and XML pages with supporting files such as
images and multimedia files.

Servlets are Java classes that execute in WebLogic Server, accept a request from a client,
process it, and optionally return a response to the client. An Ht t pSer vl et is most often used
to generate dynamic Web pages in response to Web browser requests.

1.4.2 JavaServer Pages

ORACLE

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, known as
tag libraries, using HTML-like tags. The appc compiler compiles JSPs and translates them
into servlets. WebLogic Server automatically compiles JSPs if the servlet class file is not
present or is older than the JSP source file. See Building Modules and Applications Using
wlappc.

You can also precompile JSPs and package the servlet class in a Web application (WAR) file
to avoid compiling in the server. Servlets and JSPs may require additional helper classes that
must also be deployed with the Web application.

1-3

Chapter 1
Enterprise JavaBean Modules

1.4.3 More Information on Web Application Modules

See the following documentation:

Organizing Java EE Components in a Split Development Directory.
Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server
Developing JSP Tag Extensions for Oracle WebLogic Server

1.5 Enterprise JavaBean Modules

Enterprise JavaBeans (EJB) technology is the server-side component architecture for
the development and deployment of component-based business applications. EJB
technology enables rapid and simplified development of distributed, transactional,
secure, and portable applications based on Java EE 8 technology.

The EJB 3.3 specification provides simplified programming and packaging model
changes. The mandatory use of Java interfaces from previous versions has been
removed, allowing plain old Java objects to be annotated and used as EJB
components. The simplification is further enhanced through the ability to place EJB
modules directly inside of Web applications, removing the need to produce archives to
store the Web and EJB components and combine them together in an EAR file.

1.5.1 EJB Documentation in WebLogic Server

For more information about using EJBs with WebLogic Server, see:

For information about all the new features in EJB, see New Features and Changes
in EJB in Developing Enterprise JavaBeans for Oracle WebLogic Server.

For information about basic EJB concepts and components, see Enterprise Java
Beans (EJBs) in Understanding Oracle WebLogic Server.

For instructions on how to program, package, and deploy 3.1 EJBs on WebLogic
Server, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

For instructions on how to organize and build WebLogic Server EJBs in a split
directory environment, see Creating a Split Development Directory Environment.

For more information on how to program and package 2.x EJBs, see Developing
Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

1.5.2 Additional EJB Information

To learn more about EJB concepts, such as the benefits of enterprise beans, the types
of enterprise beans, and their life cycles, then visit the following Web sites:

ORACLE

EJB 3.2 Specification (JSR-345) at http://jcp.org/en/jsr/summary?i d=345

The Enterprise Beans chapter of the Java EE 7 Tutorial at http: //
docs. oracl e. confjavaee/ 7/tutori al / part ent beans. ht m#BNBLR

Java EE 7 Platform: htt p: // www. or acl e. coni t echnet wor k/ arti cl es/j ava/
i ndex. ht m

1-4

http://jcp.org/en/jsr/summary?id=318
http://docs.oracle.com/javaee/6/tutorial/doc/bnblr.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnblr.html
http://www.oracle.com/technetwork/articles/java/index.html
http://www.oracle.com/technetwork/articles/java/index.html

Chapter 1
Connector Modules

1.6 Connector Modules

Connectors (also known as resource adapters) contain the Java, and if necessary, the native
modules required to interact with an Enterprise Information System (EIS). A resource adapter
deployed to the WebLogic Server environment enables Java EE applications to access a
remote EIS. WebLogic Server application developers can use HTTP servlets, JavaServer
Pages (JSPs), Enterprise JavaBeans (EJBs), and other APIs to develop integrated
applications that use the EIS data and business logic.

To deploy a resource adapter to WebLogic Server, you must first create and configure
WebLogic Server-specific deployment descriptor, webl ogi c-ra. xm file, and add this to the
deployment directory. Resource adapters can be deployed to WebLogic Server as standalone
modules or as part of an enterprise application. See Enterprise Applications.

For more information on connectors, see Developing Resource Adapters for Oracle
WebLogic Server.

1.7 Enterprise Applications

An enterprise application consists of one or more Web application modules, EJB modules,
and resource adapters. It might also include a client application.

An enterprise application can be optionally defined by an appl i cati on. xn file, which was
the standard Java EE deployment descriptor for enterprise applications.

1.7.1 Java EE Programming Model

An important aspect of the Java EE programming model is the introduction of metadata
annotations. Annotations simplify the application development process by allowing a
developer to specify within the Java class itself how the application behaves in the container,
requests for dependency injection, and so on. Annotations are an alternative to deployment
descriptors that were required by older versions of enterprise applications (1.4 and earlier).

With Java EE annotations, the standard appl i cation. xm and web. xm deployment
descriptors are optional. The Java EE programming model uses the JDK annotations feature
(see http://docs. oracl e.conl javaee/ 7/ api /') for Web containers, such as EJBs, servlets,
Web applications, and JSPs. See Using Java EE Annotations and Dependency Injection.

If the application includes WebLogic Server-specific extensions, the application is further

defined by a webl ogi c- appl i cation. xm file. Enterprise applications that include a client

module will also have a cl i ent-application.xn deployment descriptor and a WebLogic
run-time client application deployment descriptor. See Enterprise Application Deployment
Descriptor Elements.

1.7.2 Packaging and Deployment Overview

ORACLE

For both production and development purposes, Oracle recommends that you package and
deploy even standalone Web applications, EJBs, and resource adapters as part of an
enterprise application. Doing so allows you to take advantage of Oracle's split development
directory structure, which greatly facilitates application development. See Creating a Split
Development Directory Environment.

1-5

http://docs.oracle.com/javaee/6/api/

ORACLE

Chapter 1
WebLogic Web Services

An enterprise application consists of Web application modules, EJB modules, and
resource adapters. It can be packaged as follows:

For development purposes, Oracle recommends the WebLogic split development
directory structure. Rather than having a single archived EAR file or an exploded
EAR directory structure, the split development directory has two parallel directories
that separate source files and output files. This directory structure is optimized for
development on a single WebLogic Server instance. See Creating a Split
Development Directory Environment. Oracle provides the W package Ant task,
which allows you to create an EAR without having to use the JAR utility; this is
exclusively for the split development directory structure. See Packaging
Applications Using wipackage.

For development purposes, Oracle further recommends that you package
standalone Web applications and Enterprise JavaBeans (EJBSs) as part of an
enterprise application, so that you can take advantage of the split development
directory structure. See Organizing Java EE Components in a Split Development
Directory.

For production purposes, Oracle recommends the exploded (unarchived) directory
format. This format enables you to update files without having to redeploy the
application. To update an archived file, you must unarchive the file, update it, then
rearchive and redeploy it.

You can choose to package your application as a JAR archived file using the j ar
utility with an . ear extension. Archived files are easier to distribute and take up
less space. An EAR file contains all of the JAR, WAR, and RAR module archive
files for an application and an XML descriptor that describes the bundled modules.
See Packaging Applications Using wipackage.

The optional META- | NF/ appl i cati on. xm deployment descriptor contains an element
for each Web application, EJB, and connector module, as well as additional elements
to describe security roles and application resources such as databases. If this
descriptor is present the WebLogic deployer picks the list of modules from this
descriptor. However if this descriptor is not present, the container guesses the
modules from the annotations defined on the POJO (plain-old-Java-object) classes.
See Enterprise Application Deployment Descriptor Elements.

1.8 WebLogic Web Services

Web services can be shared by and used as modules of distributed Web-based

applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on.
Web services can reside on different computers and can be implemented by vastly
different technologies, but they are packaged and transported using standard Web
protocols, such as HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following modules, at a minimum:

A Web service implementation hosted by a server on the Web. WebLogic Web
services are hosted by WebLogic Server. A Web service module may include
either Java classes or EJBs that implement the Web service. Web services are
packaged either as Web application archives (WARs) or EJB modules (JARS),
depending on the implementation.

* A standard for transmitting data and Web service invocation calls between the
Web service and the user of the Web service. WebLogic Web services use Simple

1-6

Chapter 1
JMS and JDBC Modules

Object Access Protocol (SOAP) 1.1 as the message format and HTTP as the connection
protocol.

» A standard for describing the Web service to clients so they can invoke it. WebLogic Web
services use Web services Description Language (WSDL) 1.1, an XML-based
specification, to describe themselves.

* A standard for clients to invoke Web services—JAX-WS. See Developing JAX-WS Web
Services for Oracle WebLogic Server.

* A standard for finding and registering the Web service (UDDI).

For more information about WebLogic Web services and the standards that are supported,
see Understanding WebLogic Web Services for Oracle WebLogic Server.

1.9 IMS and JDBC Modules

JMS and JDBC configurations are stored as modules, defined by an XML file that conforms
to the webl ogi c-j ms. xsd and j dbc- dat a- sour ce. xsd schema, respectively. These modules
are similar to standard Java EE modules. An administrator can create and manage JMS and
JDBC modules as global system resources, as modules packaged with a Java EE application
(as a packaged resource), or as standalone modules that can be made globally available.

With modular deployment of JIMS and JDBC resources, you can migrate your application and
the required JMS or JDBC configuration from environment to environment, such as from a
testing environment to a production environment, without opening an enterprise application
file (such as an EAR file) or a JMS or JDBC standalone module, and without extensive
manual JMS or JDBC reconfiguration.

Application developers create application modules in an enterprise-level IDE or another
development tool that supports editing of XML files, then package the JMS or JDBC modules
with an application and pass the application to a WebLogic administrator to deploy.

For more information, see:

e Configuring JMS Application Modules for Deployment
» Configuring JDBC Application Modules for Deployment

1.10 WebLogic Diagnostic Framework Modules

ORACLE

The WebLogic Diagnostic Framework (WLDF) provides features for generating, gathering,
analyzing, and persisting diagnostic data from WebLogic Server instances and from
applications deployed to server instances.

For server-scoped diagnostics, some WLDF features are configured as part of the
configuration for the domain. Other features are configured as system resource descriptors
that can be targeted to servers (or clusters). For application-scoped diagnostics, diagnostic
features are configured as resource descriptors for the application.

Application-scoped instrumentation is configured and deployed as a diagnostic module,
which is similar to a diagnostic system module. However, an application module is configured
in an XML configuration file named webl ogi c- di agnosti ¢s. xml which is packaged with the
application archive.

For detailed instructions for configuring instrumentation for applications, see Configuring
Application-Scoped Instrumentation.

1-7

Chapter 1
Coherence Grid Archive (GAR) Modules

1.10.1 Using an External Diagnostics Descriptor

WebLogic Server also supports the use of an external diagnostics descriptor so you
can integrate diagnostic functionality into an application that has not imported
diagnostic descriptors. This feature supports the deployment view and deployment of
an application or a module, detecting the presence of an external diagnostics
descriptor if the descriptor is defined in your deployment plan (pl an. xnt).

1.10.1.1 Defining an External Diagnostics Descriptor

First, define the diagnostic descriptor as external and configure its URI in the pl an. xm
file. For example:

<nmodul e- overri de>
<modul e- name>r evi ewSer vi ce. ear </ modul e- nane>
<nodul e-t ype>ear </ nodul e-t ype>
</ modul e- descri pt or >
<modul e-descriptor external ="true">
<root - el ement >wl df - r esour ce</ r oot - el enent >
<uri >META- | NF/ webl ogi c- di agnosti cs. xm </ uri >

</ modul e-overri de>
<config-root>D:\pl an</ confi g-r oot >

Then place the external diagnostic descriptor file under the URI. Using the example
above, you would place the descriptor file under d: \ pl an\ META- | NF.

1.11 Coherence Grid Archive (GAR) Modules

A Coherence GAR module provides distributed in-memory caching and data grid
computing that allows applications to increase their availability, scalability, and
performance. GAR modules are deployed as both standalone modules and packaged
with Java EE applications (as a packaged resource). A GAR module may also be
made globally available.

A GAR module is defined by the coherence-application.xml deployment descriptor and
must conform to the coher ence-appl i cati on. xsd XML schema. The GAR contains
the artifacts that comprise a Coherence application: Coherence configuration files,
application classes (such as entry processors, aggregators, filters), and any
dependencies that are required.

1.12 Bean Validation

ORACLE

The Bean Validation specification (JSR 349) defines a metadata model and API for
validating data in JavaBeans components. It is supported on both the server and Java
EE 7 client; therefore, instead of distributing validation of data over several layers,
such as the browser and the server side, you can define the validation constraints in
one place and share them across the different layers.

Bean validation is not only for validating beans. In fact, it can also be used to validate
any Java object.

Bean Validation and JNDI

1-8

Chapter 1
XML Deployment Descriptors

Where required by the Java EE specifications, the default Val i dat or and Val i dat or Fact ory
are located using JNDI under the names j ava: conp/ Val i dat or and j ava: conp/
Val i dat or Fact ory. These two artifacts reflect the validation descriptor that is in scope.

Bean Validation Configuration
Bean validation can be configured by using XML descriptors or annotation.

e Descriptors:
— Descriptor elements override corresponding annotations.

— Weblogic Server allows one descriptor per module. Therefore, an application can
have several validation descriptors but only one is allowed per module scope.

— Validation descriptors are named val i dati on. xnl and are packaged in the META- | NF
directory, except for Web modules, where the descriptor is packaged in the WEB- | NF
directory.

¢ Annotations:

— Injection of the default Val i dat or and Val i dat or Fact ory is requested using the
@esour ce annotation. However, not all source files are scanned for this annotation.

— The WebLogic Connector uses bean validation internally to validate the connector
descriptors.

Once bean validation is configured, the standard set of container managed classes for a
given container will be scanned. For example, for EJBs, bean and interceptor classes are
scanned. Web application classes and ManagedBeans also support the injection of

Val i dat or and Val i dat or Factori es.

For more information about the classes that support bean validation, please see the related
component specifications for the list of classes that support dependency injection.

1.13 XML Deployment Descriptors

ORACLE

A deployment configuration refers to the process of defining the deployment descriptor values
required to deploy an enterprise application to a particular WebLogic Server domain. The
deployment configuration for an application or module is stored in three types of XML
document: Java EE deployment descriptors, WebLogic Server descriptors, and WebLogic
Server deployment plans.

This section describes the Java EE and WebLogic-specific deployment descriptors. See
Deployment Plans for information on deployment plans.

The Java EE programming model uses the JDK annotations feature for Web containers, such
as EJBs, servlets, Web applications, and JSPs. Annotations simplify the application
development process by allowing a developer to specify within the Java class itself how the
component behaves in the container, requests for dependency injection, and so on.
Annotations are an alternative to deployment descriptors that were required by older versions
of Web applications (2.4 and earlier), enterprise applications (1.4 and earlier), and Enterprise
JavaBeans (2.x and earlier). See Using Java EE Annotations and Dependency Injection.

However, enterprise applications fully support the use of deployment descriptors, even
though the standard Java EE ones are not required. For example, you may prefer to use the
old EJB 2.x programming model, or might want to allow further customizing of the EJB at a
later development or deployment stage; in these cases you can create the standard
deployment descriptors in addition to, or instead of, the metadata annotations.

1-9

Chapter 1
XML Deployment Descriptors

Modules and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The Java EE specifications define standard,
portable deployment descriptors for Java EE modules and applications. Oracle defines
additional WebLogic-specific deployment descriptors for deploying a module or
application in the WebLogic Server environment.

Table 1-1 lists the types of modules and applications and their Java EE-standard and
WebLogic-specific deployment descriptors.

" Note:

The XML schemas for the WebLogic deployment descriptors listed in the
following table include elements from the htt p: // xnl ns. or acl e. cont
webl ogi ¢/ webl ogi c-j avaee/ 1. 7/ webl ogi c- j avaee. xsd schema, which
describes common elements shared among all WebLogic-specific
deployment descriptors.

For the most current schema information, see: htt p: // ww. or acl e. conf
t echnet wor k/ m ddl ewar e/ webl ogi ¢/ overvi ew i ndex. htm .

Table 1-1 Java EE and WebLogic Deployment Descriptors

Module or Application

Scope

Deployment Descriptors

Web Application

Java EE

web. xni

See the Servlet 3.0 Schema at ht t p: / / www. or acl e. conl
webf ol der/technetwork/jsc/xm /ns/javaee/ web-
app_3_1.xsd

VEB- | NF/ beans. xm —required only if the classes in the WAR

file are to participate in Contexts and Dependency Injection
(CDI)

Schema: htt p: / / www. or acl e. conf webf ol der/
technetwork/jsc/ xm /ns/javaeel/ beans_1 1.xsd

See Using Contexts and Dependency Injection for the Java EE
Platform.

Web Application

WebLogic

webl ogi c. xm

Schema: http: //xm ns. or acl e. com webl ogi c/
webl ogi c- web- app/ 1. 8/ webl ogi c- web- app. xsd
See weblogic.xml Deployment Descriptor Elements in

Developing Web Applications, Servlets, and JSPs for Oracle
WebLogic Server.

ORACLE

1-10

http://xmlns.oracle.com/weblogic/weblogic-javaee/1.7/weblogic-javaee.xsd
http://xmlns.oracle.com/weblogic/weblogic-javaee/1.7/weblogic-javaee.xsd
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/technetwork/middleware/weblogic/overview/index.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/web-app_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd
http://xmlns.oracle.com/weblogic/weblogic-web-app/1.8/weblogic-web-app.xsd

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope

Deployment Descriptors

Enterprise Bean 3.0 Java EE

ej b-jar.xm

See the EJB 3.2 Schema at ht t p: / / www. or acl e. com

webf ol der/technetwork/jsc/xm /ns/javaeel ej b-
jar_3 1.xsd

META- | NF/ beans. xm —required only if the classes in the EJB
JAR file are to participate in CDI

Schema: htt p: / / www. or acl e. conf webf ol der/
technetwork/jsc/ xm /ns/javaeel/ beans_1 1.xsd

See Using Contexts and Dependency Injection for the Java EE
Platform.

Enterprise Bean 3.0 WebLogic

webl ogi c- ej b-jar. xm

Schema http: //xm ns. oracl e. com webl ogi c/ webl ogi c-
ej b-jar/ 1.6/ webl ogi c-ejb-jar.xsd

webl ogi c-rdbns-j ar. xnl

Schema: http: //xm ns. oracl e. con’ webl ogi ¢/
webl ogi c-rdbns-j ar/ 1. 2/ webl ogi c- r dbns-j ar. xsd

persi stence-configuration. xn

Schema: http: //xn ns. oracl e. con’ webl ogi ¢/
per si st ence-configuration/ 1.0/ persistence-
configuration. xsd

See Developing Enterprise JavaBeans for Oracle WebLogic
Server.

Enterprise Bean 2.1 Java EE

ej b-jar. xni

See the EJB 2.1 Schema at htt p: // j ava. sun. conf xm / ns/
j2eelejb-jar_2_1.xsd

Enterprise Bean 2.1 WebLogic

webl ogi c- ej b-j ar. xm

Schema: http://xm ns. oracl e. com webl ogi c/

webl ogi c-ej b-jar/ 1. 6/ webl ogi c-ej b-jar. xsd
See The weblogic-ejb-jar.xml Deployment Descriptor in
Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

webl ogi c- cnp-rdbns-jar. xn

Schema: htt p: //xm ns. oracl e. con’ webl ogi ¢/
webl ogi c-rdbms-j ar/ 1. 2/ webl ogi c-rdbns-j ar. xsd

See The weblogic-cmp-rdbms-jar.xml Deployment Descriptor in
Developing Enterprise JavaBeans, Version 2.1, for Oracle
WebLogic Server.

ORACLE

1-11

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/ejb-jar_3_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://xmlns.oracle.com/weblogic/persistence-configuration/1.0/persistence-configuration.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://java.sun.com/xml/ns/j2ee/ejb-jar_2_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-ejb-jar/1.6/weblogic-ejb-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd
http://xmlns.oracle.com/weblogic/weblogic-rdbms-jar/1.2/weblogic-rdbms-jar.xsd

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application Scope Deployment Descriptors

Web services Java EE webser vi ces. xni
See the Web services 1.4 Schema athttp://
www. or acl e. conf webf ol der/t echnetwork/jsc/ xm / ns/
j avaee/ j avaee_web_services_1 4.xsd

Web services WebLogic webl ogi c- webser vi ces. xmi
Schema: http: //xn ns. oracl e. cont webl ogi ¢/
webl ogi c- webservi ces/ 1. 1/ webl ogi c- webser vi ces. xsd
webl ogi c- wsee- cl i ent Handl er Chai n. xn
Schema: http://xm ns. oracl e. com webl ogi c/
webl ogi c- wsee- cl i ent Handl er Chai n/ 1. 0/ webl ogi c-
wsee- cl i ent Handl er Chai n. xsd
weblogic-webservices-policy.xml
Schema: http://xn ns. oracl e. con’ webl ogi ¢/
webser vi ce-pol i cy-ref/1. 1/ webservi ce-pol i cy-
ref.xsd
weblogic-wsee-standaloneclient.xml
Schema: http: //xn ns. oracl e. con’ webl ogi ¢/
webl ogi c- wsee- st andal onecl i ent/ 1. 0/ webl ogi c- wsee-
st andal onecl i ent. xsd
See WebLogic Web Service Deployment Descriptor Element
Reference in WebLogic Web Services Reference for Oracle
WebLogic Server.

Resource Adapter Java EE ra. xn
See the Connector 1.6 Schema at ht t p: / / ww. or acl e. conl
webf ol der/technetwork/jsc/xm /ns/javaeel
connector_1 7.xsd
META- | NF/ beans. xm —required only if the classes in the
RAR file are to participate in CDI
Schema: htt p: // www. or acl e. conf webf ol der/
technetwork/jsc/xm /ns/javaeel beans_1 1.xsd
See Using Contexts and Dependency Injection for the Java EE
Platform.

Resource Adapter WebLogic

webl ogi c-ra. xm

Schenma: http://xnns. oracl e. com webl ogi c/
webl ogi c- connect or/ 1. 5/ webl ogi c- connect or. xsd

See weblogic-ra.xml Schema in Developing Resource Adapters
for Oracle WebLogic Server.

ORACLE

1-12

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/javaee_web_services_1_4.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-webservices/1.1/weblogic-webservices.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-clientHandlerChain/1.0/weblogic-wsee-clientHandlerChain.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/webservice-policy-ref/1.1/webservice-policy-ref.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://xmlns.oracle.com/weblogic/weblogic-wsee-standaloneclient/1.0/weblogic-wsee-standaloneclient.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/connector_1_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd
http://xmlns.oracle.com/weblogic/weblogic-connector/1.5/weblogic-connector.xsd

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors

Module or Application

Scope

Deployment Descriptors

Enterprise Application

Java EE

application.xm

See the Application 7Schema at ht t p: / / www. or acl e. com
webf ol der/technetwork/jsc/xm /ns/javaeel
application_7.xsd

Enterprise Application

WebLogic

webl ogi c- appl i cation. xn

Schema: http: //xn ns. oracl e. cont webl ogi ¢/
webl ogi c- appl i cation/ 1.7/ webl ogi c- appl i cati on. xsd

See weblogic-application.xml Deployment Descriptor Elements.

Client Application

Java EE

application-client.xmn

See the Application Client 7Schema at htt p: //
www. or acl e. conml webf ol der/t echnetwork/jsc/xm /ns/
j avaee/ application-client_7.xsd

META- | NF/ beans. xm —required only if the classes in the
application client JAR file are to participate in CDI
Schema: htt p: // www. or acl e. cont webf ol der/
technetwor k/j sc/ xm / ns/javaee/ beans_1_1. xsd

See Using Contexts and Dependency Injection for the Java EE
Platform.

Client Application

WebLogic

application-client.xn

Schema: htt p: // xnl ns. oracl e. com webl ogi ¢/
webl ogi c-application-client/1.4/ webl ogic-
application-client.xsd

See Developing a Java EE Application Client (Thin Client) in
Developing Stand-alone Clients for Oracle WebLogic Server.

HTTP Pub/Sub
Application

WebLogic

webl ogi c- pubsub. xm

Schema: http: //xm ns. or acl e. com webl ogi c/
webl ogi c- pubsub/ 1. 0/ webl ogi c- pubsub. xsd
See Using the HTTP Publish-Subscribe Server in Developing

Web Applications, Servlets, and JSPs for Oracle WebLogic
Server.

JMS Module

WebLogic

Fi | eName-j ms. xm , where Fi | eName can be anything you
want.

Schema: http://xm ns. oracl e. com webl ogi c/

webl ogi c-j ns/ 1. 4/ webl ogi c-j ns. xsd

See Configuring JMS Application Modules for Deployment in
Administering JMS Resources for Oracle WebLogic Server.

ORACLE

1-13

http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.7/weblogic-application.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application-client_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_1.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-application-client/1.4/weblogic-application-client.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-pubsub/1.0/weblogic-pubsub.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd
http://xmlns.oracle.com/weblogic/weblogic-jms/1.4/weblogic-jms.xsd

Chapter 1
XML Deployment Descriptors

Table 1-1 (Cont.) Java EE and WebLogic Deployment Descriptors
]

Module or Application Scope Deployment Descriptors
JDBC Module WebLogic Fi | eName- j dbc. xm , where Fi | eNane can be anything you
want.

Schema: htt p: //xm ns. oracl e. com’ webl ogi ¢/ j dbc-
dat a- sour ce/ 1. 5/ j dbc- dat a- sour ce. xsd
See Configuring JDBC Application Modules for Deployment in

Administering JDBC Data Sources for Oracle WebLogic
Server.

Deployment Plan WebLogic pl an. xn

Schema: ht t p: // www. or acl e. cont webf ol der/
t echnet wor k/ webl ogi ¢/ depl oynent - pl an/ i ndex. ht m

See Understanding WebLogic Server Deployment in Deploying
Applications to Oracle WebLogic Server.

Resource Deployment WebLogic

resour ce- depl oynent - pl an. xm
Plan ptoy P

Schema: http: //xn ns. oracl e. con’ webl ogi ¢/
resour ce- depl oynent - pl an/ 1. 0/ r esour ce- depl oynent -
pl an. xsd

See Using Resource Deployment Plans in Using Oracle
WebLogic Server Multitenant.

WLDF Module WeblLogic webl ogi c- di agnosti cs. xm

Schema: http: //xm ns. oracl e. con’ webl ogi ¢/
webl ogi c- di agnosti cs/ 1. 0/ webl ogi c- di agnosti cs. xsd

See Deploying WLDF Application Modules in Configuring and
Using the Diagnostics Framework for Oracle WebLogic Server.

Coherence Modules WebLogic coher ence-appl i cation. xm

Schema: http://xmins.oracle.com/coherence/coherence-
application/1.0/coherence-application.xsd

See Developing Oracle Coherence Applications for Oracle
WebLogic Server.

When you package a module or application, you create a directory to hold the
deployment descriptors—WEB- | NF or META- | NF—and then create the XML deployment
descriptors in that directory.

1.13.1 Automatically Generating Deployment Descriptors

WebLogic Server provides a variety of tools for automatically generating deployment
descriptors. These are discussed in the sections that follow.

1.13.2 EJBGen

EJBGen is an Enterprise JavaBeans 2.x code generator or command-line tool that
uses Javadoc markup to generate EJB deployment descriptor files. You annotate your
Bean class file with Javadoc tags and then use EJBGen to generate the Remote and
Home classes and the deployment descriptor files for an EJB application, reducing to

ORACLE 1-14

http://xmlns.oracle.com/weblogic/jdbc-data-source/1.5/jdbc-data-source.xsd
http://xmlns.oracle.com/weblogic/jdbc-data-source/1.5/jdbc-data-source.xsd
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://www.oracle.com/webfolder/technetwork/weblogic/deployment-plan/index.html
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/resource-deployment-plan/1.0/resource-deployment-plan.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd
http://xmlns.oracle.com/weblogic/weblogic-diagnostics/1.0/weblogic-diagnostics.xsd

Chapter 1
XML Deployment Descriptors

a single file you need to edit and maintain your EJB . j ava and descriptor files. See EJBGen
Reference in Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.

Note:

EJBGen, an Enterprise JavaBeans 2.x code generator utility, is deprecated as of
Oracle WebLogic Server 12.2.1.3.0, and will be removed in a future release.

1.13.3 Java-based Command-line Utilities

WebLogic Server includes a set of Java-based command-line utilities that automatically
generate both standard Java EE and WebLogic-specific deployment descriptors for Web
applications and enterprise applications.

These command-line utilities examine the classes you have assembled in a staging directory
and build the appropriate deployment descriptors based on the servlet classes, and so on.
These utilities include:

e java webl ogi c. marat hon. ddi ni t. Earl nit — automatically generates the deployment
descriptors for enterprise applications.

e java webl ogi c. mar at hon. ddi ni t. Wbl ni t — automatically generates the deployment
descriptors for Web applications.

For an example of DDI ni t, assume that you have created a directory called c: \ st age that
contains the JSP files and other objects that make up a Web application but you have not yet
created the web. xm and webl ogi c. xml deployment descriptors. To automatically generate
them, execute the following command:

pronpt> java webl ogi c. marat hon. ddinit.Weblnit c:\stage

The utility generates the web. xml and webl ogi ¢. xm deployment descriptors and places them
in the VEB- | NF directory, which DDI ni t will create if it does not already exist.

1.13.4 Upgrading Deployment Descriptors From Previous Releases of
Java EE and WebLogic Server

ORACLE

So that your applications can take advantage of the features in the current Java EE
specification and release of WebLogic Server, Oracle recommends that you always upgrade
deployment descriptors when you migrate applications to a new release of WebLogic Server.

To upgrade the deployment descriptors in your Java EE applications and modules, first use
the webl ogi c. DDConvert er tool to generate the upgraded descriptors into a temporary
directory. Once you have inspected the upgraded deployment descriptors to ensure that they
are correct, repackage your Java EE module archive or exploded directory with the new
deployment descriptor files.

Invoke webl ogi c. DDConvert er with the following command:

pronpt > java webl ogi c. DDConverter [options] archive_file_or_directory

where ar chive file_or_directory refers to the archive file (EAR, WAR, JAR, or RAR) or
exploded directory of your enterprise application, Web application, EJB, or resource adapter.

1-15

Chapter 1
Deployment Plans

The following table describes the webl ogi ¢c. DDConvert er command options.

Option Description

-d <dir> Specifies the directory to which descriptors are written.
~hel p Prints the standard usage message.

- qui et Turns off output messages except error messages.
-verbose Turns on additional output used for debugging.

The following example shows how to use the webl ogi ¢c. DDConvert er command to
generate upgraded deployment descriptors for the ny. ear enterprise application into
the subdirectory t enpdi r in the current directory:

pronpt > java webl ogi c. DDConverter -d tenpdir ny.ear

1.14 Deployment Plans

ORACLE

A deployment plan is an XML document that defines an application's WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment
plan resides outside of an application's archive file, and can apply changes to
deployment properties stored in the application's existing WebLogic Server
deployment descriptors.

Administrators use deployment plans to easily change an application's WebLogic
Server configuration for a specific environment without modifying existing Java EE or
WebLogic-specific deployment descriptors. Multiple deployment plans can be used to
reconfigure a single application for deployment to multiple, differing WebLogic Server
environments.

After programmers have finished programming an application, they export its
deployment configuration to create a custom deployment plan that administrators later
use for deploying the application into new WebLogic Server environments.
Programmers distribute both the application deployment files and the custom
deployment plan to deployers (for example, testing, staging, or production
administrators) who use the deployment plan as a blueprint for configuring the
application for their environment.

WebLogic Server provides the following tools to help programmers export an
application's deployment configuration:

* webl ogi c. Pl anGener at or creates a template deployment plan with null variables
for selected categories of WebLogic Server deployment descriptors. This tool is
recommended if you are beginning the export process and you want to create a
template deployment plan with null variables for an entire class of deployment
descriptors.

* The WebLogic Server Administration Console updates or creates new deployment
plans as necessary when you change configuration properties for an installed
application. You can use the WebLogic Server Administration Console to generate
a new deployment plan or to add or override variables in an existing plan. The
WebLogic Server Administration Console provides greater flexibility than
webl ogi c. Pl anGener at or, because it allows you to interactively add or edit

1-16

Chapter 1
Development Tools

individual deployment descriptor properties in the plan, rather than export entire
categories of descriptor properties.

For complete and detailed information about creating and using deployment plans, see:
* Understanding WebLogic Server Deployment
* Exporting an Application for Deployment to New Environments

* Understanding WebLogic Server Deployment Plans

1.15 Development Tools

To develop WebLogic Server applications, you need various tools such as Java API
Reference and the wl s- api . j ar file, source code editor or IDE, database system and JDBC
driver, and Web browser. You also need third party tools such as Apache Ant.

This section describes required and optional tools for developing WebLogic Server
applications.

1.15.1 Java API Reference and the wis-api.jar File

Oracle provides the Oracle Fusion Middleware Java AP| Reference for Oracle WebLogic
Server, which defines all of the supported Java classes available for use when developing
Java EE applications for WebLogic Server. See the Java API Reference for Oracle WebLogic
Server.

In conjunction with the Java API Reference for Oracle WebLogic Server, Oracle recommends
using the Wl s-api . j ar file to develop and compile Java EE applications for your WebLogic
Server environment. The w s- api . j ar file is located in the Wl server/server/|ib directory of
your WebLogic Server distribution and offers the following benefits:

» developing more performant code based on tested best practices

» avoiding deprecated or unsupported code paths

1.15.1.1 Using the wis-api.jar File

Use the wl s-api . j ar file and the api . | ar file to develop and compile your Java EE
applications in Integrated Development Environments (IDEs), such as Oracle JDeveloper.
IDEs provide an array of tools to simplify development of Java-based applications. The W s-
api . j ar file provides a clean and concise API jar to develop and run Java EE applications for
WebLogic environments.

< Note:

The w s-api . j ar file does not reference any Java EE classes. Oracle provides the
api . j ar file with a manifest classpath that includes access to Java EE JARs.

You may need to include the webl ogi c. j ar file in the classpath of your development
environment to access tools such as WLST, the webl ogi c. Depl oyer utilty, and
webl ogi c. appc.

ORACLE 1-17

Chapter 1
Development Tools

1.15.1.2 Using the weblogic.jar File

You must continue to use the webl ogi c. j ar file for runtime environments, as a client
or to develop and compile legacy applications. However, use the W s-api . j ar file to
develop and compile Java EE applications for your WebLogic Server environment.

1.15.2 Apache Ant

The preferred Oracle method for building applications with WebLogic Server is Apache
Ant. Ant is a Java-based build tool. One of the benefits of Ant is that is it is extended
with Java classes, rather than shell-based commands. Oracle provides humerous Ant
extension classes to help you compile, build, deploy, and package applications using
the WebLogic Server split development directory environment.

Another benefit is that Ant is a cross-platform tool. Developers write Ant build scripts in
eXtensible Markup Language (XML). XML tags define the targets to build,
dependencies among targets, and tasks to execute in order to build the targets. Ant
libraries are bundled with WebLogic Server to make it easier for our customers to build
Java applications out of the box.

To use Ant, you must first set your environment by executing either the

set Exanpl esEnv. cnd (Windows) or set Exanpl esEnv. sh (UNIX) commands located in
the W._SERVER\ sanpl es\ dormai ns\w _server directory, where W._SERVER is your
WebLogic Server installation directory.

For a complete explanation of ant capabilities, see: http://] akart a. apache. or g/ ant/
manual /i ndex. ht m

Note:

The Apache Jakarta Web site publishes online documentation for only the
most current version of Ant, which might be different from the version of Ant
that is bundled with WebLogic Server. Use the following command, after
setting your WebLogic environment, to determine the version of Ant bundled
with WebLogic Server:

pronpt> anf -version

ORACLE

To view the documentation for a specific version of Ant, such as the version
included with WebLogic Server, download the Ant zip file from htt p: //
archi ve. apache. org/ di st/ ant/bi nari es/ and extract the documentation.

For more information on using Ant to compile your cross-platform scripts or using
cross-platform scripts to create XML scripts that can be processed by Ant, refer to any
of the WebLogic Server examples, such as ORACLE_HOVE/ Wl ser ver/ sanpl es/ server/
exanpl es/ src/ exanpl es/ ej b20/ basi ¢/ beanManaged/ bui | d. xnml , where ORACLE_HOVE
represents the directory in which you installed WebLogic Server. For more information
about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

1-18

http://jakarta.apache.org/ant/manual/index.html
http://jakarta.apache.org/ant/manual/index.html
http://archive.apache.org/dist/ant/binaries/
http://archive.apache.org/dist/ant/binaries/

Chapter 1
Development Tools

Also refer to the following WebLogic Server documentation on building examples using Ant:
ORACLE_HOWE/ W server/ sanpl es/ server/exanpl es/ src/ exanpl es/ exanpl es. htm .

1.15.2.1 Using a Third-Party Version of Ant

You can use your own version of Ant if the one bundled with WebLogic Server is not
adequate for your purposes. To determine the version of Ant that is bundled with WebLogic
Server, run the following command after setting your WebLogic environment:

pronpt > ant -version

If you plan to use a different version of Ant, you can replace the appropriate JAR file in the
W._HOME\ server\Ilib\ant directory with an updated version of the file (where W._HOVE refers
to the main WebLogic installation directory, such as

c:\Oracl e\ M ddl ewar e\ Oracl e_Hone\ wl server) or add the new file to the front of your
CLASSPATH.

1.15.2.2 Changing the Ant Heap Size

By default the environment script allocates a heap size of 128 megabytes to Ant. You can
increase or decrease this value for your own projects by setting the - X option in your local
ANT_OPTS environment variable. For example:

pronpt > setenv ANT_OPTS=- Xnx128m

If you want to set the heap size permanently, add or update the MEM ARGS variable in the
scripts that set your environment, start WebLogic Server, and so on, as shown in the
following snippet from a Windows command script that starts a WebLogic Server instance:

set MEM ARGS=- Xnms32m - Xmx200m

See the scripts and commands in W._HOVE/ ser ver/ bi n for examples of using the MEM ARGS
variable.

1.15.3 Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML pages, and
JavaServer Pages. An editor that gracefully handles Windows and UNIX line-ending
differences is preferred, but there are no other special requirements for your editor. You can
edit HTML or XML pages and JavaServer Pages with a plain text editor, or use a Web page
editor such as Dreamweaver. For XML pages, you can also use an enterprise-level IDE with
DTD validation or another development tool that supports editing of XML files.

1.15.4 Database System and JDBC Driver

ORACLE

Nearly all WebLogic Server applications require a database system. You can use any DBMS
that you can access with a standard JDBC driver, but services such as WebLogic Java
Message Service (JMS) require a supported JDBC driver for Oracle, Sybase, Informix,
Microsoft SQL Server, or IBM DB2. See the Oracle Fusion Middleware Supported System
Configurations page on Oracle Technology Network to find out about supported database
systems and JDBC drivers.

1-19

Chapter 1
New and Changed Features in this Release

1.15.5 Web Browser

Most Java EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Firefox and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser configurations
you want to support because of differences in the JVMs embedded in various
browsers. One solution is to require users to install the Java plug-in so that everyone
has the same Java run-time version.

1.15.6 Third-Party Software

You can use third-party software products to enhance your WebLogic Server
development environment. WebLogic Developer Tools Resources provides developer
tools information for products that support the application servers.

¢ Note:

Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.

1.16 New and Changed Features in this Release

ORACLE

For a comprehensive listing of the new WebLogic Server features introduced in this
release, see What's New in Oracle WebLogic Server 12.2.1.3.0.

1-20

http://www.oracle.com/technetwork/developer-tools/index.html

Using Ant Tasks to Configure and Use a
WebLogic Server Domain

Learn about how to start and stop WebLogic Server instances and configure WebLogic
Server domains using WebLogic Ant tasks in your development build scripts.
This chapter includes the following sections:

Overview of Configuring and Starting Domains Using Ant Tasks
Starting Servers and Creating Domains Using the wiserver Ant Task
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Using the libclasspath Ant Task

2.1 Overview of Configuring and Starting Domains Using Ant

Tasks

WebLogic Server provides a pair of Ant tasks to help you perform common configuration
tasks in a development environment. The configuration tasks enable you to start and stop
WebLogic Server instances as well as create and configure WebLogic Server domains.

When combined with other WebLogic Ant tasks, you can create powerful build scripts for
demonstrating or testing your application with custom domains. For example, a single Ant
build script can:

Compile your application using the wi conpi | e, W appc, and Web services Ant tasks.

Create a new single-server domain and start the Administration Server using the
wl server Ant task.

Configure the new domain with required application resources using the W confi g Ant
task.

Deploy the application using the w depl oy Ant task.

Automatically start a compiled client application to demonstrate or test product features.

The sections that follow describe how to use the configuration Ant tasks, w server and
w confi g.

2.2 Starting Servers and Creating Domains Using the wiserver

Ant Task

The wl server Ant task enables you to start, reboot, shutdown, or connect to a WebLogic
Server instance. The server instance may already exist in a configured WebLogic Server
domain, or you can create a new single-server domain for development by using the
gener at econfi g=t r ue attribute.

ORACLE

2-1

Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

When you use the wl server task in an Ant script, the task does not return control until
the specified server is available and listening for connections. If you start up a server
instance using wiserver, the server process automatically terminates after the Ant VM
terminates. If you only connect to a currently-running server using the W ser ver task,
the server process keeps running after Ant completes.

The w server WebLogic Server Ant task extends the standard j ava Ant task

(org. apache. tool s. ant. t askdef s. Java). This means that all the attributes of the j ava
Ant task also apply to the wl server Ant task. For example, you can use the out put

and error attributes to specify the name of the files to which output and standard
errors of the wl server Ant task is written, respectively. For full documentation about
the attributes of the standard Java Ant task, see Java on the Apache Ant site (http://
ant . apache. or g/ manual / Tasks/j ava. htm).

2.2.1 Basic Steps for Using wiserver

To use the W server Ant task:

1. Set your environment.

On Windows, execute the set W.SEnv. cnd command, located in the directory
W._HOME\ ser ver\ bi n, where W._HOME is the top-level directory of your WebLogic
Server installation.

On UNIX, execute the set W.SEnv. sh command, located in the
directoryW._HOVE\ ser ver\ bi n, where W._HOME is the top-level directory of your
WebLogic Server installation.

¢ Note:

The wl server task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant
installation, add the following task definition in your build file:

<taskdef npme="w server" classname="webl ogi c. ant .t askdefs. managerment . W.Server"/ >

ORACLE

¢ Note:

On UNIX operating systems, the set W.SEnv. sh command does not set
the environment variables in all command shells. Oracle recommends
that you execute this command using the Korn shell or bash shell.

2. Add a call to the W server task in the build script to start, shutdown, restart, or
connect to a server. See wiserver Ant Task Reference for information about
W server attributes and default behavior.

3. Execute the Ant task or tasks specified in the bui | d. xn file by typing ant in the
staging directory, optionally passing the command a target argument:

pronpt > ant

Use ant -verbose to obtain more detailed messages from the wl server task.

2-2

http://ant.apache.org/manual/Tasks/java.html
http://ant.apache.org/manual/Tasks/java.html

Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

2.2.2 Sample build.xml Files for wiserver

The following shows a minimal wl ser ver target that starts a server in the current directory
using all default values:

<target name="w server-defaul t">
<wl server/>
</target>

This target connects to an existing, running server using the indicated connection parameters
and user name/password combination:

<target nanme="connect-server">

<wW server host="127.0.0.1" port="7001" usernane="webl ogi c" password="webl ogi c"
action="connect"/>
</target>

This target starts a WebLogic Server instance configured in the confi g subdirectory:

<target nanme="start-server">
<wW server dir="./config" host="127.0.0.1" port="7001" action="start"/>
</target>

This target creates a new single-server domain in an empty directory, and starts the domain's
server instance:

<target nane="new server">

<delete dir="./tnp"/>

<nkdir dir="./tnmp"/>

<w server dir="./tnp" host="127.0.0.1" port="7001"

generat eConfig="true" username="webl ogi c" password="webl ogi c" action="start"/>
</target>

2.2.3 wiserver Ant Task Reference

The following table describes the attributes of the wl server Ant task.

Table 2-1 Attributes of the wiserver Ant Task

Attribute Description Data Type Required?

policy The path to the security policy file for the WebLogic Server File No
domain. This attribute is used only for starting server instances.

dir The path that holds the domain configuration (for example, File No
c:\Oracl e\ M ddl ewar e\ user _pr oj ect s\ donai ns\ nydomai n
). By default, Wl server uses the current directory.

beahome The path to the Middleware Home directory (for example, File No

c:\Oracl e\ M ddl ewar e).

weblogichome

The path to the WebLogic Server installation directory (for File No
example, ¢:\ Oracl e\ M ddl ewar e\ wl server_12. 1).

ORACLE

2-3

Chapter 2

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task

Attribute Description Data Type Required?
servername The name of the server to start, shutdown, reboot, or connectto. String Required
A WebLogic Server instance is uniquely identified by its protocol, only when
host, and port values, so if you use this set of attributes to specify shutting
the server you want to start, shutdown or reboot, you do not need down the
to specify its actual name using the ser ver name attribute. The Administratio
only exception is when you want to shutdown the Administration nserver.
server; in this case you must specify this attribute.
The default value for this attribute is nmyser ver .
For more information on server naming convention, see Domain
and Server Name Restrictions in Understanding Domain
Configuration for Oracle WebLogic Server.
domainname The name of the WebLogic Server domain in which the serveris String No
configured.
adminserverurl The URL to access the Administration Server in the domain. This String Required for
attribute is required if you are starting up a Managed Server in the starting
domain. Managed
Servers.
username The user name of an administrator account. If you omit both the String No
user name and passwor d attributes, W ser ver attempts to obtain
the encrypted user name and password values from the
boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle WebLogic
Server for more information on boot . properties.
password The password of an administrator account. If you omit both the String No
user name and passwor d attributes, W ser ver attempts to obtain
the encrypted user name and password values from the
boot . properti es file. See Boot Identity Files in the
Administering Server Startup and Shutdown for Oracle WebLogic
Server for more information on boot . properties.
pkpassword The private key password for decrypting the SSL private key file. String No
timeout The maximum time, in milliseconds, that W ser ver waits for a long No
server to boot. This also specifies the maximum amount of time to
wait when connecting to a running server.
The default value for this attribute is 0, which means that the Ant
task will wait indefinitely until the server transitions to theRUNNI NG
state.
timeoutSecond The maximum time, in seconds, that W ser ver waits for a server long No

S

to boot. This also specifies the maximum amount of time to wait
when connecting to a running server.

The default value for this attribute is 0,which means that the Ant
task will wait indefinitely until the server transitions to the RUNNI NG

State.

ORACLE

2-4

Chapter 2

Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
]

Attribute

Description

Data Type

Required?

productionmod
eenabled

Specifies whether a server instance boots in development mode
or in production mode.

Development mode enables a WebLogic Server instance to
automatically deploy and update applications that are in the

domai n_nane/ aut odepl oy directory (where domai n_nane is the
name of a WebLogic Server domain). In other words, development
mode lets you use auto-deploy. Production mode disables the
auto-deployment feature. See Deploying Applications and
Modules for more information.

Valid values for this attribute are Tr ue and Fal se. The default
value is Fal se (which means that by default a server instance
boots in development mode.)

Note: If you boot the server in production mode by setting this
attribute to Tr ue, you must reboot the server to set the mode back
to development mode. Or in other words, you cannot reset the
mode on a running server using other administrative tools, such as
the WebLogic Server Scripting Tool (WLST).

Boolean

No

host

The DNS name or IP address on which the server instance is
listening.
The default value for this attribute is | ocal host .

String

No

port

The TCP port number on which the server instance is listening.
The default value for this attribute is 7001.

int

No

generateconfig

Specifies whether or not W server creates a new domain for the
specified server.

Valid values for this attribute are t r ue and f al se. The default
value is f al se.

Boolean

No

action

Specifies the action W ser ver performs: st art, shut down,
reboot, or connect .

The shut down action can be used with the optional
f or ceshut down attribute perform a forced shutdown.

The default value for this attribute is start .

String

No

failonerror

This is a global attribute used by WebLogic Server Ant tasks. It
specifies whether the task should fail if it encounters an error
during the build.

Valid values for this attribute are t r ue and f al se. The default
value is f al se.

Boolean

No

ORACLE

2-5

Chapter 2
Starting Servers and Creating Domains Using the wiserver Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
]

Attribute Description Data Type Required?
forceshutdown This optional attribute is used in conjunction with the Boolean No
action="shut down" attribute to perform a forced shutdown. For
example:
<wl server
host ="${w s. host}"
port="${port}"
user name="${w s. user nane}"
passwor d="${w s. passwor d}"
acti on="shut down"
forceshutdown="true"/ >
Valid values for this attribute are true and fal se.
The default value is false.
noExit (Optional) Leave the server process running after Ant exits. Valid Boolean No
values are t r ue or f al se. The default value is f al se, which
means the server process will shut down when Ant exits.
protocol Specifies the protocol that the W ser ver Ant task uses to String No

communicate with the WebLogic Server instance.

Valid values are t 3,t 3s, http, ht t ps, and i i op. The default
value is t 3.

forcelmplicitUp
grade

Specifies whether the Wl server Ant task, if run against an 8.1 (or Boolean No.
previous) domain, should implicitly upgrade it.

Valid values are t r ue or f al se. The default value is f al se, which
means that the Ant task does not implicitly upgrade the domain,
but rather, will fail with an error indicating that the domain needs to
be upgraded.

For more information about upgrading domains, see Upgrading
Oracle WebLogic Server.

configFile

Specifies the configuration file for your domain. String No.

The value of this attribute must be a valid XML file that conforms
to the XML schema as defined in the WebLogic Server Domain
Configuration Schema at htt p: // xml ns. or acl e. conl

webl ogi ¢/ domai n/ 1. 0/ donai n. xsd.

The XML file must exist in the Administration Server's root
directory, which is either the current directory or the directory that
you specify with the di r attribute.

If you do not specify this attribute, the default value is confi g. xni
in the directory specified by the di r attribute. If you do not specify
the dir attribute, then the default domain directory is the current
directory.

ORACLE

2-6

http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd
http://xmlns.oracle.com/weblogic/domain/1.0/domain.xsd

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

Table 2-1 (Cont.) Attributes of the wiserver Ant Task
]

Attribute

Description Data Type Required?

useBootPropert
ies

Specifies whether to use the boot . properti es file when starting Boolean No
a WebLogic Server instance. If this attribute is settot r ue,

WebLogic Server uses the user name and encrypted password

stored in the boot . properti es file to start rather than any values

set with the user nane and passwor d attributes.

Note: The values of the user name and passwor d attributes are
still used when shutting down or rebooting the WebLogic Server
instance. The useBoot Properti es attribute applies only when
starting the server. Valid values for this attribute are t r ue and
fal se. The default value is f al se.

verbose

Specifies that the Ant task output additional information as it is Boolean No
performing its action.

Valid values for this attribute are t r ue and f al se. The default

value is f al se.

2.3 Configuring a WebLogic Server Domain Using the wiconfig

Ant Task

You can use the wl confi g Ant task or the WebLogic Scripting Tool (WLST) to configure a
WebLogic Server domain.

The following sections describe how to use the w confi g Ant task to configure a WebLogic
Server domain.

" Note:

For equivalent functionality, you should use the WebLogic Scripting Tool (WLST).
See Understanding the WebLogic Scripting Tool.

2.3.1 What the wiconfig Ant Task Does

ORACLE

The wl confi g Ant task enables you to configure a WebLogic Server domain by creating,
querying, or modifying configuration MBeans on a running Administration Server instance.
Specifically, wl confi g enables you to:

* Create new MBeans, optionally storing the new MBean Object Names in Ant properties.
* Set attribute values on a named MBean available on the Administration Server.

» Create MBeans and set their attributes in one step by nesting set attribute commands
within create MBean commands.

* Query MBeans, optionally storing the query results in an Ant property reference.
* Query MBeans and set attribute values on all matching results.

» Establish a parent/child relationship among MBeans by nesting create commands within
other create commands.

2-7

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

2.3.2 Basic Steps for Using wiconfig

1. Setyour environment in a command shell. See Basic Steps for Using wiserver for
details.

Note:

The W confi g task is predefined in the version of Ant shipped with
WebLogic Server. If you want to use the task with your own Ant
installation, add the following task definition in your build file:

<taskdef npme="w config" classnanme="webl ogi c. ant .t askdefs. managerment . W.Confi g"/ >

2. W configis commonly used in combination with w server to configure a new
WebLogic Server domain created in the context of an Ant task. If you will be using
w confi g to configure such a domain, first use wl server attributes to create a new
domain and start the WebLogic Server instance.

3. Add an initial call to the Wl confi g task to connect to the Administration Server for a
domain. For example:

<target nane="doconfig">
<wl config url="t3://1ocal host: 7001" usernanme="webl ogi c"
passwor d=passwor d>
</target>

4. Add nested create, del ete, get, set, and query elements to configure the
domain.

5. Execute the Ant task or tasks specified in the bui | d. xm file by typing ant in the
staging directory, optionally passing the command a target argument:

pronpt > ant doconfig

Use ant -verbose to obtain more detailed messages from the wl conf i g task.

Note:

Since WLST is the recommended tool for domain creation scripts, you
should refer to the WLST offline sample scripts that are installed with the
software. The offline scripts demonstrate how to create domains using
the domain templates and are located in the following directory:
W._HOME\ conmon\ t enpl at es\ scri pt s\w st , where W._HOVE refers to the
top-level installation directory for WebLogic Server. For example, the
basi cW.SDomai n. py script creates a simple WebLogic domain, while
sanpl eMedRecDomai n. py creates a domain that defines resources similar
to those used in the Avitek MedRec sample. See Understanding the
WebLogic Scripting Tool.

ORACLE 2-8

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

2.3.3 wiconfig Ant Task Reference

The following sections describe the attributes and elements that can be used with Wl confi g.
2.3.4 Main Attributes
The following table describes the main attributes of the wl confi g Ant task.

Table 2-2 Main Attributes of the wiconfig Ant Task
|

Attribute Description Data Type Requi
red?
url The URL of the domain's Administration Server. String Yes
username The user name of an administrator account. String No
password The password of an administrator account. String No

To avoid having the plain text password appear in the build file or in
process utilities such as ps, first store a valid user name and
encrypted password in a configuration file using the WebLogic
Scripting Tool (WLST) st or eUser Conf i g command. Then omit
both the user nane and passwor d attributes in your Ant build file.
When the attributes are omitted, W conf i g attempts to login using
values obtained from the default configuration file.

If you want to obtain a user name and password from a non-default
configuration file and key file, use the user confi gfil e and
user keyfi | e attributes with Wl confi g.

See the command reference for st or eUser Conf i g in the
Understanding the WebLogic Scripting Tool for more information on
storing and encrypting passwords.

failonerror This is a global attribute used by WebLogic Server Ant tasks. It Boolean No
specifies whether the task should fail if it encounters an error during
the build. This attribute is set to true by default.

userconfigfile Specifies the location of a user configuration file to use for obtaining File No
the administrative user name and password. Use this option, instead
of the user name and passwor d attributes, in your build file when
you do not want to have the plain text password shown in-line or in
process-level utilities such as ps.

Before specifying the user confi gf i | e attribute, you must first
generate the file using the WebLogic Scripting Tool (WLST)

st or eUser Confi g command as described in the Understanding
the WebLogic Scripting Tool.

userkeyfile Specifies the location of a user key file to use for encrypting and File No
decrypting the user name and password information stored in a user
configuration file (the user confi gfi | e attribute).

Before specifying the user keyfi | e attribute, you must first
generate the key file using the WebLogic Scripting Tool (WLST)
st or eUser Confi g command as described in the Understanding
the WebLogic Scripting Tool.

2.3.5 Nested Elements

w confi g also has several elements that can be nested to specify configuration options:

ORACLE 2-9

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

e create

* delete

e set

e get

e query

* invoke
2.3.5.1 create

The cr eat e element creates a new MBean in the WebLogic Server domain. The
w confi g task can have any number of cr eat e elements.

A creat e element can have any number of nested set elements, which set attributes
on the newly-created MBean. A cr eat e element may also have additional, nested
creat e elements that create child MBeans.

The cr eat e element has the following attributes.

Table 2-3 Attributes of the create Element

___|]
Attribute Description Data Type Required?

name The name of the new MBean object to create. String No (W config
supplies a default
name if none is

specified.)
type The MBean type. String Yes
property The name of an optional Ant property that holds the String No

object name of the newly-created MBean.

Note: If you nest a cr eat e element inside of another
creat e element, you cannot specify the property
attribute for the nested cr eat e element.

2.3.5.2 delete

The del et e element removes an existing MBean from the WebLogic Server domain.
del et e takes a single attribute:

Table 2-4 Attribute of the delete Element
]

Attribute Description Data Type Required?
mbean The object name of the String Required when the del et e element is a direct
MBean to delete. child of the Wl confi g task. Not required when

nested within a quer y element.

2.3.5.3 set

The set element sets MBean attributes on a named MBean, a newly-created MBean,
or on MBeans retrieved as part of a query. You can include the set element as a direct
child of the wl confi g task, or nested within a cr eat e or query element.

ORACLE 2-10

Chapter 2
Configuring a WebLogic Server Domain Using the wiconfig Ant Task

The set element has the following attributes:

Table 2-5 Attributes of the set Element

Attribute Description Data Type Required?
attribute The name of the MBean attribute to set. String Yes
value The value to set for the specified MBean attribute. String Yes

You can specify multiple object names (stored in Ant
properties) as a value by delimiting the entire value list
with quotes and separating the object names with a

semicolon.

mbean The object name of the MBean whose values are being String Required only when the
set. This attribute is required only when the set element set elementis a direct
is included as a direct child of the main W confi g task; it child of the Wl confi g
is not required when the set element is nested within the task.

context of a cr eat e or query element.

domain This attribute specifies the IMX domain name for String No
Security MBeans and third-party SPI MBeans. It is not
required for administration MBeans, as the domain
corresponds to the WebLogic Server domain.

Note: You cannot use this attribute if the set element is
nested inside of a cr eat e element.

2.3.5.4 get

The get element retrieves attribute values from an MBean in the WebLogic Server domain.
The wi confi g task can have any number of get elements.

The get element has the following attributes.

Table 2-6 Attributes of the get Element

Attribute Description Data Type Required?
attribute The name of the MBean attribute whose value you String Yes
want to retrieve.
property The name of an Ant property that will hold the String Yes
retrieved MBean attribute value.
mbean The object name of the MBean you want to retrieve String Yes

attribute values from.

2.3.5.5 query

The query elements finds MBean that match a search pattern.

The query element supports the following nested child elements:

ORACLE

set —performs set operations on all MBeans in the result set.
get —performs get operations on all MBeans in the result set.
cr eat e—each MBean in the result set is used as a parent of a new MBean.

del et e—performs delete operations on all MBeans in the result set.

2-11

Chapter 2

Example of Creating a Security Realm with the wiconfig Ant Task

* i nvoke—invokes all matching MBeans in the result set.

w confi g can have any number of nested query elements.

query has the following attributes:

Table 2-7 Attributes of the query Element

Attribute Description Data Type Required?
domain The name of the WebLogic Server domain in which to String No
search for MBeans.
type The type of MBean to query. String No
name The name of the MBean to query. String No
pattern A JMX query pattern. String No
property The name of an optional Ant property that will store the String No
query results.
domain This attribute specifies the IMX domain name for Security String No

MBeans and third-party SPI MBeans. It is not required for
administration MBeans, as the domain corresponds to the
WebLogic Server domain.

2.3.5.6 invoke

The i nvoke element invokes a management operation for one or more MBeans. For
WebLogic Server MBeans, you usually use this command to invoke operations other
than the get Attribute and set Attri but e that most WebLogic Server MBeans

provide.

The i nvoke element has the following attributes.

Table 2-8 Attributes of the invoke Element

Attribute Description Data Type Required?
mbean The object name of the MBean you wantto String You must specify either the
invoke. nbean or t ype attribute of the

invoke element.

type The type of MBean to invoke. String You must specify either the
nbean or t ype attribute of the
invoke element.

methodName The method of the MBean to invoke. String Yes

arguments The list of arguments (separated by spaces) String No

to pass to the method specified by the
met hodNare attribute.

2.4 Example of Creating a Security Realm with the wiconfig

Ant Task

You can use this example to create a security realm with the wiconfig Ant task:

ORACLE

2-12

Chapter 2
Using the libclasspath Ant Task

Example 2-1 Creating a Security Realm with wiconfig

<wl config url="t3://nyhost:7001"
user nane="webl ogi c"
passwor d="passwor d" >
<create type="webl ogi c. managenent. security. Real nf nanme="MReal ni
property="new. provi der">
<set attribute="Defaul t Real nf val ue="fal se"/>
<creat e name="MAut henticator"
type="webl ogi c. security. providers. aut henti cati on. Def aul t Aut henti cat or"
real nF" MyReal ni'/ >
<create name="MAut hori zer"
type="webl ogi c. security. providers. aut hori zati on. Def aul t Aut hori zer" real m=" M/Real m'/ >
<create name="MRol eMapper"
type="webl ogi c. security. providers. aut hori zati on. Def aul t Rol eMapper" real =" MWyReal m'/ >
<creat e name="MCredenti al Mapper"
type="webl ogi c. security. providers.credential s. Def aul t Credenti al Mapper"
real nF" MyReal ni'/ >
<creat e name="MCert Pat hProvi der"
type=""webl ogi c. security. provi ders. pk. WebLogi cCert Pat hProvi der" real m=" MyReal m'/ >
</ create>
<set mbean="Security: Name=MyReal ni' attri bute="Cert Pat hBui |l der"
val ue="Security: Name=MyReal mWCer t Pat hProvi der "/ >
</w config>

2.5 Using the libclasspath Ant Task

Use the i bcl asspat h Ant task to build applications that use libraries, such as application
libraries and Web libraries.

The following sections describe how to build applications:

e libclasspath Task Definition
* wiserver Ant Task Reference

e Example libclasspath Ant Task

2.5.1 libclasspath Task Definition

To use the task with your own Ant installation, add the following task definition in your build
file:

<t askdef name="li bcl asspath"
cl assname="webl ogi c. ant . t askdef s. bui | d. Li bCl asspat hTask"/ >

2.5.2 libclasspath Ant Task Reference

The following sections describe the attributes and elements that can be used with the
I'i bcl asspat h Ant task.

* Main libclasspath Attributes

* Nested libclasspath Elements

2.5.3 Main libclasspath Attributes

The following table describes the main attributes of the | i bcl asspat h Ant task.

ORACLE 2-13

Chapter 2
Using the libclasspath Ant Task

Table 2-9 Attributes of the libclasspath Ant Task
]

Attribute Description Required

basedir The root of .ear or . war file to extract from. Either basedi r or basewar is
required.

basewar The name of the .war file to extract from. If basewar is specified, basedi r

is ignored and the library
referenced in basewar is used as
the . war file to extract classpath or
resourcepath information from.

The fully qualified name of the directory to be used for Yes.

tnpdir oA

P extracting libraries.
¢l asspat hpr oper t Contains the classpath for the referenced libraries. At Ie_ast one of the two attributes is
y For example, if basedi r points to a . war file that required.

references Web application libraries in the

webl ogi c. xnl file, the cl asspat hpr operty contains
the VEB- | NF/ cl asses and VEEB- | NF/ | i b directories of
the Web application libraries.

Additionally, if basedi r points to a. war file that

has . war files under VIEB- | NF/ bea- ext , the

cl asspat hproperty contains the VEB- | NF/ ¢l asses
and VIEB- | NF/ | i b directories for the Oracle extensions.

 esour cepat hpr op Contains library resources that are not classes.

erty For example, if basedi r points to a. war file that
has . war files under VEB- | NF/ bea- ext ,
resour cepat hproperty contains the roots of the
exploded extensions.

2.5.4 Nested libclasspath Elements

|'i bcl asspat h also has two elements that can be nested to specify configuration
options. At least one of the elements is required when using the | i bcl asspat h Ant
task:

2.5.4.1 librarydir

The following attribute is required when using this element:

di r—Specifies that all files in this directory are registered as available libraries.

2.5.4.2 library

The following attribute is required when using this element:

fil e—Register this file as an available library.

2.5.5 Example libclasspath Ant Task

This section provides example code of a | i bcl asspat h Ant task:

ORACLE 2-14

ORACLE

Chapter 2
Using the libclasspath Ant Task

Example 2-2 Example libclasspath Ant Task Code

<t askdef name="li bcl asspath"
cl assname="webl ogi c. ant . t askdef s. bui | d. Li bCl asspat hTask"/ >

<I-- Builds classpath based on libraries defined in weblogi c-application.xm. -->
<target name="init.app.libs">

<libclasspath basedir="${src.dir}" tnmpdir="${tnp.dir}"

cl asspat hproperty="app. lib. cl asspat h" >
<librarydir dir="${webl ogi c. hone}/ cormon/ depl oyabl e-libraries/"/>

</1ibcl asspat h>
<echo nessage="app.|ib.claspath is ${app.lib.classpath}" level="info"/>
</target>

2-15

Using the WebLogic Maven Plug-In

Apache Maven is a software tool for building and managing Java-based projects. WebLogic
Server provides support for Maven through the provisioning of plug-ins that enable you to
perform various operations on WebLogic Server from within a Maven environment.

The webl ogi c- maven- pl ugi n provides enhanced functionality to install, start and stop
servers, create domains, execute WLST scripts, and compile and deploy applications. With
the webl ogi c- maven- pl ugi n, you can install WebLogic Server from within your Maven
environment to fulfill the local WebLogic Server requirement when needed.

The following sections describe using webl ogi c- maven- pl ugi n:

* Installing Maven
e Configuring the WebLogic Maven Plug-In
e Maven Plug-In Goals

See Developing Applications Using Continuous Integration for additional Maven
documentation. In particular, see the section Building Java EE Projects for WebLogic Server
with Maven.

3.1 Installing Maven

To use the webl ogi c- maven- pl ugi n plug-in, you must first have a functional Maven
installation and a Maven repository.

A distribution of Maven is included with WebLogic Server in the following location:
ORACLE_HOME\ or acl e_conmon\ nodul es\ or g. apache. maven_r el num This is a copy of the
standard Maven release, without any modifications. For information about the specific version
of Maven that is included in WebLogic Server, see Third-Party Products in Oracle Fusion
Middleware in Oracle® Fusion Middleware Licensing Information User Manual.

Run the ORACLE_HOME\ wl server\ server\ bi n\ set W.SEnv script to configure Maven.

Alternatively, you can download and install your own copy of Maven from the Maven Web
site: htt p: // maven. apache. or g. Make sure you set any required variables as detailed in that
documentation, such as M2_HOME and JAVA HOME.

Note:

The webl ogi c- maven- pl ugi n sets the Java protocol handler to webl ogi c. net. To
use the default JDK protocol handlers, specify the system property -

DUseSunHt t pHandl er =t r ue in the JVM that executes Maven. To do this, override the
environment variable MAVEN OPTS inside the nvn. bat or nvn. sh files to set the
appropriate value. For example: set MAVEN OPTS="- DUseSunHt t pHandl er =t rue".

For detailed information on installing and using Maven to build applications and projects, see
the Maven Users Centre at htt p: // maven. apache. or g/ users/i ndex. htm .

ORACLE 3-1

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN306
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN8767
http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=MAVEN8767
http://maven.apache.org
http://maven.apache.org/users/index.html

Chapter 3
Configuring the WebLogic Maven Plug-In

3.2 Configuring the WebLogic Maven Plug-In

You can use the pre-built JAR file and accompanying POM file to install and configure
webl ogi c- maven- pl ugi n.

Follow these steps for installing and configuring webl ogi c- maven- pl ugi n:

1. Install the Oracle Maven sync plug-in and run the push goal:

a. Change directory to
ORACLE_HOMWE\ or acl e_conmon\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e-
maven- sync\ 12. 2. 1.

b. mvn install:install-file -DponFile=oracl e-maven-sync-12.2. 1. pom -
Dfil e=oracl e- maven-sync-12.2. 1.jar.

c. nvn com oracl e. maven: or acl e- maven- sync: push -
Dor acl eHone=c: \ or acl e\ m ddl ewar e\ or acl e_hone\.

2. You can validate whether you have successfully installed the plug-in using the
Maven hel p: descri be goal. See the Apache help plug-in describe goal
documentation for additional information.

mvn hel p: descri be -Dgroupl d=com or acl e. webl ogi ¢
-Dartifact!ld=webl ogi c- maven- pl ugi n - Dversion=12.2.1-0-0

3.2.1 How to use the WebLogic Maven Plug-in

ORACLE

There are two ways to invoke the goals in the WebLogic Maven plug-in:

* From a Maven project POM.
e From the command line.

The appc, wsgen, wsimport, ws-jwsc, ws-wsdlc, and ws-clientgen goals require a
POM.

Other goals will work either way. For example, install, wist, wist-client, start-server, or
stop-server work either from a POM or the command line.

The preferred and recommended way is to use a Maven POM file.
To invoke a WebLogic Maven plug-in goal from a POM file, do the following:
1. Add a build section to your POM if you do not already have one.

2. Add a plug-in section to the build section for the WebLogic Maven plug-in.

3. Add an execution section to the WebLogic Maven plug-in's pl ugi n section for
each goal that you want to execute. This section must provide the necessary
parameters for the goal, and map the goal to a phase in the Maven Lifecycle.

The following shows an example of the necessary additions, including a few goals.
The detailed descriptions of each goal later in this section present the details for
parameters and examples for each goal.

If you map multiple goals to the same lifecycle phase, they are typically executed in
the order you list them in the POM.

3-2

http://maven.apache.org/plugins/maven-help-plugin/describe-mojo.html

ORACLE

Chapter 3
Configuring the WebLogic Maven Plug-In

Example 3-1 Modifying the POM File

<bui | d>
<pl ugi ns>
<pl ugi n>
<I-- This is the configuration for the
webl ogi c- maven- pl ugi n
_—
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<configuration>
<m ddl ewar eHome>/ f mwhone/ W $s12210</ i ddl ewar eHone>
</configuration>
<execut i ons>
<l'-- Execute the appc goal during the package phase -->
<execution>
<i d>wl s- appc</i d>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<sour ce>${ proj ect. bui | d. di rectory}/ ${proj ect. nane}. ${ pr oj ect . packagi ng} </ sour ce>
</configuration>
</ executi on>
<l'-- Deploy the application to the WebLogic Server in the
pre-integration-test phase
-->
<execution>
<i d>wl s- depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >depl oy</ goal >
</ goal s>
<configuration>
<I--The admin URL where the app is depl oyed
Here use the plugin's default value t3://local host:7001-->
<adminurl >t 3://127.0.0. 1: 7001</ adm nurl >
<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>
<I'--The |l ocation of the file or directory to be depl oyed-->
<sour ce>${ proj ect. bui |l d. di rectory}/ ${proj ect. buil d.final Nane}. ${proj ect . packagi ng} </
sour ce>
<I--The target servers where the application is depl oyed
Here use the plugin's default value Adm nServer-->
<t ar get s>Adni nServer</target s>
<ver bose>t rue</ ver bose>
<nanme>${ proj ect . bui | d. fi nal Nane} </ name>
</configuration>
</ executi on>
<l-- Stop the application in the pre-integration-test phase -->
<execution>
<i d>W s- st op- app</i d>
<phase>pre-integration-test</phase>
<goal s>
<goal >st op- app</ goal >
</ goal s>
<configuration>
<adminurl >t 3://127.0.0. 1: 7001</ adm nurl >
<user >webl ogi c</ user >

3-3

ORACLE

Chapter 3
Configuring the WebLogic Maven Plug-In

<passwor d>passwor d</ passwor d>
<nanme>${ proj ect. bui | d. fi nal Nane} </ name>
</configuration>

</ execution>
</ executions>

</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Table 3-1 lists the phases in the default Maven lifecycle.

Table 3-1 Maven Lifecycle Phases

Phase Description

validate Validates the project is correct and all necessary information is
available.

compile Compiles the source code of the project.

test Tests the compiled source code using a suitable unit testing
framework. These tests should not require the code be packaged
or deployed.

package Takes the compiled code and package it in its distributable format,

such as a JAR.

integration-test

Processes and deploys the package if necessary into an
environment where integration tests can be run.

verify Runs any checks to verify the package is valid and meets quality
criteria.

install Installs the package into the local repository, for use as a
dependency in other projects locally.

deploy In an integration or release environment, copies the final package

to the remote repository for sharing with other developers and
projects.

Table 3-2 shows the most common mappings of goals to phases

Table 3-2 Common Mapping of Goals to Phases

Phase Goal

validate ws-clientgen, ws-wsdlc
compile WS-jwsc

test NA

package appc

pre-integration-test!

install, create-domain, start-server, distribute-app,
deploy, purge-tasks, redeploy, update-app, start-app,
stop-app, wist, wist-client, and list-apps

post-integration-test?

remove-domain, undeploy, stop-server, uninstall

verify

NA

install

NA

3-4

Chapter 3
Configuring the WebLogic Maven Plug-In

Table 3-2 (Cont.) Common Mapping of Goals to Phases

|
Phase Goal

deploy NA

1 The integration-test phase has pre sub-phases that are executed before the actual execution of any integration
tests, respectively.

2 The integration-test phase has post sub-phases that are executed after the actual execution of any integration
tests, respectively.

3.2.2 Basic Configuration POM File

ORACLE

Example 3-2 illustrates a basic Java EE Web application pom.xml file that demonstrates the
use of the weblogic-maven-plugin appc goal.

Example 3-2 Basic Configuration pom.xml File

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0
http://mven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<gr oupl d>deno. sab</ gr oupl d>
<artifactld>maven-denmo</artifact!d>
<versi on>1. 0- SNAPSHOT</ ver si on>
<packagi ng>war </ packagi ng>

<nane>maven- deno</ nane>

<properties>
<endor sed. di r >${proj ect . bui | d. di rect ory}/ endor sed</ endor sed. di r >
<proj ect. bui | d. sour ceEncodi ng>UTF- 8</ pr oj ect . bui | d. sour ceEncodi ng>
</ properties>

<dependenci es>
<dependency>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c-server-ponx/artifact!d>
<version>12. 2. 1- 0- 0</ ver si on>
<t ype>ponx/type>
<scope>pr ovi ded</ scope>
</ dependency>
</ dependenci es>

<bui | d>
<pl ugi ns>

<l-- WebLogic Server 12c Maven Plugin -->

<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>

</ pl ugi n>

<configuration>

</ configuration>

3-5

Chapter 3
Maven Plug-In Goals

<executions>
<execution>
<i d>W s-appc</id>
<phase>package</ phase>
<goal s>
<goal >appc</ goal >
</ goal s>
<configuration>
<source>${project. build.directory}/ ${project.nanme}.
${proj ect. packagi ng} </ source>
</configuration>
</ execution>
</ executions>

</ pl ugi ns>

</ bui | d>

</ project>

3.3 Maven Plug-In Goals

See an alphabetical listing of all the Maven plug-in goals.

ORACLE

Table 3-3 lists all the webl ogi c- maven- pl ugi n goals. Each goal is described in detail in
the sections that follow.

Table 3-3 Maven Plug-In Goals

Goal Name

Description

appc

Generates and compiles the classes needed to deploy EJBs and JSPs
to WebLogic Server. Also validates the deployment descriptors for
compliance with the current specifications at both the individual module
level and the application level. Does not require a local server
installation.

create-domain

Creates a domain for WebLogic Server using a domain template. This
goal supports specifying the domain directory (the last directory
determines the domain name) and the administrative username and
password. For more complex domain creation, use the W st goal.

deploy

Deploys WebLogic Server applications and modules to a running
server. Supports all deployment formats; for example, WAR, JAR,
RAR, and such.

distribute-app

Prepares deployment files for deployment by copying deployment files
to target servers and validating them.

install

Installs WebLogic Server.

list-apps

Lists the deployment names for applications and standalone modules
deployed, distributed, or installed in the domain.

purge-tasks

Flushes out retired deployment tasks.

redeploy

Redeploys a running application or part of a running application.

remove-domain

Removes a domain directory.

start-app

Starts an application deployed on WebLogic Server.

start-server

Starts WebLogic Server. This goal starts WLS by running a local start
script. For starting remote servers using the node manager, use the
wist goal instead.

3-6

Chapter 3
Maven Plug-In Goals

Table 3-3 (Cont.) Maven Plug-In Goals
|

Goal Name

Description

stop-app

Stops an application.

stop-server

Stops WebLogic Server. This goal stops WLS by running a local start
script. For stopping remote servers using the node manager, use the
wist goal instead.

undeploy Undeploys the application from WebLogic Server. Stops the
deployment unit and removes staged files from target servers.

uninstall Uninstalls WebLogic Server.

update-app Updates an application's deployment plan by redistributing the plan
files and reconfiguring the application based on the new plan contents.

wist WLST wrapper for Maven.

wist-client WLST wrapper that does not require a local server install for WLST
online commands.

ws-clientgen Generates client Web service artifacts from a WSDL.

wsgen JAX-WS service endpoint implementation class and generates all of
the portable artifacts for a JAX-WS Web service.

wsimport Maven goal that parses a WSDL and binding files and generates the
Java code needed to access it

WS-jwsc Builds a JAX-WS Web service.

ws-wsdlc Generates a set of artifacts and a partial Java implementation of the
Web service from a WSDL.

3.3.1 appc
Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: appc

Description

Generates and compiles the classes needed to deploy EJBs and JSPs to WebLogic Server.
Also validates the deployment descriptors for compliance with the current specifications at
both the individual module level and the application level. Does not require a local server

installation.

Parameters

Table 3-4 appc Parameters

___|]
Name Type Required Description

al t appdd java.lang. Strin false Specifies an alternate descriptor. May be used to
g specify an alternate appl i cati on. xm foran. ear
deployment or an alternate web. xm orej b. xnl for

standalone module deployments.

al tw sappdd java.lang. Strin false Specifies the path to an alternative WebLogic Server

g application deployment descriptor.

ORACLE 3.7

Table 3-4 (Cont.) appc Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
basi cCientJar bool ean false When true, does not include deployment descriptors in
client JARs generated for EJBs. Default value is:
fal se
cl asspath java.lang. Strin false This parameter is deprecated in this release and
g ignored. Use the standard Maven dependency model
instead to manipulate the effective CLASSPATH during
a build.
clientJarQutput java.lang.Strin false Specifies a directory where generated client JARs will
Dir g be written.
conment ary bool ean false This parameter is deprecated in this release.
conpi | er java.lang. Strin false Specifies the Java compiler for compiling class files
g from the generated Java source code. The Java
compiler program should be in your PATH unless you
specify the absolute path to the compiler explicitly.
Default value is: j avac
conpi |l erd ass java.lang. Strin false The class that invokes the compiler. Default value is:
g com sun. tool s. j avac. Mai n
continueConpila bool ean false When true, continues compilation even when there are
tion errors in the JSP files. Default value is: f al se
debug bool ean false When true, compiles debugging information into class
files. Default value is: f al se
deprecation bool ean false When true, warns about the use of deprecated
methods in the generated Java source file when
compiling the source file into a class file. Default value
is: fal se
destdir java.io.File false Specifies the directory where compiled class files are
written. Use this parameter to place compiled classes
in a directory that is already in your CLASSPATH.
enabl eHot CodeGe bool ean false This parameter is deprecated in this release.
n
forceCGeneration bool ean false When true, forces the generation of EJB and JSP
classes. Otherwise, the classes will not be
regenerated if it is determined to be unnecessary.
Default value is: f al se
i dl bool ean false When true, generates IDL for EJB remote interfaces.
Default value is: f al se
idlDirectory java.lang. Strin false Specifies the directory where IDL files will be written.
g Default: the target directory or JAR
i dl Factories bool ean false When true, generates factory methods for valuetypes.
Default value is: f al se
i dl Met hodSi gnat java.lang.Strin false Specifies the method signatures used to trigger IDL
ures g code generation.
i dl NoAbstractln bool ean false When true, does not generate abstract interfaces and
terfaces methods or attributes that contain them. Default value
is: fal se
ORACLE 3-8

Table 3-4 (Cont.) appc Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
i dl NoVal ueTypes bool ean false Does not generate valuetypes or the methods and
attributes that contain them. Default value is: f al se
i dl Orbi x bool ean false When true, generates IDL somewhat compatible with
Orbix C++. Default value is: f al se
idl Qverwite bool ean false When true, overwrites existing IDL files. Default value
is: fal se
i dl Ver bose bool ean false When true, displays additional status information for
IDL generation. Default value is: f al se
i dl Vi si broker bool ean false When true, generates IDL somewhat compatible witih
Visibroker C++. Default value is: f al se
i gnorePl anvalid bool ean false When true, ignores the plan file if it does not exist.
ation
iiop bool ean false When true, generates CORBA stubs for EJBs. Default
value is: f al se
iiopDirectory java.lang. Strin false Specifies the directory where IIOP stub files will be
g written. Default: the target directory or JAR
keepgener at ed bool ean false When true, preserves the generated . j ava files.
Default value is: f al se
libraries java.lang. Strin false A comma-separated list of libraries.
g
librarydir java.io.File false Registers all the files in the specified directory as
libraries.
[i neNunbers bool ean false When true, adds JSP line numbers to generated class
files to aid in debugging. Default value is: f al se
mani f est java.io.File false This parameter is deprecated in this release. Use the
standard Maven mechanism to specify the Manifest
during packaging.
maxfil es java.lang.Integ false Specifies the maximum number of generated Java files
er to be compiled at one time.
m ddl ewar eHome java.lang. Strin false This parameter is deprecated in this release and
g ignored.
noexi t bool ean false When true, does not exit from the execution of the
appc goal when encountering JSP compile errors.
Default value is: t r ue
nor m bool ean false This parameter is deprecated in this release.
nowar n bool ean false When true, suppresses compiler warnings. Default
value is: f al se
nowite bool ean false This parameter is deprecated in this release.
optini ze bool ean false When true, compiles with optimization on. Default
value is: f al se
out put java.io.File false Specifies an alternate output archive or directory.
When not set, the output is placed in the source
archive or directory.
ORACLE

3-9

Chapter 3
Maven Plug-In Goals

Table 3-4 (Cont.) appc Parameters

Name Type Required Description
pl an java.io.File false Specifies the path to an optional deployment plan.
qui et bool ean false When true, turns off output except for errors.
runtimeFl ags java.lang. Strin false Passes a list of options to the compiler.
g
serverC asspath java.lang.Strin false This parameter is deprecated in this release and
g ignored. Use the standard Maven dependency model
instead to manipulate the effective CLASSPATH.
source java.io.File false Specifies the path to the source files. Default value
is: ${project.build.directory}/${project.artifactid}.$
{project.packaging}
sour ceVersion java.lang. Strin false Limits the compatibility of the Java files to a JDK no
g higher than specified. For example "1.5". The default

value is the JDK version of the Java compiler used.

supr essConpi | er

bool ean false This parameter is deprecated in this release and
ignored. Use the standard Maven dependency model
instead to add the target classes to the effective
CLASSPATH during a build.

target Version

java.lang. Strin false Specifies the minimum level of the JVM required to run

g the compiled class files. For example, "1.5". The
default value is the JDK version of the Java compiler
used.

ver bose

boolean false When true, displays additional status information
during the compilation process. Default value is:
fal se

ver boseJavac

bool ean false When true, enables verbose output from the Java
compiler. Default value is: f al se

webl ogi cHone

java.lang. Strin false This parameter is deprecated in this release and
g ignored.

writelnferredDe bool ean false When true, writes out the descriptors with inferred

scriptors

information including annotations.

ORACLE

Usage Example

The appc goal executes the WebLogic Server application compiler utility to prepare an
application for deployment.

<execution>

<i d>W s-appc</id>

<phase>package</ phase>

<goal s>

<goal >appc</ goal >

</ goal s>

<configuration>

<source>${proj ect. bui |l d. di rectory}/ ${proj ect.nane}. ${ proj ect . packagi ng} </ sour ce>
</ configuration>

</ execution>

Example 3-3 shows typical appc goal output.

3-10

Chapter 3
Maven Plug-In Goals

Example 3-3 appc

$ mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: appc

- Dsour ce=t ar get / basi c\Webapp. war - Df or ceGener ati on=true
[INFQ Scanning for projects...
[INFQ
[INEQ] - o m e m e e e o e e e e e e
[INFQ Building basicWbapp 1.0- SNAPSHOT
=
[INFQ
[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: appc (default-cli) @main-test ---
[INFQ Running webl ogi c. appc on
[home/ oracl e/ src/tests/ main-test/target/basi cWebapp. war

0 e
[INFO BUILD SUCCESS

I S0 T LR e T TEr
[INFQ Total tine: 7.901s

[INFQ Finished at: Wed Aug 19 10:52: 46 EST 2015

[INFQ Final Menory: 26M 692M

[INFO

3.3.2 create-domain

Full Name

com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: cr eat e- domain

Description

Creates a domain for WebLogic Server using a domain template. This goal supports
specifying the domain directory (the last directory determines the domain name) and the
administrative username and password. For more complex domain creation, use the W st
goal.

" Note:

Beginning in version 12.2.1, there is a single unified version of WLST that
automatically includes the WLST environment from all products in the ORACLE_HOME.

Parameters

Table 3-5 create-domain Parameters
]

Name Type Required Description
domai nHone java.lang. Str true Specifies the directory to use for creating the domain.
i ng This goal takes the name of the last subdirectory specified

as the domain name and sets the new domain's name to
that value. For example, domainHome=/weblogic/
domains/MyNewDomain causes the domain name to be
set to 'MyNewDomain'.

domai nTenpl at e

java.lang. Str false Specifies the domain template file to use to create the

ing domain. The default domain template included with
WebLogic Server is used when this parameter is not
specified.

ORACLE

3-11

Chapter 3
Maven Plug-In Goals

Table 3-5 (Cont.) create-domain Parameters

Name Type Required Description
fai |l OnDomai nExi bool ean false When t r ue and the domain to be created already exists,
sts the build fails and an exception is thrown. When f al se

and the domain to be created already exists, the build is
successful and the existing domain is not overwritten. If
the domain does not exist, this parameter has no effect.
Default value is: f al se

m ddl ewar eHome java.lang. Str true The path to the Oracle Middleware install directory.
ing

passwor d java.lang. Str true Specifies the administrative password.
i ng

serverC asspath java.lang.Str false This parameter is deprecated and ignored in this release.
ing

user java.lang. Str true Specifies the administrative user name.
ing

webl ogi cHone java.lang. Str false This parameter is deprecated and ignored in this release.
ing

wl st Ver si on java.lang. Str false Deprecated. As of version 12.2.1, there is a single, unified
i ng version of WLST. This parameter is deprecated and

ignored.

wor ki ngDi r java.lang. Str false The current working directory where the create-domain

i ng goal executes. The default value is: $

{project.build.directory}/weblogic-maven-plugin

ORACLE

Usage Example

Use the cr eat e- domai n goal to create a WebLogic Server domain from a specified
WebLogic Server installation. You specify the location of the domain using the
domai nHome configuration parameter.

When creating a domain, a user name and password are required. You can specify
these using the user and passwor d configuration parameters in your POM file or by
specifying them on the command line.

The domain name is taken from the last subdirectory specified in domai nHone.

<execution>

<i d>wl s- cr eat e- domai n</i d>
<phase>pre-integration-test</phase>

<goal s>

<goal >cr eat e- domai n</ goal >

</ goal s>

<configuration>

<m ddl ewar eHone>c: / dev/w $12210</ mi ddl ewar eHonme>
<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHonme>
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

</ configuration>

</ execution>

Example 3-4 shows typical command output from the execution of the cr eat e- donai n
goal.

3-12

Chapter 3
Maven Plug-In Goals

Example 3-4 create-domain

mvn com or acl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: cr eat e- domai n
- Ddomai nHorre=c: \ or acl e\ mi dd| ewar e\ or acl e_hone\ user _proj ect s\ donai ns\ naven- donai n
- Dmi ddl ewar eHonme=c: \ or acl e\ m ddl ewar e\ or acl e_home - Duser =webl ogi ¢ - Dpasswor d=passwor d
[INFQ Scanning for projects...
[INFQ|
[INEQ] - m o m o mm i mm e e o e e e e e e
[INFQ Building WblLogi c Server Maven Plugin 12.2.1-0-0
[INEQ] - - s m e m e e e o e e e e e e e
[INFQ|
[INFQ --- weblogi c-maven-plugin:12.2.1-0-0:create-domain (default-cli) @
webl ogi c- maven-plugin ---
[INFQ [create-domain] Domein creation script:
readTenpl ate(r' C./oracl e/ m ddl ewar e/ oracl e_honme/ w server/comon/tenpl ates/w s/ws.jar")
set (' Narme', 'maven-domain')
cd('/ Security/ maven- donai n/ User/ webl ogi c')
set (' Name', 'webl ogoc')
set (' Password', '***")
writeDomai n(r' c:/oracl e/ m ddl ewar e/ oracl e_home/ user _
proj ect s/ domai ns/ maven- donai n')
[INFQ [wst]script tenp file = C/Users/user/AppDatalLocal / Tenp/
t est 6066166061714573929. py
[INFQ [w st]Executing: [cnd:[C://wi ndows\\systenB2\\cnd. exe, /c,
C:\oracl e\ m ddl ewar e\ or acl e_hone\ wl server\ common\ bi n\wl st. cnd
C:\ User s\ user\ AppDat a\ Local \ Tenp\t est 6066166061714573929. py]]
[INFQ Process being executed, waiting for conpletion.
[INFQ [exec]
[INFQ [exec] Initializing WbLogic Scripting Tool (WST) ...
[INFQ [exec]
[INFQ [exec] Weélcome to WebLogic Server Administration Scripting Shell
[INFQ [exec]
[INFQ [exec] Type help() for help on availabl e conmands
[INFQ [exec]
[INFQ [w st][cnd: [C\\windows\\systenB2\\cnd. exe, /c,
C:\oracl e\ m ddl ewar e\ or acl e_hone\ wl server\ common\ bi n\wl st. cnd
C:\ Users\ user\ AppDat a\ Local \ Tenp\t est 6066166061714573929. py]] exit code=0

0 e
[INFO BUILD SUCCESS

I S0 T L LT T TR PP PP EREPEPPREPE e
[INFQ Total time: 18.276s

[INFQ Finished at: Wed Aug 19 13:13:25 EDT 2015

[INFQ Final Menory: 9M 23M

[INFQ] - = o o oo e oo o e oo o e e o o e

3.3.3 deploy

ORACLE

Full Name

com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: depl oy

Description

Deploys WebLogic Server applications and modules to a running server. Supports all
deployment formats; for example, WAR, JAR, RAR, and such. Does not require a local server
installation.

