Oracle® Fusion Middleware
Developing JAX-WS Web Services for Oracle
WebLogic Server

ORACLE"



Oracle Fusion Middleware Developing JAX-WS Web Services for Oracle WebLogic Server, 12¢ (12.2.1.3.0)
E80405-03
Copyright © 2016, 2018, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

Preface
Documentation Accessibility XiX
Conventions XixX
What's New in This Guide
New and Changed Features for 12¢ (12.2.1.x) XX
New and Changed Features for 12¢ (12.2.1) XX
Part | Introduction
1 Introduction to JAX-WS Web Services
1.1  Overview of JAX-WS Web Service Development 1-1
1.1.1 The Programming Model—Metadata Annotations 1-1
1.1.2 The Development Model—Bottom-up and Top-down 1-2
1.1.2.1 Bottom-up Approach: Starting from Java 1-2
1.1.2.2 Top-down Approach: Starting from WSDL 1-3
1.2 Roadmap for Implementing JAX-WS Web Services 1-3
2 Examples for JAX-WS Web Service Developers
Part Il Developing Basic JAX-WS Web Services
3 Developing JAX-WS Web Services
3.1 Overview of the WebLogic Web Service Programming Model 3-1
3.2 Configuring Your Domain For Advanced Web Services Features 3-2
3.2.1 Resources Required by Advanced Web Service Features 3-4
3.2.2 Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard 3-7

ORACLE"



3.2.2.1 Creating a Domain With the Web Services Extension Template 3-7

3.2.2.2 Extending a Domain With the Web Services Extension Template 3-8
3.2.3 Using WLST to Extend a Domain With the Web Services Extension
Template 3-9
3.2.4 Updating Resources Added After Extending Your Domain 3-10
3.3 Developing WebLogic Web Services Starting From Java: Main Steps 3-11
3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps 3-12
3.5 Creating the Basic Ant build.xml File 3-13
3.6 Running the jwsc WebLogic Web Services Ant Task 3-14
3.6.1 Specifying the Transport Used to Invoke the Web Service 3-16
3.6.2 Defining the Context Path of a WebLogic Web Service 3-16
3.6.3 Examples of Using jwsc 3-17
3.7 Running the wsdic WebLogic Web Services Ant Task 3-18
3.8 Updating the Stubbed-out JWS Implementation Class File Generated By
wsdlc 3-20
3.9 Deploying and Undeploying WebLogic Web Services 3-21
3.9.1 Using the wideploy Ant Task to Deploy Web Services 3-21
3.9.2 Using the Administration Console to Deploy Web Services 3-23
3.10 Browsing to the WSDL of the Web Service 3-23
3.11 Configuring the Server Address Specified in the Dynamic WSDL 3-24
3.11.1 Web service is not a callback service and can be invoked using
HTTP/S 3-25
3.11.2 Web service is a callback service 3-25
3.11.3 Web service is invoked using a proxy server 3-26
3.12 Testing the Web Service 3-26
3.13 Integrating Web Services Into the WebLogic Split Development Directory
Environment 3-26

4 Programming the JWS File

4.1  Overview of JWS Files and JWS Annotations 4-1
4.2 Java Requirements for a JWS File 4-2
4.3  Programming the JWS File: Typical Steps 4-2
4.3.1 Example of a JIWS File 4-4
4.3.2 Specifying that the JWS File Implements a Web Service (@WebService
Annotation) 4-4
4.3.3 Specifying the Mapping of the Web Service to the SOAP Message
Protocol (@SOAPBInding Annotation) 4-5
4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation
(@WebMethod and @OneWay Annotations) 4-5
4.3.5 Customizing the Mapping Between Operation Parameters and WSDL
Elements (@WebParam Annotation) 4-6
4.3.6 Customizing the Mapping Between the Operation Return Value and a
WSDL Element (@WebResult Annotation) 4-7

ORACLE iv



4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType

Annotation) 4-8
4.4  Accessing Runtime Information About a Web Service 4-9
4.4.1 Accessing the Protocol Binding Context 4-9
4.4.2 Accessing the Web Service Context 4-12
4.4.3 Using the MessageContext Property Values 4-13
4.5 Should You Implement a Stateless or Singleton Session EJB? 4-14
4.6 Programming the User-Defined Java Data Type 4-16
4.7 Invoking Another Web Service from the JWS File 4-17
4.8 Using SOAP 1.2 4-18
4.9 Validating the XML Schema 4-18
4.9.1 Enabling Schema Validation on the Server 4-19
4.9.2 Enabling Schema Validation on the Client 4-19
4.10 JWS Programming Best Practices 4-20
5 Using JAXB Data Binding
5.1 Overview of Data Binding Using JAXB 5-1
5.2 Developing the JAXB Data Binding Artifacts 5-3
5.3 Standard Data Type Mapping 5-4
5.3.1 Supported Built-In Data Types 5-4
5.3.1.1 XML-to-Java Mapping for Built-in Data Types 5-5
5.3.1.2 Java-to-XML Mapping for Built-In Data Types 5-8
5.3.2 Supported User-Defined Data Types 5-8
5.3.2.1 Supported XML User-Defined Data Types 5-9
5.3.2.2 Supported Java User-Defined Data Types 5-9
5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations 5-10
5.4.1 Example of JAXB Annotations 5-11
5.4.2 Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation) 5-12
5.4.3 Mapping Properties to Local Elements (@XmIElement) 5-12
5.4.4  Specifying the MIME Type (@XmIMimeType Annotation) 5-13
5.4.5 Mapping a Top-level Class to a Global Element (@XmIRootElement) 5-13
5.4.6 Binding a Set of Classes (@XmlISeeAlso) 5-14
5.4.7 Mapping a Value Class to a Schema Type (@XmIType) 5-14
5.5 Customizing XML Schema-to-Java Mapping Using Binding Declarations 5-15
5.5.1 Creating an External Binding Declarations File 5-17
5.5.1.1 Creating an External Binding Declarations File Using JAX-WS
Binding Declarations 5-17
5.5.1.2 Creating an External Binding Declarations File Using JAXB
Binding Declarations 5-18
5.5.2 Embedding Binding Declarations 5-18

ORACLE



5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL

File 5-19
5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema 5-19
5.5.3 JAX-WS Custom Binding Declarations 5-20
5.5.4 JAXB Custom Binding Declarations 5-23
5.6 Using the Glassfish Rl JAXB Data Binding and JAXB Providers 5-26
5.6.1 Configuring Global Server-Level Data Binding and JAXB Providers 5-27
5.6.2 Configuring Application-Level Data Binding and JAXB Providers 5-28
5.6.3 Configuring Java System Properties for JAXB 5-28
6 Examples of Developing JAX-WS Web Services
6.1 Creating a Simple HelloWorld Web Service 6-1
6.1.1 Sample HelloWorldimpl.java JWS File 6-4
6.1.2 Sample Ant Build File for HelloWorldimpl.java 6-4
6.2 Creating a Web Service With User-Defined Data Types 6-5
6.2.1 Sample BasicStruct JavaBean 6-8
6.2.2 Sample Compleximpl.java JWS File 6-8
6.2.3 Sample Ant Build File for Compleximpl.java JWS File 6-9
6.3 Creating a Web Service from a WSDL File 6-11
6.3.1 Sample WSDL File 6-14
6.3.2 Sample TemperatureService_TemperaturePortimpl Java
Implementation File 6-16
6.3.3 Sample Ant Build File for TemperatureService 6-16
Part Ill  Developing Basic JAX-WS Web Service Clients
7 Roadmap for Developing JAX-WS Web Service Clients
8 Developing Web Service Clients
8.1 Overview of WebLogic Web Services Client Development 8-1
8.2 Invoking a Web Service from a Java SE Client 8-2
8.2.1 Using the clientgen Ant Task To Generate Client Artifacts 8-3
8.2.2 Getting Information About a Web Service 8-4
8.2.3  Writing the Java Client Application Code to Invoke a Web Service 8-5
8.2.4 Compiling and Running the Client Application 8-6
8.2.5 Sample Ant Build File for a Java Client 8-7
8.3 Invoking a Web Service from a Standalone Java SE Client 8-8
8.4 Invoking a Web Service from Another WebLogic Web Service 8-11
ORACLE Vi



8.4.1 Sample build.xml File for a Web Service Client 8-12
8.4.2 Sample JWS File That Invokes a Web Service 8-13
8.5 Configuring Web Service Clients 8-15
8.6 Defining a Web Service Reference Using the @WebServiceRef Annotation 8-15
8.7 Managing Client Identity 8-17
8.7.1 Defining the Client ID During Port Initialization 8-18
8.7.2 Accessing the Server-generated Client ID 8-19
8.7.3 Client Identity Lifecycle 8-20
8.8 Using a Proxy Server When Invoking a Web Service 8-21
8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server 8-21
8.8.2 Using System Properties to Specify the Proxy Server 8-23
8.9 Client Considerations When Redeploying a Web Service 8-23
8.10 Client Considerations When Web Service and Client Are Deployed to the
Same Managed Server 8-24
o Examples of Developing JAX-WS Web Service Clients
9.1 Developing a JAX-WS Java SE Client 9-1
9.1.1 Sample Java Client Application 9-4
9.1.2 Sample Ant Build File For Building Java Client Application 9-4
9.2 Invoking a Web Service from a WebLogic Web Service 9-5
9.2.1 Sample ClientServicelmpl.java JWS File 9-8
9.2.2 Sample Ant Build File For Building ClientService 9-8
Part IV  Developing Advanced Features of JAX-WS Web Services
10 Using Web Services Addressing
10.1 Overview of WS-Addressing 10-1
10.2  Enabling WS-Addressing on the Web Service 10-3
10.2.1 Enabling WS-Addressing on the Web Service (Starting From Java) 10-3
10.2.2 Enabling WS-Addressing on the Web Service (Starting from WSDL) 10-4
10.3 Enabling WS-Addressing on the Web Service Client 10-5
10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client 10-5
10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client 10-6
10.3.3 Disabling WS-Addressing on the Web Service Client 10-7
10.4 Associating WS-Addressing Action Properties 10-7
10.4.1 Explicitly Associating WS-Addressing Action Properties (Starting from
Java) 10-7
10.4.2  Explicitly Associating WS-Addressing Action Properties (Starting from
WSDL) 10-8
ORACLE Vi



10.4.3 Implicitly Associating WS-Addressing Action Properties 10-9
10.5 Configuring Anonymous WS-Addressing 10-10

11 Roadmap for Developing Asynchronous Web Service Clients

12  Developing Asynchronous Clients

12.1 Overview of Asynchronous Web Service Invocation 12-1
12.2 Steps to Invoke Web Services Asynchronously 12-5
12.3  Configuring Your Servers for Asynchronous Web Service Invocation 12-6
12.4  Building the Client Artifacts for Asynchronous Web Service Invocation 12-8
12.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client
Transport) 12-9
12.5.1 Enabling and Configuring the Asynchronous Client Transport Feature 12-10
12.5.1.1 Configuring the Address of the Asynchronous Response
Endpoint 12-11
12.5.1.2 Configuring the ReplyTo and FaultTo Headers of the
Asynchronous Response Endpoint 12-12
12.5.1.3 Configuring the Context Path of the Asynchronous Response
Endpoint 12-13
12.5.1.4 Publishing the Asynchronous Response Endpoint 12-14
12.5.1.5 Configuring Asynchronous Client Transport for Synchronous
Operations 12-15
12.5.2 Developing the Asynchronous Handler Interface 12-15
12.5.3 Propagating User-defined Request Context to the Response 12-17
12.6  Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection) 12-17
12.6.1 Enabling and Configuring Make Connection on a Web Service 12-19
12.6.1.1 Creating the Web Service Make Connection WS-Policy File
(Optional) 12-19
12.6.1.2 Programming the JWS File to Enable Make Connection 12-21
12.6.2 Enabling and Configuring Make Connection on a Web Service Client 12-23
12.6.2.1  Configuring the Expiration Time for Sending Make Connection
Messages 12-24
12.6.2.2 Configuring the Polling Interval 12-25
12.6.2.3  Configuring the Exponential Backoff 12-25
12.6.2.4 Configuring Make Connection as the Transport for Synchronous
Methods 12-26
12.7 Using the JAX-WS Reference Implementation 12-27
12.8 Propagating Request Context to the Response 12-30
12.9 Monitoring Asynchronous Web Service Invocation 12-31

ORACLE viii



12.10 Clustering Considerations for Asynchronous Web Service Messaging 12-31

13 Roadmap for Developing Reliable Web Services and Clients

13.1 Roadmap for Developing Reliable Web Service Clients 13-1
13.2 Roadmap for Developing Reliable Web Services 13-6
13.3 Roadmap for Accessing Reliable Web Services from Behind a Firewall

(Make Connection) 13-7
13.4 Roadmap for Securing Reliable Web Services 13-8

14  Using Web Services Reliable Messaging

14.1 Overview of Web Services Reliable Messaging 14-1
14.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions 14-2
14.1.2 Supported Transport Types for Reliable Messaging 14-2
14.1.3 The Life Cycle of the Reliable Message Sequence 14-3
14.1.4 Reliable Messaging Failure Recovery Scenarios 14-4

14.1.4.1 RM Destination Down Before Request Arrives 14-5
14.1.4.2 RM Source Down After Request is Made 14-6
14.1.4.3 RM Destination Down After Request Arrives 14-8
14.1.4.4  Failure Scenarios with Non-buffered Reliable Web Services 14-10

14.2  Steps to Create and Invoke a Reliable Web Service 14-11

14.3 Configuring the Source and Destination WebLogic Server Instances 14-13

14.4  Creating the Web Service Reliable Messaging WS-Policy File 14-14
14.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging

Policy Assertions Versions 1.2 and 1.1 14-16
14.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging

Policy Assertions Version 1.0 (Deprecated) 14-18
14.4.3 Using Multiple Policy Alternatives 14-19

14.5 Programming Guidelines for the Reliable JWS File 14-20

14.6 Invoking a Reliable Web Service from a Web Service Client 14-22

14.7  Configuring Reliable Messaging 14-24
14.7.1  Configuring Reliable Messaging on WebLogic Server 14-24

14.7.1.1  Using the Administration Console 14-25
14.7.1.2 Using WLST 14-25
14.7.2  Configuring Reliable Messaging on the Web Service Endpoint 14-25
14.7.3 Configuring Reliable Messaging on Web Service Clients 14-26
14.7.4  Configuring the Base Retransmission Interval 14-27
14.7.4.1  Configuring the Base Retransmission Interval on WebLogic
Server or the Web Service Endpoint 14-27
14.7.4.2  Configuring the Base Retransmission Interval on the Web
Service Client 14-28
14.7.5 Configuring the Retransmission Exponential Backoff 14-29

ORACLE iX



14.7.5.1 Configuring the Retransmission Exponential Backoff on

WebLogic Server or Web Service Endpoint 14-29
14.7.5.2 Configuring the Retransmission Exponential Backoff on the Web
Service Client 14-30
14.7.6  Configuring the Sequence Expiration 14-31
14.7.6.1  Configuring the Sequence Expiration on WebLogic Server or
Web Service Endpoint 14-31
14.7.6.2 Configuring the Sequence Expiration on the Web Service Client 14-31
14.7.7  Configuring Inactivity Timeout 14-32
14.7.7.1  Configuring the Inactivity Timeout on WebLogic Server or Web
Service Endpoint 14-33
14.7.7.2  Configuring the Inactivity Timeout on the Web Service Client 14-33
14.7.8  Configuring a Non-buffered Destination for a Web Service 14-34
14.7.9 Configuring the Acknowledgement Interval 14-35
14.8 Implementing the Reliability Error Listener 14-37
14.9 Managing the Life Cycle of a Reliable Message Sequence 14-39
14.9.1 Managing the Reliable Sequence 14-39
14.9.1.1 Getting and Setting the Reliable Sequence ID 14-40
14.9.1.2 Accessing the State of the Reliable Sequence 14-40
14.9.2 Managing the Client ID 14-42
14.9.3 Managing the Acknowledged Requests 14-42
14.9.4  Accessing Information About a Message 14-43
14.9.5 Identifying the Final Message in a Reliable Sequence 14-44
14.9.6 Closing the Reliable Sequence 14-44
14.9.7 Terminating the Reliable Sequence 14-45
14.9.8 Resetting a Client to Start a New Message Sequence 14-46
14.10 Monitoring Web Services Reliable Messaging 14-46
14.11  Grouping Messages into Business Units of Work (Batching) 14-47
14.12 Client Considerations When Redeploying a Reliable Web Service 14-52
14.13 Interoperability with WebLogic Web Service Reliable Messaging 14-52
15 Using Web Services Atomic Transactions
15.1  Overview of Web Services Atomic Transactions 15-1
15.2 Configuring the Domain Resources Required for Web Service Advanced
Features 15-3
15.3 Enabling the Web Services Atomic Transactions Feature 15-4
15.4 Enabling Web Services Atomic Transactions on Web Services 15-5
15.4.1 Using the @Transactional Annotation in Your JWS File 15-7
15.4.1.1 Example: Using @Transactional Annotation on a Web Service
Class 15-7
15.4.1.2 Example: Using @Transactional Annotation on a Web Service
Method 15-9

ORACLE



15.4.1.3 Example: Using the @Transactional and the EJB

@TransactionAttribute Annotations Together 15-11
15.4.2 Enabling Web Services Atomic Transactions Starting From WSDL 15-11
15.5 Enabling Web Services Atomic Transactions on Web Service Clients 15-12
15.5.1 Using @Transactional Annotation with the @WebServiceRef
Annotation 15-13
15.5.2 Passing the TransactionalFeature to the Client 15-16
15.6  Configuring Web Services Atomic Transactions Using the Administration
Console 15-18
15.6.1 Securing Messages Exchanged Between the Coordinator and
Participant 15-19
15.6.2 Enabling and Configuring Web Services Atomic Transactions 15-19
15.7 Using Web Services Atomic Transactions in a Clustered Environment 15-19
15.8 More Examples of Using Web Services Atomic Transactions 15-20
16  Optimizing XML Transmission Using Fast Infoset
16.1 Overview of Fast Infoset 16-1
16.2 Enabling Fast Infoset on Web Services 16-1
16.3 Enabling and Configuring Fast Infoset on Web Services Clients 16-2
16.3.1 Configuring the Content Negotiation Strategy 16-3
16.3.2 Example Using @FastinfosetClient Annotation at Design Time 16-3
16.3.3 Example Using FastinfosetClientFeature Feature Class at Design
Time 16-4
16.4 Disabling Fast Infoset on Web Services and Clients 16-4
17 Using SOAP Over JMS Transport
17.1  Overview of SOAP Over JMS Transport 17-1
17.2  Configuring the WebLogic Server Domain for JMS Transport 17-4
17.3 Developing Web Services Using JMS Transport—Starting From Java 17-5
17.3.1 Using the @JMSTransportService Annotation 17-6
17.3.2 Using the <jmstransportservice> Child Element in the Ant build.xml
File 17-8
17.4 Developing Web Services Using JMS Transport—Starting From WSDL 17-9
17.4.1 Updating the WSDL to Use JMS Transport 17-10
17.4.1.1 Enabling JMS Transport at the WSDL Binding Level 17-10
17.4.1.2 Configuring JMS Transport Properties in the WSDL 17-11
17.4.1.3 Example of Enabling JMS Transport in WSDL 17-12
17.5 Invoking a WebLogic Web Service Using JMS Transport 17-14
17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File 17-14
17.5.2 Using the @JMSTransportClient Annotation 17-15
17.5.3 Using the JMSTransportClientFeature Client API 17-16
ORACLE Xi



17.5.4 Configuring the JMS URI as the Target Endpoint Address 17-17
17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous
Clients 17-18
17.6  Configuring JMS Transport Properties 17-19
17.6.1 Summary of JMS Transport Configuration Properties 17-20
17.6.2 Configuration Methods and Order of Precedence 17-25
17.6.3  Configuring JMS Transport Using the Administration Console 17-27
17.6.4 Configuring JMS Transport Using WLST 17-27
17.6.5 Configuring the JMS URI 17-27
17.6.6  Configuring the IMS Request URI 17-28
17.6.7 Configuring the WS-Addressing Headers 17-29
17.6.8 Configuring the JMS Response Queue 17-30
17.6.9 Configuring the IMS Message Type 17-31
17.6.10 Configuring HTTP Access to the WSDL File 17-31
17.7  Monitoring SOAP Over JMS Transport 17-31
18 Creating and Using SOAP Message Handlers
18.1 Overview of SOAP Message Handlers 18-1
18.2 Adding Server-side SOAP Message Handlers: Main Steps 18-2
18.3 Adding Client-side SOAP Message Handlers: Main Steps 18-3
18.4 Designing the SOAP Message Handlers and Handler Chains 18-4
18.4.1 Server-side Handler Execution 18-4
18.4.2 Client-side Handler Execution 18-5
18.5 Creating the SOAP Message Handler 18-5
18.5.1 Example of a SOAP Handler 18-7
18.5.2 Example of a Logical Handler 18-7
18.5.3 Implementing the Handler.handleMessage() Method 18-8
18.5.4 Implementing the Handler.handleFault() Method 18-9
18.5.5 Implementing the Handler.close() Method 18-9
18.5.6  Using the Message Context Property Values and Methods 18-9
18.5.7 Directly Manipulating the SOAP Request and Response Message
Using SAAJ 18-11
18.5.7.1 The SOAPPart Object 18-11
18.5.7.2 The AttachmentPart Object 18-12
18.5.7.3 Manipulating Image Attachments in a SOAP Message Handler 18-12
18.6  Configuring Handler Chains in the JWS File 18-13
18.7 Creating the Handler Chain Configuration File 18-14
18.8 Compiling and Rebuilding the Web Service 18-14
18.9 Configuring the Client-side SOAP Message Handlers 18-15