3-13

Parameters

Table 3-6 deploy Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

adminurl

java.lang.String

false

Specifies the listen address and listen port of the
Administration Server. Default value is: t3://localhost:7001

advanced

boolean

false

When true, prints advanced usage options.

altappdd

java.lang.String

false

Specifies an alternate descriptor. May be used to specify
an alternate application.xml for an .ear deployment or an
alternate web.xml or ejb.xml for standalone module
deployments.

appversion

java.lang.String

false

Version of the application to start.

debug

boolean

false

When true, displays debug-level messages to the
standard output. Default value is: false

enableSecurityValida
tion

boolean

false

When true, enables validation of security data. Default
value is: false

examples

boolean

false

When true, displays examples of how to use this plug-in.

external_stage

boolean

false

When true, indicates that the user wants to copy the
application in the server staging area externally or using
a third-party tool. When specified, WebLogic Server looks
for the application under StagingDirectoryName(of target
server)/ applicationName. Default value is: false

failOnError

boolean

false

When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: true

id

java.lang.String

false

Specifies an optional, user-supplied, unique deployment
task identifier.

libimplver

java.lang.String

false

Implementation version of a Java EE library or optional
package. This option can be used only if the library or
package does not include an implementation version in
its manifest file.

library

boolean

false

Deploy as a shared Java EE library or optional package.

libspecver

java.lang.String

false

Specification version of a Java EE library or optional
package. This option can be used only if the library or
package does not include a specification version in its
manifest file.

middlewareHome

java.lang.String

false

This parameter is deprecated in this release and ignored.

name

java.lang.String

false

Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nostage

boolean

false

When true, does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by
the source parameter. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

noversion

boolean

false

When true, ignores all version related code paths on the
Administration Server. Default value is: false

nowait

boolean

false

When true, initiates multiple tasks and then monitors
them later with the -list action. Default value is: false

ORACLE

3-14

Table 3-6 (Cont.) deploy Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

partition

java.lang.String

false

Specifies the name of the partition associated with the
resource group to which you want to deploy an
application or library.

For deploy and distribute operations, you must specify the
name of the partition resource group to which you want to
deploy or distribute applications or libraries by setting the
resourceGroup attribute. If only one resource group exists
in the specified partition, then the resourceGroup
attribute is optional. The partition parameter is optional
for partition administrators.

password

java.lang.String

false

Specifies the administrative password.

plan

java.lang.String

false

Specifies the path to the deployment plan.

remote

boolean

false

When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the source parameter specifies a path on the server,
unless the upload parameter is also used. Default value
is: false

resourceGroup

java.lang.String

false

Specifies the name of the resource group at the partition
or domain level to which you want to deploy an
application or library.

For deploy and distribute operations, you must specify the
name of the resource group to which you want to deploy
or distribute applications or libraries by setting the
resourceGroup attribute. For partitions, if only one
resource group exists in the specified partition, then the
resourceGroup attribute is optional.

For other supported deployment actions, you do not
specify the resourceGroup attribute, as WebLogic Server
derives the resource group from the unique application
name.

resourceGroupTempl
ate

java.lang.String

false

Specifies the name of the resource group template to
which you want to deploy an application or library.

retiretimeout

java.lang.Integer

false

Specifies the number of seconds before WebLogic Server
undeploys the currently-running version of this application
or module so that clients can start using a new version.
When not specified, a graceful retirement policy is
assumed. Default value is: -1

securityModel

java.lang.String

false

Specifies the security model to be used for this
deployment, overriding the default security model for the
security realm. Possible values are: DDOnly,
CustomRoles, CustomRolesAndPolicies, and Advanced.

serverClasspath

java.lang.String

false

This parameter is deprecated in this release and ignored.

ORACLE

3-15

Table 3-6 (Cont.) deploy Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

source

java.lang.String

false

Specifies the address of the artifact to deploy. The

address can be one of the following:

e Acolon () separated list of Maven coordinates of the
form: groupld:artifactld:packaging:classifier:version.

« An archive file or exploded archive directory on the
local system. For example, /home/myhome/myapps/
helloworld.war.

¢ Aremote HTTP URL (http://foo/a/b.ear).

stage

boolean

false

When true, indicates that the application needs to be
copied into the target server staging area before
deployment. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

submoduletargets

java.lang.String

false

Specifies JMS Server targets for resources defined within
a JMS application module. Possible values have the form:
submod@mod-jms.xml@target or
submoduleName@target.

targets

java.lang.String

false

Specifies a comma-separated list of targets for the
current operation. The default is AdminServer.

timeout

java.lang.Integer

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete. The
default value of -1 means wait forever. Default value is: -1

upload

boolean

false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the
remote parameter) and when the user lacks normal
access to the Administration Server's file system. Default
value is: false.

usenonexclusivelock

boolean

false

When true, the deployment operation uses an existing
lock, already acquired by the same user, on the domain.
This parameter is helpful in environments where multiple
deployment tools are used simultaneously and one of the
tools has already acquired a lock on the domain
configuration.

Default value is: false.

user

java.lang.String

false

Specifies the administrative user name.

userConfigFile

java.lang.String

false

Specifies the location of a user configuration file to use
for the administrative user name and password instead of
specifying the user name and password directly in plain
text.

userKeyFile

java.lang.String

false

Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

verbose

boolean

false

When true, displays additional status information. Default
value is: false

version

boolean

false

When true, prints the version information. Default value
is: false

weblogicHome

java.lang.String

false

This parameter is deprecated in this release and ignored.

ORACLE

3-16

Chapter 3
Maven Plug-In Goals

Usage Example
Use this goal to deploy an application.

<execution>

<i d>wl s- depl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >depl oy</ goal >

</ goal s>

<configuration>
<adminurl>t3://127.0.0.1: 7001</ adni nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${ proj ect. bui |l d. di rectory}/ ${proj ect. buil d. final Nane}
. ${proj ect . packagi ng} </ sour ce>

<t ar get s>Adm nServer</targets>

<ver bose>t rue</ ver bose>

<nanme>${ proj ect . bui | d. fi nal Nane} </ name>
</ configuration>

</ executi on>

Example 3-5 shows typical depl oy goal output.

Example 3-5 deploy

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: depl oy

- Dsour ce=C: \ webser vi ces\ MySi npl egj b. j ar

- Dpasswor d=password - Duser =webl ogi ¢

[INFQ Scanning for projects..

[INFO

[ENFQ - - - mm e m s mm o m e e e
[INFQ Building WebLogic Server Maven Plugin 12.2.1-0-0

[ENFQ - - - m s m o m e m e e
[INFO

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: depl oy (default-cli) @ webl ogi c-mave
n-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host: 7001 -
depl oy -user webl ogic -source C \webservices\MSinpleEjb.jar -targets Adm nServe
r

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121> <Initi at

ng depl oy operation for application, MySinpleEjb [archive: C \webservices\MSinp
leEb.jar], to Adm nServer .>

Task O initiated: [Deployer:149026] depl oy application M/Sinpl eE b on Adm nServer

Task 0 conpl eted: [Deployer:149026] depl oy application M/Sinpl eE b on Adm nServer

Target state: deploy conpleted on Server Adm nServer

1 o e
[INFO BU LD SUCCESS

[ENFQ - - - mm e mm i mm i m e
[INFQ Total time: 9.042s

[INFQ Finished at: Wed Aug 19 13:41:11 EDT 2015

[INFQ Final Menory: 10M 25M

ORACLE 3-17

Chapter 3
Maven Plug-In Goals

3.3.4 distribute-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: di stri but e-app

Description

Prepares deployment files for deployment by copying deployment files to target
servers and validating them. Does not require a local server installation.

Parameters

Table 3-7 distribute-app Parameters

Name Type Required Description

adminurl java.lang.String | false Specifies the listen address and listen port of the
Administration Server. Default value is: t3://
localhost:7001

advanced boolean false When true, prints advanced usage options.

debug boolean false When true, displays debug-level messages to the
standard output. Default value is: false

enableSecurityValidatio | boolean false When true, enables validation of security data. Default

n value is: false

examples boolean false When true, displays examples of how to use this plug-in.

external_stage boolean false When true, indicates that the user wants to copy the

application in the server staging area externally or using
a third-party tool. When specified, WebLogic Server
looks for the application under StagingDirectoryName(of
target server)/ applicationName. Default value is: false

failOnError boolean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: true

id java.lang.String | false Specifies an optional, user-supplied, unique deployment
task identifier.

middlewareHome java.lang.String | false This parameter is deprecated in this release and ignored.

name java.lang.String | false Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nostage boolean false When true, does not copy the deployment files to target
servers, but leaves them in a fixed location, specified by
the source parameter. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

noversion boolean false When true, ignores all version related code paths on the
Administration Server. Default value is: false

nowait boolean false When true, initiates multiple tasks and then monitors
them later with the -list action. Default value is: false

ORACLE 3-18

Table 3-7 (Cont.) distribute-app Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

partition

java.lang.String

false

Specifies the name of the partition associated with the
resource group on which you want to distribute an
application or library.

For deploy and distribute operations, you must specify
the name of the partition resource group to which you
want to deploy or distribute applications or libraries by
setting the resourceGroup attribute. If only one resource
group exists in the specified partition, then the
resourceGroup attribute is optional. The partition
parameter is optional for partition administrators.

password

java.lang.String

false

Specifies the administrative password.

plan

java.lang.String

false

Specifies the path to the deployment plan.

remote

boolean

false

When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the source parameter specifies a path on the server,
unless the upload parameter is also used. Default value
is: false

resourceGroup

java.lang.String

false

Specifies the name of the resource group at the partition
or domain level on which you want to distribute an
application or library.

For deploy and distribute operations, you must specify
the name of the resource group to which you want to
deploy or distribute applications or libraries by setting the
resourceGroup attribute. For partitions, if only one
resource group exists in the specified partition, then the
resourceGroup attribute is optional.

For other supported deployment actions, you do not
specify the resourceGroup attribute, as WebLogic Server
derives the resource group from the unique application
name.

resourceGroupTemplat
e

java.lang.String

false

Specifies the name of the resource group template on
which you want to distribute an application or library.

retiretimeout

java.lang.Integer

false

Specifies the number of seconds before WebLogic
Server undeploys the currently-running version of this
application or module so that clients can start using a
new version. When not specified, a graceful retirement
policy is assumed. Default value is: -1

securityModel

java.lang.String

false

Specifies the security model to be used for this
deployment, overriding the default security model for the
security realm. Possible values are: DDOnly,
CustomRoles, CustomRolesAndPolicies, and Advanced.

serverClasspath

java.lang.String

false

This parameter is deprecated in this release and ignored.

ORACLE

3-19

Table 3-7 (Cont.) distribute-app Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

source

java.lang.String

false

Specifies the address of the artifact to distribute. The
address can be one of the following:

e Acolon () separated list of Maven coordinates of
the form:
groupld:artifactld:packaging:classifier:version.

« An archive file or exploded archive directory on the
local system. For example, /home/myhome/myapps/
helloworld.war.

e Aremote HTTP URL (http://foo/a/b.ear).

stage

boolean

false

When true, indicates that the application needs to be
copied into the target server staging area before
deployment. By default, nostage is true for the
Administration Server and stage is true for the Managed
Server targets.

submoduletargets

java.lang.String

false

Specifies IMS Server targets for resources defined
within a JMS application module. Possible values have
the form: submod@mod-jms.xml@target or
submoduleName@target.

targets

java.lang.String

false

Specifies a comma-separated list of targets for the
current operation. When not specified, all configured
targets are used. For a new application, the default target
is the Administration Server.

timeout

java.lang.Integer

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete. The
default value of -1 means wait forever. Default value is: -1

upload

boolean

false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the
remote parameter) and when the user lacks normal
access to the Administration Server's file system. Default
value is: false

user

java.lang.String

false

Specifies the administrative user name.

userConfigFile

java.lang.String

false

Specifies the location of a user configuration file to use
for the administrative user name and password instead of
specifying the user name and password directly in plain
text.

userKeyFile

java.lang.String

false

Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

verbose

boolean

false

When true, displays additional status information. Default
value is: false

version

boolean

false

When true, prints the version information. Default value
is: false

weblogicHome

java.lang.String

false

This parameter is deprecated in this release and ignored.

ORACLE

<execution>
<i d>W s-di stribut e-app</id>

Use this goal to prepare deployment files for deployment.

3-20

Chapter 3
Maven Plug-In Goals

<phase>pre-integration-test</phase>
<goal s>

<goal >di stri but e- app</ goal >

</ goal s>

<configuration>

<adm nurl>t3://127.0.0.1: 7001</ admi nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<sour ce>${project.build.directory}/${project.build.final Name}
. ${proj ect. packagi ng} </ sour ce>

<t arget s>cl uster1</targets>

<ver bose>t rue</ ver bose>

<nanme>${ proj ect. bui | d. fi nal Nane} </ name>
</ configuration>

</ execution>

Example 3-6 shows typical di stri but e- app goal output.

Example 3-6 distribute-app

$ mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: di stri but e- app
-Dadminurl =t 3://1ocal host: 7001 - Dstage=true -Dm ddl ewar eHome=/ maven/w s12210
- Dnane=cl uster-test -Duser=webl ogi c - Dpasswor d=wel comel -Dtargets=clusterl
-Dsource=target/cluster-test-1.0- SNAPSHOT. war

[INFQ Scanning for projects..

[INFO

Y =0 s
[INFQ Building cluster-test 1.0-SNAPSHOT

Y =0 e
[INFO

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0:distribute-app (default-cli) @
cluster-test ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://local host: 7001
-distribute -user weblogic -nane cluster-test -source

[home/ oracl e/ src/tests/uber-test/cluster-test/

target/cluster-test-1.0- SNAPSHOT. war -targets clusterl -stage

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI > <BEA-260121>

<Initiating distribute operation for application, cluster-test [archive

[home/ oracl e/ src/tests/uber-test/cluster-test/

target/cluster-test-1.0-SNAPSHOT. war], to clusterl .>

Task O initiated: [Deployer:149026]distribute application cluster-test on
clusterl

Task 0 conpl eted: [Depl oyer:149026]distribute application cluster-test on
clusterl

Target state: distribute conpleted on Cluster clusterl

[INFQ Total time: 6.953s
[INFO Finished at: Wd Aug 19 14:10:00 EST 2015
[INFQ Final Menory: 15M 429M

3.3.5 install

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: i nst al

ORACLE 3-21

Description

Parameters

Table 3-8 install Parameters

Chapter 3
Maven Plug-In Goals

Installs WebLogic Server from a JAR file.

Name

Type

Required

Description

artifactLocation

java.lang.String

true

Specifies the address of the installation. The address can be

one of the following:

e Acolon (:) separated list of Maven coordinates of the form:
groupld:artifactld:packaging:classifier:version.

» Afile on the local system (/home/myhome/myapps/
wls_generic.jar).

e Aremote HTTP URL (http://myarchive/installers/
wls_generic.jar).

installCommand

java.lang.String

false

Installs the product with a binary or jar installer (including the

quickstart installers.) The following macros are supported:

e @INSTALLER_FILE@ - the path to the installer file.

* @INSTALL_TO_LOCATION@ - the target directory (only
relevant for the quickstart installer).

* @JAVA_HOMEQ@ - path to the Java home.

° @JAVA_TMPDIR@ - path to the Java temporary directory.

* @RESPONSE_FILE@ - path to the OUI silent installer
response file.

* @INV_PTR_LOC_FILE@ - path to the OUI invPtrLoc file.

JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -
Djava.io.tmpdir=@JAVA_TMPDIR@ -jar @INSTALLER_FILE@
-silent -responseFile @RESPONSE_FILE@ -invPtrLoc
@INV_PTR_LOC_FILE@

Quick Start JAR installer example:

@JAVA_HOME@/bin/java -Xms512m -Xmx1024m -
Djava.io.tmpdir=@JAVA_TMPDIR@ -jar @INSTALLER_FILE@
ORACLE_HOME=@INSTALL_TO_LOCATION@

This parameter is optional.

If specified for a quickstart installer when the
supplementalQuickStartLocation parameter is supplied, the
same command is used for the supplemental quickstart
installer by replacing the @INSTALLER_FILE@ macro with the
file location derived from the supplementalQuickStartLocation
parameter.

If the @INSTALLER_FILE@ macro is not being used, the
install goal replaces the argument following the '-jar* argument
in the installCommand string with the supplemental quickstart
installer JAR file name.

installDir

java.lang.String

true

Deprecated. Use the middlewareHome parameter instead.

invPtrLoc

java.lang.String

false

The silent installer inventory location file. This is required on
Unix-based platforms when using the binary or JAR installers.

middlewareHome

java.lang.String

false

The ORACLE_HOME directory to install into when using the
quickstart installer.

ORACLE

3-22

Chapter 3
Maven Plug-In Goals

Table 3-8 (Cont.) install Parameters
]

Name

Type Required Description

quickStartinstaller

boolean false Indicates that this is a quickstart installer. The quickstart
installer requires you to specify the artifactLocation and
installDir parameter. All other parameters are ignored when this
parameter is set to true. The default value is false.

response

java.lang.String | false Deprecated. Use the responseFile parameter instead.

responseFile

java.lang.String | false The silent installer response file. This is required when using
the binary or jar installers.

supplementalQuic | java.lang.String | false The Quick Start supplemental installer.
kStartLocation
Usage Example
Use this goal to install WebLogic Server into a local directory so it can be used to execute
other goals, as well as to create a WebLogic Server domain for deploying and testing the
application represented as the Maven project.
\J
Note:
The install goal creates a single managed server called nyser ver, and does not
create a domain. Most other goals, including create-domain, use a default server
name of Adni nSer ver . You therefore need to override the default Adm nSer ver
server name in your POM.
This goal installs WebLogic Server using a specified installation distribution. You specify the
location of the distribution using the arti f act Locat i on configuration parameter, which can be
the location of the distribution as a file on the file system; an HTTP URL which can be
accessed; or a Maven coordinate of the distribution installed in a Maven repository. Specify
the artifact Locati on configuration element in the webl ogi c- maven- pl ugi n section of the
pom xn file, or by using the —Darti f act Locati on property when invoking Maven.
Example 3-7 shows an example of installing WebLogic Server using a JAR file on a
Windows-based system.
Example 3-7 Install From JAR File
m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: i nstal |
-DartifactLocation=c:\wW s-tenp\w s_jrf_generic.jar
-DinstalIDir=C:\test-maven -DresponseFile=c:\w s-tenp\response. t xt
[INFQ Scanning for projects...
[INFQ
I 0
[INFQ Building Maven Stub Project (No POM 1
I 0
[INFQ
[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0:install (default-cli) @ standal one-p
om---
[INFQ [install]ORACLE_HOVE = C:\test-maven\ O acl e\ M ddl ewar e\ Or acl e_Hone
[INFQ Executing: [cnd:[C\\Wndows\\SystenB2\\cnd. exe, /c, C \weblogic\dev\AUT
O D~1\x86_64\ JDK180~3\ JDK18~1. 0_4\jre\bin\java. exe - Xnms1024m - Xnx1024m -Dj ava.io
ORACLE 3-23

ORACLE

Chapter 3
Maven Plug-In Goals

.tpdi r=C:\ User s\ user\ AppDat a\ Local \ Tenp\ -jar c:\wis-tenp\ws_jrf_g

eneric.jar -silent -responseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Launcher log file is C\Users\user\AppData\Local\ Tenp\ Oral nsta
I'12015- 04- 23_09- 45- 13AM | auncher 2015- 04- 23_09- 45- 13AM | og.

[INFQ [exec] Extracting files. e

[INFQ [exec] Starting Oracle Universal Installer

[INFQ [exec]

[INFQ [exec] Checking if CPU speed is above 300 M. Actual 2491 Passed
[INFQ [exec] Checking swap space: nmust be greater than 512 MB Passed

[INFO [exec] Checking if this platformrequires a 64-bit JWM Actual 64 Pa
ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFO [exec] Preparing to launch the Oracle Universal Installer fromC: \Users\
user\ AppDat a\ Local \ Tenp\ Or al nst al | 2015- 04- 23_09- 45- 13AM

[INFQ [exec] Log: C:\Users\user\AppData\Local\ Tenp\ Oral nstal | 2015- 04- 23_09-
45-13AM i nst al | 2015- 04- 23_09- 45- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. Al rights
reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKIP_SOFTWARE_UPDATES flag is passed and henc
e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

[INFO [exec] Actual Result: 6.1

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CertifiedVersions Check: Success.

[INFQ [exec] Starting check : CheckJDKVersion

[INFO [exec] Expected result: 1.8.0_40

[INFQ [exec] Actual Result: 1.8.0_40-ea

[INFQ [exec] Check conplete. The overall result of this check is: Passed
[INFQ [exec] CheckJDKVersion Check: Success.

[INFQ [exec] Validations are enabled for this session.

[INFQ [exec] Verifying data......

[INFQ [exec] Copying Files...

[INFO [exec] ----------- 20% --------- 40% --------- 60%--------- 80%----Visit ht
tp://www. oracl e. com support/policies.htm for Oracle Technical Support policies.

[INFO [exec] ---100%

[INFQ [exec]

[INFQ [exec] The installation of Oracle Fusion Mddl eware 12c Infrastructure 12
.2.1.0.0 conpl eted successful ly.

[INFQ [exec] Logs successfully copied to C \weblogic\src

\inventory\l ogs.

[INFQ Installer exited with code: 0

1 1o
[INFO BU LD SUCCESS

Example 3-8 shows an example of installing WebLogic Server using a JAR file and the
i nst al | Command parameter on a Windows-based system.

Example 3-8 Install From JAR File With installCommand

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n:instal |

-Dinstal | Cormand="@AVA_HOVE@ bi n/ j ava - Xnms512m - Xmx1024m

-jar @NSTALLER FILE@-silent -responseFile c:\w s-tenp\response.txt"
-DartifactLocation=c:\w s-tenp\w s_jrf_generic.jar

3-24

ORACLE

Chapter 3
Maven Plug-In Goals

- DresponseFil e=c:\w s-tenp\response. t xt

INFQ Scanning for projects...

[INFQ

Y 0
[INFQ Building Maven Stub Project (No POM 1

Y 20
[INFQ

[INFQ --- weblogic-maven-plugin:12.2.1-0-0:install (default-cli) @standal one-p
om---

[INFQ [install]ORACLE_HOME = C:\test-maven\ O acl e\ M ddl ewar e\ Or acl e_Hone

[INFQ Executing: [cnd:[C\\Wndows\\SystenB2\\cnd. exe, /¢, C\webl ogic\dev\AUT
O _D~1\ x86_64\ JDK180~3\ JDK18~1. 0_4\jre/ bin/java - Xms512m - Xmx1024m -jar c:\w s-t
enp\wW s_jrf_generic.jar -silent -responseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Launcher log file is C\Users\user\AppData\Local\ Tenp\ Oral nsta
I'12015- 04-23_10- 58- 13AM | auncher 2015- 04- 23_10- 58- 13AM | og.

[INFQ [exec] Extracting files...... ... e

[INFQ [exec] Starting Oracle Universal Installer

[INFQ [exec]

[INFQ [exec] Checking if CPU speed is above 300 M. Actual 2491 Passed
[INFQ [exec] Checking swap space: must be greater than 512 MB Passed

[INFO [exec] Checking if this platformrequires a 64-bit JWM Actual 64 Pa
ssed (64-bit not required)

[INFQ [exec]

[INFQ [exec]

[INFO [exec] Preparing to launch the Oracle Universal Installer from C \Users\
user\ AppDat a\ Local \ Tenp\ Or al nst al | 2015- 04- 23_10- 58- 13AM

[INFQ [exec] Log: C:\Users\user\AppData\Local\Tenp\ Oral nstal | 2015- 04- 23_10-

58- 13AM i nst al 1 2015- 04-23_10-58- 13AM | og

[INFQ [exec] Copyright (c) 1996, 2015, Oracle and/or its affiliates. Al rights
reserved.

[INFQ [exec] Reading response file..

[INFQ [exec] -nocheckForUpdates / SKIP_SOFTWARE_UPDATES flag is passed and henc
e skipping software update

[INFQ [exec] Skipping Software Updates...

[INFQ [exec] Starting check : CertifiedVersions

[INFQ [exec] Expected result: One of 6.1,6.2,6.3

[INFQ [exec] Actual Result: 6.1

[INFQ [exec] Check conplete. The overall result of this check is: Passed

[INFQ [exec] CertifiedVersions Check: Success.

[INFQ [exec] Starting check : CheckJDKVersion

[INFQ [exec] Expected result: 1.8.0_40

[INFQ [exec] Actual Result: 1.8.0_40-ea

[INFQ [exec] Check conplete. The overall result of this check is: Passed

[INFQ [exec] CheckJDKVersion Check: Success.

[INFQ [exec] Validations are enabled for this session.

[INFQ [exec] Verifying data......

[INFQ [exec] Copying Files...

[INFO [exec] ----------- 20% --------- 40% - -------- 60%--------- 80%----Visit ht
tp://www. oracl e. com support/policies.htm for Oracle Technical Support policies.

[INFO [exec] ---100%

[INFQ [exec]

[INFQ [exec] The installation of Oracle Fusion Mddl eware 12c Infrastructure 12
.2.1.0.0 conpl eted successful ly.

[INFQ [exec] Logs are located here: C: \Users\user\AppData\Local\Tenp\ O al ns

tal 1 2015- 04- 23_10- 58- 13AM

[INFQ Installer exited with code: 0

o e

3-25

[INFO BU LD SUCCESS
0 1o

3.3.6 list-apps

Full Name

Chapter 3
Maven Plug-In Goals

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: I i st - apps

Description

Lists the deployment names for applications and standalone modules deployed,
distributed, or installed in the domain. Does not require a local server installation.

Parameters

Table 3-9 list-apps Parameters

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the
g Administration Server. Default value is: t 3: / /
| ocal host: 7001
advanced bool ean false When true, prints advanced usage options.
debug bool ean false When true, displays debug-level messages to the
standard output. Default value is: f al se
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue
m ddl ewar eHore java.lang. Strin false This parameter is deprecated in this release and ignored.
g
nover si on bool ean false When true, ignore all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.
password java.lang. Strin false Specifies the administrative password.
g
renot e bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the sour ce parameter specifies a path on the server,
unless the upl oad parameter is also used.
serverC asspat java.lang.Strin false This parameter is deprecated in this release and ignored.
h 9
ti nmeout java.lang.Integ false Specifies the maximum number of seconds WebLogic
er Server will wait for the deployment task to complete. The
default value of -1 means wait forever. Default value is: - 1
user java.lang. Strin false Specifies the administrative user name.
g
ORACLE 3-26

Table 3-9 (Cont.) list-apps Parameters
]

Name

Type Required

Chapter 3
Maven Plug-In Goals

Description

userConfigFile java.lang. Strin false

g

Specifies the location of a user configuration file to use for
the administrative user name and password instead of
specifying the user name and password directly in plain
text.

userKeyFil e java.lang. Strin false Specifies the location of a user key file to use for
g encrypting and decrypting the user name and password
stored in the user configuration file.
ver bose bool ean false When true, displays additional status information. Default
value is: f al se
ver si on bool ean false When true, prints the version information. Default value is:

fal se

webl ogi cHone

java.lang. Strin false
g

This parameter is deprecated in this release and ignored.

ORACLE

Use the list-apps goal to list the deployment names.

<execution>
<id>W s-1ist-apps</id>

<phase>pre-integration-test</phase>

<goal s>

<goal >l i st - apps</ goal >
</ goal s>
<configuration>

<admi nurl >t 3://127.0.0. 1: 7001</ adm nur | >

<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>
</ configuration>

</ execution>

Example 3-9 shows typical | i st - apps goal output.

Example 3-9 list-apps

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: i st - apps
- Duser =webl ogi ¢ - Dpasswor d=passwor d

[INFQ Scanning for projects...
[INFQ

[ENFQ] == oo e e e e o e e e e e o e o e o e e e
[INFQ Building WblLogi c Server Maven Plugin 12.2.1.0

[ENFQ] - - m o e e e o e o e e e e e o e o e e e e e
[INFQ

[INFQ --- weblogic-nmaven-plugin:12.2.1-0-0:1ist-apps (default-cli) @webl ogic-m

aven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -admnurl t3://1ocal host:7001 -

|'i stapps -user webl ogic
Sanpl esSear chWebApp
st ockBackEnd
aj axJSF
asyncServl et 30
si ngl et onBean
webFr agment
exanpl esVebApp
mai NVeebApp

3-27

Chapter 3
Maven Plug-In Goals

annot ation
M/Si mpl eEj b
st ockFront End
j sf BeanVal i dati on
progranmmaticSecurity
entityBeanValidation
facel et sSJSF
bookmar ki ngJSF
st ockAdapt er
nol nter f aceVi ewl nWAR
j dbcDat aSour ce. war
asyncMet hodOr EJB
cal endar Styl edTi mer
cdi
jaxrs
criteriaQuery
portabl ed obal JNDI Nane
mul tipartFileHandling
el enent Col | ection
Nurmber of Applications Found : 27
1=
[INFO BU LD SUCCESS
=
[INFQ Total tine: 8.656s
[INFO Finished at: Wd Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 11M 28M
1=

C:\Oracl e\ M ddl ewar e\ Oracl e_Home\ wl server\server\lib>

3.3.7 purge-tasks
Full Name
com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: pur ge- t asks

Description

Flushes out retired deployment tasks.

Parameters

Table 3-10 purge-tasks Parameters

__|]
Name Type Required Description

adni nur| java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3./ /
| ocal host: 7001

debug bool ean false When true, compiles debugging information into class
files. Default value is: f al se

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue

password java.lang. String false Specifies the administrative password.

user java.lang. String false Specifies the administrative user name.

ORACLE 3-28

Chapter 3
Maven Plug-In Goals

Table 3-10 (Cont.) purge-tasks Parameters

Name

Type Required Description

user ConfigFile

java.lang. String false Specifies the location of a user configuration file to use
for the administrative user name and password instead
of specifying the user name and password directly in
plain text.

userKeyFil e

java.lang. String false Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

ver bose bool ean false When true, displays additional status information during
the deployment process. Default value is: f al se
Use the purge-tasks goal to flush out retired deployment tasks.
<execution>
<i d>W s-purge</id>
<phase>pre-integration-test</phase>
<goal s>
<goal >pur ge-t asks</ goal >
</ goal s>
<configuration>
<adm nurl >t3://127.0.0. 1: 7001</ admi nur| >
<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>
</ configuration>
</ executi on>
Example 3-11 shows typical pur ge-t asks goal output.
Example 3-10 purge-tasks
m/n com or acl e. webl ogi ¢: webl ogi c- maven- pl ugi n: pur ge-t ask
s - Duser=webl ogi ¢ - Dpasswor d=password
[INFQ Scanning for projects...
[INFQ
[INFQ] - mm o m e m e e e e e e i
[INFQ Building Maven Stub Project (No POV 1
[INFQ] s mm o m e m e e e e e e e e
[INFQ
[INFQ --- webl ogi c- maven-plugin: 12. 2. 1-0- 0: purge-tasks (default-cli) @standal o
ne- pom - - -
webl ogi c. Depl oyer invoked with options: -noexit -purgetasks -user webl ogic -adm
inurl t3://1ocal host: 7001
Currently there are no retired tasks.
[INFQ] s mm o m e m e e e e e e e e e e
[INFQ BU LD SUCCESS
[INFQ] s mm i m e m e e e e e e e e e
[INFQ Total tinme: 13.139s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 8M 24M
[INFQ] - mmmm o m e m e e e e e e e e e
ORACLE 3-29

3.3.8 redeploy

Full Name

Chapter 3
Maven Plug-In Goals

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r edepl oy

Description

Redeploys a running application or part of a running application. Does not require a
local server installation.

Parameters

Table 3-11 redeploy Parameters

Name Type Required Description
admi nur | java.lang. Stri false Specifies the listen address and listen port of the Administration
ng Server. Default value is: t 3: / /| ocal host : 7001
appversion java.lang.Stri false Version of the application to start.
ng
deleteFiles java.lang.Stri false Removes the files specified in this parameter while leaving the
ng application activated. This parameter is valid only for unarchived
deployments.
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering an
error if it would otherwise just log the error. Default value is: t r ue
id java.lang. Stri false Specifies an optional, user-supplied, unique deployment task
ng identifier.
[ibinmplver java.lang.Stri false Implementation version of a Java EE library or optional package.
ng This option can be used only if the library or package does not
include an implementation version in its manifest file.
library boolean false Deploy as a shared Java EE library or optional package.
libspecver java.lang.Stri false Specification version of a Java EE library or optional package.
ng This option can be used only if the library or package does not
include a specification version in its manifest file.
m ddl ewareH java.lang.Stri false This parameter is deprecated in this release and ignored.
onme ng
nane java.lang. Stri false Specifies the deployment name to assign to a newly-deployed
ng application or standalone module.
partition java.lang.String false Specifies the name of the partition associated with the resource
group on which you want to redeploy an application or library.
The partition parameter is optional for partition
administrators.
password java.lang. Stri false Specifies the administrative password.
ng
pl an java.lang. Stri false Specifies the path to the deployment plan.
ng
ORACLE 3-30

Table 3-11 (Cont.) redeploy Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

renot e bool ean false When true, specifies that the plug-in is not running on the same
machine as the Administration Server. In this case, the sour ce
parameter specifies a path on the server, unless the upl oad
parameter is also used.

removePlanOv | boolean false Removes an overridden deployment plan during a r edepl oy or

erride updat e deployment action.

For applications or libraries deployed to a resource group, you

can override the application configuration defined in a resource

group template that a resource group references. To remove an
application override, specify the r enovePl anOver ri de attribute.

resourceGroup | java.lang.String false Specifies the name of the resource group template on which you

Template want to redeploy an application or library.

retiretimeo java.lang.Inte false Specifies the number of seconds before WebLogic Server

ut ger undeploys the currently running version of this application or
module so that clients can start using a new version. When not
specified, a graceful retirement policy is assumed. Default value
is:-1

rm GacePer java.lang.Inte false Specifies the number of seconds in the grace period for RMI

i od ger requests during graceful shutdown. Can be used only when the
gracef ul parameter istrue. The default value of - 1 means no

grace period. Default value is: - 1

serverCass java.lang. Stri false This parameter is deprecated in this release and ignored.

path ng

source java.lang. Stri false Specifies the address of the artifact to redeploy. The address can
ng be one of the following:

e Acolon (:) separated list of Maven coordinates of the form:
groupld:artifactld:packaging:classifier:version.

e An archive file or exploded archive directory on the local
system. For example, /home/myhome/myapps/
helloworld.war.

e Aremote HTTP URL (http://foo/a/b.ear).

subnmodul eta java.lang. Stri false Specifies JMS Server targets for resources defined within a JIMS
rgets ng application module. Possible values have the form:

submod@mod-j ms. xm @ ar get or subnmodul eName@ ar get .

targets java.lang. Stri false Specifies a comma-separated list of targets for the current
ng operation. The default target is AdminServer.
ti nmeout java.lang.Inte false Specifies the maximum number of seconds WebLogic Server will
ger wait for the deployment task to complete. The default value of -1
means wait forever. Default value is: - 1
upl oad bool ean false When true, copies the specified source files to the Administration

Server's upl oad directory prior to redeployment. Use this setting

when running the plug-in remotely (using the r enpbt e parameter)

and when the user lacks normal access to the Administration

Server's file system. Default value is: f al se

user java.lang. Stri false Specifies the administrative user name.
ng
ORACLE

3-31

Chapter 3
Maven Plug-In Goals

Table 3-11 (Cont.) redeploy Parameters

Name Type Required Description

user ConfigF java.lang.Stri false Specifies the location of a user configuration file to use for the

ile ng administrative user name and password instead of specifying the
user name and password directly in plain text.

userKeyFile java.lang.Stri false Specifies the location of a user key file to use for encrypting and

ng decrypting the user name and password stored in the user

configuration file.

ver bose bool ean false When true, displays additional status information during the
deployment process. Default value is: f al se

Version bool ean false When true, prints the version information. Default value is: f al se

webl ogi cHom java.lang. Stri false This parameter is deprecated in this release and ignored.

e ng

ORACLE

Use the redeploy goal to redeploy an application or part of that application.

<execution>

<i d>W s-redepl oy</i d>
<phase>pre-integration-test</phase>
<goal s>

<goal >r edepl oy</ goal >

</ goal s>

<configuration>

<admi nurl >t 3://127.0.0. 1: 7001</ adni nurl >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>
<source>${proj ect. bui |l d. di rectory}/${project. build.final Nane}.$
{project. packagi ng} </ sour

ce>

<name>${ proj ect . bui | d. fi nal Name} </ nane>
</ configuration>

</ executi on>

Example 3-11 shows typical r edepl oy goal output.

Example 3-11 redeploy

m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: redepl oy -Dsou

rce=C:\ Oracl e\ M ddl ewar e\ Oracl e_Horme\ wl server\server\lib\MSinpl eg b.jar -Duser
=webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFO

[NFQ - - - s s mm e e e e
[INFQ Building WebLogic Server Maven Plugin 12.2.1.0

[ENFQ - - - m s mm e e e e e
[INFO

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0:redeploy (default-cli) @webl ogic-m
ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -adminurl t3://1ocal host: 7001 -
redepl oy -user webl ogi c -nanme Exanpl eEJB -source C\Oacle\M ddl eware\ Oracl e_Hom
e\w server\server\lib\MSinpleg b.jar -targets Adm nServer

<Aug 19, 2015> <Info> <J2EE Depl oyment SPI> <BEA-260121> <Initi at

ing redepl oy operation for application, ExanpleEJB [archive: C\Oracle\M ddl ewar
e\ Oracl e_Horme\wl server\server\lib\MSinpleE b.jar], to Adm nServer .>

Task 3 initiated: [Deployer:149026] depl oy application Exanpl eEJB on Admi nServer.

3-32

Chapter 3
Maven Plug-In Goals

Task 3 conpl eted: [Depl oyer: 149026] depl oy application Exanpl eEJB on Admi nServer.

Target state: redeploy conpleted on Server Adm nServer

1Y o
[INFO BU LD SUCCESS

o e
[INFQ Total tine: 6.322s
[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

3.3.9 remove-domain

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r enove- domai n

Description

Removes a domain directory. The domain must not be running for this goal to succeed. This
is a convenience goal for the simple use case. If the domain is already removed, stdout prints
a status message but the goal does not fail.

Parameters

Table 3-12 remove-domain Parameters

Name

Type Required Description

domai nHone

java.lang. String true The path to the domain directory.

wor ki ngDi r

java.lang. String false Specifies the current working directory.

Default value is: ${ proj ect . bui | d. directory}/
webl ogi c- maven- pl ugi n)

ORACLE

Use the remove-domain goal to remove a domain directory.

<execution>

<i d>w s-r emove- domai n</i d>

<phase>pre-integration-test</phase>

<goal s>

<goal >r emove- donai n</ goal >

</ goal s>

<configuration>

<domai nHome>${ pr oj ect . bui | d. di rect ory}/ base_donai n</ donai nHorre>
</ configuration>

</ executi on>

Example 3-13 shows typical r emove- domai n goal output.

Example 3-12 remove-domain

m/n com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: r enove- domai n
- Ddonai nHone=C: \ Or acl e\ M ddl ewar e\ Or acl e_Home\ user _pr oj ect s\ domai ns\ base_donai n

[INFQ [renove-donain] Executing: [cnd: [C\\Wndows\\Systen82\\cnd. exe, /c, rndir
/Q/S C\Oacl e\ M ddl ewar e\ Or acl e_Hone\ user _pr oj ect s\ dormai ns\ base_donai n] |
[INFQ Process being executed, waiting for conpletion.

[INFQ [renove-donain][cmd: [C\\ W ndows\\ SystenB82\\cnd. exe, /c, rndir /Q/S C\O

3-33

3.3.10 start-

Chapter 3
Maven Plug-In Goals

racl e\ M ddl ewar e\ Or acl e_Horre\ user _pr oj ect s\ donai ns\ base_dorai n]] exit code=0

1Y o
[INFO BU LD SUCCESS

I 0 e
[INFQ Total tine: 4:01.074s

[INFQ Finished at: Wd Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 8M 20M

o e

app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - app

Description

Starts an application deployed on WebLogic Server. Does not require a local server
installation.

Parameters

Table 3-13 start-app Parameters

Name Type Required Description

adni nmode bool ean false When true, switches the application to administration
mode so that it accepts only administration requests
via a configured administration channel. When false,
production mode is assumed. Default value is: f al se

adni nur| java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: / /
| ocal host: 7001

advanced bool ean false When true, prints advanced usage options.

appversion java.lang. String false Specifies the version identifier of the application. When
not specified, the currently active version of the
application is assumed.

debug bool ean false When true, displays debug-level messages to the
standard output. Default value is: f al se

domai nHone java.lang. String false This parameter is deprecated in this release and
ignored.

exanpl es bool ean false When true, displays examples of how to use this plug-
in.

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: t r ue

id java.lang. String false Specifies an optional, user-supplied, unique
deployment task identifier.

m ddl ewar eHome java.lang. String false This parameter is deprecated in this release and
ignored.

nane java.lang. String false Specifies the deployment name to assign to a newly-
deployed application or standalone module.

ORACLE 3-34

Table 3-13 (Cont.) start-app Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

nover si on

bool ean

false

When true, ignores all version-related code paths on
the Administration Server. Default value is: f al se

nowai t

bool ean

false

When true, initiates multiple tasks and then monitors
them later with the - | i st action.

partition

java.lang.String

false

Specifies the name of the partition associated with the
resource group on which you want to start an
application or library.

The partition parameter is optional for partition
administrators.

password

java.lang. String

false

Specifies the administrative password.

pl anver si on

java.lang. String

false

Specifies the version of the deployment plan. When
not specified, the currently active version of the
application's deployment plan is assumed.

renote

bool ean

false

When true, specifies that the plug-in is not running on
the same machine as the Administration Server. In this
case, the sour ce parameter specifies a path on the
server, unless the upl oad parameter is also used.
Default value is: f al se

retiretinmeout

java

| ang.

I nt ege

false

Specifies the number of seconds before WebLogic
Server undeploys the currently running version of this
application or module so that clients can start using a
new version. When not specified, a graceful retirement
policy is assumed. Default value is: - 1

server O asspat
h

java

| ang.

String

false

This parameter is deprecated in this release and
ignored.

subnodul et ar ge
ts

java

| ang.

String

false

Specifies JMS Server targets for resources defined
within a JMS application module. Possible values have
the form: subnod@rod- j ns. xm @ ar get or
subrmodul eName@ ar get .

targets

java

| ang.

String

false

Specifies a comma-separated list of targets for the
current operation. When not specified, all configured
targets are used. For a new application, the default
target is all targets to which the application is
deployed.

ti meout

java

| ang.

I ntege

false

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete.
The default value of - 1 means wait forever. Default
value is: - 1

user

java

| ang.

String

false

Specifies the administrative user name.

user ConfigFile

java

| ang.

String

false

Specifies the location of a user configuration file to use
for the administrative user name and password instead
of specifying the user name and password directly in
plain text.

user KeyFil e

java

| ang.

String

false

Specifies the location of a user key file to use for
encrypting and decrypting the user name and
password stored in the user configuration file.

ORACLE

3-35

Chapter 3
Maven Plug-In Goals

Table 3-13 (Cont.) start-app Parameters
]

Name Type Required Description

ver bose bool ean false When true, displays additional status information
during the deployment process. Default value is:
fal se

ver si on bool ean false When true, prints the version information. Default
value is: f al se

webl ogi cHone java.lang. String false This parameter is deprecated in this release and
ignored.

ORACLE

Use the start-app goal to start an application.

<execution>

<i d>w s-start-app</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >st art - app</ goal >

</ goal s>

<configuration>

<admi nurl >t 3://1 ocal host: 7001</ adni nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect . bui | d. fi nal Name} </ nane>
</ configuration>

</ execution>

Example 3-13 shows typical st art - app goal output.

Example 3-13 start-app

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - app

- Duser =webl ogi ¢ - Dpasswor d=password - Dnane=Exanpl eEJB

[INFQ Scanning for projects...

[INFQ

1=
[INFQ Building WbLogi ¢ Server Maven Plugin 12.2.1.0
1=
[INFQ

[INFQ --- weblogic-maven-plugin:12.2.1-0-0:start-app (default-cli) @webl ogic-m
aven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit -admnurl t3://1ocal host: 7001 -
start -user weblogic -nane Exanpl eEJB -retiretimout -1

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121> <l niti at

ing start operation for application, ExanpleEJB [archive: null], to configured t
argets. >

Task 5 initiated: [Deployer:149026]start application Exanpl eEJB on Adm nServer.
Task 5 conpl eted: [Depl oyer:149026]start application Exanpl eEJB on Adm nServer.
Target state: start conpleted on Server AdninServer

1Y o
[INFO BU LD SUCCESS

I 0 e
[INFQ Total tinme: 6.053s

[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 10M 26M

o e

3-36

Chapter 3
Maven Plug-In Goals

3.3.11 start-server

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start - server

Description

Starts WebLogic Server from a script in the current working directory. This is a convenience
goal for the simple use case. If the server is already started, stdout prints a status message
but the goal does not fail.

Parameters

Table 3-14 start-server Parameters
]

Name Type Required Description
command java.lang. Strin false Specifies the script to start WebLogic Server. If this
gl] parameter is not specified, it will default to either
start\WebLogi c. sh or start WebLogi ¢. cnd, based
on the platform.
domai nHone java.lang. String false Specifies the path to the WebLogic Server domain.
Default value is: ${ basedi r }/ Or acl e/ Donai ns/
mydomai n
ht t pPi ngUr | java.lang. String false Specifies the URL that, when pinged, will verify that the
server is running.
m ddl ewareHone java.lang. String false This parameter is deprecated in this release and
ignored.
serverC asspath java.lang.String false This parameter is deprecated in this release and
ignored.
ti meout Secs java.lang.Intege false Specifies in seconds, the timeout for the script. Valid
r when the wai t For Exi t parameteris t rue. A zero (0)

or negative value indicates that the script will not
timeout. Default value is: - 1

webl ogi cHone

java.lang. String false This parameter is deprecated in this release and
ignored.

ORACLE

Usage Example

The start-server goal executes a st art WebLogi ¢ command on a given domain, starting the
WebLogic Server instance.

<execution>

<id>wW s-w st-start-server</id>
<phase>pre-integration-test</phase>

<goal s>

<goal >start - server </ goal >

</ goal s>

<configuration>

<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
</ configuration>

</ execution>

3-37

Chapter 3
Maven Plug-In Goals

Example 3-14 shows typical st art - server goal output.

Example 3-14 start-server

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: start-server

- Ddonai nHone=c: \ or acl e\ m ddl ewar e\ or acl e_hone\ user _proj ect s\ donai ns\w _server
[INFQ Scanning for projects...

[I NFO

Y =0 e
[INFQ Building WbLogic Server Maven Plugin 12.2.1-0-0

Y =0
[INFO

[INFQ --- webl ogi c-maven-plugin;12.2.1-0-0:start-server (default-cli)

@ webl ogi c- maven-plugin ---

JINFQ Starting server in domain:

c:\oracl e\ m ddl ewar e\ oracl e_hone\ user _proj ect s\ domai ns\w _server

[INFQ Check stdout file for details:

c:\oracl e\ m ddl ewar e\ oracl e_hone\ user _proj ect s\ domai ns\w _server\server-218311410
6972126386. out

[INFQ Process being executed, waiting for conpletion.

[INFQ Total tine: 37.725s
[INFO Finished at: Wd Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 8M 23M

3.3.12 stop-app

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- app

Description

Stops an application. Does not require a local server installation.

Parameters

Table 3-15 stop-app Parameters

Name

Type Required Description

adm nnode

bool ean false When true, switches the application to administration mode
so that it accepts only administration requests via a
configured administration channel. When false, production
mode is assumed. Default value is: f al se

admi nur |

java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: //
| ocal host: 7001

advanced

bool ean false When true, prints advanced usage options.

appversi on

java.lang. String false Specifies the version identifier of the application. When not
specified, the currently active version of the application is
assumed.

ORACLE

3-38

Table 3-15 (Cont.) stop-app Parameters

Chapter 3
Maven Plug-In Goals

Name

Type

Required

Description

debug

bool ean

false

When true, displays debug-level messages to the standard
output. Default value is: f al se

domai nHone

java.lang. String

false

This parameter is deprecated in this release and ignored.

exanpl es

bool ean

false

When true, displays examples of how to use this plug-in.

fail OnError

bool ean

false

When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the
error. Default value is: true

gracef ul

bool ean

false

When true, stops the application after existing HTTP clients
have completed their work. When not specified, force
shutdown is assumed.

id

java.lang. String

false

Specifies an optional, user-supplied, unique deployment
task identifier.

i gnor esessi ons

bool ean

false

When true, ignores pending HT TP sessions during graceful
shutdown. Can be used only when the gr acef ul
parameter is t r ue. Default value is: f al se

m ddl ewar eHonre

java.lang. String

false

This parameter is deprecated in this release and ignored.

name

java.lang. String

false

Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nover si on

bool ean

false

When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se

nowai t

bool ean

false

When true, initiates multiple tasks and then monitors them
later with the - | i st action.

partition

java.lang.String

false

Specifies the name of the partition associated with the
resource group on which you want to stop an application or
library.

The partition parameter is optional for partition
administrators.

passwor d

java.lang. String

false

Specifies the administrative password.

pl anver si on

java.lang. String

false

Specifies the version of the deployment plan. When not
specified, the currently active version of the application's
deployment plan is assumed.

renot e

bool ean

false

When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case,
the sour ce parameter specifies a path on the server,
unless the upl oad parameter is also used. Default value is:
fal se

rm G acePeriod

java.lang. | ntege
r

false

Specifies the number of seconds in the grace period for
RMI requests during graceful shutdown. Can be used only
when the gr acef ul parameter istrue. The default value
of - 1 means no grace period. Default value is: - 1

server d asspat
h

java.lang. String

false

This parameter is deprecated in this release and ignored.

ORACLE

3-39

Table 3-15 (Cont.) stop-app Parameters
]

Name

Type Required Description

Chapter 3
Maven Plug-In Goals

subnodul et ar ge
ts

java.lang. String false Specifies JMS Server targets for resources defined within a
JMS application module. Possible values have the form:
subnod@rod-j ms. xm @ ar get or

subrmodul eName@ ar get .

targets java.lang. String false Specifies a comma-separated list of targets for the current
operation. When not specified, all configured targets are
used.

ti nmeout java.lang.Intege false Specifies the maximum number of seconds WebLogic

r Server will wait for the deployment task to complete. The

default value of - 1 means wait forever. Default value is: - 1

user java.lang. String false Specifies the administrative user name.

userConfigFile java.lang. String false Specifies the location of a user configuration file to use for

the administrative user name and password instead of
specifying the user name and password directly in plain

text.

user KeyFil e java.lang. String false Specifies the location of a user key file to use for
encrypting and decrypting the user name and password
stored in the user configuration file.

ver bose bool ean false When true, displays additional status information. Default
value is: f al se

version bool ean false When true, prints the version information. Default value is:
fal se

webl ogi cHome java.lang. String false This parameter is deprecated in this release and ignored.

ORACLE

Use the stop-app goal to stop an application.

<execution>

<id>w s-start-app</id>
<phase>pre-integration-test</phase>
<goal s>

<goal >start - app</ goal >

</ goal s>

<configuration>

<admi nurl >t 3://1 ocal host: 7001</ adni nur| >
<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>

<name>${ proj ect. bui | d. fi nal Nane} </ name>
</ configuration>

</ execution>

Example 3-15 shows typical st op- app goal output.

Example 3-15 stop-app

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- app
er =webl ogi ¢ - Dpasswor d=password - Dnane=Exanpl eEJB
[INFQ Scanning for projects...

[INFQ

1

[INFQ Building WbLogic Server Maven Plugin 12.2.1.0

1 o

- Dus

3-40

3.3.13 stop-

Chapter 3
Maven Plug-In Goals

[INFQ

[INFQ --- weblogi c-maven-plugin:12.2.1-0-0: stop-app (default-cli)
@ webl ogi c- na

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-adminurl t3://1ocal host: 7001 -

stop -user webl ogi c -name Exanpl eEJB

<Aug 19, 2015> <|nfo>

<J2EE Depl oynent SPI > <BEA-260121> <l niti at

ing stop operation for application, ExanpleEJB [archive: null],
to configured ta

rgets.>

Task 6 initiated: [Deployer:149026]stop application Exanpl eEJB on
Admi nSer ver.

Task 6 conpl eted: [Depl oyer:149026] stop application Exanpl eEJB on
Admi nServer.

Target state: stop conpleted on Server Adm nServer

[INFQ Total tine: 6.028s
[INFQ Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 10M 29M

C:\Oracl e\ M ddl ewar e\ Oracl e_Home\ wl server\server\lib>

server

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- server

Description

Stops WebLogic Server from a script in the current working directory. This is a convenience
goal for the simple use case. If the server is already stopped, stdout prints a status message
but the goal does not fail.

Parameters

Table 3-16 stop-server Parameters

Name Type Required Description
admi nur | java.lang. Strin false Specifies the listen address and listen port of the
g Administration Server. Default value is: t 3: / /
| ocal host: 7001
comand java.lang. Strin false Specifies the script to stop WebLogic Server. This will
al] default to st op\WebLogi c. sh or st op\WebLogi c. cnd,
based on the platform.
domai nHone java.lang. Strin false Specifies the path to the WebLogic Server domain. Default
g value is: ${ basedi r}/ Or acl e/ Domai ns/ nydonai n
m ddl ewar eHome java.lang. Strin false This parameter is deprecated in this release and ignored.
g

ORACLE

3-41

Chapter 3
Maven Plug-In Goals

Table 3-16 (Cont.) stop-server Parameters

Name Type Required Description
out put Log java.lang. Strin false Specifies the log file to which the script output will be
g redirected. When not specified, it defaults to st dout .
passwor d java.lang. Strin true Specifies the administrative password.
g
ti nmeout Secs java.lang.Integ false Specifies, in seconds, the timeout for the script. This is valid
er when the wai t For Exi t parameter ist rue. A zero (0) or
negative value indicates that the script will not timeout.
Default value is: - 1
user java.lang. Strin true Specifies the administrative user name.
g
wai t For Exi t bool ean false When true, the plug-in should wait for the script to complete.
Default value is: t rue
webl ogi cHone java.lang. Strin false This parameter is deprecated in this release and ignored.
g
wor ki ngDi r java.lang. Strin false Specifies the working directory for the script. If you do not
g specify this attribute, it defaults to the current working
directory. Default value is: ${ pr oj ect . base. di rect or y}
Usage Example
The st op- server goal stops a server instance using the st opWebLogi ¢ script in the
specified domain.
<execution>
<i d>W s-w st -stop-server</id>
<phase>post -i nt egrati on-test </ phase>
<goal s>
<goal >st op-server </ goal >
</ goal s>
<configuration>
<domai nHone>${ pr oj ect . bui | d. di rect ory}/ base_domai n</ domai nHone>
<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>
<adm nurl >t 3://1 ocal host: 7001</ admi nur| >
</configuration>
</ executi on>
Example 3-16 shows typical st op- server goal output.
Example 3-16 stop-server
mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: st op- server
- Ddomai nHome=c: \ or acl e\ m ddl ewar e\ or acl e_hone\ user pr oj ect s\ domai ns\ w _server
- Dwor ki ngDi r=c:\ oracl e\ m ddl ewar e\ or acl e_home\ user _proj ect s\ domai ns\w _server
- Duser =webl ogi ¢ - Dpasswor d=passwor d
[INFQ Scanning for projects...
[INFO
[INFQ - m-mmmmmm s o e e e e e e e
[INFQ Building WebLogic Server Maven Plugin 12.2.1-0-0
[INFQ mm-mmmmmm s oo e e e e e e
[INFO
[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0: stop-server (default-cli)
ORACLE 3-42

Chapter 3
Maven Plug-In Goals

@ webl ogi ¢

-maven-plugin ---

[INFQ Stop server in domain:

c:\oracl e\ nm ddl ewar e\ oracl e_hone\ user _proj ect s\ dom

ains\w _server

[INFQ Process being executed, waiting for conpletion.

[INFQ [exec] Stopping Wbl ogic Server...

[INFQ [exec]

[INFQ [exec] Initializing WbLogic Scripting Tool (WST) ...

[INFQ [exec]

[INFQ [exec] Weélcome to WebLogic Server Administration Scripting Shell

[INFQ [exec]

[INFQ [exec] Type help() for help on availabl e commands

[INFQ [exec]

[INFQ [exec] Connecting to t3://local host: 7001 with userid weblogic ...
[INFQ [exec] Successfully connected to Admin Server "Adm nServer" that bel ongs
to domain "w _server".

[INFQ [exec]

[INFQ [exec] Warning: An insecure protocol was used to connect to the

[INFQ [exec] server. To ensure on-the-wire security, the SSL port or

[INFO [exec] Admin port should be used instead.

[INFQ [exec]

[INFQ [exec] Shutting down the server AdminServer with force=fal se while connec
ted to AdminServer ...

[INFO [exec] WST lost connection to the WebLogic Server that you were
[INFQ [exec] connected to, this may happen if the server was shutdown or
[INFQ [exec] partitioned. You will have to re-connect to the server once the
[INFQ [exec] server is available.

[INFQ [exec] Disconnected fromwebl ogi ¢ server: Admi nServer

[INFQ [exec] Disconnected from webl ogi ¢ server:

[INFQ [exec]

[INFQ [exec]

[INFQ [exec] Exiting WebLogic Scripting Tool.

[INFQ [exec]

[INFQ [exec] Done

[INFQ [exec] Stopping Derby Server...

[INFQ [exec] Derby server stopped.

Y 0
[INFO BU LD SUCCESS

Y 0
[INFQ Total time: 23.270s

[INFO Finished at: Wd Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 9M 23M

o e

3.3.14 undeploy

ORACLE

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: undepl oy

Description

Undeploys the application from WebLogic Server. Stops the deployment unit and removes
staged files from target servers. Does not require a local server installation.

3-43

Parameters

Table 3-17 undeploy Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
adni nur| java.lang. Stri false Specifies the listen address and listen port of the
ng Administration Server. Default value is: t 3: / /
[ocal host: 7001
advanced bool ean false When true, prints advanced usage options.
appversion java.lang. Stri false Specifies the version identifier of the application. When not
ng specified, the currently active version of the application is
assumed.
debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se
exanpl es bool ean false When true, displays examples of how to use this plug-in.
fail OnError bool ean false When true, forces the Mojo to fail the build upon encountering
an error if it would otherwise just log the error. Default value is:
true
gracef ul bool ean false When true, stops the application after existing HT TP clients
have completed their work. When not specified, forced
shutdown is assumed.
id java.lang. Stri false Specifies an optional, user-supplied, unique deployment task
ng identifier.
i gnor esessi on bool ean false When true, ignores pending HTTP sessions during graceful
S shutdown. Can be used only when the gr acef ul parameter is
true. Default value is: f al se
m ddl ewar eHom java.lang. Stri false This parameter is deprecated in this release and ignored.
e ng
name java.lang. Stri false Specifies the deployment name to assign to a newly-deployed
ng application or standalone module.
nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se
nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.
partition java.lang.String false Specifies the name of the partition associated with the
resource group on which you want to update an application or
library.
The partition parameter is optional for partition
administrators.
password java.lang. Stri false Specifies the administrative password.
ng
pl anver si on java.lang. Stri false Specifies the version of the deployment plan. When not
ng specified, the currently active version of the application's
deployment plan is assumed.
renot e bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case, the
sour ce parameter specifies a path on the server, unless the
upl oad parameter is also used. Default value is: f al se
ORACLE 3-44

Table 3-17 (Cont.) undeploy Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description
resour ceG oup | java.lang.String false Specifies the name of the resource group template from which
Tenpl ate you want to undeploy an application or library.
rm GracePerio java.lang.Inte false Specifies the number of seconds in the grace period for RMI
d ger requests during graceful shutdown. Can be used only when
the gr acef ul parameteristrue. The default value of - 1
means no grace period. Default value is: - 1
serverC asspa java.lang.Stri false This parameter is deprecated in this release and ignored.
th ng
submodul etarg java.lang.Stri false Specifies JMS Server targets for resources defined within a
ets ng JMS application module. Possible values have the form:
submod@rod- j ms. xml @ ar get or subrmodul eNamre@ ar get .
targets java.lang. Stri false Specifies a comma-separated list of targets for the current
ng operation. When not specified, all configured targets are used.
ti meout java.lang.Inte false Specifies the maximum number of seconds WebLogic Server
ger will wait for the deployment task to complete. The default value
of - 1 means wait forever. Default value is: - 1
user java.lang. Stri false Specifies the administrative user name.
ng
userConfigFil java.lang.Stri false Specifies the location of a user configuration file to use for the
e ng administrative user name and password instead of specifying
the user name and password directly in plain text.
user KeyFil e java.lang. Stri false Specifies the location of a user key file to use for encrypting
ng and decrypting the user name and password stored in the user
configuration file.
ver bose bool ean false When true, displays additional status information during the
deployment process. Default value is: f al se
ver si on bool ean false When true, prints the version information. Default value is:
fal se
webl ogi cHone java.lang. Stri false This parameter is deprecated in this release and ignored.

ng

ORACLE

Use the undeploy goal to undeploy an application from WebLogic Server.

<execution>

<i d>W s-undepl oy</i d>
<phase>post -i nt egrati on-test </ phase>

<goal s>

<goal >undepl oy</ goal >

</ goal s>
<configuration>

<adminur| >t 3://127.0.0. 1: 7001</ admi nurl >
<user >webl ogi c</ user >
<passwor d>passwor d</ passwor d>

<nanme>${ pr oj ect . bui | d. fi nal Nane} </ name>

</ configuration>

</ execution>

Example 3-17 shows typical undepl oy goal output.

3-45

Chapter 3
Maven Plug-In Goals

Example 3-17 undeploy

mvn com or acl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: undepl oy

- Duser =webl ogi ¢ - Dpasswor d=passwor d - Dname=Exanpl eEJB

[INFQ Scanning for projects...

[INFQ
=
[INFQ Building WblLogi c Server Maven Plugin 12.2.1.0

[INEQ] - - o m e o e e e o e e e e e e e
[INFQ

[INFQ --- weblogi c-maven-plugin: 12.2.1-0-0: undepl oy (default-cli)
@ webl ogi c- ma

ven-plugin ---

webl ogi c. Depl oyer invoked with options: -noexit

-admnurl t3://1ocal host: 7001 -

undepl oy -user webl ogic -name Exanpl eEJB -targets Admi nServer

<Aug 19, 2015> <Info> <J2EE Depl oynent SPI>

<BEA- 260121> <l niti at

ing undepl oy operation for application, ExanpleEJB [archive: null],
to Adm nServ

er .>

Task 7 initiated: [Deployer:149026]renove application Exanpl eEJB
on Adni nServer.

Task 7 conpleted: [Deployer:149026]renpve application Exanpl eEJB
on Adni nServer.

Target state: undeploy conpleted on Server Adm nServer

0 e
[INFO BUILD SUCCESS

I S0 T LT e P R LLTEr
[INFQ Total tine: 6.114s

[INFQ Finished at: Wd Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 9M 26M

0 = e

3.3.15 uninstall

Full Name

com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: uni nstal |

Description

Uninstalls WebLogic Server.

Parameters

Table 3-18 uninstall Parameters

Name Type Required Description

invPtrLoc java.io.File true This parameter is deprecated and ignored.

m ddl ewar eHom java.lang. Stri true The Oracle Middleware installation directory. This

e ng parameter is required when uninstalling a server installed

using the Quickstart installer. Otherwise, it is ignored and
the location in the responseFile is used.

ORACLE

3-46

Chapter 3
Maven Plug-In Goals

Table 3-18 (Cont.) uninstall Parameters
]

Name Type Required Description
response java.io.File true Deprecated. Use the responseFile parameter.
responseFile |[java.io.File [true The silent installer response file. This is required when

using the binary or JAR installers.

Example 3-18 shows an example of uninstalling WebLogic Server in a JAR file installation.
Example 3-18 uninstall in JAR Installation

mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: uni nstal | -DresponseFi | e=c:\w s-
tenp\ r esponse. t xt

[INFQ Scanning for projects...

[INFO

[ENFQ - - - mm e mm i m e e e
[INFQ Building Maven Stub Project (No POM 1

[ENFQ - - - mm e mm o m e e e

[INFO
[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0:uninstall (default-cli) @ standal one

-pom ---

[INFQ [uninstal|] ORACLE_HOME = C:\test-maven\ O acl e\ M ddl ewar e\ Or acl e_Hone
[INFQ [uninstal|] ORACLE_HOME = C:\test-maven\ O acl e\ M ddl ewar e\ Or acl e_Hone
[INFQ Executing: [cnd:[C \\Wndows\\SystenB2\\cnd. exe, /c, C\test-maven\ O acl
e\ M ddl ewar e\ Oracl e_Hone\ oui \ bi n\dei nstal | .cmd -noconsol e -deinstall -silent -re
sponseFile c:\w s-tenp\response.txt]]

[INFQ Process being executed, waiting for conpletion.

[INFQ Installer exited with code: 0

1 o e
[INFO BU LD SUCCESS

1 o e

3.3.16 update-app

Full Name

com or acl e. webl ogi c: webl ogi ¢c- maven- pl ugi n: updat e- app

Description

Updates an application's deployment plan by redistributing the plan files and reconfiguring the
application based on the new plan contexts. Does not require a local server installation.

Parameters

Table 3-19 update-app Parameters
]

Name Type Required Description
adni nur| java.lang. String false Specifies the listen address and listen port of the
Administration Server. Default value is: t 3: / /
[ocal host: 7001
advanced bool ean false When true, prints advanced usage options.
ORACLE 3-47

Table 3-19 (Cont.) update-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

appversion java.lang.String false Specifies the version identifier of the application. When not
specified, the currently active version of the application is
assumed.

debug bool ean false When true, displays debug-level messages to the standard
output. Default value is: f al se

domai nHome java.lang. String false This parameter is deprecated in this release and ignored.

exanpl es bool ean false When true, displays examples of how to use this plug-in.

fail OnError bool ean false When true, forces the Mojo to fail the build upon
encountering an error if it would otherwise just log the error.
Default value is: t r ue

id java.lang. String false Specifies an optional, user-supplied, unique deployment task
identifier.

m ddl ewareHo java.lang. String false This parameter is deprecated in this release and ignored.

me

nane java.lang. String false Specifies the deployment name to assign to a newly-
deployed application or standalone module.

nover si on bool ean false When true, ignores all version-related code paths on the
Administration Server. Default value is: f al se

nowai t bool ean false When true, initiates multiple tasks and then monitors them
later with the - | i st action.

partition java.lang. String |false Specifies the name of the partition associated with the
resource group on which you want to update an application
or library.
The partition parameter is optional for partition
administrators.

password java.lang. String false Specifies the administrative password.

pl an java.lang. String false Specifies the location of the deployment plan.

pl anversion java.lang.String false Specifies the version of the deployment plan. When not
specified, the currently active version of the application's
deployment plan is assumed.

renot e bool ean false When true, specifies that the plug-in is not running on the
same machine as the Administration Server. In this case, the
sour ce parameter specifies a path on the server, unless the
upl oad parameter is also used. Default value is: f al se

renovePl anOv | bool ean false Removes an overridden deployment plan during a r edepl oy

erride or updat e deployment action.
For applications or libraries deployed to a resource group,
you can override the application configuration defined in a
resource group template that a resource group references.
To remove an application override, specify the
removePl anOver ri de attribute.

rm GracePeri java.lang.Intege false Specifies the number of seconds in the grace period for RMI

od r requests during graceful shutdown. Can be used only when
the gracef ul parameter is t r ue. The default value of - 1
means no grace period. Default value is: - 1

ORACLE 3-48

Table 3-19 (Cont.) update-app Parameters

Chapter 3
Maven Plug-In Goals

Name Type

Required

Description

serverC assp java.lang.String false

at h

This parameter is deprecated in this release and ignored.

subnodul etar java.lang. String false

gets

Specifies JMS Server targets for resources defined within a
JMS application module. Possible values have the form:
subnmod@mod- j nms. xm @ ar get or

submodul eName@ ar get .

targets java.lang. String false

The targets on which to update the application or module.
This attribute can be a comma-separated list. If no targets
are specified, all targets are updated.

ti meout java.lang.|ntege false

r

Specifies the maximum number of seconds WebLogic
Server will wait for the deployment task to complete. The
default value of - 1 means wait forever. Default value is: - 1

upl oad bool ean false

When true, copies the source files to the Administration
Server's upload directory prior to deployment. Use this
setting when running the plug-in remotely (using the r enot e
parameter) and when the user lacks normal access to the
Administration Server's file system. Default value is: f al se

user java.lang. String false

Specifies the administrative user name.

userConfigFi java.lang.String false

le

Specifies the location of a user configuration file to use for
the administrative user name and password instead of
specifying the user name and password directly in plain text.

userKeyFile java.lang.String false

Specifies the location of a user key file to use for encrypting
and decrypting the user name and password stored in the
user configuration file.

ver bose bool ean false When true, displays additional status information. Default
value is: f al se
version bool ean false When true, prints the version information. Default value is:

fal se

webl ogi cHome java.lang. String false

This parameter is deprecated in this release and ignored.

ORACLE

Use the update-app goal to update an application's deployment plan.

<execution>

<i d>w s- updat e- app</i d>

<phase>pre-integration-test</phase>

<goal s>

<goal >updat e- app</ goal >

</ goal s>
<configuration>

<adminurl>t3://127.0.0.1: 7001</ adm nur| >

<user >webl ogi c</ user >

<passwor d>passwor d</ passwor d>
<nane>${ pr oj ect . bui | d. fi nal Nane} </ name>
<pl an>${ basedi r}/ m sc/ nypl an. xnl </ pl an>

</ configuration>
</ execution>

Example 3-19 shows typical W st goal output.

3-49

3.3.17 wist

ORACLE

Chapter 3
Maven Plug-In Goals

Example 3-19 update-app

$ mvn com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: updat e- app - Duser =webl ogi ¢
- Dpasswor d=passwor d - Dadmi nurl =t 3://1 ocal host: 7001 - Dpl an=m sc/ nypl an. xni
- Dname=basi c\ebapp
[INFQ Scanning for projects...
[INFQ)
[INEQ] - - m o m e o e e e m o e e o e e e e
[INFQ Building basicWbapp 1.0- SNAPSHOT
[INEQ] - - m o m s mm e e e e e o e e e e e
[INFQ
[INFQ --- webl ogi c-maven-pl ugin: 12. 2. 1- 0- 0: updat e-app (defaul t-cli)
@min-test ---
webl ogi c. Depl oyer invoked with options: -noexit -adnminurl
t3://1ocal host: 7001 -update -user webl ogic -plan
I home/ oracl e/ src/tests/ main-test/msc/nyplan. xn -name basi c\Webapp -targets
Admi nSer ver
<Aug 19, 2015> <Info> <J2EE Depl oynent SPI> <BEA-260121>
<Initiating update operation for application, basi cWbapp [archive: null],
to AdminServer .>
Task 10 initiated: [Deployer:149026] update application basi cWebapp on
Admi nServer .
Task 10 conpl eted: [Depl oyer: 149026] updat e application basi cWebapp on
Admi nSer ver .
Target state: update conpleted on Server Adm nServer

[INFQ Total time: 10.651s
[INFQ Finished at: Wd Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 18M 435M

Full Name

com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: W st

Description

This goal is a wrapper for the WLST scripting tool. It requires a server install for WLST
online commands.

3-50

Parameters

Table 3-20 wist Parameters

Chapter 3
Maven Plug-In Goals

Name Type Require

d

Description

args java.lang. St false
ring

Deprecated. Use the scriptArgs parameter to specify the
arguments as a list of scriptArg elements.

Specifies a string value containing command-line arguments to
pass to the WLST Python interpreter. The arguments are
delimited by spaces. An argument that contains embedded
spaces should be quoted either with single quotes or with
escaped double quotes. For example, here is a string for args
that contains two parameters:

""Thomas Paine' \"Now is the tine that tries nmen's
soul s.\""

debug bool ean false

When true, displays additional status information.
Default value is: f al se

execut eScri pt Bef bool ean false
oreFile

When true, specifies whether a script, if supplied, executes
before or after the file, if supplied. Either a file or a script is
required, and both are allowed. See fi | ename and scri pt
parameters.

Default value is: t rue

fail OnError bool ean false

When true, the Maven build fails if the W st goal fails. The
default value is t r ue, and consequently any error condition will
cause the build to fail. In some cases, setting fai | OnError to
f al se will allow the W st goal to ignore the error.

Default value is: t r ue

fileName java.lang. St false
ring

Specifies the file path of the WLST Python script to execute.
Either afi | eNane or ascri pt parameter must be specified,
and both are allowed.

m ddl ewareHone java.lang. St true
ring

The path to the Oracle Middleware install directory.

propertiesFile java.lang. St false
ring

Specifies the path to a Java properties file. The property names
become defined variables in the WLST Python interpreter and
are initialized to the values supplied. For example, if the
properties file contains the line " f oobar: Very i nportant
stuff", the variable f oobar can be used in a Python
statement in the following manner: "print (' f oobar has the
value: ' + foobar)".

script java.lang. St false
ring

Specifies an inline WLST Python script, for example,
"print('Hello, world!'")"

Because Python uses indentation to demarcate nested code
blocks, scripts that contain multiple lines must be specified in
the POM without any indentation within the pom.xml, unless
required for code block demarcation.

ORACLE

3-51

Chapter 3
Maven Plug-In Goals

Table 3-20 (Cont.) wist Parameters
]

Name Type Require Description
d
scriptArgs java.lang. St | false Specifies the command-line arguments to pass to the WLST
ring Jython interpreter as a list of string values. If the argument
contains any embedded whitespace, the caller must include
enclosing single quotes or escaped double quotes within the
scriptArg element's value. If scriptArgs is specified, the args
parameter (deprecated) is ignored.
serverC asspath java.lang. St false This parameter is deprecated and ignored in this release.
ring
webl ogi cHone java.lang. St false This parameter is deprecated and ignored in this release.
ring
w st Version java.lang. St false This parameter is deprecated and ignored in this release.
ring
wor ki ngDi r java.lang. St | false The current working directory where the wist-script and create-
ring domain goal executes. The default value is: $
{project.build.directory}/weblogic-maven-plugin
Usage Example
The wl st goal enables the WebLogic Scripting Tool (WLST) to be used to execute
scripts that configure resources or perform other operations on a WebLogic Server
domain. The wl st Maven goal uses the WebLogic Server WLST standard environment
S0 you can use it with all your existing WLST scripts.
You can use the wl st goal to execute an external WLST script specified with the
fil eName configuration parameter, or you can specify a sequence of WLST commands
within the pom xm file using the scri pt configuration element:
<execution>
<id>W s-w st-server</id>
<phase>post -i nt egrati on-t est </ phase>
<goal s>
<goal >W st </ goal >
</ goal s>
<configuration>
<m ddl ewar eHonme>c: / dev/w $12210</ m ddl ewar eHone>
<fil eName>${ proj ect . basedi r}/ m sc/ confi gure_resources. py</fil eNane>
<args>t 3://1 ocal host: 7001 webl ogi ¢ password Adm nServer</args>
<script>
print("This is a WST inline script\n')
print("Next, we run a W.ST script to create JMS resources on the server\n')
</script>
<execut eScri pt Bef or eFi | e>t r ue</ execut eScri pt Bef or eFi | e>
</ configuration>
</ executi on>
Example 3-20 shows typical W st goal output.
Example 3-20 wilst
mvn com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st
- Df i | eName=cr eat e- dat asour ce. py
ORACLE 3-52

Chapter 3
Maven Plug-In Goals

[INFQ Scanning for projects...

[INFO

1=
[IINFQ Building maven-demo 1.0

1=

[INFO

[INFQ --- weblogic-maven-plugin:12.2.1-0-0:w st (default-cli) @maven-deno ---
[INFQ ++ ++
[INFQ ++ weblogi c-maven-plugin: w st ++
[INFQ ++ ++

*** (reating DataSource ***

Connecting to t3://1ocal host: 7001 with userid weblogic ...
Successful 'y connected to Adnmin Server 'Adm nServer' that bel ongs to domain 'nydomain'.

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admi n port shoul d be used instead.

Location changed to edit tree. Thisis a witable tree with
Dormai nMBean as the root. To nmake changes you will need to start
an edit session via startEdit().

For nore help, use help(edit)

Starting an edit session ...

Started edit session, please be sure to save and activate your
changes once you are done.

Activating all your changes, this may take a while ...

The edit |lock associated with this edit session is released

once the activation is conpleted.

Activation conpl et ed

Location changed to serverRuntine tree. This is a read-only tree with
Server Runti meMBean as the root.

For nore hel p, use hel p(serverRuntine)

%% DataSource Details **

Nane: cp

Driver Nane: Oracl e JDBC driver

Dat aSour ce: oracle.jdbc. xa.client. O acl eXADat aSour ce

Properties: {user =denn}

State: Runni ng

1=

[INFO BU LD SUCCESS

By default, the Wl st goal is bound to the pre-integration-test phase. To override the default
phase binding for a goal, you can explicitly bind plug-in goals to a particular life cycle phase,
for example, to the post-integration-test phase, as shown below. The pom xm file binds the
w st goal to both the pre- and post-integration-test phases (a dual phase target). As shown,
you can run different scripts in different phases, overriding the default settings, and make
modifications according to your needs.

Example pom xni file
<proj ect >

<executions>
<execution>

ORACLE 3-53

Chapter 3
Maven Plug-In Goals

<i d>W.S_SETUP_RESOURCES</i d>
<phase>pre-integration-test</ phase>
<goal s>

<goal >w st </ goal >
</ goal s>
<configuration>

<fil eName>src/ mai n/ W st/ creat e-datasource. py</fil eNane>
</configuration>

</ execution>

<execution>

<i d>W.S_TEARDOWN_RESOURCES</i d>
<phase>post-integration-test</ phase>
<goal s>

<goal >w st </ goal >
</ goal s>
<configuration>

<fil eName>src/ mai n/ W st/ renove- dat asour ce. py</fil eNane>
</configuration>

</ execution>
</ executions>

</ project>

3.3.18 wist-client

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: W st-cl i ent

Description

This goal is a WLST wrapper that does not require a local server install for WLST
online commands. If a local server install is not present, this goal supports only WLST
online commands.

Parameters

Table 3-21 wilst-client Parameters

Name Type Required Description
args java.lang. St false Deprecated. Use the scriptArgs parameter to specify the
ring arguments as a list of scriptArg elements.

debug bool ean false When true, displays additional status information.
Default value is: f al se

executeScri pt Bef bool ean false When true, specifies whether a script, if supplied, executes

oreFile before or after the file, if supplied. Either a file or a script is
required, and both are allowed. See fi | enane and scri pt
parameters.
Default value is: t r ue

ORACLE 3-54

Chapter 3
Maven Plug-In Goals

Table 3-21 (Cont.) wist-client Parameters

Name Type Required Description
fail OnError bool ean false When true, the Maven build fails if the Wl st goal fails. The
default value is t r ue, and consequently any error condition
will cause the build to fail. In some cases, setting
fail OnError tofal se will allow the W st goal to ignore the
error.
Default value is: t r ue
fil eNane java.lang. St false Specifies the file path of the WLST Python script to execute.
ring Either afi | eNane or a scri pt parameter must be specified,
and both are allowed.
m ddl ewareHone java.lang. St false The path to the Oracle Middleware install directory.
ring This parameter is required for any WLST offline commands. If

a WLST script uses offline commands without specifying a
valid middlewareHome, this W st - cl i ent goal fails.

propertiesFile

java.lang. St false Specifies the path to a Java properties file. The property
ring names become defined variables in the WLST Python
interpreter and are initialized to the values supplied. For
example, if the properties file contains the line " f oobar :
Very inportant stuff",the variable f oobar can be used
in a Python statement in the following manner:

"print('foobar has the value: ' + foobar)".
script java.lang. St false Specifies an inline WLST Python script, for example,
ring "print('Hello, world!l")"
Because Python uses indentation to demarcate nested code
blocks, scripts that contain multiple lines must be specified in
the POM without any indentation within the pom.xml, unless
required for code block demarcation.
scriptArgs java.lang. St [false Specifies the command-line arguments to pass to the WLST
ring Jython interpreter as a list of string values. If the argument
contains any embedded whitespace, the caller must include
enclosing single quotes or escaped double quotes within the
scriptArg element's value. If scriptArgs is specified, the args
parameter (deprecated) is ignored.
Running Scripts With Fusion Middleware Dependencies
If you use the wist-client goal to run WLST scripts that contain Fusion Middleware
dependencies, you must first include the com.oracle.fmwshare dependency to pull in the
necessary libraries needed by those scripts.
The com.oracle.fmwshare dependency must be listed before any Fusion Middleware
dependencies.
For example, to run a WLST script for SOA, add a dependency on com.oracle.fmwshare and
SOA, similar to the following:
<pl ugi n>
<groupl d>com oracl e. webl ogi c</ groupl d>
<artifact!|d>webl ogi c- maven-pl ugi n</artifact!ld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
ORACLE 3-55

ORACLE

Chapter 3
Maven Plug-In Goals

<i d>soa-w st-client</id>
<goal s>
<goal >wl st-client</goal >
</ goal s>
<configuration>
<fil eName>${proj ect. basedi r}/ m sc/doSoaSt uf f. py</fil eNane>
<script Args>
<scri pt Ar g>${ adm nUser Nare} </ scri pt Ar g>
<scri pt Ar g>${ adm nPasswor d} </ scri pt Ar g>
<scri pt Arg>${admi nUrl }</scri pt Arg>
</script Args>
</ configuration>
</ executi on>
</ executi ons>
<dependenci es>
<dependency>
<groupl d>com oracl e. f mwshar e</ groupl d>
<artifact!|d>f mwshare-w st-dependenci es</artifact!|d>
<version>12. 2. 1- 0- 0</ ver si on>
<type>ponx/type>
</ dependency>
<dependency>
<groupl d>com oracl e. soa</ gr oupl d>
<artifactld>soa-wW st-dependenci es</artifactld>
<version>12. 2. 1- 0- 0</ ver si on>
<type>ponx/type>
</ dependency>
</ dependenci es>
</ pl ugi n>

Usage Example

The wl st - cl i ent goal enables the WebLogic Scripting Tool (WLST) to be used to
execute scripts that configure resources or perform other operations on a WebLogic
Server domain. The wl st - cl i ent goal does not require a local server install for WLST
online commands.

The wl st - cl i ent Maven goal uses the WebLogic Server WLST standard environment
S0 you can use it with all your existing WLST scripts.

You can use the wl st-cl i ent goal to execute an external WLST script specified with
the fil eName configuration parameter, you can specify a sequence of WLST
commands within the pom xni file using the scri pt configuration element, or you can
use both mechanisms.

For example:

<execution>

<id>wW s-w st-server</id>

<phase>post -i ntegration-test </ phase>

<goal s>

<goal >W st -cl i ent </ goal >

</ goal s>

<configuration>

<fil eName>${ proj ect . basedir}/m sc/ confi gure_resources. py</fil eNane>
<args>t 3:// some- host: 7001 webl ogi ¢ password Adni nServer </ ar gs>
<script>

print('This is a W.ST inline script\n')

print('Next, we run a W.ST script to create JVMS resources on the server\n')
</script>

3-56

ORACLE

Chapter 3
Maven Plug-In Goals

<execut eScri pt Bef or eFi | e>t rue</ execut eScri pt Bef or eFi | e>
</ configuration>
</ execution>

Example 3-20 shows typical w st - cl i ent goal output.

Example 3-21 wist-client

mvn com or acl e. webl ogi c: webl ogi ¢c- naven- pl ugi n: W st-cl i ent
-Dfi | eNane=cr eat e- dat asour ce. py

[INFQ Scanning for projects...

[INFQ

[N - e m i m e s e e e e i
[INFQ Building maven-dermo 1.0

[ENFQ] - e m i m e m e e e e e i
[INFQ

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: W st (default-cli) @naven-denp ---
[INFQ ++ ++
[INFQ ++ webl ogic-maven-plugin: w st ++
[INFQ ++ ++

*** (reating DataSource ***

Connecting to t3://sone-host: 7001 with userid weblogic ...
Successful ly connected to Admin Server 'AdminServer' that bel ongs to domain 'mydomain'.

Wrning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admi n port shoul d be used instead.

Location changed to edit tree. Thisis a witable tree with
Domai nMBean as the root. To make changes you will need to start
an edit session via startEdit().

For nore help, use help(edit)

Starting an edit session ...

Started edit session, please be sure to save and activate your
changes once you are done.

Activating all your changes, this may take a while ...

The edit |lock associated with this edit session is released

once the activation is conpleted.

Activation conpl et ed

Location changed to serverRuntine tree. This is a read-only tree with
Server Runti meMBean as the root.

For nore hel p, use hel p(serverRuntine)

%% DataSource Details **

Nane: cp

Driver Nane: Oracle JDBC driver

Dat aSour ce: oracle.jdbc. xa.client. O acl eXADat aSour ce

Properties: {user =deno}

State: Runni ng

[INBPQ] - m e e e e e e e e e e e e e e e e

[INFO BU LD SUCCESS

As another example, assume that you have the following simple WLST script:

3-57

Chapter 3
Maven Plug-In Goals

try
connect (' webl ogi c', ' password','t3://10.151. 69. 120: 7001")
l'istApplications()
print(' TEST PASS')
except:
print(' TEST FAIL")

You can supply this WLST script with the fi | eName configuration parameter, as shown
in Example 3-22.

Example 3-22 wist-client Script Example

C:\Oracl e\ M ddl ewar e\ Oracl e_Hore\ or acl e_comon\ pl ugi ns\ maven\ com or acl e\ maven\ or

acl e-maven-sync\ 12. 2. 1>nmvn com or acl e. webl ogi ¢: webl ogi c- maven- pl ugi n: wl st-cli ent
-Dfi | eNane=t est. py

[INFQ Scanning for projects...

[INFO

Y =0 s

[INFQ Building Maven Stub Project (No POV 1

I =0 e

[INFO

[INFQ --- webl ogic-maven-plugin:12.2.1-0-0: W st-client (default-cli) @standalo

ne- pom - - -

[INFO [wst-client]No niddl ewareHone specified.

Connecting to t3://10.151.69.120: 7001 with userid weblogic ...

Successfull'y connected to Admin Server "Admi nServer" that bel ongs to domain "bas

e_domai n".

Warning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admi n port shoul d be used instead.

j axwsej h30ws

TEST PASS

I =0 e
[INFO BU LD SUCCESS

Y =0 e
[INFQ Total tine: 29.197s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 18M 45M

By default, the Wl st goal is bound to the pre-integration-test phase. To override the
default phase binding for a goal, you can explicitly bind plug-in goals to a particular life
cycle phase, for example, to the post-integration-test phase, as shown below. The
pom xnl file binds the wl st goal to both the pre- and post-integration-test phases (a
dual phase target). As shown, you can run different scripts in different phases,
overriding the default settings, and make modifications according to your needs.

Example pom xn file
<proj ect >

<executions>
<execution>
<i d>W.S_SETUP_RESOURCES</ i d>
<phase>pre-integration-test</ phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ W st/ creat e-dat asour ce. py</fil eName>

ORACLE 3-58

ORACLE

Chapter 3
Maven Plug-In Goals

</configuration>
</ execution>

<execution>
<i d>W.S_TEARDOWN_RESOURCES</i d>
<phase>post-integration-test</ phase>
<goal s>
<goal >w st </ goal >
</ goal s>
<configuration>
<fil eName>src/ mai n/ W st/ renove- dat asour ce. py</fil eNane>
</configuration>
</ execution>
</ executi ons>

</ pr oj ect>
exit() is Trapped

exit () exits WLST from the user session and closes the scripting shell. By default, WLST
calls System exi t (0) for the current WLST JVM when exiting WLST. Because wist-client
runs inside the same JVM as the Maven build process, the entire Maven build process would
exit. To provide for this, the Maven implementation traps WLST exi t () calls and throws an
exception.

Calling exit() explicitly from a WLST script is discouraged.

For example, assume you were to modify the previous WLST script example to include
exit(), as follows:

try:
connect (' webl ogic', ' password','t3://10.151. 69.120: 7001")
l'istApplications()
exit()
print(' TEST PASS')
except:
print (' TEST FAIL")

When the Maven implementation traps exi t (), it throws an exception:

Wrning: An insecure protocol was used to connect to the
server. To ensure on-the-wire security, the SSL port or
Admi n port shoul d be used instead.

j axwsej h30ws

Exiting WebLogic Scripting Tool.

TEST FAIL

o e
[INFO BU LD SUCCESS

o e

[INFQ Total tine: 29.250s
[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015
[INFQ Final Menory: 19M 45M

1 e

3-59

3.3.19 ws-clientgen

Table 3-22 ws-clientgen Parameters

Deprecated

Chapter 3
Maven Plug-In Goals

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-cl i ent gen

Description

Parameters

Table 3-22 briefly describes the ws- ¢l i ent gen parameters. These parameters are
more fully described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant
Task in WebLogic Web Services Reference for Oracle WebLogic Server.

Name Type Require Description
d

binding java.lang. Strin false Specifies one or more customization files that specify JAX-WS

bindings g and JAXB custom binding declarations or SOAP handler files. If
there is only one binding element, both <bi ndi ng>. /
fil enane</ bi ndi ng> and <bi ndi ngs><bi ndi ng>. /
fil ename</ bi ndi ng></ bi ndi ngs> are allowed.
See Table 3-23 for a description of bi ndi ngs parameters.

catal og java.lang. Strin false Specifies an external XML catalog file to resolve external entity

g references.

For more information about creating XML catalog files, see Using
XML Catalogs in Developing JAX-WS Web Services for Oracle
WebLogic Server

copyVsdl boolean false Controls where the WSDL should be copied in the ws-clientgen
goal 's destination dir.

debug boolean false Turns on additional debug output.

debugLevel boolean false Uses Ant debug levels.

destDir java.io.File true Specifies the directory into which the ws-clientgen goal generates
the client source code, WSDL, and client deployment descriptor
files.
You must specify either the dest Fi | e or dest Di r attribute, but
not both.

fail OnError boolean false Specifies whether the ws-clientgen goal continues executing in
the event of an error. The default value is True.

fork boolean false Specifies whether to execute javac using the JDK compiler
externally. The default value is false.

genRuntineCa boolean false Specifies whether the ws-clientgen goal should generate the

tal og XML catalog artifacts in the client runtime environment. This
value defaults to true.

ORACLE 3-60

Chapter 3
Maven Plug-In Goals

Table 3-22 (Cont.) ws-clientgen Parameters
]

Name Type Require Description

d
i ncl udeAnt Ru boolean false Specifies whether to include the Ant run-time libraries in the
ntine classpath.
i ncl udeJavaR boolean false Specifies whether to include the default run-time libraries from
untime the executing VM in the classpath.

jmetransport JMSTransportClien false
client t

Invoking a WebLogic Web service using JMS transport.

Table 3-25 describes the parameters of the
jmstransportclient parameter.

packageNane java.lang.Strin false

Specifies the package name into which the generated client

g interfaces and stub files are packaged.

produce FileSet false There is only one FileSet.

produces List<FileSet> There is more than one FileSet.

ver bose boolean false Turns on verbose output

wsdl java.lang.Strin true Specifies a full path name or URL of the WSDL that describes a
g Web service (either WebLogic or non-WebLogic) for which the

client component files should be generated.

wsdl Location java.lang.Strin false

Controls the value of the wsdlLocation attribute generated on the

g VebSer vi ce or \\ebSer vi ceProvi der annotation.
xauthfile java.lang. Strin false Specifies the authorization file.

g
xm Catal og java.lang.Strin false Not used.

g9

Table 3-23 describes the parameters of the bi ndi ngs parameter.

Table 3-23 Binding Parameters

Name Type Required Description
file java.lang. Str false Specifies a customization file that contains JAX-WS and
i ng JAXB custom binding declarations or SOAP handler files.

Table 3-24 describes the parameters of the xn Cat al og parameter.

Table 3-24 xmlCatalog Parameters

Name Type Required Description
refid java.lang. Stri false Specifies the directories (separated by semi-colons) that the
ng WS- j Wsc goal should search for JWS files to compile.

Table 3-25 describes the parameters of the j nst ransport cl i ent parameter.

ORACLE

3-61

Table 3-25 jmstransportclient Parameters

Chapter 3
Maven Plug-In Goals

Name Type Require Description
d
destinationName java.lang.Stri false JNDI name of the destination queue or topic. Default value
ng is com or acl e. webservi ces. j ms. Request Queue.
destinationType java.lang. Stri false Valid values include: QUEUE or TOPIC. Default value is
ng QUEUE.
repl yToNane java.lang. Stri false JNDI name of the JMS destination to which the response
ng message is sent.
target Service java.lang. Stri false Port component name of the Web service.
ng
jndilnitial Contex java.lang.Stri false Name of the initial context factory class used for INDI
tFactory ng lookup. Default value is
webl ogi c. j ndi . W.I ni tial ContextFactory.
j ndi ConnectionFac java.lang. Stri JNDI name of the connection factory that is used to
t or yNane ng establish a JMS connection. Default value is
com or acl e. webservi ces. j ms. Connecti onFactory.
j ndi Url java.lang. Stri JNDI provider URL. Default value ist 3: / /
ng | ocal host: 7001.
del i veryMode java.lang. Stri Delivery mode indicating whether the request message is
ng persistent. Valid values are PERSISTENT and
NON_PERSISTENT. Default value is PERSISTENT.
timeTolLive long false Lifetime, in milliseconds, of the request message. Default
value is 180000L.
priority int false JMS priority associated with the request and response
message. Default value is 0.
j ndi Cont ext Paranme java.lang.Stri false JNDI properties, in a format like:
ter ng someParameterNamel=someValuel ,
someParameterName2=someValue2.
bi ndi ngVer si on java.lang. Stri false Version of the SOAP JMS binding. Default value is 1.0.
ng
runAsPri nci pal java.lang. Stri false Principal used to run the listening MDB.
ng
runAsRol e java.lang. Stri false Role used to run the listening MDB.
ng
messageType java.lang. Stri false Message type to use with the request message. Valid
ng values are
com oracl e. webservi ces. api . j ms. JIMSMessageType.
BYTES and
com oracl e. webservi ces. api . j ms. IMSMessageType.
TEXT. Default value is BYTES.
enabl eHt t pWsdl Acc boolean false Boolean flag that specifies whether to publish the WSDL
ess through HTTP. Default value is true.
mdbPer Dest i nati on boolean false Boolean flag that specifies whether to create one listening

message-driven bean (MDB) for each requested
destination. Default value is true.

ORACLE

3-62

Chapter 3
Maven Plug-In Goals

Table 3-25 (Cont.) jmstransportclient Parameters
]

Name

Type Require Description
d

activationConfig

java.lang. Stri false Activation configuration properties passed to the IMS
ng provider.

cont ext Pat h

java.lang. Stri false The deployed context of the web service.
ng

serviceUri

java.lang. Stri false Web service URI portion of the URL.
ng

por t Name

java.lang. Stri false The name of the port in the generated WSDL.
ng

ORACLE

Usage Example

The ws- cl i ent gen goal generates client Web service artifacts from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to execute
it using the defaults of the project.

There are two ways to run the ws-clientgen goal:

From the command line. For example, after you define an alias:

nmvn —Dvari abl eNamel=val uel -Dvari abl eName2=val ue2 com oracl e. webl ogi c: webl ogi c-
maven- pl ugi n: ws-cl i ent gen

By specifying the Maven gener at e- r esour ces life cycle phase. Then run mvn gener at e-
resour ces in the same directory of pom.xml.

To do this, modify the pom xnl file to specify the gener at e-r esour ces life cycle phase,
the ws- cl i ent gen goal, and include any parameters you need to set. Consider the
following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<pr oj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!|d>maven_pl ugi n_sinple</artifactld>
<ver si on>1. 0</ ver si on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven- pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>clientgen</id>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-clientgen</ goal >
</ goal s>
<configuration>
<wsdl >${ basedi r}/ AddNunber s. wsdl </ wsdl >
<dest ${proj ect. buil d. out putDi rectory}</destDir>
<packageName>maven_pl ugi n. si npl e. cl i ent </ packageNane>

3-63

Chapter 3
Maven Plug-In Goals

</configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-23 shows typical ws- cl i ent gen goal output.

Example 3-23 ws-clientgen

mvn -f C \maven-doc\jwsc-test-2\clientgen_pomxnl generate-resources

[INFQ Scanning for projects..

[INFQ

I S0 T T T T LR TR Er
[INFQ Building maven_plugin_sinple 1.0

I S0 T LT L L
[INFQ

[INFQ --- webl ogi c-maven-plugin:12.2.1-0-0:ws-clientgen (clientgen) @
maven_pl ugi n_sim

ple ---

[INFQ Executing standal one..

[INFQ Executing Maven goal 'clientgen'..

calling nethod public static void weblogic.wsee.tools.clientgen. Mavend ient Gen. e
xecut e(org. apache. maven. pl ugi n. | oggi ng. Log, j ava. util.Map) throws java.lang. Throw
abl e

[INFQ Consider using <depends>/ <produces> so that wsinport won't do unnecessary
conpi | ation

[WARNI NG parsing WsDL. . .

[WARNI NG

[WARNI NG

[WARNI NG

[WARNI NG GCenerating code. .

[WARNI NG

[WARNI NG

[WARNI NG Conpi li ng code. .

[WARNI NG

Y =0 e
[INFO BU LD SUCCESS

3.3.20 wsgen

ORACLE

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: wsgen

Description

Maven goal that reads a JAX-WS service endpoint implementation class and
generates all of the portable artifacts for a JAX-WS Web service. Use the wsgen goal
when you are starting from Java classes.

You can then package the service endpoint interface and implementation class, value
types, and generated classes, if any, into a WAR file, and deploy the WAR to a Web
container.

The wsgen goal provides a wrapper for the JAX-WS Maven wsgen plug-in goal.

3-64

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsgen-mojo.html

Chapter 3
Maven Plug-In Goals

Parameters

Table 3-26 describes the wsgen parameters.

Table 3-26 wsgen Parameters
]

Name Type Required Description
args java.lang. Stri false Specifies optional command-line options. Multiple elements
ng can be specified, and each token must be placed in its own
list.
destDir java.io.File false Specifies the full pathname of where to place output
generated classes. Use xnoconpi | e to turn this off. The

defaultis ${ proj ect . bui | d. out put Di rect ory}) .

encodi ng java.lang. Stri false Specifies the character encoding of the output files, such as
ng the deployment descriptors and XML files. Examples of
character encodings are SHIFT-JIS and UTF-8. The default
value is platform dependent.
ext ensi on boolean false ext ensi on is always set to t r ue and you do not need to set
it. Extensions are not limited to Oracle JAX-WS vendor
extensions.
execut abl e java.lang. Stri false Name of the executable. Can be wsgen.
ng
genViéd| boolean false Specifies that a WSDL file should be generated in $

{resourceDestDir}. By default, the WSDL is not

generated.

i nli neSchenas boolean false Generates inline schemas in a generated WSDL. The default
is fal se.

The genWsdl parameter must be setto t r ue.
jmstransportser boolean false Use JMS transport for Web services. It can be omitted. See
vice Table 3-34 for a description of j mst r ansport servi ce

parameters.
keep boolean false Specifies whether to keep generated files. The default is

true.
met adat a java.io.File false Metadata file for the wsgen task, as described in External

Web Service Metadata in JAX-WS Release Documentation.

Unmatched files are ignored.
por t Name java.lang. Stri false Specify the port name to use in the generated WSDL. The

ng genVsdl parameter must be settotrue.
pr ot ocol java.lang. Stri false Use in conjunction with genWd| to specify the protocol to
ng use in the wsdl : bi ndi ng. The genWdl parameter must be
settotrue.

Valid values are soapl. 1 and Xsoapl. 2.

The default is soap soapl. 1. Xsoapl. 2 is non-standard and

you can use it only in conjunction with the extension option.
resourceDestDir java.io.File false Specifies the directory to contain the generated WSDL files.

The default is ${ proj ect . bui | d. di rect ory}/
gener at ed- sour ces/ wsdl . The gen\dl parameter must
be set to true.

ORACLE

3-65

https://jax-ws.java.net/2.2.8/docs/ch03.html#users-guide-external-metadata
https://jax-ws.java.net/2.2.8/docs/ch03.html#users-guide-external-metadata
https://jax-ws.java.net/2.2.8/docs/index.html

Table 3-26 (Cont.) wsgen Parameters

Chapter 3
Maven Plug-In Goals

___|]
Type Required Description

Name

sei

java.lang. Stri false
ng

Specifies the service endpoint implementation class name.

Servi cenane

java.lang. Stri false
ng

Specify the service name (Wsdl : servi cenane) to use in the
generated WSDL. The genWd| parameter must be set to
true.

sourceDestDi r

java.io.File false

Specify where to place generated source files. This
parameter also sets keep to true. The default is $
{project.build. directory}/generated-sources/
wsgen.

ver bose boolean false Output messages about what the tool is doing. Default value
is: fal se.

VA gs java.util.List false Specify optional JVM options. You can specify multiple
elements, and each token must be placed in its own list.

xdonot overwrite boolean false No description provided

xnoconpi | e boolean false Turns off compilation after code generation, and lets the

generated sources be compiled by Maven during the
compilation phase. The default is f al se.

This parameter also sets keep to true.

ORACLE

Usage Example

The wsgen goal reads a JAX-WS service endpoint implementation class and generates
all of the portable artifacts for a JAX-WS Web service.

Specify the Maven pr ocess- cl asses life cycle phase. Then, run nvn process-cl asses
in the same directory of the POM file.

To do this, modify the pom xnl file to specify the pr ocess- cl asses life cycle phase, the
wsgen goal, and include any parameters you need to set. Consider the following

example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<proj ect >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifactld>maven_pl ugi n_sinple</artifactld>

<versi on>1. 0</ ver si on>

<bui | d>

<sourceDi rectory>. </ sourceDirectory>

<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact!|d>webl ogi c- maven-pl ugi n</artifactld>
<versi on>12. 2. 1- 0- 0</ ver si on>

<executions>
<execution>

<i d>wsgen</i d>

<phase>pr ocess- cl asses</ phase>

<goal s>

<goal >wsgen</ goal >

</ goal s>

3-66

Chapter 3
Maven Plug-In Goals

<configuration>
<dest Di r >${proj ect. buil d. di rectory}/wsgenQut put/</destDir>
<sej >nyexanpl e. | Pl nf o</ sei >
<ver bose>t rue</ ver hose>
<genWdl >t r ue</ genWsd| >
</configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-24 shows typical wsgen goal output.

Example 3-24 wsgen

mvn -Dfi | e=pom xm process-cl asses

[INFQ Scanning for projects...

[INFO

Y =0 e
[INFQ Building maven_plugin_sinple 1.0

I =0 e
[I NFO

[INFQ --- maven-resources-plugin:2. 5:resources (default-resources) @ maven_plug
insinple ---

[debug] execute contextualize

[WARNI NG Using pl atformencoding (Cpl252 actually) to copy filtered resources,
i.e. buildis platformdependent!

[INFQ skip non existing resourceDirectory C\Qacle\M ddl eware\ Oracl e_Hone\ or ac
| e_comon\ pl ugi ns\ maven\ com or acl e\ naven\ or acl e- maven- sync\ 12. 1. 3\ src\ mai n\resou
rces

[INFO

[INFQ --- maven-conpiler-plugin:2.3.2:conpile (default-conpile) @naven_plugin_
sinple ---

[WARNI NG File encoding has not been set, using platformencoding Cpl252, i.e. b
uild is platform dependent!

[INFQ Conpiling 1 source file to C:\Oracle\M ddl eware\ Oracl e_Hone\ oracl e_conmmon
\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven-sync\ 12. 1. 3\t ar get\ cl asses

[INFO

[INFQ --- webl ogi c-maven-plugin; 12. 2. 1-0- 0: wsgen (wsgen) @ maven_pl ugi n_si npl e

[INFQ Processing: nyexanple.lPlnfo

[WARNI NG Usi ng platformencoding (Cpl1252), build is platform dependent!

[INFQ jaxws:wsgen args: [-keep, -s, 'C\Oracle\Mddl eware\Oracl e_Home\oracle_co
mon\ pl ugi ns\ maven\ com or acl e\ maven\ or acl e- maven- sync\ 12. 2. 1\ t ar get\ gener at ed- so
urces\wsgen', -d, 'C\Oacle\Mddl eware\ Oracl e_Hone\ oracl e_conmon\ pl ugi ns\ maven\
com oracl e\ maven\ or acl e- maven-sync\ 12. 2. 1\t arget \wsgenQut put', -verbhose, -extens
ion, -wsdl, -r, "C\Oracle\Mddl eware\ Oracl e_Hone\ oracl e_conmon\ pl ugi ns\ maven\ co
m or acl e\ maven\ or acl e- maven-sync\ 12. 2. 1\t ar get\ gener at ed- sour ces\wsdl ', nyexanpl
e. | Pl nf o]

myexanpl e\ j axws\ Get | pAddr ess. j ava

myexanpl e\ j axws\ Get | pAddr essResponse. j ava

T 0 e
[INFO BU LD SUCCESS

Y =0 e
[INFQ Total tine: 21.309s

[INFO Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 8M 32M

[INFQ] - - - o oo e e o o e o o o e e o o e

ORACLE 3-67

In this example, the wsgen goal creates the following files:

target
cl asses
META- | NF
wsdl
| Pl nf oSer vi ce. wsd
I Pl nf oServi ce_schemal. xsd
nyexanpl e
I PInfo.class
gener at ed- sour ces
wsdl
| Pl nf oServi ce. wsd
I Pl nf oServi ce_schemal. xsd
wsgen
myexanpl e
j axws
Cet | pAddress. j ava
Cet | pAddr essResponse. j ava
wsgenout put
myexanpl e
j axws
Cet | pAddress. cl ass
Cet | pAddr essResponse. cl ass

3.3.21 wsimport

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: wsi nport

Description

Chapter 3
Maven Plug-In Goals

Maven goal that parses a WSDL and binding files and generates the Java code
needed to access it. Use the wsi nport goal when you are starting from a WSDL.

The wsi nport goal provides a wrapper for the JAX-WS Maven wsimport goal.

Parameters

Table 3-27 describes the wsi nport parameters.

Table 3-27 wsimport Parameters

Name Type Required Description
args java.lang. Strin false Specifies optional command-line options. Multiple elements
g can be specified, and each token must be placed in its own
list.
bindingDirector java.io.File false Directory containing binding files.
y
bi ndi ngFi | es java.util.List false List of files to use for bindings. If not specified, all . xnl files

in the bi ndi ngDi r ect ory are used.

cat al og java.io.File false Catalog file to resolve external entity references support
TR9401, XCatalog, and OASIS XML Catalog format.

ORACLE

3-68

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsimport-mojo.html

Table 3-27 (Cont.) wsimport Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

destDir java.io.File false Specifies the full pathname of where to place output
generated classes. Use xnoconpi | e to turn this off. The
defaultis ${ pr oj ect . bui I d. out put Direct ory}).

encodi ng java.lang. Strin false Specifies the character encoding of the output files, such as

g the deployment descriptors and XML files. Examples of
character encodings are SHIFT-JIS and UTF-8. The default
is platform dependent.

execut abl e java.lang. Strin false Name of the executable. Can be wsi nport.

g

ext ensi on boolean false ext ensi on is always set to t r ue and you do not need to
set it. Extensions are not limited to Oracle JAX-WS vendor
extensions.

genJWs boolean false Generate stubbed JWS implementation file. The default is
fal se.

ht t ppr oxy java.lang. Strin false Set HTTP/HTTPS proxy. Format is

g [user[: password] @ proxyHost[: proxyPort].

i npl DestDir java.io.File false Specify where to generate JWS implementation file.

i npl Port Name java.lang.String false Local portion of port name for generated JWS
implementation. Implies genJW5=t r ue. Note: It is a QName
string, formatted as: "{" + Namespace URI + "}" + local part.

i npl Servi ceNane java.lang.String false Local portion of service name for generated JWS
implementation. Implies genJW5=t r ue. Note: It is a QName
string, formatted as: "{" + Namespace URI + "}" + local part.

jmstransportcli JMSTransportClien false Invoking a WebLogic Web service using JMS transport.

ent t Table 3-25 describes the parameters of the
jmstransportclient parameter.

jmeUri jmsUri false Override jmsUri defined in a WSDL file. Requires
ext ensi on=true.

keep boolean false Specifies whether to keep generated files. The default is
true.

packageNane java.lang. Strin false The package in which the source files will be generated.

g

qui et boolean false Suppress wsimport output. The default is f al se.

sourceDestDi r java.io.File false Specify where to place generated source files. This
parameter also sets keep to true. The default is $
{project.build.directory}/generated-sources/
wsi nport .

staleFile java.io.File false The folder containing flag files used to determine if the
output is stale.

If you do not specify a folder, the default is $
{project.build. directory}/jaxws/stale.

target java.lang.String false Generate code as per the given JAXWS specification
version. Setting "2. 0" will cause JAX-WS to generate
artifacts that run with JAX-WS 2.0 runtime.

ORACLE

3-69

Table 3-27 (Cont.) wsimport Parameters

Chapter 3
Maven Plug-In Goals

___|]
Name Type Required Description

ver bose boolean false

Output messages about what the tool is doing. Default value
is: f al se.

VmAr gs java.lang. Strin false Specify optional JVM options. You can specify multiple
g elements, and each token must be placed in its own list.
wsdl Di rectory java.io.File false Directory containing WSDL files.
wsdl Fil es java.util.List false List of files to use for WSDLs. If not specified, all .wsdl files
in the wsdl Di r ect or y will be used.
wsdl Locat i on java.lang.String false @\ebSer vi ce. wsdl Locat i on and
@ebServi ced i ent.wsdl Locati on value.
Can end with asterisk, in which case relative path of the
WSDL will be appended to the given wsdl Locat i on.
Example:
<configuration>
<wsdl Di rect ory>src/ nywsdl s</wsdl Di rect ory>
<wsdl Fi | es>
<wsdl Fi | e>a. wsdl </ wsdl Fi | e>
<wsdl Fi | e>b/ b. wsdl </ wsdl Fi | >
<wsdl Fi | e>${basedir}/src/nywsdl s/ c.wsdl </
wsdl Fi | e>
</wsdl Fi | es>
<wsdl Locati on>http://exanpl e. com
mywebser vi ces/ *</ wsdl Locat i on>
</configuration>
wsdl Locat i on for a. wsdl will be http://example.com/
mywebservices/a.wsdl
wsdl Locat i on for b/ b. wsdl will be http://example.com/
mywebservices/b/b.wsdl
wsdl Locat i on for ${ basedi r}/ src/ mywsdl s/ c. wsdl
will be file://absolute/path/to/c.wsdl
Note: External binding files cannot be used if asterisk
notation is in place.
wsdl Url's java.util.List false List of external WSDL URLSs to be compiled.
xaddi tional Head boolean false Maps headers not bound to the request or response
ers messages to Java method parameters.
xauthFil e java.io.File false Specify the location of authorization file.
xdebug boolean false Turn on debug message. The default is f al se.
xdi sabl eAut hent boolean false Disable Authenticator used by JAX-WS RI, xaut hf i | e will
i cator be ignored if set.
xdi sabl eSSLHost boolean false Disable the SSL Hostname verification while fetching
nameVerificatio WSDL(s).
n
ORACLE 3-70

Chapter 3
Maven Plug-In Goals

Table 3-27 (Cont.) wsimport Parameters

Name

Type Required Description

Xj CAr gs

java.util.List false Specify optional XJC-specific parameters that should simply
be passed to xjc using -B option of WsImport command.

Multiple elements can be specified, and each token must be
placed in its own list.

xnoAddr essi ngDa boolean false Binding W3C Endpoi nt Ref er enceType to Java. By default

t aBi ndi ng

WslImport follows spec and does not bind
Endpoi nt Ref er enceType to Java and uses the spec
provided VBCEndpoi nt Ref er ence.

xnoconpi | e

boolean false Turns off compilation after code generation, and lets the
generated sources be compiled by Maven during the
compilation phase. The defaultis t r ue.

This parameter also sets keep to true.

xuseBaseResourc boolean false No description provided by JAX-WS Maven wsimport.
eAndURLToLoadW6

DL

ORACLE

Usage Example

The wsi nport goal parses a WSDL and binding files and generates Java code needed to
access the Web service.

You can use the wsi nport goal in two ways:

e To generate the client-side artifacts. Then, implement the client to invoke the Web
service.

e To create your own implementation of the Web service. Use wsi nport goal with the
genJWS parameter to generate portable artifacts and a stubbed implementation file. You
then implement the service endpoint.

Specify the Maven gener at e- sour ces life cycle phase. Then, run mvn gener at e- sour ces in
the same directory of the POM file.

Assume that you want to import the WSDL shown in Example 3-25.

Example 3-25 WSDL to Import

<?xm version="1.0" encodi ng=" UTF-8' ?><!-- Published by JAX-W6 R at
http://jax-ws.dev.java.net. RI's version is JAX-WS R 2.2.9-b14041
svn-revision#14041. --><!-- Generated by JAX-WS R at
http://jax-ws.dev.java.net. RI's version is JAX-WS Rl 2.2.9-b14041
svn-revisi on#14041. --><definitions
xm ns: wsu="http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-uti
lity-1.0.xsd" xm ns:wsp="http:// ww. w3. org/ns/ws-policy" xmns:wspl_
2="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: wsan="ht t p: / / wawv. w3. or g/ 2007/ 05/ addr essi ng/ et adat a"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns:tns="http://ws.web. W s. ny.org/"
xm ns: xsd="htt p: // ww. w3. or g/ 2001/ XM.Schema"
xm ns="http://schemas. xm soap. or g/ wsdl /"
target Nanespace="http://ws.web.w s. ny. org/" nane="Sanpl eVs" >
<types>
<xsd: schema>

3-71

https://jax-ws-commons.java.net/jaxws-maven-plugin/wsimport-mojo.html

ORACLE

Chapter 3
Maven Plug-In Goals

<xsd:inport namespace="http://ws.web.ws.ny.org/"
schemalocati on="x. xsd"/>
</ xsd: schema>
</types>
<message name="hel | 0">
<part name="paraneters" elenment="tns:hello"/>
</ nessage>
<message nanme="hel | oResponse">
<part nane="paraneters" el enent="tns: hel | oResponse"/>
</ nessage>
<port Type name="Sanpl eV$" >
<operation name="hel | 0">
<i nput wsam Action="http://ws.web.w s.ny. org/ Sanpl eVé/ hel | oRequest "
message="tns: hel | 0"/ >
<out put wsam Action="http://ws.web.w s. ny. org/ Sanpl eWs/
hel | oResponse" nessage="t ns: hel | oResponse"/ >
</ operation>
</ port Type>
<bi ndi ng xm ns: soapj ns="http://ww. w3. or g/ 2010/ soapj ns/ "
name="Sanpl eWsPor t Bi ndi ng" type="tns: Sanpl eV¢" >

<soapj ms: j ndi | ni ti al Cont ext Fact ory>webl ogi c. j ndi . W.I ni ti al Cont ext Fact ory</
soapj ms: j ndi I ni ti al Cont ext Fact ory>

<soapj ms: j ndi Connect i onFact or yName>com or acl e. webser vi ces. api . j ns. Connecti onFact o
ry</ soapj ns: j ndi Connect i onFact or yName>
<soapj ns: j ndi Url >t 3://1 ocal host: 7001</ soapj ms: j ndi Ur| >
<soapj ns: bi ndi ngVer si on>SOAP_JMS_1_0</ soapj ms: bi ndi ngVer si on>
<soapj ns: desti nati onNanme>com or acl e. webservi ces. api . j ns. Request Queue</
soapj ns: desti nati onName>
<soapj ns: t ar get Ser vi ce>Sanpl eWs</ soapj ms: t ar get Servi ce>
<soapj ns: ti meToLi ve>180000</ soapj ns: ti neTolLi ve>
<soapj ns: del i ver yMode>PERSI STENT</ soapj ns: del i ver yMode>
<soapj ns: priority>0</soapjns: priority>
<soapj ns: messageType>BYTES</ soapj ns: nessageType>
<soapj ns: desti nati onType>QUEUE</ soapj ms: dest i nati onType>
<soap: bi ndi ng transport="http://ww.w3. or g/ 2010/ soapj ns/ "
styl e="docurent "/ >
<operation name="hel | 0">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input >
<out put >
<soap: body use="literal"/>
</ out put >
</ operation>
</ bi ndi ng>
<service name="Sanpl eWs" >
<port nane="Sanpl eWsPort" bi ndi ng="t ns: Sanpl eV Port Bi ndi ng" >
<soap: addr ess
| ocation="jns:jndi:comoracle. webservices. api.j ns. Request Queue?
tar get Servi ce=Sanpl
eWs&anp; j ndi URL=t 3://
| ocal host : 7001&anp; messageType=BYTES&anp; del i ver yMode=PERS| STENT" / >
</ port>
</ service>
</definitions>

3-72

Chapter 3
Maven Plug-In Goals

To import this WSDL, modify the pom xm file to specify the gener at e- sour ces life cycle
phase, the wsi nport goal, the WSDL location, and include any parameters you need to set.
This example uses a local WSDL file for demonstration purposes.

Consider the following example:

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<pr oj ect >
<model Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!|d>maven_pl ugi n_sinple</artifactld>
<version>1. 0</ versi on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c</ groupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifact!ld>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsi nport - j nssanpl e</i d>
<goal s>
<goal >wsi nport </ goal >
</ goal s>
<phase>gener at e- sour ces</ phase>
<configuration>
<wsdl Fi | es>
<wsdl Fi | e>${basedir}/i nport-exanpl e/ Sanpl eWs. wsdl </ wsdl Fi | e>
</wsdl Fi | es>
<genJW5>t r ue</ genJWs>
</configuration>
</ execution>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-26 shows typical wsi nport goal output.

Example 3-26 wsimport

mvn -Dfi | e=pom xm gener at e- sour ces

[INFQ Scanning for projects..

[INFQ
2
[INFQ Building maven_plugin_sinple 1.0
2
[1NFQ

[INFQ --- webl ogi c-maven-plugin: 12. 2. 1-0-0: wsi nport (wsi nport-jnssanple) @ mave
n_plugin_sinple ---

[INFQ Processing: file:/C/COracle/Mddl eware..../inport-exanpl e/ Sanpl eV. wsd
[WARNING Using platformencoding (Cp1252), build is platform dependent

[INFQ jaxws:wsinmport args: [-keep, -s

"C\Oacle\Mddl eware\...\inport-exanpl e\target\generated-sources\wsinport', -d
"C\Oracle\M ddl eware...\inport-exanpl e\target\classes', -extension

- Xnoconpi l e, -jms, -jmsuri, jms:jndi:null?targetServ

ce=nul |, -httpproxy:sone-proxy-name, -generateJWs, -inplDestDir,

"C\Oacle\Mddl eware...\inport-exanple'

"file:/C/COracle/Mddl eware...inport-exanpl e/ Sanpl eWs. wsdl "]

parsing WsDL. .

ORACLE 3-73

Chapter 3
Maven Plug-In Goals

Generating code. ..

1Y o
[INFO BU LD SUCCESS

I 0
[INFQ Total time: 20.888s

[INFQ Finished at: Finished at: Wed Aug 19 11:33:51 EDT 2015

[INFQ Final Menory: 7M 23M

o e

In this example, the wsi nport goal creates the following files:

org
ny
W s
web
ws
Sanpl eWs_Sanpl eWsPort | npl . j ava
target
cl asses
gener at ed- sour ces
wsi nport
org
ny
W s
web
ws
Hel l 0. java
Hel | oResponse. j ava
bj ect Factory. java
package-info.java
Sanpl eV. j ava
Sanpl eWs_Servi ce. j ava
j axws
stale
. 2b48c6ef 28hcB8ad5aa2dad246c0c4ac90cf 82¢57

3.3.22 ws-wsdlc

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-wsdl ¢

Description

Maven goal to generate a set of artifacts and a partial Java implementation of the Web
service from a WSDL.

The ws-wsdl ¢ goal provides a Maven wrapper for the wsdlc Ant task, which is
described in WebLogic Web Services Reference for Oracle WebLogic Server.

ORACLE 3-74

Parameters

Chapter 3
Maven Plug-In Goals

Table 3-28 briefly describes the ws- wsdl ¢ parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in WebLogic
Web Services Reference for Oracle WebLogic Server.

Table 3-28 ws-wsdlc Parameters

Name Type Required Description
bi ndi ngs java.lang. Stri false Customization files that specify JAX-WS and JAXB custom
ng binding declarations or SOAP handler files.
cat al og java.lang. Stri false Specifies an external XML catalog file.
ng For more information about creating XML catalog files, see
Using XML Catalogs in Developing JAX-WS Web Services for
Oracle WebLogic Server
debug boolean false Specifies the flag to set when debugging the process. Default
value is false.
debugLevel java.lang. Stri false Uses Ant debug levels.
ng
destlmpl Dir java.lang. Stri false Specifies the directory into which the stubbed-out JIWS
ng implementation file is generated.
dest JavadocD java.lang. Stri false Specifies the directory into which the Javadoc that describes
ir ng the JWS interface is generated.
dest JwsDi r java.lang. Stri true Specifies the directory into which the JAR file that contains the
ng JWS interface and data binding artifacts should be generated.
expl ode boolean false Specifies the flag to set if you want exploded output. Defaults to
true.
fail OnError boolean false Specifies whether the ws-clientgen goal continues executing in
the event of an error. The default value is true
fork boolean false Specifies whether to execute javac using the JDK compiler
externally. The default value is false.
i ncl udeAnt Ru boolean false Specifies whether to include the Ant run-time libraries in the
ntine classpath. The default value is true.
i ncl udeJavaR boolean false Specifies whether to include the default run-time libraries from
untinme the executing VM in the classpath. The default value is false.
optin ze boolean false Specifies the flag to set if you want optimization. Defaults to
true.
packageNane java.lang.Stri false Specifies the package into which the generated JWS interface
ng and implementation files should be generated.
srcPortName java.lang. Stri false Specifies the name of the WSDL port from which the JWS
ng interface file should be generated. Set the value of this
parameter to the value of the nane parameter of the port
parameter that corresponds to the Web service port for which
you want to generate a JWS interface file.
The port parameter is a child of the ser vi ce parameter in the
WSDL file. If you do not specify this attribute, ws-wsdl ¢
generates a JWS interface file from the service specified by
srcServi ceNarre.
ORACLE

3-75

Chapter 3
Maven Plug-In Goals

Table 3-28 (Cont.) ws-wsdlc Parameters
]

Name Type Required Description
srcServiceNa java.lang.Stri false Specifies the name of the Web service from which the JWS
me ng interface file should be generated.
src\sdl java.lang. Stri true Specifies the name of the WSDL from which to generate the
ng JAR file that contains the JWS interface and data binding
artifacts.
ver bose boolean false Specifies the flag to set if you want verbose output. Default

value is false.

ORACLE

Usage Example

The ws-wsdl ¢ goal generates a set of artifacts and a partial Java implementation of the
Web service from a WSDL.

This goal benefits from the convention-over-configuration approach, allowing you to
execute it using the defaults of the project.

There are two ways to run the ws- wsdl ¢ goal:

From the command line. For example, after you define an alias:

mvn -Dvari abl eNamel=val uel -Dvari abl eName2=val ue2
com oracl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-wsdl ¢

By specifying the Maven gener at e- r esour ces life cycle phase.

To do this, modify the pom xnl file to specify the gener at e-r esour ces life cycle
phase, the ws-wsdl ¢ goal, and include any parameters you need to set. Then run
mvn gener at e-resour ces in the same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifact!|d>maven_pl ugi n_sinple</artifact!d>
<version>1. 0</ versi on>
<bui | d>
<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi ¢</ groupl d>
<artifact!|d>webl ogi c- maven-pl ugi n</artifact!ld>
<version>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<i d>wsdl c</i d>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-wsdlc</ goal >
</ goal s>
<configuration>
<srcWsdl >${ basedi r}/ AddNunber s. wsdl </ sr c\Wédl >
<dest JwsDi r >${ proj ect . bui | d. di rect ory}/j wsl npl </ dest JwsDi r >
<dest | npl Di r>${ proj ect. bui | d. di rectory}/ out put </ dest | npl Di r>
<packageNane>maven_pl ugi n. si npl e</ packageName>
<ver bose>t rue</ ver bose>
</configuration>

3-76

Chapter 3
Maven Plug-In Goals

</ execution>
</ executions>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-27 shows typical ws- wsdl ¢ goal output.

Example 3-27 ws-wsdlc

mvn -f wsdl c_pom xml generate-resources
[INFQ Scanning for projects...
[INFQ

I S0 T T T T LR TR Er
[INFQ Building maven_plugin_sinple 1.0

I S0 T LT L L

[INFQ

[INFQ --- webl ogi c-maven-plugin: 12.2.1-0-0: ws-wsdl ¢ (wsdlc) @nmaven_plugin_sinple ---
[INFQ Executing standal one...

[INFO Executing Maven goal 'wsdlc'...

calling nethod public static void webl ogic.wsee.tools.wsdl c. Maven\édl c. execute(o
rg. apache. maven. pl ugi n. | oggi ng. Log, java. util.Mp) throws java.lang. Throwabl e
Catal og dir = C\Users\naven\ AppDat a\ Local \ Tenp\ _ckr59b

Downl oad file [AddNunmbers.wsdl] to C:\Users\mven\ AppDat a\ Local \ Tenp\ _ckr59b
srcWsdl is redefined as [C: \Users\maven\ AppDat a\ Local \ Tenp\ _ckr 59b\ AddNunber
s.wsdl]

o e
[INFQ BU LD SUCCESS

3.3.23 ws-jwsc

Deprecated

This goal is deprecated in this release.

Full Name

com or acl e. webl ogi c: webl ogi c- maven- pl ugi n: ws-j wsc

Description
Maven goal to build a JAX-WS web service.

The ws- j wsc goal provides a Maven wrapper for the jwsc Ant task, which is described in
WebLogic Web Services Reference for Oracle WebLogic Server.

Note:

The ws-j wsc goal does not work with the JAX-RPC-only JWS annotations
described in WebLogic-Specific Annotations

ORACLE -

ORACLE

Chapter 3
Maven Plug-In Goals

Nested Configuration in module Elements

The ws- j wsc goal supports nested configuration elements, as shown in bold in
Example 3-28. See Introduction to the POM for information on Maven projects with
multiple modules.

Example 3-28 Nested Configuration Elements

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>com t est . ws</ groupl d>
<artifactld>test-ws-jwscl</artifactld>
<ver si on>1. 0</ ver si on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c</ gr oupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifact!ld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>gener at e- r esour ces</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDi r>${basedir}/src/ min/java</srcDir>
<destDi r>${proj ect. buil d.directory}/jwscQut put
/' ${project.build.final Nane}</destDir>
<listfiles>true</listfiles>
<debug>t r ue</ debug>

<module>
<name>pocr eat e</ nane>
<cont ext Pat h>nmypub</ cont ext Pat h>
<conpi | edWsdl >D: \ maven-test\order_wsdl . jar</conpil edWdl >

<jws>
<fil e>exanpl es/ wsee/ jwsc/ POCreat el npl . java</file>
<transport Type>
<type>WLHt t pTransport</type>
<servi celUri >POCr eat e</ servi ceUri >
<por t Name>PQCr eat ePor t </ por t Nane>
</transport Type>
</jws>
<jws>

</jws>
<descri pt or s>
<descri ptor>"resour ces/ web. xm "<descriptor/>
<descri pt or>"resour ces/ webl ogi c. xn "<descriptor />
</ descriptors>
</module>
<module>

</module>

</modules>
</ configuration>

3-78

http://maven.apache.org/guides/mini/guide-multiple-modules.html

ORACLE

Chapter 3
Maven Plug-In Goals

</ execution>

</ executions>
</ pl ugi n>
</ pl ugi ns>

</ bui | d>

</ project>

These nested configuration elements for ws-j wsc have the following conditions:

You must use at least one of the following elements: j ws, j wses, nodul e, or nodul es.
Collection elements such as j wses and nodul es elements can be omitted.

If there is only one child element within the collection element, the collection element can
also be removed.

For example, if there is only one j ws element, use j ws. If there are multiple j ws elements,
add all of the j ws elements under a j wses element.

As with the JWSC ant task, if nodul e has only one j ws child element, then other sub
elements of modul e can be nested into j wsc and jwsc/ t ransport Type.

Example 3-29 shows an example without a module el ement in which the j ws parameter is a
child of ws-j wsc.

Example 3-29 jws Element as Child of ws-jwsc Goal

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>
<proj ect >

<nodel Versi on>4. 0. 0</ nodel Ver si on>
<groupl d>com t est . ws</ groupl d>
<artifactld>test-ws-jwsc</artifactld>
<ver si on>1. 0</ ver si on>

<bui | d>

<pl ugi ns>
<pl ugi n>
<groupl d>com or acl e. webl ogi c¢</ groupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifact!ld>
<versi on>12. 2. 1- 0- 0</ ver si on>
<executions>
<execution>
<id>first-jwsc</id>
<phase>conpi | e</ phase>
<goal s>
<goal >ws-j wsc</ goal >
</ goal s>
<configuration>
<srcDi r>${basedir}/src/ min/java</srcDir>
<dest Di r >${ proj ect . bui | d. di rect ory}/j wscQut put/
${proj ect.build.final Name}</destDir>
<jws> <I-- no parent <module> -->
<file>examples/wsee/ jwsc/POCreatelmpl . java</file>
<compiledWsdI>${project.build.directory}/purchaseorder_wsdl.jar>
<transportType>
<type>WLHttpTransport</type>
</transportType>
</jws>
</configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>

3-79

</ bui | d>
</ project>

ws-jwsc Parameters

Chapter 3
Maven Plug-In Goals

Table 3-29 briefly describes the ws- j wsc parameters. These parameters are more fully
described in Table 2-3 WebLogic-specific Attributes of the clientgen Ant Task in
WebLogic Web Services Reference for Oracle WebLogic Server.

Table 3-29 ws-jwsc Parameters

Name

Type Require

d

Description

applicationX java.lang. Str false

m

i ng

Specifies the full name and path of the application.xml deployment
descriptor of the Enterprise Application. If you specify an existing
file, the ws-jwsc goal updates it to include the Web services
information. However, jwsc does not automatically copy the updated
application.xml file to the destDir; you must manually copy this file to
the destDIR. If the file does not exist, jwsc creates it.

The ws-jwsc goal also creates or updates the corresponding
weblogic-application.xml file in the same directory. If you do not
specify this attribute, jwsc creates or updates the file destDir/META-
INF/application.xml, where destDir is the jwsc attribute.

debug

boolean false

Turns on additional debug output.

destDir

java.lang. Str true
i ng

Specifies the full pathname of the directory that will contain the
compiled JWS files, XML Schemas, WSDL, and generated
deployment descriptor files, all packaged into a JAR or WAR file.

dest Encodi ng

java.lang. Str false
ing

Specifies the character encoding of the output files, such as the
deployment descriptors and XML files. Examples of character
encodings are SHIFT-JIS and UTF-8. The default value of this
attribute is UTF-8.

j ws Jws false There is only one <jws> element.
See Table 3-30 for a description of | Ws parameters.

j wses Jws false It contains more than one< jws> element.

keepGener at e boolean false Specifies whether the Java source files and artifacts generated by

d this goal should be regenerated if they already exist.
If you specify false, new Java source files and artifacts are always
generated and any existing artifacts are overwritten. If you specify
true, the goal regenerates only those artifacts that have changed,
based on the timestamp of any existing artifacts

listfiles boolean false Specifies whether to list all of the files.

modul e Module false It contains one <module> element.
See Table 3-31 for a description of modul e parameters.

modul es Module false It contains more than one <module> element.

optinize boolean false Specifies the flag to set when optimization is required. Defaults to

true.

sourcepath

java.lang. Str true
i ng

The full pathname of top-level directory that contains the Java files
referenced by the JWS file, such as JavaBeans used as parameters
or user-defined exceptions.

srcDir

java.lang. Str true
i ng

Specifies the full pathname of the top-level directory that contains
the JWS file you want to compile.

ORACLE

3-80

Table 3-29 (Cont.) ws-jwsc Parameters

Chapter 3
Maven Plug-In Goals

Name

Type Require

d

Description

srcEncodi ng

java.lang. Str false
i ng

Specifies the character encoding of the input files, such as the JWS

file or configuration XML files.

Examples of character encodings are SHIFT-JIS and UTF-8. The
default value of this attribute is the character encoding set for the

JVM.

ver bose

boolean false

Specifies verbose output

jws Parameter

As described in jws, the j ws parameter specifies the name of a JWS file that implements your
Web service and for which the ws- j wsc goal should generate Java code and supporting
artifacts, and then package them into a deployable WAR file inside of an Enterprise

Application.

You can specify the j ws parameter in two ways:

* Animmediate child element of the ws- j wsc goal. In this case, ws-j wsc generates a
separate WAR file for each JWS file. You typically use this method if you are specifying
just one JWS file to the ws- j wsc goal.

* A child element of the nodul e parameter, which in turn is a child of the ws-j wsc goal. In
this case, ws- | wsc generates a single WAR file that includes all the generated code and

artifacts for all the JWS files grouped within the module parameter.

This method is useful if you want all JWS files to share supporting files, such as common

Java data types.

Table 3-30 describes the child parameters of the j ws parameter. The description specifies
whether the parameter applies in the case that j ws is a child of the ws-j wsc goal, is a child of

nmodul e, or both.

Table 3-30 jws Parameters

Name Type Require Description Child of ws-
d jwsc, module,
or both
conpi | edWsdl java.lang. St false Specifies the full pathname of the JAR file both
ring generated by the ws- wsdl ¢ goal based on an
existing WSDL file.
Only required for the "starting from WSDL" use
case.
contextPath java.lang. St false Specifies the deployed context of the web service. ws-jwsc
ring
expl ode boolean false Specifies the flag to set when you want exploded ws-jwsc
output. Defaults to true.
file java.lang. St true The name of the JWS file that you want to compile. both
ring The ws-jwsc goal looks for the file in the srcdir
directory.
ORACLE 3-81

Chapter 3
Maven Plug-In Goals

Table 3-30 (Cont.) jws Parameters

Name Type Require Description Child of ws-
d jwsc, module,
or both
generat eWsdl boolean true Specifies whether the generated WAR file includes both

the WSDL file in the WEB-INF directory. Default
value is false.

jmstransports
ervice

boolean false Use JMS transport for Web services. It can be WS-jWSsC
omitted. See Table 3-34 for a description of
j metransport servi ce parameters.

name

java.lang. St false Specifies the name of the generated WAR file (or ws-jwsc
ring exploded directory, if the explode attribute is set to
true) that contains the deployable Web service.

transport Type

transportType false Used when it contains only one transportt ype both
element. It can be omitted.

See Table 3-33 for a description of
transport Type parameters.

transport Type
S

transportType false Used when it contains more than one transport both
t ype element. It can be omitted.

See Table 3-33 for a description of
transport Type parameters.

wsdl Onl'y

boolean false Specifies that only a WSDL file should be WS-jWSC
generated for this JWS file. The default value is
false.

module Parameters

As described in module, the nodul e parameter groups one or more j ws parameters
together so that their generated code and artifacts are packaged in a single Web
application (WAR) file. The nodul e parameter is a child of the ws-j wsc goal.

Table 3-31 describes the parameters of the module parameter.

Table 3-31 module Parameters

Name Type Required Description
clientgen java.lang. Str false There is only one <clientgen> element. It can be omitted.
i ng
clientgens java.lang.Str false There is more than one <clientgen> element. It can be omitted.
i ng
contextPath java.lang.Str false Specifies the deployed context of the Web service.
i ng
descriptor java.lang.Str false Specifies the web.xml descriptor to use if a new one should not be
i ng generated. The path should be fully qualified. The files should be
separated by ", ".
ej bWl n\ar boolean false Specifies whether to package EJB-based Web services in a WAR
file instead of a JAR file.
expl ode boolean false Specifies the flag to set when you want exploded output. Defaults
to true.
ORACLE 3-82

Table 3-31 (Cont.) module Parameters

Chapter 3
Maven Plug-In Goals

Name Type Required Description

Fi | eSet FileSet false Used when it contains one FileSet element. It can be omitted.

FileSets FileSet false Used when it contains more than one FileSet element. It can be
omitted.

generat eWsd boolean true Specifies whether the generated WAR file includes the WSDL file

| in the WEB-INF directory. Default value is false.

j ws Jws false Used when it contains one jws element. It can be omitted.

j wses Jws false Used when it contains more than one jws element. It can be
omitted.

name java.lang. Str false Specifies the name of the WAR to use when evaluating the ear

ing file.

wsdl Onl'y boolean false Specifies that only a WSDL file should be generated for this JWS
file. The default value is false.

zipfileset java.lang. Str false There is only one <zipfileset> element.

i ng

FileSet Parameters

As described in jwsfileset, the Fi | eSet parameter specifies one or more directories in which
the ws-j wsc goal searches for JWS files to compile. The list of JWS files that ws- j wsc finds is
then treated as if each file had been individually specified with the j ws parameter of nodul e.

The Fi | eSet parameter is a child of the ws- j wsc goal.

Table 3-32 describes the parameters of the FileSet parameter.

Table 3-32 FileSet Parameters
]

Name Type Required Description

srcDir java.lang. Str true Specifies the directories (separated by semi-colons) that the ws-
i ng jwsc goal should search for JWS files to compile.

prefix java.lang. Str false Prefix to use.
i ng

sourcelnclud java.lang.Str false Specifies the explicit includes-list for the file set.

es i ng

sourceExclud java.lang.Str false Specifies the explicit excludes-list for the file set.

es i ng

ORACLE

TransportType Parameters

As described in WLHttpTransport, WLHttpsTransport, and WLIMSTransport, you use
transport parameters to specify the transport type, context path, and service URI sections of
the URL used to invoke the Web service, as well as the name of the port in the generated
WSDL.

The ws-j wsc goal combines these transport parameters into one, Tr ansport Type.

Table 3-32 describes the parameters of the transport Type parameter.

3-83

Table 3-33 transportType Parameters

Chapter 3
Maven Plug-In Goals

Name Type Require Description
d
transport TypeNam j ava. |l ang. Str true Specifies the value is WLHttpTransport, WLHttpsTransport, or
e i ng WLJIMSTransport.
Default value is WLHttpTransport.

servicelri java.lang. Str false Specifies the Web service URI portion of the URL.

i ng
cont ext Pat h java.lang. Str false Specifies the deployed context of the Web service.

i ng
por t Name java.lang. Str false Specifies the name of the port in the generated WSDL.

i ng

Table 3-34 describes the parameters of the j mst ransport servi ce parameter.

Table 3-34 jmstransportservice Parameters

Name Type Require Description
d
destinati onName java.lang.S false JNDI name of the destination queue or topic. Default value is

tring

com or acl e. webservi ces. j ns. Request Queue.

destinationType java.lang.S false

Valid values include: QUEUE or TOPIC. Default value is

tring QUEUE.

repl yToNane java.lang. S false JNDI name of the JMS destination to which the response
tring message is sent.

target Service java.lang.S false Port component name of the Web service.
tring

jndilnitial Conte java.lang.S false
xt Factory tring

Name of the initial context factory class used for INDI lookup.
Default value is
webl ogi c. jndi . W.Initial ContextFactory.

j ndi ConnectionFa java.lang.S

JNDI name of the connection factory that is used to establish a

ctoryNane tring JMS connection. Default value is
com or acl e. webservi ces. j ms. Connect i onFactory.
j ndi Url java.lang. S JNDI provider URL. Default value ist 3: / /| ocal host : 7001.
tring
del i veryMode java.lang.S Delivery mode indicating whether the request message is
tring persistent. Valid values are PERSISTENT and
NON_PERSISTENT. Default value is PERSISTENT.
timeToLive long false Lifetime, in milliseconds, of the request message. Default value
is 180000L.
priority int false JMS priority associated with the request and response

message. Default value is 0.

j ndi Cont ext Param java.lang.S false
eter tring

JNDI properties, in a format like:
someParameterNamel=someValuel ,
someParameterName2=someValue2.

bi ndi ngVer si on java.lang.S false
tring

Version of the SOAP JMS binding. Default value is 1.0.

ORACLE

3-84

Chapter 3
Maven Plug-In Goals

Table 3-34 (Cont.) jmstransportservice Parameters

Name Type Require Description
d
runAsPri nci pal java.lang. S false Principal used to run the listening MDB.
tring
runAsRol e java.lang. S false Role used to run the listening MDB.
tring
messageType java.lang.S false Message type to use with the request message. Valid values
tring are
com or acl e. webservi ces. api . j ms. JMSMessageType. BYT
ES and
com oracl e. webservi ces. api . j ms. JMSMessageType. TEX
T. Default value is BYTES.
enabl eHt t pWdl Ac boolean false Boolean flag that specifies whether to publish the WSDL
cess through HTTP. Default value is true.
mdbPer Destinati 0 boolean false Boolean flag that specifies whether to create one listening
n message-driven bean (MDB) for each requested destination.

Default value is true.

activationConfig java.lang.S false
tring

Activation configuration properties passed to the JMS provider.

cont ext Pat h java.lang.S false
tring

The deployed context of the web service.

servicelri java.lang. S false
tring

Web service URI portion of the URL.

port Name java.lang.S false
tring

The name of the port in the generated WSDL.

Usage Example

The ws-j wsc goal builds a JAX-WS web service.

This goal benefits from the convention-over-configuration approach, allowing you to execute
it using the defaults of the project.

To run the ws- j wsc goal, specify the Maven gener at e- r esour ces phase.

To do this, modify the pom xnl file to specify the gener at e-r esour ces phase, the ws-j wsc
goal, and include any pa parameters you need to set. Then run nvn gener at e-resour ces in
the same directory of pom.xml.

<?xm version="1.0" encodi ng="UTF-8" standal one="no"?>

<proj ect >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>maven_pl ugi n. si npl e</ gr oupl d>
<artifactld>maven_plugin_sinple</artifactld>

<version>1. 0</ versi on>

<bui | d>
<pl ugi ns>
<pl ugi n>

<groupl d>com or acl e. webl ogi c¢</ gr oupl d>
<artifact|d>webl ogi c- maven-pl ugi n</artifact!ld>
<versi on>12. 2. 1- 0- 0</ ver si on>

ORACLE

3-85

Chapter 3
Maven Plug-In Goals

<executions>
<execution>
<id> wsc</id>
<phase>generate-resources</ phase>
<goal s>
<goal >ws-jwsc</ goal >
</ goal s>
<configuration>
<destDi r>${proj ect.build.directory}/jwscQutput/
<listfiles>true</listfiles>
<debug>t r ue</ debug>
<jws> <!-- no parent <module> -->
<file>examples/wsee/jwsc/POCreatelmpl . java</file>
<compiledWsdI>${project.build.directory}/
purchaseorder_wsdl . jar>
<transportType>
<type>WLHttpTransport</type>
</transportType>
</jws>
<ver bose>t rue</ ver bose>
</ configuration>
</ executi on>
</ executi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>
</ project>

Example 3-30 shows typical ws- j wsc goal output.
Example 3-30 ws-jwsc

m/n -f jwsc_pom xnl generate-resources

INFQ Scanning for projects..

[INFQ

[ENFQ] - - m o e e e o e o e e e e e o e o e o e e e
[INFQ Building maven_plugin_sinple 1.0

[ENFQ] - - oo e e e o e o e e e e o e o e o e e e e e
[INFQ

[INFQ --- weblogic-maven-plugin:12.2.1-0-0: ws-jwsc (jwsc) @ maven_plugi n_sinple

[INFQ Executing standal one..

INFO Executing Maven goal 'jwsc'...

calling nmethod public static void

webl ogi c. wsee. t ool s. j ws. MavenJwsc. execut e(or g. apache. maven. pl ugi n. | oggi ng. Log
java.util.Mp) throws java.lang. Throwabl e

[EarFile] Application File : C\maven-doc\jwsc-test-2\output\META-

I NF\ appl i cati on. xni

0 e
[INFO BUI LD SUCCESS

ORACLE 3-86

Creating a Split Development Directory
Environment

To create a WebLogic Server split development directory that you can use to develop a Java
EE application or module, you have to organize the Java EE components and shared
classes, generate a basic build.xml file, and develop multiple EAR projects.

This chapter includes the following sections:

e Overview of the Split Development Directory Environment

e Using the Split Development Directory Structure: Main Steps

* Organizing Java EE Components in a Split Development Directory

e Organizing Shared Classes in a Split Development Directory

e Generating a Basic build.xml File Using weblogic.BuildXMLGen

» Developing Multiple-EAR Projects Using the Split Development Directory

e Best Practices for Developing WebLogic Server Applications

4.1 Overview of the Split Development Directory Environment

The WebLogic split development directory environment consists of a directory layout and
associated Ant tasks that help you repeatedly build, change, and deploy Java EE
applications.

Compared to other development frameworks, the WebLogic split development directory
provides these benefits:

* Fast development and deployment. By minimizing unnecessary file copying, the split
development directory Ant tasks help you recompile and redeploy applications quickly
without first generating a deployable archive file or exploded archive directory.

« Simplified build scripts. The Oracle-provided Ant tasks automatically determine which
Java EE modules and classes you are creating, and build components in the correct
order to support common classpath dependencies. In many cases, your project build
script can simply identify the source and build directories and allow Ant tasks to perform
their default behaviors.

- Easy integration with source control systems. The split development directory
provides a clean separation between source files and generated files. This helps you
maintain only editable files in your source control system. You can also clean the build by
deleting the entire build directory; build files are easily replaced by rebuilding the project.

4.1.1 Source and Build Directories

The source and build directories form the basis of the split development directory
environment. The source directory contains all editable files for your project—Java source
files, editable descriptor files, JSPs, static content, and so forth. You create the source

ORACLE 4-1

ORACLE

Chapter 4
Overview of the Split Development Directory Environment

directory for an application by following the directory structure guidelines described in
Organizing Java EE Components in a Split Development Directory.

The top level of the source directory always represents an enterprise application (. ear
file), even if you are developing only a single Java EE module. Subdirectories beneath
the top level source directory contain:

» Enterprise Application Modules (EJBs and Web applications)

" Note:

The split development directory structure does not provide support for
developing new Resource Adapter components.

» Descriptor files for the enterprise application (appl i cati on. xm and webl ogi c-
application.xn)

» Utility classes shared by modules of the application (for example, exceptions,
constants)

* Libraries (compiled. j ar files, including third-party libraries) used by modules of the
application

The build directory contents are generated automatically when you run the W conpi | e
ant task against a valid source directory. The wl conpi | e task recognizes EJB, Web
application, and shared library and class directories in the source directory, and builds
those components in an order that supports common class path requirements.
Additional Ant tasks can be used to build Web services or generate deployment
descriptor files from annotated EJB code.

Figure 4-1 Source and Build Directories

Source
Directory Build Process Build Directory

Java Source,

JSPs, grmpiled

Annotated .EJB asses
Generated

Static HTML and Deployment

Graphics Descriptors

Editable

Deployment

Descriptors

Third-Party JAR

Files

The build directory contains only those files generated during the build process. The
combination of files in the source and build directories form a deployable Java EE
application.

The build and source directory contents can be place in any directory of your choice.
However, for ease of use, the directories are commonly placed in directories named

4-2

Chapter 4
Overview of the Split Development Directory Environment

sour ce and bui | d, within a single project directory (for example, \ nypr oj ect\ bui | d and
\ nyproj ect\ source).

4.1.2 Deploying from a Split Development Directory

ORACLE

All WebLogic Server deployment tools (webl ogi c. Depl oyer, W depl oy, and the WebLogic
Server Administration Console) support direct deployment from a split development directory.
You specify only the build directory when deploying the application to WebLogic Server.

WebLogic Server attempts to use all classes and resources available in the source directory
for deploying the application. If a required resource is not available in the source directory,
WebLogic Server then looks in the application's build directory for that resource. For
example, if a deployment descriptor is generated during the build process, rather than stored
with source code as an editable file, WebLogic Server obtains the generated file from the
build directory.

WebLogic Server discovers the location of the source directory by examining

the . beabui | d. t xt file that resides in the top level of the application's build directory. If you
ever move or modify the source directory location, edit the . beabui | d. t xt file to identify the
new source directory name.

Deploying Applications Using wideploy describes the wl depl oy Ant task that you can use to
automate deployment from the split directory environment.

Figure 4-2 shows a typical deployment process. The process is initiated by specifying the
build directory with a WebLogic Server tool. In the figure, all compiled classes and generated
deployment descriptors are discovered in the build directory, but other application resources
(such as static files and editable deployment descriptors) are missing. WebLogic Server uses
the hidden . beabui | d. t xt file to locate the application's source directory, where it finds the
required resources.

Figure 4-2 Split Directory Deployment

Deploy
Source . .
Directory Build Directory
Java Source,
! Compiled
J5Ps, .
Annotated .EJB Classes
Static HTML Generated
and Graphics < Deployment -
Descriptors
Editable
Deployment it bieabuild (Xt ef—
Descriptors
Third-Party JAR

Files -+

4-3

Chapter 4
Using the Split Development Directory Structure: Main Steps

4.1.3 Split Development Directory Ant Tasks

Oracle provides a collection of Ant tasks designed to help you develop applications
using the split development directory environment. Each Ant task uses the source,
build, or both directories to perform common development tasks:

w conpi | e—This Ant task compiles the contents of the source directory into
subdirectories of the build directory. wl conpi | e compiles Java classes and also
processes annotated . ej b files into deployment descriptors, as described in
Compiling Applications Using wicompile.

w appc—This Ant task invokes the appc compiler, which generates JSPs and
container-specific EJB classes for deployment. See Building Modules and
Applications Using wlappc.

w depl oy—This Ant task deploys any format of Java EE applications (exploded or
archived) to WebLogic Server. To deploy directly from the split development
directory environment, you specify the build directory of your application. See
wldeploy Ant Task Reference.

w package—This Ant task uses the contents of both the source and build
directories to generate an EAR file or exploded EAR directory that you can give to
others for deployment.

4.2 Using the Split Development Directory Structure: Main

Steps

ORACLE

In a split development directory structure, you can develop and deploy applications
faster, simplify build scripts, and integrate with source control systems.

The following steps illustrate how you use the split development directory structure to
build and deploy a WebLogic Server application.

1.

Create the main EAR source directory for your project. When using the split
development directory environment, you must develop Web applications and EJBs
as part of an enterprise application, even if you do not intend to develop multiple
Java EE modules. See Organizing Java EE Components in a Split Development
Directory.

Add one or more subdirectories to the EAR directory for storing the source for
Web applications, EJB components, or shared utility classes. See Organizing Java
EE Components in a Split Development Directory and Organizing Shared Classes
in a Split Development Directory.

Store all of your editable files (source code, static content, editable deployment
descriptors) for modules in subdirectories of the EAR directory. Add the entire
contents of the source directory to your source control system, if applicable.

Set your WebLogic Server environment by executing either the set W.SEnv. cnd
(Windows) or set W.SEnv. sh (UNIX) script. The scripts are located in the
W._HOME\ server\ bi n\ directory, where W._HOME is the top-level directory in which
WebLogic Server is installed.

4-4

Chapter 4
Organizing Java EE Components in a Split Development Directory

< Note:

On UNIX operating systems, the set W.SEnv. sh command does not set the
environment variables in all command shells. Oracle recommends that you
execute this command using the Korn shell or bash shell.

5. Use the webl ogi c. Bui | dXM.Gen utility to generate a default bui | d. xm file for use with
your project. Edit the default property values as needed for your environment. See
Generating a Basic build.xml File Using weblogic.BuildXMLGen.

6. Use the default targets in the bui | d. xm file to build, deploy, and package your
application. See Generating a Basic build.xml File Using weblogic.BuildXMLGen for a list
of default targets.

4.3 Organizing Java EE Components in a Split Development
Directory

The split development directory structure requires each project to be staged as a Java EE
enterprise application. Oracle therefore recommends that you stage even standalone Web
applications and EJBs as modules of an enterprise application, to benefit from the split
directory Ant tasks. This practice also allows you to easily add or remove modules at a later
date, because the application is already organized as an EAR.

¢ Note:

If your project requires multiple EARs, see also Developing Multiple-EAR Projects
Using the Split Development Directory.

The following sections describe the basic conventions for staging the following module types
in the split development directory structure:

* Enterprise Application Configuration
* Web Applications

* EJBs

* Shared Utility Classes

e Third-Party Libraries

The directory examples are taken from the spli tdi r sample application installed in
ORACLE_HOVE\ W ser ver\ sanpl es\ src\ exanpl es\ splitdir, where ORACLE_HOVE represents
the directory in which the WebLogic Server code examples are configured. For more
information about the WebLogic Server code examples, see Sample Applications and Code
Examples in Understanding Oracle WebLogic Server.

4.3.1 Source Directory Overview

The following figure summarizes the source directory contents of an enterprise application
having a Web application, EJB, shared utility classes, and third-party libraries. The sections

ORACLE 4.5

Chapter 4
Organizing Java EE Components in a Split Development Directory

that follow provide more details about how individual parts of the enterprise source
directory are organized.

ORACLE 4.6

Chapter 4
Organizing Java EE Components in a Split Development Directory

Figure 4-3 Overview of Enterprise Application Source Directory

helloWorldEar

— build. xml

- META-INF
I: application.xml
weblogic-application.xml

— helloWebApp

| hellojsp

— WEB-INF

web.xml
weblogic.xml

Src

|_ Java Source Files

N {in package
— static directories)

HTML, Graphics,
Static files™

— hellcEJB

Java Source Files
(in package directories)

META-INF

weblogic-ejb-jar.xml

— appUtils ejb-jar.xml*

|_ Java Source Files
{in package directories)

L APP.INF

W

|— Third-Party JAR Files

ORACLE 47

Chapter 4
Organizing Java EE Components in a Split Development Directory

4.3.2 Enterprise Application Configuration

The top level source directory for a split development directory project represents an
enterprise application. The following figure shows the minimal files and directories
required in this directory.

Figure 4-4 Enterprise Application Source Directory

Source

helloWorldEar

— build.xml

META-INF

—— application.xml

—— weblogic-application.xml

The enterprise application directory will also have one or more subdirectories to hold a
Web application, EJB, utility class, and/or third-party Jar file, as described in the
following sections.

4.3.3 Web Applications

Web applications use the basic source directory layout shown in the figure below.

ORACLE 4-8

Chapter 4
Organizing Java EE Components in a Split Development Directory

Figure 4-5 Web Application Source and Build Directories

Source Build
helloWorldEar helloWorldEar

L helloWebApp I— helloWebApp
hello.jsp I_
WEB-INF
WEB-INF L
classes

— Src

— jsp_serviet
L Java Source Files
{in package directories)
Compiled JSPs
and Serviets
— web.xml | Java Class Files
(in package directories)
— weblogic.xml
Fr—— - |
1 static* .
|

s HTML, Graphics,
Static files*

*Not used in
helloWorldEar sample

The key directories and files for the Web application are:

* hel |l oWbApp\ —The top level of the Web application module can contain JSP files and
static content such as HTML files and graphics used in the application. You can also
store static files in any named subdirectory of the Web application (for example,
hel | oWebApp\ gr aphi cs or hel | oWWebApp\ static.)

* hel | oWbApp\ VEB- | NF\ —Store the Web application's editable deployment descriptor
files (web. xm and webl ogi c. xm) in the VEB- | NF subdirectory.

o hel | oWebApp\ VEB- | NF\ sr ¢ —Store Java source files for Servlets in package
subdirectories under VIEB- | NF\ sr c.

When you build a Web application, the appc Ant task and j spc compiler compile JSPs into
package subdirectories under hel | o\\ebApp\ VEB- | NF\ cl asses\j sp_servl et in the build
directory. Editable deployment descriptors are not copied during the build process.

4.3.4 EJBs

EJBs use the source directory layout shown in the figure below.

ORACLE 4.9

Chapter 4
Organizing Java EE Components in a Split Development Directory

Figure 4-6 EJB Source and Build Directories

Source Build
helloWorldEar helloWorldEar
I— helloEJE helloEJE
Java Source Files Java Class Files
H (in package directories) fin package directories)
. r T T T I
I METAANF* . META-INF
: |
—_— - =
R ajb-jar.xml* ojb-jar.xml

........ weblogic-ajb-jar.xmi* waeblogic-ejb-jar.xml

*Not used in
helloWorldEar sample

The key directories and files for an EJB are:

* hell oEJB\ —Store all EJB source files under package directories of the EJB
module directory. The source files can be either . j ava source files, or
annotated . ej b files.

e hel | oEJB\ META- | NF\ —Store editable EJB deployment descriptors (ejb-jar.xml and
weblogic-ejb-jar.xml) in the META- | NF subdirectory of the EJB module directory.
The hel | oWr | dEar sample does not include a hel | oEJB\ META- | NF subdirectory,
because its deployment descriptors files are generated from annotations in
the . ej b source files. See Important Notes Regarding EJB Descriptors.

During the build process, EJB classes are compiled into package subdirectories of the
hel | oEJB module in the build directory. If you use annotated . ej b source files, the
build process also generates the EJB deployment descriptors and stores them in the
hel | oEJB\ META- | NF subdirectory of the build directory.

4.3.5 Important Notes Regarding EJB Descriptors

ORACLE

EJB deployment descriptors should be included in the source META- | NF directory and
treated as source code only if those descriptor files are created from scratch or are
edited manually. Descriptor files that are generated from annotated . ej b files should
appear only in the build directory, and they can be deleted and regenerated by building
the application.

For a given EJB component, the EJB source directory should contain either:

* EJB source code in . j ava source files and editable deployment descriptors in
META- | NF

or:

e EJB source code with descriptor annotations in . ej b source files, and no editable
descriptors in META- | NF.

4-10

Chapter 4
Organizing Shared Classes in a Split Development Directory

In other words, do not provide both annotated . ej b source files and editable descriptor files
for the same EJB component.

4.4 Organizing Shared Classes in a Split Development Directory

The WebLogic split development directory also helps you store shared utility classes and
libraries that are required by modules in your enterprise application.

The following sections describe the directory layout and classloading behavior for shared
utility classes and third-party JAR files.

4.4.1 Shared Utility Classes

Enterprise applications frequently use Java utility classes that are shared among application
modules. Java utility classes differ from third-party JARs in that the source files are part of the
application and must be compiled. Java utility classes are typically libraries used by
application modules such as EJBs or Web applications.

Figure 4-7 Java Utility Class Directory

Saurce Build
helloWorldEar helloWorldEar
I— appUtils L APP-NF
Java Source Files | Java Class Files
{in package directories) {in package directories)

Place the source for Java utility classes in a named subdirectory of the top-level enterprise
application directory. Beneath the named subdirectory, use standard package subdirectory
conventions.

During the build process, the wl conpi | e Ant task invokes the javac compiler and compiles
Java classes into the APP- | NF/ cl asses/ directory under the build directory. This ensures that
the classes are available to other modules in the deployed application.

4.4.2 Third-Party Libraries

You can extend an enterprise application to use third-party . j ar files by placing the files in
the APP- 1 NF\ | i b\ directory, as shown below:

ORACLE 4-11

Chapter 4
Generating a Basic build.xml File Using weblogic.BuildXMLGen

Figure 4-8 Third-party Library Directory

Solrce

helloWorldEar

APP-INF

.

I— Third-Party JAR Files

Third-party JARs are generally not compiled, but may be versioned using the source
control system for your application code. For example, XML parsers, logging
implementations, and Web application framework JAR files are commonly used in
applications and maintained along with editable source code.

During the build process, third-party JAR files are not copied to the build directory, but
remain in the source directory for deployment.

4.4.3 Class Loading for Shared Classes

The classes and libraries stored under APP- | NF/ cl asses and APP-INF/ i b are
available to all modules in the enterprise application. The application classloader
always attempts to resolve class requests by first looking in APP- | NF/ ¢l asses, then
APP- I NF/ 1 b.

4.5 Generating a Basic build.xml File Using
weblogic.BuildXMLGen

ORACLE

After you set up your source directory structure, use the webl ogi ¢. Bui | dXM_Gen utility
to create a basic bui | d. xnl file. webl ogi c. Bui | dXM_Gen is a convenient utility that
generates an Ant build.xml file for enterprise applications that are organized in the split
development directory structure. The utility analyzes the source directory and creates
build and deploy targets for the enterprise application as well as individual modules. It
also creates targets to clean the build and generate new deployment descriptors.

Additionally, optional packages are supported as Java EE shared libraries in

webl ogi c. Bui | dXMLGen, whereby all manifests of an application and its modules are
scanned to look for optional package references. If optional package references are
found they are added to the compile and appc tasks in the generated bui | d. xm file.

For example, if a library located at | i b\ echol i b. j ar is referenced as an optional
package, the tasks generated by webl ogi c. Bui | dXM_Gen will contains an appc task
that would appear as follows:

4-12

Chapter 4
Generating a Basic build.xml File Using weblogic.BuildXMLGen

<target name="appc" description="Runs webl ogi c.appc on your application">
<wl appc source="${dest.dir}" verbose="${verbose}">
<library file="lib\echolib\echolib.jar" />
</w appc>
</target>

The compile and appc tasks for modules also use the li b\ echol i b\ echol i b. j ar library.

4.5.1 weblogic.BuildXMLGen Syntax

ORACLE

The syntax for webl ogi c¢. Bui | dXMLGen is as follows:

j ava webl ogi c. Bui | dXM.Gen [options] <source directory>

where opt i ons include:

e -hel p—Print standard usage message
e -versi on—Print version information
e -projectNane <project name>—Name of the Ant project

e -d <directory>—Directory where bui | d. xn is created. The default is the current
directory.

e« -file <build.xm >—Name of the generated build file

e -librarydir <directories>—Create build targets for shared Java EE libraries in the
comma-separated list of directories. See Creating Shared Java EE Libraries and Optional
Packages..

e -username <usernanme>—User name for deploy commands
e -password <passwor d>—User password

After running webl ogi c. Bui | dXM_Gen, edit the generated bui | d. xnl file to specify properties
for your development environment. The list of properties you need to edit are shown in the
listing below.

Example 4-1 build.xml Editable Properties

<l'-- BU LD PROPERTI ES ADJUST THESE FOR YOUR ENVI RONMENT - ->
<property name="tnp.dir" value="/tnp" />
<property name="dist.dir" value="${tnp.dir}/dist"/>
<property nanme="app.nane" val ue="hel | oWor| dEar" />
<property nane="ear" val ue="${dist.dir}/${app. nane}.ear"/>
<property name="ear.expl oded" val ue="${dist.dir}/${app. nane}_expl oded"/>
<property nanme="verbose" val ue="true" />
<property name="user" val ue="USERNAME" />
<property nanme="password" val ue="PASSWORD" />
<property name="servername" val ue="nyserver" />
<property name="adm nurl|" value="iiop://Iocal host:7001" />

In particular, make sure you edit the t np. di r property to point to the build directory you want
to use. By default, the bui | d. xm file builds projects into a subdirectory t np. di r named after
the application (/ t np/ hel | oWor | dEar in the above listing).

The following listing shows the default main targets created in the bui | d. xm file. You can
view these targets at the command prompt by entering the ant - proj ect hel p command in
the EAR source directory.

4-13

Chapter 4
Developing Multiple-EAR Projects Using the Split Development Directory

Example 4-2 Default build.xml Targets

appc Runs webl ogi c. appc on your application

build Conpi | es hel | oWor| dEar application and runs appc
cl ean Del etes the build and distribution directories
conpil e Only conpiles hell oWrl dEar application, no appc

conpil e. appStartup Conpiles just the appStartup nodul e of the application
conpi |l e. appUtils Conpil es just the appUtils modul e of the application
conpile.build.orig Conpiles just the build.orig nodule of the application
conpi | e. hel | oEIB Conpil es just the hel | oEJB modul e of the application
conpi |l e. hel | oWebApp Conpil es just the hel | oVbApp modul e of the application

conpi | e. javadoc Conpil es just the javadoc nodul e of the application
depl oy Depl oys (and redepl oys) the entire hell oWrl dEar
appl ication

descriptors CGenerates application and nodul e descriptors

ear Package a standard J2EE EAR for distribution

ear . expl oded Package a standard expl oded J2EE EAR

redepl oy. appStartup Redepl oys just the appStartup nodul e of the application
redepl oy. appUtils Redepl oys just the appUtils nodule of the application
redepl oy.build.orig Redeploys just the build.orig module of the application
redepl oy. hel | oEJB Redepl oys just the hell oEJB nodul e of the application
redepl oy. hel | oVebApp Redepl oys just the hel | oWebApp nodul e of application
redepl oy. j avadoc Redepl oys just the javadoc nodul e of the application
undepl oy Undepl oys the entire hel | oWorl| dEar application

4.6 Developing Multiple-EAR Projects Using the Split
Development Directory

Projects that require building multiple enterprise applications simultaneously require
slightly different conventions and procedures in organizing libraries and classes shared
by multiple EARs and linking multiple build.xml files.

The split development directory examples and procedures described previously have
dealt with projects consisting of a single enterprise application. Projects that require
building multiple enterprise applications simultaneously require slightly different
conventions and procedures, as described in the following sections.

¢ Note:

The following sections refer to the MedRec sample application, which
consists of three separate enterprise applications as well as shared utility
classes, third-party JAR files, and dedicated client applications. The MedRec
source and build directories are installed under ORACLE_HOVE/

user _proj ects/ domai n/ nedr ec, where ORACLE_HOME is the directory you
specified as Oracle Home when you installed Oracle WebLogic Server. For
more information about the WebLogic Server samples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

4.6.1 Organizing Libraries and Classes Shared by Multiple EARS

For single EAR projects, the split development directory conventions suggest keeping
third-party JAR files in the APP- | NF/ | i b directory of the EAR source directory.
However, a multiple-EAR project would require you to maintain a copy of the same

ORACLE 4-14

Chapter 4
Developing Multiple-EAR Projects Using the Split Development Directory

third-party JAR files in the APP- I NF/ | i b directory of each EAR source directory. This
introduces multiple copies of the source JAR files, increases the possibility of some JAR files
being at different versions, and requires additional space in your source control system.

To address these problems, consider editing your build script to copy third-party JAR files into
the APP- 1 NF/ | i b directory of the build directory for each EAR that requires the libraries. This
allows you to maintain a single copy and version of the JAR files in your source control
system, yet it enables each EAR in your project to use the JAR files.

The MedRec sample application installed with WebLogic Server uses this strategy, as shown
in the following figure.

Figure 4-9 Shared JAR Files in MedRec

bwild build

I— medrecEar I— physicianEar
I— APP-INF I— APP-INF
I— lib I— lib

f—— commons-",jar e COMMOnSs-"jar
exceptions.jar exceptions.jar
struts.jar struts.jar
utils.jar utils.jar
value.jar value.jar

MedRec takes a similar approach to utility classes that are shared by multiple EARs in the
project. Instead of including the source for utility classes within the scope of each ear that
needs them, MedRec keeps the utility class source independent of all EARs. After compiling
the utility classes, the build script archives them and copies the JARs into the build directory
under the APP- | NF/ LI B subdirectory of each EAR that uses the classes, as shown in figure
Figure 4-9.

4.6.2 Linking Multiple build.xml Files

ORACLE

When developing multiple EARs using the split development directory, each EAR project
generally uses its own bui | d. xnl file (perhaps generated by multiple runs of

webl ogi c. Bui | dXMLGen.). Applications like MedRec also use a master bui | d. xni file that
calls the subordinate bui | d. xni files for each EAR in the application suite.

Ant provides a core task (named ant) that allows you to execute other project build files
within a master bui | d. xn file. The following line from the MedRec master build file shows its
usage:

<ant inheritAl="false" dir="${root}/startupEar" antfile="build.xm"/>

4-15

Chapter 4
Best Practices for Developing WebLogic Server Applications

The above task instructs Ant to execute the file named bui | d. xm in the / st art upEar
subdirectory. The i nherit All parameter instructs Ant to pass only user properties
from the master build file tot the bui | d. xm file in/ st art upEar .

MedRec uses multiple tasks similar to the above to build the st art upEar, medr ecEar,
and physi ci anEar applications, as well as building common utility classes and client
applications.

4.7 Best Practices for Developing WebLogic Server

Applications

ORACLE

The WebLogic Server documentation library includes a number of recommended best
practices for application development, including topics such as packaging, distribution,
deployment, and more.

Oracle recommends the following "best practices" for application development.

Package applications as part of an enterprise application. See Packaging
Applications Using wlpackage.

Use the split development directory structure. See Organizing Java EE
Components in a Split Development Directory.

For distribution purposes, package and deploy in archived format. See Packaging
Applications Using wlpackage.

In most other cases, it is more convenient to deploy in exploded format. See
Archive versus Exploded Archive Directory.

Never deploy untested code on a WebLogic Server instance that is serving
production applications. Instead, set up a development WebLogic Server instance
on the same computer on which you edit and compile, or designate a WebLogic
Server development location elsewhere on the network.

Even if you do not run a development WebLogic Server instance on your
development computer, you must have access to a WebLogic Server distribution
to compile your programs. To compile any code using WebLogic or Java EE APIs,
the Java compiler needs access to the webl ogi c. j ar file and other JAR files in the
distribution directory. Install WebLogic Server on your development computer to
make WebLogic distribution files available locally.

4-16

Building Applications in a Split Development
Directory

To build WebLogic Server Java EE applications in WebLogic split development directory
environment you have to compile applications using wl conpi | e and build modules and
applications using wl appc.

This chapter includes the following sections:

Compiling Applications Using wicompile

Building Modules and Applications Using wlappc

5.1 Compiling Applications Using wicompile

You can use the wl conpi | e Ant task to invoke the javac compiler to compile your application's
Java components in a split development directory structure.

ORACLE

The basic syntax of wl conpi | e identifies the source and build directories, as in this command
from the hel | oWor | dEar sample:

<wl conpile srcdir="${src.dir}" destdir="${dest.dir}"/>

Note:

Deployment descriptors are no longer mandatory as of Java EE 5; therefore,
exploded module directories must indicate the module type by using the .war

or . j ar suffix when there is no deployment descriptor in these directories. The suffix
is required so that wl conpi | e can recognize the modules. The . war suffix indicates
the module is a Web application module and the . j ar suffix indicates the module is
an EJB module.

The following is the order in which events occur using this task:

1.

w conpi | e compiles the Java components into an output directory:

ORACLE_HOVEW server\ sanpl es\ server\ exanpl es\ bui | d\ hel | oWor | dEar\ APP- | NF\ ¢l asses\

where ORACLE_HOVME represents the directory in which the WebLogic Server code
examples are configured. For more information about the WebLogic Server code
examples, see Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

w conpi | e builds the EJBs and automatically includes the previously built Java modules
in the compiler's classpath. This allows the EJBs to call the Java modules without
requiring you to manually edit their classpath.

Finally, W conpi | e compiles the Java components in the Web application with the EJB
and Java modules in the compiler's classpath. This allows the Web applications to refer

5-1

Chapter 5
Compiling Applications Using wicompile

to the EJB and application Java classes without requiring you to manually edit the
classpath.

5.1.1 Using includes and excludes Properties

More complex enterprise applications may have compilation dependencies that are not
automatically handled by the wicompile task. However, you can use the include and
exclude options to wicompile to enforce your own dependencies. The includes and
excludes properties accept the names of enterprise application modules—the names
of subdirectories in the enterprise application source directory—to include or exclude
them from the compile stage.

The following line from the hel | oWor | dEar sample shows the appSt art up module
being excluded from compilation:

<wl compil e srcdir="${src.dir}" destdir="${dest.dir}"
excl udes="appStartup"/ >

5.1.2 wicompile Ant Task Attributes

Table 5-1 contains Ant task attributes specific to w conpi | e.

Table 5-1 wlcompile Ant Task Attributes

]
Attribute Description

sredir The source directory.

The build/output directory.

destdir

¢l asspat h Allows you to change the classpath used by wl conpi | e.

i ncl udes Allows you to include specific directories from the build.

excl udes Allows you to exclude specific directories from the build.

i brarydir Specifies a directory of shared Java EE libraries to add to the

classpath. See Creating Shared Java EE Libraries and Optional
Packages.

5.1.3 Nested javac Options

ORACLE

The w conpi | e Ant task can accept nested javac options to change the compile-time
behavior. For example, the following w conpi | e command ignores deprecation
warnings and enables debugging:

<wl conpile srcdir="${nysrcdir}" destdir="${nybuilddir}">
<javac deprecation="fal se" debug="true"
debugl evel ="li nes, vars, source"/>

</ w conpi | e>

5-2

Chapter 5
Compiling Applications Using wicompile

5.1.4 Setting the Classpath for Compiling Code

Most WebLogic services are based on Java EE standards and are accessed through
standard Java EE packages. The WebLogic and other Java classes required to compile
programs that use WebLogic services are packaged inthe w s-api . jar fileinthelib
directory of your WebLogic Server installation. In addition to W s-api . j ar, include the
following in your compiler's CLASSPATH:

e Thelib\tools.jar file in the JDK directory, or other standard Java classes required by
the Java Development Kit you use.

e The exanpl es. property file for Apache Ant (for examples environment). This file is
discussed in the WebLogic Server documentation on building examples using Ant located
at: sanpl es\ server\ exanpl es\ src\ exanpl es\ exanpl es. ht m

» Classes for third-party Java tools or services your programs import.

* Other application classes referenced by the programs you are compiling.

5.1.5 Library Element for wicompile and wlappc

The | i brary element is an optional element used to define the name and optional version
information for a module that represents a shared Java EE library required for building an
application, as described in Creating Shared Java EE Libraries and Optional Packages. The
I'i brary element can be used with both Wl conpi | e and W appc, described in Building
Modules and Applications Using wlappc.

The name and version information are specified as attributes to the library element, described
in Table 5-2.

Table 5-2 Library attributes

|
Attribute Description

file Required filename of a Java EE library

nane The optional name of a required Java EE library.

An optional specification version required for the

speci ficationversion .
library.

An optional implementation version required for

i mpl erent at i onversi on .
P the library.

The format choices for both speci fi cati onversi on and i npl ement ati onversi on are
described in Referencing Shared Java EE Libraries in an Enterprise Application. The
following output shows a sample | i br ary reference:

<library file="c:\mylibs\lib.jar" name="ReqLib" specificationversion="920"
i npl ement ati onversion="1.1" />

ORACLE 5-3

Chapter 5
Building Modules and Applications Using wlappc

5.2 Building Modules and Applications Using wlappc

To reduce deployment time, use the webl ogi c. appc Java class (or its equivalent Ant
task Wl appc) to pre-compile a deployable archive file, (WAR, JAR, or EAR).
Precompiling with webl ogi ¢. appc generates certain helper classes and performs
validation checks to ensure your application is compliant with the current Java EE
specifications.

The application-level checks include checks between the application-level deployment
descriptors and the individual modules, as well as validation checks across the
modules.

Additionally, optional packages are supported as Java EE shared libraries in appc,
whereby all manifests of an application and its modules are scanned to look for
optional package references.

w appc is the Ant task interface to the webl ogi c. appc compiler. The following section
describe the W appc options and usage. Both webl ogi c. appc and the wl appc Ant task
compile modules in the order in which they appear in the appl i cati on. xn
deployment descriptor file that describes your enterprise application.

5.2.1 wlappc Ant Task Attributes

Table 5-3 describes Ant task options specific to W appc. These options are similar to
the webl ogi ¢. appc command-line options, but with a few differences.

" Note:
See weblogic.appc Reference for a list of webl ogi c. appc options.

See also Library Element for wicompile and wlappc.

Table 5-3 wlappc Ant Task Attributes
]

Option Description
ori nt Prints the standard usage message.
version Prints appc version information.

out put <file>

Specifies an alternate output archive or directory. If not
set, the output is placed in the source archive or
directory.

forceGeneration

Forces generation of EJB and JSP classes. Without this
flag, the classes may not be regenerated (if determined
to be unnecessary).

| i neNunber s

Adds line numbers to generated class files to aid in
debugging.

ORACLE

5-4

Table 5-3 (Cont.) wlappc Ant Task Attributes

Chapter 5
Building Modules and Applications Using wlappc

Option

Description

writelnferredDescriptors

Specifies that the application or module contains
deployment descriptors with annotation information.

basi cd i ent Jar

Does not include deployment descriptors in client JARs
generated for EJBs.

Generates IDL for EJB remote interfaces.

idl
idl overwrite Always overwrites existing IDL files.
i dl Ver bose Displays verbose information for IDL generation.

i dl NoVal ueTypes

Does not generate valuetypes and the methods/
attributes that contain them.

i dl NoAbstract|nterfaces

Does not generate abstract interfaces and methods/
attributes that contain them.

idl Factories

Generates factory methods for valuetypes.

i dl Vi si broker

Generates IDL somewhat compatible with Visibroker 4.5
C++.

i dl Orbix

Generates IDL somewhat compatible with Orbix 2000
2.0 C++.

idlDirectory <dir>

Specifies the directory where IDL files will be created
(default: target directory or JAR)

i dl Met hodSi gnatures <>

Specifies the method signatures used to trigger IDL
code generation.

iiop

Generates CORBA stubs for EJBs.

iiopDirectory <dir>

Specifies the directory where IIOP stub files will be
written (default: target directory or JAR)

keepgener at ed

Keeps the generated . j ava files.

l'ibrarydir

Specifies a directory of shared Java EE libraries to add
to the classpath. See Creating Shared Java EE Libraries
and Optional Packages.

conpiler <java.jdt>

Selects the Java compiler to use. Defaults to JDT.

Compiles debugging information into a class file.

debug

optimi ze Compiles with optimization on.
nOwar n Compiles without warnings.
ORACLE

5-5

Chapter 5
Building Modules and Applications Using wlappc

Table 5-3 (Cont.) wlappc Ant Task Attributes

Option

Description

verbose

Compiles with verbose output.

deprecation

Warns about deprecated calls.

norm

Passes flags through to Symantec's sj.

runtimefl ags

Passes flags through to Java runtime

cl asspath <path>

Selects the classpath to use during compilation.

clientJarQutputDir <dir>

Specifies a directory to place generated client jar files. If
not set, generated jar files are placed into the same
directory location where the JVM is running.

advanced

Prints advanced usage options.

5.2.2 wlappc Ant Task Syntax

The basic syntax for using the wl appc Ant task determines the destination source
directory location. This directory contains the files to be compiled by W appc.

<wl appc source="${dest.dir}" />

The following is an example of a wl appc Ant task command that invokes two options
(idl andidl OverWite)from Table 5-3.

<w appc source="${dest.dir}"idl ="true" idl OrverWite="true" />

5.2.3 Syntax Differences between appc and wlappc

There are some syntax differences between appc and W appc. For appc, the presence
of a flag in the command is a Boolean. For w appc, the presence of a flag in the
command means that the argument is required.

To illustrate, the following are examples of the same command, the first being an appc
command and the second being a wl appc command:

java webl ogi c. appc -idl foo.ear
<w appc source="${dest.dir} idl="true"/>

5.2.4 weblogic.appc Reference

ORACLE

The following sections describe how to use the command-line version of the appc
compiler. The webl ogi c. appc command-line compiler reports any warnings or errors
encountered in the descriptors and compiles all of the relevant modules into an EAR
file, which can be deployed to WebLogic Server.

5-6

5.2.5 weblogic.appc Syntax

Use the following syntax to run appc:

Chapter 5
Building Modules and Applications Using wlappc

pronpt >j ava webl ogi c. appc [options] <ear, jar, or war file or directory>

5.2.6 weblogic.appc Options

The following are the available appc options:

ORACLE

Option Description
_print Prints the standard usage message.
-versi on Prints appc version information.

-output <file>

Specifies an alternate output archive or directory. If not set, the
output is placed in the source archive or directory.

-forceGeneration

Forces generation of EJB and JSP classes. Without this flag, the
classes may not be regenerated (if determined to be unnecessary).

-library

<file[[@ame=<string>]
[@i bspecver =<versi on>]
[@i bi mpl ver =<ver si on|
string>]]>

A comma-separated list of shared Java EE libraries. Optional name
and version string information must be specified in the format
described in Referencing Shared Java EE Libraries in an
Enterprise Application.

-writelnferredDescriptors

Specifies that the application or module contains deployment
descriptors with annotation information.

-li neNunbers

Adds line numbers to generated class files to aid in debugging.

-basi cd i ent Jar

Does not include deployment descriptors in client JARs generated
for EJBs.

Generates IDL for EJB remote interfaces.

-idl
SidlOverwrite Always overwrites existing IDL files.
-i dl Ver bose Displays verbose information for IDL generation.

-idl NoVal ueTypes

Does not generate valuetypes and the methods/attributes that
contain them.

-idl NoAbstractInterfaces

Does not generate abstract interfaces and methods/attributes that
contain them.

-idl Factories

Generates factory methods for valuetypes.

-idl Visibroker

Generates IDL somewhat compatible with Visibroker 4.5 C++.

5-7

Chapter 5
Building Modules and Applications Using wlappc

Option Description

-idl Obix Generates IDL somewhat compatible with Orbix 2000 2.0 C++.

Specifies the directory where IDL files will be created (default:

-idlDir ry <dir> A
'd ectory <di target directory or JAR)

Specifies the method signatures used to trigger IDL code

-idl Met hodSi gnatures <> A
generation.

Siiop Generates CORBA stubs for EJBs.

Specifies the directory where IIOP stub files will be written (default:

] <dir>
IiopDirectory <dir target directory or JAR)

-keepgener at ed Keeps the generated . | ava files.

. . Selects the Java compiler to use.
-conpi l er <javac> p

Compiles debugging information into a class file.

-9

-0 Compiles with optimization on.
-nowarn Compiles without warnings.
-verbose Compiles with verbose output.

-deprecati on Warns about deprecated calls.

_normi Passes flags through to Symantec's sj.

- J<opt i on> Passes flags through to Java runtime.

-cl asspath <pat h> Selects the classpath to use during compilation.

Specifies a directory to place generated client jar files. If not set,
generated jar files are placed into the same directory location
where the JVM is running.

-clientJarQutputDir <dir>

- advanced Prints advanced usage options.

ORACLE 5-8

Deploying and Packaging from a Split
Development Directory

To deploy and package WebLogic Server Java EE applications in WebLogic split
development directory environment use w depl oy and W package tasks.
This chapter includes the following sections:

» Deploying Applications Using wideploy
» Packaging Applications Using wipackage

6.1 Deploying Applications Using wideploy

The w depl oy task provides an easy way to deploy directly from the split development
directory. W conpi | e provides most of the same arguments as the webl ogi c. Depl oyer
directory.

To deploy from a split development directory, you simply identify the build directory location
as the deployable files, as in:

<wl depl oy user="${user}" password="${password}"
action="depl oy" source="${dest.dir}"
name="hel | oWor | dEar" />

The above task is automatically created when you use webl ogi c. Bui | dXM_Gen to create the
bui I d. xm file.

See wldeploy Ant Task Reference, for a complete command reference.

6.2 Packaging Applications Using wipackage

Use W package when you want to deliver your application to another group or individual for
evaluation, testing, performance profiling, or production deployment.

The w package Ant task uses the contents of both the source and build directories to create
either a deployable archive file (. EAR file), or an exploded archive directory representing the
enterprise application (exploded . EAR directory).