ORACLE

Xii



19 Handling Exceptions Using SOAP Faults

19.1 Overview of Exception Handling Using SOAP Faults 19-1
19.2 Contents of the SOAP Fault Element 19-2
19.2.1 SOAP 1.2 <Fault> Element Contents 19-2
19.2.2 SOAP 1.1 <Fault> Element Contents 19-3
19.3 Using Modeled Faults 19-4
19.3.1 Creating and Using a Custom Exception 19-5
19.3.2 How Modeled Faults are Mapped in the WSDL File 19-5
19.3.3 How the Fault is Communicated in the SOAP Message 19-7
19.3.4 Creating the Web Service Client 19-7
19.3.4.1 Reviewing the Generated Java Exception Class 19-8
19.3.4.2 Reviewing the Generated Java Fault Bean Class 19-8
19.3.4.3 Reviewing the Client-side Service Implementation 19-8
19.3.4.4 Creating the Client Implementation Class 19-9

19.4  Using Unmodeled Faults 19-10
19.5 Customizing the Exception Handling Process 19-10
19.6 Disabling the Stack Trace from the SOAP Fault 19-11
19.7 Other Exceptions 19-12

20  Optimizing Binary Data Transmission

20.1 Optimizing Binary Data Transmission Optimization Using MTOM/XOP 20-1
20.1.1 Annotating the Data Types 20-2
20.1.1.1 Annotating the Data Types: Start From Java 20-3
20.1.1.2 Annotating the Data Types: Start From WSDL 20-3
20.1.2 Enabling MTOM on the Web Service 20-3
20.1.2.1 Enabling MTOM on the Web Service Using Annotation 20-3
20.1.2.2 Enabling MTOM on the Web Services by Attaching a WS-Policy
File 20-4
20.1.3 Enabling MTOM on the Client 20-5
20.1.4 Setting the Attachment Threshold 20-5
20.1.5 Enabling HTTP Chunking 20-6
20.2 Streaming SOAP Attachments 20-7
20.2.1 Client Side Example 20-7
20.2.2 Server Side Example 20-8
20.2.3 Configuring Streaming SOAP Attachments 20-9
20.2.3.1 Configuring Streaming SOAP Attachments on the Server 20-9
20.2.3.2 Configuring Streaming SOAP Attachments on the Client 20-10
20.3 Sending SOAP Messages With Attachments Using swaRef 20-10

ORACLE Xiii



21

22

23

Managing Web Service Persistence

21.1 Overview of Web Service Persistence 21-1
21.2 Roadmap for Configuring Web Service Persistence 21-3
21.3 Configuring Web Service Persistence 21-3
21.3.1 Configuring the Logical Store 21-5
21.3.2 Configuring Web Service Persistence for a Web Service Endpoint 21-6
21.3.3 Configuring Web Service Persistence for Web Service Clients 21-7
21.4  Using Web Service Persistence in a Cluster 21-7
21.5 Cleaning Up Web Service Persistence 21-9
Configuring Message Buffering for Web Services
22.1 Overview of Message Buffering 22-1
22.2 Configuring Messaging Buffering 22-1
22.2.1 Configuring the Request Queue 22-2
22.2.2 Configuring the Response Queue 22-2
22.2.3 Configuring Message Retry Count and Delay 22-2
Managing Web Services in a Cluster
23.1 Overview of Web Services Cluster Routing 23-1
23.2  Cluster Routing Scenarios 23-3
23.2.1 Scenario 1: Routing a Web Service Response to a Single Server 23-3
23.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using
Routing Information 23-4
23.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using
an ID 23-5
23.3 How Web Service Cluster Routing Works 23-6
23.3.1 Adding Routing Information to Outgoing Requests 23-6
23.3.2 Detecting Routing Information in Incoming Requests 23-6
23.3.3 Routing Requests Within the Cluster 23-7
23.3.4 Maintaining the Routing Map on the Front-end SOAP Router 23-7
23.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header 23-8
23.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header 23-8
23.4  Configuring Web Services in a Cluster 23-8
23.4.1 Setting Up the WebLogic Cluster 23-9
23.4.2 Configuring the Domain Resources Required for Web Service
Advanced Features in a Clustered Environment 23-9
23.4.3 Extending the Front-end SOAP Router to Support Web Services 23-10
23.4.4 Enabling Routing of Web Services Atomic Transaction Messages 23-10
23.4.5 Enabling Routing of Web Services Make Connection Messages 23-11

ORACLE

Xiv



23.4.6
23.4.7

Configuring the Identity of the Front-end SOAP Router

Configuring the Identity of the Front-end SOAP Router Using Network

Channels

23.5 Monitoring Cluster Routing Performance

23-11

23-11
23-12

24  Using Provider-based Endpoints and Dispatch Clients to Operate
on SOAP Messages

24.1 Overview of Web Service Provider-based Endpoints and Dispatch Clients 24-1
24.2 Usage Modes and Message Formats for Operating at the XML Level 24-2
24.3 Developing a Web Service Provider-based Endpoint (Starting from Java) 24-3
24.3.1 Developing a Synchronous Provider-based Endpoint 24-3
24.3.2 Developing an Asynchronous Provider-based Endpoint 24-6
24.3.3 Specifying the Message Format 24-9
24.3.4  Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider Annotation) 24-9
24.3.5 Specifying the Usage Mode (@ServiceMode Annotation) 24-10
24.3.6  Defining the invoke() Method for a Synchronous Provider-based
Endpoints 24-10
24.3.7 Defining the invoke() Method for an Asynchronous Provider-based
Endpoints 24-11
24.3.8 Defining the Callback Handler for the Asynchronous Provider-based
Endpoint 24-12
24.4  Developing a Web Service Provider-based Endpoint (Starting from WSDL) 24-12
24.5 Using SOAP Handlers with Provider-based Endpoints 24-13
24.6  Developing a Web Service Dispatch Client 24-15
24.6.1 Example of a Web Service Dispatch Client 24-16
24.6.2 Creating a Dispatch Instance 24-17
24.6.3 Invoking a Web Service Operation 24-18
25  Sending and Receiving SOAP Headers
25.1 Overview of Sending and Receiving SOAP Headers 25-1
25.2 Sending SOAP Headers Using WSBindingProvider 25-1
25.3 Receiving SOAP Headers Using WSBindingProvider 25-2
26 Using Callbacks
26.1 Overview of Callbacks 26-1
26.2 Example Callback Implementation 26-1
26.3 Steps to Program Callbacks 26-2
26.4 Programming Guidelines for Target Web Service 26-4
26.5 Programming Guidelines for the Callback Client Web Service 26-5

ORACLE

XV



26.6 Programming Guidelines for the Callback Web Service 26-6
26.7 Updating the build.xml File for the Target Web Service 26-7
27  Developing Dynamic Proxy Clients
27.1 Overview of Static Versus Dynamic Proxy Clients 27-1
27.2  Steps to Develop a Dynamic Proxy Client 27-1
27.3 Additional Considerations When Specifying WSDL Location 27-2
28  Publishing a Web Service Endpoint
29 Using XML Catalogs
29.1 Overview of XML Catalogs 29-1
29.2 Defining and Referencing XML Catalogs 29-3
29.2.1 Defining an External XML Catalog 29-3
29.2.1.1 Creating an External XML Catalog File 29-3
29.2.1.2 Referencing the External XML Catalog File 29-4
29.2.2 Embedding an XML Catalog 29-4
29.2.2.1 Creating an Embedded XML Catalog 29-5
29.2.2.2 Referencing an Embedded XML Catalog 29-5
29.3 Disabling XML Catalogs in the Client Runtime 29-5
29.4 Getting a Local Copy of XML Resources 29-6
30 Programming Web Services Using XML Over HTTP
30.1 About Programming Web Services Using XML Over HTTP 30-1
30.2 Programming Guidelines for the Web Service Using XML Over HTTP 30-3
30.3 Accessing the Web Service from a Client 30-5
30.4 Securing Web Services that Use XML Over HTTP 30-6

31 Programming Stateful JAX-WS Web Services Using HTTP Session

31.1
31.2
31.3
31.4
315

ORACLE

Overview of Stateful Web Services
Accessing HTTP Session on the Server
Enabling HTTP Session on the Client

Developing Stateful Services in a Cluster Using Session State Replication

A Note About the JAX-WS RI @Stateful Extension

31-1
31-1
31-2
31-3
31-3

XVi



32 Testing and Monitoring Web Services
32.1 Testing Web Services 32-1
32.2 Monitoring Web Services and Clients 32-1
32.2.1 Monitoring Web Services 32-1
32.2.2 Monitoring Web Service Clients 32-3
32.3 Using Work Managers to Prioritize Web Services Work and Reduce Stuck
Execute Threads 324
Part V Reference
A Pre-packaged WS-Policy Files for Web Services Reliable
Messaging and Make Connection
A.1 DefaultReliabilityl.2.xml (WS-Policy File) A-3
A.2 DefaultReliabilityl.1.xml (WS-Policy File) A-4
A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated] A-4
A.4  LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated] A-5
A.5 Mcl.l.xml (WS-Policy File) A-5
A.6  Mc.xml (WS-Policy File) A-5
A.7 Reliabilityl.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File) A-6
A.8 Reliabilityl.2_SequenceSTR.xml (WS-Policy File) A-6
A.9 Reliabilityl.1 SequenceSTR.xml (WS-Policy File) A-7
A.10 Reliabilityl.2_SequenceTransportSecurity.xml (WS-Policy File) A-7
A.11 Reliabilityl.1_SequenceTransportSecurity.xml (WS-Policy File) A-8
A.12 Reliabilityl.0_1.2.xml (WS-Policy File) A-8
A.13 Reliabilityl.0_1.1.xml (WS-Policy.xml File) A-9
B Example Client Wrapper Class for Batching Reliable Messages
C Migrating JAX-RPC Web Services and Clients to JAX-WS
C.1 Setting the Final Context Root of a WebLogic Web Service C-2
C.2 Using WebLogic-specific Annotations C-2
C.3 Generating a WSDL File C-2
C.4 Using JAXB Custom Types C-2
C.5 Using EJB 3.0 C-2
C.6  Migrating from RPC Style SOAP Binding C-3
C.7 Updating SOAP Message Handlers C-3
ORACLE XVii



C.8 Invoking JAX-WS Clients C-3

ORACLE" Xvii



Preface

This preface describes the document accessibility features and conventions used in
this guide—Developing JAX-WS Web Services for Oracle WebLogic Server.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at ht t p: // www. or acl e. cont pl s/ t opi ¢/ | ookup?
ctx=accé& d=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit htt p: // www. or acl e. cont pl s/t opi ¢/

| ookup?ct x=acc&i d=i nf o or visit htt p: // ww. or acl e. coml pl s/t opi ¢/ | ookup?ct x=acc&i d=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE' Yix


http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide

What's New Iin This Guide

The following topics introduce the new and changed features of WebLogic Java API
for XML Web Services (JAX-WS) Web services in Oracle Fusion Middleware 12c¢
(12.2.1), and provides pointers to additional information.

New and Changed Features for 12¢ (12.2.1.x)

For Oracle Fusion Middleware 12¢ (12.2.1.x) , this document does not contain any
new or changed features. For a comprehensive listing of the new WebLogic Server
features introduced in this release, see What's New in Oracle WebLogic Server

New and Changed Features for 12¢ (12.2.1)

The JAX-RPC API is deprecated in WebLogic Server as of release 12.2.1.

ORACLE

XX



Introduction

Part | introduces developing WebLogic (Java EE) web services using the Java API for
XML-based Web services (JAX-WS).

Sections include:

e Introduction to JAX-WS Web Services
*  Examples for JAX-WS Web Service Developers

ORACLE



Introduction to JAX-WS Web Services

This chapter provides an overview of developing WebLogic (Java EE) web services
using the Java API for XML-based Web Services (JAX-WS). JAX-WS is a standards-
based API for coding, assembling, and deploying Java web services.

This chapter includes the following sections:

e Overview of JAX-WS Web Service Development
* Roadmap for Implementing JAX-WS Web Services

For definitions of unfamiliar terms found in this and other books, see the Glossary.

1.1 Overview of JAX-WS Web Service Development

WebLogic web services are implemented according to the JSR 109: Implementing
Enterprise Web Services specification (http: //ww. j cp. org/ en/j sr/ detai | ?i d=109),
which defines the standard Java EE runtime architecture for implementing web
services in Java. The specification also describes a standard Java EE web service
packaging format, deployment model, and runtime services, all of which are
implemented by WebLogic web services.

The following sections describe:

e The Programming Model—Metadata Annotations

e The Development Model—Bottom-up and Top-down

1.1.1 The Programming Model—Metadata Annotations

ORACLE

The JSR 109: Implementing Enterprise Web Services specification (http://
wwmv. j cp. or g/ en/ j sr/ detail ?i d=109) describes that a Java EE web service is
implemented by one of the following components:

* A Java class running in the Web container.
* A stateless or singleton session EJB running in the EJB container.

The code in the Java class or EJB implements the business logic of your web service.
Oracle recommends that, instead of coding the raw Java class or EJB directly, you use
the JWS annotations programming model, which makes programming a WebLogic
web service much easier.

This programing model takes advantage of the JDK metadata annotations feature in
which you create an annotated Java file and then use Ant tasks to compile the file into
a Java class and generate all the associated artifacts. The Java Web Service (JWS)
annotated file is the core of your web service. It contains the Java code that
determines how your web service behaves. A JWS file is an ordinary Java class file
that uses annotations to specify the shape and characteristics of the web service. The
JWS annotations you can use in a JWS file include the standard ones defined by the
Web Services Metadata for the Java Platform specification (http://

1-1


http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=109
http://www.jcp.org/en/jsr/detail?id=181

Chapter 1
Overview of JAX-WS Web Service Development

wwmv, j cp. or g/ en/ j sr/detail ?i d=181) as well as a set of other standard or WebLogic-
specific annotations, depending on the type of web service you are creating.

Once you have coded the basic WebLogic web service, you can program and
configure additional advanced features. For example, you can specify that the SOAP
messages be digitally signed and encrypted (as specified by the WS-Security
specification at ht t p: / / waw. oasi s- open. or g/ conmi t t ees/ t c_hone. php?wg_abbr ev=uss). You
configure these more advanced features of WebLogic web services using WS-Policy
files, which is an XML file that adheres to the WS-Policy specification and contains
security-specific or web service reliable messaging-specific XML elements that
describe the security and reliable-messaging configuration, respectively.

1.1.2 The Development Model—Bottom-up and Top-down

There are two approaches to web service development: bottom-up and top-down.
Each approach is described in the following sections.

1.1.2.1 Bottom-up Approach: Starting from Java

ORACLE

In the bottom-up approach, you develop your the JWS file from scratch. After you
create the JWS file, you use the j wsc WebLogic web service Ant task to compile the
JWS file, as described by the JSR 109: Implementing Enterprise Web Services
specification at htt p: // ww. j cp. or g/ en/j sr/ det ai | ?i d=109.

The j wsc Ant task always compiles the JWS file into a plain Java class; the only time it
implements a stateless or singleton session EJB is if you implement a stateless or
singleton session EJB in your JWS file. The jwsc Ant task also generates all the
supporting artifacts for the web service, packages everything into an archive file, and
creates an Enterprise Application that you can then deploy to WebLogic Server.

By default, the j wsc Ant task packages the web service in a standard Web application
WAR file with all the standard WAR artifacts. The WAR file, however, contains
additional artifacts to indicate that it is also a web service; these additional artifacts
include deployment descriptor files, the WSDL file that describes the public contract of
the web service, and so on. If you execute j wsc against more than one JWS file, you
can choose whether j wsc packages the web services in a single WAR file or each web
service in a separate WAR file. In either case, j wsc generates a single Enterprise
Application.

If you implement a stateless or singleton session EJB in your JWS file, then the j wsc
Ant task packages the web service in a standard EJB JAR with all the usual artifacts,
such as the ej b-j ar. xnl and webl ogi c-ej b. jar. xni deployment descriptor files. The
EJB JAR file also contains additional web service-specific artifacts, as described in the
preceding paragraph, to indicate that it is a web service. Similarly, you can choose
whether multiple JWS files are packaged in a single or multiple EJB JAR files.

Alternatively, you can specify that your session EJB be packaged as a Web
application WAR file by updating the j wsc Ant task in your bui | d. xni file to enable the
ej bvé! nvar attribute in the nodul e child element. For more information, see jwsc in
WebLogic Web Services Reference for Oracle WebLogic Server.

For more information about the bottom-up approach, see Developing WebLogic Web
Services Starting From Java: Main Steps.

1-2


http://www.jcp.org/en/jsr/detail?id=181
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.jcp.org/en/jsr/detail?id=109

Chapter 1
Roadmap for Implementing JAX-WS Web Services

1.1.2.2 Top-down Approach: Starting from WSDL

In the top-down approach, you create the web service from a WSDL file. You can use
the wsdl ¢ Ant task to generate a partial implementation of the web service described by
the WSDL file. The wsdl ¢ Ant task generates the JWS service endpoint interface (SEI),
the stubbed-out JWS class file, JavaBeans that represent the XML Schema data
types, and so on, into output directories.

After running the wsdl ¢ Ant task, (which typically you only do once) you update the
generated JWS implementation file, for example, to add Java code to the methods so
that they function as defined by your business requirements. The generated JWS
implementation file does not initially contain any business logic because the wsdl ¢ Ant
task does not know how you want your web service to function, although it does know
the shape of the web service, based on the WSDL file.

The wsdl ¢ Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the j wsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

For more information about the top-down approach, see Developing WebLogic Web
Services Starting From a WSDL File: Main Steps.

1.2 Roadmap for Implementing JAX-WS Web Services

The following table provides a roadmap of common tasks for developing, packaging
and deploying, invoking, and administering JAX-WS web services and clients using

WebLogic Server.

Table 1-1 Roadmap for Implementing JAX-WS Web Services

This chapter. ..

Describes howto. ..

Developing Basic JAX-WS Web Services

Develop basic JAX-WS web services using the WebLogic
development environment. Program the JWS file that implements
your web service and use the Java Architecture for XML Binding
(JAXB) data binding.

Developing Basic JAX-WS Web Service
Clients

Develop WebLogic web service clients using JAX-WS and apply best
practices.

Developing Advanced Features of JAX-WS
Web Services

Develop advanced features of WebLogic web services using JAX-
WS. Advanced features include asynchronous clients, reliable
messaging, atomic transactions, and so on. Test and monitor web
services.

Reference Use pre-packaged WS-Policy files for web services reliable
messaging and Make Connection, use batch reliable messaging, and
migrate JAX-RPC web services and clients to JAX-WS.

ORACLE 1-3



ORACLE

Chapter 1
Roadmap for Implementing JAX-WS Web Services

# Note:

The JAX-WS implementation in Oracle WebLogic Server is extended from
the JAX-WS Reference Implementation (RI) developed by the Glassfish
Community (see http://jax-ws.java.net/). All features defined in the JAX-
WS specification (JSR-224) are fully supported by Oracle WebLogic Server.

The JAX-WS RI also contains a variety of extensions, provided by Glassfish
contributors. Unless specifically documented, JAX-WS RI extensions are not
supported for use in Oracle WebLogic Server.

For an overview of WebLogic web services, standards, samples, and related
documentation, see Understanding WebLogic Web Services for Oracle WebLogic
Server. For information about WebLogic web service security, see Securing Web
Services and Managing Policies with Oracle Web Services Manager and Securing
WebLogic Web Services for Oracle WebLogic Server.

1-4


http://jax-ws.java.net/

Examples for JAX-WS Web Service

Developers

This chapter summarizes the examples for developing WebLogic web services using
the Java API for XML-based Web services (JAX-WS).

Table 2-1 Examples for JAX-WS Web Service Developers

Example

For More Information

Web service sample applications

Samples for Java EE Web Service Developers in
Understanding WebLogic Services for Oracle WebLogic
Server

Common web service code examples

Examples of Developing JAX-WS Web Services

Common web service client examples

Examples of Developing JAX-WS Web Service Clients

Advanced web service client example Example 7-1
Asynchronous web service client example Example 11-1
Reliable web service client example Example 13-1

ORACLE

2-1



Developing Basic JAX-WS Web Services

Part Il describes how to develop basic WebLogic web services using Java API for
XML-based Web Services (JAX-WS).