6.2.1 Archive versus Exploded Archive Directory

ORACLE

For production purposes, it is convenient to deploy enterprise applications in exploded
(unarchived) directory format. This applies also to standalone Web applications, EJBs, and
connectors packaged as part of an enterprise application. Using this format allows you to
update files directly in the exploded directory rather than having to unarchive, edit, and
rearchive the whole application. Using exploded archive directories also has other benefits,
as described in Deployment Archive Files Versus Exploded Archive Directories in Deploying
Applications to Oracle WebLogic Server.

6-1

Chapter 6
Packaging Applications Using wipackage

You can also package applications in a single archived file, which is convenient for
packaging modules and applications for distribution. Archive files are easier to copy,
they use up fewer file handles than an exploded directory, and they can save disk
space with file compression.

The Java classloader can search for Java class files (and other file types) in a JAR file
the same way that it searches a directory in its classpath. Because the classloader can
search a directory or a JAR file, you can deploy Java EE modules on WebLogic Server

in either a JAR (archived) file or an exploded (unarchived) directory.

6.2.2 wipackage Ant Task Example

In a production environment, use the wl package Ant task to package your split
development directory application as a traditional EAR file that can be deployed to
WebLogic Server. Continuing with the MedRec example, you would package your

6.2.3 wipackage Ant Task Attribute Reference

application as follows:

<w package tofile="\physicianEAR\ physi ci anEAR ear"

srcdi r="\ physi ci anEAR"
dest di r="\bui | d\ physi ci anEAR"/ >

<wl package todir="\physici anEAR\ expl odedphysi ci anEar"

srcdi r="\'src\ physi ci anEAR"
destdi r="\bui | d\ physi ci anEAR" />

The following table describes the attributes of the wl package Ant task.

Table 6-1 Attributes of the wipackage Ant Task
]

Attribute Description Data Type Required?
tofile Name of the EAR archive file into which the String You must specify one of the
w package Ant task packages the split following two attributes: t of i | e or
development directory application. todir.
todir Name of an exploded directory into which the String You must specify one of the
w package Ant task packages the split following two attributes: t of i | e or
development directory application. todir.
srcdir Specifies the source directory of your split String Yes.
development directory application.
The source directory contains all editable files for
your project—Java source files, editable
descriptor files, JSPs, static content, and so forth.
destdir Specifies the build directory of your split String Yes.

development directory application.

It is assumed that you have already executed the
W conpi | e Ant task against the source directory
to generate the needed components into the build
directory; these components include compiled
Java classes and generated deployment
descriptors.

ORACLE

6-2

Developing Applications for Production
Redeployment

You can program and maintain applications with WebLogic Server using the production
redeployment strategy.
This chapter includes the following sections:

* Whatis Production Redeployment?

e Supported and Unsupported Application Types

e Programming Requirements and Conventions

e Assigning an Application Version

» Upgrading Applications to Use Production Redeployment

e Accessing Version Information

7.1 What is Production Redeployment?

Production redeployment enables an administrator to redeploy a new version of an
application in a production environment without stopping the deployed application or
otherwise interrupting the application's availability to clients.

Production redeployment works by deploying a new version of an updated application
alongside an older version of the same application. WebLogic Server automatically manages
client connections so that only new client requests are directed to the new version. Clients
already connected to the application during the redeployment continue to use the older,
retiring version of the application until they complete their work.

See Using Production Redeployment to Upgrade Applications for more information.

7.2 Supported and Unsupported Application Types

Production redeployment only supports HTTP clients and RMI clients. Your development and
design team must ensure that applications using production redeployment are not accessed
by an unsupported client.

WebLogic Server does not detect when unsupported clients access the application, and does
not preserve unsupported client connections during production redeployment.

Enterprise applications can contain any of the supported Java EE module types. Enterprise
applications can also include application-scoped JMS and JDBC modules.

If an enterprise application includes a JCA resource adapter module, the module:

* Must be JCA 1.5 compliant
* Must implement the webl ogi c. connect or. ext ensi ons. Suspendabl e interface

* Must be used in an application-scoped manner, having enabl e- access- out si de- app set
to f al se (the default value).

ORACLE 7-1

Chapter 7
Programming Requirements and Conventions

Before resource adapters in a newer version of the EAR are deployed, resource
adapters in the older application version receive a callback. WebLogic Server then
deploys the newer application version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters,
see Production Redeployment in Developing Resource Adapters for Oracle WebLogic
Server.

7.2.1 Additional Application Support

Additional production redeployment support is provided for enterprise applications that
are accessed by inbound JMS messages from a global JMS destination, and that use
one or more message-driven beans as consumers. For this type of application,
WebLogic Server suspends message-driven beans in the older, retiring application
version before deploying message-driven beans in the newer version. Production
redeployment is not supported with IMS consumers that use the JMS API for global
JMS destinations. If the message-driven beans need to receive all messages
published from topics, including messages published while bean are suspended, use
durable subscribers.

7.3 Programming Requirements and Conventions

WebLogic Server performs production redeployment by deploying two instances of an
application simultaneously. You must observe certain programming conventions to
ensure that multiple instances of the application can co-exist in a WebLogic Server
domain.

The following sections describe each programming convention required for using
production redeployment:

e Applications Should Be Self-Contained

e Versioned Applications Access the Current Version JNDI Tree by Default
e Security Providers Must Be Compatible

e Applications Must Specify a Version Identifier

e Applications Can Access Name and Identifier

e Client Applications Use Same Version when Possible

7.3.1 Applications Should Be Self-Contained

ORACLE

As a best practice, applications that use the in-place redeployment strategy should be
self-contained in their use of resources. This means you should generally use
application-scoped JMS and JDBC resources, rather than global resources, whenever
possible for versioned applications.

If an application must use a global resource, you must ensure that the application
supports safe, concurrent access by multiple instances of the application. This same
restriction also applies if the application uses external (separately-deployed)
applications, or uses an external property file. WebLogic Server does not prevent the
use of global resources with versioned applications, but you must ensure that
resources are accessed in a safe manner.

Looking up a global JNDI resource from within a versioned application results in a
warning message. To disable this check, set the JNDI environment property

7-2

Chapter 7
Programming Requirements and Conventions

webl ogi c. j ndi . W.Cont ext . ALLOW GLOBAL_RESQURCE_LOOKUP to t r ue when performing the
JNDI lookup.

Similarly, looking up an external application results in a warning unless you set the JNDI
environment property, webl ogi c. j ndi . W.Cont ext . ALLON EXTERNAL_APP_LOOKUP, to t r ue.

7.3.2 Versioned Applications Access the Current Version JNDI Tree by
Default

WebLogic Server binds application-scoped resources, such as JMS and JDBC application
modules, into a local JNDI tree available to the application. As with non-versioned
applications, versioned applications can look up application-scoped resources directly from
this local tree. Application-scoped JMS modules can be accessed via any supported JMS
interfaces, such as the JMS API or a message-driven bean.

Application modules that are bound to the global JNDI tree should be accessed only from
within the same application version. WebLogic Server performs version-aware JNDI lookups
and bindings for global resources deployed in a versioned application. By default, an internal
JNDI lookup of a global resource returns bindings for the same version of the application.

If the current version of the application cannot be found, you can use the JNDI environment
property webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOOKUP to return bindings from the
currently active version of the application, rather than the same version.

< Note:

Set webl ogi c. j ndi . W.Cont ext . RELAX_VERSI ON_LOOKUP to t r ue only if you are
certain that the newer and older version of the resource that you are looking up are
compatible with one another.

7.3.3 Security Providers Must Be Compatible

Any security provider used in the application must support the WebLogic Server application
versioning SSPI. The default WebLogic Server security providers for authorization, role
mapping, and credential mapping support the application versioning SSPI.

7.3.4 Applications Must Specify a Version Identifier

In order to use production redeployment, both the current, deployed version of the application
and the updated version of the application must specify unique version identifiers. See
Assigning an Application Version.

7.3.5 Applications Can Access Name and |dentifier

Versioned applications can programmatically obtain both an application name, which remains
constant across different versions, and an application identifier, which changes to provide a
unique label for different versions of the application. Use the application name for basic
display or error messages that refer to the application's name irrespective of the deployed
version. Use the application ID when the application must provide unique identifier for the
deployed version of the application. See Accessing Version Information for more information
about the MBean attributes that provide the name and identifier.

ORACLE 7-3

Chapter 7
Assigning an Application Version

7.3.6 Client Applications Use Same Version when Possible

As described in What is Production Redeployment?, WebLogic Server attempts to
route a client application's requests to the same version of the application until all of
the client's in-progress work has completed. However, if an application version is
retired using a timeout period, or is undeployed, the client's request will be routed to
the active version of the application. In other words, a client's association with a given
version of an application is maintained only on a "best-effort basis."

This behavior can be problematic for client applications that recursively access other
applications when processing requests. WebLogic Server attempts to dispatch
requests to the same versions of the recursively-accessed applications, but cannot
guarantee that an intermediate application version is not undeployed manually or after
a timeout period. If you have a group of related applications with strict version
requirements, Oracle recommends packaging all of the applications together to ensure
version consistency during production redeployment.

7.4 Assigning an Application Version

Oracle recommends that you specify the version identifier in the MANI FEST. M- of the
application, and automatically increment the version each time a new application is
released for deployment. This ensures that production redeployment is always
performed when the administrator redeploys the application.

For testing purposes, a deployer can also assign a version identifier to an application
during deployment and redeployment. See Assigning a Version Identifier During
Deployment and Redeployment in Deploying Applications to Oracle WebLogic Server.

7.4.1 Application Version Conventions

WebLogic Server obtains the application version from the value of the Wbl ogi c-

Appl i cati on- Versi on property in the MANI FEST. M- file. The version string can be a
maximum of 215 characters long, and must consist of valid characters as identified in
Table 7-1.

Table 7-1 Valid and Invalid Characters

|
Valid ASCII Characters Invalid Version Constructs

a-z
A-Z
0-9

period ("."), underscore ("_"), or
hyphen ("-") in combination with
other characters

For example, the following manifest file content describes an application with version
"v920. beta™

Mani fest-Version: 1.0
Created-By: 1.4.1 05-b01 (Sun Mcrosystems Inc.)
\\ebl ogi c- Appl i cati on- Version: v920. beta

ORACLE 7-4

Chapter 7
Upgrading Applications to Use Production Redeployment

7.5 Upgrading Applications to Use Production Redeployment

You can upgrade applications for deployment to WebLogic Server to use production
redeployment.

If you are upgrading applications for deployment to WebLogic Server 9.2 or later, note that
the Name attribute retrieved from AppDepl oynent MBean now returns a unique application
identifier consisting of both the deployed application name and the application version string.
Applications that require only the deployed application name must use the new

Appl i cati onNarmre attribute instead of the Nane attribute. Applications that require a unique
identifier can use either the Nane or Appl i cationl dentifier attribute, as described in
Accessing Version Information.

7.6 Accessing Version Information

Your application code can use new MBean attributes to retrieve version information for
display, logging, or other uses.

The following table describes the read-only attributes provided by Appl i cati onMBean.

Table 7-2 Read-Only Version Attributes in ApplicationMBean

Attribute Name Description

Aopl i cat i onNane A String that represents the deployment name of the application

A String that uniquely identifies the current application version across all versions

Versionldentifier T
of the same application

A String that uniquely identifies the current application version across all

Applicationl dentifier deployed applications and versions

Appl i cationRunt i neMBean also provides version information in the new read-only attributes
described in the following table.

Table 7-3 Read-Only Version Attributes in ApplicationRuntimeMBean

|
Attribute Name Description

Appl i cat i onName A String that represents the deployment name of the application

Appl i cati onVer si on A string that represents the version of the application.

ORACLE 7.5

Chapter 7
Accessing Version Information

Table 7-3 (Cont.) Read-Only Version Attributes in ApplicationRuntimeMBean

Attribute Name

Description

ActiveVersionState

An integer that indicates the current state of the active application version. Valid
states for an active version are:

* ACTIVATED—indicates that one or more modules of the application are
active and available for processing new client requests.

PREPARED—indicates that WebLogic Server has prepared one or more
modules of the application, but that it is not yet active.

UNPREPARED—indicates that no modules of the application are prepared
or active.

See the Java API Reference for Oracle WebLogic Server for more information.
Note that the currently active version does not always correspond to the last-
deployed version, because the administrator can reverse the production

redeployment process. See Rolling Back the Production Redeployment Process
in Deploying Applications to Oracle WebLogic Server.

ORACLE

7-6

Using Java EE Annotations and Dependency
Injection

Learn about Java EE MetaData annotations and dependency injection (DI) in WebLogic
Server.
This chapter includes the following sections:

e Annotation Processing

» Dependency Injection of Resources

e Standard JDK Annotations

e Standard Security-Related JDK Annotations

8.1 Annotation Processing

Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests
for dependency injection, and so on. Annotations are an alternative to deployment descriptors
that were required by older versions of enterprise applications (Java EE 1.4 and earlier).

With Java EE annotations, the standard appl i cation. xm and web. xm deployment
descriptors are optional. The Java EE programming model uses the JDK annotations feature
for Web containers, such as EJBs, servlets, Web applications, and JSPs (see http://

docs. oracl e. conl j avaee/ 6/ api /).

8.1.1 Annotation Parsing

The application components can use annotations to define their needs. Annotations reduce
or eliminate the need to deal with deployment descriptors. Annotations simplify the
development of application components. The deployment descriptor can still override values
defined in the annotation. One usage of annotations is to define fields or methods that need
Dependency Injection (DI). Annotations are defined on the POJO (plain old Java object)
component classes like the EJB or the servlet.

An annotation on a field or a method can declare that fields/methods need injection, as
described in Dependency Injection of Resources. Annotations may also be applied to the
class itself. The class-level annotations declare an entry in the application component's
environment but do not cause the resource to be injected. Instead, the application component
is expected to use JNDI or component context lookup method to lookup the entry. When the
annotation is applied to the class, the JNDI name and the environment entry type must be
specified explicitly.

8.1.2 Deployment View of Annotation Configuration

The Java EE Deployment API [JSR88] provides a way for developers to examine deployment
descriptors. For example, consider an EJB Module that has no deployment descriptors.
Assuming that it has some classes that have been declared as EJBs using annotations, a

ORACLE 8-1

http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/6/api/

Chapter 8
Dependency Injection of Resources

user of Session Helper will still be able to deal with the module as if it had the
deployment descriptor. So the developer can modify the configuration information and
it will be written out in a deployment plan. During deployment, such a plan will be
honored and will override information from annotations.

8.1.3 Compiling Annotated Classes

The WebLogic Server utility appc (and its Ant equivalent wi appc) and Appner ge support
metadata annotations. The appner ge and appc utilities take an application or module
as inputs and process them to produce an output application or module respectively.
When used with -wri t el nferredDescri pt ors flag, the output application/module will
contain deployment descriptors with annotation information. The descriptors will also
have the net adat a- conpl et e attribute set to t r ue, as no annotation processing needs
to be done if the output application or module is deployed directly. However, setting of
met adat a- conpl et e attribute to t r ue will also restrict appner ge and appc from
processing annotations in case these tools are invoked on a previously processed
application or module.

The original descriptors must be preserved in such cases to with an . ori g suffix. If a
developer wants to reapply annotation processing on the output application, they must
restore the descriptors and use the -writ el nferredDescri pt ors flag again. If
appner ge or appc is used with -wri t el nf erredDescri ptors on an enterprise
application for which no standard deployment descriptor exists, the descriptor will be
generated and written out based on the inference rules in the Java EE specification.

For more information on using appc, see weblogic.appc Reference. For more
information on using appmer ge, see Using weblogic.appmerge to Merge Libraries.

8.1.4 Dynamic Annotation Updates

Deployed modules can be updated using updat e deployment operation. If such an
update has changes to deployment descriptor or updated classes, the container must
consider annotation information again while processing the new deployment
descriptor.

Containers use the descriptor framework's two-phase update mechanism to check the
differences between the current and proposed descriptors. This mechanism also
informs the containers about any changes in the non-dynamic properties. The
containers then deal with such non-dynamic changes in their own specific ways. The
container must perform annotation processing on the proposed descriptor to make
sure that it is finding the differences against the right reference.

Similarly, some of the classes from a module could be updated during an update
operation. If the container knows that these classes could affect configuration
information through annotations, it makes sure that nothing has changed.

8.2 Dependency Injection of Resources

ORACLE

Dependency injection (DI) allows application components to declare dependencies on
external resources and configuration parameters via annotations. The container reads
these annotations and injects resources or environment entries into the application
components.

Dependency injection is simply an easier-to-program alternative to using the j avax
interfaces or JNDI APlIs to look up resources.

8-2

Chapter 8
Standard JDK Annotations

A field or a method of an application component can be annotated with the @Resour ce
annotation. Note that the container will unbox the environment entry as required to match it to
a primitive type used for the injection field or method. Example 8-1 illustrates how an
application component uses the @Resour ce annotation to declare environment entries.

Example 8-1 Dependency Injection of Environment Entries

Il fields

/'l The maxi num nunber of tax exenptions, configured by the Deployer.
@Resour ce int maxExenptions;
/1 The m ni num nunber of tax exenptions, configured by the Deployer.
@Resour ce int m nExenptions;

In the above code the @esour ce annotation has not specified a name; therefore, the
container would look for an env- ent ry name called <cl ass- nane>/ maxExenpt i ons and inject
the value of that entry into the naxExenpt i ons variable. The field or method may have any
access qualifier (public, private, etc.). For all classes except application client main classes,
the fields or methods must not be static. Because application clients use the same life cycle
as Java EE applications, no instance of the application client main class is created by the
application client container. Instead, the static main method is invoked. To support injection
for the application client main class, the fields or methods annotated for injection must be
static.

8.2.1 Application Life Cycle Annotation Methods

An application component may need to perform initialization of its own after all resources
have been injected. To support this case, one method of the class can be annotated with the
@ost Const ruct annotation. This method will be called after all injections have occurred and
before the class is put into service. This method will be called even if the class doesn't
request any resources to be injected. Similarly, for classes whose life cycle is managed by
the container, the @' eDest r oy annotation can be applied to one method that will be called
when the class is taken out of service and will no longer be used by the container. Each class
in a class hierarchy may have @ost Const ruct and @ eDest r oy methods.

The order in which the methods are called matches the order of the class hierarchy, with
methods on a superclass being called before methods on a subclass. From the Java EE side
only the application client container is involved in invoking these life cycle methods for Java
EE clients. The life cycle methods for Java EE clients must be static. The Java EE client just
supports the @ost Construct callback.

8.3 Standard JDK Annotations

ORACLE

Examine a listing of reference information related to standard JDK annotations.

e javax.annotation.PostConstruct
e javax.annotation.PreDestroy

e javax.annotation.Resource

e javax.annotation.Resources

For information about EJB-specific annotations for WebLogic Server Enterprise JavaBeans,
see Developing Enterprise JavaBeans for Oracle WebLogic Server.

8-3

Chapter 8
Standard JDK Annotations

For information about Web component-specific annotations WebLogic Server
applications, see WebLogic Annotation for Web Components in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

8.3.1 javax.annotation.PostConstruct

Target: Method

Specifies the life cycle callback method that the application component should execute
before the first business method invocation and after dependency injection is done to
perform any initialization. This method will be called after all injections have occurred
and before the class is put into service. This method will be called even if the class
doesn't request any resources to be injected.

You must specify a @ost Const ruct method in any component that includes
dependency injection.

Only one method in the component can be annotated with this annotation.
The method annotated with @&ost Const r uct must follow these requirements:

e The method must not have any parameters, except in the case of EJB
interceptors, in which case it takes an javax.interceptor.InvocationContext object
as defined by the EJB specification.

e The return type of the method must be voi d.

* The method must not throw a checked exception.

* The method may be publ i c, prot ect ed, package private or private.
* The method must not be st ati ¢ except for the application client.

e The method may be final ornon-final, exceptinthe case of EJBs where it must
be non-final.

e If the method throws an unchecked exception, the class must not be put into
service. In the case of EJBs, the method annotated with PostConstruct can handle
exceptions and cleanup before the bean instance is discarded.

This annotation does not have any attributes.

8.3.2 javax.annotation.PreDestroy

ORACLE

Target: Method

Specifies the life cycle callback method that signals that the application component is
about to be destroyed by the container. You typically apply this annotation to methods
that release resources that the class has been holding.

Only one method in the bean class can be annotated with this annotation.
The method annotated with @r eDest r oy must follow these requirements:

e The method must not have any parameters, except in the case of EJB
interceptors, in which case it takes an javax.interceptor.InvocationContext object
as defined by the EJB specification.

e The return type of the method must be voi d.

* The method must not throw a checked exception.

8-4

Chapter 8
Standard JDK Annotations

* The method may be publ i c, prot ect ed, package private orprivate.
e The method must not be st ati ¢ except for the application client.

e The method may be final ornon-final, exceptin the case of EIJBs where it must be
non-final .

» If the method throws an unchecked exception, the class must not be put into service. In
the case of EJBs, the method annotated with PreDest r oy can handle exceptions and
cleanup before the bean instance is discarded.

This annotation does not have any attributes.

8.3.3 javax.annotation.Resource

Target: Class, Method, Field

Specifies a dependence on an external resource, such as a JDBC data source or a JMS
destination or connection factory.

If you specify the annotation on a field or method, the application component injects an
instance of the requested resource into the bean when the bean is initialized. If you apply the
annotation to a class, the annotation declares a resource that the component will look up at
runtime.

Attributes

Table 8-1 Attributes of the javax.annotation.Resource Annotation

___|]
Name Description Data Type Required?

name Specifies the INDI name of the resource. String No

If you apply the @Resour ce annotation to a field, the default value
of the nane attribute is the field name, qualified by the class name.
If you apply it to a method, the default value is the component
property name corresponding to the method, qualified by the class
name. If you apply the annotation to class, there is no default value
and thus you are required to specify the attribute.

type Specifies the Java data type of the resource. Class No

If you apply the @esour ce annotation to a field, the default value
of the t ype attribute is the type of the field. If you apply it to a
method, the default is the type of the component property. If you
apply it to a class, there is no default value and thus you are
required to specify this attribute.

authenticatio Specifies the authentication type to use for the resource. Authentication No
nType Valid values for this attribute are: Type

« AuthenticationType. CONTAI NER

e AuthenticationType. APPLI CATI ON

Default value is Aut hent i cat i onType. CONTAI NER

shareable Indicates whether a resource can be shared between this Boolean No
component and other components.

Valid values for this attribute are t r ue and f al se. Default value is
true.

ORACLE 8-5

Chapter 8
Standard Security-Related JDK Annotations

Table 8-1 (Cont.) Attributes of the javax.annotation.Resource Annotation

Name

Description Data Type Required?

mappedNam
e

Specifies a WebLogic Server-specific name to which the String No
component reference should be mapped.

However, if you do not specify a INDI hame in the WebLogic
deployment descriptor file, then the value of nappedNane will
always be used as the JNDI name to look up. For example:

@Resour ce(mappedName = "http:// ww. bea. conl';)
URL url;

@Resour ce(mappedName="cust ormer DB")

Dat aSour ce db;

@resour ce(mappedNane = "j s/ Connecti onFact ory")
Connect i onFactory connectionFactory;

@Resour ce(mappedName = "j s/ Queue”)

Queue queue;

In other words, MappedNane is honored as JNDI name only when
there is no JNDI name specified elsewhere, typically in the
WebLogic deployment descriptor file.

description

Specifies a description of the resource. String No

8.3.4 javax.annotation.Resources

Target: Class

Specifies an array of @esour ce annotations. Since repeated annotations are not
allowed, the Resources annotation acts as a container for multiple resource
declarations.

Attributes

Table 8-2 Attributes of the javax.annotation.Resources Annotation

Name Description Data Type Required?

value Specifies the array of Resource[] Yes
@Resour ce annotations.

8.4 Standard Security-Related JDK Annotations

Examine a listing of reference information related to standard security-related JDK
annotations.

e javax.annotation.security.DeclareRoles
e javax.annotation.security.DenyAll

e javax.annotation.security.PermitAll

e javax.annotation.security.RolesAllowed

e javax.annotation.security.RunAs

ORACLE 8-6

Chapter 8
Standard Security-Related JDK Annotations

8.4.1 javax.annotation.security.DeclareRoles

Target: Class
Defines the security roles that will be used in the Java EE container.

You typically use this annotation to define roles that can be tested from within the methods of
the annotated class, such as using the i sUser | nRol e method. You can also use the
annotation to explicitly declare roles that are implicitly declared if you use the @Rol esAl | owed
annotation on the class or a method of the class.

You create security roles in WebLogic Server using the WebLogic Server Administration
Console. For information about security, see Manage Security Roles.

Attributes

Table 8-3 Attributes of the javax.annotation.security.DeclareRoles Annotation

|
Name Description Data Type Required?

value Specifies an array of security roles that String([] Yes
will be used in the Java EE container.

8.4.2 javax.annotation.security.DenyAll

Target: Method

Specifies that no security role is allowed to access the annotated method, or in other words,
the method is excluded from execution in the Java EE container.

This annotation does not have any attributes.

8.4.3 javax.annotation.security.PermitAll

Target: Method

Specifies that all security roles currently defined for WebLogic Server are allowed to access
the annotated method.

This annotation does not have any attributes.

8.4.4 javax.annotation.security.RolesAllowed

ORACLE

Target: Class, Method

Specifies the list of security roles that are allowed to access methods in the Java EE
container.

If you specify it at the class-level, then it applies to all methods in the application component.
If you specify it at the method-level, then it only applies to that method. If you specify the
annotation at both the class- and method-level, the method value overrides the class value.

You create security roles in WebLogic Server using the WebLogic Server Administration
Console. For information about security, see Manage Security Roles.

Attributes

8-7

Chapter 8
Standard Security-Related JDK Annotations

Table 8-4 Attributes of the javax.annotation.security.RolesAllowed Annotation

__|
Name Description Data Type Required?

value List of security roles that are allowed to String[] Yes
access methods of the Java EE container.

8.4.5 javax.annotation.security.RunAs

ORACLE

Target: Class
Specifies the security role which actually executes the Java EE container.

The security role must exist in the WebLogic Server security realm and map to a user
or group. For information about security, see Manage Security Roles.

Attributes

Table 8-5 Attributes of the javax.annotation.security.RunAs Annotation

]
Name Description Data Type Required?

value Specifies the security role that the String Yes
Java EE container should run as.

8-8

Using Contexts and Dependency Injection for
the Java EE Platform

ORACLE

WebLogic Server provides an implementation of the Contexts and Dependency Injection
(CDI) specification. The CDI specification defines a set of services for using injection to
specify dependencies in an application. CDI provides contextual life cycle management of
beans, type-safe injection points, a loosely coupled event framework, loosely coupled
interceptors and decorators, alternative implementations of beans, bean navigation through
the Unified Expression Language (EL), and a service provider interface (SPI) that enables
CDI extensions to support third-party frameworks or future Java EE components.

This chapter includes the following sections:

* About CDI for the Java EE Platform

« Defining a Managed Bean

e Injecting a Bean

e Defining the Scope of a Bean

e Overriding the Scope of a Bean at the Point of Injection

e Using Qualifiers

« Providing Alternative Implementations of a Bean Type

e Applying a Scope and Qualifiers to a Session Bean

e Using Producer Methods_ Disposer Methods_ and Producer Fields
e Initializing and Preparing for the Destruction of a Managed Bean
» Intercepting Method Invocations and Life Cycle Events of Bean Classes
e Decorating a Managed Bean Class

e Assigning an EL Name to a CDI Bean Class

» Defining and Applying Stereotypes

e Using Events for Communications Between Beans

e Injecting a Predefined Bean

e Injecting and Qualifying Resources

e Using CDI With JCA Technology

e Configuring a CDI Application

e Supporting Third-Party Portable Extensions

e Enabling and Disabling CDI

e Enabling and Disabling Implicit Bean Discovery

9-1

Chapter 9
About CDI for the Java EE Platform

9.1 About CDI for the Java EE Platform

ORACLE

CDl for the Java EE Platform specification was formerly called Web Beans. CDI
injection simplifies the use of managed beans with JSF technology in Web
applications.

CDl is specified by Java Specification Request (JSR) 299: Contexts and Dependency
Injection for the Java EE 1.1. CDI uses the following related specifications:

e JSR 330: Dependency Injection for Java

e Java EE 7 Managed Beans Specification, which is a part of JSR 342: Java
Platform, Enterprise Edition 7 (Java EE 7) Specification

e Interceptors specification, which is a part of JSR 345: Enterprise JavaBeans 3.2

CDI provides the following features:

» Contexts. This feature enables you to bind the life cycle and interactions of
stateful components to well-defined but extensible life cycle contexts.

» Dependency injection. This feature enables you to inject components into an
application in a type-safe way and to choose at deployment time which
implementation of a particular interface to inject.

CDl is integrated with the major component technologies in Java EE, namely:

* Servlets

« JavaServer Pages (JSP)

» JavaServer Faces (JSF)

* Enterprise JavaBeans (EJB)

» Java EE Connector architecture (JCA)
* Web services

Such integration enables standard Java EE objects, such as Servlets and EJB
components, to use CDI injection for dependencies. CDI injection simplifies, for
example, the use of managed beans with JSF technology in Web applications.

See Introduction to Contexts and Dependency Injection for the Java EE Platform in the
Java EE 7Tutorial.

CDI 1.1 Examples

Oracle provides Java EE 7 examples that demonstrate new features in CDI 1.1, such
as:

e CDI Events CDI Sample Application — Demonstrates how beans can interact in a
decoupled fashion with no compile-time dependencies between the interacting
beans.

e CDI Transactional Annotation — Demonstrates how to inject a bean annotated with
the @Transactional annotation, which provides an application with the ability to
declaratively control transaction boundaries on CDI managed beans.

e CDI Transaction Scoped APl — Demonstrate how the @TransactionScoped
annotation provides the ability to specify a standard CDI scope to define bean
instances whose life cycle is scoped to the currently active JTA transaction.

9-2

http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=330
http://jcp.org/en/jsr/summary?id=342
http://jcp.org/en/jsr/summary?id=342
http://jcp.org/en/jsr/detail?id=345
http://docs.oracle.com/javaee/7/tutorial/cdi-basic.htm#GIWHB

Chapter 9
Defining a Managed Bean

For more information, see the CDI 1.1 examples in the WebLogic Server distribution kit:
ORACLE_HOWVE/ sanpl es/ server/ src/ exanpl es/j avaee7/ cdi where ORACLE_HOVE
represents the directory in which the WebLogic Server code examples are configured. See
Sample Applications and Code Examples in Understanding Oracle WebLogic Server.

CDI 1.0 Example

A Java EE 6 example that shows how to use CDI is provided in the cdi sample application,
which is installed in ORACLE_HOVE/ sanpl es/ server/ src/ exanpl es/j avaee7/ cdi
where ORACLE_HOME represents the directory in which the WebLogic Server code examples
are configured. See Sample Applications and Code Examples in Understanding Oracle
WebLogic Server.

9.2 Defining a Managed Bean

A managed bean is the basic component in a CDI application and defines the beans that CDI
can create and manage.

A bean is a source of the objects that CDI can create and manage. See About Beans in The
Java EE 7Tutorial.

To define a managed bean, define a top-level plain old Java object (POJO) class that meets
either of the following conditions:

* The class is defined to be a managed bean by any other Java EE specification.

* The class meets all of the conditions that are required by JSR 346 as listed in About
Managed Beans in The Java EE 7Tutorial.

< Note:

No special declaration, such as an annotation, is required to define a managed
bean. To make the managed beans of an application available for injection, you
must configure the application as explained in Configuring a CDI Application.

9.3 Injecting a Bean

ORACLE

To use the beans that you define, inject them into another bean that an application such as a
JavaServer Faces can use.

See Injecting Beans in The Java EE 7Tutorial.

CDI ensures type-safe injection of beans by selecting the bean class on the basis of the Java
type that is specified in the injection point, not the bean name. CDI also determines where to
inject a bean from the Java type in the injection point.

In this respect, CDI bean injection is different than the resource injection that was introduced
in the Java EE 5 specification, which selects the resource to inject from the string name of the
resource. For example, a data source that is injected with the javax.annotation.Resource
annotation is identified by its string name.

To inject a bean, obtain an instance of the bean by creating an injection point in the class that
is to use the injected bean. Create the injection point by annotating one of the following
program elements with the j avax. i nj ect. | nj ect annotation:

9-3

http://docs.oracle.com/javaee/7/tutorial/cdi-basic003.htm#GJEBJ
http://docs.oracle.com/javaee/7/tutorial/cdi-basic004.htm#GJFZI
http://docs.oracle.com/javaee/7/tutorial/cdi-basic004.htm#GJFZI
http://docs.oracle.com/javaee/7/tutorial/cdi-basic007.htm#GJBAN
http://docs.oracle.com/javaee/6/api/javax/annotation/Resource.html
http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html

Chapter 9
Defining the Scope of a Bean

* Aninstance class field
* Aninitializer method parameter
* A bean constructor parameter

Example 9-1 shows how to use the @ nj ect annotation to inject a bean into another
bean.

Example 9-1 Injecting a Bean into Another Bean

This example annotates an instance class field to inject an instance of the bean class
Greeting into the class Printer.

i nmport javax.inject.lInject;

public class Printer {
@nject Geeting greeting;

}

9.4 Defining the Scope of a Bean

ORACLE

The scope of a bean defines the duration of a user's interaction with an application that
uses the bean. To enable a Web application to use a bean that injects another bean
class, the bean must be able to hold state over the duration of the user's interaction
with the application.

To define the scope of a bean, annotate the class declaration of the bean with the
scope. The j avax. enter pri se. cont ext package defines the following scopes:

* @equest Scoped

e (@essionScoped

e @pplicationScoped
e (@onversationScoped
e @ependent

For information about these scopes, see Using Scopes in The Java EE 7 Tutorial.

If you do not define the scope of a bean, the scope of the bean is @ependent by
default. The @ependent scope specifies that the bean's life cycle is the life cycle of the
object into which the bean is injected.

The predefined scopes except @ependent are contextual scopes. CDI places beans
of contextual scope in the context whose life cycle is defined by the Java EE
specifications. For example, a session context and its beans exist during the lifetime of
an HTTP session. Injected references to the beans are contextually aware. The
references always apply to the bean that is associated with the context for the thread
that is making the reference. The CDI container ensures that the objects are created
and injected at the correct time as determined by the scope that is specified for these
objects.

Example 9-2 shows how to define the scope of a bean.
Example 9-2 Defining the Scope of a Bean

This example defines the scope of the Account ant bean class to be @equest Scoped.

9-4

http://docs.oracle.com/javaee/6/api/javax/enterprise/context/package-summary.html
http://docs.oracle.com/javaee/7/tutorial/cdi-basic008.htm#GJBBK

Chapter 9
Overriding the Scope of a Bean at the Point of Injection

The Account ant class in this example is qualified by the @eanCount er qualifier. For more
information, see Using Qualifiers.

package com exanpl e. managers;
i nmport javax.enterprise.context.Request Scoped,;

@Request Scoped
@eanCount er
public class Accountant inplenents Manager

{
=

9.5 Overriding the Scope of a Bean at the Point of Injection

9.6 Using

ORACLE

Overriding the scope of a bean at the point of injection enables an application to request a
new instance of the bean with the default scope @ependent . The @ependent scope specifies
that the bean's life cycle is the life cycle of the object into which the bean is injected.

The CDI container provides no other life cycle management for the instance. For more
information about scopes, see Defining the Scope of a Bean.

< Note:

The effects of overriding the scope of a bean may be unpredictable and
undesirable, particularly if the overridden scope is @equest or @essi on.

To override the scope of a bean at the point of injection, inject the bean by using the
j avax. enterprise.inject.Newannotation instead of the @ nj ect annotation. For more
information about the @ nj ect annotation, see Injecting a Bean.

Qualifiers

Qualifiers enable you to provide more than one implementation of a particular bean type.

When you use qualifiers, you select between implementations at development time. See
Using Qualifiers in The Java EE 7 Tutorial.

Note:

To select between alternative implementations at deployment time, use alternatives
as explained in Providing Alternative Implementations of a Bean Type.

Using qualifiers involves the tasks that are explained in the following sections:

» Defining Qualifiers for Implementations of a Bean Type
* Applying Qualifiers to a Bean

* Injecting a Qualified Bean

9-5

http://docs.oracle.com/javaee/7/api/javax/enterprise/inject/New.html
http://docs.oracle.com/javaee/7/tutorial/cdi-basic006.htm#GJBCK

Chapter 9
Using Qualifiers

9.6.1 Defining Qualifiers for Implementations of a Bean Type

ORACLE

A qualifier is an application-defined annotation that enables you to identify an
implementation of a bean type. Define a qualifier for each implementation of a bean
type that you are providing.

Define qualifiers only if you are providing multiple implementations of a bean type and
if you are not using alternatives. If no qualifiers are defend for a bean type, CDI applies
the predefined qualifier @ef aul t when a bean of the type is injected.

Note:

CDI does not require a qualifier to be unique to a particular bean. You can
define a qualifier to use for more than one bean type.

To define a qualifier:

1. Define a Java annotation type to represent the qualifier.

2. Annotate the declaration of the annotation type with the j avax. i nject. Qualifier
annotation.

3. Specify that the qualifier is to be retained by the virtual machine at run time.

Use the j ava. | ang. annot ati on. Ret ent i on(RUNTI ME) meta-annotation for this
purpose.

4. Specify that the qualifier may be applied to the program elements METHOD, FI ELD,
PARAMETER, and TYPE.

Use the j ava. | ang. annot ati on. Tar get ({ METHOD, FI ELD, PARAMETER, TYPE})
meta-annotation for this purpose.

The following examples show how to define qualifiers @eanCount er and
@eopl eManager for different implementations of the same bean type.

Example 9-3 Defining the @BeanCounter Qualifier
This example defines the @eanCount er qualifier.
package com exanpl e. managers;

inport static java.lang.annotation. El ement Type. FI ELD;
inport static java.lang.annotation. El ement Type. METHOD;
inport static java.lang.annotation. El ement Type. PARAMETER;
inmport static java.lang.annotation. El ement Type. TYPE;

inport static java.lang.annotation. RetentionPolicy. RUNTI MVE;

inport java.lang.annotation. Retention;
inport java.lang.annotation. Target;

inport javax.inject.Qualifier;
@ualifier
@ret ent i on(RUNTI ME)

@rar get ({ METHOD, FIELD, PARAMETER, TYPE})
public @nterface BeanCounter {}

9-6

http://docs.oracle.com/javaee/6/api/javax/inject/Qualifier.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html

Chapter 9
Using Qualifiers

Example 9-4 Defining the @PeopleManager Qualifier
This example defines the @eopl eManager qualifier.

package com exanpl e. managers;

inport static java.lang.annotation. El ement Type. FI ELD;
inport static java.lang.annotation. El ement Type. METHOD;
inport static java.lang.annotation. El ement Type. PARAMETER;
inmport static java.lang.annotation. El ement Type. TYPE;

inport static java.lang.annotation. RetentionPolicy. RUNTI MVE;

import java.lang.annotation. Retenti on;
i nmport java.lang.annotation. Target;

import javax.inject.Qualifier;

@ualifier

@Ret ent i on(RUNTI MVE)

@ar get ({ METHOD, FIELD, PARAMETER TYPE})
public @nterface Peopl eManager {}

9.6.2 Applying Qualifiers to a Bean

ORACLE

Applying qualifiers to a bean identifies the implementation of the bean type. You can apply
any number of qualifiers or no qualifiers to a bean. If you do not apply any qualifiers to a
bean, CDI implicitly applies the predefined qualifier @ef aul t to the bean.

¢ Note:

CDI does not require a qualifier to be unique to a particular bean. You can apply the
same qualifier to different types of beans in the set of beans that are available in the
application.

To apply qualifiers to a bean, annotate the class declaration of the bean with each qualifier to
apply. Any qualifier that you apply to a bean must be defined as explained in Defining
Quialifiers for Implementations of a Bean Type.

The following examples show how to apply the qualifiers @eanCount er and @eopl eManager
to different implementations of the Manager bean type.

Example 9-5 Applying the @BeanCounter Qualifier to a Bean

This example applies the @eanCount er qualifier to the Account ant class. The Account ant
class is an implementation of the Manager bean type. The @eanCount er qualifier is defined in
Example 9-3.

package com exanpl e. managers;

@eanCount er
public class Accountant inplenents Minager

{1}

9-7

Chapter 9
Using Qualifiers

Example 9-6 Applying the@ PeopleManager Qualifier to a Bean

This example applies the @eopl eManager qualifier to the Boss class. The Boss class is
an implementation of the Manager bean type. The @eopl eManager qualifier is defined
in Example 9-4.

package com exanpl e. managers;

@reopl eManager
public class Boss inplenents Manager

{..}

9.6.3 Injecting a Qualified Bean

ORACLE

To inject a qualified bean, create an injection point and annotate the injection point with
the bean's qualifiers. The qualifiers at the injection point define the overall
requirements of the injection target. The CDI application must contain a CDI managed
bean that matches the type of the injection point and the qualifiers with which the
injection point is annotated. Otherwise, a deployment error occurs. For more
information about how to create an injection point, see Injecting a Bean.

If you do not annotate the injection point, the predefined qualifier @ef aul t is applied
to the injection point by default.

CDI resolves the injection point by first matching the bean type and then matching
implementations of that type with the qualifiers in the injection point.

Only one active bean class may match the bean type and qualifiers in the injection
point. Otherwise, an error occurs.

A bean class is active in one of the following situations:

 The bean class is an alternative that is enabled.

* The bean class is not an alternative and no alternatives for its bean type are
enabled.

For information about alternatives, see Providing Alternative Implementations of a
Bean Type.

Example 9-7 shows how to inject a qualified bean.
Example 9-7 Injecting a Qualified Bean

This example injects the @eanCount er implementation of the Manager bean type. The
Manager bean type is implemented by the following classes:

e Account ant, which is shown in Example 9-5
* Boss, which is shown in Example 9-6

In this example, the Account ant class is injected because the bean type and qualifier
of this class match the bean type and qualifier in the injection point.

package com exanpl e. managers;
i nport javax.inject.lnject;

public class PennyPincher {
@nj ect @eanCounter Manager accountant;

9-8

Chapter 9
Providing Alternative Implementations of a Bean Type

9.7 Providing Alternative Implementations of a Bean Type

The environments for the development, testing, and production deployment of an enterprise
application may be very different. Differences in configuration, resource availability, and

performance requirements may cause bean classes that are appropriate to one environment
to be unsuitable in another environment. By providing alternative implementations of a bean
type, you can modify an application at deployment time to meet such differing requirements.

Different deployment scenarios may also require different business logic in the same
application. For example, country-specific sales tax laws may require country-specific sales
tax business logic in an order-processing application.

CDI enables you to select from any number of alternative bean type implementations for
injection instead of a corresponding primary implementation. See Using Alternatives in The
Java EE 7 Tutorial.

¢ Note:

To select between alternative implementations at development time, use qualifiers
as explained in Using Qualifiers.

Providing alternative implementations of a bean type involves the tasks that are explained in
the following sections:

» Defining an Alternative Implementation of a Bean Type

» Selecting an Alternative Implementation of a Bean Type for an Application

9.7.1 Defining an Alternative Implementation of a Bean Type

ORACLE

To define an alternative implementation of a bean type:

1. Write a bean class of the same bean type as primary implementation of the bean type.

To ensure that any alternative can be injected into an application, you must ensure that
all alternatives and the primary implementation are all of the same bean type. For
information about how to inject a bean, see Injecting a Bean.

2. Annotate the class declaration of the implementation with the
javax.enterprise.inject.Alternative annotation.

¢ Note:

To ensure that the primary implementation is selected by default, do not
annotate the class declaration of the primary implementation with
@\ ternative.

The following examples show the declaration of the primary implementation and an
alternative implementation of a bean type. The alternative implementation is a mock
implementation that is intended for use in testing.

9-9

http://docs.oracle.com/javaee/7/tutorial/cdi-adv002.htm#GJSDF
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Alternative.html

Chapter 9
Applying a Scope and Qualifiers to a Session Bean

Example 9-8 Declaring a Primary Implementation of a Bean Type
This example declares the primary implementation O der | npl of the bean type Or der .

package com exanpl e. or der processor;

public class Orderlnpl inmplements Order {

-

Example 9-9 Declaring an Alternative Implementation of a Bean Type

This example declares the alternative implementation MockOr der | npl of the bean type
O der . The declaration of the primary implementation of this bean type is shown in
Example 9-8.

package com exanpl e. or der processor;
inport javax.enterprise.inject.Aternative;

@\ ternative
public class MockOrderlnpl inplements Order {

}...

9.7.2 Selecting an Alternative Implementation of a Bean Type for an

Application

By default, CDI selects the primary implementation of a bean type for injection into an
application. If you require an alternative implementation to be injected, you must select
the alternative explicitly.

To select an alternative implementation for an application:

1. Add acl ass element for the alternative to the al t er nati ves element in the
beans. xm file.

2. Inthe cl ass element, provide the fully qualified class name of the alternative.

For more information about the beans. xn file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xm file for selecting an alternative
implementation of a bean type.

Example 9-10 Selecting an Alternative Implementation of a Bean Type

This example selects the alternative implementation
com exanpl e. or der processor. MockOr der | npl .

<al ternatives>
<cl ass>com exanpl e. or der processor. MockOr der | npl </ cl ass>
</alternatives>

9.8 Applying a Scope and Qualifiers to a Session Bean

ORACLE

CDI enables you to apply a scope and qualifiers to a session bean.

9-10

Chapter 9
Using Producer Methods, Disposer Methods, and Producer Fields

A session bean is an EJB component that meets either of the following requirements:

* The class that implements the bean is annotated with one of the following annotations:
— javax. ejb. Singl eton, which denotes a singleton session bean
— Jjavax.ejb. Stateful,which denotes a stateful session bean
— Jjavax.ejb. Statel ess, which denotes a stateless session bean

* The bean is listed in the ej b-j ar. xm deployment-descriptor file.

For more information about session beans, see the following documents:

» Developing Enterprise JavaBeans for Oracle WebLogic Server

* Developing Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server

9.8.1 Applying a Scope to a Session Bean

The scopes that CDI allows you to apply to a session bean depend on the type of the session
bean as shown in Table 9-1.

Table 9-1 Allowed CDI Scopes for Session Beans

__|
Session Bean Type Allowed Scopes

Singleton Either of the following scopes:
* Dependent
* Application

Stateful Any

Stateless Dependent

For more information about scopes in CDI, see Defining the Scope of a Bean.

When CDI injects a reference to a stateful session bean, CDI creates the bean, injects the
bean's fields, and manages the stateful session bean according to its scope. When the
context is destroyed, CDI calls the stateful session bean's remove method to remove the
bean.

9.8.2 Applying Qualifiers to a Session Bean

9.9 Using
Fields

ORACLE

CDI allows you to apply any qualifier to a session bean. CDI does not restrict the type of
qualifier that you can apply to a session bean. For more information about qualifiers in CDI,
see Using Qualifiers.

Producer Methods, Disposer Methods, and Producer

A producer method is a method that generates an object that can then be injected. A
disposer method enables an application to perform customized cleanup of an object that a
producer method returns. A producer field is a field of a bean that generates an object.

A producer field is a simpler alternative to a producer method.

9-11

http://docs.oracle.com/javaee/6/api/javax/ejb/Singleton.html
http://docs.oracle.com/javaee/6/api/javax/ejb/Stateful.html
http://docs.oracle.com/javaee/6/api/javax/ejb/Stateless.html

Chapter 9
Using Producer Methods, Disposer Methods, and Producer Fields

See Using Producer Methods, Producer Fields, and Disposer Methods in CDI
Applications in The Java EE 7 Tutorial.

9.9.1 Defining a Producer Method

A producer method enables an application to customize how CDI managed beans are
created. This customization involves overriding the process that CDI normally uses to
resolve beans. A producer method enables you to inject an object that is not an
instance of a CDI bean class.

A producer method must be a method of a CDI bean class or session bean class.
However, a producer method may return objects that are not instances of CDI bean
classes. In this situation, the producer method must return an object that matches a
bean type.

A producer method can have any number of parameters. If necessary, you can apply
qualifiers to these parameters. All parameters of a producer method are injection
points. Therefore, the parameters of a producer method do not require the @ nj ect
annotation.

To define a producer method, annotate the declaration of the method with the
j avax.enterprise.inject.Produces annotation.

If the producer method sometimes returns null, set the scope of the method to
dependent.

Note:

Calling a producer method directly in application code does not invoke CDI.

For an example of the definition of a producer method, see Example 9-11.

9.9.2 Defining a Disposer Method

ORACLE

If you require customized cleanup of an object that a producer method returns, define
a disposer method in the class that declares the producer method.

To define a disposer method, annotate the disposed parameter in the declaration of
the method with the j avax. ent er pri se. i nj ect. Di sposes annotation. The type of the
disposed parameter must be the same as the return type of the producer method.

A disposer method matches a producer method when the disposed object's injection
point matches both the type and qualifiers of the producer method. You can define one
disposer method to match to several producer methods in the class.

Example 9-11 shows how to use the @ oduces annotation to define a producer
method and the @i sposes annotation to define a disposer method.

Example 9-11 Defining a Producer Method and Disposer Method
This example defines the producer method connect and the disposer method cl ose.

The producer method connect returns an object of type Connect i on. In the disposer
method cl ose, the parameter connecti on is the disposed parameter. This parameter
is of type Connect i on to match the return type of the producer method.

9-12

http://docs.oracle.com/javaee/7/tutorial/cdi-adv003.htm#GKGKV
http://docs.oracle.com/javaee/7/tutorial/cdi-adv003.htm#GKGKV
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Produces.html
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Disposes.html

Chapter 9
Using Producer Methods, Disposer Methods, and Producer Fields

At run time, the CDI framework creates an instance of SomeC ass and then calls the producer
method. Therefore, the CDI framework is responsible for injecting the parameters that are
passed to the producer method.

The scope of the producer method is @Request Scoped. When the request context is
destroyed, if the Connect i on object is in the request context, CDI calls the disposer method
for this object. In the call to the disposer method, CDI passes the Connect i on object as a
parameter.

inport javax.enterprise.inject.Produces;
i nport javax.enterprise.inject.Disposes;

i nport javax.enterprise.context.Request Scoped,;

public class Somed ass {
@'roduces @Request Scoped
public Connection connect(User user) {
return createConnection(user.getld(),
user. get Password());

}

private Connection createConnection(
String id, String password) {...}

public void cl ose(@i sposes Connection connection) {
connection. cl ose();
}

}
9.9.3 Defining a Producer Field

A producer field is a simpler alternative to a producer method. A producer field must be a field
of a managed bean class or session bean class. A producer field may be either static or
nonstatic, subject to the following constraints:

* In a session bean class, the producer field must be a static field.
* In a managed bean class, the producer field can be either static or nonstatic.

To define a producer field, annotate the declaration of the field with the
javax. enterprise.inject.Produces annotation.

If the producer field may contain a null when accessed, set the scope of the field to
dependent.

" Note:

Using a producer field directly in application code does not invoke CDI.

Producer fields do not have disposers.

ORACLE 9-13

http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Produces.html

Chapter 9
Initializing and Preparing for the Destruction of a Managed Bean

9.10 Initializing and Preparing for the Destruction of a
Managed Bean

CDI managed bean classes and their superclasses support the annotations for
initializing and preparing for the destruction of a managed bean.

These annotations are defined in JSR 250: Common Annotations for the Java
Platform. For more information, see Using Java EE Annotations and Dependency
Injection.

9.10.1 Initializing a Managed Bean

Initializing a managed bean specifies the life cycle callback method that the CDI
framework should call after dependency injection but before the class is put into
service.

To initialize a managed bean:

1. Inthe managed bean class or any of its superclasses, define a method that
performs the initialization that you require.

2. Annotate the declaration of the method with the
j avax. annot at i on. Post Const ruct annotation.

When the managed bean is injected into a component, CDI calls the method after
all injection has occurred and after all initializers have been called.

Note:

As mandated by JSR 250, if the annotated method is declared in a
superclass, the method is called unless a subclass of the declaring class
overrides the method.

9.10.2 Preparing for the Destruction of a Managed Bean

ORACLE

Preparing for the destruction of a managed bean specifies the life cycle callback
method that signals that an application component is about to be destroyed by the
container.

To prepare for the destruction of a managed bean:

1. Inthe managed bean class or any of its superclasses, define a method that
prepares for the destruction of the managed bean.

In this method, perform any cleanup that is required before the bean is destroyed,
such a releasing resources that the bean has been holding.

2. Annotate the declaration of the method with the j avax. annot at i on. Pr eDest r oy
annotation.

CDiI calls the method before starting the logic for destroying the bean.

9-14

http://jcp.org/en/jsr/detail?id=250
http://jcp.org/en/jsr/detail?id=250
http://docs.oracle.com/javaee/6/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/6/api/javax/annotation/PreDestroy.html

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

< Note:

As mandated by JSR 250, if the annotated method is declared in a superclass,
the method is called unless a subclass of the declaring class overrides the
method.

9.11 Intercepting Method Invocations and Life Cycle Events of
Bean Classes

ORACLE

Intercepting a method invocation or a life cycle event of a bean class interposes an
interceptor class in the invocation or event. When an interceptor class is interposed,
additional actions that are defined in the interceptor class are performed.

An interceptor class simplifies the maintenance of code for tasks that are frequently
performed and are separate from the business logic of the application. Examples of such
tasks are logging and auditing.

Note:

The programming model for interceptor classes is optimized for operations that are
separate from the business logic of the application. To intercept methods that
perform operations with business semantics, use a decorator class as explained in
Decorating a Managed Bean Class.

The interceptors that were introduced in the Java EE 5 specification are specific to EJB
components. For more information about Java EE 5 interceptors, see Specifying Interceptors
for Business Methods or Life Cycle Callback Events in Developing Enterprise JavaBeans for
Oracle WebLogic Server.

CDI enables you to use interceptors with the following types of Java EE managed objects:

* CDI managed beans
» EJB session beans

* EJB message-driven beans

Note:

You cannot use interceptors with EJB entity beans because CDI does not support
EJB entity beans.

See Using Interceptors in The Java EE 7 Tutorial.

Intercepting method invocations and life cycle events of bean classes involves the tasks that
are explained in the following sections:

e Defining an Interceptor Binding Type

9-15

http://docs.oracle.com/javaee/7/tutorial/cdi-adv006.htm#GKHJX

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

Defining an Interceptor Class
Identifying Methods for Interception

Enabling an Interceptor

9.11.1 Defining an Interceptor Binding Type

ORACLE

An interceptor binding type is an application-defined annotation that associates an
interceptor class with an intercepted bean. Define an interceptor binding type for each
type of interceptor that you require.

Note:

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can define an interceptor binding type to use for more
than one interceptor class.

To define an interceptor binding type:

Define a Java annotation type to represent the interceptor binding type.

Annotate the declaration of the annotation type with the
javax.interceptor.|nterceptorBindi ng annotation.

Specify that the interceptor binding type is to be retained by the virtual machine at
run time.

Use the j ava. | ang. annot at i on. Ret ent i on(RUNTI ME) meta-annotation for this
purpose.

Specify that the interceptor binding type may be applied to the program elements
METHOD and TYPE.

Use the j ava. | ang. annot ati on. Tar get ({ METHOD, TYPE}) meta-annotation for
this purpose.

Example 9-12 Defining An Interceptor Binding Type
This example defines the @t ansact i onal interceptor binding type.

package com exanpl e. bi | | paynent.interceptor;

inport static java.lang.annotation. El ement Type. METHOD;
inport static java.lang.annotation. El ement Type. TYPE;
inport static java.lang.annotation.RetentionPolicy. RUNTI ME;

i nmport java.lang.annotation. Retention;
inport java.lang.annotation. Target;

i nmport javax.interceptor.|nterceptorBinding;

@ nt er cept or Bi ndi ng

@rar get ({ METHOD, TYPE})

@ret ent i on(RUNTI ME)

public @nterface Transactional {}

9-16

http://docs.oracle.com/javaee/6/api/javax/interceptor/InterceptorBinding.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

9.11.2 Defining an Interceptor Class

An interceptor class is used to interpose in method invocations or life cycle events that occur
in an associated target bean class. In an interceptor class, provide the code for tasks that are
frequently performed and are separate from the business logic of the application, such as
logging and auditing.

To define an interceptor class:

1.
2.

ORACLE

Define a Java class to represent the interceptor.

Annotate the declaration of the class with the following annotations:
e javax.interceptor.lnterceptor

e The interceptor binding types that are defined for the class

You can apply any number of interceptor binding types to an interceptor class.

" Note:

CDI does not require an interceptor binding type to be unique to a particular
interceptor class. You can apply the same interceptor binding type to
multiple interceptor classes.

Implement the interceptor methods in the class.

CDI does not require the signature of an interceptor method to match the signature of the
intercepted method.

Identify the interceptor methods in the class.

An interceptor method is the method that is invoked when a method invocation or a life
cycle event of a bean class is intercepted.

To identify an interceptor method, annotate the declaration of the method with the
appropriate annotation for the type of the interceptor method.

Interceptor Method Type Annotation
Method invocation javax. interceptor. Aroundl nvoke
EJB timeout j avax. interceptor. AroundTi meout

Initialization of a managed bean or EJB j avax. annot at i on. Post Const r uct
component

Destruction of a managed bean or EJB j avax. annot ati on. PreDest roy
component

Activation of a stateful session bean j avax. ej b. Post Activate

Passivation of a stateful session bean j avax. ej b. PrePassi vat e

9-17

http://docs.oracle.com/javaee/6/api/javax/interceptor/Interceptor.html
http://docs.oracle.com/javaee/6/api/javax/interceptor/AroundInvoke.html
http://docs.oracle.com/javaee/6/api/javax/interceptor/AroundTimeout.html
http://docs.oracle.com/javaee/6/api/javax/annotation/PostConstruct.html
http://docs.oracle.com/javaee/6/api/javax/annotation/PreDestroy.html
http://docs.oracle.com/javaee/6/api/javax/ejb/PostActivate.html
http://docs.oracle.com/javaee/6/api/javax/ejb/PrePassivate.html

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

< Note:

An interceptor class can have multiple interceptor methods. However, an
interceptor class can have no more than one interceptor method of a
given type.

Example 9-13 shows how to define an interceptor class.
Example 9-13 Defining an Interceptor Class

This example defines the interceptor class for which the @r ansacti onal interceptor
binding type is defined. The manageTr ansact i on method of this class is an interceptor
method. The @' ansact i onal interceptor binding is defined in Example 9-12.

package com exanpl e. bill payment.interceptor;

i nport javax.annotation. Resource;
i mport javax.interceptor.*;

@ransactional @nterceptor
public class Transactionlnterceptor {
@Resour ce User Transaction transaction;
@\r oundl nvoke
public Object manageTransaction(lnvocationContext ctx)
throws Exception {

}

9.11.3 Identifying Methods for Interception

Identifying methods for interception associates the methods with the interceptor that is
invoked when the methods are invoked. CDI enables you to identify all methods of a
bean class or only individual methods of a bean class for interception.

* To identify all methods of a bean class for interception, annotate the declaration of
the bean class with the appropriate interceptor binding type.

* To identify an individual method of a bean class for interception, annotate the
declaration of the method with the appropriate interceptor binding type.

CDI does not require the signature of an intercepted method to match the signature of
the interceptor method. To determine the arguments and return type of an intercepted
method, an interceptor must query an interceptor context. Therefore, you can intercept
any method or life cycle event in a bean class without any knowledge at compilation
time of the interfaces of bean class.

ORACLE 9-18

Chapter 9
Intercepting Method Invocations and Life Cycle Events of Bean Classes

< Note:

An implementation of a Java EE 5 interceptor must be declared in the annotation on
the method that is to be intercepted. A CDI interceptor uses an interceptor binding
to identify an interceptor method and to relate an intercepted method to its
interceptor method. Both the intercepted method and the interceptor method must
be annotated with the binding. In this way, the intercepted method and the
interceptor are related to each other only through the interceptor binding.

Example 9-14 Identifying All Methods of a Bean Class for Interception

This example identifies all methods of the Shoppi ngCart class for interception by the
@ransact i onal interceptor.

package com exanpl e. bi | | paynent. i nterceptor

@r ansact i onal
public class ShoppingCart {

}

Example 9-15 Identifying an Individual Method of a Class for Interception

This example identifies only the checkout method of the Shoppi ngCart class for interception
by the @r ansacti onal interceptor.

package com exanpl e. bi | | paynent.interceptor;
public class ShoppingCart {

@ransactional public void checkout() {

}

9.11.4 Enabling an Interceptor

ORACLE

By default, an interceptor is disabled. If you require an interceptor to be interposed in method
invocations and events, you must enable the interceptor explicitly.

To enable an interceptor:

1. Add acl ass element for the interceptor to the i nt er cept or s element in the beans. xm
file.

2. Inthe cl ass element, provide the fully qualified class name of the interceptor.

Ensure that the order of t he cl ass elements in the beans. xn file matches the order in
which the interceptors are to be invoked.

CDI interceptors are invoked in the order in which they are declared in the beans. xni file.
Interceptors that are defined in the ej b-j ar. xm file or by the
javax.interceptor.Interceptors annotation are called before the CDI interceptors.
Interceptors are called before CDI decorators.

9-19

http://docs.oracle.com/javaee/6/api/javax/interceptor/Interceptors.html

Chapter 9
Decorating a Managed Bean Class

< Note:

Java EE 5 interceptors are invoked in the order in which they are
annotated on an intercepted method.

For more information about the beans. xn file, see Configuring a CDI Application.

Example 9-16 shows a cl ass element in the beans. xmi file for enabling an interceptor
class.

Example 9-16 Enabling an Interceptor Class

This example enables the interceptor class
com exanpl e. bi | [paynent. i nterceptor. Transacti onl nt er cept or. The interceptor
class is defined in Example 9-13.

<interceptors>
<cl ass>com exanpl e. bi | | payment . i nt er cept or. Transacti onl nt er cept or </ cl ass>
</interceptors>

9.12 Decorating a Managed Bean Class

Decorating a managed bean class enables you to intercept invocations of methods in
the decorated class that perform operations with business semantics.

You can decorate any managed bean class.

" Note:

The programming model for decorator classes is optimized for operations
that perform the business logic of the application. To intercept methods that
are separate from the business logic of an application, use an interceptor
class as explained in Intercepting Method Invocations and Life Cycle Events
of Bean Classes.

See Using Decorators in The Java EE 7 Tutorial.

Decorating a managed bean class involves the tasks that are explained in the
following sections:

» Defining a Decorator Class

» Enabling a Decorator Class

9.12.1 Defining a Decorator Class

ORACLE

A decorator class intercepts invocations of methods in the decorated class that
perform operations with business semantics. A decorator class and an interceptor
class are similar because both classes provide an around-method interception.
However, a method in a decorator class has the same signature as the intercepted
method in the decorated bean class.

9-20

http://docs.oracle.com/javaee/7/tutorial/cdi-adv007.htm

ORACLE

Chapter 9
Decorating a Managed Bean Class

To define a decorator class:

1. Write a Java class that implements the same interface as the bean class that you are
decorating.

If you want to intercept only some methods of the decorated class, declare the decorator
class as an abstract class. If you declare the class as abstract, you are not required to
implement all the methods of the bean class that you are decorating.

2. Annotate the class declaration of the decorator class with the
j avax. decor at or. Decor at or annotation.

3. Implement the methods of the decorated bean class that you want to intercept.

If the decorator class is a concrete class, you must implement all the methods of the
bean class that you are decorating.

You must ensure that the intercepting method in a decorator class has the same
signature as the intercepted method in the decorated bean class.

4. Add a delegate injection point to the decorator class.

A decorator class must contain exactly one delegate injection point. A delegate injection
point injects a delegate object, which is an instance of the decorated class, into the
decorator object.

You can customize how any method in the decorator object handles the implementation
of the decorated method. CDI allows but does not require the decorator object to invoke
the corresponding delegate object. Therefore, you are free to choose whether the
decorator object invokes the corresponding delegate object.

a. Inthe decorator class, inject an instance of the bean class that you are decorating.
b. Annotate the injection point with the j avax. decor at or . Del egat e annotation.
c. Apply qualifiers that you require to the injection point, if any.

If you apply qualifiers to the injection point, the decorator applies only to beans
whose bean class matches the qualifiers of the injection point.

Note:

No special declaration, such as an annotation, is required to define a decorated
bean class. An enabled decorator class applies to any bean class or session bean
that matches the bean type and qualifiers of the delegate injection point.

Example 9-17 shows the definition of a decorator class.
Example 9-17 Defining a Decorator Class

This example defines the decorator class Dat aAccessAut hDecor at or . This class decorates
any bean of type Dat aAccess.

Because only some methods of the decorated class are to be intercepted, the class is
declared as an abstract class. This class injects a delegate instance del egat e of the
decorated implementation of the Dat aAcess bean type.

i nport javax.decorator.*;

i mport javax.inject.lnject;
i nmport java.lang. Override;

9-21

http://docs.oracle.com/javaee/6/api/javax/decorator/Decorator.html
http://java.sun.com/javaee/6/docs/api/javax/decorator/Delegate.html

Chapter 9
Decorating a Managed Bean Class

@ecor at or
public abstract class DataAccessAut hDecorat or
i npl enents Dat aAccess {

@nj ect @el egate Dat aAccess del egate;

@verride

public void del ete(Cbject object) {
aut hori ze(Secur eActi on. DELETE, object);
del egat e. del et e(obj ect) ;

}

private void authorize(SecureAction action, Object object) {

}
}

9.12.2 Enabling a Decorator Class

By default, a decorator class is disabled. If you require a decorator class to be invoked
in a CDI application, you must enable the decorator class explicitly.

To enable an decorator class:

1. Add acl ass element for the decorator class to the decor at or s element in the
beans. xm file.

2. Inthe cl ass element, provide the fully qualified class name of the decorator class.

Ensure that the order of the cl ass elements in the beans. xn file matches the
order in which the decorator classes are to be invoked.

Note:

Any interceptor classes that are defined for an application are invoked before
the application's decorator classes.

For more information about the beans. xnl file, see Configuring a CDI Application.

Example 9-18 shows a cl ass element in the beans. xn file for enabling a decorator
class.

Example 9-18 Enabling a Decorator Class

This example enables the decorator class
com exanpl e. bi | | payment . decor at or. Dat aAccessAut hDecor at or .

<decor at or s>
<cl ass>com exanpl e. bi | | paynent . decor at or . Dat aAccessAut hDecor at or </ cl ass>
</ decor at or s>

ORACLE 9-22

Chapter 9
Assigning an EL Name to a CDI Bean Class

9.13 Assigning an EL Name to a CDI Bean Class

ORACLE

EL enables components in the presentation layer to communicate with managed beans that
implement application logic.

Components in the presentation layer are typically JavaServer Faces (JSF) pages and
JavaServer Pages (JSP) pages. See JSP Expression Language in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

In the scripting languages in JSP pages and JSF pages, the syntax of an injected variable is
identical to the syntax of a built-in variable of these languages. Any CDI bean that is injected
into a JSP page or JSF page must be accessible through an EL name. See Giving Beans EL
Names in The Java EE 7 Tutorial.

To assign an EL name to a CDI bean class, annotate the class declaration of the bean class
with the j avax. i nj ect . Naned annotation.

If you do not specify a name, the EL name is the unqualified class name with the first
character in lower case. For example, if the unqualified class name is Shoppi ngCart, the EL
name is shoppi ngCart .

To specify a hame, set the val ue element of the @aned annotation to the name that you
require.

¢ Note:

To assign an EL name to a CDI bean class, you must annotate the bean class
declaration with the @aned annotation. If the class is not annotated with @Narmed, the
CDI bean class does not have an EL name.

The following example shows how to use the @amed annotation to assign an EL name to a
CDI bean class. This example assigns the EL name cart to the Shoppi ngCart class.

inport javax.enterprise.context.Sessi onScoped;

@essi onScoped

@aned("cart")
public class ShoppingCart {
public String getTotal () {

}

}

Any bean that a JSP page or JSF page accesses must conform to the JavaBeans standard.
To access a CDI managed bean from a JSP page or JSF page through the bean's EL name,
use a syntax that is similar to the syntax for JavaBeans components.

The following example shows how an instance of the Shoppi ngCart class is accessed in a
JSF page through the EL name that is assigned to the class.

9-23

https://docs.oracle.com/javaee/7/tutorial/cdi-basic009.htm
https://docs.oracle.com/javaee/7/tutorial/cdi-basic009.htm
http://docs.oracle.com/javaee/7/api/javax/inject/Named.html

Chapter 9
Defining and Applying Stereotypes

Example 9-19 Accessing a Bean Through its EL Name

This example accesses an instance of the Shoppi ngCart class to display the value of
its t ot al property in a JSF page.

This property is returned by the get Tot al getter method of the Shoppi ngCart class.

<h: out put Text val ue="#{cart.total}"/>

9.14 Defining and Applying Stereotypes

In a large application in which several beans perform similar functions, you may
require the same set of annotations to be applied to several bean classes. Defining a
stereotype requires you to define the set of annotations only once.

You can then use the stereotype to guarantee that the same set of annotations is
applied to all bean classes that require the annotations. See Using Stereotypes in The
Java EE 7 Tutorial.

Defining and applying stereotypes involves the tasks that are explained in the following
sections:

e Defining a Stereotype

e Applying Stereotypes to a Bean

9.14.1 Defining a Stereotype

A stereotype is an application-defined annotation type that incorporates other
annotation types.

To define a stereotype:

1. Define a Java annotation type to represent the stereotype.
2. Annotate the declaration of the annotation type with the following annotations:
° javax.enterprise.inject.Stereotype
* The other annotation types that you want the stereotype to incorporate
You can specify the following annotation types in a stereotype:
— A default scope—see Defining the Scope of a Bean
— @\ ternative—see Providing Alternative Implementations of a Bean Type

— One or more interceptor bindings—see Intercepting Method Invocations
and Life Cycle Events of Bean Classes

— (@aned—see Assigning an EL Name to a CDI Bean Class
3. Specify that the stereotype is to be retained by the virtual machine at run time.

Use the j ava. | ang. annot at i on. Ret ent i on(RUNTI ME) meta-annotation for this
purpose.

4. Specify that the stereotype may be applied to the program element TYPE.
Use the j ava. | ang. annot at i on. Tar get (TYPE) meta-annotation for this purpose.

The following example shows the definition of a stereotype.

ORACLE 9-24

https://docs.oracle.com/javaee/7/tutorial/cdi-adv008.htm
http://docs.oracle.com/javaee/6/api/javax/enterprise/inject/Stereotype.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Retention.html
http://docs.oracle.com/javase/6/docs/api/java/lang/annotation/Target.html

Chapter 9
Using Events for Communications Between Beans

Example 9-20 Defining a Stereotype

This example defines the stereotype @ct i on, which specifies the following for each bean
that the stereotype annotates:

» The default scope is request scope unless the scope is overridden with a scope
annotation.

* The default EL name is assigned to the bean unless the name is overridden with the
@amed annotation.

* The interceptor bindings @ecur e and @t ansacti onal are applied to the bean. The
definition of these interceptor bindings is beyond the scope of this example.

i mport javax.enterprise.inject. Stereotype;

i nport javax.inject.Named;

i nport javax.enterprise.context.Request Scoped,;

inmport static java.lang.annotation. El ement Type. TYPE;

inport static java.lang.annotation. RetentionPolicy. RUNTI MVE;
i nport java.lang.annotation. Retention;

i nport java.lang.annotation. Target;

@Request Scoped

@ecure

@ransact i onal

@amed

@t er eot ype

@ar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

9.14.2 Applying Stereotypes to a Bean

To apply stereotypes to a bean, annotate the class declaration of the bean with each
stereotype to apply. You can apply any number of stereotypes to a bean. Any stereotype that
you apply to a bean must be defined as explained in Defining a Stereotype.

Example 9-21 shows how to apply stereotypes to a bean.
Example 9-21 Applying Stereotypes to a Bean

This example applies the stereotypes @Act i on and @bck to the bean class MockLogi nAct i on.
The definition of the @\ct i on stereotype is shown in Example 9-20. The definition of the
@bck stereotype is beyond the scope of this example.

@\ction
@bck

public class MckLoginAction extends Logi nAction {

}...

9.15 Using Events for Communications Between Beans

ORACLE

Events enable beans to communicate information without any compilation-time dependency.

At run time, your application may perform operations that generate information or cause state
changes that must be communicated between beans. For example, an application may
require stateful beans in one architectural tier of the application to synchronize their internal
state with state changes that occur in a different tier.

9-25

Chapter 9
Using Events for Communications Between Beans

Events enable beans to communicate this information without any compilation-time
dependency. One bean can define an event, another bean can send the event, and yet
another bean can handle the event. The beans can be in separate packages and even
in separate tiers of the application. See Using Events in The Java EE 7 Tutorial.

Using events for communications between beans involves the tasks that are explained
in the following sections:

e Defining an Event Type
e Sending an Event

e Handling an Event

9.15.1 Defining an Event Type

An event type is a Java class that represents the information that you want to
communicate between beans. For example, an event type may represent the state
information that a stateful bean must synchronize with state changes in a different tier
of an application.

Define an event type for each set of changes that you want to communicate between
beans.

To define an event type:

1. Define a Java class to represent the event type.
Ensure that the class meets these requirements:
* The class is declared as a concrete Java class.
e The class has no type variables.

The event types of the event include all superclasses and interfaces of the run
time class of the event object. An event type must not contain a type variable.
Any Java type can be an observed event type.

2. If necessary, define any qualifiers to further distinguish events of this type. For
more information, see Defining Qualifiers for Implementations of a Bean Type.

3. Provide code in the class to populate the event payload of event objects that are
instantiated from the class.

The event payload is the information that you want the event to contain. You can
use a JavaBeans property with getter and setter methods to represent an item of
information in the event payload.

9.15.2 Sending an Event

ORACLE

To communicate a change that occurs in response to an operation, your application
must send an event of the correct type when performing the operation. CDI provides a
predefined event dispatcher object that enables application code to send an event and
select the associated qualifiers at run time.

To send an event:

1. Obtain an instance of the event type to send.

2. Call methods of the event instance to populate the event payload of the event
object that you are sending.

9-26

https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm

Chapter 9
Using Events for Communications Between Beans

3. Inject an instance of the parameterized j avax. enterpri se. event . Event interface.
If you are sending a qualified event, annotate the injection point with the event qualifier.
4. Callthe fire method of the injected Event instance.

In the call to the fi re method, pass as a parameter the event instance that you are
sending.

Example 9-22 shows how to send an event.
Example 9-22 Sending an Event

This example injects an instance of the event of type User with the qualifier @ogged! n. The
fire method sends only User events to which the @ogged! n qualifier is applied.

inport javax.enterprise.event.Event;

i nport javax.enterprise.context.Sessi onScoped;

i mport javax.inject.lnject;

inport java.io.Serializable;

@essi onScoped
public class Login inplenments Serializable {

@nj ect @oggedl n Event <User> userLoggedl nEvent;
private User user;

public void | ogin(Credentials credentials) {
/l... use credentials to find user
if (user !'=null) {

user Loggedl nEvent . fire(user);

}

}
9.15.3 Handling an Event

Any CDI managed bean class can handle events.
To handle an event:

1. Inyour bean class, define a method to handle the event.

Note:

If qualifiers are applied to an event type, define one method for each qualified
type.

2. In the signature of the method, define a parameter for passing the event to the method.
Ensure that the type of the parameter is the same as the Java type of the event.

3. Annotate the parameter in the method signature with the
j avax. enterprise. event. bserves annotation.

ORACLE 9-27

http://docs.oracle.com/javaee/6/api/javax/enterprise/event/Event.html
http://docs.oracle.com/javaee/7/api/javax/enterprise/event/Observes.html

Chapter 9
Injecting a Predefined Bean

If necessary, set elements of the @bser ves annotation to specify whether the
method is conditional or transactional. See Using Observer Methods to Handle
Events in The Java EE 7 Tutorial.

4. If the event type is qualified, apply the qualifier to the annotated parameter.

5. In the method body, provide code for handling the event payload of the event
object.

Example 9-23 shows how to declare an observer method for receiving qualified events
of a particular type. Example 9-24 shows how to declare an observer method for
receiving all events of a particular type.

Example 9-23 Handling a Qualified Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is
annotated with the @bser ves annotation and the @.ogged! n qualifier. This method is
called when an event of type User with the qualifier @.oggedI n is sent.

i nport javax.enterprise.event. Cbserves;

public void afterLogin(@bserves @oggedln User user) {

}

Example 9-24 Handling Any Event of a Particular Type

This example declares the af t er Logi n method in which the parameter user is
annotated with the @hbser ves annotation. This method is called when any event of
type User is sent.

i nport javax.enterprise.event. Qbserves;

public void afterlLogin(@bserves User user) {

}

9.16 Injecting a Predefined Bean

ORACLE

Predefined beans are injected with dependent scope and the predefined default
qualifier @ef aul t .

CDI provides predefined beans that implement the following interfaces:

javax.transaction.UserTransaction
Java Transaction API (JTA) user transaction.

java.security.Principal

The abstract notion of a principal, which represents any entity, such as an individual, a
corporation, and a login ID.

The principal represents the identity of the current caller. Whenever the injected
principal is accessed, it always represents the identity of the current caller.

For example, a principal is injected into a field at initialization. Later, a method that
uses the injected principal is called on the object into which the principal was injected.
In this situation, the injected principal represents the identity of the current caller when
the method is run.

9-28

https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm
https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm
http://docs.oracle.com/javaee/6/api/javax/transaction/UserTransaction.html
http://docs.oracle.com/javase/6/docs/api/java/security/Principal.html

Chapter 9
Injecting and Qualifying Resources

javax.validation.Validator

Validator for bean instances.

The bean that implements this interface enables a Val i dat or object for the default bean
validation Val i dat or Fact ory object to be injected.

javax.validation.ValidatorFactory

Factory class for returning initialized Val i dat or instances.

The bean that implements this interface enables the default bean validation
Val i dat or Fact ory object to be injected.

To inject a predefined bean, create an injection point by using the
j avax. annot at i on. Resour ce annotation to obtain an instance of the bean. For the bean type,
specify the class name of the interface that the bean implements.

Predefined beans are injected with dependent scope and the predefined default qualifier
@efaul t.

For more information about injecting resources, see Resource Injection in The Java EE 7
Tutorial.

Example 9-25 shows how to use the @Resour ce annotation to inject a predefined bean.
Example 9-25 Injecting a Predefined Bean

This example injects a user transaction into the servlet class Transacti onServl et . The user
transaction is an instance of the predefined bean that implements the
j avax. transaction. User Transacti on interface.

i nport javax.annot ati on. Resour ce;
inport javax.servlet.http.*;

public class TransactionServlet extends HtpServlet {
@Resour ce User Transaction transaction;

}

9.17 Injecting and Qualifying Resources

ORACLE

Java EE 5 resource injection relies on strings for configuration. Typically, these strings are
JNDI names that are resolved when an object is created. CDI ensures type-safe injection of
beans by selecting the bean class on the basis of the Java type that is specified in the
injection point.

Even in a CDI bean class, Java EE 5 resource injection is required to access real resources
such as data sources, Java Message Service (JMS) resources, and Web service references.
Because CDI bean classes can use Java EE 5 resource injection, you can use producer
fields to minimize the reliance on Java EE 5 resource injection. In this way, CDI simplifies
how to encapsulate the configuration that is required to access the correct resource.

To minimize the reliance on Java EE 5 resource injection:
1. Use Java EE 5 resource injection in only one place in the application.

2. Use producer fields to translate the injected resource type into a CDI bean.

You can the inject this CDI bean into the application in the same way as any other CDI
bean.

For more information about producer fields, see Defining a Producer Field.

9-29

http://docs.oracle.com/javaee/6/api/javax/validation/Validator.html
http://docs.oracle.com/javaee/6/api/javax/validation/ValidatorFactory.html
http://docs.oracle.com/javaee/7/api/javax/annotation/Resource.html
https://docs.oracle.com/javaee/7/tutorial/cdi-adv005.htm

ORACLE

Chapter 9
Injecting and Qualifying Resources

The following example shows how to use Java EE 5 annotations to inject resources.

i nport javax.annotation. Resource;

i nport javax. persistence. PersistenceContext;
i nport javax. persistence. PersistenceUnit;
inport javax.ejb. EJB;

i mport javax.xm .ws. \WebServi ceRef;

public class Somed ass {

@\ebSer vi ceRef (1 ookup="j ava: app/ servi ce/ Paynent Servi ce")
Paynent Servi ce paynent Servi ce;

@EJB(ej bLi nk="../paynent .| ar#Paynment Servi ce")
Paynent Servi ce payment Servi ce;

@Resour ce(| ookup="j ava: gl obal / env/ j dbc/ Cust orrer Dat asour ce")
Dat asour ce cust oner Dat abase;

@er si st enceCont ext (uni t Name="Cust oner Dat abase")
EntityManager customer Dat abasePer si st enceCont ext ;

@er si st encelni t (uni t Nane="Cust orrer Dat abase")
EntityManager Fact ory cust oner Dat abasePersi stenceUnit;

}

The following example shows how to inject the same set of resources by combining
Java EE 5 resource injection with CDI producer fields.

The declaration of the Sonmed ass class is annotated with @\ppl i cati onScoped to set
the scope of this bean to application. The @ependent scope is implicitly applied to the
producer fields.

i nport javax.enterprise.context.ApplicationScoped,;
i nport javax.enterprise.inject.Produces;

i nport javax.annotati on. Resource;

i nport javax. persistence. Persi stenceCont ext;

i nport javax. persistence. Persistencelnit;

i nport javax.ejb.EJB;

javax. xn . ws.

W\ebSer vi ceRef ;

@\ppl i cati onScoped
public class Somed ass {

@Produces
@\ebSer vi ceRef (1 ookup="j ava: app/ servi ce/ Paynent Servi ce")
Paynent Servi ce payment Ser vi ce;

@Produces
@JB(ej bLi nk="../their.jar#Payment Service")
Paynent Servi ce payment Servi ce;

@Produces @ust orer Dat abase
@Resour ce(| ookup="j ava: gl obal / env/j dbc/ Cust orrer Dat asour ce")
Dat asour ce cust orer Dat abase;

@Produces @ust orrer Dat abase

@er si st enceCont ext (uni t Name="Cust oner Dat abase")
EntityManager custonerDat abasePersi stenceCont ext;

9-30

Chapter 9
Using CDI With JCA Technology

@roduces @cust oner Dat abase
@er si st encelni t (uni t Nane="Cust orrer Dat abase")
EntityManager Factory custoner Dat abasePersi stenceUnit;

}

CDI enables you to use Java EE resources in CDI applications in a way that is consistent
with CDI. To use Java EE resources in this way, inject the resources as CDI beans into other
beans.

The following example shows how to inject a Java EE resource as a CDI bean into another
bean.

This example injects a persistence unit resource into a request-scoped bean.

i nport javax.enterprise.context.Request Scoped,;
i nport javax.enterprise.inject.l|nject;

@Request Scoped
public class SomeQ herd ass {

@nj ect @ust omer Dat abase
private EntityManagerFactory enf;

}

Another class, for example Yet Anot her 0 ass, could inject a field of type SoneQt her d ass. If
an instance of SomeQ her G ass does not already exist in the current request context, CDI
performs the following sequence of operations:

1. Constructing the instance of SomeQ her 0 ass
2. Injecting the reference to the entity manager factory by using the producer field.
3. Saving the new instance of SomeQ her O ass in the current request context

In every case, CDI injects the reference to this instance of SomeQ her O ass into the field in
Yet Anot her O ass. When the request context is destroyed, the instance of SoneQ her O ass
and its reference to the entity manager factory are destroyed.

9.18 Using CDI With JCA Technology

ORACLE

WebLogic Server supports CDI in embedded resource adapters and global resource
adapters. To enable a resource adapter for CDI, provide a beans. xn file in the META- | NF
directory of the packaged archive of the resource adapter.

For more information about the beans. xn file, see Configuring a CDI Application.

All classes in the resource adapter are available for injection. All classes in the resource
adapter can be CDI managed beans except for the following classes:

* Resource adapter beans. These beans are classes that are annotated with the
j avax. resour ce. spi . Connect or annotation or are declared as corresponding elements
in the resource adapter deployment descriptor ra. xm .

* Managed connection factory beans. These beans are classes that are annotated with
the j avax. resource. spi . Connect i onDefi ni ti on annotation or the
j avax. resource. spi . Connect i onDefi ni ti ons annotation, or are declared as
corresponding elements inra. xm .

9-31

http://docs.oracle.com/javaee/6/api/javax/resource/spi/Connector.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/ConnectionDefinition.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/ConnectionDefinitions.html

Chapter 9
Configuring a CDI Application

* Activation specification beans. These beans are classes that are annotated with
the j avax. resource. spi . Activati on annotation or are declared as corresponding
elementsinra.xm .

* Administered object beans. These beans are classes that are annotated with the
j avax. resource. spi . Adnmi ni st eredObj ect annotation or are declared as
corresponding elements inra. xm .

9.19 Configuring a CDI Application

ORACLE

Configuring a CDI application enables CDI services for the application. You must
configure a CDI application to identify the application as a CDI application. No special
declaration, such as an annotation, is required to define a CDI managed bean. And no
module type is defined specifically for packaging CDI applications.

To configure a CDI application, provide a file that is named beans. xn in the packaged
archive of the application. The beans. xnl file must be an instance of the extensible
markup language (XML) schema beans_1_0. xsd.

If your application does not use any alternatives, interceptors, or decorators, the
beans. xn file can be empty. However, you must provide the beans. xn file even if the
file is empty.

If your CDI application uses alternatives, interceptors, or decorators, you must enable
these items by declaring them in the beans. xm file. For more information, see:

» Selecting an Alternative Implementation of a Bean Type for an Application
* Enabling an Interceptor
» Enabling a Decorator Class

The required location of the beans. xnl file depends on the type of the application:

» For a Web application, the beans. xn file must be in the WEB- | NF directory.

* For an EJB module, resource archive (RAR) file, application client JAR file, or
library JAR file, the beans. xnl file must be in the META- | NF directory.

You can provide CDI bean archives in the | i b directory of an EJB module. You must
provide a beans. xni file in the META- | NF directory of each CDI bean archive the | i b
directory of an EJB module.

Example 9-26 shows a beans. xni file for configuring a CDI application.
Example 9-26 beans.xml File for Configuring a CDI Application
This example configures a CDI application by enabling the following classes:

e The alternative implementation com exanpl e. or der processor. MockOr der | npl

e The interceptor class
com exanpl e. bi | | payment . i nterceptor. Transacti onl nt er cept or

* The decorator class
com exanpl e. bi | | payment . decor at or. Dat aAccessAut hDecor at or

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://java.sun.conm xm /ns/javaee"
xm ns: xsi ="http:// ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocat i on="
http://java. sun.com xm / ns/javaee

9-32

http://docs.oracle.com/javaee/6/api/javax/resource/spi/Activation.html
http://docs.oracle.com/javaee/6/api/javax/resource/spi/AdministeredObject.html
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/beans_1_0.xsd

Chapter 9
Enabling and Disabling CDI

http://java.sun.com xm /ns/javaee/ beans_1_ 1. xsd">

<al ternatives>

<cl ass>com exanpl e. or der processor. MockOr der | npl </ ¢l ass>
</alternatives>
<interceptors>

<cl ass>com exanpl e. bi | | payment . i nt er ceptor. Transacti onl nt er cept or </ cl ass>
</interceptors>
<decor at or s>

<cl ass>com exanpl e. bi | | paynent. decor at or . Dat aAccessAut hDecor at or </ cl ass>
</ decorat or s>
</ beans>

9.20 Enabling and Disabling CDI

CDI for a domain is enabled by default. However, even when an application does not use
CDlI, there is some CDil initialization that occurs when you deploy an application in WebLogic
Server. To maximize deployment performance for applications that do not use CDI, you can
disable CDI.

You can control whether CDI is enabled in the domain by setting the Pol i cy parameter on the
CDI container. When this parameter is set to Enabl ed, CDI is enabled for all applications in
the domain. When the Pol i cy parameter is set to Di sabl ed, CDI is disabled for all
applications in the domain.

You can disable CDI only for a domain.

9.20.1 Enabling and Disabling CDI for a Domain

ORACLE

To disable CDI for every application that is deployed to a domain, add the following lines to
the confi g. xnl file:

<donai n>

<cdi - cont ai ner>

<pol i cy>Di sabl ed</ pol i cy>
</ cdi - cont ai ner >

<donai n>

You can use the WLST scripting tool to enable or disable CDI for a domain. The following
examples demonstrate how to use WLST to enable and disable CDI for a domain whether
you are online or offline.

Example 9-27 Enabling CDI While Online

In the following example, WebLogic Server is running. The arguments username and
password represent the credentials for the user who is connecting WLST to the server, and
url represents the listen address and listen port of the server instance (for example,
localhost:7001). Also note that domain represents the domain name.

connect (' user', ' password','url")
domai nConfi g()
edit()
cd(' Cdi Cont ai ner/ nydomain')
startEdit()
set (' Policy','Enabled') // 'Enabled or 'Disabled
val i date()

9-33

Chapter 9
Implicit Bean Discovery

save()
activate(bl ock="true")

Example 9-28 Enabling CDI While Offline

In the following example, domain represents the path of your domain (for example, /
or acl e/ W s/ mydomain). Also note that mydomai n must match the domain name.

readDonai n(' domai n')
create(' mydomain', "' Cdi Contai ner")
cd(' Cdi Cont ai ner/nydonmai n')
set("Policy', Enabled') // 'Enabled or 'Disabled
updat eDomai n()
cl oseDonai n()

9.21 Implicit Bean Discovery

CDI 1.1 and Java EE 7 introduced the concept of implicit bean archives. An implicit
bean archive is an archive of a JAR or a WAR file that does not contain a beans. xm
file; it contains beans that can be managed by CDI.

This can significantly increase the time that it takes to deploy an application. This
increase in time is especially noticeable when applications built for releases prior to
Java EE 7 are deployed on a Java EE 7 application server. To be compatible with CDI
1.0, WebLogic Server contains an option that sets the container to ignore the archive
even when the beans. xmi file is not present.

You control whether implicit bean discovery is enabled in the domain by setting the

i nplicit-bean-discovery-enabl ed parameter on the CDI container. When this
parameter is set to 1, implicit bean discovery is enabled for all applications in the
domain. When the i npl i ci t - bean- di scover y- enabl ed parameter is set to 0, implicit
bean discovery is disabled for all applications in the domain.

You can disable implicit bean discovery only for a domain.

9.21.1 Enabling and Disabling Implicit Bean Discovery for a Domain

ORACLE

To disable implicit bean discovery for every application that is deployed to a domain,
add the following lines confi g. xm file:

<donai n>

<cdi - cont ai ner>
<inplicit-bean-discovery-enabl ed>fal se</inplicit-bean-di scobery-enabl ed>
</ cdi - cont ai ner >

<donai n>

You can use WLST scripting too to enable or disable this feature. The following
examples demonstrate how to use WLST to enable and disable implicit bean
discovery for a domain whether you are online or offline.