Sections include:

*  Developing JAX-WS Web Services

*  Programming the JWS File

e Using JAXB Data Binding

*  Examples of Developing JAX-WS Web Services

ORACLE



Developing JAX-WS Web Services

This chapter describes the iterative development process for WebLogic web services
using Java API for XML-based Web Services (JAX-WS).
This chapter includes the following topics:

e Overview of the WebLogic Web Service Programming Model

e Configuring Your Domain For Advanced Web Services Features

» Developing WebLogic Web Services Starting From Java: Main Steps

»  Developing WebLogic Web Services Starting From a WSDL File: Main Steps
e Creating the Basic Ant build.xml File

* Running the jwsc WebLogic Web Services Ant Task

* Running the wsdlc WebLogic Web Services Ant Task

» Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
»  Deploying and Undeploying WebLogic Web Services

e Browsing to the WSDL of the Web Service

e Configuring the Server Address Specified in the Dynamic WSDL

e Testing the Web Service

* Integrating Web Services Into the WebLogic Split Development Directory
Environment

3.1 Overview of the WebLogic Web Service Programming

Model

ORACLE

The WebLogic web services programming model centers around JWS files—Java files
that use JWS annotations to specify the shape and behavior of the web service—and
Ant tasks that execute on the JWS file. JWS annotations are based on the metadata
feature, introduced in Version 5.0 of the JDK (specified by JSR-175 at http://

wwmv, j cp. or g/ en/ j sr/ detail ?i d=175) and include standard annotations defined by Web
Services Metadata for the Java Platform specification (JSR-181), described at http://
wwmv. j cp. or g/ en/ j sr/detail ?i d=181, the JAX-WS specification (JSR-224), described at
http://jax-ws.java. net, as well as additional ones. For a complete list of JWS
annotations that are supported, see Web Service Annotation Support in WebLogic
Web Services Reference for Oracle WebLogic Server. For additional detailed
information about this programming model, see The Programming Model—Metadata
Annotations.

Web services can be created using two development methods: bottom-up or top-
down. Bottom-up development refers to the process of developing a web service from
the underlying Java implementation using SOAP. Top-development describes the
development of a web service from the WSDL source.

3-1


http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181
http://jax-ws.java.net

Chapter 3
Configuring Your Domain For Advanced Web Services Features

The following sections describe the high-level steps for iteratively developing a web
service, either starting from Java (bottom-up) or starting from an existing WSDL file
(top-down):

» Developing WebLogic Web Services Starting From Java: Main Steps
» Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Iterative development refers to setting up your development environment in such a
way so that you can repeatedly code, compile, package, deploy, and test a web
service until it works as you want. The WebLogic web service programming model
uses Ant tasks to perform most of the steps of the iterative development process.
Typically, you create a single bui | d. xni file that contains targets for all the steps, then
repeatedly run the targets, after you have updated your JWS file with new Java code,
to test that the updates work as you expect.

In addition to the command-line tools described in this section, you can use an IDE,
such as Oracle JDeveloper or Oracle Enterprise Pack for Eclipse (OEPE), to develop
web services. For more information, see Using Oracle IDEs to Build Web Services in
Understanding WebLogic Web Services for Oracle WebLogic Server.

3.2 Configuring Your Domain For Advanced Web Services

Features

ORACLE

When creating or extending a domain, you can apply the WebLogic Advanced Web
Services for JAX-WS Extension template (oracle.wls-webservice-jaxws-template.jar) to
configure automatically the resources required to support the following advanced web
service features:

e Asynchronous messaging, as described in Developing Asynchronous Clients.

*  Web services reliable messaging, as described in Using Web Services Reliable
Messaging.

» Message buffering, as described in Configuring Message Buffering for Web
Services.

e Security using WS-SecureConversation, as described in Configuring Message-
level Security in Securing WebLogic Web Services for Oracle WebLogic Server.

# Note:

To configure your domain for SOAP over JMS transport, see Configuring the
WebLogic Server Domain for JMS Transport.

Use of the WebLogic Advanced Web Services for JAX-WS Extension template is only
required when you need to ensure recoverability of advanced web services. The
extension template configures the following resources that support recoverability by
enabling WebLogic Server to retain critical state information in the event of a server
failure:

* JMS queues for storing reliable messaging requests.

» Default web service persistence configuration that provides a built-in, high-
performance storage solution for web services.

3-2



ORACLE

Chapter 3
Configuring Your Domain For Advanced Web Services Features

The benefits of using the WebLogic Advanced Web Services for JAX-WS Extension
template include:

*  Web services and clients, by default, use the reliable and high performance
WebLogic storage solution.

*  Web services that use reliable messaging can buffer incoming asynchronous
requests to increase fault tolerance and better absorb load. (This feature is
enabled by default.)

* Messages between web services and clients can be configured such that they are
fault-tolerant and recoverable in the event of a client failure, service failure, or
both.

If you do not use the WebLogic Advanced Web Services for JAX-WS Extension
template, you can still develop using the advanced features, but with a reduced quality
of service, as describe below:

e By default, the state of an advanced web service is stored in memory; in the event
of server failure, the data will be lost.

e Web services will not buffer incoming asynchronous requests when using reliable
messaging.

e Web services and clients will not be recoverable in the event of a failure; any in-
flight requests between them will be lost.

For more information, see Resources Required by Advanced Web Service Features.

# Note:

If you do not apply the WebLogic Advanced Web Services for JAX-WS
Extension template to support recoverability:

e You must ensure that buffering is disabled for web services reliable
messaging on the destination server. For more information, see
Configuring a Non-buffered Destination for a Web Service.

e Quality of service features that you have configured for your web service
may not be in effect. In this case, a message will be logged to the sever
log to indicate the feature has been disabled.

Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can manually configure the
resources required for these advanced features using the Oracle WebLogic Server
Administration Console or WLST.

The following procedures describe how to configure a domain automatically for the
advanced web services features. For more detailed instructions about using the
Configuration Wizard to create and update WebLogic Server domains, see Creating a
WebLogic Domain in Creating WebLogic Domains Using the Configuration Wizard.

* Resources Required by Advanced Web Service Features

»  Configuring a Domain for Advanced Web Service Features Using the
Configuration Wizard

* Using WLST to Extend a Domain With the Web Services Extension Template

3-3



Chapter 3
Configuring Your Domain For Advanced Web Services Features

» Updating Resources Added After Extending Your Domain

3.2.1 Resources Required by Advanced Web Service Features

ORACLE

Table 3-1 lists the resources that are defined automatically when using the WebLogic
Advanced Web Services for JAX-WS Extension template.

If you do not apply the extension template, you need to configure the resources
manually using the Oracle WebLogic Server Administration Console or WLST. Be sure
to configure JMS targeting according to best practices defined in Best Practices for
JMS Beginners and Advanced Users in Administering JMS Resources for Oracle
WebLogic Server. Specifically:

e Configure a JMS server, Store-and-forward (SAF) service agent, and persistent
store on each WebLogic Server. In a cluster, target each to a local migratable
target (not the server). The host server's "default migratable target" is sufficient in
most cases.

e Target JMS modules to a cluster (or single server if not using a clustered
environment).

e Create exactly one subdeployment per module, and populate the subdeployment
with the applicable JMS servers or SAF agents only, not the servers.

e Target JMS destinations to the subdeployment (referred to as Advanced Targeting
in the WebLogic Server Administration Console). JMS destinations must never use
the default targeting option.

The following variables are used in the table:

» server_designator specifies an ID that is generated automatically by the
configuration framework. Typically, this ID is of the format aut o_nunber .

e uniquelD specifies unique numeric ID that is generated automatically by the
configuration framework. Typically, this ID is a numeric value, such as 1234.

* server_name specifies the user-specified name of the server.

" Note:

At runtime, you should not change the name of resources; otherwise, you
may experience runtime errors or data loss.

3-4



Chapter 3

Configuring Your Domain For Advanced Web Services Features

Table 3-1 Resources Required by Advanced Web Services Features

Resource Name Resource Type

Description

WseeJaxwsJnmsMbdul e JMS Module

Defines a JMS module that defines the JMS resources
needed for advanced web services. All associated
targets (JMS servers targeted to a server) on this IMS
module will be used to support JAX-WS web services.
All servers to which this module is targeted must have
the proper web services resources configured.

Oracle recommends that you target this module to all
servers in the domain.

Note: You must configure the JMS module as a
Uniform Distributed Destination (UDD). Any queues
that are used by web services on JAX-WS must be
Uniform Distributed Queues. Otherwise, an exception
is thrown.

To configure distributed destinations manually and for
more information, see Using Distributed Destination in
Developing JMS Applications for Oracle WebLogic
Server.

VeeJaxwsFi | eStore_serve File store
r_desi gnat or

Specifies the file store, or physical store, used by the
WebLogic Server to handle the 1/0O operations to save
and retrieve data from the physical storage (such as
file, DBMS, and so on).

A separate file store is configured on each Managed
Server targeted by the WeeJaxwsJnsMdul e, as
specified by server _desi gnat or . In a single server
domain, the file store is named WeeJaxwsFi | eSt or e.

Note: Oracle recommends targeting the file store to a
migratable target.

To configure the file stores manually, see Using
Custom File Stores in Administering the WebLogic
Persistent Store.

WseeJaxwsJInsServer _serve JMS server
r_desi gnat or

Specifies the JMS server management container. A
separate JMS Server is configured on each Managed
Server targeted by WeeJaxwsJmsModul e, as specified
by server_desi gnat or. The JMS server uses

Vi6eeFi | eSt ore_server_desi gnat or as the file store.

When configuring the JMS server, Oracle
recommends the following:

*  Target the JMS server to a migratable target.

e Setrealistic quotas on each JMS server. For
more information, see Tuning WebLogic JMS in
Tuning Performance of Oracle WebLogic Server.

To configure the JMS server manually, see JMS

Configuration in Administering JMS Resources for

Oracle WebLogic Server.

V6eeJaxwsJnsServer uni que JMS subdeployment
ID

Specifies the JMS subdeployment targeting the JMS
servers defined on all Managed Servers in the cluster.

To configure the JMS subdeployment manually, see
Configure subdeployments in JMS system modules in
Oracle WebLogic Server Administration Console
Online Help.

ORACLE

3-5



Chapter 3

Configuring Your Domain For Advanced Web Services Features

Table 3-1 (Cont.) Resources Required by Advanced Web Services Features

Resource Name Resource Type

Description

webl ogi c. wsee. j axws. mdb.  Work Manager
Di spat chPol i cy

Enables an application to execute multiple work items
concurrently within a container. One Work Manager is
generated for the domain and targeted to all servers to
which the WeeJaxwsJnsMbdul e is targeted.

Note: You should not change the name of the Work
Manager resource.

To configure Work Managers manually, see
Description of the Work Manager API in Developing
CommondJ Applications for Oracle WebLogic Server.

Rel i abl eWseeJaxwsSAFAgen SAF service agent
t _server_nanme

Provides highly available IMS message production. A
separate SAF agent is configured on each Managed
Server, as specified by server_nane. The SAF agent
uses WseeFi | eSt ore_server _nane as the file store.

In a single server domain, the SAF agent is named
Rel i abl eWseeJaxws SAFAgent .

When configuring the SAF agent, Oracle recommends
that you set realistic quotas on each JMS server. For
more information, see Tuning WebLogic JMS in
Tuning Performance of Oracle WebLogic Server.

To configure SAF service agents, see Understanding
the Store-and-Forward Service in Administering the
Store-and-Forward Service for Oracle WebLogic
Server.

VeeBuf f er edRequest Queue JMS queue
_server_desi gnat or

Specifies the queue used for buffered requests. A
separate queue is configured on each Managed
Server, as specified by server _nane.

In a single server domain, the queue is named
V6eeBuf f er edRequest Queue. In a clustered domain,
each JMS queue is prefixed by di st _.

To configure the queues manually, see Configure
queues in Oracle WebLogic Server Administration
Console Online Help.

V6eeBuf f er edRequest Error  JMS queue
Queue_server _desi gnat or

Specifies the error queue used for

W eeBuf f er edRequest Queue for buffered requests that
cannot be processed within the maximum number of
retries. A separate queue is configured on each
Managed Server, as specified by server _nane.

In a single server domain, the queue is named
W eeBuf f er edRequest Er r or Queue. In a clustered
domain, each JMS queue is prefixed by di st _.
To configure the queues manually, see Configure

queues in Oracle WebLogic Server Administration
Console Online Help.

ORACLE

3-6



Chapter 3

Configuring Your Domain For Advanced Web Services Features

Table 3-1 (Cont.) Resources Required by Advanced Web Services Features

Resource Name

Resource Type

Description

WeeBuf f er edResponseQueu JMS queue

e_server_desi gnat or

Specifies the queue used for buffered responses. A
separate queue is configured on each Managed
Server, as specified by server _desi gnat or .

In a single server domain, the queue is named
Vi6eeBuf f er edResponseQueue. In a clustered domain,
each JMS queue is prefixed by di st _.

To configure the queues manually, see Configure
queues in Oracle WebLogic Server Administration
Console Online Help.

V$eeBuf f er edResponseErro JMS queue

r Queue_server _desi gnat or

Specifies the error queue used for

W eeBuf f er edResponseQueue for buffered responses
that cannot be delivered within the maximum number
of retries. A separate queue is configured on each
Managed Server, as specified by server _desi gnat or .

In a single server domain, the queue is named
W eeBuf f er edResponseEr r or Queue. In a clustered
domain, each JMS queue is prefixed by di st _.
To configure the queues manually, see Configure

queues in Oracle WebLogic Server Administration
Console Online Help.

WseeSt ore

Logical store

Defines the logical store. A separate logical store is
configured on each Managed Server targeted by
WeeJaxwsJnsModul e. The logical store points to the
W eeBuf f er edRequest Queue queue for its
configuration and file store.

To configure the logical store manually, see
Configuring the Logical Store.

3.2.2 Configuring a Domain for Advanced Web Service Features

Using the Configuration Wizard

The following sections describe how to configure a domain for advanced web service

features.

e Creating a Domain With the Web Services Extension Template

e Extending a Domain With the Web Services Extension Template

3.2.2.1 Creating a Domain With the Web Services Extension Template

To create a domain that is automatically configured for the advanced web service

features:

1. Start the Configuration Wizard.

2. In the Welcome window, select Create a new WebLogic domain.
3. Click Next.

ORACLE

3-7



© ® N o O

Chapter 3
Configuring Your Domain For Advanced Web Services Features

Select Generate a domain configured automatically to support the following
products and select WebLogic Advanced Web Services for JAX-WS
Extension.

Click Next.

Enter the name and location of the domain and click Next.

Configure the administrator user name and password and click Next.
Configure the server start mode and JDK and click Next.

To configure additional servers and clusters:

a. On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and
clusters. Select any other items, as desired, and click Next.

b. Configure the Managed Servers in your environment and click Next.
c. Configure the clusters in your environment and click Next.

d. Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

e. Configure the machines in your environment and click Next.

f. Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Note: Target the WeeJaxwsJmsMbdul e JIMS module and
webl ogi c. wsee. j axws. mdb. Di spat chPol i cy Work Manager to all servers in the
cluster.

Servers targeted on this screen will be fully configured for use with advanced
web services.

g. Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

10. When you reach the Configuration Summary screen, verify the domain details and

click Create.

3.2.2.2 Extending a Domain With the Web Services Extension Template

ORACLE

To extend an existing domain so that it is automatically configured for these Web
Services features:

o o p W NP

Start the Configuration Wizard.

In the Welcome window, select Extend an Existing WebLogic Domain.
Click Next.

Select the domain to which you want to apply the extension template.
Click Next.

Select Extend my domain automatically to support the following added
products and select WebLogic Advanced Web Services for JAX-WS
Extension.

Click Next.

To configure additional servers and clusters:

3-8



Chapter 3
Configuring Your Domain For Advanced Web Services Features

a. On the Select Optional Configuration screen, at a minimum select Managed
Servers, Clusters, and Machines to define the Managed Servers and
clusters. Select any other items, as desired, and click Next.

b. Configure the Managed Servers in your environment and click Next.
c. Configure the clusters in your environment and click Next.

d. Assign the managed servers to the clusters on the Assign to Clusters screen
and click Next.

e. Configure the machines in your environment and click Next.

f. Target the services defined in the environment to clusters or servers on the
Target Services to Clusters or Servers screen and click Next.

Note: Target the WeeJaxwsJmsMbdul e JIMS module and
webl ogi c. wsee. j axws. mdb. Di spat chPol i cy Work Manager to all servers in the
cluster.

Servers targeted on this screen will be fully configured for use with advanced
web services.

g. Configure additional information on additional configuration screens (if
selected in step 9a) and click Next.

9. Verify that you are extending the correct domain, then click Extend.

10. Click Done to exit.

3.2.3 Using WLST to Extend a Domain With the Web Services
Extension Template

The following provides an example of how to use WLST to extend a domain using the
web services extension template. Specifically, this example demonstrates how to
extend a single server domain. It is assumed that you have already created a single
server domain. You can add additional servers and clusters to the domain in the
location noted in the example script below.

After updating the script and executing it against your domain, all resources will be
configured for advanced web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see Understanding the WebLogic
Scripting Tool.

Example 3-1 WLST Script to Extend a Domain With the Web Services Extension Template

# Read the domain.
readDonai n(si ngl e_server _domai n_dir)

# Apply the tenplate to the domain to configure the servers for advanced web service features.
instal IDir = install_directory/w server_10.3

tenpl ateLocation = install _directory + '/oracle_comon/ conmon/tenpl at es/ w s/ oracl e. w s-webservi ce-
jaxws-tenplate.jar'

addTenpl at e(t enpl at eLocat i on)

# Save and close the donmin

updat eDonai n()
cl oseDonai n()

ORACLE 3-9



Chapter 3
Configuring Your Domain For Advanced Web Services Features

# Read the donmain
readDomai n(domai n_dir)

# Optionally create any servers and clusters required in your domain environnent.
# <Include create calls here . . . >
# For exanple: create('serverl','Server') or create('clusterl' ,"Custer')

# Optionally configure the JM5 nodule as a Uniform Distributed Destination (Recommended)
set Di st Dest Type(' WseeJaxwsJnshbdul ', ' UDD )

# Target WeeJaxwsJnshbdul e to the desired servers and clusters.
assi gn(' JMSSyst enResource', ' WseeJaxwsJnsMdul e', 'Target', server_or_cluster)
# Repeat assign call for other servers and clusters in the environment.

# Unassign the resource fromthe Admnistration Server.
unassi gn(' JMSSyst enResource', ' WseeJaxwsJnsMbdul ', 'Target', Administration_Server)

sys. pat h. append( donai n_di r)
appl yJAXWS( gl obal s())

# Save and close the domain
updat eDonai n()
cl oseDomai n()

3.2.4 Updating Resources Added After Extending Your Domain

Once you have created or extended a domain using the WebLogic Advanced Web
Services for JAX-WS Extension template, if you then modify the resources in your
domain, you can update the configuration of those resources quickly and easily using
the following WLST script.

After updating the script and executing it against your domain, all resources will be
configured for advanced web service features.

Review the comments provided in the sample for more information. For more
information about the WLST commands described, see Using the WebLogic Scripting
Tool in Understanding the WebLogic Scripting Tool.

Example 3-2 WLST Script for Updating Resources Added After Extending Your Domain

# Read the domain.
r eadDonai n( domai n_dir)

# Optionally configure the JVS nodule as a UniformDistributed Destination (Reconmended)
set Di st Dest Type(' WseeJaxwsJnshbdul e', ' UDD )

# Target WeeJaxwsJnsModul e to the desired servers and clusters.
assi gn(' JMSSyst enmResource', 'WseeJaxwsJnshMbdul e', 'Target', server_or_cluster_nane)
# Repeat assign call for other servers and clusters in the environnent.

# Unassign the resource fromthe Admnistration Server.
unassi gn(' JMSSyst enResource', 'WseeJaxwsJnsModul ', 'Target', Administration_Server_name)

sys. pat h. append( donai n_dir)
appl yJAXWS( gl obal s())

# Save and cl ose the domin.
updat eDonai n()

ORACLE 3-10



Chapter 3
Developing WebLogic Web Services Starting From Java: Main Steps

3.3 Developing WebLogic Web Services Starting From
Java: Main Steps

This section describes the general procedure for developing WebLogic web services
starting from Java—in effect, coding the JWS file from scratch and later generating the
WSDL file that describes the service. See Examples of Developing JAX-WS Web
Services for specific examples of this process.

The following procedure is just a recommendation; if you have set up your own
development environment, you can use this procedure as a guide for updating your
existing environment to develop WebLogic web services.

" Note:

This procedure does not use the WebLogic web services split development
directory environment. If you are using this development environment, and
would like to integrate web services development into it, see Integrating Web
Services Into the WebLogic Split Development Directory Environment for
details.

Table 3-2 Steps to Develop Web Services Starting From Java

_____________________________________________________________________________________________|]
# Step Description

Set up the environment. Open a command window and execute the set Donai nEnv. cmd (Windows) or
set Domai nEnv. sh (UNIX) command, located in the bi n subdirectory of your
domain directory. The default location of WebLogic Server domains is
ORACLE_HOVE/ user _proj ect s/ domai ns/ donmai nNane, where ORACLE_HOME is
the directory you specified as Oracle Home when you installed Oracle
WebLogic Server and domai nNare is the name of your domain.

2 Create a project directory. The project directory will contain the JWS file, Java source for any user-
defined data types, and the Ant bui | d. xni file. You can name the project
directory anything you want.

3 Create the JWS file that See Programming the JWS File.
implements the web service.

4 Create user-defined data If your web service uses user-defined data types, create the JavaBeans that
types. (Optional) describes them. See Programming the User-Defined Java Data Type.

5 Create a basic Ant build file, See Creating the Basic Ant build.xml File.
build. xm .

6 Run the j wsc Ant task against The j wsc Ant task generates source code, data binding artifacts, deployment
the JWS file. descriptors, and so on, into an output directory. The j wsc Ant task generates

an Enterprise application directory structure at this output directory; later you
deploy this exploded directory to WebLogic Server as part of the iterative
development process. See Running the jwsc WebLogic Web Services Ant
Task.

7 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.

8 Browse to the WSDL of the Browse to the WSDL of the web service to ensure that it was deployed
web service. correctly. See Browsing to the WSDL of the Web Service.

ORACLE 3-11



Chapter 3
Developing WebLogic Web Services Starting From a WSDL File: Main Steps

Table 3-2 (Cont.) Steps to Develop Web Services Starting From Java
]

# Step Description
Test the web service. See Testing the Web Service.

10 Edit the web service. To make changes to the web service, update the JWS file, undeploy the web
(Optional) service as described in Deploying and Undeploying WebLogic Web Services,

then repeat the steps starting from running the j wsc Ant task (Step 6).

See Developing Web Service Clients for information on writing client applications that
invoke a web service.

3.4 Developing WebLogic Web Services Starting From a
WSDL File: Main Steps

This section describes the general procedure for developing WebLogic web services
based on an existing WSDL file. See Examples of Developing JAX-WS Web Services,
for a specific example of this process.

The procedure is just a recommendation; if you have set up your own development
environment, you can use this procedure as a guide for updating your existing
environment to develop WebLogic web services.

It is assumed in this procedure that you already have an existing WSDL file.

< Note:

This procedure does not use the WebLogic web services split development
directory environment. If you are using this development environment, and
would like to integrate web services development into it, see Integrating Web
Services Into the WebLogic Split Development Directory Environment for
details.

Table 3-3 Steps to Develop Web Services Starting From Java

L ___________________________________________________________________________________________]
#  Step Description

Set up the environment. Open a command window and execute the set Donai nEnv. cmd (Windows) or
set Donai nEnv. sh (UNIX) command, located in the bi n subdirectory of your
domain directory. The default location of WebLogic Server domains is
ORACLE_HOVE/ user _pr oj ect s/ domai ns/ domai nNanme, where ORACLE_HOVE is
the directory you specified as Oracle Home when you installed Oracle
WebLogic Server and donai nNare is the name of your domain.

2 Create a project directory. The project directory will contain the generated artifacts and the Ant
bui I d. xm file.

3 Create a basic Ant build file,  See Creating the Basic Ant build.xml File.
bui l d. xm .

ORACLE 3-12



Chapter 3
Creating the Basic Ant build.xml File

Table 3-3 (Cont.) Steps to Develop Web Services Starting From Java

# Step

Description

Put your WSDL file in a For example, you can put the WSDL file in awsdl _fi | es child directory of the
directory that the bui | d. xm project directory.
Ant build file is able to read.

5 Run the wsdl ¢ Ant task The wsdl ¢ Ant task generates the JWS service endpoint interface (SEI), the
against the WSDL file. stubbed-out JWS class file, JavaBeans that represent the XML Schema data

types, and so on, into output directories. See Running the wsdlc WebLogic
Web Services Ant Task.

6 Update the stubbed-out JWS The wsdl ¢ Ant task generates a stubbed-out JWS file. You need to add your
file generated by the wsdl ¢ business code to the web service so it behaves as you want. See Updating

Ant task.

the Stubbed-out JWS Implementation Class File Generated By wsdlc.

7 Run the j wsc Ant task against Specify the artifacts generated by the wsdl ¢ Ant task as well as your updated

the JWS file.

JWS implementation file, to generate an Enterprise Application that
implements the web service. See Running the jwsc WebLogic Web Services
Ant Task.

8 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.

9 Browse to the WSDL of the Browse to the WSDL of the web service to ensure that it was deployed

web service. correctly. See Browsing to the WSDL of the Web Service.

10 Test the web service. See Testing the Web Service.

11 Edit the web service. To make changes to the web service, update the JWS file, undeploy the web
(Optional) service as described in Deploying and Undeploying WebLogic Web Services,

then repeat the steps starting from running the j wsc Ant task (Step 6).

See Developing Web Service Clients for information on writing client applications that
invoke a web service.

3.5 Creating the Basic Ant build.xml File

ORACLE

Ant uses build files written in XML (default name bui | d. xn ) that contain a <pr oj ect >
root element and one or more targets that specify different stages in the web services
development process. Each target contains one or more tasks, or pieces of code that
can be executed. This section describes how to create a basic Ant build file; later
sections describe how to add targets to the build file that specify how to execute
various stages of the web services development process, such as running the jwsc Ant
task to process a JWS file and deploying the web service to WebLogic Server.

The following skeleton bui | d. xni file specifies a default al | target that calls all other
targets that will be added in later sections:

<project default="all">

<target name="all"

depends="cl ean, bui | d- servi ce, depl oy" />
<target name="clean">
<del ete dir="output" />
</target>
<target name="buil d-service">
<!--add jwsc and rel ated tasks here -->
</target>
<target name="depl oy">
<l--add w depl oy task here -->

3-13



Chapter 3
Running the jwsc WebLogic Web Services Ant Task

</dftarget>
</ proj ect>

For detailed information about how to integrate and use Ant tasks in your development
environment to program a web service and a client application that invokes the web
service, see:

* Using Oracle WebLogic Server Ant Tasks in Understanding WebLogic Web
Services for Oracle WebLogic Server

* Ant Task Reference in WebLogic Web Services Reference for Oracle WebLogic
Server

*  The following sections in Developing Applications for Oracle WebLogic Server:
— Using Ant Tasks to Configure and Use a WebLogic Server Domain

— wildeploy Ant Task Reference

3.6 Running the jwsc WebLogic Web Services Ant Task

ORACLE

The jwsc Ant task takes as input a JWS file that contains JWS annotations and
generates all the artifacts you need to create a WebLogic web service. The JWS file
can be either one you coded yourself from scratch or one generated by the wsdl ¢ Ant
task.

The j wsc-generated artifacts include;

+ JSR-109 web service class file.
e JAXB data binding artifact class file.
e All required deployment descriptors, including:
— Servlet-based web service deployment descriptor file: web. xm .

— Ear deployment descriptor files: appl i cati on. xni and webl ogi c-
application.xm .

" Note:

The WSDL file is generated when the service endpoint is deployed.

If you are running the j wsc Ant task against a JWS file generated by the wsdl ¢ Ant task,
the j wsc task does not generate these artifacts, because the wsdl ¢ Ant task already
generated them for you and packaged them into a JAR file. In this case, you use an
attribute of the j wsc Ant task to specify this wsdl c-generated JAR file.

After generating all the required artifacts, the j wsc Ant task compiles the Java files
(including your JWS file), packages the compiled classes and generated artifacts into
a deployable JAR archive file, and finally creates an exploded Enterprise Application
directory that contains the JAR file.

The jwsc Ant task includes attributes and child elements that enable you to:

»  Process multiple JWS files at once. You can choose to package each resulting
web service into its own Web application WAR file, or group all of the web services
into a single WAR file.

3-14



ORACLE

Chapter 3
Running the jwsc WebLogic Web Services Ant Task

*  Specify the transports (HTTP/HTTPS or JMS transport) that client applications can
use when invoking the web service, as described Specifying the Transport Used to
Invoke the Web Service.

* Update an existing Enterprise Application or Web application, rather than generate
a completely new one.

To run the j wsc Ant task, add the following t askdef and bui | d- servi ce target to the
bui | d. xnl file:

<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. ant t asks. JwscTask" />
<target name="buil d-service">
<jwsc
srcdir="src_directory"
destdir="ear _directory"
>
<jws file="JWs file"
conpi | edWsdl ="WSDLC_Gener at ed_JAR"
type="WebServi ce_type"/>
</jwsc>
</target>

where:

e ear_directory refersto an Enterprise Application directory that will contain all the
generated artifacts.

« src_directory refers to the top-level directory that contains subdirectories that
correspond to the package name of your JWS file.

e JW& file refers to the full pathname of your JWS file, relative to the value of the
src_directory attribute.

*  WSDLC Generat ed_JAR refers to the JAR file generated by the wsdl ¢ Ant task that
contains the JWS SEI and data binding artifacts that correspond to an existing
WSDL file.

# Note:

You specify this attribute only in the "starting from WSDL" use case; this
procedure is described in Developing WebLogic Web Services Starting
From a WSDL File: Main Steps.

*  \WbService_t ype specifies the type of web service. This value can be set to JAXWS
or JAXRPC.

The required t askdef element specifies the full class name of the j wsc Ant task.

Only the srcdir and dest dir attributes of the j wsc Ant task are required. This means
that, by default, it is assumed that Java files referenced by the JWS file (such as
JavaBeans input parameters or user-defined exceptions) are in the same package as
the JWS file. If this is not the case, use the sour cepat h attribute to specify the top-level
directory of these other Java files.

See jwsc in the WebLogic Web Services Reference for Oracle WebLogic Server for
complete documentation and examples about the j wsc Ant task.

3-15



Chapter 3
Running the jwsc WebLogic Web Services Ant Task

3.6.1 Specifying the Transport Used to Invoke the Web Service

The <j ws> child element of j wsc includes the following optional child elements for
specifying the transports (HTTP/S or JMS) that are used to invoke the web service:

* WHttpTransport—Specifies the context path and service URI sections of the URL
used to invoke the web service over the HTTP/S transport, as well as the name of
the port in the generated WSDL. For more information, see WLHttpTransport in
WebLogic Web Services Reference for Oracle WebLogic Server.

e JnsTransport Servi ce—Enables and configures SOAP over JMS transport.
Optionally, you can configure the destination name, destination type, delivery
mode, request and response queues, and other JMS transport properties. For
more information, see Developing JAX-WS Web Services.

The following guidelines describe the usage of the transport elements for the j wsc Ant
task:

*  The transports you specify to j wsc always override any corresponding transport
annotations in the JWS file. In addition, all attributes of the transport annotation
are ignored, even if you have not explicitly specified the corresponding attribute for
the transport element, in which case the default value of the transport element
attribute is used.

* You can specify both transport elements for a particular JWS file. However, you
can specify only one instance of a particular transport element. For example,
although you cannot specify two different <W.Ht t pTr anspor t > elements for a given
JWS file, you can specify one <W.Ht t pTransport > and one <W.JnsTr anspor t >
element.

e The value of the servi ceUR attribute can be the same when you specify both
<W.JMSTransport>and <W.Ht t pTr ansport >.

e All transports associated with a particular JWS file must specify the same
cont ext Pat h attribute value.

* If you specify more than one transport element for a particular JIWS file, the value
of the port Nane attribute for each element must be unique among all elements.
This means that you must explicitly specify this attribute if you add more than one
transport child element to <j ws>, because the default value of the element will
always be the same and thus cause an error when running the j wsc Ant task.

e If you do not specify any transport as either one of the transport elements to the
jwsc Ant task or a transport annotation in the JWS file, then the web service's
default URL corresponds to the default value of the W.Ht t pTransport element.

3.6.2 Defining the Context Path of a WebLogic Web Service

ORACLE

There are a variety of places where the context path (also called context root) of a
WebLogic web service can be specified. This section describes how to determine
which is the true context path of the service based on its configuration, even if it is has
been set in multiple places.

In the context of this discussion, a web service context path is the string that comes
after the host : port portion of the web service URL. For example, if the deployed
WSDL of a WebLogic web service is as follows:

http://host nanme: 7001/ fi nanci al / Get Quot e?WSDL

3-16



Chapter 3
Running the jwsc WebLogic Web Services Ant Task

The context path for this web service is fi nanci al .

The following list describes the order of precedence, from most to least important, of
all possible context path specifications:

1. The context Pat h attribute of the <modul e> element and <j ws> element (when used
as a direct child of the j wsc Ant task.)

2. The context Pat h attribute of the <W.Ht t pTransport > child elements of <j ws>.

3. The default value of the context path, which is the name of the JWS file without
any extension.

Assume that you update the bui | d. xm file and add a <W.Ht t pTransport > child element
to the <j ws> element that specifies the JWS file and set its cont ext Pat h attribute to
finance. The context path of the web service would now be fi nance. If, however, you
then group the <j ws> element (including its child <W.Ht t pTransport > element) under a
<nodul e> element, and set its cont ext Pat h attribute to noney, then the context path of the
web service would now be noney.

If you do not specify any cont ext Pat h attribute in either the JWS file or the j wsc Ant
task, then the context path of the web service is the default value: the name of the
JWS file without its *. j ava extension.

If you group two or more <j ws> elements under a <modul e> element and do not set the
context path using any of the other options listed above, then you must specify the
cont ext Pat h attribute of <modul e> to specify the common context path used by all the
web services in the module. Otherwise, the default context paths for all the web
services in the module are going to be different (due to different names of the
implementing JWS files), which is not allowed in a single WAR file.

3.6.3 Examples of Using jwsc

ORACLE

The following bui | d. xmi excerpt shows a basic example of running the jwsc Ant task on
a JWS file:

<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="out put/hel | oVor | dEar">
<jws
file="exanpl es/webservices/hel |l o_wor| d/ Hel | oWor | dl npl . j ava"
type="JAXWS"/ >
</jwsc>
</target>

In the example:

»  The Enterprise application will be generated, in exploded form, in out put /
hel | oWor | dEar, relative to the current directory.

e The JWSfile is called Hel | oWor | di npl . j ava, and is located in the src/ exanpl es/
webser vi ces/ hel | o_wor | d directory, relative to the current directory. This implies
that the JWS file is in the package exanpl es. webser vi ces. hel | oWr | d.

A JAX-WS web service is generated.

3-17



Chapter 3
Running the wsdlc WebLogic Web Services Ant Task

The following example is similar to the preceding one, except that it uses the
conpi | edvsdl attribute to specify the JAR file that contains wsdl c-generated artifacts (for
the "starting with WSDL" use case):

<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target name="buil d-service">

<jwsc
srcdir="src"
dest di r="out put/wsdl cEar" >
<jws

file="exanpl es/ webservi ces/ wsdl ¢/ Tenper at ur ePort Typel npl . j ava"
conpi | edWdl =" out put/ conpi | edWdl / Tenper at ureServi ce_wsdl . jar"
type="JAXWS"/ >
</jwsc>
</target>

In the preceding example, the Tenper at ur ePor t Typel npl . j ava file is the stubbed-out
JWS file that you updated to include your business logic. Because the conpi | edvédl
attribute is specified and points to a JAR file, the j wsc Ant task does not regenerate the
artifacts that are included in the JAR.

To actually run this task, type at the command line the following:

pronpt > ant buil d-service

3.7 Running the wsdlc WebLogic Web Services Ant Task

The wsdl ¢ Ant task takes as input a WSDL file and generates artifacts that together
partially implement a WebLogic web service. These artifacts include:

» JWS service endpoint interface (SEI) that implements the web service described
by the WSDL file.

* JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

* JAXB data binding artifacts.
e Optional Javadocs for the generated JWS SEI.

The wsdl ¢ Ant task packages the JWS SEI and data binding artifacts together into a
JAR file that you later specify to the jwsc Ant task. You never need to update this JAR
file; the only file you update is the JWS implementation class.

To run the wsdl ¢ Ant task, add the following t askdef and gener at e-from wsdl targets to
the bui l d. xnd file:

<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. ant t asks. dl cTask"/>
<target name="generate-fromwsdl ">
<wsdl ¢
src\sdl =" WSDLFi | e"
dest JwsDi r="JW5_interface_directory"
dest I npl Di r="JW5_i npl enent ati on_di rectory"
packageName="Package_nane"
type="WebServi ce_type"/>
</target>

where:

ORACLE 3-18



ORACLE

Chapter 3
Running the wsdic WebLogic Web Services Ant Task

*  WSDLFi | e refers to the name of the WSDL file from which you want to generate a
partial implementation, including its absolute or relative pathname.

e JWs interface_directory refers to the directory into which the JAR file that contains
the JWS SEI and data binding artifacts should be generated.

The name of the generated JAR file is WSDLFi | e_wsdl . j ar, where WSDLFi | e refers to
the root name of the WSDL file. For example, if the name of the WSDL file you
specify to the file attribute is MySer vi ce. wsdl , then the generated JAR file is

MyServi ce_wsdl . j ar.

e JWS inplenentation_directory refers to the top directory into which the stubbed-out
JWS implementation file is generated. The file is generated into a subdirectory
hierarchy corresponding to its package name.

The name of the generated JWS file is Servi ce_Port Typel npl . j ava, where Servi ce
and Por t Type refer to the name attribute of the <servi ce> element and its inner
<port > element, respectively, in the WSDL file for which you are generating a web
service. For example, if the service name is MyServi ce and the port name is

My Ser vi cePort Type, then the JWS implementation file is called

MyServi ce_MyServi cePort Typel npl . j ava.

e Package_nane refers to the package into which the generated JWS SEI and
implementation files should be generated. If you do not specify this attribute, the
wsdl ¢ Ant task generates a package name based on the t ar get Nanespace of the
WSDL.

e \WbService_type specifies the type of web service. This value can be set to JAXWS
or JAXRPC.

The required t askdef element specifies the full class name of the wsdl ¢ Ant task.

Only the srcvdl and dest JusDi r attributes of the wsdl ¢ Ant task are required. Typically,
however, you generate the stubbed-out JWS file to make your programming easier.
Oracle recommends you explicitly specify the package name in case the

t ar get Nanespace of the WSDL file is not suitable to be converted into a readable
package name.

The following bui | d. xm excerpt shows an example of running the wsdl ¢ Ant task
against a WSDL file:

<t askdef name="wsdl c"

cl assname="webl ogi c. wsee. t ool s. ant t asks. Wdl cTask"/>
<target nane="generate-fromwsdl ">

<wsdl ¢

srcWsdl ="wsdl _fil es/ Tenperat ureService. wsdl "

dest JwsDi r =" out put / conpi | edVédl "

destInpl Dir="i npl _output"

packageName="exanpl es. webhser vi ces. wsdl ¢"

type="JAXWS" />
</target>

In the example:

e The existing WSDL file is called Tenper at ur eSer vi ce. wsdl and is located in the
wsdl _fil es subdirectory of the directory that contains the bui | d. xm file.

e The JAR file that will contain the JWS SEI and data binding artifacts is generated
to the out put/ conpi | edvédl directory; the name of the JAR file is
Tenper at ureServi ce_wsdl . j ar.

e The package name of the generated JWS files is exanpl es. webser vi ces. wsdl d.

3-19



Chapter 3
Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc

*  The stubbed-out JWS file is generated into the i npl _out put / exanpl es/ webser vi ces/
wsdl ¢ directory relative to the current directory.

*  Assuming that the service and port type names in the WSDL file are
Tenper at ur eSer vi ce and Tenper at ur ePor t Type, then the name of the JWS
implementation file is Tenper at ur eSer vi ce_Tenper at ur ePor t Typel npl . j ava.

A JAX-WS web service is generated.
To actually run this task, type the following at the command line:

pronpt> ant generate-from wsdl

See wsdlc in WebLogic Web Services Reference for Oracle WebLogic Server for more
information.

3.8 Updating the Stubbed-out JWS Implementation Class
File Generated By wsdlc

ORACLE

The wsdl ¢ Ant task generates the stubbed-out JWS implementation file into the
directory specified by its dest | npl Di r attribute; the name of the file is

Servi ce_Port Typel npl . j ava, where Servi ce is the name of the service and Port Type is
the name of the port type in the original WSDL. The class file includes everything you
need to compile it into a web service, except for your own business logic.

The JWS class implements the JWS web service endpoint interface that corresponds
to the WSDL file; the JWS SEl is also generated by wsdl ¢ and is located in the JAR file
that contains other artifacts, such as the Java representations of XML Schema data
types in the WSDL and so on. The public methods of the JWS class correspond to the
operations in the WSDL file.

The wsdl ¢ Ant task automatically includes the @ébSer vi ce annotation in the JWS
implementation class; the value corresponds to the equivalent value in the WSDL. For
example, the servi ceNane attribute of @¢ébSer vi ce is the same as the nane attribute of
the <servi ce> element in the WSDL file.

When you update the JWS file, you add Java code to the methods so that the
corresponding web service operations operate as required. Typically, the generated
JWS file contains comments where you should add code, such as:

Ilreplace with your inpl here

In addition, you can add additional JWS annotations to the file, with the following
restrictions:

* You can include the following annotations from the standard (JSR-181) j avax. j ws
package in the JWS implementation file: @ebSer vi ce, @andl er Chai n,
@0APMessageHand! er, and @0APMessageHandl er s. If you specify any other JWS
annotation from the j avax. j ws package, the jwsc Ant task returns error when you
try to compile the JWS file into a web service. For example, if you specify the
@ol i cy annotation in a your JWS implementation file, the j wsc Ant task throws a
compilation error.

* You can specify only the servi ceNane, endpoi nt I nter f ace, and t ar get Nanespace
attributes of the @¢bSer vi ce annotation. Use the ser vi ceNane attribute to specify a
different <servi ce> WSDL element from the one that the wsdl ¢ Ant task used, in the
rare case that the WSDL file contains more than one <servi ce> element. Use the

3-20



Chapter 3
Deploying and Undeploying WebLogic Web Services

endpoi nt I nt er f ace attribute to specify the JWS SEI generated by the wsdl ¢ Ant
task. Use the t ar get Nanespace attribute to specify the namespace of a WSDL
service, which can be different from the on in JWS SEI.

* You can specify JAX-WS—JSR 224, JAXB (JSR 222)—or Common (JSR 250)
annotations, as required. For more information about the annotations that are
supported, see JWS Annotation Reference in WebLogic Web Services Reference
for Oracle WebLogic Server.

After you have updated the JWS file, Oracle recommends that you move it to an
official source location, rather than leaving it in the wsdl ¢ output directory.