9-34

Chapter 9
Supporting Third-Party Portable Extensions

Example 9-29 Enabling Implicit Bean Discovery Using WLST Online

In the following example, WebLogic Server is running. The arguments username and
password represent the credentials for the user who is connecting WLST to the server, and
url represents the listen address and listen port of the server instance (for example,
localhost:7001). Also note that domain represents the domain name.

connect (' user', ' password','url")

donmai nConfi g()

edit()

cd("' Cdi Cont ai ner/ mydomai n')

startEdit()

set (' I nplicitBeanDi scoveryEnabled ,1) // 1 to enable 0 to disable
val i dat e()

save()

activate(bl ock="true")

Example 9-30 Enabling Implicit Bean Discovery Using WLST Offline

In the following example, domain represents the path of your domain (for example, /
oracl e/ W s/ mydomain). Also note that nydomai n must match the domain name.

r eadDomai n(donai n)

create(' nydonain', ' Cdi Cont ai ner")
cd("' Cdi Cont ai ner/ mydomai n')

set (' I nplicitBeanDi scoveryEnabl ed', 1)
/1 1 to enable O to disable

updat eDomai n()

cl oseDomai n()

9.22 Supporting Third-Party Portable Extensions

CDl is intended to be a foundation for frameworks, extensions, and integration with other
technologies.

CDI exposes SPlIs that enable the development of portable extensions to CDI, such as:

* Integration with business process management engines
* Integration with third-party frameworks such as Spring, Seam, GWT or Wicket
* New technology that is based upon the CDI programming model

The SPIs that enable the development of portable extensions to CDI are provided in the
javax.enterprise.inject.spi package.

Code in CDI extensions can handle events that are sent by the CDI framework.

For more information, see "Portable extensions" in JSR 346: Contexts and Dependency
Injection for the Java EE platform.

ORACLE 9-35

http://docs.oracle.com/javaee/7/api/javax/enterprise/inject/spi/package-summary.html
http://jcp.org/en/jsr/summary?id=346
http://jcp.org/en/jsr/summary?id=346

Java API for JSON Processing

WebLogic Server supports the Java API for JSON Processing 1.0 (JSR 353) specification by
including the JSR-353 reference implementation for use with applications deployed on a
WebLogic Server instance.

This chapter includes the following sections:

* About JavaScript Object Notation (JSON)
e Object Model API
e Streaming API

To learn more about JSON concepts, see the "JSON Processing" chapter in the Java EE 7
Tutorial at htt p: // docs. oracl e. conl j avaee/ 7/tutorial /j sonp. ht m

10.1 About JavaScript Object Notation (JSON)

ORACLE

JSON is a lightweight data-interchange format that is widely used as a common format to
serialize and deserialize data in applications that communicate with each other over the
Internet. These applications are often created using different programming languages and run
in very different environments.

JSON is suited to this scenario because it is an open standard, it is easy to read and write,
and it is more compact than other representations. RESTful web services typically make
extensive use of JSON as the format for the data inside requests and responses, with the
JSON representations usually being more compact than the counterpart XML representations
since JSON does not have closing tags.

The Java API for JSON Processing provides a convenient way to process (parse, generate,
transform, and query) JSON text. For generating and parsing JSON data, there are two
programming models, which are similar to those used for XML documents:

* The object model creates a tree that represents the JSON data in memory. The tree can
then be navigated and analyzed. Although the JSON data created in memory is
immutable and cannot be modified, the object model is the most flexible and allows for
processing that requires access to the complete contents of the tree. However, it is often
slower than the streaming model and requires more memory. The object model
generates JSON output by navigating the entire tree at once.

For information about using the object model, see Object Model API.

* The streaming model uses an event-based parser that reads JSON data one element at
a time. The parser generates events and stops for processing when an object or an array
begins or ends, when it finds a key, or when it finds a value. Each element can be
processed or discarded by the application code, and then the parser proceeds to the next
event. This approach is adequate for local processing, in which the processing of an
element does not require information from the rest of the data. The streaming model
generates JSON output to a given stream by making a function call with one element at a
time.

For information about using the streaming model, see Streaming API.

10-1

https://jcp.org/en/jsr/detail?id=353
http://docs.oracle.com/javaee/7/tutorial/jsonp.htm

Chapter 10
Object Model API

10.2 Object Model API

The object model APl is a high-level API that provides immutable object models for
JSON object and array structures.

These JSON structures are represented as object models using the Java types
Jsonhj ect and JsonArray. The interface j avax. j son. JsonChj ect provides a map
view to access the unordered collection of zero or more name-value pairs from the
model. Similarly, the j avax. j son. JsonArray interface provides a list view to access
the ordered sequence of zero or more values from the model.

The object model API uses builder patterns to create these object models. The
j avax. j son. Json(bj ect Bui | der and j avax.j son. JsonArrayBui | der interfaces
provide methods to create models of type JsonQbj ect and JsonArr ay, respectively.

These object models can also be created from an input source using the
j avax. j son. JsonReader interface. Similarly, these object models can be written to an
output source using the j avax. j sonJsonWi t er interface.

The following sections show examples of using the object model API:
» Creating an Object Model from JSON Data

* Creating an Object Model from Application Code

* Navigating an Object Model

* Writing an Object Model to a Stream

10.2.1 Creating an Object Model from JSON Data

The following example shows how to create an object model from JSON data in a text
file:

i nport java.io.FileReader;

i nport javax.json.Json;

i nport javax.json.JsonReader;

i nport javax.json.JsonStructure;

JsonReader reader = Json.createReader(new Fil eReader ("jsondata.txt"));
JsonStructure jsonst = reader.read();

The object reference j sonst can be either of type Json(bj ect or of type JsonArray,
depending on the contents of the file. JsonCbj ect and JsonArray are subtypes of
JsonStruct ure. This reference represents the top of the tree and can be used to
navigate the tree or to write it to a stream as JSON data.

10.2.2 Creating an Object Model from Application Code

ORACLE

The following example shows how to create an object model from application code:

i mport javax.json.Json;
i mport javax.json.JsonQbject;

Json(bj ect nmodel = Json. creat eQhj ect Bui | der ()

.add("firstNane", "Duke")
.add("l ast Name", "Java")

10-2

http://docs.oracle.com/javaee/7/api/javax/json/JsonObject.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonArray.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonObjectBuilder.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonArrayBuilder.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonReader.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonWriter.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonStructure.html

Chapter 10
Object Model API

("age", 18)
("street Address", "100 Internet Dr")
("city", "JavaTown")
.add("state", "JA")
("postal Code", "12345")
("phoneNunbers", Json. creat eArrayBuil der()
.add(Json. creat eQbj ect Bui | der ()
.add("type", "nmobile")
.add("nunmber”, "111-111-1111"))
.add(Json. creat eQbj ect Bui | der ()
.add("type", "home")
.add("nunber", "222-222-2222")))
Cbui 1 d();

The object reference model represents the top of the tree, which is created by nesting
invocations to the add methods and is built by invoking the bui | d method. The
j avax. j son. Jsonbj ect Bui | der interface contains the following add methods:

Json(bj ect Bui | der add(String name, BigDeci mal val ue)

Json(bj ect Bui | der add(String name, Biglnteger val ue)

JsonCbj ect Bui | der add(String name, bool ean val ue)

JsonCbj ect Bui | der add(String name, doubl e val ue)

Json(bj ect Bui | der add(String name, int val ue)

JsonQbj ect Bui | der add(String name, JsonArrayBuilder buil der)
Json(bj ect Bui | der add(String name, JsonQbjectBuil der buil der)
Json(bj ect Bui | der add(String name, JsonVal ue val ue)

Json(bj ect Bui | der add(String name, |ong val ue)

JsonCbj ect Bui | der add(String name, String val ue)

JsonQbj ect Bui | der addNul | (String name)

The j avax. j son. JsonArrayBui | der interface contains similar add methods that do not have
a name (key) parameter. You can nest arrays and objects by passing a new

JsonAr rayBui | der object or a new Json(bj ect Bui | der object to the corresponding add
method, as shown in this example.

The resulting tree represents the JSON data from JSON Syntax.

10.2.3 Navigating an Object Model

ORACLE

The following example shows a simple approach to navigating an object model:

i nport javax.json.JsonVal ue;
inport javax.json.Jsonbject;
inport javax.json.JsonArray;
inport javax.json.JsonNunber;
inport javax.json.JsonString;

public static void navigateTree(JsonVal ue tree, String key) {
if (key !'=null)
Systemout.print("Key " + key +": ");
swi tch(tree. getVal ueType()) {
case OBJECT:
System out. println("OBJECT");
JsonQObj ect object = (JsonCbject) tree;
for (String nanme : object.keySet())
navi gat eTr ee(obj ect. get (nane), nane);
break;
case ARRAY:
System out. printl n("ARRAY");
JsonArray array = (JsonArray) tree;

10-3

http://docs.oracle.com/javaee/7/api/javax/json/JsonObjectBuilder.html
http://docs.oracle.com/javaee/7/api/javax/json/JsonArrayBuilder.html
https://docs.oracle.com/javaee/7/tutorial/jsonp001.htm

Chapter 10
Object Model API

for (JsonValue val : array)
navi gateTree(val, null);

break;

case STRING
JsonString st = (JsonString) tree;
Systemout.printIn("STRING" + st.getString());
break;

case NUMBER:
JsonNunber num = (JsonNunber) tree;
Systemout.printIn("NUMBER " + numtoString());
break;

case TRUE:

case FALSE:

case NULL
Systemout. println(tree.getVal ueType().toString());
break;

}

The navi gat eTr ee method can be used with the models shown in Creating an Object
Model from JSON Data and Creating an Object Model from Application Code as
follows:

navi gat eTree(nodel , null);

The navi gat eTr ee method takes two arguments: a JSON element and a key. The key
is used only to help print the key-value pairs inside objects. Elements in a tree are
represented by the JsonVal ue type. If the element is an object or an array, a new
invocation to this method is made for every element contained in the object or array. If
the element is a value, it is printed to standard output.

The JsonVal ue. get Val ueType method identifies the element as an object, an array, or
a value. For objects, the JsonChj ect . keySet method returns a set of strings that
contains the keys in the object, and the Jsonbj ect . get (Stri ng nanme) method
returns the value of the element whose key is nane. For arrays, JsonArray implements
the Li st <JsonVal ue> interface. You can use enhanced f or loops with the Set <Stri ng>
instance returned by Jsonbj ect . keySet and with instances of JsonArray, as shown
in this example.

The navi gat eTr ee method for the model shown in Creating an Object Model from
Application Code produces the following output:

OBJECT

Key firstNane: STRING Duke

Key | ast Name: STRING Java

Key age: NUMBER 18

Key street Address: STRING 100 Internet Dr
Key city: STRING JavaTown

Key state: STRING JA

Key postal Code: STRING 12345
Key phoneNunbers: ARRAY

OBJECT

Key type: STRING nobhile

Key number: STRING 111-111-1111
OBJECT

Key type: STRING hone

Key number: STRI NG 222-222-2222

ORACLE 10-4

Chapter 10
Streaming API

10.2.4 Writing an Object Model to a Stream

The object models created in Creating an Object Model from JSON Data and Creating an
Object Model from Application Code can be written to a stream using the
javax.json.JsonWiter interface as follows:

inport java.io.StringWiter;
i nport javax.json.JsonWiter;

StringWiter stWiter = new StringWiter();
JsonWiter jsonWiter = Json.createWiter(stWiter);
jsonWiter.witeCbject(nodel);

jsonWiter.close();

String jsonData = stWiter.toString();
Systemout. println(jsonData);

The Json.createWiter nethod takes an output streamas a paranmeter. The
JsonWiter.witeChject method wites the object to the stream The JsonWiter.close
met hod cl oses the underlying output stream

The fol l owi ng exanple uses try-wth-resources to close the JSON witer automatically:

StringWiter stWiter = new StringWiter();
try (JsonWiter jsonWiter = Json.createWiter(stWiter)) {
jsonWiter.witeCbject(nodel);

}

String jsonData = stWiter.toString();
Systemout. println(jsonData);

10.3 Streaming API

ORACLE

The streaming API is a low-level API designed to process large amounts of JSON data
efficiently.

This API consists of the following interfaces:

Interface Description

Contains methods to parse JSON in a streaming way.

This interface provides forward, read-only access to JSON data
using the pull parsing programming model. In this model the
application code controls the thread and calls methods in the
parser interface to move the parser forward or to obtain JSON data
from the current state of the parser.

javax.json.stream.JsonParser

Contains methods to write JSON to an output source in a

javax.json.stream.JsonGenerator .
streaming way.

This interface provides methods to write JSON to an output
source. The generator writes name-value pairs in JSON objects
and values in JSON arrays.

The following sections show examples of using the streaming API:

* Reading JSON Data Using a Parser
e Writing JSON Data Using a Generator

10-5

http://docs.oracle.com/javaee/7/api/javax/json/JsonWriter.html
http://docs.oracle.com/javaee/7/api/javax/json/stream/JsonParser.html
http://docs.oracle.com/javaee/7/api/javax/json/stream/JsonGenerator.html

Chapter 10
Streaming API

10.3.1 Reading JSON Data Using a Parser

ORACLE

The streaming API is the most efficient approach for parsing JSON text. The following
example shows how to create a JsonPar ser object and how to parse JSON data using
events:

i mport javax.json.Json;
i nport javax.json.stream JsonParser;

JsonParser parser = Json.createParser(new StringReader(jsonData));
whil e (parser.hasNext()) {
JsonParser. Event event = parser.next();
switch(event) {
case START_ARRAY:
case END_ARRAY:
case START_OBJECT:
case END_OBJECT:
case VALUE_FALSE:
case VALUE_NULL:
case VALUE_TRUE:
Systemout. println(event.toString());

break;
case KEY_NAME:
Systemout.print(event.toString() + " " +
parser.getString() + " - ");
break;

case VALUE_STRI NG
case VALUE_NUMBER:
Systemout.println(event.toString() +" " +
parser.getString());
br eak;

}

This example consists of three steps:

1. Obtain a parser instance by invoking the Json. cr eat ePar ser static method.

2. lterate over the parser events using the JsonPar ser. hasNext and the
JsonPar ser . next methods.

3. Perform local processing for each element.

The example shows the ten possible event types from the parser. The parser's next
method advances it to the next event.

For the event types KEY_NAVE, VALUE_STRI NG, and VALUE_NUMBER, you can obtain the
content of the element by invoking the JsonPar ser. get Stri ng method.

For VALUE_NUMBER events, you can also use the following methods:

START_OBJECT

KEY_NAME firstName - VALUE_STRI NG Duke

KEY_NAME | ast Nane - VALUE STRI NG Java

KEY NAME age - VALUE NUMBER 18

KEY_NAME street Address - VALUE _STRING 100 Internet Dr
KEY NAME city - VALUE_STRI NG JavaTown

KEY_NAME state - VALUE STRING JA

KEY_NAME post al Code - VALUE_STRING 12345

KEY_NAME phoneNunbers - START_ARRAY

10-6

10.3.2 Writing JSON Data Using a Generator

ORACLE

START_OBJECT

KEY_NAME type - VALUE_STRI NG robil e
KEY_NAME nunber - VALUE_STRING 111-111-1111
END_OBJECT

START_OBJECT

KEY_NAME type - VALUE_STRI NG hone

KEY_NAME nunber - VALUE_STRING 222- 222- 2222
END_OBJECT

END_ARRAY

END_OBJECT

Chapter 10
Streaming API

The following example shows how to write JSON data to a file using the streaming API:

FileWiter witer = new FileWiter("test.txt");
JsonCGenerator gen = Json.createGenerator(witer);

gen.witeStartject()
.wite("firstName", "Duke")

(
("age", 18)
.wite("street Address", "100 Internet Dr")
("city", "JavaTown")
("state", "JA")
.write("postal Code", "12345")
.witeStartArray("phoneNunbers")
.witeStartbject()
.wite("type", "nmobile")
.write("nunber”, "111-111-1111")
.writeEnd()
.witeStartQbject()
.wite("type", "home")
write("nunber", "222-222-2222")
.writeEnd()
.writeEnd()
.writeEnd();
gen. cl ose();

This example obtains a JISON generator by invoking the Json. cr eat eGener at or static
method, which takes a writer or an output stream as a parameter. The example writes JSON

data to the test. t xt file by nesting invocations tothewite, witeStartArray,

witeStart Cbject, and witeEnd methods. The JsonGener at or. ¢l ose method closes the

underlying writer or output stream.

10-7

Understanding WebLogic Server Application
Classloading

Java classloader is a part of the Java virtual machine (JVM) that loads classes into memory.
WebLogic Server Java EE application classloading enables WebLogic Server to host multiple
isolated applications within the same JVM.

This chapter includes the following sections:

e Java Classloading

* WebLogic Server Application Classloading

* Resolving Class References Between Modules and Applications
e Using the Classloader Analysis Tool (CAT)

e Sharing Applications and Modules By Using Java EE Libraries

e Adding JARs to the Domain /lib Directory

11.1 Java Classloading

Classloaders are a fundamental module of the Java language. A classloader is a part of the
Java virtual machine (JVM) that loads classes into memory; a classloader is responsible for
finding and loading class files at run time. Every successful Java programmer needs to
understand classloaders and their behavior.

» Java Classloader Hierarchy

* Loading a Class

* prefer-web-inf-classes Element

* Changing Classes in a Running Program

* Class Caching With the Policy Class Loader

» Class Caching With Application Class Data Sharing

11.1.1 Java Classloader Hierarchy

ORACLE

Classloaders contain a hierarchy with parent classloaders and child classloaders. The
relationship between parent and child classloaders is analogous to the object relationship of
super classes and subclasses. The bootstrap classloader is the root of the Java classloader
hierarchy. The Java virtual machine (JVM) creates the bootstrap classloader, which loads the
Java development kit (JDK) internal classes and j ava. * packages included in the JVM. (For
example, the bootstrap classloader loads j ava. | ang. String.)

The extensions classloader is a child of the bootstrap classloader. The extensions
classloader loads any JAR files placed in the extensions directory of the JDK. This is a
convenient means to extending the JDK without adding entries to the classpath. However,
anything in the extensions directory must be self-contained and can only refer to classes in
the extensions directory or JDK classes.

11-1

Chapter 11
Java Classloading

The system classpath classloader extends the JDK extensions classloader. The
system classpath classloader loads the classes from the classpath of the JVM.
Application-specific classloaders (including WebLogic Server classloaders) are
children of the system classpath classloader.

¢ Note:

What Oracle refers to as a "system classpath classloader" is often referred to
as the "application classloader" in contexts outside of WebLogic Server.
When discussing classloaders in WebLogic Server, Oracle uses the term
"system" to differentiate from classloaders related to Java EE applications or
libraries (which Oracle refers to as "application classloaders").

11.1.2 Loading a Class

Classloaders use a delegation model when loading a class. The classloader
implementation first checks its cache to see if the requested class has already been
loaded. This class verification improves performance in that its cached memory copy is
used instead of repeated loading of a class from disk. If the class is not found in its
cache, the current classloader asks its parent for the class. Only if the parent cannot
load the class does the classloader attempt to load the class. If a class exists in both
the parent and child classloaders, the parent version is loaded. This delegation model
is followed to avoid multiple copies of the same form being loaded. Multiple copies of
the same class can lead to a O assCast Excepti on.

Classloaders ask their parent classloader to load a class before attempting to load the
class themselves. Classloaders in WebLogic Server that are associated with Web
applications can be configured to check locally first before asking their parent for the
class. This allows Web applications to use their own versions of third-party classes,
which might also be used as part of the WebLogic Server product. The prefer-web-inf-
classes Element section discusses this in more detail.

11.1.3 prefer-web-inf-classes Element

ORACLE

The webl ogi c. xm Web application deployment descriptor contains a <pr ef er - web-

i nf - cl asses> element (a sub-element of the <cont ai ner - descri pt or > element). By
default, this element is set to Fal se. Setting this element to Tr ue subverts the
classloader delegation model so that class definitions from the Web application are
loaded in preference to class definitions in higher-level classloaders. This allows a
Web application to use its own version of a third-party class, which might also be part
of WebLogic Server. See weblogic.xml Deployment Descriptor Elements.

When using this feature, you must be careful not to mix instances created from the
Web application's class definition with instances created from the server's definition. If
such instances are mixed, a O assCast Except i on results.

Example 11-1 illustrates the pr ef er - web-i nf - cl asses element, its description and
default value.

Example 11-1 prefer-web-inf-classes Element
/ * %

* |f true, classes located in the WEB-INF directory of a web-app will be

11-2

Chapter 11
Java Classloading

* |oaded in preference to classes loaded in the application or system
* cl assl oader.

* @lefault false

*/

bool ean i sPref er Wbl nf d asses();

voi d set Pref er Wbl nf G asses(bool ean b);

11.1.4 Changing Classes in a Running Program

WebLogic Server allows you to deploy newer versions of application modules such as EJBs
while the server is running. This process is known as hot-deploy or hot-redeploy and is
closely related to classloading.

Java classloaders do not have any standard mechanism to undeploy or unload a set of
classes, nor can they load new versions of classes. In order to make updates to classes in a
running virtual machine, the classloader that loaded the changed classes must be replaced
with a new classloader. When a classloader is replaced, all classes that were loaded from
that classloader (or any classloaders that are offspring of that classloader) must be reloaded.
Any instances of these classes must be re-instantiated.

In WebLogic Server, each application has a hierarchy of classloaders that are offspring of the
system classloader. These hierarchies allow applications or parts of applications to be
individually reloaded without affecting the rest of the system. WebLogic Server Application
Classloading discusses this topic.

11.1.5 Class Caching With the Policy Class Loader

The Policy Class Loader (PCL) is the default system class loader when starting WebLogic
Server using a startWebLogic script. The Policy Class Loader improves class loader
performance and server startup time through class caching and indexing and is supported in
any WebLogic mode (development or production).

The Policy Class Loader caches loaded classes in a cache file. Upon subsequent starts, the
cached classes are preloaded in bulk, improving performance in use cases that load a large
number of classes from the system class loader, such as server startup. The Policy Class
Loader also contains an eager index, which maps package names and JAR files containing
the source code. This index improves lookup time for classes and reduces the time spent
looking for missing classes or resources. Cached files are generated in the DOVAI N_HOVE/
servers/webl ogi c_name/ cache/ cl assl oader directory.

In WebLogic Server 12.1.3, you could enable class caching in development mode by setting
the CLASS_CACHE environment variable in the st art \WebLogi ¢ script. For pre-existing 12.1.3
start scripts, continue to use the CLASS_CACHE variable to enable class caching. See
Configuring Class Caching in Developing Applications for Oracle WebLogic Server 12¢
(12.1.3).

As of WebLogic Server 12.2.1, new domains use the Policy Class Loader by default for class
caching. Any 12.1.3 domains that upgrade to 12.2.1 also automatically use the Policy Class
Loader.

ORACLE 11-3

http://www.oracle.com/pls/topic/lookup?ctx=fmw121300&id=WLPRG493

Chapter 11
Java Classloading

< Note:

If you want to disable the Policy Class Loader and use the standard system
class loader in JVM, set USE_JVM SYSTEM LQADER=t r ue when you run the
start\WebLogi ¢ script.

11.1.6 Class Caching With Application Class Data Sharing

ORACLE

The Application Class Data Sharing (AppCDS) is a class loader optimization that
supports archive files of predefined, validated, and linked classes.

This implementation improves the startup time of Oracle WebLogic Server and allows
multiple JVMs on the same machine to share memory pages, thereby reducing overall
memory usage.

To use this feature, do the following:

1. Generate Class List During WebLogic Server Trial
2. Generate AppCDS Archive
3. Run WebLogic Server With AppCDS Archive

Generate Class List During WebLogic Server Trial

Generate a class list by starting the WebLogic Server with the following option:

.IstartWebLogi c. sh generat eC asslLi st

By default, the class list will be generated at $DOMAI N HOVE/ WebLogi c. cl assl i st. You
can change this by setting the value of APPCDS_CLASS LI ST when starting the
WebLogic Server. For example:

APPCDS CLASS LI ST=ny.classlist ./startWbLogic.sh generateC assLi st

When you use class caching with AppCDS, the Policy Class Loader (PCL) will be
disabled.

Generate AppCDS Archive

Generate an AppCDS archive using the command:

. I gener at eAr chi ve. sh

By default, the class list file will be available at $DOVAI N_HOVE/ WebLogi c. cl assl i st
and the archive file will be generated at $DOVAI N_HOVE/ VbLogi c. j sa. You can change
these filenames by setting the value of APPCDS_CLASS_LI ST and APPCDS_ARCHI VE
respectively, when running the gener at eAr chi ve. sh command. For example:

APPCDS CLASS LI ST=ny. cl asslist APPCDS ARCH VE=nyArchive.jsa ./
gener at eAr chi ve. sh

11-4

Chapter 11
WebLogic Server Application Classloading

Run WebLogic Server With AppCDS Archive

After you generate an AppCDS archive, run the WebLogic Server using this archive:

.IstartWebLogi c. sh useArchive

You can change the default location of the AppCDS archive by setting the value of
APPCDS_ARCHI VE when starting the WebLogic Server. For example:

APPCDS_ARCHI VE=nyAr chi ve.jsa ./startWbLogi c. sh useArchive

AppCDS is not compatible with Policy Class Loader. Therefore, Policy Class Loader will be
disabled.

11.2 WebLogic Server Application Classloading

WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
WebLogic Server application classloading allows WebLogic Server to host multiple isolated
applications within the same JVM.

e Overview of WebLogic Server Application Classloading

e Application Classloader Hierarchy

* Custom Module Classloader Hierarchies

e Individual EJB Classloader for Implementation Classes

e Application Classloading and Pass-by-Value or Reference

e Using a Filtering ClassLoader

11.2.1 Overview of WebLogic Server Application Classloading

ORACLE

WebLogic Server classloading is centered on the concept of an application. An application is
normally packaged in an Enterprise Archive (EAR) file containing application classes.
Everything within an EAR file is considered part of the same application. The following may
be part of an EAR or can be loaded as standalone applications:

* An Enterprise JavaBean (EJB) JAR file
A Web application WAR file

* Aresource adapter RAR file

11-5

Chapter 11
WebLogic Server Application Classloading

< Note:

See the following sections for more information:

— For information on resource adapters and classloading, see About
Resource Adapter Classes.

— For information on overriding generic application files while
classloading, see Generic File Loading Overrides in Deploying
Applications to Oracle WebLogic Server.

If you deploy an EJB and a Web application separately, they are considered two
applications. If they are deployed together within an EAR file, they are one application.
You deploy modules together in an EAR file for them to be considered part of the same
application.

Every application receives its own classloader hierarchy; the parent of this hierarchy is
the system classpath classloader. This isolates applications so that application A
cannot see the classloaders or classes of application B. In hierarchy classloaders, no
sibling or friend concepts exist. Application code only has visibility to classes loaded by
the classloader associated with the application (or module) and classes that are
loaded by classloaders that are ancestors of the application (or module) classloader.
This allows WebLogic Server to host multiple isolated applications within the same
JVM.

11.2.2 Application Classloader Hierarchy

ORACLE

WebLogic Server automatically creates a hierarchy of classloaders when an
application is deployed. The root classloader in this hierarchy loads any EJB JAR files
in the application. A child classloader is created for each Web application WAR file.

Because it is common for Web applications to call EJBs, the WebLogic Server
application classloader architecture allows JavaServer Page (JSP) files and servlets to
see the EJB interfaces in their parent classloader. This architecture also allows Web
applications to be redeployed without redeploying the EJB tier. In practice, it is more
common to change JSP files and servlets than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading
concept.

11-6

Chapter 11
WebLogic Server Application Classloading

Figure 11-1 WebLogic Server Classloading

System Classpath Loader

0

WebLogic Server / \
Application 1 ,-""IJ Applicati\b{n 2
EJB1 EJB2 E;.IEI 3
f 4k
Wel;App 1 Web;&pp 2 Wel:'nApp 3

If your application includes servlets and JSPs that use EJBs:

» Package the servlets and JSPs in a WAR file

» Package the Enterprise JavaBeans in an EJB JAR file
» Package the WAR and JAR files in an EAR file

* Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them together in an
EAR file produces a classloader arrangement that allows the servlets and JSPs to find the
EJB classes. If you deploy the WAR and JAR files separately, WebLogic Server creates
sibling classloaders for them. This means that you must include the EJB home and remote
interfaces in the WAR file, and WebLogic Server must use the RMI stub and skeleton classes
for EJB calls, just as it does when EJB clients and implementation classes are in different
JVMs. This concept is discussed in more detail in the next section Application Classloading
and Pass-by-Value or Reference.

" Note:

The Web application classloader contains all classes for the Web application except
for the JSP class. The JSP class obtains its own classloader, which is a child of the
Web application classloader. This allows JSPs to be individually reloaded.

11.2.3 Custom Module Classloader Hierarchies

You can create custom classloader hierarchies for an application allowing for better control
over class visibility and reloadability. You achieve this by defining a cl assl oader-structure
element in the webl ogi c- appl i cati on. xm deployment descriptor file.

ORACLE 11-7

Chapter 11
WebLogic Server Application Classloading

The following diagram illustrates how classloaders are organized by default for
WebLogic applications. An application level classloader exists where all EJB classes
are loaded. For each Web module, there is a separate child classloader for the classes
of that module.

For simplicity, JSP classloaders are not described in the following diagram.

Figure 11-2 Standard Classloader Hierarchy

Application Classloader
[EJE1] [EJBZ]

Wyeb Application 1 Web Application 2
Classloader Classloader

This hierarchy is optimal for most applications, because it allows call-by-reference
semantics when you invoke EJBs. It also allows Web modules to be independently
reloaded without affecting other modules. Further, it allows code running in one of the
Web modules to load classes from any of the EJB modules. This is convenient, as it
can prevent a Web module from including the interfaces for EJBs that it uses. Note
that some of those benefits are not strictly Java EE-compliant.

The ability to create custom module classloaders provides a mechanism to declare
alternate classloader organizations that allow the following:

* Reloading individual EJB modules independently
* Reloading groups of modules to be reloaded together

* Reversing the parent child relationship between specific Web modules and EJB
modules

* Namespace separation between EJB modules

11.2.4 Declaring the Classloader Hierarchy

ORACLE

You can declare the classloader hierarchy in the WebLogic-specific application
deployment descriptor webl ogi c- appl i cation. xnl .

The DTD for this declaration is as follows:

< ELEMENT cl assl oader-structure (nodul e-ref*, classloader-structure*)>
<! ELEMENT nodul e-ref (nodul e-uri)>
<! ELEMENT nodul e-uri (#PCDATA) >

The top-level element in webl ogi c- appl i cati on. xm includes an optional
cl assl oader - st ruct ur e element. If you do not specify this element, then the standard
classloader is used. Also, if you do not include a particular module in the definition, it is

11-8

Chapter 11
WebLogic Server Application Classloading

assigned a classloader, as in the standard hierarchy. That is, EJB modules are associated
with the application root classloader, and Web application modules have their own
classloaders.

The cl assl oader - st ruct ur e element allows for the nesting of cl assl oader - structure
stanzas, so that you can describe an arbitrary hierarchy of classloaders. There is currently a
limitation of three levels. The outermost entry indicates the application classloader. For any
modules not listed, the standard hierarchy is assumed.

< Note:

JSP classloaders are not included in this definition scheme. JSPs are always
loaded into a classloader that is a child of the classloader associated with the Web
module to which it belongs.

For more information on the DTD elements, refer to Enterprise Application Deployment
Descriptor Elements.

The following is an example of a classloader declaration (defined in the cl assl oader -
struct ure element in webl ogi c- appl i cati on.xm):

<cl assl oader - st ruct ure>
<nodul e-ref >
<nodul e-uri >ej bl.jar</nodul e-uri>
</ modul e-ref>
<nodul e-ref >
<nodul e- uri >web3. war </ nodul e-uri >
</ modul e-ref >

<cl assl oader - st ruct ure>
<nodul e-ref >
<nodul e-uri >webl. war </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - struct ure>

<cl assl oader - st ruct ure>
<nodul e-ref >
<nodul e-uri >ej b3.jar </ nodul e-uri>
</ modul e-ref>
<nodul e-ref >
<nodul e- uri >web2. war </ nodul e-uri >
</ modul e-ref>

<cl assl oader - st ruct ure>
<nodul e-ref >
<nodul e- uri >web4. war </ nodul e-uri >
</ modul e-ref>
</ cl assl oader - st ruct ure>
<cl assl oader - st ruct ure>
<nodul e-ref >
<nodul e-uri >ej b2.jar </ nodul e-uri>
</ modul e-ref>
</ cl assl oader - st ruct ure>
</ cl assl oader - struct ure>
</ cl assl oader - struct ure>

ORACLE 11-9

Chapter 11
WebLogic Server Application Classloading

The organization of the nesting indicates the classloader hierarchy. The above stanza
leads to a hierarchy shown in the following diagram.

Figure 11-3 Example Classloader Hierarchy

Application Classloader
[EJET] [MEEBZ]

[WEB 1] [EJB3] [WEB2]

[WEE 4] [EJBZ]

11.2.5 User-Defined Classloader Restrictions

User-defined classloader restrictions give you better control over what is reloadable
and provide inter-module class visibility. This feature is primarily for developers. It is
useful for iterative development, but the reloading aspect of this feature is not
recommended for production use, because it is possible to corrupt a running
application if an update includes invalid elements. Custom classloader arrangements
for namespace separation and class visibility are acceptable for production use.
However, programmers should be aware that the Java EE specifications say that
applications should not depend on any given classloader organization.

Some classloader hierarchies can cause modules within an application to behave
more like modules in two separate applications. For example, if you place an EJB in its
own classloader so that it can be reloaded individually, you receive call-by-value
semantics rather than the call-by-reference optimization Oracle provides in our
standard classloader hierarchy. Also note that if you use a custom hierarchy, you might
end up with stale references. Therefore, if you reload an EJB module, you should also
reload the calling modules.

There are some restrictions to creating user-defined module classloader hierarchies;
these are discussed in the following sections.

11.2.5.1 Servlet Reloading Disabled

If you use a custom classloader hierarchy, servlet reloading is disabled for Web
applications in that particular application.

ORACLE 11-10

Chapter 11
WebLogic Server Application Classloading

11.2.5.2 Nesting Depth

Nesting is limited to three levels (including the application classloader). Deeper nestings lead
to a deployment exception.

11.2.5.3 Module Types

Custom classloader hierarchies are currently restricted to Web and EJB modules.

11.2.5.4 Duplicate Entries

Duplicate entries lead to a deployment exception.

11.2.5.5 Interfaces

The standard WebLogic Server classloader hierarchy makes EJB interfaces available to all
modules in the application. Thus other modules can invoke an EJB, even though they do not
include the interface classes in their own module. This is possible because EJBs are always
loaded into the root classloader and all other modules either share that classloader or have a
classloader that is a child of that classloader.

With the custom classloader feature, you can configure a classloader hierarchy so that a
callee's classes are not visible to the caller. In this case, the calling module must include the
interface classes. This is the same requirement that exists when invoking on modules in a
separate application.

11.2.5.6 Call-by-Value Semantics

The standard classloader hierarchy provided with WebLogic Server allows for calls between
modules within an application to use call-by-reference semantics. This is because the caller
is always using the same classloader or a child classloader of the callee. With this feature, it
is possible to configure the classloader hierarchy so that two modules are in separate
branches of the classloader tree. In this case, call-by-value semantics are used.

11.2.5.7 In-Flight Work

Be aware that the classloader switch required for reloading is not atomic across modules. In
fact, updates to applications in general are not atomic. For this reason, it is possible that
different in-flight operations (operations that are occurring while a change is being made)
might end up accessing different versions of classes depending on timing.

11.2.5.8 Development Use Only

The development-use-only feature is intended for development use. Because updates are not
atomic, this feature is not suitable for production use.

11.2.6 Individual EJB Classloader for Implementation Classes

WebLogic Server allows you to reload individual EJB modules without requiring you to reload
other modules at the same time and having to redeploy the entire EJB module. This feature is
similar to how JSPs are currently reloaded in the WebLogic Server servlet container.

ORACLE 11-11

ORACLE

Chapter 11
WebLogic Server Application Classloading

Because EJB classes are invoked through an interface, it is possible to load individual
EJB implementation classes in their own classloader. This way, these classes can be
reloaded individually without having to redeploy the entire EJB module. Below is a
diagram of what the classloader hierarchy for a single EJB module would look like.
The module contains two EJBs (Foo and Bar). This would be a sub-tree of the general
application hierarchy described in the previous section.

Figure 11-4 Example Classloader Hierarchy for a Single EJB Module

Module Classloader

Foo class EBar class
FooHome class BarHome class

[Any other classes either generated or from the JAR file]

Foo Classloader Ear Classloader

Foolmpl class Earlmpl class

To perform a partial update of files relative to the root of the exploded application, use
the following command line:

Example 11-2 Performing a Partial File Update

java webl ogi c. Depl oyer -adm nurl url -user user -password password
-name nyapp -redepl oy nyej b/ foo.cl ass

After the - r edepl oy command, you provide a list of files relative to the root of the
exploded application that you want to update. This might be the path to a specific
element (as above) or a module (or any set of elements and modules). For example:

Example 11-3 Providing a List of Relative Files for Update

java webl ogi c. Depl oyer -adminurl url -user user -password password
-name nyapp -redepl oy nywar nyejb/foo.class anotherejb

Given a set of files to be updated, the system tries to figure out the minimum set of
things it needs to redeploy. Redeploying only an EJB i npl class causes only that class
to be redeployed. If you specify the whole EJB (in the above example, anot her ej b) or
if you change and update the EJB home interface, the entire EJB module must be
redeployed.

Depending on the classloader hierarchy, this redeployment may lead to other modules
being redeployed. Specifically, if other modules share the EJB classloader or are
loaded into a classloader that is a child to the EJB's classloader (as in the WebLogic
Server standard classloader module) then those modules are also reloaded.

11-12

Chapter 11
WebLogic Server Application Classloading

11.2.7 Application Classloading and Pass-by-Value or Reference

Modern programming languages use two common parameter passing models: pass-by-value
and pass-by-reference. With pass-by-value, parameters and return values are copied for
each method call. With pass-by-reference, a pointer (or reference) to the actual object is
passed to the method. Pass by reference improves performance because it avoids copying
objects, but it also allows a method to modify the state of a passed parameter.

WebLogic Server includes an optimization to improve the performance of Remote Method
Interface (RMI) calls within the server. Rather than using pass by value and the RMI
subsystem's marshalling and unmarshalling facilities, the server makes a direct Java method
call using pass by reference. This mechanism greatly improves performance and is also used
for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee are
within the same application. As usual, this is related to classloaders. Because applications
have their own classloader hierarchy, any application class has a definition in both
classloaders and receives a ClassCastException error if you try to assign between
applications. To work around this, WebLogic Server uses call-by-value between applications,
even if they are within the same JVM.

Note:

Calls between applications are slower than calls within the same application.
Deploy modules together as an EAR file to enable fast RMI calls and use of the EJB
2.0 local interfaces.

11.2.8 Using a Filtering ClassLoader

ORACLE

In WebLogic Server, any JAR file present in the system classpath is loaded by the WebLogic
Server system classloader. All applications running within a server instance are loaded in
application classloaders which are children of the system classloader. In this implementation
of the system classloader, applications cannot use different versions of third-party JARs
which are already present in the system classloader. Every child classloader asks the parent
(the system classloader) for a particular class and cannot load classes which are seen by the
parent.

For example, if a class called com f 00. Baz exists in both $CLASSPATH as well as the
application EAR, then the class from the $CLASSPATH is loaded and not the one from the EAR.
Since webl ogi ¢. j ar is in the $CLASSPATH, applications can not override any WebLogic Server
classes.

The following sections define and describe how to use a filtering classloader:

e Whatis a Filtering ClassLoader
* Configuring a Filtering ClassLoader

* Resource Loading Order

11-13

Chapter 11
WebLogic Server Application Classloading

11.2.9 What is a Filtering ClassLoader

The Fil teringQ assLoader provides a mechanism for you to configure deployment
descriptors to explicitly specify that certain packages should always be loaded from
the application, rather than being loaded by the system classloader. This allows you to
use alternate versions of applications such as Xerces and Ant. Though the
Filteringd assLoader lets you bundle and use 3rd party JARs in your application, it
is not recommended that you filter out API classes, like classes in j avax packages or
webl ogi ¢ packages.

The Fil teringQ assLoader sits between the application classloader and the system
classloader. It is a child of the system classloader and the parent of the application
classloader. The Fil teri ngC assLoader intercepts the | oadCl ass(String cl assNane)
method and compares the cl assName with a list of packages specified in webl ogi c-
application.xm file. If the package matches the cl assNang, the

FilteringQ assLoader throws a C assNot FoundExcepti on. This exception notifies the
application classloader to load this class from the application.

11.2.10 Configuring a Filtering ClassLoader

To configure the Fi | t eri ngd assLoader to specify that a certain package is loaded
from an application, add a pref er- appl i cati on- packages descriptor element to
webl ogi c- appl i cati on. xm which details the list of packages to be loaded from the
application. The following example specifies that or g. apache. | og4j . * and antlr.*
packages are loaded from the application, not the system classloader:

<prefer-application-packages>
<package- name>or g. apache. | og4j . *</ package- name>
<package- name>ant | r. *</ package- nanme>

</ prefer-application-packages>

The prefer-application-packages descriptor element can also be defined in
webl ogi c. xm . See prefer-application-packages.

You can specify that a certain package be loaded for a WAR file included within an
EAR file by configuring the Fi | t eri ngd assLoader in the webl ogi c. xm file of the
WAR file.

For example, A ear contains B. war . A. ear defines the Fi | teri ngCl assLoader in
webl ogi c-appli cation. xnl , and B. war defines a different Fi | t eri ngQ assLoader in
webl ogi c. xn . When you deploy A. ear, B. war loads the package defined in the
Filteringd assLoader inwebl ogi c. xm . The WAR-level Fi | t eri ngd assLoader has
priority over the EAR-level Fi | t eri ngCl assLoader for this WAR file.

For aid in configuring filtering classloaders, see Using the Classloader Analysis Tool
(CAT).

11.2.11 Resource Loading Order

ORACLE

The resource loading order is the order in which j ava. | ang. 0 assLoader methods
get Resour ce() and get Resour ces() return resources. When filtering is enabled, this
order is slightly different from the case when filtering is disabled. Filtering is enabled
implies that there are one or more package patterns in the Fi | t eri ngC assLoader .
Without any filtering (default), the resources are collected in the top-down order of the

11-14

Chapter 11
WebLogic Server Application Classloading

classloader tree. For instance, if Web (1) requests resources, the resources are grouped in
the following order: Sys (3), App (2) and Web(1). See Example 11-4.

Note:

The resources are returned in the default Java EE delegation model beneath the
Fil teringC assLoader. Only the resources from the parent of the
FilteringC assLoader are appended to the end of the enumeration being returned.

Example 11-4 Using the System Classloader

System (3)
I
A||0P (2)
Véb (1)

To be more explicit, given a resource / META- | NF/ f 0o. xm which exists in all the classloaders,
would return the following list of URLSs:

META-I NF/ foo.xm - fromthe System O assLoader (3)
META-I NF/ foo.xm - fromthe App C assLoader (2)
META-I NF/ foo.xm - fromthe Wb C assLoader (1)

When filtering is enabled, the resources from the child of the Fi | t eri ngQ assLoader (an
application classloader) down to the calling classloader are returned before the ones from the
system classloader. In Example 11-5, if the same resource existed in all the classloaders (D),
(B) and (A) one would get them in the following order if requested by the Web classloader:

META- I NF/ foo. xm - fromthe App O assLoader (B)
META- I NF/ foo. xm - fromthe Web O assLoader (A)
META- I NF/ foo. xm - fromthe System C assLoader (D)

Example 11-5 Using a Filtering Classloading Implementation

System (D)

I
Filteringd assLoader (filterList :=x.y.*) (O

I
Allop (B)
Véb (A)

If the application classloader requested the same resource, the following order would be
obtained.

META- I NF/ foo. xml - fromthe App C assLoader (B)
META- I NF/ foo. xm - fromthe System O assLoader (D)

For get Resour ce(), only the first descriptor is returned and get Resour ceAsSt rean() returns
the i nput St r eamof the first resource.

ORACLE 11-15

Chapter 11
Resolving Class References Between Modules and Applications

11.3 Resolving Class References Between Modules and
Applications

WebLogic Server deploys applications in separate classloaders to maintain
independence and to facilitate dynamic redeployment and undeployment. Because of
this, you need to package your application classes in such a way that each module
has access to the classes it depends on.

Your applications may use many different Java classes, including Enterprise Beans,
servlets and JavaServer Pages, utility classes, and third-party packages. In some
cases, you may have to include a set of classes in more than one application or
module. This section describes how WebLogic Server uses multiple classloaders so
that you can stage your applications successfully.

For more information about analyzing and resolving classloading issues, see Using the
Classloader Analysis Tool (CAT).

11.3.1 About Resource Adapter Classes

Each resource adapter now uses its own classloader to load classes (similar to Web
applications). As a result, modules like Web applications and EJBs that are packaged
along with a resource adapter in an application archive (EAR file) do not have visibility
into the resource adapter's classes. If such visibility is required, you must place the
resource adapter classes in APP-INF/classes. You can also archive these classes
(using the JAR utility) and place them in the APP-INF/lib of the application archive.

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
modules (for example, an EJB or Web application), you must bundle these classes in
the corresponding module's archive file (for example, the JAR file for EJBs or the WAR
file for Web applications).

11.3.2 Packaging Shared Utility Classes

WebLogic Server provides a location within an EAR file where you can store shared
utility classes. Place utility JAR files in the APP- I NF/ | i b directory and individual
classes in the APP- | NF/ cl asses directory. (Do not place JAR files in the / cl asses
directory or classes in the / | i b directory.) These classes are loaded into the root
classloader for the application.

This feature obviates the need to place utility classes in the system classpath or place
classes in an EJB JAR file (which depends on the standard WebLogic Server
classloader hierarchy). Be aware that using this feature is subtly different from using
the manifest O ass- Pat h described in the following section. With this feature, class
definitions are shared across the application. With manifest O ass- Pat h, the classpath
of the referencing module is simply extended, which means that separate copies of the
classes exist for each module.

11.3.3 Manifest Class-Path

The Java EE specification provides the manifest Cl ass- Pat h entry as a means for a
module to specify that it requires an auxiliary JAR of classes. You only need to use this

ORACLE 11-16

Chapter 11
Using the Classloader Analysis Tool (CAT)

manifest Cl ass- Pat h entry if you have additional supporting JAR files as part of your EJB
JAR or WAR file. In such cases, when you create the JAR or WAR file, you must include a
manifest file with a O ass- Pat h element that references the required JAR files.

The following is a simple manifest file that references a utility.jar file:

Mani f est-Version: 1.0 [CRLF]
G ass-Path: utility.jar [CRLF]

In the first line of the manifest file, you must always include the Mani f est - Ver si on attribute,
followed by a new line (CR | LF |CRLF) and then the O ass- Pat h attribute. More information
about the manifest format can be found at: htt p: // docs. oracl e. cont j avase/ 7/ docs/

t echnot es/ gui des/jar/jar.htm

The manifest O ass- Pat h entries refer to other archives relative to the current archive in
which these entries are defined. This structure allows multiple WAR files and EJB JAR files to
share a common library JAR. For example, if a WAR file contains a manifest entry of y. j ars,
this entry should be next to the WAR file (not within it) as follows:

/ <di rectory>/x. war
/<directory>/y.jars

The manifest file itself should be located in the archive at META- | NF/ MANI FEST. M.

See http://docs. oracl e. confjavase/tutorial/depl oyment/jar/ manifestindex.htnl.

11.4 Using the Classloader Analysis Tool (CAT)

CAT is a Web-based class analysis tool that simplifies filtering classloader configuration and
aids you in analyzing classloading issues, such as detecting conflicts, debugging application
classpaths and class conflicts, and proposes solutions to help you resolve them.

CAT is a stand-alone Web application, distributed as a single WAR file, W s- cat . war,
exposing its features through a Web-based front end. CAT is deployed as an internal on-
demand application only in development mode. Deployment happens upon first access. If the
server is running in production mode, it is not deployed automatically. You can deploy it in
production mode; there are no limitations on its use, but you must deploy it manually, just like
any other Web application. The CAT Web application is located at W._HOME/ server/lib/w s-
cat. war. You can deploy it to any WebLogic Server version 10.3.x and later.

" Note:

CAT is not supported on IBM SDK for Java because some functions of the CAT
application depend on HotSpot implementation.

11.4.1 Opening the CAT Interface

ORACLE

CAT has a simple Web GUI that displays all your currently running applications and modules.
To begin using CAT:

* Inthe WebLogic Server Administration Console, select Deployments > app_name >
Testing and then select the Classloader Analysis Tool link. Enter your console login
credentials.

11-17

http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/7/docs/technotes/guides/jar/jar.html
http://docs.oracle.com/javase/tutorial/deployment/jar/manifestindex.html

Chapter 11
Using the Classloader Analysis Tool (CAT)

~Or ~

e Open your browserto http://w s-host: port/w s-cat/ and then enter your
console login credentials.

In the navigation pane, select the application or module that you want to analyze; a
brief description of it is shown in the right-side pane. Use the right-side pane to
perform actions and analyses on the selected application or module, such as:

* Analyze classloading conflicts
* View the system and application classloaders

* Generate reports

11.4.2 How CAT Analyzes Classes

CAT analyzes classes loaded by the system classpath classloader and the WebLogic
Server main application classloaders, defined here as the filtering, application, and
module classloaders. You can perform analysis at the class, package, or JAR level.
The results for each action you select can be shown in either a basic view or a detailed
view.

Here are some of the tasks which you can perform using CAT:

» Display basic information about applications and modules

e Analyze classloading conflicts

* Review proposed solutions

e Get suggestions for configuring filtering classloaders

« Display the classloader hierarchy and the entire classpath for each classloader

e Search for a class (or a resource) on a classloader

11.4.3 Identifying Class References through Manifest Hierarchies

ORACLE

Applications can have multiple manifest references to classes that are not directly
present in the applications's classpath, but which are chained into the Classpath by
manifest references. In some cases, application developers may not be aware that
additional classes have been unknowingly pulled into the application's classpath from
other JARs, which in turn have manifest references to other JARs.

CAT has the ability to search through an application's or module's classpath to detect
and display the underlying chained manifest references, as shown in the following
Sample EAR with Manifest Hierarchies example:

cat 4nf. ear
+ ejb.jar
+- web-nf-in-root.war
+ lib
+- applib.jar

+ apputil _1.jar

+ apputil _1_1.jar
+ apputil_1_1 1.jar
+ apputil _1_2.jar
+ apputil_1_2 1.jar
+ ejbutil_1.jar

+ ejbutil_1_1.jar
+ ejbutil_1_2.jar

11-18

Chapter 11
Sharing Applications and Modules By Using Java EE Libraries

+ ejbutil_1_2 1.jar
+ webutil _1.jar

+ webutil _1_1.jar
+ webutil_1_1 1.jar
+ webutil _2.jar

+ webutil _2_1.jar

The ej b. j ar has a manifest reference to ej buti| _1.j ar, which has references to both
ejbutil 1 1.jar andejbutil_1 2.jar, which has a further reference to
ejbutil _1 2 1.jar, as follows:
ejb.jar
-> ejbutil _1.jar
->ejbutil_1 1.jar
->ejbutil_1 2.jar
->ejbutil_12 1.jar

Using CAT to Display the Manifest References

1. Open the CAT tool, as described in Opening the CAT Interface.
2. Use the navigation pane to select the running application or module to analyze.

Note: The manifest references can best be analyzed from the module level rather than
the application level.

3. Inthe Summary for Application pane, click the Classloader Tree view to list all the
classloaders for the selected application/module.

» Selecting the detailed view from the menu displays the classpath of each
classloader.

* The hash code of each classloader is an active URL.
4. Click the classloader hash code URL you want to analyze.

5. The Classloader page defaults to the basic view, so select the detailed view to see the
classpath and the classes loaded by the classloader.

6. Enter one of the loaded classnames in the Resource to analyze field (using the format
pckgnane. cl assname, and click Analyze Resource.

7. The Manifest References section of the detailed output provides the list of chained
manifest references for the selected classname.

Continuing with Sample EAR with Manifest Hierarchies example, the output should look
like this:

pat h/t o/ user_projects/applications/cat4nf/y79s0z/ejb.jar
pat h/to/ user_proj ects/applications/cat4nf/y79s0z/ejbutil _1.jar
pat h/t o/ user_projects/applications/cat4nf/y79s0z/ejbutil_1_2.jar
pat h/t o/ user _projects/applications/cat4nf/y79s0z/ejbutil_1_2 1.jar

11.5 Sharing Applications and Modules By Using Java EE
Libraries

Java EE libraries provide an easy way to share one or more different types of Java EE
modules among multiple enterprise applications.

ORACLE 11-19

Chapter 11
Adding JARs to the Domain /lib Directory

A Java EE library is a single module or collection of modules that is registered with the
Java EE application container upon deployment. For more information, see Creating
Shared Java EE Libraries and Optional Packages.

11.6 Adding JARs to the Domain /i Directory

WebLogic Server includes a | i b subdirectory, located in the domain directory, that you
can use to add one or more JAR files, so that the JAR file classes are available within
a separate system level classloader to all Java EE applications running on WebLogic
Server instances in the domain.

The JARS in the domain /| i b directory will not be appended to the system classpath.
The classloader that gets created is a child of the system classloader. Any classes that
are in JARs in the domain /| i b directory will only be visible to Java EE applications,
such as EAR files. Classes in the system classpath cannot access classes in the
domain /i b directory.

The | i b subdirectory is intended for JAR files that change infrequently and are
required by all or most applications deployed in the server. For example, you might
use the | i b directory to store third-party utility classes that are required by all Java EE
deployments in a domain. Third-party utility classes will be made available because
the domain /1 i b classloader will be the parent of any Java EE application.

The |'i b directory is not recommended as a general-purpose method for sharing a
JARs between one or two applications deployed in a domain, or for sharing JARs that
need to be updated periodically. If you update a JAR in the | i b directory, you must
reboot all servers in the domain in order for applications to realize the change. If you
need to share a JAR file or Java EE modules among several applications, use the
Java EE libraries feature described in Creating Shared Java EE Libraries and Optional
Packages.

To share JARs using the | i b directory:

1. Shutdown all servers in the domain.

2. Copy the JAR file(s) to share into a | i b subdirectory of the domain directory. For
example:

mkdi r DOVAI N_HOVE\ wl _server\lib
cp c:\3rdpartyjars\utility.jar
DOVAI N_HOVE\ Wl _server\lib

¢ Note:

WebLogic Server must have read access to the | i b directory during
startup.

The Administration Server does not automatically copy files inthe l'i b
directory to Managed Servers on remote machines. If you have
Managed Servers that do not share the same physical domain directory
as the Administration Server, you must manually copy JAR file(s) to the
domai n_nane/ | i b directory on the Managed Server machines.

3. Start the Administration Server and all Managed Servers in the domain.

ORACLE 11-20

Creating Shared Java EE Libraries and
Optional Packages

You can share components and classes among applications using shared Java EE libraries
and optional packages supported in WebLogic Server.
This chapter includes the following sections:

e Overview of Shared Java EE Libraries and Optional Packages

e Creating Shared Java EE Libraries

» Referencing Shared Java EE Libraries in an Enterprise Application

» Referencing Optional Packages from a Java EE Application or Module

e Using weblogic.appmerge to Merge Libraries

* Integrating Shared Java EE Libraries with the Split Development Directory Environment
» Deploying Shared Java EE Libraries and Dependent Applications

* Web Application Shared Java EE Library Information

» Using WebApp Libraries With Web Applications

e Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean
e Order of Precedence of Modules When Referencing Shared Java EE Libraries

e Best Practices for Using Shared Java EE Libraries

12.1 Overview of Shared Java EE Libraries and Optional
Packages

The shared Java EE library feature in WebLogic Server provides an easy way to share one or
more different types of Java EE modules among multiple enterprise applications. A shared
Java EE libraries can be referenced by enterprise applications and you can also create
libraries that can be referenced only by another Web application.

A shared Java EE library is a single module or collection of modules that is registered with
the Java EE application container upon deployment. A shared Java EE library can be any of
the following:

« standalone EJB module

» standalone Web application module

* multiple EJB modules packaged in an enterprise application

* multiple Web application modules package in an enterprise application
e single plain JAR file

Oracle recommends that you package a shared Java EE library into its appropriate archive
file (EAR, JAR, or WAR). However, for development purposes, you may choose to deploy

ORACLE 12-1

Chapter 12
Overview of Shared Java EE Libraries and Optional Packages

shared Java EE libraries as exploded archive directories to facilitate repeated updates
and redeployments.

After the shared Java EE library has been registered, you can deploy enterprise
applications that reference the library. Each referencing application receives a
reference to the required library on deployment, and can use the modules that make
up the library as if they were packaged as part of the referencing application itself. The
library classes are added to the class path of the referencing application, and the
primary deployment descriptors of the referencing application or module are merged
(in memory) with those of the modules that make up the shared Java EE library.

In general, this topic discusses shared Java EE libraries that can be referenced only
by enterprise applications. You can also create libraries that can be referenced only by
another Web application. The functionality is very similar to application libraries,
although the method of referencing them is slightly different. See Web Application
Shared Java EE Library Information for details.

Note:

WebLogic Server also provides a simple way to add one or more JAR files to
the WebLogic Server System classpath, using the | i b subdirectory of the
domain directory. See Adding JARs to the Domain /lib Directory.

12.1.1 Optional Packages

ORACLE

WebLogic Server supports optional packages as described at http://

docs. oracl e. conl j avase/ 6/ docs/ t echnot es/ gui des/ ext ensi ons/ ext ensi ons. ht m
with versioning described in Optional Package Versioning (see http://

docs. oracl e. cont j avase/ 6/ docs/ t echnot es/ gui des/ ext ensi ons/ ver si oni ng. htm).
Optional packages provide similar functionality to Java EE libraries, allowing you to
easily share a single JAR file among multiple applications. As with Java EE libraries,
optional packages must first be registered with WebLogic Server by deploying the
associated JAR file as an optional package. After registering the package, you can
deploy Java EE modules that reference the package in their manifest files.

Optional packages are also supported as Java EE shared libraries in

webl ogi c. Bui | dXMLGen, whereby all manifests of an application and its modules are
scanned to look for optional package references. If optional package references are
found they are added to the wl conpi | e and appc tasks in the generated bui | d. xm file.

Optional packages differ from Java EE libraries because optional packages can be
referenced from any Java EE module (EAR, JAR, WAR, or RAR archive) or exploded
archive directory. Java EE libraries can be referenced only from a valid enterprise
application.

For example, third-party Web application Framework classes needed by multiple Web
applications can be packaged and deployed in a single JAR file, and referenced by
multiple Web application modules in the domain. Optional packages, rather than Java
EE libraries, are used in this case, because the individual Web application modules
must reference the shared JAR file. (With Java EE libraries, only a complete enterprise
application can reference the library).

12-2

http://docs.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://docs.oracle.com/javase/6/docs/technotes/guides/extensions/extensions.html
http://docs.oracle.com/javase/6/docs/technotes/guides/extensions/versioning.html
http://docs.oracle.com/javase/6/docs/technotes/guides/extensions/versioning.html

Chapter 12
Overview of Shared Java EE Libraries and Optional Packages

< Note:

Oracle documentation and WebLogic Server utilities use the term library to refer to
both Java EE libraries and optional packages. Optional packages are called out
only when necessary.

12.1.2 Library Directories

The Java EE platform provides several mechanisms for applications to use optional
packages and shared libraries. Libraries can be bundled with an application or may be
installed separately for use by any application. An EAR file may contain a directory that
contains libraries packaged in JAR files. The |'i brary-di rect ory element of the EAR file's
deployment descriptor contains the name of this directory. If a | i brary-di rect ory element
isn't specified, or if the EAR file does not contain a deployment descriptor, the directory
named | i b is used. An empty | i brary-directory element may be used to specify that there
is no library directory. All files in this directory (but not in subdirectories) with a . j ar extension
must be made available to all components packaged in the EAR file, including application
clients. These libraries may reference other libraries, either bundled with the application or
installed separately.

This feature is similar to the APP-1 NF/ | i b feature supported in WebLogic Server. If both APP-
INF/libandlibrary-directory exist, then the jars in the | i brary-di rect ory would take
precedence; that is, they would be placed before the APP-1 NF/ | i b jar files in the classpath.
For more information on APP- | NF/ | i b, see Resolving Class References Between Modules
and Applications and Organizing Shared Classes in a Split Development Directory.

12.1.3 Versioning Support for Libraries

ORACLE

WebLogic Server supports versioning of shared Java EE libraries, so that referencing
applications can specify a required minimum version of the library to use, or an exact,
required version. WebLogic Server supports two levels of versioning for shared Java EE
libraries, as described in the Optional Package Versioning document at http://

docs. oracl e. conl j avase/ 7/ docs/ t echnot es/ gui des/ ext ensi ons/ ver si oni ng. htn :

» Specification Version—Identifies the version number of the specification (for example, the
Java EE specification version) to which a shared Java EE library or optional package
conforms.

e Implementation Version—Identifies the version nhumber of the actual code implementation
for the library or package. For example, this would correspond to the actual revision
number or release number of your code. Note that you must also provide a specification
version in order to specify an implementation version.

As a best practice, Oracle recommends that you always include version information (a
specification version, or both an implementation and specification version) when creating
shared Java EE libraries. Creating and updating version information as you develop shared
components allows you to deploy multiple versions of those components simultaneously for
testing. If you include no version information, or fail to increment the version string, then you
must undeploy existing libraries before you can deploy the newer one. See Deploying Shared
Java EE Libraries and Dependent Applications.

Versioning information in the referencing application determines the library and package
version requirements for that application. Different applications can require different versions

12-3

http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/versioning.html
http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/versioning.html

Chapter 12
Overview of Shared Java EE Libraries and Optional Packages

of a given library or package. For example, a production application may require a
specific version of a library, because only that library has been fully approved for
production use. An internal application may be configured to always use a minimum
version of the same library. Applications that require no specific version can be
configured to use the latest version of the library. Referencing Shared Java EE
Libraries in an Enterprise Application.

12.1.4 Shared Java EE Libraries and Optional Packages Compared

ORACLE

Optional packages and shared Java EE libraries have the following features in
common:

* Both are registered with WebLogic Server instances at deployment time.
» Both support an optional implementation version and specification version string.

» Applications that reference shared Java EE libraries and optional packages can
specify required versions for the shared files.

» Optional packages can reference other optional packages, and shared Java EE
libraries can reference other shared Java EE libraries.

Optional packages differ from shared Java EE Libraries in the following basic ways:

e Optional packages are plain JAR files, whereas shared Java EE libraries can be
plain JAR files, Java EE enterprise applications, or standalone Java EE modules
(EJB and Web applications). This means that libraries can have valid Java EE and
WebLogic Server deployment descriptors. Any deployment descriptors in an
optional package JAR file are ignored.

e Any Java EE application or module can reference an optional package (using
META- | NF/ MANI FEST. MF), whereas only enterprise applications and Web
applications can reference a shared Java EE library (using webl ogi c-
application.xm orwebl ogic.xm).

In general, use shared Java EE libraries when you need to share one or more EJB,
Web application or enterprise application modules among different enterprise
applications. Use optional packages when you need to share one or more classes
(packaged in a JAR file) among different Java EE modules.

Plain JAR files can be shared either as libraries or optional packages. Use optional
packages if you want to:

e Share a plain JAR file among multiple Java EE modules
* Reference shared JAR files from other shared JARs
* Share plain JARs as described by the Java EE 5.0 specification

Use shared Java EE libraries to share a plain JAR file if you only need to reference the
JAR file from one or more enterprise applications, and you do not need to maintain
strict compliance with the Java EE specification.

Note:

Oracle documentation and WebLogic Server utilities use the term shared
Java EE library to refer to both libraries and optional packages. Optional
packages are called out only when necessary.

12-4

Chapter 12
Creating Shared Java EE Libraries

12.1.5 Additional Information

For information about deploying and managing shared Java EE libraries, optional packages,
and referencing applications from the administrator's perspective, see Deploying Shared Java
EE Libraries and Dependent Applications in Deploying Applications to Oracle WebLogic
Server.

12.2 Creating Shared Java EE Libraries

You can deploy the Java EE modules such as an EJB, a Web application, an enterprise
application, a plain Java class, and others as a shared Java EE library. These modules can
be shared among multiple enterprise applications in WebLogic Server.

To create a new shared Java EE library:

1.

Assemble the shared Java EE library into a valid, deployable Java EE module or
enterprise application. The library must have the required Java EE deployment
descriptors for the Java EE module or for an enterprise application.

See Assembling Shared Java EE Library Files.
Assemble optional package classes into a working directory.
See Assembling Optional Package Class Files.

Create and edit the MANI FEST. MF file for the shared Java EE library to specify the name
and version string information.

See Editing Manifest Attributes for Shared Java EE Libraries.
Package the shared Java EE library for distribution and deployment.

See Packaging Shared Java EE Libraries for Distribution and Deployment.

12.2.1 Assembling Shared Java EE Library Files

The following types of Java EE modules can be deployed as a shared Java EE library:

ORACLE

An EJB module, either an exploded directory or packaged in a JAR file.

A Web application module, either an exploded directory or packaged in a WAR file.
An enterprise application, either an exploded directory or packaged in an EAR file.
A plain Java class or classes packaged in a JAR file.

A shared Java EE library referenced from another library. (See Web Application Shared
Java EE Library Information.)

Shared Java EE libraries have the following restrictions:

You must ensure that context roots in Web application modules of the shared Java EE
library do not conflict with context roots in the referencing enterprise application. If
necessary, you can configure referencing applications to override a library's context root.
See Referencing Shared Java EE Libraries in an Enterprise Application.

Shared Java EE libraries cannot be nested. For example, if you are deploying an EAR as
a shared Java EE library, the entire EAR must be designated as the library. You cannot
designate individual Java EE modules within the EAR as separate, named libraries.

12-5

Chapter 12
Creating Shared Java EE Libraries

* As with any other Java EE module or enterprise application, a shared Java EE
library must be configured for deployment to the target servers or clusters in your
domain. This means that a library requires valid Java EE deployment descriptors
as well as WebLogic Server-specific deployment descriptors and an optional
deployment plan. See Deploying Applications to Oracle WebLogic Server.

Oracle recommends packaging shared Java EE libraries as enterprise applications,
rather than as standalone Java EE modules. This is because the URI of a standalone
module is derived from the deployment name, which can change depending on how
the module is deployed. By default, WebLogic Server uses the deployment archive
filename or exploded archive directory name as the deployment name. If you redeploy
a standalone shared Java EE library from a different file or location, the deployment
name and URI also change, and referencing applications that use the wrong URI
cannot access the deployed library.

If you choose to deploy a shared Java EE library as a standalone Java EE module,
always specify a known deployment name during deployment and use that name as
the URI in referencing applications.

12.2.2 Assembling Optional Package Class Files

Any set of classes can be organized into an optional package file. The collection of
shared classes will eventually be packaged into a standard JAR archive. However,
because you will need to edit the manifest file for the JAR, begin by assembling all
class files into a working directory:

1. Create a working directory for the new optional package. For example:
nkdi r /apps/ myOpt Pkg

2. Copy the compiled class files into the working directory, creating the appropriate
package sudirectories as necessary. For example:

nkdir -p /apps/ myOpt Pkg/ or g/ myor g/ myPr oduct
cp /build/classes/ nyOpt Pkg/ or g/ myQr g/ myProduct/*. cl ass /apps/ nyOpt Pkg/ or g/
myOr g/ myProduct

3. If you already have a JAR file that you want to use as an optional package, extract
its contents into the working directory so that you can edit the manifest file:

cd /apps/ myOpt Pkg
jar xvf /build/libraries/nyLib.jar

12.2.3 Editing Manifest Attributes for Shared Java EE Libraries

The name and version information for a shared Java EE library are specified in the
META- | NF/ MANI FEST. MF file. Table 12-1 describes the valid shared Java EE library
manifest attributes.

ORACLE 12-6

Chapter 12
Creating Shared Java EE Libraries

Table 12-1 Manifest Attributes for Java EE Libraries
]

Attribute

Description

Ext ensi on- Nane

An optional string value that identifies the name of the shared Java EE library.
Referencing applications must use the exact Ext ensi on- Nane value to use the library.

As a best practice, always specify an Ext ensi on- Name value for each library. If you do
not specify an extension name, one is derived from the deployment name of the library.
Default deployment names are different for archive and exploded archive deployments,
and they can be set to arbitrary values in the deployment command.

Speci fication-Version

An optional String value that defines the specification version of the shared Java EE
library. Referencing applications can optionally specify a required Speci fi cati on-
Ver si on for a library; if the exact specification version is not available, deployment of
the referencing application fails.

The Speci fi cati on- Versi on uses the following format:

Major/minor version format, with version and revision numbers separated by periods
(such as "9.0.1.1")

Referencing applications can be configured to require either an exact version of the
shared Java EE library, a minimum version, or the latest available version.

The specification version for a shared Java EE library can also be set at the command-

line when deploying the library, with some restrictions. See Deploying Shared Java EE
Libraries and Dependent Applications.

I npl enent ati on-

An optional String value that defines the code implementation version of the shared
Java EE library. You can provide an | npl ement at i on- Ver si on only if you have also

Ver si on Lo . -
defined a Speci fi cati on- Ver si on.
| npl enent at i on- Ver si on uses the following formats:
e Major/minor version format, with version and revision numbers separated by
periods (such as "9.0.1.1")
* Text format, with named versions (such as "9011Beta" or "9.0.1.1.B")
If you use the major/minor version format, referencing applications can be configured to
require either an exact version of the shared Java EE library, a minimum version, or the
latest available version. If you use the text format, referencing applications must specify
the exact version of the library.
The implementation version for a shared Java EE library can also be set at the
command-line when deploying the library, with some restrictions. See Deploying
Shared Java EE Libraries and Dependent Applications.
To specify attributes in a manifest file:
1. Open (or create) the manifest file using a text editor. For the example shared Java EE
library, you would use the commands:
cd /apps/ myLibrary
nkdir META- I NF
emacs META-| NF/ MANI FEST. MF
For the optional package example, use:
cd /apps/ myOpt Pkg
nkdir META- I NF
emacs META-| NF/ MANI FEST. MF
2. Inthe text editor, add a string value to specify the name of the shared Java EE library.
For example:
Ext ensi on- Name: myExt ensi on
ORACLE

12-7

Chapter 12
Referencing Shared Java EE Libraries in an Enterprise Application

Applications that reference the library must specify the exact Ext ensi on- Nane in
order to use the shared files.

3. As a best practice, enter the optional version information for the shared Java EE
library. For example:

Ext ensi on- Name: myExt ensi on
Specification-Version: 2.0
I npl enent ation-Version: 9.0.0

Using the major/minor format for the version identifiers provides the most flexibility
when referencing the library from another application (see Table 12-2)

Note:

Although you can optionally specify the Specification-Version and
Implementation-Version at the command line during deployment, Oracle
recommends that you include these strings in the MANI FEST. M file.
Including version strings in the manifest ensures that you can deploy
new versions of the library alongside older versions. See Deploying
Shared Java EE Libraries and Dependent Applications.

12.2.4 Packaging Shared Java EE Libraries for Distribution and
Deployment

If you are delivering the shared Java EE Library or optional package for deployment by
an administrator, package the deployment files into an archive file (an . EAR file or
standalone module archive file for shared Java EE libraries, or a simple . JAR file for
optional packages) for distribution. See Deploying Applications Using wideploy.

Because a shared Java EE library is packaged as a standard Java EE application or
standalone module, you may also choose to export a library's deployment
configuration to a deployment plan, as described in Deploying Applications to Oracle
WebLogic Server. Optional package . JAR files contain no deployment descriptors and
cannot be exported.

For development purposes, you may choose to deploy libraries as exploded archive
directories to facilitate repeated updates and redeployments.

12.3 Referencing Shared Java EE Libraries in an Enterprise
Application

A Java EE application can reference a registered shared Java EE library using entries
in the application's webl ogi c- appl i cati on. xn deployment descriptor.

Table 12-2 describes the XML elements that define a library reference.

ORACLE 12-8

Chapter 12
Referencing Shared Java EE Libraries in an Enterprise Application

Table 12-2 weblogic-application.xml Elements for Referencing a Shared Java EE Library

Element Description

library-ref ['ibrary-ref isthe parent element in which you define a reference to a shared Java EE
library. Enclose all other elements within | i brary-ref .

i brary-nane A required string value that specifies the name of the shared Java EE library to use.

|'i brary- nanme must exactly match the value of the Ext ensi on- Name attribute in the
library's manifest file. (See Table 12-2.)

speci fication-
version

An optional String value that defines the required specification version of the shared Java
EE library. If this element is not set, the application uses a matching library with the highest
specification version. If you specify a string value using major/minor version format, the
application uses a matching library with the highest specification version that is not below
the configured value. If all available libraries are below the configured speci fi cati on-
ver si on, the application cannot be deployed. The required version can be further
constrained by using the exact - mat ch element, described below.

If you specify a String value that does not use major/minor versioning conventions (for
example, 9.2BETA) the application requires a shared Java EE library having the exact
same string value in the Speci fi cati on- Ver si on attribute in the library's manifest file.
(See Table 12-2.)

i npl enent ati on-
version

An optional String value that specifies the required implementation version of the shared
Java EE library. If this element is not set, the application uses a matching library with the
highest implementation version. If you specify a string value using major/minor version
format, the application uses a matching library with the highest implementation version that
is not below the configured value. If all available libraries are below the configured

i npl enent at i on- ver si on, the application cannot be deployed. The required
implementation version can be further constrained by using the exact - mat ch element,
described below.

If you specify a String value that does not use major/minor versioning conventions (for
example, 9.2BETA) the application requires a shared Java EE library having the exact
same string value in the | npl enent at i on- Ver si on attribute in the library's manifest file.
(See Table 12-2.)

exact - mat ch

An optional Boolean value that determines whether the application should use a shared
Java EE library with a higher specification or implementation version than the configured
value, if one is available. By default this element is false, which means that WebLogic
Server uses higher-versioned libraries if they are available. Set this element to true to
require the exact matching version as specified in the speci fi cati on- ver si on and

i npl enent ati on-versi on elements.

cont ext -r oot

An optional String value that provides an alternate context root to use for a Web
application shared Java EE library. Use this element if the context root of a library conflicts
with the context root of a Web application in the referencing Java EE application.

Web application shared Java EE library refers to special kind of library: a Web application

that is referenced by another Web application. See Web Application Shared Java EE
Library Information.

ORACLE

For example, this simple entry in the webl ogi c- appl i cati on. xnl descriptor references a
shared Java EE library, nyLi brary:

<library-ref>
<l'i brary-name>nyLi brary</I|ibrary-name>
</[library-ref>

In the above example, WebLogic Server attempts to find a library name nyLi brary when
deploying the dependent application. If more than one copy of myLi brary is registered,
WebLogic Server selects the library with the highest specification version. If multiple copies of

12-9

Chapter 12
Referencing Shared Java EE Libraries in an Enterprise Application

the library use the selected specification version, WebLogic Server selects the copy
having the highest implementation version.

This example references a shared Java EE library with a requirement for the
specification version:

<library-ref>

<l'i brary-name>nyLi brary</Iibrary-name>

<speci fication-version>2. 0</ speci fi cation-versi on>
</library-ref>

In the above example, WebLogic Server looks for matching libraries having a
specification version of 2.0 or higher. If multiple libraries are at or above version 2.0,
WebLogic Server examines the selected libraries that use Float values for their
implementation version and selects the one with the highest version. Note that
WebLogic Server ignores any selected libraries that have a non-Float value for the
implementation version.

This example references a shared Java EE library with both a specification version
and a non-Float value implementation version:

<library-ref>

<li brary-name>nyLi brary</library-nanme>

<speci fication-version>2. 0</ speci fi cation-versi on>

<i npl enent ati on-ver si on>81Bet a</ i npl enent ati on-versi on>
<library-ref>

In the above example, WebLogic Server searches for a library having a specification
version of 2.0 or higher, and having an exact match of 81Bet a for the implementation
version.

The following example requires an exact match for both the specification and
implementation versions:

<library-ref>
<l'i brary-name>nyLi brary</I|ibrary-name>
<speci fi cation-versi on>2. 0</ speci fi cati on-versi on>
<i npl enent ati on-versi on>8. 1</i npl ement at i on- ver si on>
<exact - mat ch>t r ue</ exact - mat ch>

</library-ref>

The following example specifies a cont ext - r oot with the library reference. When a
WAR library reference is made from webl ogi c- appl i cati on. xm , the cont ext - r oot
may be specified with the reference:

<library-ref>
<l'i brary-name>nyLi brary</I|ibrary-name>
<cont ext - r oot >nmywebapp</ cont ext - r oot >
</library-ref>

12.3.1 Overriding context-roots Within a Referenced Enterprise Library

ORACLE

A Java EE application can override cont ext - r oot s within a referenced EAR library
using entries in the application's webl ogi c- appl i cati on. xm deployment descriptor.
Table 12-3 describes the XML elements that override cont ext - r oot in a library
reference.

12-10

Chapter 12
Referencing Optional Packages from a Java EE Application or Module

Table 12-3 weblogic-application.xml Elements for Overriding a Shared Java EE Library

___|]
Element Description

An optional String value that overrides the cont ext - r oot elements declared in libraries. In the
absence of this element, the library's cont ext - r oot is used.

cont ext -root

Only a referencing application (for example, a user application) can override the cont ext - r oot
elements declared in its libraries.

An optional String value that specifies the value of the | i brary- cont ext - root - overri de
element when overriding the context-root elements declared in libraries. In the absence of these
elements, the library's cont ext - r oot is used.

override-val ue

The following example specifies a cont ext - r oot - over ri de, which in turn, refers to the old
cont ext - root specified in one of its libraries and the new cont ext - r oot that should be used
instead. (override):

<library-ref>
<l'i brary-name>nyLi brary</|ibrary-name>
<speci fi cation-versi on>2. 0</ speci fi cati on-versi on>
<i npl enent ati on-versi on>8. 1</i npl ement at i on- ver si on>
<exact - mat ch>t r ue</ exact - mat ch>
</library-ref>
<li brary-context-root-override>
<cont ext - r oot >webapp</ cont ext - r oot >
<overri de- val ue>mywebapp</ overri de- val ue>
</library-context-root-override>

In the above example, the current application refers to nyLi brary, which contains a Web
application with a cont ext - r oot of webapp. The only way to override this reference is to
declare al i brary-context-root-override that maps webapp to nywebapp.

12.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone
Module

When referencing the URI of a shared Java EE library that was deployed as a standalone
module (EJB or Web application), note that the module URI corresponds to the deployment
name of the shared Java EE library. This can be a name that was manually assigned during
deployment, the name of the archive file that was deployed, or the name of the exploded
archive directory that was deployed. If you redeploy the same module using a different file
name or from a different location, the default deployment name also changes and referencing
applications must be updated to use the correct URI.

To avoid this problem, deploy all shared Java EE libraries as enterprise applications, rather
than as standalone modules. If you choose to deploy a library as a standalone Java EE
module, always specify a known deployment nhame and use that name as the URI in
referencing applications.

12.4 Referencing Optional Packages from a Java EE
Application or Module

Any Java EE archive (JAR, WAR, RAR, EAR) can reference one or more registered optional
packages using attributes in the archive's manifest file.

ORACLE 12-11

Chapter 12
Referencing Optional Packages from a Java EE Application or Module

Table 12-4 Manifest Attributes for Referencing Optional Packages

Attribute

Description

Ext ensi on- Li st
[ogi cal _name[...]

A required String value that defines a logical name for an optional package
dependency. You can use multiple values in the Ext ensi on- Li st attribute to
designate multiple optional package dependencies. For example:

Ext ensi on-Li st: dependencyl dependency?2

[ogi cal _nane-] Ext ensi on-
Nane

A required string value that identifies the name of an optional package
dependency. This value must match the Ext ensi on- Nare attribute defined in
the optional package's manifest file.

If you are referencing multiple optional packages from a single archive, prepend
the appropriate logical name to the Ext ensi on- Nane attribute. For example:

dependencyl- Ext ensi on- Name: nmyQOpt Pkg

[1ogical _name-] Specificatio
n- Ver si on

An optional String value that defines the required specification version of an
optional package. If this element is not set, the archive uses a matching
package with the highest specification version. If you include a

speci ficati on-versi on value using the major/minor version format, the
archive uses a matching package with the highest specification version that is
not below the configured value. If all available package are below the
configured speci fi cati on-versi on, the archive cannot be deployed.

If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the archive requires a matching optional
package having the exact same string value in the Speci fi cati on- Versi on
attribute in the package's manifest file. (See Table 12-2.)

If you are referencing multiple optional packages from a single archive, prepend
the appropriate logical name to the Speci fi cat i on- Ver si on attribute.

[1ogical _name-] I npl ementati
on- Ver si on

An optional String value that specifies the required implementation version of
an optional package. If this element is not set, the archive uses a matching
package with the highest implementation version. If you specify a string value
using the major/minor version format, the archive uses a matching package
with the highest implementation version that is not below the configured value.
If all available libraries are below the configured i npl enent at i on-ver si on,
the application cannot be deployed.

If you specify a String value that does not use major/minor versioning
conventions (for example, 9.2BETA) the archive requires a matching optional
package having the exact same string value in the | npl enent at i on- Ver si on
attribute in the package's manifest file. (See Table 12-2.)

If you are referencing multiple optional packages from a single archive, prepend
the appropriate logical name to the | npl enent at i on- Ver si on attribute.

For example, this simple entry in the manifest file for a dependent archive references
two optional packages, nyAppPkg and my3r dPart yPkg:

Extension-List: internal 3rdparty
i nt er nal - Ext ensi on- Nanme: nyAppPkg
3rdparty- Ext ensi on- Name: ny3rdPartyPkg

This example requires a specification version of 2.0 or higher for ny AppPkg:

Extension-List: internal 3rdparty

i nt ernal - Ext ensi on- Nane: nyAppPkg
3rdparty- Ext ensi on- Name: ny3rdPartyPkg
i nternal - Specification-Version: 2.0

ORACLE

12-12

Chapter 12
Using weblogic.appmerge to Merge Libraries

This example requires a specification version of 2.0 or higher for nyAppPkg, and an exact
match for the implementation version of my3r dPar t yPkg:

Extension-List: internal 3rdparty

i nt ernal - Ext ensi on- Nane: nyAppPkg
3rdparty- Ext ensi on- Name: my3rdPartyPkg
i nternal - Speci fication-Version: 2.0
3rdparty-Inpl enentation-Version: 8.1GA

By default, when WebLogic Server deploys an application or module and it cannot resolve a
reference in the application's manifest file to an optional package, WebLogic Server prints a
warning, but continues with the deployment anyway. You can change this behavior by setting
the system property webl ogi c. appl i cati on. Requi reOpt i onal Packages to t rue when you
start WebLogic Server, either at the command line or in the command script file from which
you start the server. Setting this system property to t r ue means that WebLogic Server does
not attempt to deploy an application or module if it cannot resolve an optional package
reference in its manifest file.

12.5 Using weblogic.appmerge to Merge Libraries

You can use webl ogi c. appner ge to understand a library merge by examining the merged
application you have written to disk.

webl ogi c. appner ge is a tool that is used to merge libraries into an application, with merged
contents and merged descriptors. It also has the ability to write a merged application to disk.

e Using weblogic.appmerge from the CLI

» Using weblogic.appmerge as an Ant Task

12.5.1 Using weblogic.appmerge from the CLI

Invoke webl ogi c. appmer ge using the following syntax:

j ava webl ogi c. appnerge [options] <ear, jar, war file, or directory>

where valid options are shown in Table 12-5:

Table 12-5 weblogic.appmerge Options
|

Option Comment
“hel p Print the standard usage message.
-version Print version information.

-output <file>

Specifies an alternate output archive or directory. If not set, output is placed in
the source archive or directory.

-plan <file>

Specifies an optional deployment plan.

-verhbose

Provide more verbose output.

ORACLE

12-13

Chapter 12
Integrating Shared Java EE Libraries with the Split Development Directory Environment

Table 12-5 (Cont.) weblogic.appmerge Options

Option

Comment

-library <file>

Comma-separated list of libraries. Each library may optionally set its name and
versions, if not already set in its manifest, using the following syntax:

<file> [@ame=<string>@i bspecver=<version> @i bi npl ver =<ver si on|
string>].

-librarydir <dir>

Registers all files in specified directory as libraries.

-writelnferredDescriptors

Specifies that the application or module contains deployment descriptors with
annotation information.

Example:

$ java webl ogi c. appnerge -output Conpl et eSportsApp.ear -library
\\eat her . war, Cal endar . ear Sport sApp. ear

12.5.2 Using weblogic.appmerge as an Ant Task

The ant task provides similar functionality as the command line utility. It supports
source, out put, l'ibraryDir, pl an and ver bose attributes as well as multiple
<l'i brary> sub-elements. Here is an example:

<t askdef name="appmerge" cl assname="webl ogi c. ant.taskdefs. | 2ee. AppMer geTask"/ >
<appner ge source="SportsApp. ear" out put="Conpl et eSportsApp. ear">

<library file="Wather.war"/>

<library file="Cal endar.ear"/>
</ appner ge>

12.6 Integrating Shared Java EE Libraries with the Split
Development Directory Environment

You can generate a basic build.xml file in the shared Java EE library directories and
then build the applications in a split development directory.

The Bui | dXM_Gen includes a - | i brarydi r option to generate build targets that include
one or more shared Java EE library directories. See Generating a Basic build.xml File
Using weblogic.BuildXMLGen.

The w conpi | e and w appc Ant tasks include a | i brarydir attribute and |'i brary
element to specify one or more shared Java EE library directories to include in the
classpath for application builds. See Building Applications in a Split Development
Directory.

12.7 Deploying Shared Java EE Libraries and Dependent
Applications

ORACLE

Shared Java EE libraries are registered with one or more WebLogic Server instances
by deploying them to the target servers and indicating that the deployments are to be

12-14

Chapter 12
Web Application Shared Java EE Library Information

shared. Shared Java EE libraries must be targeted to the same WebLogic Server instances
you want to deploy applications that reference the libraries.

If you try to deploy a referencing application to a server instance that has not registered a
required library, deployment of the referencing application fails. See Registering Libraries with
WebLogic Server in Deploying Applications to Oracle WebLogic Server for more information.

See Install a Java EE Library for detailed instructions on installing (deploying) a shared Java
EE library using the WebLogic Server Administration Console. See Target a Shared Java EE
Library to a Server or Cluster for instructions on using the WebLogic Server Administration
Console to target the library to the server or cluster to which the application that is
referencing the library is also targeted.

If you use the wl depl oy Ant task as part of your iterative development process, use the
l'ibrary,liblnplVer,and!ibSpecVer attributes to deploy a shared Java EE library. See
wldeploy Ant Task Reference, for details and examples.

After registering a shared Java EE library, you can deploy applications and archives that
depend on the library. Dependent applications can be deployed only if the target servers have
registered all required libraries, and the registered deployments meet the version
requirements of the application or archive. See Deploying Applications that Reference
Libraries in Deploying Applications to Oracle WebLogic Server for more information.

12.8 Web Application Shared Java EE Library Information

ORACLE

Some of the shared Java EE libraries can be referenced only by enterprise applications. You
can also create libraries that can be referenced only by another Web application. The
functionality is very similar to application libraries, although the method of referencing them is
slightly different.

Note:

For simplicity, this section uses the term Web application library when referring to a
shared Java EE library that is referenced only by another Web application.

In particular:

* Web application libraries can only be referenced by other Web applications.

* Rather than update the webl ogi c- appl i cation. xnl file, Web applications reference Web
application libraries by updating the webl ogi c. xm deployment descriptor file. The
elements are almost the same as those described in Referencing Shared Java EE
Libraries in an Enterprise Application; the only difference is that the <cont ext - r oot > child
element of <l i brary-ref>isignored in this case.

* You cannot reference any other type of shared Java EE library (EJB, enterprise
application, or plain JAR file) from the webl ogi c. xm deployment descriptor file of a Web
application.

Other than these differences in how they are referenced, the way to create, package, and
deploy a Web application library is the same as that of a standard shared Java EE library.

12-15

Chapter 12
Using WebApp Libraries With Web Applications

12.9 Using WebApp Libraries With Web Applications

Just as standard shared Java EE applications can be deployed to WebLogic Server as
application-libraries, astandard Web application can be deployed to WebLogic
Server as a webapp- | i brary so that other Web applications can refer to these
libraries.

Web application libraries facilitate the reuse of code and resources. Such libraries also
help you separate out third-party Web applications or frameworks that your Web
application might be using. Furthermore, common resources can be packaged
separately as libraries and referenced in different Web applications, so that you don't
have to bundle them with each Web application. When you include a webapp- | i brary
in your Web application, at deployment time the container merges all the static
resources, classes, and JAR files into your Web application.

The first step in using a WebApp library is to register a Web application as a webapp-
I'i brary. This can be accomplished by deploying a Web application using either the
WebLogic Server Administration Console or the webl ogi c. Depl oyer tool as a library.
To make other Web applications refer to this library, their webl ogi ¢. xnl file must have
alibrary-ref element pointing to the webapp- | i brary, as follows:

<library-ref>

<l i brary-name>BaseWebApp</Ii brary- name>

<speci fication-version>2. 0</ specification-versi on>

<i npl enent ati on-ver si on>8. 1bet a</i npl enent ati on- ver si on>
<exact - mat ch>f al se</ exact - mat ch>

</library-ref>

When multiple libraries are present, the CLASSPATH r esour ce path precedence order
follows the order in which the |'i brary-refs elements appear in the webl ogi c. xm file.

12.10 Accessing Registered Shared Java EE Library
Information with LibraryRuntimeMBean

ORACLE

You can use different types of MBeans to obtain information about the shared Java EE
library and access the libraries that the applications use.

Each deployed shared Java EE library is represented by a Li br ar yRunt i meMBean. You
can use this MBean to obtain information about the library itself, such as its name or
version. You can also obtain the Appl i cat i onRunt i meMBeans associated with deployed
applications. Appl i cati onRunt i meMBean provides two methods to access the libraries
that the application is using:

e getLibraryRuntinmes() returns the shared Java EE libraries referenced in the
webl ogi c-appl i cation. xn file.

* get Optional PackageRunti mes() returns the optional packages referenced in the
manifest file.

See the Java API Reference for Oracle WebLogic Server.

12-16

Chapter 12
Order of Precedence of Modules When Referencing Shared Java EE Libraries

12.11 Order of Precedence of Modules When Referencing
Shared Java EE Libraries

When an enterprise application references one or more shared Java EE libraries, and the
application is deployed to WebLogic Server, the server internally merges the information in
the webl ogi c- appl i cation. xm file of the referencing enterprise application with the
information in the deployment descriptors of the referenced libraries.

The order in which WebLogic Server internally merges the information is as follows:

1. When the enterprise application is deployed, WebLogic Server reads its webl ogi c-
appl i cation.xm deployment descriptor.

2. WebLogic Server reads the deployment descriptors of any referenced shared Java EE
libraries. Depending on the type of library (enterprise application, EJB, or Web
application), the read file might be webl ogi c- appl i cati on. xnl , webl ogi c. xnl ,
webl ogi c-ej b-jar.xnl, and so on.

3. WebLogic Server first merges the referenced shared Java EE library deployment
descriptors (in the order in which they are referenced, one at a time) and then merges the
webl ogi c-appl i cation. xnl file of the referencing enterprise application on top of the
library descriptor files.