The following example shows the wsdl c-generated JWS implementation file from the
WSDL shown in Sample WSDL File; the text in bold indicates where you would add
Java code to implement the single operation (get Tenp) of the web service:

package exanpl es. webservi ces. wsdl c;
i mport javax.jws.\WebService;
/**
* Tenperat urePort Typel npl class inpl ements web service endpoint interface
* Tenperat urePort Type */
@\ebSer vi ce(
servi ceNane="Tenper at ur eSer vi ce",
endpoi nt | nt er f ace="exanpl es. webser vi ces. wsdl c. Tenper at ur ePor t Type")
public class TenperaturePort Typel npl inplenents TenperaturePortType {
public TenperaturePort Typel npl () {

public float getTenp(java.lang.String zipcode)
{

/Ireplace with your inpl here
return 0O;
}

}

3.9 Deploying and Undeploying WebLogic Web Services

Because web services are packaged as Enterprise Applications, deploying a web
service simply means deploying the corresponding EAR file or exploded directory.

There are a variety of ways to deploy WebLogic applications, from using the WebLogic
Server Administration Console to using the webl ogi c. Depl oyer Java utility. There are
also various issues you must consider when deploying an application to a production
environment as opposed to a development environment. For a complete discussion
about deployment, see Deploying Applications to Oracle WebLogic Server.

This guide, because of its development nature, discusses just two ways of deploying
web services:

* Using the wideploy Ant Task to Deploy Web Services

* Using the Administration Console to Deploy Web Services

3.9.1 Using the wideploy Ant Task to Deploy Web Services

ORACLE

The easiest way to deploy a web service as part of the iterative development process
is to add a target that executes the w depl oy WebLogic Ant task to the same bui | d. xni
file that contains the j wsc Ant task. You can add tasks to both deploy and undeploy the
web service so that as you add more Java code and regenerate the service, you can
redeploy and test it iteratively.

3-21



ORACLE

Chapter 3
Deploying and Undeploying WebLogic Web Services

To use the w depl oy Ant task, add the following target to your bui | d. xm file:

<target nane="depl oy">
<wl depl oy acti on="depl oy"
nane="Depl oynment Narme"
sour ce="Source" user="Adm nUser"
passwor d=" Admi nPasswor d"
adm nur | =" Admi nServer URL"
target s="Server Nane"/ >
</target>

where:

»  DeploymentName refers to the deployment name of the Enterprise Application, or
the name that appears in the WebLogic Server Administration Console under the
list of deployments.

»  Source refers to the name of the Enterprise Application EAR file or exploded
directory that is being deployed. By default, the j wsc Ant task generates an
exploded Enterprise Application directory.

e AdminUser refers to administrative username.
e AdminPassword refers to the administrative password.

e AdminServerURL refers to the URL of the Administration Server, typically t 3://
| ocal host: 7001.

*  ServerName refers to the name of the WebLogic Server instance to which you are
deploying the web service.

For example, the following w depl oy task specifies that the Enterprise Application
exploded directory, located in the out put / Conpl exSer vi ceEar directory relative to the
current directory, be deployed to the myServer WebLogic Server instance. Its deployed
name is Conpl exSer vi ceEar .

<target name="depl oy">
<wl depl oy action="depl oy"

nane=" Conpl exSer vi ceEar"
sour ce="out put/ Conpl exServi ceEar" user="webl ogi c"
passwor d="webl ogi ¢" verbose="true"
adm nurl ="t 3://1ocal host: 7001"
targets="nyserver"/>

</target>

To actually deploy the web service, execute the depl oy target at the command-line:

pronpt > ant depl oy

You can also add a target to easily undeploy the web service so that you can make
changes to its source code, then redeploy it:

<target name="undepl oy">
<wl depl oy action="undepl oy"

name=" Conpl exSer vi ceEar"
user ="webl ogi c"
passwor d="webl ogi c" verbose="true"
adminurl="t3://1ocal host: 7001"
targets="nyserver"/>

</target>

3-22



Chapter 3
Browsing to the WSDL of the Web Service

When undeploying a web service, you do not specify the sour ce attribute, but rather
undeploy it by its name.

3.9.2 Using the Administration Console to Deploy Web Services

To use the WebLogic Server Administration Console to deploy the web service, first
invoke it in your browser using the following URL:

http://[host]:[port]/console

where:

* host refers to the computer on which WebLogic Server is running.

e port refers to the port number on which WebLogic Server is listening (default value
is 7001).

Then use the deployment assistants to help you deploy the Enterprise application. For
more information about WebLogic Server Administration Console, see The WebLogic
Server Administration Console in the Oracle WebLogic Server Administration Console
Online Help.

3.10 Browsing to the WSDL of the Web Service

You can display the WSDL of the web service in your browser to ensure that it has
deployed correctly.

The following URL shows how to display the web service WSDL in your browser:

http://[host]:[port]/[contextPath]/[serviceUri]?WDL

where:

* host refers to the computer on which WebLogic Server is running (for example,
| ocal host).

* port refers to the port number on which WebLogic Server is listening (default value
is 7001).

* context Pat h refers to the context root of the web service. There are many places to
set the context root (the <W.Ht t pTransport >, <nodul e>, or <j ws> element of j wsc) and
certain methods take precedence over others. See Defining the Context Path of a
WebLogic Web Service.

e serviceUri refers to the value of the serviceUri attribute of the <W.H: t pTr ansport >
child element of the j wsc Ant task. If you do not specify any servi celUri attribute in
the jwsc Ant task, then the serviceUri of the web service is the default value: the
servi ceNane element of the @ebSer vi ce annotation if specified; otherwise, the
name of the JWS file, without its extension, followed by Ser vi ce.

For example, assume that you specified the following <W.Ht t pTr anspor t > child element
in the j wsc task that you use to build your web service:

<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}"
keepGenerat ed="true">
<jws file="exanpl es/webservices/ compl ex/ Conpl exl npl . j ava"
type="JAXVE' >

ORACLE 3-23



Chapter 3
Configuring the Server Address Specified in the Dynamic WSDL

<W.H tpTransport
cont ext Pat h="conpl ex" servi ceUri =" Conpl exServi ce"
por t Nane=" Conpl exServi cePort"/ >
</jws>
</jwsc>
</target>

Then the URL to view the WSDL of the web service, assuming the service is running
on a host called ari el at the default port number (7001), is:

http://ariel: 7001/ conpl ex/ Conpl exSer vi ce?WsDL

3.11 Configuring the Server Address Specified in the
Dynamic WSDL

ORACLE

The WSDL of a deployed web service (also called dynamic WSDL) includes an

<addr ess> element that assigns an address (URI) to a particular web service port. For
example, assume that the following WSDL snippet partially describes a deployed
WebLogic web service called Conpl exSer vi ce:

<definitions name="Conpl exServi ceDefinitions"
tar get Nanespace="http://exanpl e.org">

<servi ce name="Conpl exService">
<port bi ndi ng="s0: Conpl exSer vi ceSoapBi ndi ng" nane="Conpl exServi cePort">
<sl:address | ocation="http://nyhost: 7101/ conpl ex/ Conpl exService"/ >
</ port>
</ service>
</ definitions>

The preceding example shows that the Conpl exSer vi ce web service includes a port
called Conpl exServi cePort, and this port has an address of htt p: // myhost : 7101/ conpl ex/
Conpl exSer vi ce.

WebLogic Server determines the conpl ex/ Conpl exSer vi ce section of this address by
examining the cont ext Pat h and servi ceUR attributes of the j wsc elements, as described
in Browsing to the WSDL of the Web Service. However, the method WebLogic Server
uses to determine the protocol and host section of the address (http://nyhost: 7101, in
the example) is more complicated, as described below. For clarity, this section uses
the term server address to refer to the protocol and host section of the address.

The server address that WebLogic Server publishes in a dynamic WSDL of a deployed
web service depends on whether the web service can be invoked using HTTP/S or
JMS, whether you have configured a proxy server, whether the web service is
deployed to a cluster, or whether the web service is actually a callback service.

The following sections reflect these different configuration options, and provide links to
procedural information about changing the configuration to suit your needs.

*  Web service is not a callback service and can be invoked using HTTP/S
*  Web service is a callback service
*  Web service is invoked using a proxy server

It is assumed in the sections that you use the WebLogic Server Administration
Console to configure cluster and standalone servers.

3-24



Chapter 3
Configuring the Server Address Specified in the Dynamic WSDL

3.11.1 Web service is not a callback service and can be invoked using

HTTP/S

If the web service is deployed to a cluster, the following values are used in the
server address of the dynamic WSDL, in order of precedence:

— Configured network channel, as described in Configuring the Identity of the
Front-end SOAP Router Using Network Channels.

— Frontend Host, Frontend HTTP Port, and Frontend HTTPS Port configured for the
cluster, as described in Configure HTTP Settings for a Cluster in Oracle
WebLogic Server Administration Console Online Help.

— Frontend Host, Frontend HTTP Port, and Frontend HTTPS Port configured for the
local server, as described in Configure HTTP Protocol in Oracle WebLogic
Server Administration Console Online Help.

— If none of the above items are set, the C uster Address must be set for the
cluster, as described in Configure Clusters in Oracle WebLogic Server
Administration Console Online Help. The server channel for the specified
protocol from the request URL (for example, htt p) will be used to generate the
cluster address that is displayed in the WSDL.

If the web service is deployed to an individual server, the Frontend Host, Front end
HTTP Port, and Frontend HTTPS Port configured for the local server are used in the
server address of the dynamic WSDL, as described in Configure HTTP Protocol in
Oracle WebLogic Server Administration Console Online Help.

3.11.2 Web service is a callback service

ORACLE

1.

If the callback service is deployed to a cluster, the following values are used in the
server address of the dynamic WSDL, in order of precedence:

»  Configured network channel, as described in Configuring the Identity of the
Front-end SOAP Router Using Network Channels.

e Frontend Host, Frontend HTTP Port, and Frontend HTTPS Port configured for the
cluster, as described in Configure HTTP Settings for a Cluster in Oracle
WebLogic Server Administration Console Online Help.

* Frontend Host, Frontend HTTP Port, and Frontend HTTPS Port configured for the
local server, as described in Configure HTTP Protocol in Oracle WebLogic
Server Administration Console Online Help.

e Cluster Address for the cluster, as described in Configure Clusters in Oracle
WebLogic Server Administration Console Online Help. The C uster Address is
required if no other values are set.

If the callback service is deployed to an individual server, the Frontend Host,
Frontend HTTP Port, and Frontend HTTPS Port configured for the local server are
used in the server address of the dynamic WSDL, as described in Configure HTTP
Protocol in Oracle WebLogic Server Administration Console Online Help.

If none of the preceding values are set, but the Li sten Address of the server to
which the callback service is deployed is set, then WebLogic Server uses this
value in the server address.

3-25



Chapter 3
Testing the Web Service

See Configure Listen Addresses in Oracle WebLogic Server Administration
Console Online Help.

3.11.3 Web service is invoked using a proxy server

Although not required, Oracle recommends that you explicitly set the Frontend Host,
FrontEnd HTTP Port, and Frontend HTTPS Port of either the cluster or individual server to
which the web service is deployed to point to the proxy server.

See Configure HTTP Settings for a Cluster or Configure HTTP Protocol in Oracle
WebLogic Server Administration Console Online Help.

3.12 Testing the Web Service

After you have deployed a WebLogic web service, you can test basic and advanced
features of your web service, such as security, quality of service (QoS), HTTP
headers, and so on. You can also perform stress testing of the security features. For
information about testing web services using the Web Services Test Client or Fusion
Middleware Control Test Web Service page, see Testing Web Services in
Administering Web Services.

3.13 Integrating Web Services Into the WebLogic Split
Development Directory Environment

ORACLE

This section describes how to integrate web services development into the WebLogic
split development directory environment. It is assumed that you understand this
WebLogic feature and have set up this type of environment for developing standard
Java Platform, Enterprise Edition (Java EE) Version 5 applications and modules, such
as EJBs and Web applications, and you want to update the single bui | d. xm file to
include web services development.

For detailed information about the WebLogic split development directory environment,
see Creating a Split Development Directory Environment in Developing Applications
for Oracle WebLogic Server and the splitdir/hel | oWorl dEar example installed with
WebLogic Server, located in the ORACLE_HOVE/ Wl ser ver / sanpl es/ server / exanpl es/ src/
exanpl es directory, where ORACLE_HOME represents the directory in which you installed
WebLogic Server. For more information about the WebLogic Server code examples,
see Sample Applications and Code Examples in Understanding Oracle WebLogic
Server.

1. In the main project directory, create a directory that will contain the JWS file that
implements your web service.

For example, if your main project directory is called / src/ hel | oWr | dEar, then
create a directory called / src/ hel | oWor | dEar/ hel | oWebSer vi ce:

pronpt > nkdir /src/helloWrl dEar/ hel | oWebServi ce

2. Create a directory hierarchy under the hel | oWbSer vi ce directory that corresponds
to the package name of your JWS file.

For example, if your JWS file is in the package exanpl es. splitdir. hel | o package,
then create a directory hierarchy exanpl es/splitdir/hell o:

3-26



ORACLE

Chapter 3
Integrating Web Services Into the WebLogic Split Development Directory Environment

pronpt > cd /src/ hel | oWorl dEar/ hel | oWebSer vi ce
pronpt > nkdir exanmples/splitdir/hello

Put your JWS file in the just-created web service subdirectory of your main project
directory (/ src/ hel | oWor | dEar/ hel | oWebSer vi ce/ exanpl es/ splitdir/hell o in this
example.)

In the bui I d. xnl file that builds the Enterprise application, create a new target to
build the web service, adding a call to the j wsc WebLogic web service Ant task, as
described in Running the jwsc WebLogic Web Services Ant Task.

The jwsc srcdir attribute should point to the top-level directory that contains the
JWS file (hel | oWbSer vi ce in this example). The j wsc dest di r attribute should point
to the same destination directory you specify for w conpi | e, as shown in the
following example:

<target nane="buil d. hel | o\WebServi ce" >
<jwsc
srcdir="hel | o\bServi ce"
destdir="destination dir"
keepGener at ed="yes" >
<jws file="exanples/splitdir/hello/HelloWrldlnpl.java"
type="JAXWS" />
</jwsc>
</target>

In the example, destination_dir refers to the destination directory that the other
split development directory environment Ant tasks, such as w appc and w conpi | e,
also use.

Update the main build target of the bui | d. xm file to call the web service-related
targets:

<I-- Builds the entire hel |l oWrldEar application -->

<target nane="build"
description="Conpiles hel | oWorl| dEar application and runs appc"
depends="bui | d- hel | o\WebSer vi ce, conpi | e, appc" />

# Note:

When you actually build your Enterprise Application, be sure you run the
j wsc Ant task before you run the w appc Ant task. This is because w appc
requires some of the artifacts generated by j wsc for it to execute
successfully. In the example, this means that you should specify the

bui | d- hel | oWebSer vi ce target before the appc target.

If you use the w conpi | e and w appc Ant tasks to compile and validate the entire
Enterprise Application, be sure to exclude the web service source directory for
both Ant tasks. This is because the j wsc Ant task already took care of compiling
and packaging the web service. For example:

<target name="conpile">
<wl conpile srcdir="${src.dir}" destdir="%${dest.dir}"
excl udes="appSt artup, hel | oWebServi ce">
</wl conplile>
</target>
<target name="appc">

3-27



ORACLE

Chapter 3
Integrating Web Services Into the WebLogic Split Development Directory Environment

<wl appc source="${dest.dir}" deprecation="yes" debug="fal se"
excl udes="hel | oWebServi ce"/ >
</target>

7. Update the application. xm file in the META- | NF project source directory, adding a
<web> module and specifying the name of the WAR file generated by the j wsc Ant
task.

For example, add the following to the appl i cation. xm file for the helloworld web
service:

<appl i cation>

<nmodul e>
<web>
<web- uri >exanpl es/ splitdir/hellof Hell oWrl dl npl . war </ web-uri >
<cont ext - root >/ hel | o</ cont ext - r oot >
</ web>
</ nodul e>

</ application>

¢ Note:

The jwsc Ant task always generates a Web Application WAR file from the
JWS file that implements your web service, unless you JWS file defines
an EJB via the @t at el ess annotation. In that case you must add an

<ej b> module element to the appl i cation. xm file instead.

Your split development directory environment is now updated to include web service
development. When you rebuild and deploy the entire Enterprise Application, the web
service will also be deployed as part of the EAR. You invoke the web service in the
standard way described in Browsing to the WSDL of the Web Service.

3-28



Programming the JWS File

This chapter describes how to program the JWS file that implements your WebLogic
web service using Java API for XML-based web services (JAX-WS).
This chapter includes the following sections:

*  Overview of JWS Files and JWS Annotations

e Java Requirements for a JWS File

e Programming the JWS File: Typical Steps

e Accessing Runtime Information About a Web Service

e Should You Implement a Stateless or Singleton Session EJB?
e Programming the User-Defined Java Data Type

e Invoking Another Web Service from the JWS File

e Using SOAP 1.2

e Validating the XML Schema

« JWS Programming Best Practices

4.1 Overview of JWS Files and JWS Annotations

ORACLE

There are two ways to program a WebLogic web service from scratch:

1. Annotate a standard EJB or Java class with web service Java annotations, as
defined by JSR-181, the JAX-WS specification, and by the WebLogic web services
programming model.

2. Combine a standard EJB or Java class with the various XML descriptor files and
artifacts specified by JSR-109 (such as, deployment descriptors, WSDL files, data
mapping descriptors, data binding artifacts for user-defined data types, and so on).

Oracle strongly recommends using option 1 above. Instead of authoring XML
metadata descriptors yourself, the WebLogic Ant tasks and runtime will generate the
required descriptors and artifacts based on the annotations you include in your JWS.
Not only is this process much easier, but it keeps the information about your web
service in a central location, the JWS file, rather than scattering it across many Java
and XML files.

The Java web service (JWS) annotated file is the core of your web service. It contains
the Java code that determines how your web service behaves. A JWS file is an
ordinary Java class file that uses Java metadata annotations to specify the shape and
characteristics of the web service. The JWS annotations you can use in a JWS file
include the standard ones defined by the web services Metadata for the Java Platform
specification (JSR-181), described at htt p: // www. j cp. or g/ en/ j sr/ det ai | ?i d=181, plus a
set of additional annotations based on the type of web service you are building—JAX-
WS or JAX-RPC. For a complete list of JWS annotations that are supported for JAX-
WS and JAX-RPC web services, see Web Service Annotation Support in WebLogic
Web Services Reference for Oracle WebLogic Server.

4-1


http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Java Requirements for a JWS File

When programming the JWS file, you include annotations to program basic web
service features. The annotations are used at different levels, or targets, in your JWS
file. Some are used at the class-level to indicate that the annotation applies to the
entire JWS file. Others are used at the method-level and yet others at the parameter
level.

4.2 Java Requirements for a JWS File

When you program your JWS file, you must follow a set of requirements, as specified
by the Web Services Metadata for the Java Platform specification (JSR-181) at http://
wwmv. j cp. or g/ en/ j sr/ detail ?i d=181. In particular, the Java class that implements the
web service:

e Must be an outer public class, must not be declared fi nal , and must not be
abstract.

e Must have a default public constructor.
e Must not define a finalize() method.

e Must include, at a minimum, a @¥¢bSer vi ce JWS annotation at the class level to
indicate that the JWS file implements a web service.

e May reference a service endpoint interface by using the
@\bServi ce. endpoi nt | nt er f ace annotation. In this case, it is assumed that the
service endpoint interface exists and you cannot specify any other JWS
annotations in the JWS file other than @ebSer vi ce. endpoi nt I nter f ace,
@nebSer vi ce. servi ceNane, and @bSer vi ce. t ar get Nanespace.

* If JWS file does not implement a service endpoint interface, all public methods
other than those inherited from j ava. | ang. Obj ect will be exposed as web service
operations. This behavior can be overridden by using the @ébMet hod annotation to
specify explicitly the public methods that are to be exposed. If a @¢bMet hod
annotation is present, only the methods to which it is applied are exposed.

4.3 Programming the JWS File: Typical Steps

ORACLE

The following procedure describes the typical steps for programming a JWS file that
implements a web service.

# Note:

It is assumed that you have created a JWS file and now want to add JWS
annotations to it.

For more information about each of the JWS annotations, see JWS Annotation
Reference in WebLogic Web Services Reference for Oracle WebLogic Server.

4-2


http://www.jcp.org/en/jsr/detail?id=181
http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Programming the JWS File: Typical Steps

Table 4-1 Steps to Program the JWS File
]

# Step Description

1 Import the standard JWS The standard JWS annotations are in either the j avax. j ws, j avax. j ws. soap,
annotations that will be used  orj avax. xnl . ws package. For example:
in your JWS file. ) ) )

i mport javax.jws.\\ebMet hod;

i mport javax.jws.\WebService;

i mport javax.jws. soap. SOAPBI ndi ng;
i mport javax.xnl.ws. Bi ndi ngType;

2 Import additional annotations, For a complete list of JWS annotations that are supported, see Web Service
as required. Annotation Support in WebLogic Web Services Reference for Oracle

WebLogic Server.

3 Add the standard required See Specifying that the JWS File Implements a Web Service (@WebService
@ebServi ce JWS annotation Annotation).
at the class level to specify
that the Java class exposes a
web service.