As a result of the way the descriptor files are merged, the elements in the descriptors of the
shared Java EE libraries referenced first in the webl ogi c- appl i cati on. xnl file have
precedence over the ones listed last. The elements of the enterprise application’'s descriptor
itself have precedence over all elements in the library descriptors.

For example, assume that an enterprise application called nyApp references two shared Java
EE libraries (themselves packaged as enterprise applications): nmyLi bA and nyLi bB, in that
order. Both the nyApp and nyLi bA applications include an EJB module called nyEJB, and both
the nyLi bA and nyLi bB applications include an EJB module called nyQ her EJB.

Further assume that once the nyApp application is deployed, a client invokes, via the myApp
application, the myEJB module. In this case, WebLogic Server actually invokes the EJB in the
nmyApp application (rather than the one in nmyLi bA) because modules in the referencing
application have higher precedence over modules in the referenced applications. If a client
invokes the myQ her EJB EJB, then WebLogic Server invokes the one in nyLi bA, because the
library is referenced first in the webl ogi c- appl i cati on. xnl file of myApp, and thus has
precedence over the EJB with the same name in the nyLi bB application.

12.12 Best Practices for Using Shared Java EE Libraries

ORACLE

Keep in mind these best practices when developing shared Java EE libraries and optional
packages:

e Use shared Java EE Libraries when you want to share one or more Java EE modules
(EJBs, Web applications, enterprise applications, or plain Java classes) with multiple
enterprise applications.

e If you need to deploy a standalone Java EE module, such as an EJB JAR file, as a
shared Java EE library, package the module within an enterprise application. Doing so
avoids potential URI conflicts, because the library URI of a standalone module is derived
from the deployment name.

12-17

ORACLE

Chapter 12
Best Practices for Using Shared Java EE Libraries

If you choose to deploy a shared Java EE library as a standalone Java EE
module, always specify a known deployment name during deployment and use
that name as the URI in referencing applications.

Use optional packages when multiple Java EE archive files need to share a set of
Java classes.

If you have a set of classes that must be available to applications in an entire
domain, and you do not frequently update those classes (for example, if you need
to share 3rd party classes in a domain), use the domain /| i b subdirectory rather
than using shared Java EE libraries or optional packages. Classesinthe/lib
subdirectory are made available (within a separate system level classloader) to all
Java EE applications running on WebLogic Server instances in the domain.

Always specify a specification version and implementation version, even if you do
not intend to enforce version requirements with dependent applications. Specifying
versions for shared Java EE libraries enables you to deploy multiple versions of
the shared files for testing.

Always specify an Ext ensi on- Nane value for each shared Java EE library. If you
do not specify an extension name, one is derived from the deployment name of
the library. Default deployment names are different for archive and exploded
archive deployments, and they can be set to arbitrary values in the deployment
command

When developing a Web application for deployment as a shared Java EE library,
use a unigue context root. If the context root conflicts with the context root in a
dependent Java EE application, use the cont ext -root element in the EAR's

webl ogi c- appl i cati on. xnl deployment descriptor to override the library's context
root.

Package shared Java EE libraries as archive files for delivery to administrators or
deployers in your organization. Deploy libraries from exploded archive directories
during development to allow for easy updates and repeated redeployments.

Deploy shared Java EE libraries to all WebLogic Server instances on which you
want to deploy dependent applications and archives. If a library is not registered
with a server instance on which you want to deploy a referencing application,
deployment of the referencing application fails.

12-18

Programming Application Life Cycle Events

Learn how to create applications that respond to WebLogic Server application life cycle
events.
This chapter includes the following sections:

e Understanding Application Life Cycle Events

* Registering Events in weblogic-application.xml

e Programming Basic Life Cycle Listener Functionality

» Examples of Configuring Life Cycle Events with and without the URI Parameter
» Understanding Application Life Cycle Event Behavior During Re-deployment

e Programming Application Version Life Cycle Events

Note:

Application-scoped startup and shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. The information in this chapter about startup
and shutdown classes is provided only for backwards compatibility. Instead, you
should use life cycle listener events in your applications.

13.1 Understanding Application Life Cycle Events

Application life cycle listener events provide handles on which developers can control
behavior during deployment, undeployment, and redeployment. Learn how you can use the
application life cycle listener events.

Four application life cycle events are provided with WebLogic Server, which can be used to
extend listener, shutdown, and startup classes. These include:

e Listeners—attachable to any event. Possible methods for Listeners are:
— public void preStart (ApplicationLifecycl eEvent evt) {}

The preStart event is the beginning of the prepare phase, or the start of the
application deployment process.

— public void postStart(ApplicationLifecycleEvent evt) {}

The postStart event is the end of the activate phase, or the end of the application
deployment process. The application is deployed.

— public void preStop(ApplicationLifecycleEvent evt) {}

The preStop event is the beginning of the deactivate phase, or the start of the
application removal or undeployment process.

— public void postStop(ApplicationLifecycl eEvent evt) {}

ORACLE 13-1

Chapter 13
Registering Events in weblogic-application.xml

The postStop event is the end of the remove phase, or the end of the
application removal or undeployment process.

* Shutdown classes only get postStop events.

Note:

Application-scoped shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Use life cycle listeners instead.

e Startup classes only get preStart events.

" Note:

Application-scoped shutdown classes have been deprecated as of
release 9.0 of WebLogic Server. Use life cycle listeners instead.

For Startup and Shutdown classes, you only implement a mai n{}
method. If you implement any of the methods provided for Listeners,
they are ignored.

No remove{} method is provided in the Appl i cati onLi f ecycl eLi st ener,
because the events are only fired at startup time during deployment
(prestart and poststart) and shutdown during undeployment (prestop and
poststop).

13.2 Registering Events in weblogic-application.xml

You must register the application life cycle listener events in the webl ogi c-
application.xm deployment descriptor in order to use them.

See Enterprise Application Deployment Descriptor Elements. Define the following
elements:

e |istener—Used to register user defined application life cycle listeners. These are
classes that extend the abstract base class
webl ogi c. appl i cation. ApplicationLifecycl eLi stener.

» shut down—Used to register user-defined shutdown classes.

e startup—Used to register user-defined startup classes.

13.3 Programming Basic Life Cycle Listener Functionality

ORACLE

You can create a listener by extending the abstract class (provided with WebLogic
Server) webl ogi c. appl i cation. Appl i cationLifecycl eLi st ener. The container then
searches for your listener.

You override the following methods provided in the WebLogic Server
Appl i cationLifecycl eli st ener abstract class to extend your application and add any
required functionality:

e preStart{}

13-2

ORACLE

Chapter 13
Programming Basic Life Cycle Listener Functionality

e postStart{}
e preStop{}
* postStop{}

Example 13-1 illustrates how you override the ApplicationLifecycleListener. In this example,
the public class MyListener extends ApplicationLifecycleListener.

Example 13-1 MyListener

i mport webl ogi c. application. ApplicationLifecycleListener;
i mport webl ogi c. application. ApplicationLifecycl eEvent;
public class MListener extends ApplicationLifecycleListener {
public void preStart(ApplicationLifecycl eEvent evt) {
Systemout.println
("MListener(preStart) -- we should always see you..");
} Il preStart
public void postStart(ApplicationLifecycl eEvent evt) {
Systemout.println
("MyListener(postStart) -- we should al ways see you..");
} Il postStart
public void preStop(ApplicationLifecycl eEvent evt) {
Systemout.println
("MyListener(preStop) -- we should al ways see you..");
} Il preStop
public void postStop(ApplicationLifecycl eEvent evt) {
Systemout.println
(" MyLi stener (postStop) -- we should always see you..");
} Il postStop
public static void main(String[] args) {
Systemout.println
("MyListener(main): in min .. we should never see you..");
} Il main

}

Example 13-2 illustrates how you implement the shutdown class. The shutdown class is
attachable to preStop and postStop events. In this example, the public class MyShut down
does not extend Appl i cati onLi f ecycl eLi st ener because a shutdown class declared in the
webl ogi c-application. xm deployment descriptor does not need to depend on any
WebLogic Server-specific interfaces.

Example 13-2 MyShutdown

i mport webl ogi c. application. ApplicationLifecycleListener;
i nport webl ogi c. application. ApplicationLifecycl eEvent;
public class MyShutdown {
public static void main(String[] args) {
Systemout. println
("MyShutdown(main): in main .. should be for post-stop");
} Il main

}

Example 13-3 illustrates how you implement the startup class. The startup class is attachable
to preStart and postStart events. In this example, the public class MySt ar t up does not extend
ApplicationLifecyclelistener because a startup class declared in the webl ogi c-
application.xm deployment descriptor does not need to depend on any WebLogic Server-
specific interfaces.

13-3

Chapter 13
Examples of Configuring Life Cycle Events with and without the URI Parameter

Example 13-3 MyStartup

i nport webl ogi c. application. ApplicationLifecycl eLi stener;
i nport webl ogi c. application. ApplicationLifecycl eEvent;
public class MyStartup {
public static void main(String[] args) {
Systemout.println
("MyStartup(main): in main .. should be for pre-start");
} Il main

}

13.3.1 Configuring a Role-Based Application Life Cycle Listener

You can configure an application life cycle event with role-based capability where a
user identity can be specified to startup and shutdown events using the r un- as-
princi pal - name element. However, if the r un- as- pri nci pal - nane identity defined for
the application life cycle listener is an administrator, the application deployer must
have administrator privileges; otherwise, deployment will fail.

1. Follow the basic programming steps outlined in Programming Basic Life Cycle
Listener Functionality.

2. Within the | i st ener element add the r un- as- pri nci pal - nane element to specify
the user who has privileges to startup and/or shutdown the event. For example:

<listener>
<li stener-class>nyApp. MySessi onAttri butelLi stenerC ass</|istener-class>
<run-as- princi pal - nane>j avaj oe</ run-as- pri nci pal - name>

</listener>

The identity specified here should be a valid user name in the system. If r un- as-
princi pal - name is not specified, the deployment initiator user identity will be used as
the run- as identity for the execution of the application life cycle listener.

13.4 Examples of Configuring Life Cycle Events with and
without the URI Parameter

ORACLE

You can configure application life cycle events with or without using the URI parameter
in the webl ogi c- appl i cati on. xm deployment descriptor file.

The following examples illustrate how you configure application life cycle events in the
webl ogi c- appl i cation. xm deployment descriptor file. The URI parameter is not
required. You can place classes anywhere in the application $CLASSPATH. However,
you must ensure that the class locations are defined in the $CLASSPATH. You can place
listeners in APP- | NF/ cl asses or APP-1 NF/ | i b, if these directories are present in the
EAR. In this case, they are automatically included in the $CLASSPATH.

The following example illustrates how you configure application life cycle events using
the URI parameter. In this case, the archive f 0o. j ar contains the classes and exists at
the top level of the EAR file. For example: nyEar/f oo. j ar .

Example 13-4 Configuring Application Life Cycle Events Using the URI
Parameter

<listener>
<listener-class>MWListener</listener-class>
<listener-uri>foo.jar</listener-uri>

13-4

Chapter 13
Understanding Application Life Cycle Event Behavior During Redeployment

</listener>

<startup>
<startup-class>M/Startup</startup-class>
<startup-uri>foo.jar</startup-uri>

</startup>

<shut down>
<shut down- cl ass>My Shut down</ shut down- cl ass>
<shut down-uri >f 0o. j ar </ shut down-uri >

</ shut down>

The following example illustrates how you configure application life cycle events without using
the URI parameter.

Example 13-5 Configuring Application Life Cycle Events without Using the URI
Parameter

<listener>
<listener-class>WListener</listener-class>
</listener>
<startup>
<startup-class>M/St artup</startup-class>
</startup>
<shut down>
<shut down- cl ass>MyShut down</ shut down- cl ass>
</ shut down>

13.5 Understanding Application Life Cycle Event Behavior
During Redeployment

Application life cycle events are only triggered if a full redeployment of the application occurs.
During a full redeployment of the application—provided the application life cycle events have
been registered—the application life cycle first commences the shutdown sequence, next re-
initializes its classes, and then performs the startup sequence.

For example, if your listener is registered for the full application life cycle set of events
(preStart, postStart, preStop, postStop), during a full re-deployment, you see the following
sequence of events:

1. preStop{}
2. post Stop{}

3. Initialization takes place. (Unless you have set debug flags, you do not see the
initialization.)

4. preStart{}
5. postStart{}

13.6 Programming Application Version Life Cycle Events

Learn how to create applications that respond to WebLogic Server application version life
cycle events.

* Understanding Application Version Life Cycle Event Behavior

* Types of Application Version Life Cycle Events

ORACLE 13-5

Chapter 13
Programming Application Version Life Cycle Events

Example of Production Deployment Sequence When Using Application Version
Life Cycle Events

13.6.1 Understanding Application Version Life Cycle Event Behavior

WebLogic Server provides application version life cycle event notifications by allowing
you to extend the Appl i cati onVer si onLi f ecycl eLi st ener class and specify a life
cycle listener in webl ogi c- appl i cati on. xn . See Enterprise Application Deployment
Descriptor Elements and Examples of Configuring Life Cycle Events with and without
the URI Parameter.

Application version life cycle events are invoked:

For both static and dynamic deployments.
Using either anonymous ID or using user identity.

Only if the current application is versioned; otherwise, version life cycle events are
ignored.

For all application versions, including the version that registers the listener. Use
the Appl i cati onVersi onLi f ecycl eEvent . i sOamVer si on method to determine if an
event belongs to a particular version. See the

Appl i cationVersionLifecycl eEvent class for more information on types of
version life cycle events.

13.6.2 Types of Application Version Life Cycle Events

Four application version life cycle events are provided with WebLogic Server:

ORACLE

public void preDepl oy(ApplicationVersionLifecycl eEvent evt)

— The preDel oy event is invoked when an application version deploy or redeploy
operation is initiated.

public voi d postDepl oy(ApplicationVersionLifecycl eEvent evt)

— The post Del oy event is invoked when an application version is deployed or
redeployed successfully.

public void preUndepl oy(ApplicationVersionLifecycl eEvent evt)

— The preUndel oy event is invoked when an application version undeploy
operation is initiated.

public voi d postDel ete(ApplicationVersionLifecycl eEvent evt)

— The post Del et e event is invoked when an application version is deleted.

" Note:

A post Del et e event is only fired after the entire application version is
completely removed. It does not include a partial undeploy, such as
undeploying a module or from a subset of targets.

13-6

Chapter 13

Programming Application Version Life Cycle Events

13.6.3 Example of Production Deployment Sequence When Using
Application Version Life Cycle Events

The following table provides an example of a deployment (V1), production redeployment
(V2), and an undeploy (V2).

Table 13-1 Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2

Deployment of Version TO preDepl oy(V1) invoked.

V1

Deployment of Version T1 Deployment starts.

V1

Deployment of Version T2 Application life cycle listeners for V1 are

V1 registered.

Deployment of Version T3 V1 is active version, Deployment is

V1 complete.

Deployment of Version T4 post Depl oy(V1) invoked.

Vi

Deployment of Version T5 Application Listeners gets

V1 post Depl oy(V1).

Production T6 pr eDepl oy(V2) invoked.
Redeployment of

Version V2

Production T7 Application version listener receives

Redeployment of preDepl oy(V1).

Version V2

Production T8 Deployment starts.
Redeployment of

Version V2

Production T9 Application life cycle listeners for
Redeployment of V2 are registered.

Version V2

Production T10 If deploy(V2) succeeds, V1 ceases to be If deploy(V2) succeeds, V2
Redeployment of active version. replaces V1 as active version.
Version V2 Deployment is complete.
Production T11 post Depl oy(V2) invoked.
Redeployment of Note: This event occurs even if
Version V2 the deployment fails.
Production T12 Application version listener gets

Redeployment of post Depl oy(V2) . If deploy(V2) fails, V1

Version V2 remains active.

Production T13 Application listeners gets
Redeployment of post Depl oy(V2).
Version V2

Production T14 If deploy(V2) succeeds, V1 begins

Redeployment of retirement.

Version V2
ORACLE

13-7

Chapter 13

Programming Application Version Life Cycle Events

Table 13-1 (Cont.) Sequence of Deployment Actions and Application Version Life Cycle Events

Deployment action Time Version V1 Version V2

Production T15 Application listeners for V1 are

Redeployment of unregistered.

Version V2

Production T16 V1 is retired.

Redeployment of

Version V2

Undeployment of V2 T17 pr eUndepl oy(v2) invoked.

Undeployment of V2 T18 Application listeners gets
preUndepl oy(v2) invoked.

Undeployment of V2 T19 Undeployment begins.

Undeployment of V2 T20 V2 is no longer active version.

Undeployment of V2 T21 Application version listeners for
V2 are unregistered.

Undeployment of V2 T22 Undeployment is complete.

Undeployment of V2 T23 If the entire application is
undeployed, post Del et e(V2) is
invoked.
Note: This event occurs even if
the undeployment fails.

ORACLE 13-8

Programming Context Propagation

Learn how to use the context propagation APIs in WebLogic Server applications.
This chapter includes the following sections:

* Understanding Context Propagation
e Programming Context Propagation: Main Steps
» Programming Context Propagation in a Client

* Programming Context Propagation in an Application

14.1 Understanding Context Propagation

Context propagation allows programmers to associate information with an application which
is then carried along with every request. Furthermore, downstream components can add or
modify this information so that it can be carried back to the originator.

Context propagation attaches information to a request through a Wr kCont ext . This
information follows the request to any process that supports context propagation through a
Propagat i onMbde. Context propagation is also known as work areas, work contexts, or
application transactions.

Common use-cases for context propagation are any type of application in which information,
usually related to the request, needs to be carried outside the application or to another
application, rather than the information being an integral part of the application. Examples of
these use cases include diagnostics monitoring, application transactions, and application
load-balancing. The ability of context propagation to tie information to a request greatly
simplifies managing such data, in contrast to maintaining a map of request data in each
application and then implementing custom code to transmit such information between
applications or threads.

However, context propagation can occur within an application. For example, if an application
submits work through a Work Manager, part of the processing occurs in different threads.
Context propagation uses a Pr opagat i onMbde to carry information to other threads.

Programming context propagation has two parts: first you code the client application to create
a Wor kCont ext Map and Wor kCont ext , and then add user data to the context, and then you
code the invoked application itself to get and possibly use this data. The invoked application
can be of any type: EJB, Web service, servlet, JMS topic or queue, and so on. See
Programming Context Propagation: Main Steps for details.

The WebLogic context propagation APIs are in the webl ogi c. wor kar ea package. The
following table describes the main interfaces and classes.

ORACLE 14-1

Chapter 14
Programming Context Propagation: Main Steps

Table 14-1 Interfaces and classes of the WebLogic Context Propagation API

|
Interface or Class

Description

Wor kCont ext Map Interface

Main context propagation interface used to tag applications with data and
propagate that information via application requests. Wr kCont ext Maps is part of
the client or application's INDI environment and can be accessed through JNDI by
looking up the name j ava: conp/ Wr kCont ext Map.

Wor kCont ext

Interface

Interface used for marshaling and unmarshaling the user data that is passed along
with an application. This interface has four implementing classes for marshaling and
unmarshaling the following types of data: simple 8-bit ASCII contexts

(Asci i Wor kCont ext), long contexts (Long\Wor kCont ext), Serializable context
(Seri al i zabl eWor kCont ext), and String contexts (St ri ngWor kCont ext).

Wor kCont ext has one subinterface, Pri mi ti veWr kCont ext , used to specifically
marshal and unmarshal a single primitive data item.

Wor kCont ext Qut put / | nput

Interfaces

Interfaces representing primitive streams used for marshaling and unmarshaling,
respectively, Wor kCont ext implementations.

Pr opagat i onMode Interface

Defines the propagation properties of Wr kCont ext s. Specifies whether the
WorkContext is propagated locally, across threads, across RMI invocations, across
JMS queues and topics, or across SOAP messages. If not specified, default is to
propagate data across remote and local calls in the same thread.

PrimtiveContextFactory

Class

Convenience class for creating Wr kCont ext s that contain only primitive data.

For the complete API documentation about context propagation, see the
webl ogi c. wor kar ea Javadocs.

14.2 Programming Context Propagation: Main Steps

You can associate information to a request on a client, retrieve that information on the
server, and then retrieve the value updated by the server instance using context
propagation.

ORACLE

The following procedure describes the high-level steps to use context propagation with
WebLogic Server. This example demonstrates how to associate information to a
request on a client, how to retrieve that information on the server, and then how to
retrieve the value updated by the server instance. It is assumed in the procedure that
you have already set up your iterative development environment and have an existing
client and application that you want to update to use context propagation by using the
webl ogi c. wor kar ea API.

1.

Update your client application to create the Wor kCont ext Map and Wr kCont ext
objects and then add user data to the context.

See Programming Context Propagation in a Client.

If your client application is standalone (rather than running in a Java EE
component deployed to WebLogic Server), ensure that its CLASSPATH includes
the Java EE application client, also called the thin client.

See Developing Stand-alone Clients for Oracle WebLogic Server.

Update your application (EJB, Web service, servlet, and so on) to also create a
Wor kCont ext Map and then get the context and user data that you added from the
client application.

14-2

Chapter 14
Programming Context Propagation in a Client

See Programming Context Propagation in an Application.

14.3 Programming Context Propagation in a Client

You can program context propagation to get “associated” user information when a client
invokes an application.

The following sample Java code shows a standalone Java client that invokes a Web service;
the example also shows how to use the webl ogi ¢. wor kar ea. * context propagation APIs to
associate user information with the invoke. The code relevant to context propagation is
shown in bold and explained after the example.

For the complete API documentation about context propagation, see the webl ogi c. wor kar ea
Javadocs.

Note:

See Developing JAX-WS Web Services for Oracle WebLogic Server for information
on creating Web services and client applications that invoke them.

package exanpl es. workarea. client;
i mport java.rm . RenoteException;
i mport javax.xm .rpc. ServiceException;
i mport javax.xm .rpc. Stub;
i nport javax.naming.lnitial Context;
i mport j avax. nam ng. Nam ngExcepti on;
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
import weblogic.workarea.PrimitiveContextFactory;
import weblogic.workarea.PropagationMode;
import weblogic.workarea.PropertyReadOnlyException;
/**
* This is a sinple standal one client application that invokes the
* the <code>sayHel | o</ code> operation of your WorkArea Wb service.
*
*/
public class Miin {
public final static String SESSION | D= "session_id key";
public static void main(String[] args)
throws Servi ceException, RenoteException, Nam ngException,
Pr oper t yReadOnl yExcept i on{
Your Wor kAr eaServi ce service = new Your Wr kAreaServi ce(args[0] + "?WsDL");
Your Wor kAr eaPort Type port = service. get Wr kAreaPort ();
WorkContextMap map = (WorkContextMap)new InitialContext().lookup(*java:comp/
WorkContextMap™);
WorkContext stringContext = PrimitiveContextFactory.create("'A String
Context™);
/1 Put a string context
map.put(SESSION ID, stringContext, PropagationMode.SOAP);
try {
String result = null;
result = port.sayHello("H there!");

Systemout.println("Got result: " + result);
} catch (RenoteException e) {
throw e;

ORACLE 14-3

Chapter 14
Programming Context Propagation in an Application

}
}
}

In the preceding example:

* The following code shows how to import the needed webl ogi ¢. wor kar ea. *
classes, interfaces, and exceptions:

i nport webl ogi c. wor kar ea. Wor kCont ext Map;

i nport webl ogi c. wor kar ea. Wor kCont ext ;

i nport webl ogi c. wor karea. PrimtiveCont ext Factory;

i nport webl ogi c. wor kar ea. Propagat i onMbde;

i nport webl ogi c. wor kar ea. Propert yReadOnl yExcept i on;

e Substitute your implementation of the Wr kAr ea service and port for your Web
service for Your Wor kAr eaSer vi ce and Your Wor kAr eaPor t Type.

* The following code shows how to create a Wr kCont ext Map by doing a JNDI
lookup of the context propagation-specific JNDI name j ava: conp/
Wor kCont ext Map:

Wor kCont ext Map map = (Wr kCont ext Map)
new I nitial Context().lookup("java: comp/ Wr kCont ext Map");

e The following code shows how to create a Wr kCont ext by using the
Prim tiveContext Factory. In this example, the Wr kCont ext consists of the
simple String value A String Cont ext. This String value is the user data that is
passed to the invoked Web service.

Wor kCont ext stringContext =
PrimtiveContextFactory.create("A String Context");

* The following code saves the st ri ngCont ext under the SESSI ON_| D key in the
Wor kCont ext Map. Specifying the propagation mode of SOAP causes the propagation
of the stri ngCont ext along any SOAP message sent to servers supporting context
propagation.

map. put (SESSI ON_I D, stringContext, Propagati onMbde. SOAP);

14.4 Programming Context Propagation in an Application

You can program context propagation to get the user data and other associated
information when the applications are invoked.

The following sample Java code shows a simple Java Web service (JWS) file that
implements a Web service. The JWS file also includes context propagation code to get
the user data that is associated with the invoke of the Web service. The code relevant
to context propagation is shown in bold and explained after the example.

For the complete API documentation about context propagation, see the
webl ogi c. wor kar ea Javadocs.

ORACLE 14-4

ORACLE

Chapter 14
Programming Context Propagation in an Application

< Note:

See Developing JAX-WS Web Services for Oracle WebLogic Server for information
on creating Web services and client applications that invoke them.

package exanpl es. wor kar ea;
i nport javax.naming.lnitial Context;
/1 1Tmport the Context Propagation classes
import weblogic.workarea.WorkContextMap;
import weblogic.workarea.WorkContext;
i nport javax.jws.VWebMet hod;
inport javax.ws.VWebService;
i mport webl ogic.jws. WH t pTransport;
@ebSer vi ce(name="\Wor kAr eaPort Type",
servi ceName="Wor kAr eaSer vi ce",
target Nanespace="http://exanple.org")
@\LHt t pTransport (cont ext Pat h="wor kar ea",
serviceUri ="WrkAreaService",
port Nane="\Wor kAr eaPort")
/**
* This JWs file forms the basis of sinple WebLogic
* Web service with a single operation: sayHello
*
*/
public class WrkCont ext Awar eWebSer vi ce {
public final static String SESSION_ID = "session_i d_key";
@\ebMet hod()
public String sayHell o(String nessage) {
try {
WorkContextMap map = (WorkContextMap) new
InitialContext(). lookup(*'java:comp/WorkContextMap™);
WorkContext modifiedLocalWC = PrimitiveContextFactory.create(localwc.get()
+ " could be replaced by a new value...™);
map.put(SESSION_ID, newLocalWC, PropagationMode.SOAP);
Systemout.printin("local context: " + localwc);
Systemout. printin("sayHello: " + message);
return "The server received nessage: " + message + ", with SESSION ID: " + |ocal wc;
} catch (Throwable t) {
return "error";
}
}
}

In the preceding example:

* The following code shows how to import the needed context propagation APIs; in this
case, only the WorkContextMap and WorkContext interfaces are needed:

i nport webl ogi c. wor kar ea. Wor kCont ext Map;
i nport webl ogi c. wor kar ea. Wor kCont ext ;

* The following code shows how to create a Wr kCont ext Map by doing a JNDI lookup of the
context propagation-specific JNDI name j ava: conp/ Wor kCont ext Map:

Wor kCont ext Map map = (Wor kCont ext Map)
new I nitial Context().lookup("java: conp/ WrkCont ext Map") ;

14-5

ORACLE

Chapter 14
Programming Context Propagation in an Application

The propagation mode is SOAP only, meaning that propagation occurs both to the
server with the request and to the client with the response. The following code
shows how the server instance could modify the st ri ngCont ext :

Wor kCont ext nodi fi edLocal WC = PrimtiveContextFactory.create(localwc.get() +
" could be replaced by a new value...");

The following code replaces the work context with an updated value. When
retrieving SESSI ON_| D on the client after the server returns the response, the value
updated by the server is now present on the client.

map. put (SESSI ON_I D, newLocal WC, Propagati onMbde. SOAP) ;

14-6

Programming JavaMail with WebLogic Server

Learn how to program JavaMail with WebLogic Server to add email capabilities to your
WebLogic Server applications.
This chapter includes the following sections:

e Overview of Using JavaMail with WebLogic Server Applications
e Understanding JavaMail Configuration Files

e Configuring JavaMail for WebLogic Server

e Sending Messages with JavaMail

» Reading Messages with JavaMalil

15.1 Overview of Using JavaMall with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.5 reference implementation. Using the
JavaMail API, you can add email capabilities to your WebLogic Server applications. JavaMail
provides access from Java applications to Internet Message Access Protocol (IMAP)- and
Simple Mail Transfer Protocol (SMTP)-capable mail servers on your network or the Internet. It
does not provide mail server functionality; you must have access to a mail server to use
JavaMail.

Documentation for using the JavaMail APl is available at htt ps: //j avaee. gi t hub. i o/
j avamai | /. This section describes how you can use JavaMail in the WebLogic Server
environment.

The webl ogi c. j ar file contains the following JavaMail API packages:

* javax.mil

e javax.mil.event

e javax.mail.internet
* javax.mil.search

The webl ogi c. j ar also contains the Java Activation Framework (JAF) package, which
JavaMail requires.

The j avax. mai | package includes providers for Internet Message Access protocol (IMAP)
and Simple Mail Transfer Protocol (SMTP) mail servers. There is a separate POP3 provider
for JavaMail, which is not included in webl ogi c. j ar. You can download the POP3 provider at
https://maven. java. net/content/repositories/rel eases/ com sun/ mail /pop3 and add it
to the WebLogic Server classpath if you want to use it.

ORACLE 15-1

https://javaee.github.io/javamail/
https://javaee.github.io/javamail/
https://maven.java.net/content/repositories/releases/com/sun/mail/pop3

Chapter 15
Understanding JavaMail Configuration Files

15.2 Understanding JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. The webl ogi c. j ar file contains the standard configuration files which
enable IMAP and SMTP mail servers for JavaMail and define the default message
types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, see http:// wamw. or acl e. com' t echnet wor k/ j ava/ j avamai | /
t hi rd- party-136965. ht m . Then add your extended JavaMail package in the
WebLogic Server classpath in front of webl ogi c. j ar.

15.3 Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebLogic Server, you create a mail session in the
WebLogic Server Administration Console. This allows server-side modules and
applications to access JavaMail services with JNDI, using session properties you
preconfigure for them.

For example, by creating a mail session, you can designate the mail hosts, transport
and store protocols, and the default mail user in the WebLogic Server Administration
Console so that modules that use JavaMail do not have to set these properties.
Applications that are heavy email users benefit because the mail session creates a
single j avax. mai | . Sessi on object and makes it available via JNDI to any module that
needs it.

For information on using the WebLogic Server Administration Console to create a mail
session, see Configure access to JavaMail in the Oracle WebLogic Server
Administration Console Online Help.

You can override any properties set in the mail session in your code by creating a
java. util.Properties object containing the properties you want to override. See
Sending Messages with JavaMail. Then, after you look up the mail session object in
JNDI, call the Sessi on. get | nst ance() method with your Properti es object to get a
customized session.

15.4 Sending Messages with JavaMail

ORACLE

You can send a message using JavaMail within a WebLogic Server module.
Here are the steps to send a message with JavaMail:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import j ava. util.Properties:

import java.util.*;

i nport javax.activation.*;
inmport javax.mail.*;

inmport javax.mail.internet.*;
i nport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMail Session");

15-2

http://www.oracle.com/technetwork/java/javamail/third-party-136965.html
http://www.oracle.com/technetwork/java/javamail/third-party-136965.html

Chapter 15
Reading Messages with JavaMail

3. If you need to override the properties you set for the Session in the WebLogic Server
Administration Console, create aj ava. util.Properties object and add the properties
you want to override. Then call get | nst ance() to get a new Session object with the new
properties.

Properties props = new Properties();

props. put ("mail.transport.protocol”, "sntp");

props. put ("mail.sntp.host", "nailhost");

/1 use mail address fromHIM. formfor from address
props.put ("mail.fron', enmil Address);

Sessi on sessi on2 = session. getlnstance(props);

4. Construct a M neMessage. In the following example, to, subject, and messageTxt are
String variables containing input from the user.

Message msg = new M nmeMessage(sessi on2);
meg. set From();
msg. set Reci pi ent s(Message. Reci pi ent Type. TO,
I nternet Address. parse(to, false));
meg. set Subj ect (subj ect);
msg. set Sent Dat e(new Date());
/1 Content is stored in a MM nulti-part nessage
/1 with one body part
M neBodyPart nbp = new M meBodyPart();
mbp. set Text (nessageTxt);
Miltipart np = new MneMiltipart();
np. addBodyPar t (nbp) ;
msg. set Cont ent (np) ;

5. Send the message.
Transport. send(nsg);

The JNDI lookup can throw a Nam ngExcept i on on failure. JavaMail can throw a
Messagi ngExcept i on if there are problems locating transport classes or if communications
with the mail host fails. Be sure to put your code in a try block and catch these exceptions.

15.5 Reading Messages with JavaMall

ORACLE

The JavaMail API provides several options for reading messages, such as reading a
specified message number or range of message numbers, or pre-fetching specific parts of
messages into the folder's cache.

The JavaMail API allows you to connect to a message store, which could be an IMAP server
or POP3 server. Messages are stored in folders. With IMAP, message folders are stored on
the mail server, including folders that contain incoming messages and folders that contain
archived messages. With POP3, the server provides a folder that stores messages as they
arrive. When a client connects to a POPS3 server, it retrieves the messages and transfers
them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain messages
or other folders. The default folder is at the top of the structure. The special folder name
INBOX refers to the primary folder for the user, and is within the default folder. To read
incoming mail, you get the default folder from the store, and then get the INBOX folder from
the default folder.

The API provides several options for reading messages. See the JavaMail API for more
information.

15-3

Chapter 15
Reading Messages with JavaMail

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server module:

1.

Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java. util.Properties:

inport java.util.*;

i nport javax.activation.*;
inport javax.nmail.*;

inport javax.nmail.internet.*;
i nport javax.namng.*;

Look up the Mail Session in JNDI:

Initial Context ic = new Initial Context();
Session session = (Session) ic.|ookup("mMail Session");

If you need to override the properties you set for the Session in the WebLogic
Server Administration Console, create a Properti es object and add the properties
you want to override. Then call get | nst ance() to get a new Session object with
the new properties:

Properties props = new Properties();

props. put ("mail.store.protocol”, "pop3");
props. put ("mail.pop3. host", "nailhost");

Sessi on sessi on2 = session. getlnstance(props);

Get a St or e object from the Session and call its connect () method to connect to
the mail server. To authenticate the connection, you need to supply the mailhost,
user name, and password in the connect method:

Store store = session.getStore();
store. connect (mai | host, usernane, password);

Get the default folder, then use it to get the INBOX folder:

Fol der fol der = store.getDefaul t Fol der();
fol der = fol der. get Fol der ("1 NBOX");

Read the messages in the folder into an array of Messages:
Message[] messages = fol der. get Messages();

Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message
store via WebLogic Server, possibly using a database or file system to represent
folders.

ORACLE

15-4

Threading and Clustering Topics

Learn how to use threads in WebLogic Server as well as how to program applications for use
in WebLogic Server clusters.
This chapter includes the following sections:

e Using Threads in WebLogic Server
* Using the Work Manager API for Lower-Level Threading

* Programming Applications for WebLogic Server Clusters

16.1 Using Threads in WebLogic Server

ORACLE

WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the modules it
hosts. To obtain the greatest advantage from WebLogic Server's architecture, construct your
application modules created according to the standard Java EE APlIs.

In most cases, avoid application designs that require creating new threads in server-side
modules:

* Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or
cause WebLogic Server to thrash when the server load increases. Problems such as
deadlocks and thread starvation may not appear until the application is under a heavy
load.

* Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For
example, an application that searches several repositories and returns a combined result set
can return results sooner if the searches are done asynchronously using a new thread for
each repository instead of synchronously using the main client thread.

If you must use threads in your application code, create a pool of threads so that you can
control the number of threads your application creates. Like a JDBC connection pool, you
allocate a given number of threads to a pool, and then obtain an available thread from the
pool for your runnable class. If all threads in the pool are in use, wait until one is returned. A
thread pool helps avoid performance issues and allows you to optimize the allocation of
threads between WebLogic Server execution threads and your application.

Be sure you understand where your threads can deadlock and handle the deadlocks when
they occur. Review your design carefully to ensure that your threads do not compromise the
security system.

To avoid undesirable interactions with WebLogic Server threads, do not let your threads call
into WebLogic Server modules. For example, do not use enterprise beans or servlets from
threads that you create. Application threads are best used for independent, isolated tasks,
such as conversing with an external service with a TCP/IP connection or, with proper locking,

16-1

Chapter 16
Using the Work Manager API for Lower-Level Threading

reading or writing to files. A short-lived thread that accomplishes a single purpose and
ends (or returns to the thread pool) is less likely to interfere with other threads.

Avoid creating daemon threads in modules that are packaged in applications deployed
on WebLogic Server. When you create a daemon thread in an application module such
as a servlet, you will not be able to redeploy the application because the daemon
thread created in the original deployment will remain running.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occurring in production.

16.2 Using the Work Manager API for Lower-Level

Threading

The Work Manager provides a simple API for concurrent execution of work items. This
enables Java EE-based applications (including servlets and EJBs) to schedule work
items for concurrent execution, which will provide greater throughput and increased
response time.

After an application submits work items to a Work Manager for concurrent execution,
the application can gather the results. The Work Manager provides common "join"
operations, such as waiting for any or all work items to complete. The Work Manager
for Application Servers specification provides an application-server-supported
alternative to using lower-level threading APIs, which are inappropriate for use in
managed environments such as servlets and EJBs, as well as being too difficult to use
for most applications.

See Using Work Managers to Optimize Scheduled Work in Administering Server
Environments for Oracle WebLogic Server

16.3 Programming Applications for WebLogic Server

Clusters

ORACLE

There are certain requirements and restrictions when you deploy JSPs and servlets,
and EJBs to a WebLogic Server cluster. Also you need to understand the implications
of binding clustered objects in the JNDI tree when you develop EJBs or custom RMI
objects in a cluster.

JSPs and servlets that will be deployed to a WebLogic Server cluster must observe
certain requirements for preserving session data. See Requirements for HTTP
Session State Replication in Administering Clusters for Oracle WebLogic Server for
more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB
type. See Understanding WebLogic Enterprise JavaBeans in Developing Enterprise
JavaBeans, Version 2.1, for Oracle WebLogic Serverfor information about the
capabilities of different EJB types in a cluster. EJBs can be deployed to a cluster by
setting clustering properties in the EJB deployment descriptor.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to Using WebLogic JNDI in a Clustered Environment in Developing JNDI
Applications for Oracle WebLogic Server to understand the implications of binding
clustered objects in the JNDI tree.

16-2

Developing OSGI Bundles for WebLogic
Server Applications

Learn about the OSGi environment in WebLogic Server and how to deploy OSGi bundles to
WebLogic Server. Developers who want to use OSGi in their applications can easily share
OSGi facilities, such as the OSGi service registry, class loaders, and other OSGi services.
For general information about OSGi, see htt p://ww. 0sgi . or g.

This chapter includes the following sections:

* Understanding OSGi

* Features Provided in WebLogic Server OSGi Implementation
* Configuring the OSGi Framework

e Creating OSGi Bundles

» Deploying OSGi Bundles

e Accessing Deployed Bundle Objects From JNDI

» Using OSGi Logging Via WebLogic Server

e Configuring a Filtering ClassLoader for OSGi Bundles

* OSGI Example

17.1 Understanding OSGi

OSGi is a Java modularity system developed and maintained by the OSGi Alliance, of which
Oracle is a member.

The OSGi specifications and related Javadoc together describe a comprehensive operating
environment for Java applications:

* You can download the OSGi Service Platform Core Specification from htt p: //
wWww. 0sgi . or g/ Rel ease4/ Downl oad.

e The OSGi Javadoc is available from htt p: // www. 0sgi . or g/ Rel ease4/ Javadoc.

As described on the OSGi Alliance Web page (htt ps: //wwwv. osgi . or g/ about - us/), "The
OSGi Alliance is a worldwide consortium of technology innovators that advances a proven
and mature process to create open specifications that enable the modular assembly of
software built with Java technology. Modularity reduces software complexity; OSGi is the best
model to modularize Java.."

The OSGi Architecture Web page htt ps: //wwv. 0sgi . or g/ devel oper/architecture/ further
describes the OSGi technology as "...a set of specifications that define a dynamic component
system for Java. These specifications enable a development model where applications are
(dynamically) composed of many different (reusable) components. The OSGi specifications
enable components to hide their implementations from other components while
communicating through services, which are objects that are specifically shared between

ORACLE 17-1

http://www.osgi.org
http://www.osgi.org/Release4/Download
http://www.osgi.org/Release4/Download
http://www.osgi.org/Release4/Javadoc
https://www.osgi.org/about-us/
https://www.osgi.org/about-us/
https://www.osgi.org/developer/architecture/
https://www.osgi.org/developer/architecture/

Chapter 17
Features Provided in WebLogic Server OSGi Implementation

components. This surprisingly simple model has far reaching effects for almost any
aspect of the software development process."

OSGi offers you the following benefits, as described in Benefits of Using OSGi
https://ww. osgi . org/ devel oper/ benefits-of-using-osgi/:

* Versioning of package wiring, for both implementors and users of interfaces.

* The "uses" directive allows for intelligent wiring of class loaders and helps ensure
a consistent class space.

* Flexible and dynamic security.
* Dynamic service wiring through an active registry.

* Various standard OSGi specifications provided by multiple vendors.

17.2 Features Provided in WebLogic Server OSGi
Implementation

ORACLE

WebLogic Server allows you to configure and manage one or more instances of an
OSGi framework. You can also create and deploy your own OSGi bundles.

WebLogic Server allows you to add a list of OSGi frameworks (maintained via
OsgiFrameWorkMBean MBeans) to the server configuration. After the OSGi
framework has been booted, a bundle object for the framework is placed into the local
server JNDI tree. Applications can then get this bundle from JNDI and thereafter use
that as their entry point into the OSGi system.

Applications can also deploy their own OSGi bundles. One specific OSGi bundle from
the chosen framework instance can be used in the application classloader hierarchy.

WebLogic Server allows you to:

e Configure and manage one or more instances of an OSGi framework from the
Weblogic Server Administration Console and WLST.

WebLogic Server includes the Apache Felix implementation of the OSGi
framework. See http://felix. apache. or g for information on Felix.

» Create and deploy your own OSGi bundles.

WebLogic Server includes an OSGi bundle containing the OSGi API. You can use
this API to create your own OSGi bundles.

* One specific OSGi bundle from the chosen framework instance can be used in the
application classloader hierarchy.

* Access OSGi bundles directly from JNDI.

* Deploy and undeploy OSGi bundles.

* Log OSGi status via the WebLogic Server logging mechanism.
* Incorporate the OSGi services of your choice.

* Enable OSGi persistence.

* Manage OSGi bundle start levels for deployed bundles.

These topics are described in the sections that follow.

17-2

https://www.osgi.org/developer/benefits-of-using-osgi/
https://www.osgi.org/developer/benefits-of-using-osgi/
http://felix.apache.org

Chapter 17
Configuring the OSGi Framework

17.3 Configuring the OSGI Framework

OSGi framework provides a secure and managed Java framework. You can configure and
manage one or more instances of the framework and ensure persistence.

As described in the OSGi Service Platform Core Specification, "The Framework forms the
core of the OSGi Service Platform Specifications. It provides a general-purpose, secure, and
managed Java framework that supports the deployment of extensible and downloadable
applications known as bundles. "

WebLogic Server includes the Felix implementation of OSGi framework. You can configure
and manage one or more instances of the Felix OSGi framework.

¢ Note:

WebLogic Server supports only the Felix framework. Other OSGi Frameworks are
not supported and have not been tested.

e Configuring OSGi Framework Instances

e Configuring OSGi Framework Persistence

17.3.1 Configuring OSGi Framework Instances

WebLogic Server includes an OSGi framework by default, but it does not automatically start
it.

You must configure WebLogic Server to boot an OSGi framework when WebLogic Server
boots. You can do this in four ways, according to your preference:

* Use the WebLogic Server Administration Console to configure an OSGi framework
instance.

- Edit the DOVAI N_HOVE\ confi g\ confi g. xm deployment descriptor file to add an entry for
the OSGi server and set the attribute values. You specify the OSGi framework you want
the WebLogic Server instance to use.

« Use WLST to create the OSGi framework and set the attribute values. WLST then stores
the values in the DOVAI N_HOVE\ confi g\ confi g. xm deployment descriptor file.

e Write a Java program to create the OSGi framework and set the attribute values.

In all four cases, configuration of an OSGi framework instance is controlled by the
OsgiFrameWorkMBean. For each framework associated with an OsgiFrameWorkMBean,
WebLogic Server boots an OSGi framework with a unique name.

You configure the OSGi framework attributes shown in Table 17-1.

ORACLE 17-3

http://www.osgi.org/Release4/Download

Chapter 17
Configuring the OSGi Framework

Table 17-1 OSGi Framework Attributes
]

Attribute Usage

Target This attribute is required. You must select a target (servers or clusters)
on which an MBean will be deployed from the list of servers or clusters
in the current domain on which this item can be deployed.

Name The name of the framework instance. The name of a given framework

instance must be unique within a WebLogic Server server instance.

Implementation
Class

The name of the framework implementation class for the
org. osgi . framewor k. | aunch. Framewor kFact ory class. The
default value is or g. apache. f el i x. f ramewor k. Fr amewor kFact ory.

Deploy Installation
Bundles

Determines whether OSGi bundles are installed in the framework. This
attribute is "populate" by default. See Parameter Required for Installing
Bundles in the Framework for more information.

Dynamically Created

Determines whether the MBean is created dynamically or is persisted to
config. xm . The configuration is always persisted if you use the
WebLogic Server Administration Console and this attribute is not
displayed.

Init Properties

The standard Felix properties to be used when initializing the
framework. All standard properties and all properties specific to the
framework can be set.

See Example 17-3 for an example of setting the Init Properties from a
Java program.

The Apache Felix Framework Configuration Properties are described in
http://felix.apache. org/docunentation/ subprojects/
apache-f el i x- f ramewor k/ apache-f el i x- f r amewor k-
configuration-properties.htni.

Framework Boot
delegation

The name of the or g. 0sgi . f r amewor k. boot del egat i on property.
Note that this value, if set, will take precedence over anything specified
in the init-properties.

Framework System
Packages Extra

The name of the or ¢g. 0sgi . f ramewor k. syst em packages. extra
property. Note that this value, if set, will take precedence over anything
specified in the init-properties.

Register Global Data
Sources

Boolean. Returns true if global data sources should be added to the
OSGi service registry.

Register Global Work
Managers

Boolean. Returns true if global work managers should be added to the
OSGi service registry.

17.3.1.1 Configuring OSGi Framework Instance From Administration Console

ORACLE

You can configure an OSGi framework from the WebLogic Server Administration
Console. Perform the following steps:

1. Inthe WebLogic Server Administration Console, expand Services in the left panel.

2. Click OSGi Frameworks in the left panel.

3. Onthe Summary of OSGi Frameworks page, click New.

If you have already created an OSGi framework, you can instead click Clone to
use an existing framework as the basis for a new one.

17-4

http://felix.apache.org/documentation/subprojects/apache-felix-framework/apache-felix-framework-configuration-properties.html

Chapter 17
Configuring the OSGi Framework

4. On the Creating a New OSGi Framework page, name this framework instance. The name
must be unique.

5. Click Next.

6. On the OSGI Framework Targets page, select the servers or clusters to which you would
like to deploy this OSGi framework.

7. Click Finish.
8. On the Summary of OSGi Frameworks page, select the framework you just created.

9. On the Settings for Framework page, examine the defaults to make sure that they are
correct for your environment. See Table 17-1 for a description of the attributes.

See Configure OSGi Frameworks in the Oracle WebLogic Server Administration Console
Online Help.

17.3.1.2 Configuring OSGi Framework Instance From config.xml

Example 17-1 shows an example of updating confi g. xm to add the OSGi framework to be
used by WebLogic Server. Add the <osgi - f r amewor k> element just before the </ donai n>
element.

If you need to add multiple OSGi framework instances, add multiple <osgi - f r anewor k>
elements. Remember that each <name> element must be unigue within the server.

After you add this element, you must reboot the WebLogic Server instance.

Example 17-1 Configuring OSGi Framework Instance From config.xml

<osgi - f ramewor k>
<name>t est - 0sgi - f r ame</ nanme>
<t arget >Adnmi nServer</target >
</ osgi - f ramewor k>

17.3.1.3 Configuring OSGi Framework Instance From WLST

ORACLE

Example 17-2 shows an example of using WLST to add the OSGi framework to be used by
the WebLogic Server instance.

Example 17-2 Configuring OSGi Framework Instance From WLST

java webl ogi c. W.ST

connect (' webl ogic', 'password')

edit()

startEdit()

w s:/nydonai n/edit !> cmo.createOsgiFramework("test-osgi-frame®)
[MBeanSer ver | nvocat i onHandl er] com bea: Name=t est - osgi - f r ame, Type=0sgi Fr anewor k
target Server=cno. | ookupServer (' Adm nServer")

cd("' Osgi Frameworks')

cd('test-osgi-frame')

cno. addTar get (t ar get Server)

W s:/nydomain/edit !> save()

W s:/nydomain/edit !> activate()

W s:/ nydomai n/ edi t/ Csgi Frameworks> [s('a')

drw test-osgi-frane

W s: / nydomai n/ edi t/ Csgi Framewor ks> cd('test-osgi-frane')

W s:/ nydomai n/ edi t/ Csgi Framewor ks/test-osgi-frame> [s('a')

-rw DeploylnstallationBundl es popul ate

-rw Depl oynent Or der 1000

17-5

Chapter 17
Configuring the OSGi Framework

-r-- Dynanicall yCreated fal se

-rw Fact oryl mpl ement ati ond ass org. apache. felix. framework. F
ramewor kFact ory

-r-- Id 0

-rw InitProperties nul |

-rw Narme test-osgi-frame
-rw Not es nul |

-rw O gGCsgi Framewor kBoot del egat i on nul |

-rw O g0sgi Framewor kSyst enPackagesExtra nul |

-rw Regi st er d obal Dat aSour ces true

-rw Regi sterd obal WrkManagers true

-r-- Type Gsgi Framewor k

17.3.1.4 Configuring OSGi Framework Instance from a Java Program

Example 17-3 shows an example of using a Java program to add the OSGi framework
to be used by the WebLogic Server instance. Comments in the code describe each
operation.

Example 17-3 Configuring OSGi Framework from Java Program

[** . .inports onitted

*/
/**
* Create an OSG framework instance with the designated name
*
* @aram franewor kNane
*/
protected void createOSG Framewor kl nstance(String framewor kNanme) {
creat eOSG Framewor kI nst ance(framewor kName, null, null, null, null, null);
}

protected void createOSG Framewor kl nstance(String framewor kName,
String isRegisterd obal WrkMnagers,
String isRegisterd obal Dat aSour ces,
String depl oyl nstallationBundl es,
String orgGsgi Franmewor kBoot del egat i on,
String orgOsgi Framewor kSyst enPackagesExtra) {
creat eOSG Framewor kI nst ance(f r amewor kName,

nul I,

i sRegi st er G obal Wr kManager s,

i sRegi st er G obal Dat aSour ces,

depl oyl nstal | ati onBundl es,

or gGsgi Franmewor kBoot del egat i on,

or gGsgi Framewor kSyst emPackagesExtra);

}

/**
* Create a fresh framework
*
* @aram i sRegi sterd obal Wr kManager s
* @aram i sRegi sterd obal Dat aSour ces
* @aram depl oyl nstal | ati onBundl es
* @aram or gOsgi Fr amewor kBoot del egati on
* @aram or gOsgi Framewor kSyst enPackagesExtra
*/
protected void createOSG Framewor kIl nstance(String framewor kName,
Properties initProp,
String isRegisterd obal WrkMnagers,
String isRegisterd obal Dat aSour ces,

ORACLE 17-6

Chapter 17
Configuring the OSGi Framework

String depl oyl nstallationBundl es,
String orgGOsgi Franewor kBoot del egat i on,
String orgOsgi Franmewor kSyst enPackagesExtra) {

f ramewor ki nst ances. add(f ranewor kNang) ;

if (initProp == null) {

initProp = new Properties();
}
i nitProp.setProperty("w stest.framework.instance.name", frameworkNane);
[linitProp.setProperty("felix.cache.locking", "false");
//initProp.setProperty("org.osgi.framework.storage.clean", "onFirstlnit");

MBeanSer ver Connect i on connection = null;

try {

/1 Initiate the necessary MBean facilities.

connection = initConnection();

/1 Switch the edit session on.

hj ect Namre domai nMBean = start Edi t Sessi on(connection);

/1 Get the current WebLogic server MBean:
bj ect Nane server MBean = nul | ;
bj ect Nane[] server MBeans = (ChjectNane[]) connection. getAttribute(donai nMBean, "Servers");
for (ObjectName objectNane : serverMBeans) {
log("found server: " + objectNane);
server MBean = obj ect Nane;

}

/] Get or create an Osgi Framewor kMBean:
bj ect Nane osgi Franmewor kMBean = nul | ;
bj ect Nane[] osgi Framewor kMBeans = (bj ect Name[]) connection. get Attri but e(dormai nivBean,
"Osgi Franewor ks");
| og(" osgi Framewor kMBeans. | engt h="+ osgi Franewor kMBeans. | engt h) ;
for (ObjectName objectNane : osgi Franewor kMBeans) {
String osgi Framewor kNane = (String) connection. getAttribute(objectNamre, "Nane");
log("-------------- > " + osgi Framewor kNane) ;
i f (osgi Franewor kNane. equal s(framewor kNanme)) {
0sgi Framewor kMBean = obj ect Nane;
I og("Found OSG franmework instance: " + franeworkNang);
br eak;
}
}

i f (osgi FrameworkMBean != null) {

log("WII destroy the framework instance: " + osgi Franewor kMBean);
connection. i nvoke(osgi Fr amewor kMBean,

“removeTarget",

new Qbject[] { serverMBean },

new String[] { "javax.managenent. Cbj ect Nane" });
connection. i nvoke(domai nMBean,

"destroyOsgi Framewor k",

new bject[] { osgi Framewor kMBean 1},

new String[] { "javax.managenent. Qbj ect Nane" });

}

log("WII create a new framework instance fromscratch");
osgi Framewor kMBean = (Chj ect Nane) connection. i nvoke(domai nMBean,
"creat eCsgi Franewor k",
new Qoject[] { frameworkNare },

ORACLE 17-7

Chapter 17
Configuring the OSGi Framework

new String[] { "java.lang.String" });

/1 Set conmmon properties:
if (initProp !'=null) {
Attribute initPropAttr = new Attribute("InitProperties", initProp);
connection. setAttribute(osgi Framewor kMBean, initPropAttr);
}
Attribute systenPackagesExtraAttr = new Attribute("O gOsgi Framewor kSyst enPackagesExtra",
"j avax. nam ng, webl ogi c. work, j avax. sql ") ;
connection. set Attribute(osgi Framewor kMBean, systenmPackagesExtraAttr);
connection. i nvoke(osgi Framewor kMBean,
"addTarget",
new Object[] { serverMBean },
new String[] { "javax.managenment. Cbject Nane" });

/1 Set individual property to the OSG franework instance:
if (isRegisterd obal WrkManagers != null) {
Attribute attr = new Attribute("Registerd obal WorkManagers",
Bool ean. par seBool ean(i sRegi st er d obal Wor kManagers));
connection. setAttribute(osgi Framewor kMBean, attr);
}

if (isRegisterd obal DataSources !'= null) {
Attribute attr = new Attribute("Registerd obal Dat aSour ces",
Bool ean. par seBool ean(i sRegi st er d obal Dat aSour ces)) ;
connection. set Attribute(osgi Framewor kMBean, attr);
}

if (deploylnstallationBundles != null) {
Attribute attr = new Attribute("DeploylnstallationBundl es", deploylnstallationBundles);
connection. setAttribute(osgi Framewor kMBean, attr);

}

i f (orgGsgi Framewor kBoot del egation !'= null) {
Attribute attr = new Attribute("OrgGsgi Franewor kBoot del egati on",
or gGsgi Franmewor kBoot del egati on);
connection. setAttribute(osgi Framewor kMBean, attr);
}

i f (orgGsgi Framewor kSyst enPackagesExtra != null) {
Attribute attr = new Attribute("OrgGsgi Franewor kSyst enPackagesExtra”,
or gGsgi Franmewor kSyst enmPackagesExtra);
connection. setAttribute(osgi Framewor kMBean, attr);
}

MBeanl nfo m = connection. get MBeanl nf o(osgi Fr anmewor kMBean) ;

log("Attributes are as below");

for (MBeanAttributelnfo mai : mi.getAttributes()) {
bj ect val ue = connection. getAttribute(osgi Framewor kMBean, nai.getName());
Systemout. printf(" % 40s = %\n", mai.getNane(), value);

}

/1 Save your changes
bj ect Nane cfgWgr = (Cbj ect Nane) connection. getAttribute(service, "ConfigurationManager");
connection.invoke(cfgWr, "save", null, null);

17.3.1.5 Parameter Required for Installing Bundles in the Framework

The OsgiFrameWorkMBean MBean Depl oy Instal | ation Bundl es attribute controls
whether or not bundles present in the osgi - | i b directory (described later in this

ORACLE 17-8

Chapter 17
Configuring the OSGi Framework

chapter in Deploying OSGi Bundles in the osgi-lib Directory) are actually installed into the
framework.

The Depl oy Installation Bundl es parameter accepts the following values:

e ignore — None of the bundles in this directory are installed and started.

e popul at e — The bundles are installed and started if possible. This is the default.
Furthermore, a few extra packages are added to the boot delegation classpath
parameters in order to enable the bundles in the osgi - | i b directory if they are not
already there.

It is not be considered a failure that causes the system to not boot if these bundles do not
properly resolve and therefore cannot be started.

17.3.2 Configuring OSGi Framework Persistence

OSGi has a persistence mechanism, described in htt p: // www. 0sgi . or g/ j avadoc/ r 4v43/
core/ org/ osgi/ franmework/ | aunch/ Framewor k. ht n1 , in which all installed bundles must be
started in accordance with each bundle's persistent autostart setting.

This persistence mechanism is disabled by default. However, you can use the standard Felix
Init property shown in Table 17-1 to enable the OSGi persistence mechanism.

Note: WebLogic Server is not directly involved in the OSGi persistence mechanism. In
particular, WebLogic Server does not fail the data over to other servers.

17.3.3 Using OSGi Services

You can make standard OSGi services available to your OSGi bundle. To do this, import the
correct packages for the Felix framework and make sure that the application bundle has the
required authorization.

These services are described in the OSGi Service Platform Core Specification (htt ps://
WM. 0Sgi . or g/ r el ease- 4- ver si on- 4- 3/) and include but are not limited to standard
Framework supplied services such as the Package Admin Service, Conditional Permission
Admin Service, or the StartLevel Service.

See the Apache Felix Tutorial Example 1, Service Event Listener Bundle for an example of
creating a simple bundle that listens for OSGi service events.

17.3.4 Connecting to an OSGi Console

ORACLE

To view details such as the versions, lifecycle state, and others in the OSGi framework that
you configured, you have to connect to an OSGi console. There are many Felix consoles.
However, WebLogic Server includes the Apache Felix implementation of the OSGi
framework. WebLogic Server release includes a version of Apache Felix that corresponds to
the OSGi R6 framework. For information about the specific version of Apache Felix that is
included in WebLogic Server, see Third-Party Products in Oracle Fusion Middleware in
Oracle® Fusion Middleware Licensing Information User Manual. The content of this
document applies to all versions of WebLogic Server 12c. This framework is packaged as
org.apache.felix.org.apache.felix.main.jar in the WebLogic Server distribution. There are
other shells and consoles such as the GoGo console, all of them involve the same basic
steps.

1. Getting the required bundles

17-9

https://osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html
https://osgi.org/javadoc/r4v43/core/org/osgi/framework/launch/Framework.html
https://www.osgi.org/release-4-version-4-3/
https://www.osgi.org/release-4-version-4-3/
http://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-tutorial/apache-felix-tutorial-example-1.html

Chapter 17
Creating OSGi Bundles

2. Starting the required bundles
3. Connecting to the console

To connect to Apache Felix Remote Shell in the development environment, do the
following:

1. Download the Felix Shell and Felix Remote Shell bundles from the downloads
page in http://felix.apache.org.

2. Install and start these bundles in one of following ways:
* Place the bundles under $ORACLE_HOVE/ Wl server/server/osgi-lib

e Create an application that contains these two bundles and then deploy that
application after creating the OSGi framework.

3. Create and start an OSGi framework from the WebLogic Server console.
Use telnet to connect to the console which listens on localhost port 6666 by default.
e hel p lists all the available commands

e ps lists all bundles and what state they are in

17.4 Creating OSGI Bundles

You use the OSGi API bundle that is located in WM server/server/|ib/
org. apache. felix. org. apache. fel i x. mai n. j ar to create your own OSGi
bundle.

See the Apache Felix Tutorial Example 1, Service Event Listener Bundle for an
example of creating a simple bundle. As described in this example, the | nport -
Package attribute of the manifest file informs the framework of the bundle's
dependencies on external packages. All bundles with an activator must import
org. osgi . framewor k because it contains the core OSGi class definitions.

17.5 Deploying OSGi Bundles

After you create an OSGi bundle you can deploy the OSGi bundle on a target system
and in the osgi - 1 i b directory. In WebLogic Server you can deploy OSGi bundles from
inside a JAR, EAR, or WAR file.

* Preparing to Deploy an OSGi Bundle on a Target System
* Deploying OSGi Bundles in the osgi-lib Directory

17.5.1 Preparing to Deploy an OSGi Bundle on a Target System

You can deploy OSGi bundles from inside a JAR, EAR, or WAR file, as appropriate for
your application.

Before you do this, you must first specify which OSGi framework you want your bundle
to use, and identity the bundle to WebLogic Server.

ORACLE 17-10

http://felix.apache.org/downloads.cgi
http://felix.apache.org/documentation/tutorials-examples-and-presentations/apache-felix-osgi-tutorial/apache-felix-tutorial-example-1.html

Chapter 17
Deploying OSGi Bundles

< Note:

If the OSGi framework instance you specify does not exist on the target server, the
OSGi bundle fails to deploy.

How you do this depends on whether your bundle is inside a WAR file or an EAR file:

* WAR — The framework instance and bundle name must be in an element in the Web
application's webl ogi c. xm deployment descriptor file.

« EAR — The framework instance and bundle name must be in an element in the
application's webl ogi c- appl i cation. xm deployment descriptor file.

If the EAR file contains WAR files, then the bundles inside the WAR files are deployed
using the webl ogi ¢. xm deployment descriptor file from the embedded WAR files.

The sections that follow describe the required steps in detail.

For more information about WebLogic Server deployment descriptors, see Deploying
Applications to Oracle WebLogic Server.

17.5.1.1 Preparing to Deploy Bundles as Enterprise Applications

Before you deploy your OSGi bundle, you must first:

1. Use either the DOMAI N_HOVE\ confi g\ confi g. xm deployment descriptor file or WLST to
add an entry for the OSGi framework, as described in Configuring OSGi Framework
Instances.

2. Inthe EAR file that contains the OSGi bundle, add both the name of the OSGi framework
and the name of the bundle itself to the webl ogi c- appl i cati on. xm deployment
descriptor file.

Example 17-1 shows an example of updating confi g. xm to add the OSGi framework used
by the WebLogic Server.

Example 17-4 shows an example of updating webl ogi c- appl i cati on. xm to add both the
name of the OSGi framework and the name and location of the bundle.

Example 17-4 Adding the Framework and Bundle to weblogic-application.xml

<osgi - framewor k- r ef erence>
<nane>t est - 0sgi - f rame</ nane>
<appl i cati on-bundl e- synbol i c- name>com or acl e. webl ogi c. test. cl i ent
</ appl i cati on- bundl e- synbol i c- name>
<bundl es-di rect ory>rashi/osgi-|ib</bundl es-directory>
</ osgi - f ramewor k- r ef er ence>

The stanza in Example 17-4 tells the WebLogic Server to attach to the OSGi framework

named "test-osgi-frame" and to find the bundle in that server with the symbolic name
com oracl e. webl ogi c.test.client inorder to find classes from that OSGi framework.

17.5.1.2 Preparing to Deploy Bundles as Web Applications

Before you install your bundle as a WAR file, you must first:

ORACLE 17-11

Chapter 17
Deploying OSGi Bundles

1. Use either the DOMAI N_HOVE\ confi g\ confi g. xm deployment descriptor file or
WLST to add an entry for the OSGi framework, as described in Configuring OSGi
Framework Instances.

2. Add both the name of the OSGi framework and the name of the bundle itself to the
web application's webl ogi ¢. xm deployment descriptor file.

Example 17-1 shows an example of updating confi g. xn to add the OSGi framework
used by the WebLogic Server.

Example 17-5 shows an example of updating webl ogi c. xnl to add both the name of
the OSGi framework and the name and location of the bundle.

Example 17-5 Adding the Framework and Bundle to weblogic.xml

<osgi - framewor k-ref erence>
<nane>t est - 0sgi - f rane</ nane>
<appl i cati on-bundl e- synbol i c- nanme>com or acl e. webl ogi c. test. cl i ent
</ appl i cati on- bundl e- synbol i c- name>
<bundl es-di rect ory>rashi/osgi-Iib</bundl es-directory>
</ osgi - f ramewor k- r ef er ence>

The stanza in Example 17-4 tells the WebLogic Server to attach to the OSGi
framework named "test-osgi-frame" and to find the bundle in that server with the
symbolic name com or acl e. webl ogi c. test. client in order to find classes from that
OSGi framework.

17.5.1.3 Global Work Managers

Work Managers prioritize work based on rules you define and by monitoring actual run
time performance statistics. This information is then used to optimize the performance
of your application. See Using Work Managers to Optimize Scheduled Work in
Administering Server Environments for Oracle WebLogic Server.

The OSGi implementation can take advantage of global work managers if the Register
Global Work Managers MBean attribute is set to true, as described in Table 17-1.

You can determine which global work manager is in use from a Java application, as
shown in Example 17-7.

Example 17-6 Determining Global Work Managers

/1 Get the global scoped work nanager service:
Servi ceReference[] ref WiSvcs = bc. get Servi ceRef er ences(Wr kManager . cl ass. get Canoni cal Nange(),
"(nane=QA obal ScopedWor kManager) ") ;
if (refWibves !'= null) {
| ogger. set Attribute(franmeworklnstanceNane, bundleldentifier + "_WrkManager _Count",
ref WiSvcs. | engt h) ;
for (int i =0; i <refWBvcs.length; i++) {
Servi ceRef erence ref Wisve = ref WiBves[i];
Wor kManager wm = (\Wor kManager) bc. get Servi ce(ref WiSvc) ;
| ogger. set Attribute(franeworkl nstanceNane, bundleldentifier + " _\WrkMnager" + (i + 1),
wm get Nare()) ;
bc. unget Servi ce(ref WiSvc) ;
}
}

ORACLE 17-12

Chapter 17
Deploying OSGi Bundles

17.5.1.4 Global Data Sources

In WebLogic Server, you can configure database connectivity by configuring JDBC data
sources and multi data sources and then targeting or deploying the JDBC resources to
servers or clusters in your WebLogic domain, as described in WebLogic Server Data Sources
in Understanding Oracle WebLogic Server.

The OSGi implementation can take advantage of global data sources if the Register Global
Data Sources MBean attribute is set to true, as described in Table 17-1.

You can determine which global data source is in use from a Java application, as shown in
Example 17-7.

Example 17-7 Determining Global Data Sources

/] Get the global data source services:
Servi ceReference[] refDsSvcs =
bc. get Servi ceRef erences(Dat aSour ce. cl ass. get Canoni cal Nane(), "(nane=0CsgiDS)");
if (refDsSves !'= null) {
| ogger. set Attribute(frameworklnstanceNane, bundleldentifier +
" DataSource_Count", refDsSvcs.|length);
for (int i =0; i <refDsSvcs.length; i++) {
String data = null;
Servi ceReference ref DsSvc = refDsSves[i];
Dat aSource ds = (DataSource) bhc. getService(refDsSvc);
Connection conn = nul | ;
Statement stnt = null;
ResultSet rs = null;
try {
conn = ds. get Connection();
stnt = conn.createStatenment();
rs = stnt.executeQuery("select * fromdual");
rs.next();
data = rs.getString(0);
} catch (SQLException e) {

17.5.2 Deploying OSGi Bundles in the osgi-lib Directory

ORACLE

Note:

The OsgiFrameWorkMBean MBean Depl oy Instal | ati on Bundl es attribute
controls whether or not bundles present in the osgi - | i b directory are actually
installed, as described in Parameter Required for Installing Bundles in the
Framework. This attribute is true by default, and the bundles are installed.

To deploy a bundle with the start-level of 1, create the W._HOVE/ server/ osgi - | i b directory if
it does not already exist, and then copy the archive file (EAR, WAR) file to it.

Any files in this directory that end with . j ar, . ear, or . war are considered an OSGi bundle to
be installed into a framework when it starts.

17-13

Chapter 17
Accessing Deployed Bundle Objects From JNDI

W._HOME/ server/osgi-1ib is consulted only when the server first boots, and is not
monitored for changes thereatfter. If you add a new OSGi bundle to the W._HOVE/
server/osgi-1ib directory and want to deploy it, you must reboot WebLogic Server.

17.5.2.1 Setting the Start Level and Run Level for a Bundle

To deploy a bundle with the start-level of 1, copy the archive file (EAR, WAR) file to the
W._HOME/ server/osgi-1ib directory.

In addition, the W._HOVE/ server/ osgi -1 i b directory supports a start- and run-level
scheme based on subdirectories.

If you create subdirectories with names that begin with a number between 1 and 32K
(for example 2, 3, 4), then the archive files under those directories are installed and
started with the given run-level.

17.6 Accessing Deployed Bundle Objects From JNDI

After the OSGi server has been booted, a bundle object is placed into the local server
JNDI tree. Applications can therefore get this bundle from JNDI and thereafter use that
as the entry point into the OSGi system.

The org. osgi . f ranewor k. Bundl e is placed into the j ava: app/ osgi / Bundl e JNDI
environment of the application.

One specific OSGi bundle from the chosen framework instance can be used in the
application classloader hierarchy.

Example 17-8 shows how to access a bundle that you create from JNDI.
Example 17-8 Accessing Your OSGi Bundle From JNDI
public static final String BUNDLE JNDI _NAME = "java: app/ osgi/ Bundl e";

String bundl eSynbol i cName = nul | ;

Bundl e bundle = nul | ;
CsgiInfo info = new Osgilnfo();
List<String> errorMessages = new Arraylist<String>();

try {
Context initCtx = new Initial Context();

bundl e = (Bundl e) initCx.|ookup(Constants. BUNDLE JNDI _NAME);
} catch (Nam ngException e) {
error Messages. add(e.toString());
Systemout.printIn("Failed to | ookup bundle fromJND due to " + e);

1
if (bundle != null) {

bundl eSynbol i cName = bundl e. get Synbol i cNane() + "_" + bundl e. get Version();
i nf o. set Current Bundl e(bundl eSynbol i cNane) ;

Bundl eCont ext bc = bundl e. get Bundl eCont ext ();
if (bc !'=null) {

Il Get the start |evel service:
StartLevel startlLevel Svc = null;

ORACLE 17-14

Chapter 17
Accessing Deployed Bundle Objects From JNDI

Servi ceRef erence startlLevel Sr =
bc. get Servi ceRef erence("org. osgi . service.startlevel . StartLevel ");
if (startLevel Sr !=null) {
startLevel Svc = (StartlLevel) bc.getService(startLevel Sr);

}

List<String> all Instal | edBundl es = new ArrayList<String>();

List<String> al | ActivatedBundl es = new ArrayList<String>();

Map<String, List<String>> services = new HashMap<String, List<String>>();
Map<String, String> startlLevels = new HashMap<String, String>();

for (Bundle b : bc.getBundles()) {

/I Collect all the installed and activated bundl es:
String bundleld = b.getSynbolicName() + "_" + b.getVersion();
al I I'nstal | edBundl es. add(bundl el d);
if (b.getState() == Bundle. ACTI VE) {
al | Acti vat edBundl es. add(bundl el d) ;

}

/1 Collect the registered services:
ServiceReference[] srs = b. get Regi steredServices();
if (srs!=null) {
List<String> list = new ArrayList<String>();
for (ServiceReference sr : srs) {
list.add(sr + "-->" + bc.getService(sr));
}

services. put (bundleld, list);

}

Il Collect the start |evels:
if (startLevel Sve !'= null) {
startLevel s. put (bundl eld, startLevel Svc. getBundl eStartLevel (b) + "");
}
}

info.setAlllnstalledBundl es(alllnstalledBundles);
info.set All Activat edBundl es(al | Activat edBundl es);
i nfo. set Regi steredServices(services);
info.setStartLevel s(startLevels);

/1 Query the work nanager services:
Li st <String> workManagers = new ArrayList<String>();
try {
Servi ceRef erence[] wnBrs = bc. get Servi ceRef erences(Wr kManager . ¢l ass. get Canoni cal Nange(),
null);
if (wtrs I'=null) {
for (ServiceReference sr : wnbrs) {
Wor kManager wm = (\Wor kManager) bc. get Servi ce(sr);
wor kManager s. add(wm get Narme()) ;
}

} catch (InvalidSyntaxException e) {
e.printStackTrace(Systemout);

}
i nfo. set Wor kManager s(wor kManagers) ;

/1l Query the data source services:
Li st<String> dataSources = new ArrayList<String>();

try {
ServiceReference[] dsSrs = bc. get Servi ceRef erences(Dat aSour ce. cl ass. get Canoni cal Name(), null);

ORACLE 17-15

Chapter 17
Using OSGi Logging Via WebLogic Server

if (dsSrs !'=null) {
for (ServiceReference sr : dsSrs) {
dat aSour ces. add(sr. get Property("nane").toString());
}

} catch (InvalidSyntaxException e) {
e.printStackTrace(Systemout);

}

i nf 0. set Dat aSour ces(dat aSour ces) ;

}
}

String bundl eFi | eName = nul | ;

try {
Bundl el ntrospect introspection = new Bundl el ntrospect();

bundl eFi | eNane = introspection. whi chBundl eFile();
i nfo.set Current Bundl eFi | eNanme(bundl eFi | eNarre) ;

} catch (Throwabl e e) {
errorMessages. add(e.toString());
/le.printStackTrace(Systemout);

}

i nfo.set ErrorMessages(errorMessages);

return info;

}

17.7 Using OSGi Logging Via WebLogic Server

The Apache Felix implementation of the OSGi Log service is installed by default when
you install WebLogic Server. The OSGi bundle registers with the OSGi logging service
and sends logs from the OSGi logger to the WebLogic Server logger.

The Apache Felix implementation of the OSGi Log service is installed by default in the
installation directory W._HOVE/ server/osgi-1ib.

An OSGi bundle com or acl e. webl ogi c. osgi . | ogger _rel num j ar is also installed in
W._HOME/ server/osgi-1ib. This bundle registers itself with the OSGi logging service
and sends logs from the OSGi logger to the WebLogic Server logger.

The logger system name is OSG For Apps. The messages severity levels are mapped
between OSGi and WebLogic Server as shown in Table 17-2.

Table 17-2 OSGi and WebLogic Server Logging Severity Mapping

]
OSGi Severity Levels WebLogic Server Severity Level

LogLevel. LOG_ERROR Severities.ERROR
LogLevel. LOG_WARNING Severities. WARNING
LogLevel.LOG_INFO Severities.INFO
LogLevel.LOG_DEBUG Severities.DEBUG

ORACLE 17-16

Chapter 17
Configuring a Filtering ClassLoader for OSGi Bundles

17.8 Configuring a Filtering ClassLoader for OSGI Bundles

You can use a filtering classloader to specify the use of alternate library versions that are
deployed as OSGi bundles.

To configure the Fi | t eri ngQ assLoader to specify that a certain package is loaded from an
application, add a pref er - appl i cati on- packages descriptor element to webl ogi c-
application.xm , which details the list of packages to be loaded from the application. The
following example specifies that or g. apache. | og4j . * and ant | r. * packages are loaded from
the application, not the system classloader:

<prefer-application-packages>
<package- nane>or g. apache. | og4j . *</ package- nane>
<package- name>ant | r. *</ package- nane>

</ prefer-application-packages>

Place packages in VEB- | NF/ | i b or in VEB- | NF/ osgi -1 i b if the package is an OSGi bundle.
You can either add OSGi bundle dependencies directly to VEB- | NF/ osgi - | i b or configure the
org. osgi . framewor k. syst em packages. ext ra property (see Table 17-1) in your OSGi
framework instance to export the necessary j avax packages that the application needs.

For more information on filtering classloaders, see Using a Filtering ClassLoader.

17.9 OSGI Example

ORACLE

WebLogic Server includes two simple example OSGi bundles: client and server. The server
bundle (ServerBundle) exports a packet that the client bundle (ClientBundle) imports. The
example produces an HTML page that displays the deployed OSGi bundles.

WebLogic Server includes an example that demonstrates how to deploy OSGi bundles to
WebLogic Server. If you installed the WebLogic Server examples, the OSGi example source
code is available in ORACLE_HOVEW _ser ver/ exanpl es/ src/ exanpl es/ osgi / osgi App, where
ORACLE_HOME represents the directory in which the WebLogic Server code examples are
configured. For more information about the WebLogic Server code examples, see Sample
Applications and Code Examples in Understanding Oracle WebLogic Server.

17-17

Using the WebSocket Protocol in WebLogic
Server

WebLogic Server supports the WebSocket protocol (RFC 6455), which provides full-duplex
communications between two peers over the TCP protocol. The WebLogic Server
implementation of the WebSocket protocol and its accompanying API enable you to develop
and deploy applications that communicate bidirectionally with clients. Although you can use
the WebSocket protocol for any type of client-server communication, the implementation is
most commonly used to communicate with browsers running Web pages that use the World
Wide Web Consortium (W3C) JavaScript WebSocket API. The WebLogic Server
implementation of the WebSocket protocol also supports Java clients.

This chapter includes the following sections:

* Understanding the WebSocket Protocol

» Understanding the WebLogic Server WebSocket Implementation

e Overview of Creating a WebSocket Application

e Creating an Endpoint

« Handling Life Cycle Events for a WebSocket Connection

» Defining_ Injecting_ and Accessing a Resource for a WebSocket Endpoint
e Sending a Message

» Encoding and Decoding a WebSocket Message

e Specifying a Part of an Endpoint Deployment URI as an Application Parameter
e Maintaining Client State

e Configuring a Server Endpoint Programmatically

« Building Applications that Use the Java API for WebSocket

» Deploying a WebSocket Application

» Using WebSockets with Proxy Servers

e Writing a WebSocket Client

e Securing a WebSocket Application

e Enabling Protocol Fallback for WebSocket Messaging

e Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated
API

» Example of Using the Java API for WebSocket with WebLogic Server

18.1 Understanding the WebSocket Protocol

WebSocket is an application protocol that provides simultaneous two-way communication
over a single TCP connection between a client and a server. The WebSocket protocol
enables the client and the server to send data independently.

ORACLE 18-1

Chapter 18
Understanding the WebSocket Protocol

As part of the HTML5 specification (htt p: // www. w3. or g/ TR/ ht ml 5/), the WebSocket
Protocol is supported by most browsers. A browser that supports the WebSocket
protocol provides a JavaScript API to connect to endpoints, send messages, and
assign callback methods for WebSocket events (such as opened connections,
received messages, and closed connections).

For general information about the WebSocket Protocol, see http://tool s.ietf.org/
htm /rfc6455.

18.1.1 Limitations of the HTTP Request-Response Model

In the traditional request-response model used in HTTP, the client requests resources
and the server provides responses. The exchange is always initiated by the client; the
server cannot send any data without the client requesting it first. This model worked
well for the World Wide Web when clients made occasional requests for documents
that changed infrequently, but the limitations of this approach are increasingly apparent
as content changes quickly and users expect a more interactive experience on the
web. The WebSocket protocol addresses these limitations by providing a full-duplex
communication channel between the client and the server. Combined with other client
technologies, such as JavaScript and HTML5, WebSocket enables web applications to
deliver a richer user experience.

18.1.2 WebSocket Endpoints

In a WebSocket application, the server publishes a WebSocket endpoint and the
client uses the endpoint's URI to connect to the server.

A WebSocket endpoint is represented by a URI in one of the following formats:

ws: //host: port/pat h?query
wss: // host: port/path?query

The ws scheme represents an unencrypted WebSocket connection.
The wss scheme represents an encrypted WebSocket connection.
The remaining components in these formats are as follows:

host
The host as defined in [RFC3986], Section 3.2.2.

port
Optional. The port as defined in [RFC3986], Section 3.2.3. The default port number is
80 for unencrypted connections and 443 for encrypted connections.

path
The path as defined in [RFC3986], Section 3.3. In a WebSocket endpoint, the path
indicates the location of the endpoint within a server.

query
Optional. A query as defined in [RFC3986], Section 3.4.

18.1.3 Handshake Requests in the WebSocket Protocol

To initiate a WebSocket connection, the client sends a handshake request to a
WebSocket endpoint that the server has published. The client locates the endpoint by

ORACLE 18-2

http://www.w3.org/TR/html5/
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc3986#section-3.2.2
http://tools.ietf.org/html/rfc3986#section-3.2.3
http://tools.ietf.org/html/rfc3986#section-3.3
http://tools.ietf.org/html/rfc3986#section-3.4

Chapter 18
Understanding the WebLogic Server WebSocket Implementation

using the end point's URI. The connection is established if the handshake request passes
validation, and the server accepts the request. The handshake is compatible with existing
HTTP-based infrastructure: web servers interpret the handshake as an HTTP connection
upgrade request.

Example 18-1 Handshake Request from a WebSocket Client

The following example shows a handshake request from a client.

CET /pat h/t o/ websocket / endpoi nt HTTP/ 1.1
Host: | ocal host

Upgrade: websocket

Connection: Upgrade

Sec- WbSocket - Key: xqgBt 31 mMzJbYgRI NxEFI kg==
Oigin: http://1ocal host

Sec- WbSocket - Version: 13

Example 18-2 Server Response to a Handshake Request from a WebSocket Client

The following example shows a handshake from a server in response to a handshake
request from a client.

HTTP/ 1.1 101 Switching Protocol s

Upgrade: websocket

Connection: Upgrade

Sec- WebSocket - Accept : K7DJLdLool W G MOpvWFB3y 3FE8=

The server applies a known operation to the value of the Sec- WebSocket - Key header to
generate the value of the Sec- WebSocket - Accept header. The client applies the same
operation to the value of the Sec- WebSocket - Key header. If the result matches the value
received from the server, the connection is established successfully. The client and the server
can send messages to each other after a successful handshake.

18.1.4 Messaging and Data Transfer in the WebSocket Protocol

The WebSocket protocol is symmetrical after the connection has been established: the client
and the WebLogic Server instance can send messages to each other at any time while the
connection is open, and they can close the connection at any time. Typically, clients connect
to only one server, but servers accept connections from multiple clients.

WebSocket supports text messages (encoded as UTF-8) and binary messages. The control
frames in WebSocket are close, ping, and pong (a response to a ping frame). Ping and pong
frames may also contain application data.

18.2 Understanding the WebLogic Server WebSocket
Implementation

ORACLE

The WebLogic Server WebSocket implementation supports JSR 356 Java API for
Websocket.

For more information about the Java API for WebSocket, see the JSR 356 specification
http://ww.jcp.org/en/jsr/detail ?i d=356:

18-3

http://www.jcp.org/en/jsr/detail?id=356

Chapter 18
Understanding the WebLogic Server WebSocket Implementation

< Note:

The proprietary WebLogic Server WebSocket API that was introduced in
release 12.1.2 is deprecated but remains supported for backward
compatibility.

Although the JSR 356 Java API for WebSocket coexists with the proprietary
WebLogic Server WebSocket API, an application cannot contain calls to both
APIs. Only one of the APIs can be used in an application.

Information about how to use the deprecated API is available in the
documentation for Oracle WebLogic Server 12c (12.1.2) in Chapter 17,
Using WebSockets in WebLogic Server in Developing Applications for Oracle
WebLogic Server 12c¢ (12.1.2).

The WebLogic Server WebSocket implementation includes the following components:
e WebSocket Protocol Implementation

* WebLogic WebSocket Java API

e Protocol Fallback for WebSocket Messaging

e Sample WebSocket Applications

18.2.1 WebSocket Protocol Implementation

The WebSocket protocol implementation in WebLogic Server is provided by the
reference implementation of JSR 356 Java API for WebSocket. This implementation of
the WebSocket protocol handles connection upgrades, establishes and manages
connections, and handles exchanges with the client.

18.2.2 WebLogic WebSocket Java API

ORACLE

The WebLogic WebSocket APl is provided by the reference implementation of JSR
356 Java API for WebSocket. This API consists of the following packages:

Jjavax.websocket.server

This package contains annotations, classes, and interfaces to create and configure
server endpoints.

Javax.websocket
This package contains annotations, classes, interfaces, and exceptions that are
common to client and server endpoints.

The API reference documentation for these packages is available in the following
sections of the Java EE 7 Specification APIs:

» Package javax.websocket

» Package javax.websocket.server

18-4

http://www.oracle.com/pls/topic/lookup?ctx=fmw121200&id=WLPRG806
http://www.oracle.com/pls/topic/lookup?ctx=fmw121200&id=WLPRG806
http://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/package-summary.html

Chapter 18
Overview of Creating a WebSocket Application

18.2.3 Protocol Fallback for WebSocket Messaging

Protocol fallback provides a mechanism for using an alternative transport for WebSocket
messaging when the WebSocket protocol is not supported. Typically the WebSocket protocol
is not supported either because the WebSocket object is not available or because
WebSocket frames are blocked by a firewall. In this release, the only supported alternative
transport is HTTP Long Polling.

Protocol fallback enables you to rely on standard programming APlIs to perform WebSocket
messaging regardless of whether or not the runtime environment supports the WebSocket
protocol. For more information, see Enabling Protocol Fallback for WebSocket Messaging.

18.2.4 Sample WebSocket Applications

If the WebLogic Server Examples component is installed and configured on your machine,
you can use the WebSocket examples to demonstrate using WebSockets in WebLogic
Server. For more information about running these examples, see Sample Applications and
Code Examples in Understanding Oracle WebLogic Server.

18.3 Overview of Creating a WebSocket Application

The Java API for WebSocket (JSR-356) enables you to create, configure, and deploy
WebSocket endpoints in web applications. The WebSocket client API specified in JSR-356
also enables you to access remote WebSocket endpoints from any Java application.

The process for creating and deploying a WebSocket endpoint is as follows:

1. Create an endpoint class.

2. Implement the lifecycle methods of the endpoint.
3. Add your business logic to the endpoint.
4

Deploy the endpoint inside a web application.

18.4 Creating an Endpoint

The container creates one instance of an endpoint for each connection to its deployment URI.
Each instance retains user state for each connection and simplifies development.

The Java API for WebSocket enables you to create the following kinds of endpoints:

e Annotated endpoints
e Programmatic endpoints

The process is different for programmatic endpoints and annotated endpoints. In most cases,
it is easier to create and deploy an annotated endpoint than a programmatic endpoint.

ORACLE 18-5

Chapter 18
Creating an Endpoint

< Note:

As opposed to servlets, WebSocket endpoints are instantiated multiple
times. The container creates one instance of an endpoint for each
connection to its deployment URI. Each instance is associated with one and
only one connection. This behavior facilitates keeping user state for each
connection and simplifies development because only one thread is executing
the code of an endpoint instance at any given time.

18.4.1 Creating an Annotated Endpoint

ORACLE

Creating an annotated endpoint enables you to handle life cycle events for a
WebSocket connection by annotating methods of the endpoint class. For more
information, see Handling Life Cycle Events in an Annotated WebSocket Endpoint. An
annotated endpoint is deployed automatically with the application.

The Java API for WebSocket enables you to create annotated server endpoints and
annotated client endpoints.

To created an annotated server endpoint:
1. Write a Plain Old Java Object (POJO) class to represent the server endpoint.
The class must have a public no-argument constructor.

2. Annotate the class declaration of the POJO class with the
j avax. websocket . server. Server Endpoi nt annotation.

This annotation denotes that the class represents a WebSocket server endpoint.

3. .Set the value element of the Ser ver Endpoi nt annotation to the relative path to
which the endpoint is to be deployed.

The path must begin with a forward slash (/).

Example 18-3 Declaring an Annotated Server Endpoint Class

The following example shows how to declare an annotated server endpoint class. For
an example of how to declare a programmatic endpoint class to represent the same
endpoint, see Example 18-5.

This example declares the annotated server endpoint class EchoEndpoi nt. The
endpoint is to be deployed to the /echo path relative to the application.

i nport javax.websocket. server. Server Endpoi nt;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

}
Example 18-4 Declaring an Annotated Client Endpoint Class
To create an annotated client endpoint:

1. Write a Plain Old Java Object (POJO) class to represent the client endpoint.

The class can have a constructor that takes arguments. However, to connect such
an endpoint to a server endpoint, you must use the variant of the connectToServer

18-6

Chapter 18
Creating an Endpoint

method that takes an instance. You cannot use the variant that takes a class. For more
information, see Connecting a Java WebSocket CLient to a Server Endpoint

2. Annotate the class declaration of the POJO class with the
j avax. websocket . C i ent Endpoi nt annotation.

This annotation denotes that the class represents a WebSocket client endpoint.

The following example shows how to declare an annotated client endpoint class.
This example declares the annotated client endpoint class Exanpl eEndpoi nt .

i nport javax.websocket. O i ent Endpoi nt;

@ i ent Endpoi nt
public class Exanpl eEndpoint {

}...

18.4.2 Creating a Programmatic Endpoint

Creating a programmatic endpoint requires you to handle life cycle events for a WebSocket
connection by overriding methods of the endpoint's superclass. For more information, see
Handling Life Cycle Events in a Programmatic WebSocket Endpoint. A programmatic
endpoint is not deployed automatically with the application. You must deploy the endpoint
explicitly. For more information, see Specifying the Path Within an Application to a
Programmatic Endpoint.

To create a programmatic endpoint, extend the j avax. websocket . Endpoi nt class.

Example 18-5 shows how to declare a programmatic endpoint class. For an example of how
to declare an annotated endpoint class to represent the same endpoint, see Example 18-3.

Example 18-5 Declaring a Programmatic Endpoint Class

This example declares the programmatic endpoint class EchoEndpoi nt . For an example that
shows how to specify the path within an application to this endpoint, see Example 18-6.

i nport j avax.websocket . Endpoi nt;

public class EchoEndpoi nt extends Endpoint {

18.4.3 Specifying the Path Within an Application to a Programmatic

Endpoint

ORACLE

To enable remote clients to connect to a programmatic endpoint, you must specify the path
within an application to the endpoint.

To specify the path within an application to a programmatic endpoint:

1. Invoke the j avax. websocket . server. Server Endpoi nt Confi g. Bui | der. creat e static
method to obtain an instance of the
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der class.

In the invocation of the cr eat e method, pass the following information as parameters to
the method:

e The class of the endpoint

18-7

http://docs.oracle.com/javaee/7/api/javax/websocket/Endpoint.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Builder.html#create%28java.lang.Class,%20java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Builder.html

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

* The path relative to the application at which the endpoint is to be available

2. Invoke the bui | d method on the Ser ver Endpoi nt Confi g. Bui | der object that you
obtained in the previous step.

When you deploy your application, the endpoint is available at the following URI:

ws: //host:port/application/path
The replaceable items in this URI are as follows:

host
The host on which the application is running.

port
The port on which WebLogic Server listens for client requests.

application
The name with which the application is deployed.

path
The path that you specified in the invocation of the cr eat e method.

For example, the URI to the endpoint at the / echo path relative to the / echoapp
application running on the local host is ws: / /| ocal host : 8890/ echoapp/ echo.

Example 18-6 shows how to perform this task in a single line of Java code.

Example 18-6 Specifying the Path Within an Application to a Programmatic
Endpoint

This example specifies / echo as the path within an application to the programmatic
endpoint EchoEndpoi nt from Example 18-5.

i mport j avax.websocket . server. Server Endpoi nt Confi g. Bui | der

Server Endpoi nt Confi g. Bui | der. creat e(EchoEndpoi nt. cl ass, "/echo").build();

18.5 Handling Life Cycle Events for a WebSocket
Connection

Different life cycle events for a WebSocket connection such as connection opened,
message received, error, and connection closed are handled differently in an
annotated endpoint and a programmatic endpoint.

How to handle life cycle events for a WebSocket connection depends on whether the
endpoint of the connection is an annotated endpoint or a programmatic endpoint. For
more information, see:

» Handling Life Cycle Events in an Annotated WebSocket Endpoint

* Handling Life Cycle Events in a Programmatic WebSocket Endpoint

ORACLE 18-8

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Builder.html#build()

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

18.5.1 Handling Life Cycle Events in an Annotated WebSocket Endpoint

Handling a life cycle event in an annotated WebSocket involves the following tasks:

1. Adding a method to your endpoint class to handle the event

The allowed method parameters are defined by the annotation that you will use to
designate the event.

2. Annotating the method declaration with the annotation that designates the event that the
method is to handle.

Table 18-1 lists the life cycle events in a WebSocket endpoint and the annotations available in
the j avax. websocket package to designate the methods that handle them. The examples in
the table show the most common parameters for these methods. Each example in the table
includes an optional j avax. websocket . Sessi on parameter. A Sessi on object represents a
conversation between a pair of WebSocket endpoints.

For details about the combinations of parameters that are allowed by an annotation, see the
API reference documentation for the annotation.

Table 18-1 Annotations in javax.websocket for WebSocket Endpoint Lifecycle Events

|
Event Annotation Example

Connection opened OnOpen @npen

public void open(Session session,
Endpoi nt Confi g conf) { }

Message received OnMessage @nhessage
public String nessage (String nsg) { }

Error OnError @ner r or

public void error(Session session,
Throwabl e error) { }

Connection closed OnCl ose @nd ose

public void cl ose(Session session,
C oseReason reason) { }

18.5.1.1 Handling a Connection Opened Event

ORACLE

Handle a connection opened event to notify users that a new WebSocket conversation has
begun.

To handle a connection opened event, annotate the method for handling the event with the
OnOpen annotation.

Example 18-7 shows how to handle a connection opened event.
Example 18-7 Handling a Connection Opened Event

This example prints the identifier of the session when a WebSocket connection is opened.

18-9

http://docs.oracle.com/javaee/7/api/javax/websocket/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html
http://docs.oracle.com/javaee/7/api/javax/websocket/OnOpen.html
http://docs.oracle.com/javaee/7/api/javax/websocket/OnMessage.html
http://docs.oracle.com/javaee/7/api/javax/websocket/OnError.html
http://docs.oracle.com/javaee/7/api/javax/websocket/OnClose.html

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

i nport javax.websocket . OnQpen;
i nport j avax.websocket . Sessi on;

@nQpen

public void openedConnection (Session session) {
Systemout. println("WebSocket opened: " + session.getld());

}

18.5.1.2 Handling a Message Received Event

The Java API for WebSocket enables you to handle the following types of incoming

messages:
e Text messages
* Binary messages

* Pong messages

1. Add a method to your endpoint class to handle the type of the incoming message.

Ensure that the data type of the parameter for receiving the message is
compatible with the type of the message as shown in the following table.

Message Type Data Type of the Parameter for Receiving the Message

Text Any one of the following data types depending on how the message is to
be received:

To receive the whole message: j ava. | ang. String

To receive the whole message converted to a Java primitive or class
equivalent to that type: the primitive or class equivalent

To receive the message in parts: St ri ng and boolean pair

To receive the whole message as a blocking stream:

j ava.io. Reader

To receive the message encoded as a Java object: any type for
which the endpoint has a text decoder

(j avax. websocket . Decoder . Text or

j avax. websocket . Decoder . Text Streamn)

Binary Any one of the following data types depending on how the message is to
be received:

To receive the whole message: byte array or

j ava. ni 0. Byt eBuf f er

To receive the message in parts: byte array and boolean pair, or
Byt eBuf f er and boolean pair

To receive the whole message as a blocking stream:
java.io.lnputStream

To receive the message encoded as a Java object: any object type
for which the endpoint has a binary decoder

(j avax. websocket . Decoder . Bi nary or

j avax. websocket . Decoder . Bi narySt reamn)

Pong j avax. websocket . PongMessage

2. Annotate the method declaration with the OnMessage annotation.

You can have at most three methods annotated with @nMessage in an endpoint,
one method for each message type: text, binary, and pong.

ORACLE

18-10

http://docs.oracle.com/javase/7/docs/api/java/lang/String.html
http://docs.oracle.com/javase/7/docs/api/java/io/Reader.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.Text.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.TextStream.html
http://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html
http://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.Binary.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.BinaryStream.html
http://docs.oracle.com/javaee/7/api/javax/websocket/PongMessage.html

ORACLE

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

< Note:

For an annotated endpoint, you add methods for handling incoming messages to
your endpoint class. You are not required to create a separate message handler
class. However, for a programmatic endpoint, you must create a separate message
handler class.

To compare how to handle incoming messages for an annotated endpoint and a
programmatic endpoint, see Example 18-8 and Example 18-12.

Example 18-8 Handling Incoming Text Messages for an Anhnotated Endpoint

The following example shows how to handle incoming text messages for an annotated
endpoint.

This example replies to every incoming text message by sending the message back to the
peer of this endpoint. The method that is annotated with the OnMessage annotation is a
method of the endpoint class, not a separate message handler class.

For an example of how to perform the same operation for a programmatic endpoint, see
Example 18-12.

i nport java.io.lOException;

i nport javax.websocket.OnMessage;
i nport j avax.websocket . Sessi on;

@nMessage
public String onMessage(String nsg) throws | OException {
return nsg;

}

Example 18-9 Handling all Types of Incoming Messages

This example handles incoming text messages, binary messages, and pong messages. Text
messages are received whole as St ri ng objects. Binary messages are received whole as
Byt eBuf f er objects.

i nport java.nio.ByteBuffer;

i mport j avax.websocket. OnMessage;
i mport j avax.websocket . PongMessage;
i nport j avax.websocket . Sessi on;

@nMessage

public void textMessage(Session session, String msg) {
Systemout. println("Text nessage: " + nsQ);

!

@nMessage

public void binaryMessage(Sessi on session, ByteBuffer nsg) {
Systemout. println("Binary message: " + msg.toString());

!

@nMessage

public void pongMessage(Session session, PongMessage nsg) {
Systemout. println("Pong nmessage: " +

meg. get Appl i cationData().toString());

18-11

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

18.5.1.3 Handling an Error Event

You need handle only error events that are not modeled in the WebSocket protocol, for
example:

e Connection problems
* Runtime errors from message handlers
« Conversion errors in the decoding of messages

To handle an error event, annotate the method for handling the event with the OnEr r or
annotation.

Example 18-10 shows how to handle an error event.
Example 18-10 Handling an Error Event
This example prints a stack trace in response to an error event.

i nport javax.websocket.OnError;
i nport j avax.websocket . Sessi on;

@nekrror
public void error(Session session, Throwable t) {
t.printStackTrace();

}

18.5.1.4 Handling a Connection Closed Event

You need handle a connection closed event only if you require some special
processing before the connection is closed, for example, retrieving session attributes
such as the ID, or any application data that the session holds before the data becomes
unavailable after the connection is closed.

To handle a connection closed event, annotate the method for handling the event with
the OnC ose annotation.

Example 18-11 shows how to handle a connection closed event.
Example 18-11 Handling a Connection Closed Event

This example prints the message Soneone i s di sconnecting... inresponse to a
connection closed event.

i nport javax.websocket.Ond ose;
i nport j avax.websocket . Sessi on;

@nd ose
public void bye(Session renote) {
Systemout. println("Soneone is disconnecting...");

}

ORACLE 18-12

Chapter 18
Handling Life Cycle Events for a WebSocket Connection

18.5.2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint

Table 18-2 summarizes how to handle lifecycle events in a programmatic WebSocket
endpoint.

Table 18-2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint

Event How to Handle

Connection opened Override the abstract onOpen method of the Endpoi nt class.

Message received 1. Declare that your endpoint class implements the message handler interface

j avax. websocket . MessageHandl er. Parti al or
j avax. websocket . MessageHand! er . Wol e.

2. Register your message handler by invoking the addMessageHand| er
method of your endpoint's Sessi on object.

3. Implement the onMessage method of the message handler interface that
your endpoint class implements.

Error Optional: Override the onEr r or method of the Endpoi nt class.

If you do not override this method, the onEr r or method that your endpoint
inherits from the Endpoi nt class is called when an error occurs.

Connection closed Optional: Override the onCl 0se method of the Endpoi nt class.

If you do not override this method, the onCl 0se method that your endpoint
inherits from the Endpoi nt class is called immediately before the connection is
closed.

Example 18-12 shows how handle incoming text messages for a programmatic endpoint by
handling connection opened events and message received events.

Example 18-12 Handling Incoming Text Messages for a Programmatic Endpoint

This example echoes every incoming text message. The example overrides the onQpen
method of the Endpoi nt class, which is the only abstract method of this class.

The Sessi on parameter represents a conversation between this endpoint and the remote
endpoint. The addMessageHandl er method registers message handlers, and the
get Basi cRenot e method returns an object that represents the remote endpoint.

The message handler is implemented as an anonymous inner class. The onMessage method
of the message handler is invoked when the endpoint receives a text message.

For more information about sending a message, see Sending a Message.

For an example of how to perform the same operation for an annotated endpoint, see
Example 18-8.

i mport java.io.lOException;

i nport javax.websocket. Endpoi nt Confi g;
i nport javax.websocket. MessageHandl er;
i nport j avax.websocket . Sessi on;

@verride
public void onCpen(final Session session, EndpointConfig config) {
sessi on. addMessageHandl| er (new MessageHandl er. Wol e<String>() {

@verride

ORACLE 18-13

http://docs.oracle.com/javaee/7/api/javax/websocket/Endpoint.html#onOpen%28javax.websocket.Session,%20javax.websocket.EndpointConfig%29
http://docs.oracle.com/javaee/7/api/javax/websocket/MessageHandler.Partial.html
http://docs.oracle.com/javaee/7/api/javax/websocket/MessageHandler.Whole.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#addMessageHandler%28javax.websocket.MessageHandler%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Endpoint.html#onError%28javax.websocket.Session,%20java.lang.Throwable%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Endpoint.html#onClose%28javax.websocket.Session,%20javax.websocket.CloseReason%29

Chapter 18
Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint

public void onMessage(String nsg) {
try {
sessi on. get Basi cRenot e() . sendText (nsQ) ;
} catch (I Oexceptione) { ... }
}
1
}

18.6 Defining, Injecting, and Accessing a Resource for a
WebSocket Endpoint

ORACLE

The Java API for WebSocket allows you to use Contexts and Dependency Injection
(CDI) to inject and access a resource that a WebSocket endpoint requires. You can
use the injected resource from within a method for handling a lifecycle event for a
WebSocket connection.

For more information about CDI, see Using Contexts and Dependency Injection for the
Java EE Platform.

To define, inject, and access a resource for a WebSocket endpoint:

1. Define a managed bean to represent the resource to inject.
For more information, see Defining a Managed Bean.
2. Inthe endpoint class, inject the managed bean.
For more information, see Injecting a Bean.
3. From within the relevant method, invoke methods of the injected bean as required.

The following examples show how to define, inject, and access a resource for a
WebSocket endpoint:

* Example 18-13

* Example 18-14

Example 18-13 Defining a Managed Bean for a WebSocket Endpoint
This example defines the managed bean class | nj ect edSi npl eBean.

i nport javax.annot ati on. Post Construct;
public class InjectedSinpl eBean {

private static final String TEXT =" (fromyour server)";
private bool ean postConstructCall ed = fal se;

public String get Text() {
return postConstructCalled ? TEXT : null;

}

@post Construct
public void postConstruct() {
post Construct Cal l ed = true;

}

18-14

Chapter 18
Sending a Message

Example 18-14 Injecting and Accessing a Resource for a WebSocket Endpoint

This example injects an instance of the | nj ect edSi npl eBean managed bean class into the
server endpoint Si npl eEndpoi nt . When the endpoint receives a message, it invokes the
get Text method on the injected bean. The method returns the text (sent from your
server). The endpoint then sends back a message which is a concatenation of the original
message and gathered data.

The I nj ect edSi npl eBean managed bean class is defined in Example 18-13.

i nport javax.websocket. OnMessage;
i nport javax.websocket. server. Server Endpoi nt;

inport javax.annotation. Post Construct;
inport javax.inject.lnject;

@er ver Endpoi nt (val ue = "/sinple")
public class SinpleEndpoint {

private bool ean postConstructCalled = fal se;

@nj ect
I nj ect edSi npl eBean bean;

@nMessage
public String echo(String nmessage) {
return postConstructCalled ?
String.format ("%%", nessage, bean.getText()) :
"Post Construct was not called";

}

@ost Const ruct
public void postConstruct() {
post Construct Cal l ed = true;

}
}

18.7 Sending a Message

The Java API for WebSocket enables you to send text messages, binary messages, and ping
frames from an endpoint to its connected peers.

e Text messages
e Binary messages

* Ping frames

18.7.1 Sending a Message to a Single Peer of an Endpoint

ORACLE

To send a message to a single peer of an endpoint:
1. Obtain the Sessi on object from the connection.

The Sessi on object is available as a parameter in the lifecycle methods of the endpoint.
How to obtain this object depends on whether the message that you are sending is a
response to a message from a peer.

18-15

ORACLE

Chapter 18
Sending a Message

If the message is a response, obtain the Sessi on object from inside the
method that received the message.

If the message is not a response, store the Sessi on object as an instance
variable of the endpoint class in the method for handling a connection opened
event. Storing the Sessi on object in this way enables you to access it from
other methods.

Use the Sessi on object to obtain an object that implements one of the
subinterfaces of j avax. websocket . Renot eEndpoi nt .

If you are sending the message synchronously, obtain a
Renot eEndpoi nt . Basi ¢ object. This object provides blocking methods for
sending a message.

To obtain a Renot eEndpoi nt . Basi ¢ object, invoke the
Sessi on. get Basi cRenot e() method.

If you are sending the message asynchronously, obtain a
Renot eEndpoi nt . Async object. This object provides non-blocking methods for
sending a message.

To obtain a Renot eEndpoi nt . Async object, invoke the
Sessi on. get AsyncRenot e() method.

Use the Renot eEndpoi nt object that you obtained in the previous step to send the
message to the peer.

The following list shows some of the methods you can use to send a message to
the peer:

voi d Renot eEndpoi nt . Basi c. sendText (String text)

Send a text message to the peer. This method blocks until the whole message
has been transmitted.

voi d Renot eEndpoi nt. Basi c. sendBi nary(Byt eBuf f er data)

Send a binary message to the peer. This method blocks until the whole
message has been transmitted.

voi d Renot eEndpoi nt. sendPi ng(Byt eBuf f er appDat a)
Send a ping frame to the peer.
voi d Renot eEndpoi nt. sendPong(Byt eBuf f er appDat a)

Send a pong frame to the peer.

Example 18-15 demonstrates how to use this procedure to reply to every incoming text
message. For an example of how to send a message as the return value of a method,
see Example 18-8.

Example 18-15 Sending a Message to a Single Peer of an Endpoint

This example replies to every incoming text message by sending the message back to
the peer of this endpoint.

inport java.io.lOException;

i nport javax.websocket.OnMessage;
i nport javax.websocket. Sessi on;

@nMessage
public void onMessage(Sessi on session, String msg) {

18-16

http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getBasicRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getAsyncRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendText%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendBinary%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPing%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPong%28java.nio.ByteBuffer%29

Chapter 18
Sending a Message

try {
sessi on. get Basi cRenot e() . sendText (nsg) ;

} catch (I Oexceptione) { ... }
}

18.7.2 Sending a Message to All Peers of an Endpoint

Some WebSocket applications must send messages to all connected peers of the
application's WebSocket endpoint, for example:

* A stock application must send stock prices to all connected clients.

* A chat application must send messages from one user to all other clients in the same
chat room.

* An online auction application must send the latest bid to all bidders on an item.

However, each instance of an endpoint class is associated with one and only one connection
and peer. Therefore, to send a message to all peers of an endpoint, you must iterate over the
set of all open WebSocket sessions that represent connections to the same endpoint.

To send a message to all peers of an endpoint:

1. Obtain the set of all open WebSocket sessions that represent connections to the
endpoint.

Invoke the get OpenSessi ons method on the endpoint's Sessi on object for this purpose.
2. Send the message to each open session that you obtained in the previous step.
a. Use the session to obtain a Renot eEndpoi nt object.
b. Use the Renpt eEndpoi nt object to send the message.
See Sending a Message to a Single Peer of an Endpoint

Example 18-16 Sending a Message to All Peers of an Endpoint
This example forwards incoming text messages to all connected peers.

inport java.io.lOException;

i nport javax.websocket.OnMessage;
i nport javax.websocket. Sessi on;
i nport javax.websocket. server. Server Endpoi nt;

@er ver Endpoi nt ("/ echoal | ")
public static class EchoAl | Endpoint {
@nMessage
public void nessageRecei ved(Session session, String nsg) {
for (Session sess : session.getQOpenSessions()) {

try {
sess. get Basi cRenot e() . sendText (nsg) ;

} catch (I OException e) {
/1 handl e exception
}

}

Ensuring Efficiency when Sending a Message to All Peers of an Endpoint

ORACLE 18-17

http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getOpenSessions%28%29

Chapter 18
Encoding and Decoding a WebSocket Message

In a real-world application, in which many messages are being sent, you can use
multiple threads to ensure that the application sends messages efficiently.

If too many WebSocket connections are open, using one thread to broadcast
messages is inefficient, because the time it takes for a client to receive a message
depends on its location in the iteration process. If thousands of WebSocket
connections are open, then iteration is slow, causing some clients to receive
messages early and other clients to receive messages much later. This delay is
unacceptable in certain situations; for example, a stock application should ensure that
each client receives stock price data as early as possible.

To increase efficiency, the application can partition open WebSocket connections into
groups and then use multiple threads to broadcast messages to each group of
WebSocket connections.

18.7.3 Ensuring Thread Safety for WebSocket Endpoints

The Java API for WebSocket specification requires that Java EE implementations
instantiate endpoint classes once per connection. This requirement facilitates the
development of WebSocket endpoints because you are guaranteed that only one
thread is executing the code in a WebSocket endpoint class at any given time. When
you introduce a new thread in an endpoint, you must ensure that variables and
methods accessed by more than one thread are thread safe.

18.8 Encoding and Decoding a WebSocket Message

The Java API for WebSocket provides support for converting between WebSocket
messages and custom Java types by using encoders and decoders. This mechanism
simplifies WebSocket applications because it decouples the business logic from the
serialization and deserialization of objects.

An encoder takes a Java object and produces a representation that can be transmitted
as a WebSocket text message or binary message. For example, encoders typically
produce JavaScript Object Notation (JSON), Extensible Markup Language (XML), or
binary representations. A decoder performs the reverse function: it reads a WebSocket
message and creates a Java object.

Note:

If you want to send and receive multiple Java types as the same type of
WebSocket message, define the types to extend a common class. For
example, if you want to send and receive the Java types MessageA and
MessageB as text messages, define the types to extend the common class
Message.

Defining the types in this way enables you to implement a single decoder
class for multiple types.

18.8.1 Encoding a Java Object as a WebSocket Message

You can have more than one encoder for text messages and more than one encoder
for binary messages. Like endpoints, encoder instances are associated with one and

ORACLE 18-18

ORACLE

Chapter 18
Encoding and Decoding a WebSocket Message

only one WebSocket connection and peer. Therefore, only one thread is executing the code
of an encoder instance at any given time.

To encode a Java object as a WebSocket message:

1. For each custom Java type that you want to send as a WebSocket message, implement
the appropriate interface for the type of the WebSocket message:

e For a text message, implement j avax. websocket . Encoder . Text <T>.
» For a binary message, implement j avax. websocket . Encoder . Bi nar y<T>.
These interfaces specify the encode method.

2. Specify that your endpoint will use your encoder implementations.

» For an annotated endpoint, add the names of your encoder implementations to the
encoder s optional element of the Ser ver Endpoi nt annotation.

» For a programmatic endpoint, pass a list of the names of your encoder
implementations as a parameter of the encoder s method of a
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der object.

3. Use the sendbj ect (Obj ect dat a) method of the Renot eEndpoi nt . Basi ¢ or
Renot eEndpoi nt . Async interfaces to send your objects as messages.

The container looks for an encoder that matches your type and uses it to covert the
object to a WebSocket message.

The following examples show how to send the Java types
com exanpl e. gane. message. MessageA and com exanpl e. garme. nessage. MessageB as text
messages:

* Example 18-17
* Example 18-18
* Example 18-19

Example 18-17 Implementing an Encoder Interface
This example implements the Encoder . Text <MessageA> interface.

package com exanpl e. game. encoder ;

i nport javax.websocket . EncodeExcepti on;
i nport javax.websocket . Encoder;
i nport javax.websocket . Endpoi nt Confi g;

i nport com exanpl e. gane. nessage. MessageA,

public class MessageAText Encoder inplements Encoder. Text <MessageA> {
@verride
public void init(EndpointConfig ec) { }
@verride
public void destroy() { }
@verride
public String encode(MessageA msgA) throws EncodeException {
/'l Access msgA' s properties and convert to JSON text...
return msgAJsonString;

18-19

http://docs.oracle.com/javaee/7/api/javax/websocket/Encoder.Text.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Encoder.Binary.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Builder.html#encoders%28java.util.List%29

Chapter 18
Encoding and Decoding a WebSocket Message

The implementation of Encoder . Text <MessageB> is similar.
Example 18-18 Defining Encoders for an Annotated WebSocket Endpoint

This example defines the encoder classes MessageAText Encoder . ¢l ass and
MessageBText Encoder . cl ass for the WebSocket server endpoint EncEndpoi nt .

package com exanpl e. gane;
i nport javax.websocket . server. Server Endpoi nt;

i mport com exanpl e. gane. encoder . MessageAText Encoder ;
i mport com exanpl e. gane. encoder . MessageBText Encoder ;

@er ver Endpoi nt (
value = "/nmyendpoint",
encoders = { MessageAText Encoder. cl ass, MessageBText Encoder. cl ass }

)
public class EncEndpoint { ... }

Example 18-19 Sending Java Objects Encoded as WebSocket Messages

This example uses the sendObj ect method to send MessageA and MessageB objects as
WebSocket messages.

i nport j avax.websocket . Sessi on;

i nport com exanpl e. gane. nessage. MessageA;
i nport com exanpl e. gane. nessage. MessageB;

MessageA msgA = new MessageA(...);
MessageB msgB = new MessageB(...);
session. get Basi cRenot e. sendObj ect
session. get Basi cRenot e. sendObj ect

nsgA) ;
nsgB) ;

18.8.2 Decoding a WebSocket Message as a Java Object

ORACLE

Unlike encoders, you can have at most one decoder for binary messages and one
decoder for text messages. Like endpoints, decoder instances are associated with one
and only one WebSocket connection and peer, so only one thread is executing the
code of a decoder instance at any given time.

To decode a WebSocket message as a Java object:

1. Implement the appropriate interface for the type of the WebSocket message:
e For a text message, implement j avax. websocket . Decoder . Text <T>.
* For a binary message, implement j avax. websocket . Decoder . Bi nar y<T>.
These interfaces specify the wi | | Decode and decode methods.

2. Specify that your endpoint will use your decoder implementations.

» For an annotated endpoint, add the names of your decoder implementations
to the decoder s optional element of the Ser ver Endpoi nt annotation.

18-20

http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.Text.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Decoder.Binary.html

ORACLE

Chapter 18
Encoding and Decoding a WebSocket Message

» For a programmatic endpoint, pass a list of the names of your decoder
implementations as a parameter of the decoder s method of a
j avax. websocket . server. Server Endpoi nt Confi g. Bui | der object.

3. Ensure that the method in your endpoint for handling a message received event takes
your custom Java type as a parameter.

See Handling Life Cycle Events for a WebSocket Connection.

When the endpoint receives a message that can be decoded by one of the decoders you
specified, the container calls the method that takes your custom Java type as a
parameter if this method exists.

The following examples show how to decode WebSocket text messages as the Java types
com exanpl e. gane. message. MessageA and com exanpl e. game. message. MessageB:

» Example 18-20
* Example 18-21
* Example 18-22

These examples assume that the Java types com exanpl e. gane. message. MessageA and
com exanpl e. gane. message. MessageB extend the com exanpl e. ganme. nessage. Message
class.

Example 18-20 Implementing a Decoder Interface
This example implements the Decoder . Text <Message> interface.

Because only one decoder for text messages is allowed for an endpoint, the implementation
is a decoder for the Message superclass. This decoder is used for decoding the subclasses of
Message.

package com exanpl e. gane. decoder;

i nport javax.websocket . DecodeExcepti on;
i nport javax.websocket . Decoder;
i nport j avax. websocket . Endpoi nt Confi g;

i nport com exanpl e. gane. message. Message;

i mport com exanpl e. gane. message. MessageA,
i mport com exanpl e. gane. message. MessageB;

public class MessageText Decoder inplenents Decoder. Text <Message> {

@verride

public void init(EndpointConfig ec) { }
@verride

public void destroy() { }

@verride

public Message decode(String string) throws DecodeException {
/1 Read message. ..
if (/* message is an A nmessage */)
return new MessageA(...);
else if (/* message is a B nessage */)
return new MessageB(...);
}

@verride

public bool ean willDecode(String string) {
/1 Determine if the message can be converted into either a
/1 MessageA object or a MessageB object. ..
return canDecode;

18-21

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Builder.html#decoders%28java.util.List%29

Chapter 18
Specifying a Part of an Endpoint Deployment URI as an Application Parameter

}
}

Example 18-21 Defining a Decoder for an Annotated WebSocket Endpoint

This example defines the decoder class MessageText Decoder . ¢l ass for the
WebSocket server endpoint EncEndpoi nt .

For completeness, this example also includes the definitions of the encoder classes
MessageAText Encoder. cl ass and MessageBText Encoder . cl ass from Example 18-18.

package com exanpl e. gane;
i nport javax.websocket . server. Server Endpoi nt;

i mport com exanpl e. gane. encoder . MessageAText Encoder ;
i mport com exanpl e. gane. encoder . MessageBText Encoder ;
i mport com exanpl e. gane. decoder . MessageText Decoder ;

@ber ver Endpoi nt (
value = "/myendpoint",
encoders = { MessageAText Encoder. cl ass, MessageBText Encoder. cl ass },
decoders = { MessageText Decoder. cl ass }

public class EncEndpoint { ... }

Example 18-22 Receiving WebSocket Messages Encoded as Java Objects

This example defines the method message that receives MessageA objects and
MessageB objects.

i nport javax.websocket.OnMessage;
i nport javax.websocket . Sessi on;

i nport com exanpl e. gane. nessage. Message;
i nport com exanpl e. gane. nessage. MessageA,
i nport com exanpl e. gane. nessage. MessageB;

@nMessage
public void message(Session session, Message nsg) {
if (msg instanceof MessageA) {
/1 W received a MessageA object. ..
else if (msg instanceof MessageB) {
/1 W received a MessageB object. ..
}
}

18.9 Specifying a Part of an Endpoint Deployment URI as
an Application Parameter

ORACLE

The Ser ver Endpoi nt annotation enables you to use a level 1 URI template to specify
parts of an endpoint deployment URI as application parameters. A URI template
describes a range of URIs through variable expansion.

For more information about URI templates, see http://tool s.ietf.org/htm/
rfc6570.

To specify a part of an endpoint deployment URI as an application parameter:

18-22

http://tools.ietf.org/html/rfc6570
http://tools.ietf.org/html/rfc6570

Chapter 18
Specifying a Part of an Endpoint Deployment URI as an Application Parameter

1. Setthe val ue element of the Ser ver Endpoi nt annotation to the URI template that you
want to use.

In the URI template, enclose each variable for expansion in a pair of braces.

2. Declare each variable for expansion as a parameter in a method for handling one of the
following types of event:

e Connection opened

» Connection closed

e Message received

The type of the parameter can be St ri ng, a primitive type, or a boxed version of them.

3. Annotate the declaration of the parameter with the j avax. websocket . server. Pat hPar am
annotation.

4, Set the value element of the Pat hPar amannotation to the name of the variable.

5. In the body of the method that takes the parameter, provide logic for expanding the
variable.

Example 18-23 shows how to specify a part of an endpoint deployment URI as an application
parameter.

Example 18-23 Specifying a Part of an Endpoint Deployment URI as an Application
Parameter

This example specifies an endpoint deployment URI as a URI template that contains the
variable {r oom name}. The variable is expanded through the r oonNane parameter of the open
method to determine which chat room the user wants to join.

i nport javax.websocket. Endpoi nt Confi g;

i nport j avax.websocket . OnQpen;

i nport javax.websocket . Sessi on;

i nport j avax.websocket . server. Pat hPar am

i nport j avax.websocket . server. Server Endpoi nt;

@er ver Endpoi nt ("/ chat roons/ {room name}")
public class ChatEndpoint {
@nQpen
public void open(Session session,
Endpoi nt Config c,
@at hParan{"room nane") String roomNane) {
/1 Add the client to the chat roomof their choice ...

Code in the body of the open method to expand the {r oom nanme} variable is not shown in this
example.

If the endpoint is deployed inside a web application called chat app at a local Java EE server
in port 8080, clients can connect to the endpoint using any of the following URIs:

http://1ocal host: 8080/ chat app/ chat r oons/ cur r ent news
http://1ocal host: 8080/ chat app/ chat r oons/ nusi ¢
http://1ocal host: 8080/ chat app/ chat r oons/ cars
http://1ocal host: 8080/ chat app/ chat r oons/ t echnol ogy

ORACLE 18-23

http://docs.oracle.com/javaee/7/api/javax/websocket/server/PathParam.html

Chapter 18
Maintaining Client State

18.10 Maintaining Client State

Because the container creates an instance of the endpoint class for every connection,
you can define and use instance variables to store client state information.

In addition, the Sessi on. get User Properti es method provides a modifiable map to
store user properties.

To store information common to all connected clients, you can use class (static)
variables; however, you are responsible for ensuring thread-safe access to them.

Example 18-24 shows how to maintain client state.
Example 18-24 Maintaining Client State

This example replies to incoming text messages with the contents of the previous
message from each client.

import java.io.lOException;

i nport javax.websocket.OnMessage;

i nport javax.websocket . OnOpen;

i nport javax.websocket . Sessi on;

i nport javax.websocket . server. Server Endpoi nt;

@ber ver Endpoi nt ("/ del ayedecho")
public class Del ayedEchoEndpoi nt {

@nQOpen
public void open(Session session) {
session. get User Properties().put("previousMg", " ");
}
@nMessage

public void message(Session session, String nmsg) {
String prev = (String) session.getUserProperties()
.get ("previ ousMsg");
session. get User Properties().put("previousMsg", nsg);

try {
sessi on. get Basi cRenot e() . sendText (prev);
} catch (I Cexceptione) { ... }

18.11 Configuring a Server Endpoint Programmatically

ORACLE

The Java API for WebSocket enables you to configure how the container creates
server endpoint instances.

You can provide custom endpoint configuration logic for:

* Accessing the details of the handshake request for a WebSocket connection
e Performing custom checks on the Ori gi n HTTP header

e Modifying the WebSocket handshake response

e Choosing a WebSocket subprotocol from those requested by the client

e Controlling the instantiation and initialization of endpoint instances

e Specifying the extensions that a server endpoint will support

18-24

ORACLE

Chapter 18
Configuring a Server Endpoint Programmatically

To configure a server endpoint programmatically:

1. Extend the javax. websocket. server. Server Endpoi nt Confi g. Confi gurat or class.

2. Override the methods that perform the configuration operations for which you require
custom logic, as shown in the following table.

Configuration Operation Method to Override

Accessing the details of the handshake request nodi f yHandshake
for a WebSocket connection

Performing custom checks on the Ori gi n HTTP checkOrigin
header

Modifying the WebSocket handshake response nodi f yHandshake

Choosing a WebSocket subprotocol from those get Negot i at edSubpr ot ocol
requested by the client

Controlling the instantiation and initialization of ~ get Endpoi nt | nst ance
endpoint instances

Specifying the extensions that a server endpoint get Negot i at edExt ensi ons
will support

3. Inthe server endpoint class, set the confi gur at or element of the Ser ver Endpoi nt
annotation to the configurator class.

The following examples show how to configure a server endpoint programmatically:
e Example 18-25

e Example 18-26

Example 18-25 Extending the ServerEndpointConfig.Configurator Class

This example extends the Ser ver Endpoi nt Conf i g. Confi gurat or class to make the
handshake request object available to endpoint instances.

i nport javax.websocket.HandshakeResponse;
i nport javax.websocket. server. ServerEndpoi nt Confi g. Confi gurator;
inport javax.websocket. server. HandshakeRequest ;

public class CustonConfigurator extends ServerEndpoi nt Config. Configurator {

@verride

public void nodi f yHandshake(Server Endpoi nt Confi g conf,
HandshakeRequest req,
HandshakeResponse resp) {

conf. get User Properties(). put ("handshakereq", req);

Example 18-26 Specifying a Custom Configurator for a Server Endpoint Class

This example specifies the custom configurator class Cust onConf i gur at or . cl ass for the
server endpoint class MyEndpoi nt .

The custom configurator enables instances of the server endpoint class to access the
handshake request object. The server endpoint class uses the handshake request object to
access the details of the handshake request, such as its headers or the Ht t pSessi on object.

18-25

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance%28java.lang.Class%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#modifyHandshake%28javax.websocket.server.ServerEndpointConfig,%20javax.websocket.server.HandshakeRequest,%20javax.websocket.HandshakeResponse%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#checkOrigin%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#modifyHandshake%28javax.websocket.server.ServerEndpointConfig,%20javax.websocket.server.HandshakeRequest,%20javax.websocket.HandshakeResponse%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#getNegotiatedSubprotocol%28java.util.List,%20java.util.List%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance%28java.lang.Class%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#getNegotiatedExtensions%28java.util.List,%20java.util.List%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpoint.html#configurator%28%29
http://docs.oracle.com/javaee/7/api/javax/servlet/http/HttpSession.html

Chapter 18
Building Applications that Use the Java API for WebSocket

i nport javax.websocket. Endpoi nt Confi g;

i nport javax.websocket. HandshakeResponse;

i nport j avax.websocket . OnQpen;

i nport j avax.websocket . Sessi on;

i nport javax.websocket. server. HandshakeRequest ;
i nport javax.websocket. server. Server Endpoi nt;
inport java.util.List;

i mport java.util.Map;

@er ver Endpoi nt (
val ue = "/ nyendpoint",
configurator = CustonConfigurator.class

)
public class MyEndpoint {

@n0Open
public void open(Session s, EndpointConfig conf) {
HandshakeRequest req = (HandshakeRequest) conf.get UserProperties()
. get ("handshakereq");
Map<String, Li st<String>> headers = req. get Headers();

18.12 Building Applications that Use the Java API for
WebSocket

The Java API for WebSocket is located within the wl server/server/li b/ api.jar file.
To build applications that use the Java API for WebSocket, define this library in the
classpath when compiling the application.

You can also use Maven to build applications that use the Java API for WebSocket. If
you are using Maven, obtain the Maven artifact that contains the Java API for
WebSocket from maven central as j avax. websocket . j avax. websocket - api : 1. 0. For
more information, see Using the WebLogic Maven Plug-In.

18.13 Deploying a WebSocket Application

In WebLogic Server, you deploy a WebSocket application as part of a standard Java
EE Web application archive (WAR), either as a standalone Web application or a WAR
module within an enterprise application.

You do not need to configure the WebSocket endpoint in the web. xmi file, or any other
deployment descriptor, or perform any type of dynamic operation to register or enable
the WebSocket endpoint.

However, you can optionally set the context initialization properties the are listed in
Table 18-3. To indicate that these properties are specific to WebLogic Server and not
part of the JSR 356 specification, their fully qualified names contain the prefix

webl ogi c. websocket .

ORACLE 18-26

Chapter 18
Deploying a WebSocket Application

Table 18-3 Context Initialization Properties for a WebSocket Application

- __|
Property Type Description

webl ogi c. websocket . tyrus.in I ntege The maximum underlying buffer size in bytes for
coni ng-buf fer-si ze r receiving messages. The application cannot process
messages that are larger than this size.

This parameter affects the following server sessions and
client sessions:

e All server sessions in the same application

* Only client sessions that are connected with the
server-instantiated
j avax. websocket . server. Server Cont ai ner
object in the application

You can override this setting for clients sessions by
setting a property of the same name for a client
endpoint. For more information, see Configuring a
WebSocket Client Endpoint Programmatically.
The default buffer size is 4194315, of which 4 Mbytes are
for the payload and 11 bytes are for the frame overhead.

webl ogi c. websocket . tyrus. se | ntege The maximum period in milliseconds after which an idle
ssi on-max-idl e-ti meout r connection times out. The default value is 30000, which
corresponds to 30 seconds.

webl ogi c. websocket . tyrus. cl String WebSocket cluster uses Coherence as part of its

ust er implementation to establish communication among all
the members in the cluster. WebSocket clustering
enables horizontal scaling, allows you to send messages
to all members of the cluster, increases the maximum
number of connected clients, and decreases broadcast
execution time. Clustering is disabled by default.

To enable clustering set the value to true.

Example 18-27 shows how to set context initialization properties for a WebSocket application.
Example 18-27 Setting Context Initialization Properties for a WebSocket Application
This example sets context initialization parameters for a WebSocket application as follows:

» The maximum underlying buffer size for receiving messages is set to 16777227 bytes.

* The maximum period after which an idle connection times out is set to 60,000
milliseconds, which corresponds to 1 minute.

» Enable WebSocket cluster using managed Coherence server to establish communication
among all members.

" Note:

Clustering requires a managed Coherence server with local storage enabled.
See, Configure Coherence Cluster Member Storage Settings in Administering
Clusters for Oracle WebLogic Server.

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="3.0" ...>

ORACLE 18-27

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerContainer.html

Chapter 18
Monitoring WebSocket Applications

<cont ext - par anp
<par am name>webl ogi ¢. websocket . t yrus. i ncom ng- buf f er - si ze</ par am nane>
<param val ue>16777227</ par am val ue>

</ cont ext - par an»

<cont ext - par anp
<par am name>webl ogi ¢. websocket . t yrus. sessi on- max-idl e-ti meout </ par am nane>
<par am val ue>60000</ par am val ue>

</ cont ext - par an»

<cont ext - par anp
<par am name>webl ogi ¢. websocket . tyrus. cl uster </param nane>
<par am val ue>t r ue</ param val ue>

</ cont ext - par an»

</ web- app>

18.14 Monitoring WebSocket Applications

You can monitor message statistics and runtime properties for WebSocket applications
and endpoints. Endpoint-level monitoring collects information per individual endpoint,
while application-level monitoring aggregates information from all endpoints deploying
in the given application.

WebSocket Monitoring Properties

The following table details the types of properties monitored at runtime and whether
monitoring occurs at the application or endpoint level. For message-related properties,
WebLogic Server uses bytes for message size and distinguishes three types of
messages: text, binary, and control.

Property Description Monitoring Level

Open session count The number of current open application, endpoint
sessions for the WebSocket
application or endpoint.

Maximum open sessions The highest number of open application, endpoint
count sessions for the WebSocket

application or endpoint since

server startup.

Error counts The list of errors with the application, endpoint
number of times each error
has occurred. Errors are
represented by throwable
class names.

Sent messages count The number of sent messages application, endpoint
for the WebSocket application
or endpoint since monitoring
began.
Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

ORACLE 18-28

ORACLE

Chapter 18
Monitoring WebSocket Applications

Property

Description Monitoring Level

Received messages count

Sent messages count per

second

Received messages count per

second

Minimum sent message size

Minimum received message
size

Maximum sent message size

The number of received
messages for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

application, endpoint

The number of sent messages application, endpoint
per second for the WebSocket

application or endpoint since

monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

The number of received
messages per second for the
WebSocket application or
endpoint since monitoring
began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

application, endpoint

The smallest sent message
size for the WebSocket
application or endpoint since
monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

application, endpoint

The smallest received
message size for the
WebSocket application or
endpoint since monitoring
began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

application, endpoint

The largest sent message size application, endpoint
for the WebSocket application

or endpoint since monitoring

began.

Statistics are provided per

individual message type (text,

binary, and control) and as a

total count.

18-29

Chapter 18
Monitoring WebSocket Applications

Property Description Monitoring Level

Maximum received message The largest received message application, endpoint
size size for the WebSocket

application or endpoint since

monitoring began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

Average sent message size The average sent message application, endpoint
size for the WebSocket
application or endpoint since
monitoring began.
Statistics are provided per
individual message type (text,
binary, and control) and as a

total count.
Average received message The average received application, endpoint
size message size for the

WebSocket application or
endpoint since monitoring
began.

Statistics are provided per
individual message type (text,
binary, and control) and as a
total count.

Endpoint path The path on which the endpoint only
endpoint is registered, relative
to the application context root.

Endpoint class name The name of the endpoint endpoint only
class.

To access monitored metrics for WebSocket applications and endpoints at runtime,
use the following MBeans:

* \VébAppConponent Runt i meMBean

e \ébsocket Appl i cati onRunti neMBean
* \ebsocket BaseRunt i meMBean

* \ebsocket Endpoi nt Runt i meMBean

e \Websocket MessageSt ati sticsRunti neMBean

To use the Administration Console or Fusion Middleware Control to monitor
WebSocket applications and endpoints, see the following online help topics:

e Monitoring WebSocket applications in Oracle WebLogic Server Administration
Console Online Help

e Monitor a WebSocket application in Administering Oracle WebLogic Server with
Fusion Middleware Control

ORACLE 18-30

Chapter 18
Using WebSockets with Proxy Servers

18.15 Using WebSockets with Proxy Servers

Clients accessing WebSocket applications must either connect directly to the WebLogic
Server instance or through a Web proxy server that supports the WebSocket protocol.

The following proxy servers support the WebSocket protocol:

« Oracle Traffic Director

* Oracle HTTP Server

e Apache HTTP Server when used with the Oracle WebLogic Server Proxy Plug-In

For information about the specific versions of Apache HTTP Server supported for use with
the Oracle WebLogic Server Proxy Plug-In, see the Oracle Fusion Middleware Supported
System Configurations page on the Oracle Technology Network.

18.16 Writing a WebSocket Client

A WebSocket client application is typically a browser-based client. The Java API for
WebSocket can also be used to write a Java WebSocket client.

18.16.1 Writing a Browser-Based WebSocket Client

ORACLE

A browser-based WebSocket client application is typically a composite of HTML5
technologies, including HTML markup, CSS3, and JavaScript that makes use of the
WebSocket JavaScript API. For more information about HTML5, see ht t p: // www. w3. or g/ TR/
htm 5/.

Most browsers support the W3C WebSocket API that can be used to create and work with
the WebSocket protocol. For information about the W3C WebSocket API, see: http://
www. W3. or g/ TR/ websocket s/ .

If the WebSocket protocol is not guaranteed to be supported in the runtime environment, use
the JavaScript API for WebSocket fallback in your browser-based client. This API provides an
implementation of the standard W3C WebSocket API. The API also provides a mechanism
for using an alternative transport for WebSocket messaging when the WebSocket protocol is
not supported. For more information, see Enabling Protocol Fallback for WebSocket
Messaging.

The following steps show an example of the execution flow on a client that is sending
messages to a WebLogic Server instance using the WebSockets Protocol.

1. The client opens a WebSocket connection to the server hosting the WebSocket endpoint,
using the ws: // orwss:// protocol prefix. For more information, see Establishing Secure
WebSocket Connections.

var url = ((wi ndow. | ocation.protocol == "https:") ? "wss:" : "ws:")
+ "//" + window. | ocation. host
+ "/ websocket - hel | owor | d-w s/ hel | owor | d_del ay. ws";

var ws = new WebSocket (url);

2. The client registers listeners with the WebSocket object to respond to events, such as
opening, closing, and receiving messages. Based on the event and the information
received, the client performs the appropriate action.

18-31

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/websockets/

Chapter 18
Writing a WebSocket Client

ws. onopen = function(event) {
docunent. get El ement Byl d("status").inner HTM. = " OPEN'
}

ws. onnessage = function(event) {
meg = event.data
docunent . get El ement Byl d("short_nsg").innerHTM. =
event. dat a;

}

The client sends messages to the server over the WebSocket object as needed by
the application.

function sendMsg() {
/1 Check if connection is open before sending
if(ws == null || ws.readyState != 1) {
docunent . get El ement Byl d("reason") . i nner HTM.
= "Not connected can't send nsg"
} else {
ws. send(docunent . get El ement Byl d("nane") . val ue);
}

}

<input id="send_button" class="button" type="button" val ue="send"
onclick="sendMsg()"/>

18.16.2 Writing a Java WebSocket Client

The j avax. websocket package contains annotations, classes, interfaces, and
exceptions that are common to client and server endpoints. Use the APIs in this
package for writing a Java WebSocket client in the same way as for writing a server.
Additional programming tasks that are specific to writing a client are described in the
subsections that follow.

18.16.2.1 Configuring a WebSocket Client Endpoint Programmatically

ORACLE

WebLogic Server provides properties for configuring how the container creates client
endpoint instances. To indicate that these properties are specific to WebLogic Server
and not part of the JSR 356 specification, their fully qualified names contain the prefix
webl ogi c. websocket .

WebLogic Server provides properties for the following:

HTTP proxy configuration. WebLogic Server supports client connections to a
remote server WebSocket endpoint through an HTTP proxy as defined in the
WebSocket Protocol (RFC 6455).

Properties for HTTP proxy configuration are listed in Table 18-4.

Secure Sockets Layer (SSL) configuration. WebLogic Server supports client
connections to a remote server WebSocket endpoint over SSL with wss scheme.

Properties for SSL configuration are listed in Table 18-5.

Buffer size for incoming messages. WebLogic Server supports limiting the size
of incoming messages for WebSocket client endpoints.

Properties for buffer size configuration are described in Table 18-6.

18-32

ORACLE

Chapter 18
Writing a WebSocket Client

Table 18-4 HTTP Proxy Configuration Properties for a Java WebSocket Client
]

Property Type Description

webl ogi c. websocket.cli String The name of the HTTP proxy host. If you are configuring

ent . PROXY_HOST proxy settings for a JavaScript client, you must specify this
property.

webl ogi c. websocket.cli Integer Optional. The port number for connections to the HTTP

ent . PROXY_PORT proxy host. If you specify an HTTP proxy host without the

port number, the port number defaults to 80.

webl ogi c. websocket.cli String Optional. The user name for logging in to the proxy host.
ent . PROXY_USERNAME

webl ogi c. websocket.cli String Optional. The user name for logging in to the proxy host.
ent . PROXY_PASSWORD

Table 18-5 SSL Configuration Properties for a Java WebSocket Client
]

Property Type Description

webl ogi c. websocket.clien String Optional. A comma-separated list of supported versions of
t. SSL_PROTOCOLS the SSL protocol.

webl ogi c. websocket.clien String Optional. The path to the keystore file, which contains the
t. SSL_TRUSTSTORE security certificates for use in SSL encryption.

webl ogi c. websocket.clien String Optional. The password for the keystore.
t. SSL_TRUSTSTORE PWD

Table 18-6 Buffer-Size Configuration Properties for a Java WebSocket Client

. __|
Property Type Description

webl ogi c. websocket . tyrus |ntege The maximum underlying buffer size in bytes for receiving
.incom ng-buffer-size r messages. The client cannot process messages that are
larger than this size.

If set, this property overrides the value of the context
initialization property of the same name that is described in
Table 18-3.

The default buffer size is 4194315, of which 4 Mbytes are for
the payload and 11 bytes are for the frame overhead.

" Note:

Configure a client endpoint before connecting the client to its server endpoint.

To configure a WebSocket client endpoint programmatically:

1. Obtain aj avax. websocket. d i ent Endpoi nt Confi g object.

a. Invoke the j avax. websocket . C i ent Endpoi nt Confi g. Bui | der. creat e static method
to obtain an instance of the O i ent Endpoi nt Confi g. Bui | der class.

18-33

http://docs.oracle.com/javaee/7/api/javax/websocket/ClientEndpointConfig.html
http://docs.oracle.com/javaee/7/api/javax/websocket/ClientEndpointConfig.Builder.html#create%28%29

2.

Chapter 18
Writing a WebSocket Client

b. Invoke the bui | d method on the O i ent Endpoi nt Confi g. Bui | der object that
you obtained in the previous step.

Set each configuration property that you want to change to its new value.

a. Invoke the get User Properti es method on the C i ent Endpoi nt Confi g object
that you obtained in the previous step to obtain a modifiable j ava. util . Map
object that contains the user properties.

b. Invoke the put method on the Map object that you obtained in the previous
step.

In the invocation of the put method, provide the property name and its new
value as parameters to the method.

Example 18-28 shows how to configure a WebSocket client endpoint
programmatically.

Example 18-28 Configuring a WebSocket Client Endpoint Programmatically

This example programmatically configures a WebSocket client endpoint as follows:

The name of the HTTP proxy host is set to pr oxy. exanpl e. com

The port number for connections to the HTTP proxy host is set to 80.
The path to the keystore file is set to / export/ keyst ore.

The password for the keystore is set to changei t .

The maximum underlying buffer size for receiving messages is set to 16777227
bytes, that is 16 Mbytes for the payload and 11 bytes for the frame overhead.

i nport j avax.websocket. O i ent Endpoi nt Confi g;

Qi ent Endpoi nt Confi g cec = CientEndpoint Config.Builder.create().build();

/1 configure the proxy host

cec. get User Properties().put ("webl ogi c. websocket. cl i ent. PROXY_HOST",
"proxy. exanpl e. con');

/1 configure the proxy port

cec. get User Properties().put("webl ogi c. websocket. cl i ent. PROXY_PORT", 80);

/1 configure the trust keystore path

cec. get User Properties(). put("webl ogi c. websocket . client.SSL_TRUSTSTORE",
"/ export/keystore");

/1 configure the trust keystore's password

cec. get User Properties(). put("webl ogi c. websocket . client.SSL_TRUSTSTORE_PWD',
"changeit");

/1 for receiving 16 Myte payl oad

cec. get User Properties().put ("webl ogi c. websocket . tyrus.incom ng- buffer-size",
16 * 1024 * 1024 + 11);

18.16.2.2 Connecting a Java WebSocket Client to a Server Endpoint

ORACLE

To connect a Java WebSocket client to a server endpoint:

1.

Invoke the j avax. websocket . Cont ai ner Provi der . get WebSocket Cont ai ner ()
static method to obtain the client's j avax. websocket . WebSocket Cont ai ner
instance.

Invoke the overloaded connect ToSer ver method on the WebSocket Cont ai ner
object that you obtained in the previous step.

18-34

http://docs.oracle.com/javaee/7/api/javax/websocket/ClientEndpointConfig.Builder.html#build%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/EndpointConfig.html#getUserProperties%28%29
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#put%28K,%20V%29
http://docs.oracle.com/javaee/7/api/javax/websocket/ContainerProvider.html#getWebSocketContainer%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html

Chapter 18
Writing a WebSocket Client

The variant of the method to invoke depends on whether the endpoint is an annotated
endpoint or a programmatic endpoint and whether support for Java EE services such as
dependency injection are required.

Endpoint Type Support for Java Variant of the connectToServer Method
EE Services

Annotated Not required connectToServer(Gbj ect annot at edEndpoi nt | nst ance,
URI pat h)

Annotated Required connectToServer(G ass<?> annot at edEndpoi nt d ass,
URI pat h)

Programmatic Not required connectToServer(Endpoi nt endpoi nt | nst ance,
C i ent Endpoi nt Confi g cec,
URl pat h)

Programmatic Required connectToServer(G ass<? extends Endpoi nt>

endpoi nt d ass,
C i ent Endpoi nt Confi g cec,
URI pat h)

In the invocation of the connect ToSer ver method, provide the following information as
parameters to the method:

* The client WebSocket endpoint
* The complete path to the server WebSocket endpoint

If the client endpoint is a programmatic endpoint, you must also provide configuration
information for the endpoint.

Example 18-4 shows how to connect a Java WebSocket client to a server endpoint.
Example 18-29 Connecting a Java WebSocket Client to a Server Endpoint

This example connects the Java WebSocket client O i ent Exanpl e to the WebSocket server
endpoint at ws: / / exanpl e. com 80/ echoser ver/ echo. The WebSocket client endpoint is
represented by the class Exanpl eEndpoi nt . The declaration of the Exanpl eEndpoi nt class is
shown in Example 18-4.

import java.io.lOException;
inport java.net.URl;

i nport j avax.websocket . C oseReason;

i nport j avax.websocket . Cont ai ner Provi der;
i nport j avax.websocket . Sessi on;

i mport j avax.websocket . \WebSocket Cont ai ner;

public class CientExample {
public static void main(String[] args) throws Exception {
\WWebSocket Cont ai ner cont ai ner = Cont ai ner Provi der. get WebSocket Cont ai ner () ;

Session session = container. connect ToSer ver (Exanpl eEndpoi nt. cl ass,
new URI ("ws://exanpl e. com 80/ echoserver/echo"));

ORACLE 18-35

http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#connectToServer%28java.lang.Object,%20java.net.URI%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#connectToServer%28java.lang.Class,%20java.net.URI%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#connectToServer%28javax.websocket.Endpoint,%20javax.websocket.ClientEndpointConfig,%20java.net.URI%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#connectToServer%28java.lang.Class,%20javax.websocket.ClientEndpointConfig,%20java.net.URI%29

Chapter 18
Securing a WebSocket Application

session. cl ose();

}

18.16.2.3 Setting the Maximum Number of Threads for Dispatching Messages
from a WebSocket Client

By default, the maximum number of threads for dispatching messages from a
WebSocket client depends on how many processors are available:

* If 20 or fewer processors are available, the maximum number of threads is 20.

* If more than 20 processors are available, the maximum number of threads is equal
to the number of available processors.

To set the maximum number of threads for dispatching messages from a WebSocket

client:

® Inthej ava command to launch your client application, set the system property
webl ogi c. websocket . cl i ent. max- ai o-t hr eads to the number that you require.

Example 18-30 shows how to set the maximum number of threads for dispatching
messages from a WebSocket client.

Example 18-30 Setting the Maximum Number of Threads for Dispatching
Messages from a WebSocket Client

This example sets the maximum number of threads for dispatching messages from the
WebSocket client C i ent Exanpl e to 50.

java -Dwebl ogi c. websocket . cli ent. nax-ai o-threads=50 Cient Exanpl e

18.17 Securing a WebSocket Application

In WebLogic Server, you deploy a WebSocket application as a Web application
archive (WAR), either as a standalone Web application or a WAR module within an
enterprise application. Therefore, many security practices that you apply to securing
Web applications can apply to WebSocket applications.

For information about Web application security, see Developing Secure Web
Applications in Developing Applications with the WebLogic Security Service.

The following sections describe security considerations for WebSocket applications in
WebLogic Server:

* Applying Verified-Origin Policies
* Authenticating and Authorizing WebSocket Clients
» Establishing Secure WebSocket Connections

* Avoiding Mixed Content

18.17.1 Applying Verified-Origin Policies

ORACLE

Modern browsers use same-origin policies to prevent scripts that are running on Web
pages loaded from one origin from interacting with resources from a different origin.
The WebSocket Protocol (RFC 6455) uses a verified-origin policy that enables the
server to decide whether or not to consent to a cross-origin connection.

18-36

Chapter 18
Securing a WebSocket Application

When a script sends an opening handshake request to a WebSocket application, an Ori gi n
HTTP header is sent with the WebSocket handshake request. If the application does not
verify the Ori gi n, then it accepts connections from any origin. If the application is configured
not to accept connections from origins other than the expected origin, then the WebSocket
application can reject the connection.

You can ensure that the WebSocket application verifies the Ori gi n by extending the
j avax. websocket . server. Server Endpoi nt Conf i g. Confi gurat or class.

The following code example demonstrates applying a verified-origin policy:

i nport javax.websocket . server. Server Endpoi nt Confi g;
public class MyConfigurator extends ServerEndpoint Config. Configurator {
private static final String ORIRGN = "http://ww. exanpl e. com 7001";

@verride

publi ¢ bool ean checkOrigin(String origi nHeader Val ue) {
return ORI A N. equal s(ori gi nHeader Val ue)

1

For more information, see Configuring a Server Endpoint Programmatically.

" Note:

Nonbrowser clients (for example, Java clients) are not required to send an Ori gi n
HTTP header with the WebSocket handshake request. If a WebSocket handshake
request does not include an Ori gi n header, then the request is from a nonbrowser
client; if a handshake request includes an Ori gi n header, then the request may be
from either a browser or a nonbrowser client.

Because nonbrowser clients can send arbitrary Ori gi n headers, the browser origin
security model is not recommended for nonbrowser clients.

18.17.2 Authenticating and Authorizing WebSocket Clients

ORACLE

The WebSocket Protocol (RFC 6455) does not specify an authentication method for
WebSocket clients during the handshake process. You can use standard Web container
authentication and authorization functionality to prevent unauthorized clients from opening
WebSocket connections on the server.

All configurations of the <aut h- net hod> element that are supported for Web applications can
also be used for WebSocket applications. These authentication types include BASIC, FORM,
CLIENT-CERT, and so on. See Developing Secure Web Applications in Developing
Applications with the WebLogic Security Service.

You can secure the path to the endpoint within your application by configuring the relevant
<security-constraint> elementin the web. xm deployment descriptor file of the WebSocket
application. By configuring <securi t y- constrai nt >, clients must authenticate themselves
before sending WebSocket handshake requests. Otherwise, the server rejects the
WebSocket handshake request. For more information about the <securi ty-constrai nt >

18-37

http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#getEndpointInstance%28java.lang.Class%29

Chapter 18
Securing a WebSocket Application

element, see web.xml Deployment Descriptor Elements in Developing Web
Applications, Servlets, and JSPs for Oracle WebLogic Server.

The following code example demonstrates securing the path to the endpoint within
your application, where the path is / deno:

<security-constraint>
<web- r esour ce-col | ecti on>
<web- r esour ce- name>Secur ed \WebSocket Endpoi nt </ web-r esour ce- nanme>
<url - pattern>/demo</url -pattern>
<ht t p- met hod>GET</ ht t p- net hod>
</ web-resource-col | ection>
<aut h- constrai nt >
<rol e- name>user </ r ol e- name>
</ aut h-constraint>
</security-constraint>
<l ogi n-confi g>
<aut h- net hod>FORMK/ aut h- met hod>
<form | ogi n-confi g>
<form| ogi n-page>/| ogi n. j sp</forml ogi n- page>
<formerror-page>/error.jsp</formerror-page>
</formlogin-config>
</l ogi n-confi g>
<security-rol e>
<rol e- nane>user </ r ol e- nane>
</security-rol e>

18.17.2.1 Authorizing WebSocket Clients

You can configure a WebSocket application to implement BASIC and DIGEST
authentication methods and authorize certain clients by manipulating handshake
message headers through the

j avax. websocket . C i ent Endpoi nt Confi g. Conf i gurat or class. If the application does
not authorize a client to create a WebSocket connection, the server rejects the
WebSocket handshake request from that client.

To check the value of the origin header that the client passed during the opening
handshake, use the checkOri gi n method of the

j avax. websocket . server. Server Endpoi nt Conf i g. Confi gur at or class. To provide
custom checks, you can override this method. For more information, see Configuring a
Server Endpoint Programmatically.

A JSR356 code example for Authorization is required.

18.17.3 Establishing Secure WebSocket Connections

ORACLE

To establish a WebSocket connection, the client sends a handshake request to the
server. When using the ws scheme to open the WebSocket connection, the handshake
request is a plain HTTP request; the data being transferred over the established
WebSocket connection is not encrypted.

To establish a secure WebSocket connection and prevent data from being intercepted,
WebSocket applications should use the wss scheme. The wss scheme ensures that
clients send handshake requests as HTTPS requests, encrypting transferred data by
TLS/SSL.

You can configure a WebSocket application to accept only HTTPS handshake
requests, where all WebSocket connections must be encrypted and unencrypted

18-38

http://docs.oracle.com/javaee/7/api/javax/websocket/ClientEndpointConfig.Configurator.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html#checkOrigin%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpointConfig.Configurator.html

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

WebSocket handshake requests are rejected. Specify the <user - dat a- const rai nt > element
in the web. xm deployment descriptor file of the WebSocket application. For more information
about the <user - dat a- const rai nt > element, see web.xml Deployment Descriptor Elements
in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server.

The following code example demonstrates configuring the <user - dat a- const r ai nt > element:

<security-constraint>

<web-resour ce-col | ection>
<web- r esour ce- name>Secur ed WebSocket Endpoi nt </ web- r esour ce- name>
<url -pattern>/demo</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>

</ web-resource-col | ecti on>

<aut h-constrai nt >
<rol e- nane>user </ r ol e- nane>

</ aut h-constrai nt>

<user-data-constraint>
<transport - guar ant ee>CONFI DENTI AL</ t r ansport - guar ant ee>

</ user - dat a- constrai nt >

</security-constraint>

18.17.4 Avoiding Mixed Content

If a script attempts to open a WebSockets connection through the ws: // URI (using a plain
HTTP request), but the top-level Web page is retrieved through an HTTPS request, the Web
page is referred to as mixed content. Although most browsers no longer allow mixed content,
some still do. WebSocket applications should avoid mixed content, because it allows certain
information that should be protected, such as JSESSI ONI D and cookies, to be exposed.

For more information about mixed content, see "Web Security Context: User Interface
Guidelines" at htt p: / / www. wW3. or g/ TR/ wsc- ui / #secur epage.

18.17.5 Specifying Limits for a WebSocket Connection

By specifying limits for a WebSocket connection, you can prevent clients from exhausting
server resources, such as memory, sockets, and so forth.

You can specify the following limits for a WebSocket connection:

* Maximum message size. To set the maximum message size for a WebSocket
connection, set the naxMessageSi ze element of the onMessage annotation to the size in
bytes.

+ |dle timeout value. To set the idle timeout value for a WebSocket connection, invoke one
of the following methods:

— For an individual connection, invoke the set Max| dl eTi meout method of the Sessi on
object.

— For the entire container, invoke the set Def aul t MaxSessi onl dl eTi mreout method of a
\WebSocket Cont ai ner object.

18.18 Enabling Protocol Fallback for WebSocket Messaging

Protocol fallback provides a mechanism for using an alternative transport for WebSocket
messaging when the WebSocket protocol is not supported. Typically the WebSocket protocol
is not supported either because the WebSocket object is not available or because

ORACLE 18-39

http://www.w3.org/TR/wsc-ui/#securepage
http://docs.oracle.com/javaee/7/api/javax/websocket/OnMessage.html#maxMessageSize%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#setMaxIdleTimeout%28long%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout%28long%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

WebSocket frames are blocked by a firewall. In this release, the only supported
alternative transport is HTTP Long Polling.

Protocol fallback enables you to rely on standard programming APIs to perform
WebSocket messaging regardless of whether or not the runtime environment supports
the WebSocket protocol.

" Note:

To support WebSocket fallback, the server must use the JSR 356 Java API
for WebSocket, not the proprietary WebLogic Server WebSocket API.

18.18.1 Using the JavaScript API for WebSocket Fallback in Client
Applications

The JavaScript API for WebSocket fallback provides an implementation of the
standard W3C WebSocket API and additional APIs to facilitate WebSocket fallback.
For information about the JavaScript API for WebSocket fallback, see JavaScript API
Reference for WebSocket Fallback. For information about the W3C WebSocket API,
see: http:// ww. w3. or g/ TR/ websocket s/ .

When you use the standard W3C WebSocket JavaScript API, code your application
without regard to whether the WebSocket protocol is supported.

18.18.1.1 Configuring WebSocket Fallback

ORACLE

WebLogic Server provides properties for configuring WebSocket fallback as listed in
Table 18-7.

Table 18-7 WebSocket Fallback Configuration Properties

|
Property Type Default Description

baselr | string . The location of the scri pt s directory, relative to the
HTML context of the page.

The structure of the scri pt s directory must be
preserved. The scri pt s directory can be moved to
wherever it can be reached, but its content must not
change after it was created.

debug integer O The debug level.

ENCODE_FCR | E_B integer 10 The version of the Internet Explorer browser below

ELOW which Basel16 encoding is to be used for framed
data.

ENFORCE_ENCODI N Boolean false Whether Base16 encoding is to be used.
G

NB_TRY_FOR _EACH integer 2 The maximum number of consecutive retries to
_TRANSPORT establish a connection on a given transport.

PI'NG_I NTERVAL integer 25000 Interval in milliseconds between consecutive pings
to the server.

18-40

http://www.w3.org/TR/websockets/

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

Table 18-7 (Cont.) WebSocket Fallback Configuration Properties
|

Property Type Default Description
SERVER _PI NG _ENA Boolean true Whether pings from the client to the server are
BLED enabled.
transport string none The enforced transport, which can be one of the
following transports:
* \ebSocket

e XMH t pRequest

TRY_AGAI N_|I NTER integer 1000 The number of seconds after which an unsuccessful
VAL connection attempt is repeated with the same
transport. The retry count for the transport is not
incremented.
If the attempt fails within this number of
milliseconds, the retry count is incremented by 1.

VEEBSOCKET _CREAT integer 1000 The number of milliseconds after which creation of a
[ON_TI MEQUT WebSocket connection is considered to have failed.

If the WebSocket protocol is available, WebLogic Server uses that protocol even if protocol
fallback is enabled. WebLogtic Server uses the value of the TRY_AGAI N_| NTERVAL property
and the NB_TRY_FOR_EACH_TRANSPCRT property as follows to determine whether the
WebSocket protocol is available if a connection attempt fails:

e If the connection is not established within TRY_AGAI N_| NTERVAL milliseconds, the attempt
is repeated with same transport. The retry count for this transport is not incremented.

* If the attempt fails within TRY_AGAI N_I NTERVAL milliseconds, the retry count is
incremented by 1.

e If the retry count reaches the value of NB_TRY_FOR_EACH TRANSPORT, the next transport is
tried.

» If the retry count for the last transport reaches the value of NB_TRY_FOR EACH TRANSPORT,
the connection is closed, that is, the oncl ose function is called on the client.

To configure WebSocket fallback:

1. Construct a JSON object in which you set the configuration properties that you require.
For details about these properties, see Table 18-7.
2. Pass the object as a parameter to one of the following functions:

» If the fallback mechanism cannot be guaranteed to be present, pass the object as the
parameter to the OraSocket . confi gur e function before constructing the WebSocket
object.

To ensure that your application does not fail if the JavaScript library for WebSocket
fallback is unavailable, call the OraSocket . confi gur e function in atry/cat ch block.

* Otherwise, pass the object as the second, optional parameter of the WebSocket
object's constructor.

Example 18-31 shows how to configure WebSocket fallback.

ORACLE 18-41

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

Example 18-31 Configuring WebSocket Fallback

This example enforces the XM_Ht t pRequest transport, sets the debug level to 10, and
disables pings from the client to the server.

try {
var config = {};
config = { transport: XM.HttpRequest, debug: 10, SERVER PI NG ENABLED:
fal se };
OraSocket . config(config);
} catch (err) {
consol e.log("Error creating WebSocket:" + JSON.stringify(err));

}

18.18.1.2 Creating a WebSocket Object

A WebSocket object represents a WebSocket connection from the client to a remote
host.

To create a WebSocket object, invoke the WebSocket constructor, passing the following
information as parameters:

« The URL to which the client should connect

e Optionally, a JSON object that contains configuration settings for WebSocket
fallback

For more information about the JSON object, see Configuring WebSocket
Fallback.

Example 18-32 shows how to create a WebSocket object.
Example 18-32 Creating a WebSocket Object

This example creates the WebSocket Object ws. The example uses standard
JavaScript functions to determine the URL to which the client should connect from the
URL of the document that contains this code.

var URI _SUFFI X = "/websocket - 101/ ws- 101- app";

var ws;

var connectionStatus = "Connecting...";

var cal |l edBy = docunent.|ocation.toString();

var machine, port, secured;

var regeExp = new RegExp("(httplws) (. 2):[/1{2} ([]1*):2(\\d*)/(.*)");
var matches = regExp. exec(cal | edBy);

secured = matches[2];
machi ne = mat ches[3];
port = mat ches[4] ;

statusFld = docurent. get El enent Byl d(' status');

try

{
var wsURI = "ws" + secured + "://" + machine + ":" + port + URl _SUFFIX;
ws = new WebSocket (wsURI);

}

catch (err)

{

var mess = 'WebSocket creation error:' + JSON.stringify(err);

ORACLE 18-42

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

connectionStatus = "Unable to connect.";
if (statusFld !== undefined)

statusFl d.i nnerHTM. = ness;
el se

al ert(ness);

18.18.1.3 Handling Life Cycle Events for a JavaScript WebSocket Client

Handling lifecycle events for a JavaScript WebSocket client involves writing the WebSocket
object's callback functions as listed in Table 18-8. The table also provides a cross-reference
to an example that shows how to handle each type of event.

Table 18-8 Callback Functions for Handling Life Cycle Events
- ___]

Event Callback Function Example

Connection opened onopen Example 18-33

Message received onmessage Example 18-34

Error onerror Example 18-35

Connection closed oncl ose Example 18-36
¢ Note:

The creation of the ws \\ebSocket object in the examples is shown in
Example 18-32.

Example 18-33 Handling a Connection Opened Event for a JavaScript WebSocket
Client

This example uses standard JavaScript functions to display the current date and time
followed by the message Connecti on opened when a connection is opened.

ws. onopen = function()
{
try
{
var text;
try
{
text = 'Message:';
}
catch (err)
{
text = '<smal | >Connect ed</snal | > ;
}
pronpt Fl d. i nner HTM. = text;
if (nbMessReceived === 0)
statusFl d.innerHTM. = "";
statusFl d.innerHTM. += ((nbMessReceived === 0?"":"
") + "<smal|>" +
(new Date()).format("d-MY Hi:s._ Z") +
"</smal | >: " +

ORACLE 18-43

ORACLE

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

Connection opened.' + "");
statusFl d. scrol | Top = statusFl d.scrol | Hei ght;
nbMessRecei ved++;

catch (err) {}
¥
Example 18-34 Handling a Message Received Event for a JavaScript
WebSocket Client
This example uses standard JavaScript functions to display the current time followed

by the content of the message when a message is received.

ws. onnessage = function(message) // nessage/ event

{
var json = {};
i f (typeof(nmessage.data) === 'string')
{
try
{
json = JSON. par se(message. dat a);
catch (e)
{
consol e. | og(e);
consol e. | og(' This doesn\'t look like valid JSON ' + nessage.data);
}
}
if (json.type !== undefined & json.type === 'nmessage' &&
typeof (j son. appdata.text) === "string') // it's a single message, text

var dt = new Date();
/**
* Add message to the chat wi ndow
*/
var existing = contentFld.innerHTM,; // Content already there
var toDisplay = "";
try { toDisplay = json.appdata.text; }
catch (err) {}
contentFl d.innerHTM. = existing +
(At O+
+ (dt.getHours() < 10 ? '0" + dt.getHours() : dt.getHours()) + '
+ (dt.getMnutes() <10 ? '0" + dt.getMnutes() : dt.getMnutes())
+': ' +toDisplay + '
");
content Fl d. scrol | Top = content Fl d. scrol | Hei ght;

el se // Unexpected

{
var payload = {};

}
¥
Example 18-35 Handling an Error Event for a JavaScript WebSocket Client

This example uses standard JavaScript functions to display the current date and time
followed by an error message when an error occurs.

18-44

Chapter 18
Enabling Protocol Fallback for WebSocket Messaging

ws.onerror = function(error)

{
if (nbMessReceived === 0)
statusFl d.innerHTM. = "";
statusFl d.inner HTM. += ((nbMessReceived === 0?"":"
") + "<smal |>" +

(new Date()).format("d-MY Hi:s._ Z") +

"</smal | >:" + error.err + "");
statusFl d.scrol | Top = statusFld.scroll Hei ght;
nbMessRecei ved++;

Example 18-36 Handling a Connection Closed Event for a JavaScript WebSocket
Client

This example uses standard JavaScript functions to display the current date and time
followed by the message Connection cl osed when a connection is closed.

ws. oncl ose = function()

if (nbMessReceived === 0)
statusFl d.innerHTM. = "";
statusFl d.innerHTM. += ((nbMessReceived === 0?"":"
") + "<smal | >" +
(new Date()).format("d-MY Hi:s._Z") +
"</smal | >:" + ' Connection closed +
"<[font>");
pronpt Fl d. i nner HTM. = ' Connection cl osed';

b

18.18.1.4 Sending a Message from a JavaScript WebSocket Client

ORACLE

To send a message from a JavaScript WebSocket client:

1. Define a function for sending the message.

2. In the body of the function for sending the message, call the send function of the
WebSocket object.

3. Call the function that you defined for sending the message.

The following examples shows how to send a message from a JavaScript WebSocket client:

* Example 18-37
* Example 18-38

Example 18-37 Defining a Function for Sending a Message
This example defines the function send for sending a message.

The creation of the ws WebSocket object in this example is shown in Example 18-32.

var send = function(ness)

ws. send(mess) ;

b

18-45

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Example 18-38 Calling a Function for Sending a Message

This example calls the send function for sending the contents of the text field when the
user clicks Send.

The definition of the send function is shown in Example 18-37.

<input type="text" id="input" style="border-radius:2px; border:1lpx solid #ccc;
mar gi n-top: 10px; paddi ng: 5px; wi dt h: 400px; "

pl acehol der ="Type your nessage here"/>

<button onclick="javascript:send(docunent. get El ement Byl d('input').val ue);">Send</
butt on>

18.18.2 Packaging and Specifying the Location of the WebSocket
Fallback Client Library

Package the or asocket . nin. j s file in the scri pt s directory of your web application.

In the client application, add the following scri pt element to specify the location of
orasocket.nmin.js.

<script type="text/javascript" src="scripts/orasocket.mn.js"></script>

18.18.3 Enabling WebSocket Fallback

By default, WebSocket fallback is disabled.

To enable WebSocket fallback, set the com or acl e. tyrus. f al | back. enabl ed context
parameter to t r ue in the application's deployment descriptor file web. xm .

<?xm version="1.0" encodi ng="UTF-8"?>
<web-app version="3.0" ...>

<cont ext - par an»
<descri ption>Enabl e fall back mechani snx/description>
<par am nane>com or acl e. tyrus. f al | back. enabl ed</ par am nane>
<par am val ue>t r ue</ par am val ue>
</ cont ext - par an»
</ web- app>

18.19 Migrating an Application to the JSR 356 Java API for
WebSocket from the Deprecated API

ORACLE

To ensure compatibility of your WebSocket applications with future releases of
WebLogic Server, use the JSR 356 Java API for WebSocket instead of the deprecated
packages.

As of WebLogic Server 12.1.3, the packages webl ogi ¢. websocket and

webl ogi c. websocket . annot at i on are deprecated and will be removed in a future
release. After these packages have been removed, you will no longer be able to use
these packages for connections over the WebSocket protocol.

18-46

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

18.19.1 Comparison of the JSR 356 API and Proprietary WebLogic Server
WebSocket API

Table 18-9 shows the proprietary WebLogic Server WebSocket API and the corresponding
JSR 356 API to use to perform tasks for developing a WebSocket application. The table
shows only the JSR 356 API to use for an annotated endpoint. For each task, the table also
provides a cross-reference to instructions for performing the task by using the JSR 356 API.

Table 18-9 Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
___|
Task Proprietary WebLogic Server JSR 356 API Instructions
WebSocket API
Create a server 1. \ébSocket Li st ener Server.EndeI nt Creating an
endpoint class . annotation Annotated
interface or Endpoint
VebSocket Adapt er
superclass
2. \\ebSocket annotation
Handle a onQpen method of a OnQpen annotation on the Handling a
connection opened \WebSocket Li st ener object method that handles the =~ Connection
event event Opened Event
Handle a message One of the following variants of the OnMessage annotation on Handling a
received event overloaded onMessage method of the method that handles MeSS_age
a VebSocket Li st ener object: the event Received Event

e For a message that consists of
a text data frame:
onMessage(WebSocket Conn
ection connection,
String payl oad)

e For a message that consists of
a binary data frame:
onMessage(WebhSocket Conn
ection connecti on,
byte[] payl oad)

Handle an error onError method of a OnError annotation on Handling an

event WebSocket Li st ener object the method that handles ~ Error Event
the event

Handle a onC ose method of a Ond ose annotation on Handling a

connection closed \WebSocket Li st ener object the method that handles ~ Connection

event the event Closed Event

ORACLE 18-47

http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketAdapter.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/annotation/WebSocket.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpoint.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html#onOpen%28weblogic.websocket.WebSocketConnection%29
http://docs.oracle.com/javaee/7/api/javax/websocket/OnOpen.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html#onMessage%28weblogic.websocket.WebSocketConnection,%20java.lang.String%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html#onMessage%28weblogic.websocket.WebSocketConnection,%20byte[]%29
http://docs.oracle.com/javaee/7/api/javax/websocket/OnMessage.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html#onError%28weblogic.websocket.WebSocketConnection,%20java.lang.Throwable%29
http://docs.oracle.com/javaee/7/api/javax/websocket/OnError.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketListener.html#onClose%28weblogic.websocket.WebSocketConnection,%20weblogic.websocket.ClosingMessage%29
http://docs.oracle.com/javaee/7/api/javax/websocket/OnClose.html

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Table 18-9 (Cont.) Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
__|]
Task Proprietary WebLogic Server JSR 356 API Instructions
WebSocket API
Send a message One of the following methods of a i on interf Sending a
WebSocket Connect i on object: - Session interface Message to a
- send(String nessage) 2. One of the following ~ Single Peer of
« send(byte[] nessage) methods of the an Endpoint
. y g Sessi on object
« sendPing ¢ Basi cRemot
. sendPong get Basi cRenot e()
- strean(bool ean | ast, get AsyncRenot &()
String fragment) 3. One of the following
- strean(bool ean | ast, methods of the
byte[] fragnent, int Renot eEndpoi nt . Ba
off, int length) si ¢ object or
Renot eEndpoi nt . As
ync object:
sendText
sendBi nary
sendPi ng
sendPong
Send a message get VebSocket Cont ext get OpenSessi ons. Sending a
to all peers method of the Session ~ Message to All
ted t method of a i Peers of an
connected to an WebSocket Connect i on object Endpoi
endpoint object ndpoint

2. get\WebSocket Connecti ons
method of the
WebSocket Cont ext object
obtained by the previous call

Set the maximum maxMessageSi ze element of the maxMessageSi ze element

message size fora \WWebSocket annotation of the onMessage
WebSocket annotation

connection

Set the idle timeout ti meout element of the One of the following APIs:
value for a WebSocket annotation e For an individual
WebSocket connection:
connection set Max| dl eTi neout

method of the
Sessi on object

* For the entire
container:
set Def aul t MaxSess
i onl dl eTi meout
method of a
WebSocket Cont ai ne
I object

ORACLE 18-48

http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#send%28java.lang.String%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#send%28byte[]%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#sendPing%28byte[]%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#sendPong%28byte[]%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#stream%28boolean,%20java.lang.String%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#stream%28boolean,%20byte[],%20int,%20int%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getBasicRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getAsyncRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#getWebSocketContext%28%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketContext.html#getWebSocketConnections%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getOpenSessions%28%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/annotation/WebSocket.html#maxMessageSize%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/OnMessage.html#maxMessageSize%28%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/annotation/WebSocket.html#timeout%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#setMaxIdleTimeout%28long%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout%28long%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html#setDefaultMaxSessionIdleTimeout%28long%29
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html
http://docs.oracle.com/javaee/7/api/javax/websocket/WebSocketContainer.html

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

Table 18-9 (Cont.) Comparison of the JSR 356 API and Proprietary WebLogic Server

WebSocket API
Task Proprietary WebLogic Server JSR 356 API Instructions
WebSocket API

Set the maximum maxConnect i ons element of the Not supported by JSR 356
number of open WebSocket annotation Java API for Websocket
connections on a
WebSocket

connection

18.19.2 Converting a Proprietary WebSocket Server Endpoint to Use the
JSR 356 API

To convert a proprietary WebSocket server endpoint to use the JSTR 356 API:

ORACLE

1.

Convert your WebSocket class to an annotated server endpoint class.

Converting a bSocket class to an annotated endpoint class requires fewer changes
than converting the WebSocket class to a programmatic endpoint class.

a. Convert the WbSocket class to a POJO class by removing the ext ends
WebSocket Adapt er clause or i npl ement's WebSocket Li st ener clause from the class
declaration.

b. Replace the webl ogi c. websocket . annot ati on. WebSocket annotation on the class
declaration with the j avax. websocket . server. Server Endpoi nt annotation.

For more information, see Creating an Annotated Endpoint.

Note:

If the pat hPat t er ns element of your existing endpoint contains the / * suffix,
you must rewrite your code to achieve the same result as the / * suffix. For
more information, see Replacing the /* Suffix in a Path Pattern String.

Annotate the declaration of each method for handling a life cycle event with the
annotation that designates the event that the method handles.

For more information, see Handling Life Cycle Events in an Annotated WebSocket
Endpoint.

Replace each reference to the webl ogi c. websocket . WebSocket Connect i on interface with
a reference to the j avax. websocket . Sessi on interface.

Replace each method invocation on the WebSocket Connect i on object with an invocation
of the corresponding method on the Sessi on object.

For example, the cl ose method of a \\ebSocket Connect i on object takes a
webl ogi c. websocket . Cl osi ngMessage object as a parameter. In the cl ose method of a
Sessi on object the corresponding parameter is a j avax. websocket . Cl oseReason object.

Change each method invocation on a Sessi on object to send a message as follows:

18-49

http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/annotation/WebSocket.html#maxConnections%28%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/annotation/WebSocket.html
http://docs.oracle.com/javaee/7/api/javax/websocket/server/ServerEndpoint.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#close(int)
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/ClosingMessage.html
http://docs.oracle.com/javaee/7/api/javax/websocket/CloseReason.html

ORACLE

Chapter 18

Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

a. Add an invocation of the get Basi cRenpt e method or get AsyncRenot e method
to obtain a reference to the object that represents the peer of this endpoint.

b. Replace the method in the deprecated API for sending the message with the

corresponding method in the JSR 356 API.

The method of the JSR 356 API is a method of the
j avax. websocket . Renot eEndpoi nt . Basi ¢ object or
j avax. websocket . Renot eEndpoi nt . Async object to which you obtained a
reference in the previous step.

For more information, see Sending a Message.

Deprecated API
Method

RemoteEndpoint.Basi
¢ Method

RemoteEndpoint.Async Method

send(String

sendText(String text)

One of the following methods:

message))
sendText(String text)
sendText(String text,

SendHandl| er handl er)
send(byt e[] sendBinary(Byt eBuf fer One of the following methods:
message) dat a))

sendBinary(Byt eBuf f er dat a)
sendBinary(Byt eBuf f er dat a,
SendHandl er handl er)
sendPing(byt e[] sendPing(Byt eBuf f er sendPing(Byt eBuf f er
message) appl i cationDat a) appl i cationDat a)
sendPong(byt e[] sendPong(Byt eBuf f er sendPong(Byt eBuf f er
message) appl i cati onDat a) appl i cati onDat a)

stream(bool ean

sendText(String

No corresponding method.

| ast, partial Message,
String bool ean
fragment) i sLast)
stream(bool ean sendBinary(Byt eBuf fer No corresponding method.
| ast, partial Byte,
byte[] bool ean
fragment, i sLast)
int off,
int
| engt h)

Replace references in i nport clauses to classes in the deprecated API with
references to the classes in the JSR 356 API that your endpoint uses.

Recompile and re-deploy the application that uses the server endpoint.

18-50

http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getBasicRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getAsyncRemote%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#send%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendText%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html#sendText%28java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html#sendText%28java.lang.String,%20javax.websocket.SendHandler%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#send%28byte[]%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendBinary%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html#sendBinary%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Async.html#sendBinary%28java.nio.ByteBuffer,%20javax.websocket.SendHandler%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#sendPing%28byte[]%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPing%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPing%28java.nio.ByteBuffer%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#sendPong%28byte[]%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPong%28java.nio.ByteBuffer%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.html#sendPong%28java.nio.ByteBuffer%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#stream%28boolean,%20java.lang.String%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendText%28java.lang.String,%20boolean%29
http://docs.oracle.com/middleware/1212/wls/WLAPI/weblogic/websocket/WebSocketConnection.html#stream%28boolean,%20byte[],%20int,%20int%29
http://docs.oracle.com/javaee/7/api/javax/websocket/RemoteEndpoint.Basic.html#sendBinary%28java.nio.ByteBuffer,%20boolean%29

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

18.19.3 Replacing the /* Suffix in a Path Pattern String

The pat hPat t er ns element of the WebSocket annotation in the deprecated API accepts the / *
suffix in a path pattern string. The / * suffix matches the path pattern with any resource path
that starts with the path pattern before the / * suffix. For example, the resource path / ws/ chat
is matched by path pattern / ws/ *.

No equivalent to the / * suffix exists in the JSR 356 API. If your existing endpoint relies on

the / * suffix, you must rewrite your code to achieve the same result as the / * suffix. How to
rewrite your code depends on whether the / * suffix represents variable path parameters in an
endpoint URI or additional data for an endpoint.

18.19.3.1 Replacing a /* Suffix that Represents Variable Path Parameters in an

Endpoint URI

The / * suffix in a path pattern string might represent one or more variable path parameters in
an endpoint URI. In this situation, use a URI template instead of the / * suffix.

The JSR 356 API supports only level 1 URI templates in which path parameters are clearly
separated by slashes (/). Therefore, in the URI template, you must define one variable for
expansion for each variable path parameter that replaces the / * suffix in your existing
endpoint.

For example, if one variable path parameter replaces the / * suffix in your existing endpoint,
define a URI template similar to the following example:

[ws/ { par ani}

The URI/ws/ t est matches the template in the preceding example. The par ani variable is
expanded to t est .

Similarly, if two variable path parameters replace the / * suffix in your existing endpoint,
define a URI template similar to the following example:

/ws/ {parant}/{parant}

The URI/ws/ t est/ chat matches the template in the preceding example. The par anl
variable is expanded to t est and the par an? variable is expanded to chat .

For more information, see Specifying a Part of an Endpoint Deployment URI as an
Application Parameter.

18.19.3.2 Replacing a /* Suffix that Represents Additional Data for an Endpoint

ORACLE

The / * suffix in a path pattern string might represent additional data for an endpoint that is
transferred as part of the URI. In this situation, use query parameters instead of the / * suffix.

The JSR 356 specification does not forbid or restrict the use of query parameters in any way.
Therefore, you can use a query parameter to transfer any data provided that the following
conditions are met:

* URLs are shorter than their maximum allowed length.

* All data is properly encoded.

18-51

Chapter 18
Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API

To obtain an endpoint's query parameters, invoke the method of the endpoint's
Sessi on object that obtains the parameters in the required format:

* To obtain the parameters as a single string that contains the entire query, invoke
the get QueryStri ng method. See Example 18-39.

» To obtain the parameters as a map that contains a list of query parameters, invoke
the get Request Par anet er Map method. See Example 18-40.

Example 18-39 Obtaining Query Parameters as a Single String

This example obtains the query parameters in the request URI / echo?
f oo=bar, baz, mane, padne, humas the application output
"# foo=bar, baz, mane, padme, hunt'.

i nport javax.websocket . OnOpen;
i nport javax.websocket . Sessi on;
i nport javax.websocket . server. Server Endpoi nt;

@ber ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQOpen
public void onOpen(Session session) throws |OException {
Systemout.println("# " + session.getQueryString());

}

...
}

Example 18-40 Obtaining Query Parameters as a Map

This example obtains the query parameters in the request URI / echo?
f oo=bar &f oo=bazé&f oo=mane&f oo=padne&f oo=humas the Li st <Stri ng>
[bar, baz, mane, padne, huni.

i nport j avax.websocket . OnQpen;

i nport j avax.websocket . Sessi on;

i mport j avax.websocket . server. HandshakeRequest ;
i nport javax.websocket . server. Server Endpoi nt;
inport java.util.List;

inport java.util.Map;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQpen
public void onOpen(Session session) throws |OException {
Systemout.printIn("# " + session. get Request Paramet er Map() . get ("foo0"));

}

...
}

18.19.4 Example of Converting a Proprietary WebSocket Server
Endpoint to Use the JSR 356 API

Example 18-41 shows how to convert a proprietary WebSocket server endpoint to use
he JSR 356 API from the deprecated API.

ORACLE 18-52

http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getQueryString%28%29
http://docs.oracle.com/javaee/7/api/javax/websocket/Session.html#getRequestParameterMap%28%29

Chapter 18
Example of Using the Java API for WebSocket with WebLogic Server

Example 18-41 Converting a WebSocket Server Endpoint to Use the JSR 356 API

This example shows the changes that are required to convert a WebSocket server endpoint
to the use JSR 356 API instead of the deprecated API.

In this example, lines of deprecated code are commented out with the // comment
characters. Lines of code from the JSR 356 API are indicated by the comment // JSR 356.

package exanpl es. webapp. ht m 5. websocket ;

/linport webl ogi c. websocket . O osi ngMessage; Deprecat ed
/linport webl ogi c. websocket . WebSocket Adapt er; Depr ecat ed
/linport webl ogi c. websocket . WebSocket Connection; Deprecated
/linport webl ogi c. websocket . annot ati on. WebSocket; Deprecated

i mport j avax.websocket . d oseReason; /1 JSR 356
i mport j avax.websocket . OnMessage; /1 JSR 356
i mport j avax.websocket . Sessi on; /1 JSR 356
i mport j avax.websocket . server. Server Endpoi nt; /1 JSR 356

i mport java.io.lCException;

/| @eébSocket (Deprecated

/1l timeout = -1, Deprecated

/1 pathPatterns = {"/ws"} Depr ecat ed

1)
@er ver Endpoi nt ("/ws") //JSR 356

/Ipublic class Messagelistener extends WebSocket Adapter { Deprecated
public class Messagelistener {

/] @verride Not required. Replaced by @nMessage in a PQJO cl ass
@nMessage //JSR 356

/I'public void onMessage(\WebSocket Connection connection, String payload) { Deprecated
public void onMessage(Session connection, String payload) //JSR 356

throws | OCException { /1 JSR 356
/'l Sends message fromthe browser back to the client.
String nsgContent = "Message \"" + payload + "\" has been received by server.";
try {
Il connection. send(nsgContent); Deprecated

connecti on. get Basi cRenot e() . sendText (nmsgContent); //JSR 356
} catch (1 CException e) {
11 connection. cl ose(C osi ngMessage. SC_GO NG_AWAY) ; Deprecat ed
connection. cl ose(new /1 ISR 356
C oseReason(O oseReason. O oseCodes. GO NG_AWAY, "Going away.")); //JSR 356
}
}
}

18.20 Example of Using the Java API for WebSocket with
WebLogic Server

ORACLE

Examine an example in which a server endpoint echoes text that a user has sent from a
client. When the user sends a text message, the server appends the text (from your server)
to the message and sends the message back to the user.