4 Add the standard In particular, use this annotation to specify whether the web service is
@QAPBi ndi ng JWS document-literal, document-encoded, and so on. See Specifying the Mapping
annotation at the class level  of the Web Service to the SOAP Message Protocol (@SOAPBinding
to specify the mapping Annotation).
between the web service and  Ajthough this JWS annotation is not required, Oracle recommends you
the SOAP message protocol.  expjicitly specify it in your JWS file to clarify the type of SOAP bindings a
(Optional) client application uses to invoke the web service.

5  Addthe JAX-WS See Specifying the Binding to Use for an Endpoint (@BindingType
@i ndi ngType JWS Annotation).
annotation at the class level
to specify the binding type to
use for a web service
endpoint implementation
class. (Optional)

6 Add the standard @¥bMet hod Optionally specify that the operation takes only input parameters but does not
annotation for each method in return any value by using the standard @neway annotation. See Specifying
the JWS file that you wantto  That a JWS Method Be Exposed as a Public Operation (@WebMethod and
expose as a public operation. @OneWay Annotations).

(Optional)

7 Add @¢bPar am annotationto See Customizing the Mapping Between Operation Parameters and WSDL
customize the name of the Elements (@WebParam Annotation).
input parameters of the
exposed operations.

(Optional)

8  Add @¢bResul t annotations See Customizing the Mapping Between the Operation Return Value and a
to customize the name and WSDL Element (@WebResult Annotation).
behavior of the return value of
the exposed operations.

(Optional)
9 Add your business code. Add your business code to the methods to make the WebService behave as
required.
ORACLE 4-3



Chapter 4
Programming the JWS File: Typical Steps

4.3.1 Example of a JWS File

The following sample JWS file shows how to implement a simple web service.

package exanpl es. webservi ces. si npl e;
/1 Inport the standard JWS annotation interfaces
import javax.jws.\WebMet hod,;
import javax.jws.\WebhService;
import javax.jws.soap. SOAPBi ndi ng;
/1 Standard JWS annotation that specifies that the porType nane of the Wb
/1 Service is "SinplePortType", the service name is "SinpleService", and the
/'l target Namespace used in the generated WSDL is "http://exanple.org"
@ebServi ce(name="Si npl ePort Type", servi ceName="Si npl eServi ce",
target Nanespace="http://exanpl e. org")
/1 Standard JWS annotation that specifies the mapping of the service onto the
/1 SOAP nessage protocol. In particular, it specifies that the SOAP nessages
/1 are document-1literal-wapped.
@QAPBi ndi ng(styl e=SOAPBI ndi ng. St yl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par amet er St yl e=SOAPBi ndi ng. Par anet er St yl e. W\RAPPED)

/**

* This JWs file forms the basis of sinple Java-class inplemented WebLogic

* Web Service with a single operation: sayHello

*

*/
public class Sinplelnpl {

/1 Standard JWS annotation that specifies that the method shoul d be exposed

/1 as a public operation. Because the annotation does not include the

Il menber-val ue "operationName", the public name of the operation is the

I/ same as the method name: sayHello.

@\ebMet hod()

public String sayHel | o(String message) {

Systemout. println("sayHello:" + message);
return "Here is the message: '" + message + "'";

}
}

4.3.2 Specifying that the JWS File Implements a Web Service
(@WebService Annotation)

ORACLE

Use the standard @\ebSer vi ce annotation to specify, at the class level, that the JWS file
implements a web service, as shown in the following code excerpt:

@\ebServi ce(nane="Si npl ePort Type", servi ceNane="Si npl eServi ce",
target Nanespace="http://exanpl e. org")

In the example, the name of the web service is Si npl ePor t Type, which will later map to
the wsdl : port Type element in the WSDL file generated by the j wsc Ant task. The
service name is Si npl eServi ce, which will map to the wsdl : servi ce element in the
generated WSDL file. The target namespace used in the generated WSDL is http://
exanpl e. org.

You can also specify the following additional attributes of the @\ébSer vi ce annotation:

» endpoi nt I nt er f ace—Fully qualified name of an existing service endpoint interface
file. This annotation allows the separation of interface definition from the
implementation. If you specify this attribute, the j wsc Ant task does not generate

4-4



Chapter 4
Programming the JWS File: Typical Steps

the interface for you, but assumes you have created it and it is in your
CLASSPATH.

e portname—Name that is used in the wsdl : port.

None of the attributes of the @ebSer vi ce annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at htt p: //ww. j cp. org/ en/jsr/ detail ?i d=181
for the default values of each attribute.

4.3.3 Specifying the Mapping of the Web Service to the SOAP
Message Protocol (@SOAPBInding Annotation)

It is assumed that you want your web service to be available over the SOAP message
protocol; for this reason, your JWS file should include the standard @OAPBI ndi ng
annotation, at the class level, to specify the SOAP bindings of the web service (such
as, document-encoded or document-literal-wrapped), as shown in the following code
excerpt:

@CQAPBI ndi ng( styl e=SOAPBi ndi ng. St yl e. DOCUMENT,
use=SOAPBi ndi ng. Use. LI TERAL,
par amet er St yl e=SOAPBi ndi ng. Par anet er St yl e. WRAPPED)

In the example, the web service uses document-wrapped-style encodings and literal
message formats, which are also the default formats if you do not specify the
@0APBi ndi ng annotation. In general, document-literal-wrapped web services are the
most interoperable type of web service.

You use the paranet er Styl e attribute (in conjunction with the

st yl e=SOAPBI ndi ng. St yl e. DOCUMENT attribute) to specify whether the web service
operation parameters represent the entire SOAP message body, or whether the
parameters are elements wrapped inside a top-level element with the same name as
the operation.

The following table lists the possible and default values for the three attributes of the
@0APBI ndi ng (either the standard or WebLogic-specific) annotation.

Table 4-2 Attributes of the @SOAPBinding Annotation
]

Attribute Possible Values Default Value
style SOAPBI ndi ng. Styl e. RPC SOAPBI ndi ng. St yl e. DOCUMENT
SOAPBi ndi ng. St yl e. DOCUVENT
use SQOAPBI ndi ng. Use. LI TERAL SQAPBI ndi ng. Use. LI TERAL
par amet er St SOAPBI ndi ng. Par anet er Styl e. BARE  SOAPBi ndi ng. Par anet er St yl e. WRAPPED
yle SOAPBI ndi ng. Par anet er St yl e. WRAPP
ED

4.3.4 Specifying That a JWS Method Be Exposed as a Public
Operation (@WebMethod and @OneWay Annotations)

Use the standard @ebMet hod annotation to specify that a method of the JWS file should
be exposed as a public operation of the web service, as shown in the following code
excerpt:

ORACLE 4.5


http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Programming the JWS File: Typical Steps

public class Sinplelnpl {
@\ebMet hod( oper at i onName="sayHel | oOperati on")
public String sayHello(String message) {
Systemout. println("sayHello:" + nessage);
return "Here is the nessage: '" + nessage + "'"

}

In the example, the sayHel | o() method of the Si npl el npl JWS file is exposed as a
public operation of the web service. The oper ati onNane attribute specifies, however,
that the public name of the operation in the WSDL file is sayHel | oOper ati on. If you do
not specify the oper at i onNane attribute, the public name of the operation is the name of
the method itself.

You can also use the acti on attribute to specify the action of the operation. When
using SOAP as a binding, the value of the acti on attribute determines the value of the
SOAPAct i on header in the SOAP messages.

To exclude a method as a web service operation, specify
@WebMethod(exclude="true").

# Note:

For JAX-WS, the service endpoint interface (SEI) defines the public
methods. If no SEI exists, then all public methods are exposed as web
service operations, unless they are tagged explicitly with
@WebMethod(exclude="true").

You can specify that an operation not return a value to the calling application by using
the standard @neway annotation, as shown in the following example:

public class OneVayl mpl {
@ebMet hod()

@neway()
public void ping() {
System out. println("ping operation");

}

If you specify that an operation is one-way, the implementing method is required to
return voi d, cannot use a Holder class as a parameter, and cannot throw any checked
exceptions.

None of the attributes of the @ebMet hod annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://ww. j cp. org/en/jsr/detail ?i d=181
for the default values of each attribute, as well as additional information about the
@ebMet hod and @neway annotations.

4.3.5 Customizing the Mapping Between Operation Parameters and
WSDL Elements (@WebParam Annotation)

Use the standard @ebPar amannotation to customize the mapping between operation
input parameters of the web service and elements of the generated WSDL file, as well
as specify the behavior of the parameter, as shown in the following code excerpt:

ORACLE 4-6


http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Programming the JWS File: Typical Steps

public class Sinplelnml {
@\ebMet hod()
@¢bResul t (name="1nt eger Qut put",
target Nanespace="http://exanpl e. org/ docLi t eral Bare")
public int echolnt(
@WebParam(name="IntegerlInput",
targetNamespace="http://example.org/docLiteralBare')

int input)

{
Systemout. printin("echolnt '" + input +"' to you too!");
return input;

In the example, the name of the parameter of the echol nt operation in the generated
WSDL is I nteger I nput ; if the @ebPar amannotation were not present in the JWS file, the
name of the parameter in the generated WSDL file would be the same as the name of
the method's parameter: i nput . The t ar get Nanespace attribute specifies that the XML
namespace for the parameter is htt p: // exanpl e. or g/ docLi t er al Bar e; this attribute is
relevant only when using document-style SOAP bindings where the parameter maps
to an XML element.

You can also specify the following additional attributes of the @«ebPar amannotation:

* mode—The direction in which the parameter is flowing (WebPar am Mode. I N,
WebPar am Mbde. QUT, or WebPar am Mode. | NOUT). OUT and INOUT modes are only
supported for RPC-style operations or for parameters that map to headers.

» header —Boolean attribute that, when set to t r ue, specifies that the value of the
parameter should be retrieved from the SOAP header, rather than the default
body.

None of the attributes of the @ebPar amannotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at http://ww. j cp. org/en/jsr/detail ?i d=181
for the default value of each attribute.

4.3.6 Customizing the Mapping Between the Operation Return Value
and a WSDL Element (@WebResult Annotation)

ORACLE

Use the standard @ebResul t annotation to customize the mapping between the web
service operation return value and the corresponding element of the generated WSDL
file, as shown in the following code excerpt:

public class Sinple {
@\ebMet hod()
@WebResult(name="IntegerOutput",
targetNamespace="http://example.org/docLiteralBare™)
public int echolnt(
@\ébPar an( nane="1nt eger | nput ",
target Nanespace="htt p://exanpl e. org/ docLi t eral Bare")

int input)

{
Systemout. printin("echolnt '" + input +"' to you too!");
return input;

4-7


http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Programming the JWS File: Typical Steps

In the example, the name of the return value of the echol nt operation in the generated
WSDL is I nt eger Qut put ; if the @ebResul t annotation were not present in the JWS file,
the name of the return value in the generated WSDL file would be the hard-coded
name return. The t ar get Nanespace attribute specifies that the XML namespace for the
return value is http: //exanpl e. or g/ docLi t er al Bar e; this attribute is relevant only when
using document-style SOAP bindings where the return value maps to an XML
element.

None of the attributes of the @ebResul t annotation is required. See the Web Services
Metadata for the Java Platform (JSR 181) at htt p: //ww. j cp. org/en/jsr/ detail ?i d=181
for the default value of each attribute.

4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType
Annotation)

Use the JAX-WS j avax. xnl . ws. Bi ndi ngType annotation to customize the binding to use
for a web service endpoint implementation class, as shown in the following code
excerpt:

import javax.xml.ws_BindingType;
import javax.xml.ws.soap.SOAPBinding;
public class Sinple {

@ebServi ce()

@BindingType(value=SOAPBinding.SOAP12HTTP_BINDING)

public int echolnt(

@\ébPar an( name="1Int eger | nput ",
target Nanespace="htt p://exanpl e. or g/ docLi t eral Bare")

int input)

{
Systemout.printin("echolnt '"" + input + "' to you too!");
return input;

In the example, the deployed endpoint would use the SOAP 1.2 over HTTP binding. If
not specified, the binding defaults to SOAP 1.1 over HTTP.

Table 4-3 lists the bindings that are supported for JAX-WS web services.

Table 4-3 Bindings Supported for JAX-WS Web Services
]
Binding Description

j avax. xm . ws. soap. SOAPBi ndi ng. SOA SOAP 1.2 over HTTP binding.
P12HTTP_BI NDI NG

javax. xnm . ws. soap. SOAPBi ndi ng. SCA  SOAP 1.1 over HTTP binding. This is the default for SOAP over HTTP
P11HTTP_BI NDI NG transport connection protocol.

javax. xm . ws. soap. SOAPBi ndi ng. SCA SOAP 1.2 over HTTP and Message Transmission Optimized Mechanism
P12HTTP_MIOM Bl NDI NG (MTOM) binding.

javax. xm . ws. soap. SOAPBi ndi ng. SCA SOAP 1.1 over HTTP and Message Transmission Optimized Mechanism
P11HTTP_MIOM BI NDI NG (MTOM) binding.

You can also specify the following additional attributes of the @i ndi ngType annotation:

ORACLE 4-8


http://www.jcp.org/en/jsr/detail?id=181

Chapter 4
Accessing Runtime Information About a Web Service

» features—An array of features to enable/disable on the specified binding. If not
specified, features are enabled based on their own rules.

For more information about the @i ndi ngType annotation, see JAX-WS 2.1 Annotations
athttp://jax-ws.java.net/nonav/ 2. 1.4/ docs/ annotations. htn .

4.4 Accessing Runtime Information About a Web Service

When a client application invokes a WebLogic web service that was implemented with
a JWS file, WebLogic Server automatically creates a context that the web service or
client can use to access, and sometimes change, runtime information about the
service.

To access runtime information, you can use one of the following methods:

e javax.xnl.ws. Bi ndi ngProvider (http://docs. oracle.conjavaeel/ 7/ api/javax/ xm / ws/
Bi ndi ngProvi der . ht i )—From the client application, access the request and
response context of the protocol binding. See Accessing the Protocol Binding
Context.

e javax.xnl.ws. WbServi ceContext (http://docs. oracle.conjavaeel 7/ api/
javax/ xm / ws/ WebSer vi ceCont ext . ht 1 )—From the web service, access runtime
message context and security information relative to a request being served.
Typically, a WebSer vi ceCont ext is injected into an endpoint using the @esour ce
annotation. See Accessing the Web Service Context.

e javax.xnl.ws. handl er. MessageCont ext (http://docs. oracl e. com javaee/ 7/ api /
javax/ xm /ws/ handl er / MessageCont ext . ht Ml )—Access a set of runtime properties
from a message handler—from the client application or web service—or directly
from the WebSer vi ceCont ext from a web service. See Using the MessageContext
Property Values.

The following sections describe how to use the Bi ndi ngPr ovi der, WebSer vi ceCont ext ,
and MessageCont ext to access runtime information in more detail.

4.4.1 Accessing the Protocol Binding Context

ORACLE

# Note:

The com sun. xni . ws. devel oper. JAXWSPr operti es and

com sun. xn . ws. cl i ent. Bi ndi ngProvi der Properties APIs are supported as an
extension to the JDK 6.0. Because the APIs are not provided as part of the
JDK 6.0 kit, they are subject to change.

The j avax. xnl . ws. Bi ndi ngProvi der interface enables you to access from the client
application the request and response context of the protocol binding. For more
information, see http://docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/

Bi ndi ngProvi der. ht i . For more information about developing web service client files,
see Developing Web Service Clients.

The following example shows a simple web service client application that uses the
context to access HTTP request header information. The code in bold is discussed in
the programming guidelines described following the example.

4-9


http://jax-ws.java.net/nonav/2.1.4/docs/annotations.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/BindingProvider.html

ORACLE

Chapter 4
Accessing Runtime Information About a Web Service

package exanpl es. webservices. hello_world.client;

i mport javax.xnl.namespace. QNane;

inport java.net.Mal formedURLException;

inport java.net.URL;

import java.util.Map;

import javax.xml.ws.BindingProvider;

import javax.xml.ws.handler.MessageContext;

import com.sun.xml.ws.developer.JAXWSProperties;

import com.sun.xml.ws.client.BindingProviderProperties;

/**

* This is a sinple standal one client application that invokes the
* the <code>sayHel | oWor | d</ code> operation of the Sinple web service.
*/

public class Main {
public static void main(String[] args) {
Hel | oWor | dServi ce service;
try {
service = new Hel | oWorl dService(new URL(args[0] + "?WsDL"),
new QNane("http://hello_world. webservices. exanpl es/",
"Hel | oWor | dService") );
} catch (Mal formedURLException murl) { throw new RuntinmeException(murl); }
Hel | oWor | dPort Type port = service. get Hel | oWor | dPort TypePort();
Map requestContext = ((BindingProvider)port).getRequestContext();
requestContext.put(BindingProvider .ENDPOINT_ADDRESS_PROPERTY,
"http://examples.com/HelloWorldImpl/HelloWorldService™);
requestContext. put (JAXWSProperties.CONNECT_TIMEOUT, 300);
requestContext.put(BindingProviderProperties.REQUEST_TIMEOUT, 300);
String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin( "Got result: " + result );
Map responseContext = ((BindingProvider)port).getResponseContext();
Integer responseCode =
(Integer)responseContext.get(MessageContext.HTTP_RESPONSE_CODE);
1
}
Use the following guidelines in your JWS file to access the runtime context of the web
service, as shown in the code in bold in the preceding example:

e Import the j avax. xn . ws. Bi ndi ngPr ovi der API, as well as any other related APls
that you might use:

inport java.util.Mp;

i mport javax.xm .ws. Bi ndi ngProvi der;

i mport javax.xnl.ws. handl er. MessageCont ext ;

import com sun. xn . ws. devel oper. JAXWSPr operti es;

i mport com sun. xm . ws. client. Bi ndi ngProvi der Properti es;
i mport com sun. xm . ws. client. Bi ndi ngProvi der Properti es;

» Use the methods of the Bi ndi ngPr ovi der class to access the binding protocol

context information. The following example shows how to get the request and
response context for the protocol binding and subsequently set the target service
endpoint address used by the client for the request context, set the connection and
read timeouts (in milliseconds) for the request context, and set the HTTP response
status code for the response context:

4-10



Chapter 4
Accessing Runtime Information About a Web Service

Map request Context = ((BindingProvider)port).getRequest Context();
request Cont ext . put ( Bi ndi ngProvi der. ENDPO NT_ADDRESS PROPERTY,
"http://exanpl es. com Hel | oWor | dl npl / Hel | oWor | dSer vi ce");

request Cont ext . put (JAXWSPr operti es. CONNECT_TI MEQUT, 300);
request Cont ext . put (Bi ndi ngProvi der Properti es. REQUEST _TI MEQUT, 300);
.
Map responseCont ext = ((Bindi ngProvider)port). get ResponseContext();
I nteger responseCode =

(I'nteger)responseCont ext . get (MessageCont ext . HTTP_RESPONSE CODE) ;

The following table summarizes the methods of the j avax. xnl . ws. Bi ndi ngPr ovi der that
you can use in your JWS file to access runtime information about the web service.

Table 4-4 Methods of the BindingProvider
|

Method Returns Description
get Bi ndi ng() Bi ndi ng Returns the binding for the binding provider.
get Request Cont ext () java. Uil . Map Returns the context that is used to initialize the message

and context for request messages.

get ResponseCont ext () java. Uil . Map Returns the response context.

One you get the request or response context, you can access the Bi ndi ngPr ovi der
property values defined in the following table and the MessageCont ext property values
defined in Using the MessageContext Property Values.

Table 4-5 Properties of BindingProvider
]

Property Type Description

ENDPO NT_ADDRESS_PROPERTY java.lang. String Target service endpoint address.

PASSWORD PROPERTY java.lang. String Password used for authentication.

SESSI ON_MAI NTAI N_PROPERTY java.lang. Bool ean  Flag that specifies whether a service client wants to

participate in a session with a service endpoint.
Defaults to f al se, indicating that the service client
does not want to participate.

SQAPACTI ON_URI _PROPERTY java.lang. String Property for SOAPAction specifying the SOAPAction
URI. This property is valid only if
SOAPACTI ON_USE_PROPERTY is set to tr ue.

SOAPACTI ON_USE_PROPERTY java.l ang. Bool ean  Property for SOAPAction specifying whether or not
SOAPAction should be used.

USERNAME_PROPERTY java.lang. String User name used for authentication.

In addition, in the previous example:

e The JAXWSPr oper ti es. CONNECT _TI MEQUT property is used to define the connection
timeout. For a complete list of JAXWSPr operti es that you can set, see the
com sun. xn . ws. devel oper . JAXWBPr operti es Javadoc at http://jax-ws. j ava. net/
nonav/ j ax- ws- 20- f cs/ ar ch/ cont sun/ xm / ws/ devel oper/
JAXWSPr oper ti es. ht m #CONNECT_TI MEQUT.

e The Bi ndi ngProvi der Properti es. REQUEST_TI MEQUT property is used to define the
request timeout. For a complete list of Bi ndi ngProvi der Properti es that you can set,
see the com sun. xm . ws. cl i ent. Bi ndi ngProvi der Properties Javadoc at http://j ax-

ORACLE 4-11


http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html#CONNECT_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT

Chapter 4
Accessing Runtime Information About a Web Service

Ws. j ava. net/ nonav/ j ax-ws- 20- f cs/ arch/ comf sun/ xm /ws/ client/
Bi ndi ngProvi der Properties. ht ml #REQUEST _TI MEQUT.

4.4.2 Accessing the Web Service Context

ORACLE

The j avax. xm . ws. WebSer vi ceCont ext interface enables you to access from the web
service runtime message context and security information relative to a request being
served. Typically, a WebSer vi ceCont ext is injected into an endpoint using the @Resour ce
annotation. For more information, see http://docs. oracl e. com j avaee/ 7/ api /

javax/ xm /ws/ WebServi ceCont ext . ht ml .

The following example shows a simple JWS file that uses the context to access HTTP
request header information. The code in bold is discussed in the programming
guidelines described following the example.

package exanpl es.webservices. jws_cont ext;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WbService;
inport java.util.Mp;
i mport javax.xm .ws. WbServi ceCont ext ;
i mport javax.annotation. Resour ce;
i mport javax.xnl.ws. handl er. MessageCont ext ;
@ébSer vi ce( name="JwsCont ext Port Type", servi ceName="JwsCont ext Servi ce",
target Nanespace="http://exanple.org")
/**
* Sinple web service to show how to use the @ontext annotation.
*/
public class JwsContextlnpl {
@Resour ce
private WebServi ceContext ctx;
@\ebMet hod()
public String msgContext(String nsg) {
MessageContext context=ctx.getMessageContext();
Map requestHeaders = (Map)context.get(MessageContext.HTTP_REQUEST HEADERS);
1
}

Use the following guidelines in your JWS file to access the runtime context of the web
service, as shown in the code in bold in the preceding example:

Import the @ avax. annot at i on. Resour ce JWS annotation:
i mport javax.annotation. Resour ce;

e Import the j avax. xnl . ws. WebSer vi ceCont ext API, as well as any other related APIs
that you might use:

import java.util.Mp;
i mport javax.xnl.ws. WbServi ceCont ext ;
i mport javax.xnl.ws. handl er. MessageCont ext ;

* Annotate a private variable, of data type j avax. xn . ws. WebSer vi ceCont ext , with the
field-level @esour ce JWS annotation:

@Resour ce
private \WbServiceContext ctx;

*  Use the methods of the WbSer vi ceCont ext class to access runtime information
about the web service. The following example shows how to get the message
context for the current service request and subsequently access the HTTP request
headers:

4-12


http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/client/BindingProviderProperties.html#REQUEST_TIMEOUT
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html

Chapter 4
Accessing Runtime Information About a Web Service

MessageCont ext cont ext =ct x. get MessageCont ext () ;
Map request Headers =

(Map) cont ext . get ( MessageCont ext . HTTP_REQUEST HEADERS)

For more information about the MessageCont ext property values, see Using the
MessageContext Property Values.

The following table summarizes the methods of the javax. xm . ws. WebSer vi ceCont ext
that you can use in your JWS file to access runtime information about the web service.
For more information, see http://docs. oracl e. conl j avaee/ 7/ api / j avax/ xn / ws/

VebServi ceCont ext . htni .

Table 4-6 Methods of the WebServiceContext
]

Method Returns Description

get MessageCont ext () MessageCont ext Returns the MessageContext for the current service request.
You can access properties that are application-scoped only,
such as HTTP_REQUEST_HEADERS, MESSAGE_ATTACHVENTS, and
so on, as defined in Using the MessageContext Property
Values.

get User Pri nci pal () java.security.Prin Returns the Principal that identifies the sender of the current

ci pal service request. If the sender has not been authenticated,

the method returns nul | .

i sUserlnRol e(java.lang. Str bool ean

ing role)

Returns a boolean value specifying whether the
authenticated user is included in the specified logical role. If
the user has not been authenticated, the method returns
fal se.

4.4.3 Using the MessageContext Property Values

The following table defined the j avax. xm . ws. handl er. MessageCont ext property values
that you can access from a message handler—from the client application or web
service—or directly from the WebSer vi ceCont ext from the web service. For more
information, see the j avax. xni . ws. handl er. MessageCont ext Javadocs at http://

docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/ handl er / MessageCont ext . ht m .

Table 4-7 Properties of MessageContext

Property Type Description

HTTP_REQUEST _HEADERS java.util.Mp Map of HTTP request headers for the request
message.

HTTP_REQUEST_METHOD java.lang. String HTTP request method for example GET, POST, or
PUT.

HTTP_RESPONSE_CODE java.lang. I nteger HTTP response status code for the last invocation.

HTTP_RESPONSE_HEADERS java.util.Mp HTTP response headers.

| NBOUND_MESSAGE_ATTACHVENTS java.util.Mp Map of attachments for the inbound messages.

MESSAGE_OUTBOUND_PROPERTY java.lang. Bool ean  Message direction. This property is t r ue for outbound
messages and f al se for inbound messages.

QUTBOUND_MESSAGE_ATTACHMENTS  java. util.Mp Map of attachments for the outbound messages.

PATH_| NFO java.lang. String Request path information.

QUERY_STRI NG java.lang. String Query string for request.

ORACLE 4-13


http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Chapter 4
Should You Implement a Stateless or Singleton Session EJB?

Table 4-7 (Cont.) Properties of MessageContext

Property

Type Description

REFERENCE_PARAMETERS java. awt . Li st WS-Addressing reference parameters. The list must

include all SOAP headers marked with the
wsa: | sRef er encePar anet er ="t rue" attribute.

SERVLET_CONTEXT

javax. servl et. Servl Servlet context object associated with request.
et Cont ext

SERVLET_REQUEST

javax.servlet.http. Servlet request object associated with request.
Ht t pSer vl et Request

SERVLET_RESPONSE

javax.servlet.http. Servlet response object associated with request.
Ht t pSer vl et Response

WSDL_DESCR! PTI ON

org. xnl . sax. | nput So Input source (resolvable URI) for the WSDL document.
urce

WSDL_| NTERFACE

j avax. xm . namespace Name of the WSDL interface or port type.

. QNarre

WSDL_ OPERATI ON javax. xm . namespace Name of the WSDL operation to which the current
. QNane message belongs.

WSDL_PORT j avax. xnl . namespace Name of the WSDL port to which the message was
. Narme received.

WSDL_SERVI CE javax. xm . namespace Name of the service being invoked.

. Name

4.5 Should You Implement a Stateless or Singleton Session

EJB?

ORACLE

The j wsc Ant task always chooses a plain Java object as the underlying
implementation of a web service when processing your JWS file.

Sometimes, however, you may want the underlying implementation of your web
service to be a stateless or singleton session EJB to take advantage of all that EJBs
have to offer, such as instance pooling, transactions, security, container-managed
persistence, container-managed relationships, and data caching. If you decide you
want an EJB implementation for your web service, then follow the programming
guidelines in the following section.

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB. For more information
about EJB 3.0, see Developing Enterprise JavaBeans for Oracle WebLogic Server.

By default, EJB-based web services are packaged as a JAR file. When building the
EJB-based web service, you can specify that it be packaged as a WAR file by
updating the j wsc Ant task in your bui | d. xnl file to enable the ej bWl nvar attribute in
the nodul e child element. For more information, see jwsc in WebLogic Web Services
Reference for Oracle WebLogic Server.

To implement an EJB in your JWS file, perform the following steps:

4-14



ORACLE

Chapter 4
Should You Implement a Stateless or Singleton Session EJB?

* Import the EJB annotations, all of which are in the j avax. ej b package. At a
minimum you need to import the @t at el ess or @i ngl et on annotation. You can also
specify additional EJB annotations in your JWS file to specify the shape and
behavior of the EJB. For more information, see the j avax. ej b Javadoc at http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ ej b/ package- summary. ht ni .

For example:
inport javax.ejb. Statel ess;

e At a minimum, use the @t at el ess or @i ngl et on annotation at the class level to
identify the EJB:

@Stateless
public class SinpleEblnpl {

The following example shows a simple JWS file that implement a stateless session
EJB. The relevant code is shown in bold.

package exanpl es.wehservi ces. j axws;

i mport webl ogi c. transaction. Transacti onHel per;
import javax.ejb.Stateless;

inport javax.ejh. SessionCont ext;

i mport javax.ejb. TransactionAttribute;
inport javax.ejb.TransactionAttributeType;
i mport javax.annot ation. Resour ce;

i mport javax.jws.\WebService;

import javax.jws.\WbMet hod;

i mport javax.transaction. SystenException;
i mport javax.transaction. Status;

inport javax.transaction. Transaction;

i mport javax.xn .ws. WbServi ceCont ext ;

/**

* A transaction-awared statel ess EJB-inpl emented JWS
*|

/1 Standard JWS annotation that specifies that the portNane, servi ceNane and
/1 target Nanespace of the Web Service.
@eébSer vi ce(

nane = "Sinple",

port Name = "Sinpl eEJBPort",

servi ceNane = "Sinpl eEj bServi ce",

target Nanespace = "http://w s/ sanpl es")

/I Standard EJB annotation
@Stateless
public class SinpleEblnpl {

@Resource
private WebServiceContext context;
private String constructed = null;

/1 The WebMet hod annotation exposes the subsequent nethod as a public
/] operation on the Wb Service.
@ebMet hod()
@ransactionAttribute(Transacti onAttributeType. REQUI RED)
public String sayHel lo(String s) throws SystenException {

Transaction transaction =

Transact i onHel per. get Transacti onHel per (). get Transaction();
int status = transaction.getStatus();

4-15


http://docs.oracle.com/javaee/7/api/javax/ejb/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/ejb/package-summary.html

Chapter 4
Programming the User-Defined Java Data Type

if (Status. STATUS ACTI VE ! = status)
throw new I |1 egal StateException("transaction did not start,
status is: " + status + ", check ejb annotation processing");

return constructed + ":" + s;

}

4.6 Programming the User-Defined Java Data Type

ORACLE

The methods of the JWS file that are exposed as web service operations do not
necessarily take built-in data types (such as Strings and integers) as parameters and
return values, but rather, might use a Java data type that you create yourself. An
example of a user-defined data type is TradeResul t , which has two fields: a Stri ng
stock symbol and an integer number of shares traded.

If your JWS file uses user-defined data types as parameters or return values of one or
more of its methods, you must create the Java code of the data type yourself, and then
import the class into your JWS file and use it appropriately. The jwsc Ant task will later
take care of creating all the necessary data binding artifacts.

Follow these basic requirements when writing the Java class for your user-defined
data type:

» Define a default constructor, which is a constructor that takes no parameters.

» Define both get XXX() and set XXX() methods for each member variable that you
want to publicly expose.

e Make the data type of each exposed member variable one of the built-in data
types, or another user-defined data type that consists of built-in data types.

# Note:

You can use JAXB to provide custom mapping. For more information, see
Customizing Java-to-XML Schema Mapping Using JAXB Annotations.

The j wsc Ant task can generate data binding artifacts for most common XML and Java
data types. For the list of supported user-defined data types, see Supported User-
Defined Data Types. See Supported Built-In Data Types for the full list of supported
built-in data types.

The following example shows a simple Java user-defined data type called Basi ¢St ruct :

package exanpl es. webservi ces. conpl ex;
/**

* Defines a sinple JavaBean cal l ed BasicStruct that has integer, String,
* and String[] properties

*|
public class BasicStruct {

Il Properties

private int intValue;

private String stringVal ue;

private String[] stringArray;

Il Getter and setter methods

public int getlntValue() {

return intVal ue;

4-16



Chapter 4
Invoking Another Web Service from the JWS File

public void setlntValue(int intValue) {
this.intValue = intValue;

1
public String getStringVal ue() {
return stringVal ue;

public void setStringValue(String stringValue) {
this.stringValue = stringVal ue;

1
public String[] getStringArray() {
return stringArray;

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;
1
}

The following snippets from a JWS file show how to import the Basi cStruct class and
use it as both a parameter and return value for one of its methods; for the full JIWS file,
see Sample Compleximpl.java JWS File:

package exanpl es.webservi ces. conpl ex;

/1 1mport the standard JWS annotation interfaces

i mport javax.jws.\\ebMet hod;

inport javax.jws.\WbParam

i mport javax.jws.\bResult;

i mport javax.jws.\WebService;

i mport javax.jws.soap. SOAPBi ndi ng;

/1 Inport the WebLogi c-specific JWs annotation interface

// Import the BasicStruct JavaBean

import examples.webservices.complex.BasicStruct;

@\ébSer vi ce(servi ceName="Conpl exServi ce", nane="Conpl exPort Type",
target Nanespace="http://exanple.org")

public class Conplexlnmpl {
@\ebMet hod( oper at i onName="echoConpl exType")
public BasicStruct echoStruct(BasicStruct struct)
{
return struct;
}
}

4.7 Invoking Another Web Service from the JWS File

ORACLE

From within your JWS file you can invoke another web service, either one deployed on
WebLogic Server or one deployed on some other application server, such as .NET.
The steps to do this are similar to those described in Invoking a Web Service from a
WebLogic Web Service, except that rather than running the cl i ent gen Ant task to
generate the client stubs, you include a <cl i ent gen> child element of the j wsc Ant task
that builds the invoking web service to generate the client stubs instead. You then use
the standard JAX-WS APIs in your JWS file, the same as you do for a Java SE client
application.

See Invoking a Web Service from Another WebLogic Web Service for detailed
instructions.

4-17



Chapter 4
Using SOAP 1.2

4.8 Using SOAP 1.2

WebLogic web services use, by default, Version 1.1 of Simple Object Access Protocol
(SOAP) as the message format when transmitting data and invocation calls between
the web service and its client. WebLogic web services support both SOAP 1.1 and the
newer SOAP 1.2, and you are free to use either version.

To specify that the web service use Version 1.2 of SOAP, use the class-level

@avax. xn . ws. Bi ndi ngTyp annotation in your JWS file and set its single attribute to the
value SOAPBi ndi ng. SOAP12HTTP_BI NDI NG, as shown in the following example (relevant
code shown in bold):

package exanpl es.webservi ces. soapl2;
i mport javax.jws.\\ebMet hod;
i mport javax.jws.\WebService;
import javax.xml.ws.BindingType;
import javax.xml.ws_SOAPBinding;
@\ébSer vi ce( name="SOAP12Por t Type",
servi ceName="SOAP12Ser vi ce",
target Nanespace="http://exanple.org")
@BindingType(value = SOAPBinding.SOAP12HTTP_BINDING)
/**
* This JWs file forms the basis of sinple Java-class inplenmented WebLogic
* Web Service with a single operation: sayHello. The class uses SOAP 1.2
* as its binding.
*
*/
public class SOAP12| npl {
@\ebMet hod()
public String sayHello(String message) {
Systemout. println("sayHello:" + message);
return "Here is the nmessage: + message + "'";
}
}

Other than set this annotation, you do not have to do anything else for the web service
to use SOAP 1.2, including changing client applications that invoke the web service;
the WebLogic web services runtime takes care of all the rest.

4.9 Validating the XML Schema

ORACLE

By default, SOAP messages are not validated against their XML schemas. You can
enable XML schema validation for document-literal web services on the server or
client, as described in the following sections. In the event a SOAP message is invalid,
a SOAP fault is returned.

< Note:

This feature adds a small amount of extra processing to a web service
request.

By default, the stack trace is included in the details of the SOAP fault. To
disable the stack trace, see Disabling the Stack Trace from the SOAP Fault.

4-18



Chapter 4
Validating the XML Schema

4.9.1 Enabling Schema Validation on the Server

¢ Note:

The com sun. xm . ws. devel oper. SchenaVal i dati on API is supported as an
extension to the JDK 6.0. Because this APl is not provided as part of the JDK
6.0 Kit, it is subject to change.

To enable schema validation on the server, add the @chenmaVal i dati on annotation on
the endpoint implementation. For example:

import com.sun.xml.ws.developer.Schemavalidation;
inport javax.jws.\WbService;
@SchemaVal idation
@ebServi ce(nane="Hel | oWor | dPort Type", serviceNanme="Hel | oWor | dServi ce")
public class Hel | oWorldlnpl {
public String sayHel | oWorld(String nessage) {
Systemout. println("sayHel | oWrld:" + nmessage);
return "Here is the nessage: '" + message + "'"

}
}

You can pass your own validation error handler class as an argument to the
annotation, if you want to manage errors within your application. For example:

@chemaVal i dat i on( handl er =Err or Handl er . cl ass)

4.9.2 Enabling Schema Validation on the Client

" Note:

The com sun. xnl . ws. devel oper. SchenaVal i dat i onFeat ure API is supported as
an extension to the JDK 6.0. Because this APl is not provided as part of the
JDK 6.0 kit, it is subject to change.

To enable schema validation on the client, create a SchemaVal i dati onFeat ur e object
and pass this as an argument when creating the Port Type stub implementation.

package exanpl es. webservices. hello world.client;
import com.sun.xml.ws.developer.SchemavalidationFeature;
inport javax.xnl.nanespace. QNane;
inport java.net. Mal formedURLException;
inport java.net.URL;
public class Min {
public static void main(String[] args) {
Hel | oWor | dServi ce service;
try {
service = new Hel | oWorl dServi ce(new URL(args[0] + "?WsDL"),
new QNane("http://exanple.org", "HelloWrldService") );
} catch (MalformedURLException nurl) { throw new RuntimeException(nurl); }
SchemavValidationFeature feature =

ORACLE 4-19



}
}

Chapter 4
JWS Programming Best Practices

new SchemaValidationFeature();
HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);
String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin( "Got result: " + result );

You can pass your own validation error handler as an argument to the
SchenaVal i dat i onFeat ur e object, if you want to manage errors within your application.
For example:

SchemaValidationFeature feature =
new SchemaVal idationFeature(MyErrorHandler.class);
HelloWorldPortType port = service.getHelloWorldPortTypePort(feature);

4.10 JWS Programming Best Practices

The following list provides some best practices when programming the JWS file:

ORACLE

When you create a document-literal-bare web service, use the @ébPar amJWS
annotation to ensure that all input parameters for all operations of a given web
service have a uniqgue name. Because of the nature of document-literal-bare web
services, if you do not explicitly use the @ebPar amannotation to specify the name
of the input parameters, WebLogic Server creates one for you and run the risk of
duplicating the names of the parameters across a web service.

In general, document-literal-wrapped web services are the most interoperable type
of web service.

Use the @¢bResul t JWS annotation to explicitly set the name of the returned value
of an operation, rather than always relying on the hard-coded name ret urn, which
is the default name of the returned value if you do not use the @¢bResul t
annotation in your JWS file.

4-20



Using JAXB Data Binding

This chapter describes how to use Java Architecture for XML Binding (JAXB) data
binding.
This chapter includes the following topics:

e Overview of Data Binding Using JAXB

« Developing the JAXB Data Binding Artifacts

e Standard Data Type Mapping

e Customizing Java-to-XML Schema Mapping Using JAXB Annotations

e Customizing XML Schema-to-Java Mapping Using Binding Declarations

* Using the Glassfish RI JAXB Data Binding and JAXB Providers

5.1 Overview of Data Binding Using JAXB

ORACLE

With the emergence of XML as the standard for exchanging data across disparate
systems, web service applications need a way to access data that are in XML format
directly from the Java application. Specifically, the XML content needs to be converted
to a format that is readable by the Java application. Data binding describes the
conversion of data between its XML and Java representations.

JAX-WS uses JAXB, described at http://jcp. org/en/jsr/detail ?i d=222, to manage all
of the data binding tasks. Specifically, JAXB binds Java method signatures and WSDL
messages and operations and allows you to customize the mapping while
automatically handling the runtime conversion. This makes it easy for you to
incorporate XML data and processing functions in applications based on Java
technology without having to know much about XML.

The following figure shows the JAXB data binding process.

5-1


http://jcp.org/en/jsr/detail?id=222

ORACLE

Chapter 5
Overview of Data Binding Using JAXB

Figure 5-1 Data Binding With JAXB

JAXB

I [ I
I | I
! binding | !
| declarations | :

[ — =l I\-————I————-I
I
e e ¥
! H C A : Schema-derived-l
XML e — ™ and existing |
:S‘hem “— €1 JavaClasses |
P T
I [
______ h 4 h 4
— ] JR— » Unmarshal » .
| | — JavaObjects
HTTP | SOAP | XML ==
L/\K: — > < Marshal <
R o
M A
JAXB

As shown in the previous figure, the JAXB data binding process consists of the
following tasks:

* Bind—Binds XML Schema to schema-derived JAXB Java classes, or value
classes. Each class provides access to the content via a set of JavaBean-style
access methods (that is, get and set). Binding is managed by the JAXB schema
compiler.

e Unmarshal—Converts the XML document to create a tree of Java program
elements, or objects, that represent the content and organization of the document
that can be accessed by your Java code. In the content tree, complex types are
mapped to value classes. Attribute declarations or elements with simple types are
mapped to properties or fields within the value class and you can access the
values for them using get and set methods. Unmarshalling is managed by the
JAXB binding framework.

e Marshal—Converts the Java objects back to XML content. In this case, the Java
methods that are deployed as WSDL operations determine the schema
components in the wsdl : t ypes section. Marshalling is managed by the JAXB
binding framework.

You can use the JAXB binding language to define custom binding declarations or
specify JAXB annotations to control the conversion of data between XML and Java.

WebLogic Server provides two data binding and JAXB providers:

* EclipseLink MOXy, the default in this release of WebLogic Server, is a fully
compliant JAXB implementation. In addition to offering the standard JAXB
features, EclipseLink MOXy provides useful extensions, such as the ability to use
an external metadata file to configure the equivalent of JAXB annotations without
modifying the Java source it refers to, and XPath based mapping. The JAXB
enhancements can be used in the annotations on a service endpoint interface
(SEI) or one of the value types used by the SEI. Users of JAXB in standalone
mode can also take advantage of these features.