Example 18-42 Using the Java API for WebSocket with WebLogic Server

package com exanpl e. websocket . sanpl e. echo;

import java.io.lOException;

18-53

ORACLE

i nport javax.
i nport javax.
i nport javax.
i nport javax.
i nport javax.

websocket .
websocket .
websocket .
websocket .
websocket .

Chapter 18
Example of Using the Java API for WebSocket with WebLogic Server

OnError;

OnMessage;

OnQpen;

Sessi on;

server. Server Endpoi nt;

@er ver Endpoi nt ("/ echo")
public class EchoEndpoint {

@nQpen
public void onOpen(Session session) throws | OException {
sessi on. get Basi cRenot e() . sendText ("onCpen is invoked.");

}

@nMessage
public String echo(String nessage) {

}

return message + "

@nError
public void onError(Throwable t) {
t.printStackTrace();

}

(fromserver)";

18-54

Enterprise Application Deployment Descriptor
Elements

Learn about enterprise application deployment descriptors such as appl i cati on. xm (a Java
EE standard deployment descriptor) and webl ogi c- appl i cati on. xm (a WebLogic-specific
application deployment descriptor).

With Java EE annotations, the standard appl i cation. xm deployment descriptor is optional.
Annotations simplify the application development process by allowing developers to specify
within the Java class itself how the application component behaves in the container, requests
for dependency injection, and so on. Annotations are an alternative to deployment descriptors
that were required by older versions of enterprise applications (Java EE 1.4 and earlier). See
Using Java EE Annotations and Dependency Injection.

The webl ogi c-appl i cation. xnl file is also optional if you are not using any WebLogic Server
extensions.

This chapter includes the following sections:
* weblogic-application.xml Deployment Descriptor Elements

* weblogic-application.xml Schema

e application.xml Schema

A.1 weblogic-application.xml Deployment Descriptor Elements

The webl ogi c-appl i cation. xnl file is the WebLogic Server-specific deployment descriptor
extension for the appl i cati on. xm Java EE deployment descriptor. This is where you
configure features such as shared Java EE libraries referenced in the application and EJB
caching.

The following sections describe the many of the individual elements that are defined in the
weblogic-application.xml Schema.

The file is located in the META- | NF subdirectory of the application archive. The following
sections describe elements that can appear in the file.

A.1.1 weblogic-application

The webl ogi c- appl i cati on element is the root element of the application deployment
descriptor.

The following table describes the elements you can define within a webl ogi c-appl i cati on
element.

ORACLE A-1

Table A-1 weblogic-application Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element

Required?

Maximum
Number In
File

Description

<ej b>

Optional

1

Contains information that is specific to the EJB modules
that are part of a WebLogic application. Currently, one can
use the €] b element to specify one or more application
level caches that can be used by the application's entity
beans.

For more information on the elements you can define within
the ej b element, see ejb.

<xni >

Optional

Contains information about parsers and entity mappings for
XML processing that is specific to this application.

For more information on the elements you can define within
the xm element, see xml.

<j dbc-
connecti on-
pool >

Optional

Unbounded

Zero or more. Specifies an application-scoped JDBC
connection pool.

For more information on the elements you can define within
the j dbc- connecti on- pool element, see jdbc-
connection-pool.

<security>

Optional

Specifies security information for the application.

For more information on the elements you can define within
the security element, see security.

ORACLE

A-2

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In
File
Optional Unbounded Zero or more. Used to specify un-typed parameters that

<appl i cation-
par anp

affect the behavior of container instances related to the
application. The parameters listed here are currently
supported. Also, these parameters in webl ogi c-
application.xm can determine the default encoding to
be used for requests and for responses.

e webapp. encodi ng. def aul t —Can be set to a string
representing an encoding supported by the JDK. If set,
this defines the default encoding used to process
servlet requests and servlet responses. This setting is
ignored if webapp. encodi ng. usevndef aul t is set to
t rue. This value is also overridden for request
streams by the i nput - char set element of
webl ogi c. xni .

e webapp. encodi ng. usevndef aul t —Can be set to
true orfal se. Iftrue, the system property
file.encodi ng is used to define the default
encoding.

The following parameter is used to affect the behavior of

Web applications that are contained in this application.

e webapp. getreal path. accept _context path—
This is a compatibility switch that may be settotrue
orfal se. If settotrue, the context path of Web
applications is allowed in calls to the serviet API
get Real Pat h.

Example:

<appl i cati on- paranp

<par am nane>webapp. encodi ng. def aul t
</ par am nane>

<par am val ue>UTF8</ par am val ue>

</ appli cati on- param>

For more information on the elements you can define within
the appl i cat i on- par amelement, see application-param.

ORACLE

A-3

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In
File
Optional Unbounded A classloader-structure element allows you to define the
<cl assl oader - o . N
Struct ure> organization of classloaders for this application. The
declaration represents a tree structure that represents the
classloader hierarchy and associates specific modules with
particular nodes. A module's classes are loaded by the
classloader that its associated with this element.
Example:
<classloader-structure>
<module-ref>
<module-uri>ejbl.jar</module-uri>
</module-ref>
</classloader-structure>
<classloader-structure>
<module-ref>
<module-uri>ejb2.jar</module-uri>
</module-ref>
</classloader-structure>
For more information on the elements you can define within
the cl assl oader - st ruct ur e element, see classloader-
structure.
: Optional Unbounded Zero or more. Used to register user-defined application
<listener> . .
lifecycle listeners. These are classes that extend the
abstract base class
webl ogi c. appl i cation. ApplicationLifecycl eLi st
ener.
For more information on the elements you can define within
the | i st ener element, see listener.
<si ngl et on- Optional Unbounded Zero or more. Used to register user-defined singleton
servi ce> services. These are classes that implement the interface
webl ogi c. cl uster. si ngl et on. Si ngl et onServi ce.
For more information on the elements you can define within
the si ngl et on- servi ce element, see singleton-service.
Optional Unbounded Zero or more. Used to register user-defined startup
<startup>
classes.
For more information on the elements you can define within
the st art up element, see startup.
Note: Application-scoped startup and shutdown classes
have been deprecated as of release 9.0 of WebLogic
Server. Instead, you should use lifecycle listener events in
your applications. For details, see Programming Application
Life Cycle Events
ORACLE A-4

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In
File
<shut down> Optional Unbounded Zero or more. Used to register user defined shutdown
classes.
For more information on the elements you can define within
the shut down element, see shutdown.
Note: Application-scoped startup and shutdown classes
have been deprecated as of release 9.0 of WebLogic
Server. Instead, you should use lifecycle listener events in
your applications. For details, see Programming Application
Life Cycle Events.
<modul e> Optional Unbounded Represents a single WebLogic application module, such as
a JMS or JDBC module.
This element has the following child elements:
* nane—The name of the module.
* type—The type of module. Valid values are JMS,
JDBC, Interception, or GAR.
¢ pat h—The path of the XML file that fully describes the
module, relative to the root of the enterprise
application.
The following example shows how to specify a JMS module
called VWr kf | ows, fully described by the XML file j ns/
VWor kf | ows-j ms. xni :
<nodul e>
<name>Wr kf | ows</ nane>
<type>JMs</type>
<pat h>j ms/ Wor kf | ows-j ms. xm </ pat h>
</ modul e>
<library-ref> Optional Unbounded A reference to a shared Java EE library.
For more information on the elements you can define within
the | i brary element, see library-ref.
Optional Unbounded Specifies a fair share request class, which is a type of Work

<fair-share-
request >

Manager request class. In particular, a fair share request

class specifies the average percentage of thread-use time

required to process requests.

The <fai r-share-request > element can take the

following child elements:

* nane—The name of the fair share request class.

- fair-share—An integer representing the average
percentage of thread-use time.

See Using Work Managers to Optimize Scheduled Work.

ORACLE

A-5

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Description

Element Required? Maximum
Number In
File

<response- Optional Unbounded

time-request>

Specifies a response time request class, which is a type of
Work manager class. In particular, a response time request
class specifies a response time goal in milliseconds.

The <r esponse-t i ne-r equest > element can take the
following child elements:

* nane—The name of the response time request class.
« goal - ms—The integer response time goal.

See Using Work Managers to Optimize Scheduled Work.

<cont ext - Optional Unbounded

request >

Specifies a context request class, which is a type of Work

manager class. In particular, a context request class

assigns request classes to requests based on context

information, such as the current user or the current user's

group.

The <cont ext - r equest > element can take the following

child elements:

* name—The name of the context request class.

* context - case—An element that describes the
context.

The <cont ext - case> element can itself take the following

child elements:

e user-nane or gr oup- name—The user or group to
which the context applies.

e request-cl ass- name—The name of the request
class.

See Using Work Managers to Optimize Scheduled Work.

<max-threads- OPtional Unbounded

constraint >

Specifies a max-t hr eads- const r ai nt Work Manager
constraint. A Work Manager constraint defines minimum
and maximum numbers of threads allocated to execute
requests and the total number of requests that can be
queued or executing before WebLogic Server begins
rejecting requests.

The max-threads constraint limits the number of concurrent
threads executing requests from the constrained work set.

The <max-t hr eads- const r ai nt > element can take the
following child elements:

* nanme—The name of the max-thread-constraint.

« Either count or pool - name—The integer maximum

number of concurrent threads, or the name of a
connection pool which determines the maximum.

See Using Work Managers to Optimize Scheduled Work.

ORACLE

A-6

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements
]

Element Required? Maximum Description
Number In
File
Optional Unbounded Specifies a m n-t hr eads- const r ai nt Work Manager

<m n-t hr eads-

const rai nt > constraint. A Work Manager constraint defines minimum

and maximum numbers of threads allocated to execute
requests and the total number of requests that can be
queued or executing before WebLogic Server begins
rejecting requests.

The min-threads constraint guarantees a number of
threads the server will allocate to affected requests to avoid
deadlocks.

The <m n-t hr eads- const r ai nt > element can take the
following child elements:

* name—The name of the min-thread-constraint.
e count —The integer minimum number of threads.
See Using Work Managers to Optimize Scheduled Work.

Optional Unbounded Specifies a capaci t y Work Manager constraint. A Work
Manager constraint defines minimum and maximum
numbers of threads allocated to execute requests and the
total number of requests that can be queued or executing
before WebLogic Server begins rejecting requests.

The capacity constraint causes the server to reject
requests only when it has reached its capacity.

The <capaci t y> element can take the following child
elements:

<capaci ty>

* nane—The name of the capacity constraint.
e count —The integer thread capacity.
See Using Work Managers to Optimize Scheduled Work.

Optional Unbounded Specifies the Work Manager that is associated with the
application.

For more information on the elements you can define within
the wor k- manager element, see work-manager.

See Using Work Managers to Optimize Scheduled Work for
detailed information on Work Managers.

<wor k- manager >

<appl i cati on- Optional Unbounded Specifies the number of stuck threads needed to bring the
adnmi n- node- application into administration mode.

trigger> You can specify the following child elements:
« max-stuck-thread-ti ne—The maximum amount of
time, in seconds, that a thread should remain stuck.
« stuck-thread- count —Number of stuck threads that
triggers the stuck thread work manager.

Optional Unbounded Specifies a list of configuration parameters for servlet

<sessi on- sessions

descri ptor>
For more information on the elements you can define within

the <sessi on- descri pt or > element, see session-
descriptor.

ORACLE e

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements

Element Required? Maximum Description
Number In
File
<ibrary- Optional Unbounded Zero or more. Used to override the context-root of a Web
cont ext - 1 oot - module specified in the deployment descriptor of a library
override> referenced by this application.
For more information on the elements you can define within
the <l'i brary-cont ext-root - overri de> element, see
library-context-root-override.
<conponent - Optional 1 tUsed to enable the Spring extension by setting this element
factory-cl ass- 0
nanes org. springframework.jee.interfaces. SpringConp
onent Fact ory. This element exists in EJB, Web, and
application descriptors. A module-level descriptor
overwrites an application-level descriptor. If set to null
(default), the Spring extension is disabled.
< Optional 1 Used for filtering ClassLoader configuration. Specifies a list
prefer-
appl i cati on- of packa_ges_ for classes that must always be loaded from
packages> the application.
< Optional 1 Used for filtering ClassLoader configuration. Specifies a list
prefer-
appl i cati on- of resources that must always be loaded from the
application, even if the resources are found in the system
resour ces>
classloader.
Note that the resource loading behavior is different from the
resource loading behavior when <pr ef er - appl i cati on-
packages> is used.
In that case, application resources get a preference over
system resources. The resources captured in this element
are never looked up in the system classloader.
Optional 1 Specifies whether FastSwap deployment is used to

<f ast - swap>

minimize redeployment since Java classes are redefined
in-place without reloading the ClassLoader.

See Using FastSwap Deployment to Minimize
Redeployment in Deploying Applications to Oracle
WebLogic Server.

For information on the elements you can define within the
<f ast - swap> element, see fast-swap.

ORACLE

A-8

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-1 (Cont.) weblogic-application Elements
]

Element Required? Maximum Description
Number In
File
<r eady- Optional 1 To use the ReadyApp framework, register an EAR-based

regi stration>

application with the framework by adding the following code
to the application's WebLogic deployment descriptor
VETA- | NF\ webl ogi c- appl i cation. xni :

<wl s: ready-registration>true</w s:ready-

regi stration>

When the application starts, the state of the application is
set to NOT READY.

Note: The prefix W s: may not be required, depending on
the contents of the webl ogi c- appl i cati on. xm

file. If the rest of the tags do not have the prefix, you can
ignore the prefix.

For more information, see Deploying Applications to Oracle
WebLogic Server.

A.12ejb

The following table describes the elements you can define within an ej b element.

ORACLE

A-9

Table A-2 ejb Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Require Maximum
d? Number in File

Description

<entity- cache> Optional Unbounded

Zero or more. The ent i ty- cache element is used to define
a named application level cache that is used to cache entity
EJB instances at runtime. Individual entity beans refer to the
application-level cache that they must use, referring to the
cache name. There is no restriction on the number of
different entity beans that may reference an individual cache.

To use application-level caching, you must specify the cache
using the <ent i t y- cache- r ef > element of the webl ogi c-
ej b-jar.xm descriptor. Two default caches named

Excl usi veCache and Ml ti Ver si onCache are used for
this purpose. An application may explicitly define these
default caches to specify non-default values for their
settings. Note that the caching-strategy cannot be changed
for the default caches. By default, a cache uses nax-
beans-i n- cache with a value of 1000 to specify its
maximum size.

Example:

<entity-cache>
<entity-cache-name>ExclusiveCache</entity-cache-name>
<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

For more information on the elements you can define within
the ent i t y- cache element, see entity-cache.

<start - mbds- wi t h- Optional 1

application

Allows you to configure the EJB container to start Message
Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to
false, the container keeps MDBS in a queue and the server
starts them as soon as it has started listening on the ports.

A.1.2.1 entity-cache

The following table describes the elements you can define within a enti ty-cache

element.

ORACLE

A-10

Table A-3 entity-cache Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element

Required?

Maximum
Number in
File

Description

<entity-cache-
nane>

Required

1 Specifies a unique name for an entity bean cache.
The name must be unique within an ear file and
may not be the empty string.

Example:

<entity-cache- name>Excl usi veCache</entity-
cache- nane>

<max- beans-i n-
cache>

Optional

If you specify this
element, you cannot
also specify <max-
cache-si ze>.

1 Specifies the maximum number of entity beans that
are allowed in the cache. If the limit is reached,
beans may be passivated. This mechanism does
not take into account the actual amount of memory
that different entity beans require. This element can
be set to a value of 1 or greater.

Default Value: 1000

<max- cache- si ze>

Optional

If you specify this
element, you cannot
also specify <max-
beans- i n- cache>.

1 Used to specify a limit on the size of an entity
cache in terms of memory size—expressed either
in terms of bytes or megabytes. A bean provider
should provide an estimate of the average size of a
bean in the webl ogi c- ej b-j ar. xm descriptor if
the bean uses a cache that specifies its maximum
size using the max- cache- si ze element. By
default, a bean is assumed to have an average size
of 100 bytes.

For more information on the elements you can
define within the ej b element, see max-cache-size.

<max-queri es-in-
cache>

Optional

1 Specifies the maximum SQL queries that can be
present in the entity cache at a given moment.

<cachi ng-
strat egy>

Optional

1 Specifies the general strategy that the EJB
container uses to manage entity bean instances in
a particular application level cache. A cache buffers
entity bean instances in memory and associates
them with their primary key value.

The cachi ng- st r at egy element can only have
one of the following values:

« Excl usi ve—Caches a single bean instance
in memory for each primary key value. This
unique instance is typically locked using the
EJB container's exclusive locking when it is in
use, so that only one transaction can use the
instance at a time.

Ml tiVersi on—Caches multiple bean
instances in memory for a given primary key
value. Each instance can be used by a
different transaction concurrently.

Default Value: Ml ti Ver si on

Example:
<caching-strategy>Exclusive</caching-strategy>

ORACLE

A-11

Appendix A
weblogic-application.xml Deployment Descriptor Elements

A.1.3 max-cache-size

The following table describes the elements you can define within a max- cache- si ze
element.

Table A-4 max-cache-size Elements

Element Required? Maximum Description
Number in
File
<byt es> You must specify either 1 The size of an entity cache in terms of memory
<byt es> or <megabyt es> size, expressed in bytes.
You must specify either 1 The size of an entity cache in terms of memory

<megabyt es> <byt es> or <megabyt es> size, expressed in megabytes.

A.1.4 Xxml

The following table describes the elements you can define within an xm element.

Table A-5 xml Elements

Element Require Maximum Description
d? Number in File
<par ser - Optional 1 The parent element used to specify a particular XML parser or
factory> transformer for an enterprise application.
For more information on the elements you can define within the
par ser-fact ory element, see parser-factory.
<enti Optional Unbounded Zero or More. Specifies the entity mapping. This mapping determines
entity- . i : .
meppi ng> the alternative entity URI for a given qullc or system ID. The default
place to look for this entity URI is the | i b/ xm / r egi st ry directory.
For more information on the elements you can define within the
entity- mappi ng element, see entity-mapping.
A.1.4.1 parser-factory

The following table describes the elements you can define within a par ser-factory
element.

Table A-6 parser-factory Elements

Element Required? Maximum Description
Number in
File
<saxpar ser - Optional 1 Allows you to set the SAXParser Factory for the XML parsing

required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify
the saxpar ser - f act ory element setting, the configured

SAXParser Factory style in the Server XML Registry is used.

Default Value: Server XML Registry setting

factory>

ORACLE A-12

Table A-6 (Cont.) parser-factory Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description
Number in
File
<docunent - bui | der - Optional 1 AIIovys you tq set.the .Docum.ent. Builder Fac;tory for the XML
fact ory> parsing required in this application only. This element
determines the factory to be used for DOM style parsing. If
you do not specify the docunent - bui | der-fact ory
element setting, the configured DOM style in the Server XML
Registry is used.
Default Value: Server XML Registry setting
Optional 1 Allows you to set the Transformer Engine for the style sheet

<t ransf or mer -
factory>

processing required in this application only. If you do not
specify a value for this element, the value configured in the
Server XML Registry is used.

Default value: Server XML Registry setting.

A.1.4.2 entity-mapping

The following table describes the elements you can define within an enti t y- nappi ng

element.

Table A-7 entity-mapping Elements

Element Required Maximum Description
? Number in
File
<enti ty- mappi ng- Required 1 Specifies the name for this entity mapping.
nane>
<publ i c-i d> Optional 1 Specifies the public ID of the mapped entity.
<system i d> Optional 1 Specifies the system ID of the mapped entity.
<entity-uri> Optional 1 Specifies the entity URI for the mapped entity.
<vwhen-t o- cache> Optional 1 Legal values are:
e cache-on-reference
e cache-at-initialization
e cache-never
The default value is cache- on- r ef er ence.
<cache-ti meout - Optional 1 Specifies the integer value in seconds.
i nterval >
ORACLE

A-13

Appendix A
weblogic-application.xml Deployment Descriptor Elements

A.1.5 jdbc-connection-pool

¢ Note:

The j dbc- connecti on- pool element is deprecated. To define a data source
in your enterprise application, you can package a JDBC module with the
application. See Configuring JDBC Application Modules for Deployment in
Administering JDBC Data Sources for Oracle WebLogic Server.

The following table describes the elements you can define within a j dbc- connect i on-
pool element.

Table A-8 jdbc-connection-pool Elements
. __]

Element Required Maximum Description
? Number in
File
<dat a- sour ce- Required 1 Specifies the JNDI name in the application-specific JNDI tree.
j ndi - nane>
Required 1 Specifies the connection parameters that define overrides for

<connecti on-

factory> default connection factory settings.

e user-nane—Optional. The user - nane element is used to
override User Nanme in the JDBCDat aSour ceFact or yMBean.

e url —Optional. The url element is used to override URL in
the JDBCDat aSour ceFact or yMBean.

e driver-class-name—Optional. The dri ver - ¢l ass- name
element is used to override Dri ver Nane in the
JDBCDat aSour ceFact or yMBean.

e connection- par ans—Zero or more.

e paraneter+ (param val ue, par am nane)—One or more

For more information on the elements you can define within the
connecti on-fact ory element, see connection-factory.

<pool - par ans> Optional 1 Defines parameters that affect the behavior of the pool.

For more information on the elements you can define within the
pool - par ans element, see pool-params.

Optional 1 Sets behavior on WebLogic Server drivers.

For more information on the elements you can define within the
driver - par ans element, see driver-params.

Optional 1 DEPRECATED.

<driver- parans>

<acl - name>

A.1.5.1 connection-factory

The following table describes the elements you can define within a connect i on-
fact ory element.

ORACLE A-14

Table A-9 connection-factory Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required Maximum Description
? Number in File
Optional 1 Specifies the name of a JDBCDat aSour ceFact or yMBean in the

<factory-name>

config. xm file.

<connect i on- Optional 1

properties>

Specifies the connection properties for the connection factory.
Elements that can be defined for the connect i on- properties
element are:

user - nane—Optional. Used to override UserName in the
JDBCDataSourceFactoryMBean.

passwor d—Optional. Used to override Password in the
JDBCDataSourceFactoryMBean.

ur | —Optional. Used to override URL in the
JDBCDataSourceFactoryMBean.

driver-cl ass- nane—Optional. Used to override
DriverName in the JDBCDataSourceFactoryMBean
connecti on- par ans—Zero or more. Used to set
parameters which will be passed to the driver when making
a connection. Example:

<connect i on- par anms>

<par anet er >

<descri pti on>Desc of param

</ description>

<par am nane>f oo</ par am nane>
<par am val ue>xyz</ param val ue>

</ par anet er >

</ connect i on- par ams>

A.1.5.2 pool-params

The following table describes the elements you can define within a pool - par ams element.

ORACLE

A-15

Table A-10 pool-params Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required? Maximum Description

Number in File
<si 76- Optional 1 Defines parameters that affect the number of connections in the
par ans> pool.

initial-capacity—Optional. Theinitial-capacity
element defines the number of physical database connections
to create when the pool is initialized. The default value is 1.
max- capaci t y—Optional. The max- capaci ty element
defines the maximum number of physical database connections
that this pool can contain. Note that the JDBC Driver may
impose further limits on this value. The default value is 1.
capaci ty-increnent —Optional. The capaci ty-i ncr ement
element defines the increment by which the pool capacity is
expanded. When there are no more available physical
connections to service requests, the pool creates this number of
additional physical database connections and adds them to the
pool. The pool ensures that it does not exceed the maximum
number of physical connections as set by max- capaci ty. The
default value is 1.

shri nki ng- enabl ed—Optional. The shri nki ng- enabl ed
element indicates whether or not the pool can shrink back to its
i nitial-capacity when connections are detected to not be
in use.

shri nk- peri od- ni nut es—Optional. The shri nk- peri od-
m nut es element defines the number of minutes to wait before
shrinking a connection pool that has incrementally increased to
meet demand. The shri nki ng- enabl ed element must be set
to t r ue for shrinking to take place.

shrink-frequency- seconds—Optional.

hi ghest - num wai t er s—Optional.

hi ghest - num unavai | abl e—Optional.

ORACLE

A-16

Table A-10 (Cont.) pool-params Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

___|]
Description

Element

Required? Maximum
Number in File

<xa- par ans>

Optional

1

Defines the parameters for the XA DataSources.

debug- | evel —Optional. Integer. The debug- | evel element
defines the debugging level for XA operations. The default value
is 0.

keep-conn-until -t x-conpl et e- enabl ed—Optional.
Boolean. If you set the keep- conn-unti | -t x- conpl et e-
enabl ed element to t r ue, the XA connection pool associates
the same XA connection with the distributed transaction until
the transaction completes.

end- onl y- once- enabl ed—Optional. Boolean. If you set the
end- onl y- once- enabl ed element to t r ue, the

XAResour ce. end() method is only called once for each
pending XAResour ce. start () method.

recover - onl y- once- enabl ed—Optional. Boolean. If you set
the recover-only-once-enabled element to true, recover is only
called one time on a resource.

t X- cont ext - on- ¢l ose- needed—Optional. Set the t x-

cont ext - on- cl ose- needed element to t r ue if the XA driver
requires a distributed transaction context when closing various
JDBC objects (for example, result sets, statements,
connections, and so on). If setto t r ue, the SQL exceptions that
are thrown while closing the JDBC objects in no transaction
context are swallowed.

new- conn-f or-conmi t - enabl ed—Optional. Boolean. If you
set the new- conn-f or - commi t - enabl ed elementtotrue, a
dedicated XA connection is used for commit/rollback processing
of a particular distributed transaction.

<xa- par ams>
Conti nued. . .

Optional

1

pr epar ed- st at ement - cache- si ze—Deprecated. Optional.
Use the prepared-statement-cache-size element to set the size
of the prepared statement cache. The size of the cache is a
number of prepared statements created from a particular
connection and stored in the cache for further use. Setting the
size of the prepared statement cache to 0 turns it off.

Note: Pr epar ed- st at ement - cache- si ze is deprecated. Use
cache-si zeindriver- parans/ prepar ed- st at ement . See
driver-params for more information.

keep- | ogi cal - conn- open- on-r el ease—Optional. Boolean.
Set the keep- | ogi cal - conn- open- on-r el ease element to

t rue, to keep the logical JDBC connection open when the
physical XA connection is returned to the XA connection pool.
The default value is f al se.

| ocal -transacti on- support ed—Optional. Boolean. Set the
| ocal -transacti on-supportedtotrue if the XA driver
supports SQL with no global transaction; otherwise, set it to

f al se. The default value is f al se.

resour ce- heal t h-moni t or i ng- enabl ed—Optional. Set the
resour ce- heal t h-moni t ori ng- enabl ed element to t r ue to
enable JTA resource health monitoring for this connection pool.

ORACLE

A-17

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-10 (Cont.) pool-params Elements

Element Required? Maximum Description
Number in File

<Xa- par ans> Optional 1 e Xa-set-transaction-tinmeout —Optional.
Conti nued. . . Used in: xa-params
Example:

<xa-set-transaction-timeout>
true
</xa-set-transaction-timeout>
e Xa-transaction-timeout —Optional.

When the Xa- set -t ransacti on-ti meout value is set to true,
the transaction manager invokes setTransactionTimeout on the
resource before calling XAResource.start. The Transaction
Manager passes the global transaction timeout value. If this
attribute is set to a value greater than 0, then this value is used
in place of the global transaction timeout.

Default value: 0
Used in: xa-params
Example:
<xa-transaction-timeout >
30
</xa-transaction-tineout>
< rollback-1ocal t x-upon- conncl cse—Optional.

When the r ol | back-1 ocal t x- upon- conncl ose element is
true, the connection pool calls r ol | back() on the connection
before putting it back in the pool.

Default value: false

Used in: xa-params

Example:
<rollback-localtx-upon-connclose>

true </rollback-localtx-upon-connclose>

<l ogi n- Optional 1 Sets the number qf seconds to delay before creating each physical

del ay- data_base connection. Some Qatapase servers cannot ha_ndle

seconds> multiple request; fqr connections in rapid succession. This property
allows you to build in a small delay to let the database server catch
up. This delay occurs both during initial pool creation and during the
lifetime of the pool whenever a physical database connection is
created.

<| eak- Optional 1 Enables JDBC gonnection leak pr_ofiling. A connect_io_n leak occurs

orof i li ng- when a connection from the pool is ngt closed explicitly py calling

enabl ed> the ¢l ose() method on that connection. When connection leak

profiling is active, the pool stores the stack trace at the time the
connection object is allocated from the pool and given to the client.
When a connection leak is detected (when the connection object is
garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown
connection pool operations, so it is not recommended for production
use.

ORACLE A-18

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-10 (Cont.) pool-params Elements

Element Required? Maximum
Number in File

Description

<connection- Optional

check-
par ans>

. Defines whether, when, and how connections in a pool is
checked to make sure they are still alive.

« tabl e- name—Optional. The t abl e- narme element defines a
table in the schema that can be queried.

e check-on-reserve- enabl ed—Optional. If the check-on-
reserve-enabled element is set to true, then the connection will
be tested each time before it is handed out to a user.

« check-on-rel ease- enabl ed—Optional. If the check- on-

r el ease- enabl ed element is set to t r ue, then the connection
will be tested each time a user returns a connection to the pool.

« refresh-ni nut es—Optional. If the r ef r esh- m nut es
element is defined, a trigger is fired periodically (based on the
number of minutes specified). This trigger checks each
connection in the pool to make sure it is still valid.

« check-on-creat e- enabl ed—Optional. If setto t r ue, then
the connection will be tested when it is created.

e connection-reserve-tinmeout - seconds—Optional.
Number of seconds after which the call to reserve a connection
from the pool will timeout.

e connection-creation-retry-frequency-seconds—
Optional. The frequency of retry attempts by the pool to
establish connections to the database.

e inactive-connection-tineout-seconds—Optional. The
number of seconds of inactivity after which reserved
connections will forcibly be released back into the pool.

<connection- Optional

check-
par ans>
Conti nued. . .

e test-frequency-seconds—Optional. The number of
seconds between database connection tests. After every test-
frequency-seconds interval, unused database connections are
tested using t abl e- name. Connections that do not pass the
test will be closed and reopened to re-establish a valid physical
database connection. If t abl e- nane is not set, the test will not
be performed.

e init-sqgl —Optional. Specifies a SQL query that automatically
runs when a connection is created.

<j dbcxa- Optional

debug- | evel >

This is an internal setting.

<r enove- Optional

i nfected-
connecti ons-
enabl ed>

Controls whether a connection is removed from the pool when the
application asks for the underlying vendor connection object.
Enabling this attribute has an impact on performance; it essentially
disables the pooling of connections (as connections are removed
from the pool and replaced with new connections).

A.1.5.3 driver-params

The following table describes the elements you can define within a dri ver - par ams element.

ORACLE

A-19

Table A-11 driver-params Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required Maximum Description
? Number in
File
<st at ement > Optional 1 Defines the dri ver - par anms statement. Contains the following
optional element: profi | i ng- enabl ed.

Example:

<st at ement >

<profiling-enabl ed>true

</ profiling-enabl ed>

</ st at ement >

< Optional 1 Enables the running of JDBC prepared statement cache profiling.
pr epar ed- - .
st at enent When enabled, prepared statemept cac_he_ profiles are stored in
external storage for further analysis. This is a resource-

consuming feature, so it is recommended that you turn it off on a

production server. The default value is false.

« profiling-enabl ed—Optional.

e cache-profiling-threshol d—Optional. The cache-
profiling-threshol d element defines a number of
statement requests after which the state of the prepared
statement cache is logged. This element minimizes the
output volume. This is a resource-consuming feature, so it is
recommended that you turn it off on a production server.

e cache- si ze—Optional. The cache- si ze element returns
the size of the prepared statement cache. The size of the
cache is a number of prepared statements created from a
particular connection and stored in the cache for further use.

e paraneter-1|oggi ng- enabl ed—Optional. During SQL
roundtrip profiling it is possible to store values of prepared
statement parameters. The par anet er - | oggi ng- enabl ed
element enables the storing of statement parameters. This is
a resource-consuming feature, so it is recommended that you
turn it off on a production server.

e max- paranet er-| engt h—Optional. During SQL roundtrip
profiling it is possible to store values of prepared statement
parameters. The max- par anet er - | engt h element defines
maximum length of the string passed as a parameter for
JDBC SQL roundtrip profiling. This is a resource-consuming
feature, so you should limit the length of data for a parameter
to reduce the output volume.

e cache-type—Optional.

Optional 1 Specifies whether to enable row prefetching between a client and

<row- prefetch-
enabl ed>

WebLogic Server for each ResultSet.

When an external client accesses a database using JDBC
through Weblogic Server, row prefetching improves performance
by fetching multiple rows from the server to the client in one
server access. WebLogic Server ignores this setting and does not
use row prefetching when the client and WebLogic Server are in
the same JVM

ORACLE

A-20

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-11 (Cont.) driver-params Elements
]

Element Required Maximum Description
? Number in
File
Optional 1 Specifies the number of result set rows to prefetch for a client.

<row prefetch-
si ze> The optimal value depends on the particulars of the query. In

general, increasing this number increases performance, until a
particular value is reached. At that point further increases do not
result in any significant increase in performance.

Note: Typically you will not see any increase in performance after
100 rows. The default value should be adequate for most
situations.

Valid values for this element are between 2 and 65536. The
default value is 48.

Optional 1 Specifies the data chunk size for streaming data types, which are

<stream chunk- . .
! pulled from WebLogic Server to the client as needed.

size>

A.1.6 security

The following table describes the elements you can define within a security element.

Table A-12 security Elements

Element Required? Maximum Description
Number in File

Optional 1 Names a security realm to be used by the application. If

<r eal m nane> A e)
none is specified, the system default realm is used

. Optional Unbounded Declares a mapping between an application-wide security
<security-role- | d WebLoaic S incioal
assi gnnent > role and one or more WebLogic Server principals.
Example:

<security-rol e-assi gnnent >
<rol e- nane>
Payr ol | Adni n
</rol e- nane>
<pri nci pal - name>
Tanya
</ pri nci pal - nane>
<pri nci pal - name>
Fred
</ pri nci pal - nane>
<pri nci pal - name>
system
</ princi pal - nane>
</security-rol e-assi gnnent >

ORACLE A-21

Appendix A
weblogic-application.xml Deployment Descriptor Elements

A.1.7 application-param

The following table describes the elements you can define within a appl i cati on-
par amelement.

Table A-13 application-param Elements

Element Required? Maximum Description
Number in File

<description> Optional 1 Provides a description of the application parameter.
<par am nane> Required 1 Defines the name of the application parameter.
Required 1 Defines the value of the application parameter.

<param val ue>

A.1.8 classloader-structure

The following table describes the elements you can define within a cl assl oader -
structure element.

Table A-14 classloader-structure Elements

Element Required? Maximum Description
Number in File

Optional Unbounded The following list describes the elements you can define

<modul e-ref> L
within a nodul e-r ef element:

« nodul e- uri —Zero or more. Defined within the
nodul e-ref element.

Optional Unbounded Allows for arbitrary nesting of classloader structures for an
application. However, for this version of WebLogic Server,
the depth is restricted to three levels.

<cl assl oader -
structure>

A.1.9 listener

The following table describes the elements you can define within a | i st ener element.

Table A-15 listener Elements

L ___|]
Element Required? Maximum Number in File Description

Required 1 Name of the user's
implementation of
ApplicationLifecycl el
i stener.

<listener-cl ass>

ORACLE A-22

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-15 (Cont.) listener Elements

__|]
Element Required? Maximum Number in File Description

Optional 1 A JAR file within the EAR
that contains the
implementation. If you do
not specify the | i st ener -
uri, itis assumed that the
class is visible to the
application.

<l'istener-uri>

Optional 1 Specific a user identity to
startup and shutdown
application lifecycle events.
The identity specified here
should be a valid user
name in the system. If
run-as- princi pal - nane
is not specified, the
deployment initiator user
identity will be used as the
I un- as identity for the
execution of the application
lifecycle listener.

Note: If the r un- as-
princi pal - name identity
defined for the application
lifecycle listener is an
administrator, the
application deployer must
have administrator
privileges; otherwise,
deployment will fail.

<run-as- princi pal - nane>

A.1.10 singleton-service

The following table describes the elements you can define within a si ngl et on- servi ce
element.

Table A-16 singleton-service Elements

Element Required Maximum Description
? Number in
File
<cl ass- name> Required 1 Defines the name of the class to be run when the application is being
deployed.
<si ngl et on- Optional 1 Defines a JAR file within the EAR that contains the si ngl et on-
uri > service. If si ngl et on-uri is not defined, then its assumed that

the class is visible to the application.

A.1.11 startup

The following table describes the elements you can define within a st art up element.

ORACLE A-23

Appendix A
weblogic-application.xml Deployment Descriptor Elements

< Note:

Application-scoped startup and shutdown classes have been deprecated as
of release 9.0 of WebLogic Server. Instead, you should use lifecycle listener
events in your applications. For details, see Programming Application Life
Cycle Events.

Table A-17 startup Elements
]

Element Require Maximum Number Description
d? in File
< Required 1 Defines the name of the class to be run when the application is
startup- beina deploved
cl ass> eing deployed.
<startup- Optional 1 Defines a JAR file within the EAR that contains the st ar t up-
uri > cl ass. If startup-uri is not defined, then its assumed that the

class is visible to the application.

A.1.12 shutdown

The following table describes the elements you can define within a shut down element.

" Note:

Application-scoped startup and shutdown classes have been deprecated as
of release 9.0 of WebLogic Server. Instead, you should use lifecycle listener
events in your applications. For details, see Programming Application Life
Cycle Events.

Table A-18 shutdown Elements
]

Element Required Maximum Description
Optional Number in
File
<shut down- Required 1 Defines the name of the class to be run when the application is
cl ass> undeployed.
<shut down-uri > Optional 1 Defines a JAR file within the EAR that contains the shut down-

cl ass. If you do not define the shut down- uri element, it is
assumed that the class is visible to the application.

A.1.13 work-manager

The following table describes the elements you can define within a work-manager
element.

See Using Work Managers to Optimize Scheduled Work for examples and information
on Work Managers.

ORACLE A-24

Table A-19 work-manager Elements

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Element Required Maximum Description
? Number in
File
<nane> Required 1 The name of the Work Manager.
<response-ti me- Optional 1 See the (_jescrlptlon of th(_a <response- ti me- eque_st >
re element in weblogic-application for information on this child
quest - cl ass>
element of <wor k- manager >.
If you specify this element, you cannot also specify <f ai r -
shar e-request - cl ass>, <cont ext - r equest - cl ass>, or
<request - cl ass- nane>.
<fair-share- Optional 1 See the description of the <f ai r - shar e- r equest > element
request - ¢l ass> in weblogic-application for information on this child element of
<wor k- manager >.
If you specify this element, you cannot also specify
<response-ti me-request-cl ass>, <cont ext - r equest -
cl ass>, or <request - cl ass- nane>.
<cont ext - r equest - Optional 1 See theT descr'lptlc.)n of th.e <cont.ext -r eques.t > element in
cl ass> weblogic-application for information on this child element of
<wor k- manager >.
If you specify this element, you cannot also specify <f ai r -
share-request - cl ass>, <response-ti ne-request -
cl ass>, or <request - cl ass- nane>.
<r equest - ¢l ass- Optional 1 The name of the request class. .
name> If you specify this element, you cannot also specify <f ai r -
shar e-request - cl ass>, <cont ext - r equest - cl ass>, or
<response-time-request-cl ass>.
<mi n- 1 hr eads- Optional 1 See the description of the <mi n-t hr eads- const rai nt >
const raint > element in weblogic-application for information on this child
element of <wor k- manager >.
If you specify this element, you cannot also specify <ni n-
t hreads- constrai nt - nane>.
<ni n-t hr eads- Optional 1 The name of the min-threads constraint. .
const r ai nt - name> If you specify this element, you cannot also specify <m n-
t hreads- constrai nt >.
<max- 1 hr eads- Optional 1 See the description of the <max-t hr eads- const r ai nt >
constraint> element in weblogic-application for information on this child
element of <wor k- manager >.
If you specify this element, you cannot also specify <max-
t hreads- constrai nt - nane>.
Optional 1 The name of the max-threads constraint.

<max-t hreads-
constrai nt - nane>

If you specify this element, you cannot also specify <max-
t hreads- constrai nt >.

ORACLE

A-25

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-19 (Cont.) work-manager Elements

Element Required Maximum Description
? Number in
File
<capaci ty> Optional 1 See the description of the <capaci t y> element in weblogic-
application for information on this child element of <wor k-
manager >.

If you specify this element, you cannot also specify
<capaci ty- nane>.

<capaci ty- name> Optional 1 The name of the thread capacity constraint.

If you specify this element, you cannot also specify

<capaci ty>.
< Optional 1 Used to specify a Stuck Thread Work Manager component that
work- manager hut down the Work Manager in response to stuck
shut down- t ri gger > fr?rr:easd: W geri p u

You can specify the following child elements:

« max-stuck-thread-ti me—The maximum amount of
time, in seconds, that a thread should remain stuck.

« stuck-thread- count —Number of stuck threads that
triggers the stuck thread work manager.

If you specify this element, you cannot also specify <i gnor e-

st uck-threads>.

Optional 1 Specifies whether the Work Manager should ignore stuck

<i gnor e- st uck-)
g threads and never shut down even if threads become stuck.

t hreads>
If you specify this element, you cannot also specify <wor k-
manager - shut down-tri gger>.

A.1.14 session-descriptor

The following table describes the elements you can define within a session-descriptor
element.

Table A-20 session-descriptor Elements

Element Require Maximum Description
d? Number in
File
Optional 1 Specifies the number of seconds after which the session times

<timeout -secs>
out.

Default value is 3600 seconds.

Optional 1 Specifies the number of seconds of the invalidation trigger

<i nvalidation-)
interval.

interval -secs>
Default value is 60 seconds.

Optional 1 Specifies whether debugging is enabled for HTTP sessions.

<debug- enabl ed>
Default value is f al se.

Optional 1 Specifies the length of the session ID.
Default value is 52.

<i d- | engt h>

ORACLE A-26

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-20 (Cont.) session-descriptor Elements

Element Require Maximum Description
d? Number in
File
<tr acki ng- enabl ed> Optional 1 Specifies whether session tracking is enabled between HTTP
requests.
Default value ist r ue.
<cache- si ze> Optional 1 Specifies the cache size for JDBC and file persistent sessions.
Default value is 1028.
<nBx-1i n- menor y- Optional 1 Spec_lfles the maximum sessions limit for memory/replicated
sessi ons> SESSIoNS.
Default value is -1, or unlimited.
<cooki es- enabl ed> Optional 1 Specifies the Web application container should set cookies in
the response.
Default value ist r ue.
<cooki e- nane> Optional 1 Specifies the name of the cookie that tracks sessions.
Default name is JSESSI ONI D.
<cooki e- pat h> Optional 1 Specifies the session tracking cookie path.
Default value is / .
<cooki e- domai n> Optional 1 Specifies the session tracking cookie domain.
Default value is nul | .
<cooki e- coment > Optional 1 Specifies the session tracking cookie comment.
Default value is nul | .
<cooki e- secur e> Optional 1 Specifies whether the session tracking cookie is marked secure.
Default value is f al se.
<cooki e- max- age- Optional 1 Specifies that maximum age of the session tracking cookie.
secs> Default value is - 1, or unlimited.
<persi stent - store- Optional 1 Specifies the type of storage for session persistence.
type> You can specify the following values:
e menory—Default value.
e replicat ed—Requires clustering.
e replicated_if_clustered—Defaults to nenory in non-
clustered case.
- file
e jdbc
e cookie
<persi stent - st or e- Optional 1 Spgmflles the;:ame pf tr::eogi?lgebthatdholds _the attrll_)utte name
cooki e- name> and values when using -based session persistence.
Default value is W.COXKI E.
Optional 1 Specifies the name of the directory when using fi | e-based

<persistent-store-
dir>

session persistence. The directory is relative to the temporary
directory defined for the Web application.

Default value is sessi on_db.

ORACLE

A-27

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-20 (Cont.) session-descriptor Elements

Element Require Maximum Description
d? Number in
File
<persi stent - st or e- Optional 1 Specifies the name of the JDBC connection pool when using
pool > j dbc-based session persistence.
<per si st ent - st or e- Optional 1 Specifies the name of the database table when using j dbc-
t abl e> based session persistence.
Default value is W _servl et _sessi ons.
<j dbe- col um- nane- Optional 1 Alternative name for the W _max_i nacti ve_i nterval column
mBx- i nacti ve- name when using j dbc-based session persistence. Required
interval > for certain databases that do not support long column names
<j dbc- connect i on- Optional 1 DEPRECATED
ti meout - secs>
<url -rewriting- Optional 1 Specifies whether URL rewriting is enabled.
enabl ed> Default value is t r ue.
<ht t p- pr oxy- Optional 1 Specifies whether WebLogic Server adds the following HTTP
cachi ng- of - cooki es> header to the response:
Cache-control : no-cache=set-cookie
This header specifies that proxy caches should not cache the
cookies.
Default value is t r ue, which means that the header is NOT
added. Set this element to f al se if you want the header added
to the response.
<encode- sessi on-ig- ©Ptional 1 Specifies whether WebLogic Server should encode the session
i n- query- par ans> ID in the path parameters.
Default value is f al se.
<noni tor i ng- Optional 1 Used to tag runtime information for different sessions. For
attribut e- name> example, set this element to user nane if you have a user nane
attribute that is guaranteed to be unique.
Optional 1 Specifies whether HTTP sessions are shared across multiple

<shari ng- enabl ed>

Web applications.
Default value is f al se.

A.1.15 library-ref

The following table describes the elements you can define within al i brary-r ef
element.

See Creating Shared Java EE Libraries and Optional Packages, for additional

information and examples.

ORACLE

A-28

Appendix A
weblogic-application.xml Deployment Descriptor Elements

Table A-21 library Elements
]

Element Required? Maximum Description
Number in File

<li brary- name> Required 1 Specifies the name of the referenced shared Java EE library.
<speci fi cati on- Optional 1 Specifies the minimum specification-version required.
versi on>
<i npl ement at i on- Optional 1 Specifies the minimum implementation-version required.
versi on>

Optional 1 Specifies whether there must be an exact match between the

<exact - mat ch>

specification and implementation version that is specified
and that of the referenced library.

Default value is f al se.

<cont ext - root >

Optional 1 Specifies the context-root of the referenced Web
application's shared Java EE library.

A.1.16 library-context-root-override

The following table describes the elements you can define within a | i brary- cont ext - r oot -
override element to override cont ext - r oot elements within a referenced EAR library. See
library-ref.

See Creating Shared Java EE Libraries and Optional Packages, for additional information
and examples.

Table A-22 library-context-root-override Elements
]

Element Require Maximum Description
d? Number in
File
<cont ext - Optional 1 Overrides the cont ext - r oot elements declared in libraries. In the
root > absence of this element, the library's cont ext - r oot is used.

Only a referencing application (for example, a user application) can
override the cont ext - r oot elements declared in its libraries.

<overri de-
val ue>

Optional 1 Specifies the value of the | i brary- cont ext - r oot - overri de element

when overriding the cont ext - r oot elements declared in libraries. In
the absence of these elements, the library's cont ext - r oot is used.

A.1.17 fast-swap

ORACLE

The following table describes the elements you can define within a f ast - swap element.

For more information about FastSwap Deployment, see Using FastSwap Deployment to
Minimize Redeployment in Deploying Applications to Oracle WebLogic Server.

A-29

Table A-23 fast-swap Elements

Appendix A
weblogic-application.xml Schema

Element Required Maximum Description
? Number in File
<enabl ed> Optional 1 Set t_o t rue to enable FastSwap deployment in your
application.
Optional 1 FastSwap checks for changes in application classes when an

<refresh-interval >

incoming HTTP request is received. Subsequent HTTP
requests arriving within the r ef resh-i nt erval seconds will
not trigger a check for changes. The first HTTP request
arriving after the r ef resh-i nt erval seconds have passed,
will cause FastSwap to perform a class-change check again.

<redefinition- Optional 1

task-1imt>

FastSwap class redefinitions are performed asynchronously
by redefinition tasks. They can be controlled and inspected
using JMX interfaces.

Specifies the number of redefinition tasks that will be retained
by the FastSwap system. If the number of tasks exceeds this
limit, older tasks are automatically removed.

A.2 weblogic-application.xml Schema

See http://xm ns. oracl e. com webl ogi c/ webl ogi c-appl i cation/1. 6/ webl ogi c-
appl i cation. xsd for the XML Schema of the webl ogi c- appl i cati on. xm deployment

descriptor file.

A.3 application.xml Schema

For more information about appl i cati on. xnl deployment descriptor elements, see the
Java EE 6 schema available at htt p: / / www. or acl e. com’ webf ol der/
technetwor k/j sc/ xm / ns/javaee/ application_7. xsd.

ORACLE

A-30

http://xmlns.oracle.com/weblogic/weblogic-application/1.6/weblogic-application.xsd
http://xmlns.oracle.com/weblogic/weblogic-application/1.6/weblogic-application.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd
http://www.oracle.com/webfolder/technetwork/jsc/xml/ns/javaee/application_7.xsd

wldeploy Ant Task Reference

Learn about the different tools to deploy applications and standalone modules to WebLogic
Server.
This chapter includes the following sections:

Overview of the wldeploy Ant Task
Basic Steps for Using wideploy
Sample build.xml Files for wideploy

wldeploy Ant Task Attribute Reference

B.1 Overview of the wideploy Ant Task

The w depl oy Ant task enables you to perform webl ogi c. Depl oyer functions using attributes
specified in an Ant XML file.

You can use w depl oy along with other WebLogic Server Ant tasks to create a single Ant
build script that:

Builds your application from source, using W conpi | e, appc, and the Web services Ant
tasks.

Creates, starts, and configures a new WebLogic Server domain, using the w server and
w confi g Ant tasks.

Deploys a compiled application to the newly-created domain, using the w depl oy Ant
task.

See Using Ant Tasks to Configure and Use a WebLogic Server Domain, for more information
about W server and w confi g. See Building Applications in a Split Development Directory, for
information about W conpi | e.

B.2 Basic Steps for Using wldeploy

To use the wideploy Ant task you must perform several required and some optional steps.

1.

ORACLE

Set your environment.

On Windows platforms, execute the set W.SEnv. cnd command, located in the directory
W._HOME\ server\ bi n, where W._HOME is the top-level directory of your WebLogic Server
installation.

On UNIX, execute the set W.SEnv. sh command, located in the directory W._HOVE/ ser ver/
bi n, where W._HOME is the top-level directory of your WebLogic Server installation.

B-1

Appendix B
Sample build.xml Files for wideploy

< Note:

On UNIX operating systems, the set W.SEnv. sh command does not set
the environment variables in all command shells. Oracle recommends
that you execute this command using the Korn shell or bash shell.

2. In the staging directory, create the Ant build file (bui | d. xn by default). If you want
to use an Ant installation that is different from the one installed with WebLogic
Server, start by defining the wl depl oy Ant task definition:

<t askdef name="w depl oy"
cl assname="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >

3. If necessary, add task definitions and calls to the wl server and w confi g tasks in
the build script to create and start a new WebLogic Server domain. See Using Ant
Tasks to Configure and Use a WebLogic Server Domain, for information about
w server and w confi g.

4. Add a call to W depl oy to deploy your application to one or more WebLogic Server
instances or clusters. See Sample build.xml Files for wideploy and wideploy Ant
Task Attribute Reference.

5. Execute the Ant task or tasks specified in the bui | d. xn file by typing ant in the
staging directory, optionally passing the command a target argument:

pronpt > ant

B.3 Sample build.xml Files for wideploy

ORACLE

Examine these sample bui | d. xm files which show how to deploy an application on a
single WebLogic Server instance, undeploy the application, perform a partial redeploy
of the application, undeploy a particular file in the application, and deploy a Java EE
library.

The following example shows a w depl oy target that deploys an application to a single
WebLogic Server instance:

<target nane="depl oy">
<wl depl oy
action="depl oy" verbose="true" debug="true"
nanme="Depl oyExanpl e" sour ce="out put/redepl oyEAR'
user ="webl ogi ¢" passwor d="webl ogi c"
admi nurl ="t 3://1ocal host: 7001" targets="nyserver" />
</target>

The following example shows a corresponding task to undeploy the application; the
example shows that when you undeploy or redeploy an application, you do not specify
the source archive file or exploded directory, but rather, just its deployed name:

<target name="undepl oy">
<wl depl oy

action="undepl oy" verbose="true" debug="true"
nanme="Depl oyExanpl e"
user ="webl ogi ¢c" passwor d="webl ogi c"
adm nurl ="t 3://1 ocal host: 7001" targets="nyserver"
failonerror="fal se" />

</target>

B-2

Appendix B
wideploy Ant Task Attribute Reference

The following example shows how to perform a partial redeploy of the application; in this
case, just a single WAR file in the application is redeployed:

<target nanme="redepl oy_partial ">
<wl depl oy
action="redepl oy" verbose="true"
nanme="Depl oyExanpl e"
user ="webl ogi ¢c" passwor d="webl ogi c"
adm nurl ="t 3://1ocal host: 7001" targets="nyserver"
del t aFi | es="exanpl es/ gener al / r edepl oy/ Si npl el npl . war" />
</target>

The following example uses the nested <fi | es> child element of W depl oy to specify a
particular file in the application that should be undeployed:

<target nane="undepl oy_partial ">
<w depl oy
action="undepl oy" verbose="true" debug="true"
nane="Depl oyExanpl e"
user ="webl ogi ¢c" passwor d="webl ogi c"
admi nurl ="t 3://1 ocal host: 7001" targets="nyserver"
failonerror="fal se">
<files
dir="${current-dir}/output/redepl oyEAR exanpl es/ general / r edepl oy"
i ncl udes="Si nplelnpl.jsp" />
</ wl depl oy>
</target>

The following example shows how to deploy a Java EE library called nyLi brary whose
source files are located in the out put / nyLi br ary directory:

<target name="depl oy">
<w depl oy action="depl oy" nanme="nyLi brary"
sour ce="out put/ myLi brary" library="true"
user ="webl ogi ¢c" passwor d="webl ogi c"
verbose="true" adminurl="t3://|ocal host: 7001"
target s="nyserver" />
</target>

B.4 wideploy Ant Task Attribute Reference

The following sections describe the attributes and child element <f i | es> of the W depl oy Ant
task.

B.4.1 Main Attributes

The following table describes the main attributes of the wl depl oy Ant task.

These attributes mirror some of the arguments of the webl ogi c¢. Depl oyer command. Oracle
provides an Ant task version of the webl ogi c. Depl oyer command so that developers can
easily deploy and test their applications as part of the iterative development process.
Typically, however, administrators use the webl ogi c. Depl oyer command, and not the

w depl oy Ant task, to deploy applications in a production environment. For that reason, see
the weblogic.Deployer Command-Line Reference in Deploying Applications to Oracle
WebLogic Server for the full and complete definition of the attributes of the wl depl oy Ant
task. The table below is provided just as a quick summary.

ORACLE B-3

Appendix B
wldeploy Ant Task Attribute Reference

Table B-1 Attributes of the wideploy Ant Task

Attribute Description Data
Type
action The deployment action to perform. String
Valid values are depl oy, cancel , undepl oy, redepl oy, di stribute, start, and
st op.
adminmode Specifies that the deployment action puts the application into Administration mode. Boolean

Administration mode restricts access to an application to a configured Administration
channel.

Valid values for this attribute are t r ue and f al se. Default value is f al se, which means
that by default the application is deployed in production mode so that all clients can
access it immediately.

adminurl The URL of the Administration Server. String

The format of the value of this attribute is pr ot ocol : // host : port, where pr ot ocol is
either htt p or t 3, host is the host on which the Administration Server is running, and
port is the port which the Administration Server is listening.

Note: In order to use the HTTP protocol, you must enable the http tunnelling option in
the WebLogic Server Administration Console.

allversions Specifies that the action (redeploy, stop, and so on) applies to all versions of the Boolean
application.

Valid values for this attribute are t r ue and f al se. The default value is f al se.

altappdd Specifies the name of an alternate Java EE deployment descriptor (appl i cati on. xm) String
to use for deployment.
If you do not specify this attribute, and you are deploying an enterprise application, the
default deployment descriptor is called appl i cati on. xm and is located in the META-
INF subdirectory of the main application directory or archive (specified by the sour ce
attribute.)

altwlsappdd Specifies the name of an alternate WebLogic Server deployment descriptor (webl ogi ¢c- String
appl i cation. xn) to use for deployment.

If you do not specify this attribute, and you are deploying an enterprise application, the
default deployment descriptor is called webl ogi c- appl i cation. xm and is located in
the META-INF subdirectory of the main application directory or archive (specified by the
sour ce attribute.)

appversion The version identifier of the deployed application. String
debug Enable W depl oy debugging messages. Boolean
deleteFiles Specifies whether to remove static files from a server's staging directory. Boolean

This attribute is valid only for unarchived deployments, and only for applications
deployed using st age mode. You must specify target servers when using this attribute.

Specifying the del et eFi | es attributes indicates that WebLogic Server should remove
only those files that it copied to the staging area during deployment.

This attribute can be used only in combination with act i on="r edepl oy".

Because the del et eFi | es attribute deletes all specified files, Oracle recommends that
you use caution when using the del et eFi | es attribute and that you do not use it in
production environments.

Valid values for this attribute are true and false. Default value is false.

ORACLE B-4

Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task
]

Attribute Description Data
Type
deltaFiles Specifies a comma- or space-separated list of files, relative to the root directory of the String

application, which are to be redeployed.

Use this attribute only in conjunction with act i on="r edepl oy" to perform a partial
redeploy of an application.

enableSecuri
tyValidation

Specifies whether or not to enable validation of security data. Boolean
Valid values for this attribute are true and false. Default value is false.

externalStag
e

Specifies whether the deployment uses ext er nal _st age deployment mode. Boolean

In this mode, the Ant task does not copy the deployment files to target servers; instead,
you must ensure that deployment files have been copied to the correct subdirectory in
the target servers' staging directories.

You can specify only one of the following attributes: st age, nost age, or

ext ernal _stage. If none is specified, the default deployment mode to Managed
Servers is st age; the default mode to the Administration Server and in single-server
cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

failonerror This is a global attribute used by WebLogic Server Ant tasks. It specifies whether the Boolean
task should fail if it encounters an error during the build.
Valid values for this attribute are true and false. Default value is true.

graceful Stops the application after existing HTTP clients have completed their work. Boolean
You can use this attribute only when stopping or undeploying an application, or in other
words, you must also specify either the act i on="st op" or acti on="undepl oy"
attributes.
Valid values for this attribute are t r ue and f al se. Default value is f al se.

id Identification used for obtaining status or cancelling the deployment. String

You assign a unique ID to an application when you deploy it, and then subsequently use
the ID when redeploying, undeploying, stopping, and so on.

If you do not specify this attribute, the Ant task assigns a unique ID to the application.

ignoresessio
ns

This option immediately places the application into Administration mode without waiting Boolean
for current HTTP sessions to complete.

You can use this attribute only when stopping or undeploying an application, or in other
words, you must also specify either the act i on="st op" or acti on="undepl oy"
attributes.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

libimplVer

Specifies the implementation version of a Java EE library or optional package. String

This attribute can be used only if the library or package does not include a
implementation version in its manifest file. You can specify this attribute only in
combination with the | i brary attribute.

See Creating Shared Java EE Libraries and Optional Packages.

library

Identifies the deployment as a shared Java EE library or optional package. You must Boolean
specify the | i brary attribute when deploying or distributing any Java EE library or
optional package.

Valid values for this attribute are t r ue and f al se. Default value is f al se.
See Creating Shared Java EE Libraries and Optional Packages.

ORACLE B-5

Appendix B
wldeploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task

Attribute Description Data
Type
libSpecVer Provides the specification version of a Java EE library or optional package. String

This attribute can be used only if the library or package does not include a specification
version in its manifest file. You can specify this attribute only in combination with the
I'i brary attribute.

See Creating Shared Java EE Libraries and Optional Packages.

name The deployment name for the deployed application. String

If you do not specify this attribute, WebLogic Server assigns a deployment name to the
application, based on its archive file or exploded directory.

nostage Specifies whether the deployment uses nostage deployment mode. Boolean
In this mode, the Ant task does not copy the deployment files to target servers, but

leaves them in a fixed location, specified by the sour ce attribute. Target servers access
the same copy of the deployment files.

You can specify only one of the following attributes: st age, nost age, or

ext ernal _stage. If none is specified, the default deployment mode to Managed
Servers is st age; the default mode to the Administration Server and in single-server
cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

noversion Indicates that the Wl depl oy Ant task should ignore all version related code paths on the Boolean
Administration Server. This behavior is useful when deployment source files are located
on Managed Servers (not the Administration Server) and you want to use the
external_stage staging mode.
If you use this option, you cannot use versioned applications.

Valid values for this attribute are true and false. Default value is false.

nowait Specifies whether wl depl oy returns immediately after making a deployment call (by Boolean
deploying as a background task).

partition Specifies the name of the partition associated with the resource group on which you String
want to perform deployment actions for an application or library.

You can specify the partition attribute for the following deployment actions: deploy,
undeploy, redeploy, distribute, start, and stop.

The partition attribute is optional for partition administrators.

For more information about deploying applications to partition resource groups, see
Deploying Applications in Using WebLogic Server MT.

password The administrative password. String

To avoid having the plain text password appear in the build file or in process utilities
such as ps, first store a valid user name and encrypted password in a configuration file
using the WebLogic Scripting Tool (WLST) st or eUser Conf i g command. Then omit
both the user nane and passwor d attributes in your Ant build file. When the attributes
are omitted, W depl oy attempts to login using values obtained from the default
configuration file.

If you want to obtain a user name and password from a non-default configuration file
and key file, use the user confi gfi | e and userkeyfi | e attributes with wl depl oy.

See the command reference for st or eUser Confi g in the WLST Command Reference
for WebLogic Server for more information on storing and encrypting passwords.

plan Specifies a deployment plan to use when deploying the application or module. String

By default, Wl depl oy does not use an available deployment plan, even if you are
deploying from an application root directory that contains a plan.

ORACLE B-6

Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task
]

Attribute

Description Data
Type

planversion

The version identifier of the deployment plan. String

remote

Specifies whether the server is located on a different machine. This affects how Boolean
filenames are transmitted.

Valid values for this attribute are t r ue and f al se. Default value is f al se, which means

that the Ant task assumes that all source paths are valid paths on the local machine.

removePlan
Override

Removes an overridden deployment plan during a redeploy or update deployment String
action.

For applications or libraries deployed to a resource group, you can override the default
application configuration defined in the resource group template that the resource group
references. To remove an application override, specify the removePlanOverride
attribute.

You can specify the removePlanOverride attribute for the redeploy deployment actions.

For more information about overriding application configuration, see Overriding
Application Configuration in Using WebLogic Server MT.

resourceGro
up

Specifies the name of the resource group at the partition or domain level on which you | String
want to perform deployment actions for an application or library.

For deploy, and distribute actions, you must specify the name of the resource group to
which you want to deploy or distribute applications or libraries by setting the
resourceGroup attribute. For partitions, if only one resource group exists in the specified
partition, then the resourceGroup attribute is optional.

For other supported deployment actions, you do not specify the resourceGroup
attribute, as WebLogic Server derives the resource group from the unique application
name.

For more information about deploying applications to resource groups at the domain or

partition level, see Deploying Applications to Partition Resource Groups in Deploying
Applications to Oracle WebLogic Server.

resourceGro
upTemplate

Specifies the name of the resource group template to which you want to perform a String
deployment action for an application or library.

You can specify the resourceGroupTemplate attribute with the following deployment
actions: deploy, undeploy, redeploy, and distribute.

For more information about deploying applications to resource group templates, see
Application Deployment with Resource Group Templates in Deploying Applications to
Oracle WebLogic Server.

retiretimeout

Specifies the number of seconds before WebLogic Server undeploys the currently- int
running version of this application or module so that clients can start using the new
version.

It is assumed, when you specify this attribute, that you are starting, deploying, or
redeploying a new version of an already-running application.

See Redeploying Applications in a Production Environment.

ORACLE 5

Appendix B
wldeploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task
]

Attribute

Description Data
Type

securityMod
el

Specifies the security model to use for this deployment. Possible security models are: String
» Deployment descriptors only

e Customize roles

e Customize roles and policies

* Security realm configuration (advanced model)

Valid actual values for this attribute are DDOnl y, Cust onRol es,

Cust onmRol esAndPol i cy, or Advanced.

See Options for Securing Web application and EJB Resources for more information on
these security models.

source

The archive file or exploded directory to deploy. File

stage

Specifies whether the deployment uses stage deployment mode. Boolean
In this mode, the Ant task copies deployment files to target servers' staging directories.

You can specify only one of the following attributes: st age, nost age, or

ext ernal _st age. If none is specified, the default deployment mode to Managed
Servers is st age; the default mode to the Administration Server and in single-server
cases is nost age.

See Controlling Deployment File Copying with Staging Modes.

submoduleta
rgets

Specifies JIMS server targets for resources defined within a JMS application module. String
The value of this attribute is a comma-separated list of JMS server names.
See Using Sub-Module Targeting with IMS Application Modules.

targets

The list of target servers to which the application is deployed. String

The value of this attribute is a comma-separated list of the target servers, clusters, or
virtual hosts.

If you do not specify a target list when deploying an application, the target defaults to the
Administration Server instance.

timeout

The maximum number of seconds to wait for a deployment to succeed. int

upload

Specifies whether the source file(s) are copied to the Administration Server's upload Boolean
directory prior to deployment.

Use this attribute when you are on a remote machine and you cannot copy the
deployment files to the Administration Server by other means.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

usenonexclu
sivelock

Specifies that the deployment action (deploy, redeploy, stop, and so on) uses the Boolean
existing lock on the domain that has already been acquired by the same user performing
the action.

This attribute is particularly useful when the user is using multiple deployment tools (Ant
task, command line, WebLogic Server Administration Console, and so on)
simultaneously and one of the tools has already acquired a lock on the domain.

Valid values for this attribute are t r ue and f al se. Default value is f al se.

user

The administrative user name. String

ORACLE B-8

Appendix B
wideploy Ant Task Attribute Reference

Table B-1 (Cont.) Attributes of the wideploy Ant Task

__|]
Attribute Description Data

Type

userconfigfile Specifies the location of a user configuration file to use for obtaining the administrative ~ String
user name and password. Use this option, instead of the user and passwor d attributes,
in your build file when you do not want to have the plain text password shown in-line or
in process-level utilities such as ps.

Before specifying the user confi gf i | e attribute, you must first generate the file using
the WebLogic Scripting Tool (WLST) st or eUser Conf i g command as described in the
WLST Command Reference for WebLogic Server.

userkeyfile Specifies the location of a user key file to use for encrypting and decrypting the user String
name and password information stored in a user configuration file (the
userconfi gf i | e attribute).

Before specifying the user keyf i | e attribute, you must first generate the key file using
the WebLogic Scripting Tool (WLST) st or eUser Conf i g command as described in the
WLST Command Reference for WebLogic Server.

verbose Specifies whether wl depl oy displays verbose output messages. Boolean

B.4.2 Nested <files> Child Element

ORACLE

The wi depl oy Ant task also includes the <fi | es> child element that can be nested to specify
a list of files on which to perform a deployment action (for example, a list of JSPs to
undeploy.)

Note:

Use of <f i | es> to redeploy a list of files in an application has been deprecated as of
release 9.0 of WebLogic Server. Instead, use the del t aFi | es attribute of wideploy.

The <fil es> element works the same as the standard <f i | eset > Ant task (except for the
difference in actual task name). Therefore, see the Apache Ant Web site at http://

ant . apache. org/ manual / Types/fil eset. htm for detailed reference information about the
attributes you can specify for the <fi | es> element.

B-9

http://ant.apache.org/manual/Types/fileset.html
http://ant.apache.org/manual/Types/fileset.html

	Contents
	Preface
	Documentation Accessibility
	Conventions

	1 Overview of WebLogic Server Application Development
	1.1 Document Scope and Audience
	1.2 WebLogic Server and the Java EE Platform
	1.3 Overview of Java EE Applications and Modules
	1.4 Web Application Modules
	1.4.1 Servlets
	1.4.2 JavaServer Pages
	1.4.3 More Information on Web Application Modules

	1.5 Enterprise JavaBean Modules
	1.5.1 EJB Documentation in WebLogic Server
	1.5.2 Additional EJB Information

	1.6 Connector Modules
	1.7 Enterprise Applications
	1.7.1 Java EE Programming Model
	1.7.2 Packaging and Deployment Overview

	1.8 WebLogic Web Services
	1.9 JMS and JDBC Modules
	1.10 WebLogic Diagnostic Framework Modules
	1.10.1 Using an External Diagnostics Descriptor
	1.10.1.1 Defining an External Diagnostics Descriptor

	1.11 Coherence Grid Archive (GAR) Modules
	1.12 Bean Validation
	1.13 XML Deployment Descriptors
	1.13.1 Automatically Generating Deployment Descriptors
	1.13.2 EJBGen
	1.13.3 Java-based Command-line Utilities
	1.13.4 Upgrading Deployment Descriptors From Previous Releases of Java EE and WebLogic Server

	1.14 Deployment Plans
	1.15 Development Tools
	1.15.1 Java API Reference and the wls-api.jar File
	1.15.1.1 Using the wls-api.jar File
	1.15.1.2 Using the weblogic.jar File

	1.15.2 Apache Ant
	1.15.2.1 Using a Third-Party Version of Ant
	1.15.2.2 Changing the Ant Heap Size

	1.15.3 Source Code Editor or IDE
	1.15.4 Database System and JDBC Driver
	1.15.5 Web Browser
	1.15.6 Third-Party Software

	1.16 New and Changed Features in this Release

	2 Using Ant Tasks to Configure and Use a WebLogic Server Domain
	2.1 Overview of Configuring and Starting Domains Using Ant Tasks
	2.2 Starting Servers and Creating Domains Using the wlserver Ant Task
	2.2.1 Basic Steps for Using wlserver
	2.2.2 Sample build.xml Files for wlserver
	2.2.3 wlserver Ant Task Reference

	2.3 Configuring a WebLogic Server Domain Using the wlconfig Ant Task
	2.3.1 What the wlconfig Ant Task Does
	2.3.2 Basic Steps for Using wlconfig
	2.3.3 wlconfig Ant Task Reference
	2.3.4 Main Attributes
	2.3.5 Nested Elements
	2.3.5.1 create
	2.3.5.2 delete
	2.3.5.3 set
	2.3.5.4 get
	2.3.5.5 query
	2.3.5.6 invoke

	2.4 Example of Creating a Security Realm with the wlconfig Ant Task
	2.5 Using the libclasspath Ant Task
	2.5.1 libclasspath Task Definition
	2.5.2 libclasspath Ant Task Reference
	2.5.3 Main libclasspath Attributes
	2.5.4 Nested libclasspath Elements
	2.5.4.1 librarydir
	2.5.4.2 library

	2.5.5 Example libclasspath Ant Task

	3 Using the WebLogic Maven Plug-In
	3.1 Installing Maven
	3.2 Configuring the WebLogic Maven Plug-In
	3.2.1 How to use the WebLogic Maven Plug-in
	3.2.2 Basic Configuration POM File

	3.3 Maven Plug-In Goals
	3.3.1 appc
	3.3.2 create-domain
	3.3.3 deploy
	3.3.4 distribute-app
	3.3.5 install
	3.3.6 list-apps
	3.3.7 purge-tasks
	3.3.8 redeploy
	3.3.9 remove-domain
	3.3.10 start-app
	3.3.11 start-server
	3.3.12 stop-app
	3.3.13 stop-server
	3.3.14 undeploy
	3.3.15 uninstall
	3.3.16 update-app
	3.3.17 wlst
	3.3.18 wlst-client
	3.3.19 ws-clientgen
	3.3.20 wsgen
	3.3.21 wsimport
	3.3.22 ws-wsdlc
	3.3.23 ws-jwsc

	4 Creating a Split Development Directory Environment
	4.1 Overview of the Split Development Directory Environment
	4.1.1 Source and Build Directories
	4.1.2 Deploying from a Split Development Directory
	4.1.3 Split Development Directory Ant Tasks

	4.2 Using the Split Development Directory Structure: Main Steps
	4.3 Organizing Java EE Components in a Split Development Directory
	4.3.1 Source Directory Overview
	4.3.2 Enterprise Application Configuration
	4.3.3 Web Applications
	4.3.4 EJBs
	4.3.5 Important Notes Regarding EJB Descriptors

	4.4 Organizing Shared Classes in a Split Development Directory
	4.4.1 Shared Utility Classes
	4.4.2 Third-Party Libraries
	4.4.3 Class Loading for Shared Classes

	4.5 Generating a Basic build.xml File Using weblogic.BuildXMLGen
	4.5.1 weblogic.BuildXMLGen Syntax

	4.6 Developing Multiple-EAR Projects Using the Split Development Directory
	4.6.1 Organizing Libraries and Classes Shared by Multiple EARs
	4.6.2 Linking Multiple build.xml Files

	4.7 Best Practices for Developing WebLogic Server Applications

	5 Building Applications in a Split Development Directory
	5.1 Compiling Applications Using wlcompile
	5.1.1 Using includes and excludes Properties
	5.1.2 wlcompile Ant Task Attributes
	5.1.3 Nested javac Options
	5.1.4 Setting the Classpath for Compiling Code
	5.1.5 Library Element for wlcompile and wlappc

	5.2 Building Modules and Applications Using wlappc
	5.2.1 wlappc Ant Task Attributes
	5.2.2 wlappc Ant Task Syntax
	5.2.3 Syntax Differences between appc and wlappc
	5.2.4 weblogic.appc Reference
	5.2.5 weblogic.appc Syntax
	5.2.6 weblogic.appc Options

	6 Deploying and Packaging from a Split Development Directory
	6.1 Deploying Applications Using wldeploy
	6.2 Packaging Applications Using wlpackage
	6.2.1 Archive versus Exploded Archive Directory
	6.2.2 wlpackage Ant Task Example
	6.2.3 wlpackage Ant Task Attribute Reference

	7 Developing Applications for Production Redeployment
	7.1 What is Production Redeployment?
	7.2 Supported and Unsupported Application Types
	7.2.1 Additional Application Support

	7.3 Programming Requirements and Conventions
	7.3.1 Applications Should Be Self-Contained
	7.3.2 Versioned Applications Access the Current Version JNDI Tree by Default
	7.3.3 Security Providers Must Be Compatible
	7.3.4 Applications Must Specify a Version Identifier
	7.3.5 Applications Can Access Name and Identifier
	7.3.6 Client Applications Use Same Version when Possible

	7.4 Assigning an Application Version
	7.4.1 Application Version Conventions

	7.5 Upgrading Applications to Use Production Redeployment
	7.6 Accessing Version Information

	8 Using Java EE Annotations and Dependency Injection
	8.1 Annotation Processing
	8.1.1 Annotation Parsing
	8.1.2 Deployment View of Annotation Configuration
	8.1.3 Compiling Annotated Classes
	8.1.4 Dynamic Annotation Updates

	8.2 Dependency Injection of Resources
	8.2.1 Application Life Cycle Annotation Methods

	8.3 Standard JDK Annotations
	8.3.1 javax.annotation.PostConstruct
	8.3.2 javax.annotation.PreDestroy
	8.3.3 javax.annotation.Resource
	8.3.4 javax.annotation.Resources

	8.4 Standard Security-Related JDK Annotations
	8.4.1 javax.annotation.security.DeclareRoles
	8.4.2 javax.annotation.security.DenyAll
	8.4.3 javax.annotation.security.PermitAll
	8.4.4 javax.annotation.security.RolesAllowed
	8.4.5 javax.annotation.security.RunAs

	9 Using Contexts and Dependency Injection for the Java EE Platform
	9.1 About CDI for the Java EE Platform
	9.2 Defining a Managed Bean
	9.3 Injecting a Bean
	9.4 Defining the Scope of a Bean
	9.5 Overriding the Scope of a Bean at the Point of Injection
	9.6 Using Qualifiers
	9.6.1 Defining Qualifiers for Implementations of a Bean Type
	9.6.2 Applying Qualifiers to a Bean
	9.6.3 Injecting a Qualified Bean

	9.7 Providing Alternative Implementations of a Bean Type
	9.7.1 Defining an Alternative Implementation of a Bean Type
	9.7.2 Selecting an Alternative Implementation of a Bean Type for an Application

	9.8 Applying a Scope and Qualifiers to a Session Bean
	9.8.1 Applying a Scope to a Session Bean
	9.8.2 Applying Qualifiers to a Session Bean

	9.9 Using Producer Methods, Disposer Methods, and Producer Fields
	9.9.1 Defining a Producer Method
	9.9.2 Defining a Disposer Method
	9.9.3 Defining a Producer Field

	9.10 Initializing and Preparing for the Destruction of a Managed Bean
	9.10.1 Initializing a Managed Bean
	9.10.2 Preparing for the Destruction of a Managed Bean

	9.11 Intercepting Method Invocations and Life Cycle Events of Bean Classes
	9.11.1 Defining an Interceptor Binding Type
	9.11.2 Defining an Interceptor Class
	9.11.3 Identifying Methods for Interception
	9.11.4 Enabling an Interceptor

	9.12 Decorating a Managed Bean Class
	9.12.1 Defining a Decorator Class
	9.12.2 Enabling a Decorator Class

	9.13 Assigning an EL Name to a CDI Bean Class
	9.14 Defining and Applying Stereotypes
	9.14.1 Defining a Stereotype
	9.14.2 Applying Stereotypes to a Bean

	9.15 Using Events for Communications Between Beans
	9.15.1 Defining an Event Type
	9.15.2 Sending an Event
	9.15.3 Handling an Event

	9.16 Injecting a Predefined Bean
	9.17 Injecting and Qualifying Resources
	9.18 Using CDI With JCA Technology
	9.19 Configuring a CDI Application
	9.20 Enabling and Disabling CDI
	9.20.1 Enabling and Disabling CDI for a Domain

	9.21 Implicit Bean Discovery
	9.21.1 Enabling and Disabling Implicit Bean Discovery for a Domain

	9.22 Supporting Third-Party Portable Extensions

	10 Java API for JSON Processing
	10.1 About JavaScript Object Notation (JSON)
	10.2 Object Model API
	10.2.1 Creating an Object Model from JSON Data
	10.2.2 Creating an Object Model from Application Code
	10.2.3 Navigating an Object Model
	10.2.4 Writing an Object Model to a Stream

	10.3 Streaming API
	10.3.1 Reading JSON Data Using a Parser
	10.3.2 Writing JSON Data Using a Generator

	11 Understanding WebLogic Server Application Classloading
	11.1 Java Classloading
	11.1.1 Java Classloader Hierarchy
	11.1.2 Loading a Class
	11.1.3 prefer-web-inf-classes Element
	11.1.4 Changing Classes in a Running Program
	11.1.5 Class Caching With the Policy Class Loader
	11.1.6 Class Caching With Application Class Data Sharing

	11.2 WebLogic Server Application Classloading
	11.2.1 Overview of WebLogic Server Application Classloading
	11.2.2 Application Classloader Hierarchy
	11.2.3 Custom Module Classloader Hierarchies
	11.2.4 Declaring the Classloader Hierarchy
	11.2.5 User-Defined Classloader Restrictions
	11.2.5.1 Servlet Reloading Disabled
	11.2.5.2 Nesting Depth
	11.2.5.3 Module Types
	11.2.5.4 Duplicate Entries
	11.2.5.5 Interfaces
	11.2.5.6 Call-by-Value Semantics
	11.2.5.7 In-Flight Work
	11.2.5.8 Development Use Only

	11.2.6 Individual EJB Classloader for Implementation Classes
	11.2.7 Application Classloading and Pass-by-Value or Reference
	11.2.8 Using a Filtering ClassLoader
	11.2.9 What is a Filtering ClassLoader
	11.2.10 Configuring a Filtering ClassLoader
	11.2.11 Resource Loading Order

	11.3 Resolving Class References Between Modules and Applications
	11.3.1 About Resource Adapter Classes
	11.3.2 Packaging Shared Utility Classes
	11.3.3 Manifest Class-Path

	11.4 Using the Classloader Analysis Tool (CAT)
	11.4.1 Opening the CAT Interface
	11.4.2 How CAT Analyzes Classes
	11.4.3 Identifying Class References through Manifest Hierarchies

	11.5 Sharing Applications and Modules By Using Java EE Libraries
	11.6 Adding JARs to the Domain /lib Directory

	12 Creating Shared Java EE Libraries and Optional Packages
	12.1 Overview of Shared Java EE Libraries and Optional Packages
	12.1.1 Optional Packages
	12.1.2 Library Directories
	12.1.3 Versioning Support for Libraries
	12.1.4 Shared Java EE Libraries and Optional Packages Compared
	12.1.5 Additional Information

	12.2 Creating Shared Java EE Libraries
	12.2.1 Assembling Shared Java EE Library Files
	12.2.2 Assembling Optional Package Class Files
	12.2.3 Editing Manifest Attributes for Shared Java EE Libraries
	12.2.4 Packaging Shared Java EE Libraries for Distribution and Deployment

	12.3 Referencing Shared Java EE Libraries in an Enterprise Application
	12.3.1 Overriding context-roots Within a Referenced Enterprise Library
	12.3.2 URIs for Shared Java EE Libraries Deployed As a Standalone Module

	12.4 Referencing Optional Packages from a Java EE Application or Module
	12.5 Using weblogic.appmerge to Merge Libraries
	12.5.1 Using weblogic.appmerge from the CLI
	12.5.2 Using weblogic.appmerge as an Ant Task

	12.6 Integrating Shared Java EE Libraries with the Split Development Directory Environment
	12.7 Deploying Shared Java EE Libraries and Dependent Applications
	12.8 Web Application Shared Java EE Library Information
	12.9 Using WebApp Libraries With Web Applications
	12.10 Accessing Registered Shared Java EE Library Information with LibraryRuntimeMBean
	12.11 Order of Precedence of Modules When Referencing Shared Java EE Libraries
	12.12 Best Practices for Using Shared Java EE Libraries

	13 Programming Application Life Cycle Events
	13.1 Understanding Application Life Cycle Events
	13.2 Registering Events in weblogic-application.xml
	13.3 Programming Basic Life Cycle Listener Functionality
	13.3.1 Configuring a Role-Based Application Life Cycle Listener

	13.4 Examples of Configuring Life Cycle Events with and without the URI Parameter
	13.5 Understanding Application Life Cycle Event Behavior During Redeployment
	13.6 Programming Application Version Life Cycle Events
	13.6.1 Understanding Application Version Life Cycle Event Behavior
	13.6.2 Types of Application Version Life Cycle Events
	13.6.3 Example of Production Deployment Sequence When Using Application Version Life Cycle Events

	14 Programming Context Propagation
	14.1 Understanding Context Propagation
	14.2 Programming Context Propagation: Main Steps
	14.3 Programming Context Propagation in a Client
	14.4 Programming Context Propagation in an Application

	15 Programming JavaMail with WebLogic Server
	15.1 Overview of Using JavaMail with WebLogic Server Applications
	15.2 Understanding JavaMail Configuration Files
	15.3 Configuring JavaMail for WebLogic Server
	15.4 Sending Messages with JavaMail
	15.5 Reading Messages with JavaMail

	16 Threading and Clustering Topics
	16.1 Using Threads in WebLogic Server
	16.2 Using the Work Manager API for Lower-Level Threading
	16.3 Programming Applications for WebLogic Server Clusters

	17 Developing OSGi Bundles for WebLogic Server Applications
	17.1 Understanding OSGi
	17.2 Features Provided in WebLogic Server OSGi Implementation
	17.3 Configuring the OSGi Framework
	17.3.1 Configuring OSGi Framework Instances
	17.3.1.1 Configuring OSGi Framework Instance From Administration Console
	17.3.1.2 Configuring OSGi Framework Instance From config.xml
	17.3.1.3 Configuring OSGi Framework Instance From WLST
	17.3.1.4 Configuring OSGi Framework Instance from a Java Program
	17.3.1.5 Parameter Required for Installing Bundles in the Framework

	17.3.2 Configuring OSGi Framework Persistence
	17.3.3 Using OSGi Services
	17.3.4 Connecting to an OSGi Console

	17.4 Creating OSGi Bundles
	17.5 Deploying OSGi Bundles
	17.5.1 Preparing to Deploy an OSGi Bundle on a Target System
	17.5.1.1 Preparing to Deploy Bundles as Enterprise Applications
	17.5.1.2 Preparing to Deploy Bundles as Web Applications
	17.5.1.3 Global Work Managers
	17.5.1.4 Global Data Sources

	17.5.2 Deploying OSGi Bundles in the osgi-lib Directory
	17.5.2.1 Setting the Start Level and Run Level for a Bundle

	17.6 Accessing Deployed Bundle Objects From JNDI
	17.7 Using OSGi Logging Via WebLogic Server
	17.8 Configuring a Filtering ClassLoader for OSGi Bundles
	17.9 OSGI Example

	18 Using the WebSocket Protocol in WebLogic Server
	18.1 Understanding the WebSocket Protocol
	18.1.1 Limitations of the HTTP Request-Response Model
	18.1.2 WebSocket Endpoints
	18.1.3 Handshake Requests in the WebSocket Protocol
	18.1.4 Messaging and Data Transfer in the WebSocket Protocol

	18.2 Understanding the WebLogic Server WebSocket Implementation
	18.2.1 WebSocket Protocol Implementation
	18.2.2 WebLogic WebSocket Java API
	18.2.3 Protocol Fallback for WebSocket Messaging
	18.2.4 Sample WebSocket Applications

	18.3 Overview of Creating a WebSocket Application
	18.4 Creating an Endpoint
	18.4.1 Creating an Annotated Endpoint
	18.4.2 Creating a Programmatic Endpoint
	18.4.3 Specifying the Path Within an Application to a Programmatic Endpoint

	18.5 Handling Life Cycle Events for a WebSocket Connection
	18.5.1 Handling Life Cycle Events in an Annotated WebSocket Endpoint
	18.5.1.1 Handling a Connection Opened Event
	18.5.1.2 Handling a Message Received Event
	18.5.1.3 Handling an Error Event
	18.5.1.4 Handling a Connection Closed Event

	18.5.2 Handling Life Cycle Events in a Programmatic WebSocket Endpoint

	18.6 Defining, Injecting, and Accessing a Resource for a WebSocket Endpoint
	18.7 Sending a Message
	18.7.1 Sending a Message to a Single Peer of an Endpoint
	18.7.2 Sending a Message to All Peers of an Endpoint
	18.7.3 Ensuring Thread Safety for WebSocket Endpoints

	18.8 Encoding and Decoding a WebSocket Message
	18.8.1 Encoding a Java Object as a WebSocket Message
	18.8.2 Decoding a WebSocket Message as a Java Object

	18.9 Specifying a Part of an Endpoint Deployment URI as an Application Parameter
	18.10 Maintaining Client State
	18.11 Configuring a Server Endpoint Programmatically
	18.12 Building Applications that Use the Java API for WebSocket
	18.13 Deploying a WebSocket Application
	18.14 Monitoring WebSocket Applications
	18.15 Using WebSockets with Proxy Servers
	18.16 Writing a WebSocket Client
	18.16.1 Writing a Browser-Based WebSocket Client
	18.16.2 Writing a Java WebSocket Client
	18.16.2.1 Configuring a WebSocket Client Endpoint Programmatically
	18.16.2.2 Connecting a Java WebSocket Client to a Server Endpoint
	18.16.2.3 Setting the Maximum Number of Threads for Dispatching Messages from a WebSocket Client

	18.17 Securing a WebSocket Application
	18.17.1 Applying Verified-Origin Policies
	18.17.2 Authenticating and Authorizing WebSocket Clients
	18.17.2.1 Authorizing WebSocket Clients

	18.17.3 Establishing Secure WebSocket Connections
	18.17.4 Avoiding Mixed Content
	18.17.5 Specifying Limits for a WebSocket Connection

	18.18 Enabling Protocol Fallback for WebSocket Messaging
	18.18.1 Using the JavaScript API for WebSocket Fallback in Client Applications
	18.18.1.1 Configuring WebSocket Fallback
	18.18.1.2 Creating a WebSocket Object
	18.18.1.3 Handling Life Cycle Events for a JavaScript WebSocket Client
	18.18.1.4 Sending a Message from a JavaScript WebSocket Client

	18.18.2 Packaging and Specifying the Location of the WebSocket Fallback Client Library
	18.18.3 Enabling WebSocket Fallback

	18.19 Migrating an Application to the JSR 356 Java API for WebSocket from the Deprecated API
	18.19.1 Comparison of the JSR 356 API and Proprietary WebLogic Server WebSocket API
	18.19.2 Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API
	18.19.3 Replacing the /* Suffix in a Path Pattern String
	18.19.3.1 Replacing a /* Suffix that Represents Variable Path Parameters in an Endpoint URI
	18.19.3.2 Replacing a /* Suffix that Represents Additional Data for an Endpoint

	18.19.4 Example of Converting a Proprietary WebSocket Server Endpoint to Use the JSR 356 API

	18.20 Example of Using the Java API for WebSocket with WebLogic Server

	A Enterprise Application Deployment Descriptor Elements
	A.1 weblogic-application.xml Deployment Descriptor Elements
	A.1.1 weblogic-application
	A.1.2 ejb
	A.1.2.1 entity-cache

	A.1.3 max-cache-size
	A.1.4 xml
	A.1.4.1 parser-factory
	A.1.4.2 entity-mapping

	A.1.5 jdbc-connection-pool
	A.1.5.1 connection-factory
	A.1.5.2 pool-params
	A.1.5.3 driver-params

	A.1.6 security
	A.1.7 application-param
	A.1.8 classloader-structure
	A.1.9 listener
	A.1.10 singleton-service
	A.1.11 startup
	A.1.12 shutdown
	A.1.13 work-manager
	A.1.14 session-descriptor
	A.1.15 library-ref
	A.1.16 library-context-root-override
	A.1.17 fast-swap

	A.2 weblogic-application.xml Schema
	A.3 application.xml Schema

	B wldeploy Ant Task Reference
	B.1 Overview of the wldeploy Ant Task
	B.2 Basic Steps for Using wldeploy
	B.3 Sample build.xml Files for wldeploy
	B.4 wldeploy Ant Task Attribute Reference
	B.4.1 Main Attributes
	B.4.2 Nested <files> Child Element