Some of the additional extensions offered by EclipseLink MOXy include:

— Extensions for mapping JPA entities to XML

5-2



Chapter 5
Developing the JAXB Data Binding Artifacts

— Bidirectional mapping
— Virtual properties

— Ability to bootstrap from metadata and generate in-memory domain classes
(Dynamic MOXYy)

For a web service, the EclipseLink MOXy extensions can be leveraged on the
server side only, and only in the Java to WSDL scenario, in which the SEI and
value types can use the extended EclipseLink functionality. For more information
about these extensions and EclipseLink MOXy, see The EclipseLink MOXy
(JAXB) User's Guide at http://wiki.eclipse.org/EclipseLink/ User Gui de/ MOXy.

No configuration is required to use the EclipseLink MOXy providers.

Glassfish RI JAXB, which is the default Glassfish JAXB implementation, and was
the default JAXB offering in WebLogic Server in previous releases. The Glassfish
RI JAXB proprietary features will not work with EclipseLink MOXy. If desired, you
can enable the Glassfish Rl JAXB data binding and JAXB providers at the server
or application level. For more information, see Using the Glassfish Rl JAXB Data
Binding and JAXB Providers.

The following sections describe how to use JAXB data binding with WebLogic Server
and how to configure the Glassfish Rl JAXB providers if desired:

Developing the JAXB Data Binding Artifacts—Describes how to develop the JAXB
data binding artifacts using WebLogic Server.

Standard Data Type Mapping—Describes the standard built-in and user-defined
data types that are supported.

Customizing Java-to-XML Schema Mapping Using JAXB Annotations—Describes
how you can control and customize the Java-to-XML Schema mapping using
JAXB annotations in the JWS file.

Customizing XML Schema-to-Java Mapping Using Binding Declarations—
Describes how you can control and customize the XML Schema-to-Java mapping
using binding declarations that are defined in a separate file or embedded inline.

Using the Glassfish Rl JAXB Data Binding and JAXB Providers—Describes the
global server-level and application-level procedures required to configure the
Glassfish RI JAXB Data Binding and JAXB providers instead of the default
EclipseLink MOXy JAXB providers.

5.2 Developing the JAXB Data Binding Artifacts

The steps to develop the JAXB data binding artifacts using WebLogic Server depend
on whether you are starting from a Java class file or a WSDL.

ORACLE

Start from Java: Using this programming model, you create the Java classes. At
run-time, JAXB marshals the Java objects to generate the XML content which is
then packaged in a SOAP message and sent as a web service request or
response.

To control the Java-to-XML mapping, you include JAXB annotations in your JWS
file, as described in Customizing Java-to-XML Schema Mapping Using JAXB
Annotations. If no customizations are required, JAXB uses the standard built-in
and user-defined data type mapping as described in the following sections: Java-
to-XML Mapping for Built-In Data Types and Supported Java User-Defined Data
Types.

5-3


http://wiki.eclipse.org/EclipseLink/UserGuide/MOXy

Chapter 5
Standard Data Type Mapping

For more information about this programming model, see Developing WebLogic
Web Services Starting From Java: Main Steps.

e Start from WSDL: Using this programming model, the XML Schemas exist and
JAXB unmarshals the XML document to generate the Java objects.

To control the XML-to-Java mapping, you can define custom binding declarations
within the WSDL or XML Schema, or in an external file, as described in
Customizing XML Schema-to-Java Mapping Using Binding Declarations. If no
customizations are required, the standard built-in and user-defined data type
mapping as described in the following sections: XML-to-Java Mapping for Built-in
Data Types and Supported XML User-Defined Data Types.

For more information about this programming model, see Developing WebLogic
Web Services Starting From a WSDL File: Main Steps.

Please note, when invoking the j wsc, wsdl c, or cl i ent gen Ant tasks described in these
procedures:

* You must specify the type="JAXWE" attribute to generate a JAX-WS web service
and JAXB binding artifacts. For j wsc, you specify the type attribute as part of the
<j ws> child element.

e You can optionally specify the <bi ndi ng> child element to specify a customizations
file that contains JAX-WS and JAXB data binding customizations. For information
about creating a customizations file, see Customizing XML Schema-to-Java
Mapping Using Binding Declarations. If no customizations are required, JAXB
uses the standard built-in and user-defined data type mappings described in
Standard Data Type Mapping.

5.3 Standard Data Type Mapping

WebLogic web services support a full set of built-in XML Schema, Java, and SOAP
types, as specified by the JSR 222: Java™ Architecture for XML Binding (JAXB) 2.0
specification at http://jcp. org/en/jsr/detail ?i d=222, that you can use in your web
service operations without performing any additional programming steps. Built-in data
types are those such asinteger, string, and ti ne.

Additionally, you can use a variety of user-defined XML and Java data types as input
parameters and return values of your web service. User-defined data types are those
that you create from XML Schema or Java building blocks, such as <xsd: conpl exType>
or JavaBeans. The WebLogic web services Ant tasks, such as jwsc and cli ent gen,
automatically generate the data binding artifacts needed to convert the user-defined
data types between their XML and Java representations. The XML representation is
used in the SOAP request and response messages, and the Java representation is
used in the JWS that implements the web service.

The following sections describe the built-in and user-defined data types that are
supported by JAXB:

e Supported Built-In Data Types
»  Supported User-Defined Data Types

5.3.1 Supported Built-In Data Types

The following sections describe the built-in data types supported by WebLogic web
services and the mapping between their XML and Java representations. As long as

ORACLE 5-4


http://jcp.org/en/jsr/detail?id=222

Chapter 5
Standard Data Type Mapping

the data types of the parameters and return values of the back-end components that
implement your web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

When using user-defined data types, then you must create the data binding artifacts
that convert the data between XML and Java. WebLogic Server includes the j wsc and
wsdl ¢ Ant tasks that can automatically generate the data binding artifacts for most
user-defined data types. See Supported User-Defined Data Types for a list of
supported XML and Java data types.

5.3.1.1 XML-to-Java Mapping for Built-in Data Types

ORACLE

The following table lists alphabetically the supported XML Schema data types (target
namespace http: // ww. w3. or g/ 2001/ XM.Schena) and their corresponding Java data
types. For a list of the supported user-defined XML data types, see Java-to-XML
Mapping for Built-In Data Types.

Table 5-1 Mapping XML Schema Built-in Data Types to Java Data Types

XML Schema Data Type Java Data Type (lower case indicates a primitive data
type)

anySi npl eType (for xsd:element of j ava. | ang. Obj ect

this type)

anySi npl eType (for xsd:attribute of java.lang. String

this type)

base64Bi nary byte[]

bool ean bool ean

byte byte

date java. xnl . dat at ype. XMLG egor i anCal endar

dat eTi nme javax. xm . dat at ype. XM.G egor i anCal endar

deci mal j ava. mat h. Bi gDeci nal

doubl e doubl e

duration javax.xm . dat atype. Duration

fl oat fl oat

g java. xnl . dat at ype. XML& egor i anCal endar

hexBi nary byte[]

int int

i nteger j ava. mat h. Bi gl nt eger

| ong | ong

NOTATI ON javax. xm . namespace. QNane

QNane j avax. xm . nanmespace. QNane

short short

string java.lang. String

tine java. xnl . dat at ype. XML& egor i anCal endar

unsi gnedByt e short

unsi gnedl nt | ong

5-5



Chapter 5
Standard Data Type Mapping

Table 5-1 (Cont.) Mapping XML Schema Built-in Data Types to Java Data Types
|

Java Data Type (lower case indicates a primitive data

XML Schema Data Type

type)

unsi gnedShort

int

The following example, borrowed from the JAXB specification, shows an example of

the default XML-to-Java binding.

5.3.1.1.1 XML Schema

ORACLE

<xsd: schema xm ns: xsd="http://ww. w3. or g/ 2001/ XM_.Schenma" >

<xsd: el ement name="purchaseCOrder" type="PurchaseC der Type"/>
<xsd: el ement nanme="comment" type="xsd:string"/>

<xsd: conpl exType nane="

<xsd: sequence>
<xsd: el ement
<xsd: el ement
<xsd: el ement
<xsd: el ement

</ xsd: sequence>

Pur chaseQr der Type" >

nane="shi pTo" type="USAddress"/>
nane="bi |l | To" type="USAddress"/>
ref="comrent" mnCccurs="0"/>
nane="itens" type="Itens"/>

<xsd:attribute name="orderDate" type="xsd:date"/>

</ xsd: conpl exType>

<xsd: conpl exType nane="

<xsd: sequence>
<xsd: el ement
<xsd: el ement
<xsd: el ement
<xsd: el ement
<xsd: el ement

</ xsd: sequence>

<xsd:attribute name="country"

</ xsd: conpl exType>

USAddr ess" >

nane="name" type="xsd:string"/>
nane="street" type="xsd:string"/>
nane="city" type="xsd:string"/>
nane="state" type="xsd:string"/>
nane="zi p" type="xsd: deci mal"/>

<xsd: conpl exType nanme="Itens">

<xsd: sequence>
<xsd: el ement

name="itenf mnCccurs="1" nmaxCccurs="unbounded" >

<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement nanme="product Name" type="xsd:string"/>

<xsd: el ement nanme="quantity">
<xsd: si npl eType>

<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>

</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >

<xsd: el ement nanme="USPrice" type="xsd: decimal"/>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement nanme="shi pDate" type="xsd: date"

m nQccurs="0"/>

</ xsd: sequence>

<xsd:attribute name="partNunt type="SKU' use="required"/>

</ xsd: conpl exType>
</ xsd: el ement >

</ xsd: sequence>
</ xsd: conpl exType>

type="xsd: NV\TOKEN" fi xed="US"/ >

<I-- Stock Keeping Unit, a code for identifying products -->

<xsd: si npl eType nane="SKU'>

5-6



Chapter 5

Standard Data Type Mapping

<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>

</ xsd: si npl eType>
</ xsd: schema>

5.3.1.1.2 Default Java Binding

ORACLE

inport javax.xnl.datatype. XM.G egori anCal endar; inport java.util.List;

publ |

b
publ i

b
publ i

publ |

¢ class PurchaseQr der Type {

USAddr ess get ShipTo(){...}

voi d set Shi pTo( USAddress){. ..}
USAddress getBill To(){...}

voi d setBill To(USAddress){...}

[** Optional to set Comment property. */
String getComent (){...}

voi d set Comrent (String){...}

Itens getltens(){...}

void setltenms(ltens){...}

XM.Gr egori anCal endar get Order Dat e()

voi d set O der Dat e( XMLGr egor i anCal endar)

c class USAddress {

String getName(){...}

void set Name(String){...}
String getStreet(){...}
void setStreet(String){...}
String getGty(){...}

void setCity(String){...}
String getState(){...}
void setState(String){...}
int getzip(){...}

void setZip(int){...}
static final String COUNTRY="USA";

c class Itens {
public class ItenfType {
String getProduct Nane(){...}
voi d setProduct Nane(String){...}
/** Type constraint on Quantity setter value 0..99.*/
int getQuantity(){...}
void setQuantity(int){...}
float getUSPrice(){...}
void set USPrice(float){...}
/** (Optional to set Conment property. */
String get Comment (){...}
voi d set Comrent (String){...}
XML.Gr egor i anCal endar get Shi pDate();
voi d set Shi pDat e( XMLG egori anCal endar) ;

/** Type constraint on PartNumsetter value "\d{3}-[A-Z]{2}".*/

String getPartNun(){...} void setPartNum(String){...}
¥

/** Local structural constraint 1 or nore instances of |tens.|tenType.*/

List<ltens. |tenlype> getltem){...}

c class hjectFactory {

Il type factories

hj ect newl nstance(Cd ass javalnterface){...}

Pur chaseOr der Type creat ePurchaseOr der Type(){...}
USAddr ess creat eUSAddress(){...}

Itens createltems(){...}

5-7



5.3.1.2 Java-to-XML Mapping for Built-In Data Types

Itens. ltenType createltenmsltenlype(){...}

/] elenment factories

Chapter 5
Standard Data Type Mapping

JAXBEI ement <Pur chaseOr der Type>cr eat ePur chaseOr der ( Pur chaseOr der Type){. ..}

JAXBEl ement <String> createComment (String value){...}

}

The following table lists alphabetically the supported Java data types and their
equivalent XML Schema data types. For a list of the supported user-defined Java data

types, see Supported Java User-Defined Data Types.

Table 5-2 Mapping Java Data Types to XML Schema Data Types

Java Data Type (lower case
indicates a primitive data

type)

XML Schema Data Type

bool ean bool ean
byte byte
doubl e doubl e
fl oat fl oat

[ ong | ong
int int

javax. activation. Dat aHandl e
r

base64Bi nary

java.awt . | mage

base64Bi nary

java. | ang. Qbj ect anyType
java.lang. String string

j ava. mat h. Bi gl nt eger i nteger

j ava. mat h. Bi gDeci nal deci mal
java. net. URI string
java.util. Cal endar dat eTi me
java.util.Date dat eTi me
java.util.UU D string

javax. xni . dat at ype. XM.G ego
ri anCal endar

anySi npl eType

javax. xm . dat atype. Duration

duration

j avax. xm . nanespace. QName

Qrane

j avax. xn . transform Source

base64Bi nary

short

short

5.3.2 Supported User-Defined Data Types

The tables in the following sections list the user-defined XML and Java data types for
which the jwsc and wsdl ¢ Ant tasks can automatically generate data binding artifacts,

ORACLE

such as the corresponding Java or XML representation.

5-8



Chapter 5
Standard Data Type Mapping

If your XML or Java data type is not listed in these tables, and it is not one of the built-
in data types listed in Supported Built-In Data Types, then you must create the user-
defined data type artifacts manually.

5.3.2.1 Supported XML User-Defined Data Types

The following table lists the XML Schema data types supported by the jwsc and wsdl ¢
Ant tasks and their equivalent Java data type or mapping mechanism.

Table 5-3 Supported User-defined XML Schema Data Types
|

XML Schema Data Type Equivalent Java Data Type or Mapping
Mechanism

<xsd: compl exType> with elements of both JavaBean

simple and complex types.

<xsd: conpl exType> with simple content. JavaBean

<xsd: attri but e>in <xsd: conpl exType> Property of a JavaBean

Derivation of new simple types by restriction of Equivalent Java data type of simple type.
an existing simple type.

Facets used with restriction element. Facets not enforced during serialization and
deserialization.

<xsd: list> Array of the list data type.

Array derived from soapenc: Array by Array of the Java equivalent of the arrayType

restriction using the wsdl : arrayType attribute. data type.

Array derived from soapenc: Array by Array of Java equivalent.

restriction.

Derivation of a complex type from a simple JavaBean with a property called _val ue

type. whose type is mapped from the simple type
according to the rules in this section.

<xsd: anyType> java. | ang. Qbj ect

<xsd: any> java. | ang. Qbj ect

<xsd: any[]> java. | ang. Obj ect

<xsd: uni on> Common parent type of union members.

<xsi: nil>and <xsd: ni || abl e> attribute Javanul | value.

If the XML data type is built-in and usually
maps to a Java primitive data type (such as

i nt orshort), then the XML data type is
actually mapped to the equivalent object
wrapper type (such as j ava. | ang. | nt eger or
java.lang. Short).

Derivation of complex types Mapped using Java inheritance.

Abstract types Abstract Java data type.

5.3.2.2 Supported Java User-Defined Data Types

The following table lists the Java user-defined data types supported by the j wsc and
wsdl ¢ Ant tasks and their equivalent XML Schema data type.

ORACLE 5-9



Chapter 5
Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-4 Supported Java User-defined Data Types

_________________________________________________________________________|
Java Data Type Equivalent XML Schema Data Type

JavaBean whose properties are any supported <xsd: conpl exType> whose content model is a
data type. <xsd: sequence> of elements corresponding to
JavaBean properties.

Array and multidimensional array of any An element in a <xsd: conpl exType> with the
supported data type (when used as a maxQccur s attribute set to unbounded.
JavaBean property)

java. | ang. Qbj ect <xsd: anyType>

Note: The data type of the runtime object must
be a known type.

java.util.Collection Literal Array
java.util.List Literal Array
java.util.ArrayLi st Literal Array
java.util.LinkedLi st Literal Array
java.util.Vector Literal Array
java.util. Stack Literal Array
java.util. Set Literal Array
java.util. TreeSet Literal Array
java.utils. SortedSet Literal Array
java.utils.HashSet Literal Array

5.4 Customizing Java-to-XML Schema Mapping Using JAXB
Annotations

ORACLE

If required, you can override the default binding rules for Java-to-XML Schema
mapping using JAXB annotations. Table 5-5 summarizes the JAXB mapping
annotations that you can include in your JWS file to control how the Java objects are
mapped to XML. Each of these annotations are available with the

j avax. xnl . bi nd. annot at i on package, described at htt p:// docs. or acl e. com

j avaeel 7/ api / j avax/ xm / bi nd/ annot at i on/ package- sunmary. htm .

Table 5-5 JAXB Mapping Annotations

________________________________________________________________________|
Annotation Description

@m Accessor Type Specifies whether fields or properties are mapped by default. See
Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation).

@ El ement Maps a property contained in a class to a local element in the XML
Schema complex type to which the containing class is mapped. See
Mapping Properties to Local Elements (@XmlElement).

@MM neType Associates the MIME type that controls the XML representation of the
property with a textual representation, such as i nage/ j peg. See
Specifying the MIME Type (@XmIMimeType Annotation).

5-10


http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/package-summary.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/package-summary.html

Chapter 5
Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-5 (Cont.) JAXB Mapping Annotations

________________________________________________________________________|
Annotation Description

@ Root El enent Maps a top-level class to a global element in the XML Schema that is
used by the WSDL of the web service. See Mapping a Top-level
Class to a Global Element (@XmIRootElement).

@ SeeAl so Binds other classes when binding the current class. See Binding a
Set of Classes (@XmlISeeAlso).

@m Type Maps a class or enum type to an XML Schema type.See Mapping a
Value Class to a Schema Type (@XmIType).

The default mapping of Java objects to XML Schema for the supported built-in and
user-defined types are listed in the following sections:

* Java-to-XML Mapping for Built-In Data Types
e Supported Java User-Defined Data Types

5.4.1 Example of JAXB Annotations

ORACLE

The following provides an example of the JAXB annotations.

@ Root El enent (name = "Conpl exServi ce", namespace ="http://exanpl es.org")
@ Accessor Type( Xm AccessType. FI ELD)
@ Type(nane = "basicStruct”, propOrder = {

"intVal ue",

"stringArray",

"stringVal ue"

public class BasicStruct {
protected int intValue;
@ El enent(nillable = true)
protected List<String> stringArray;
protected String stringVal ue;
public int getlntValue() {
return intVal ue;

public void setlntValue(int value) {
this.intValue = val ue;
}

public List<String> getStringArray() {
if (stringArray == null) {
stringArray = new ArrayList<String>();
}

return this.stringArray;

}

public String getStringValue() {
return stringVal ue;

public void setStringValue(String value) {
this.stringValue = val ue;
}

5-11



Chapter 5
Customizing Java-to-XML Schema Mapping Using JAXB Annotations

5.4.2 Specifying Default Serialization of Fields and Properties
(@XmlAccessorType Annotation)

The @m Accessor Type annotation specifies whether fields or properties are mapped by
default. The annotation can be specified for the following Java program elements:

» Package
e Top-level class

The @m Accessor Type can be specified with the @nl Type (see Mapping a Value Class
to a Schema Type (@XmIType)) and @m Root El enent (see Mapping a Top-level Class
to a Global Element (@ XmIRootElement)) annotations.

The following table lists the optional element that can be passed to the
@ Accessor Type annotation.

Table 5-6 Optional Element for @XMLAccessorType Annotation

Element Description
val ue Specifies XML AccessType. val ue, where val ue can be one of the following
values:

*  FlI ELD—Fields are bound to XML.
*  PROPERTY—JavaBean properties and annotated fields are bound to XML.

*  PUBLI C_MEMBER—Public and annotated fields, and JavaBean properties
are bound to XML. This is the default.

*  NONE—Only annotated fields and properties are bound to XML.

For more information, see the j avax. xnl . bi nd. annot at i on. Xnl Accessor Type Javadoc at
http://docs. oracl e. contjavaee/ 7/ api / j avax/ xm / bi nd/ annot at i on/ Xml Accessor Type. htni .
An example is provided in Example of JAXB Annotations.

5.4.3 Mapping Properties to Local Elements (@XmlIElement)

ORACLE

The @ El enent annotation maps a property contained in a class to a local element in
the XML Schema complex type to which the containing class is mapped. The
annotation can be specified for the following Java program elements:

* JavaBean property
* Non-static, non-transient field

The following table lists the annotation elements that can be passed to the @ni El enent
annotation.

Table 5-7 Optional Element Summary for @XMLElement Annotation

Element Description

name Local name of the XML element that represents the property of a JavaBean.
This element defaults to the JavaBean property hame.

namespace Namespace of the XML element that represents the property of a JavaBean.
By default, the namespace is derived from the namespace of the containing
class.

5-12


http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlAccessorType.html

Chapter 5
Customizing Java-to-XML Schema Mapping Using JAXB Annotations

Table 5-7 (Cont.) Optional Element Summary for @XMLElement Annotation

Element Description

nillable Customize the element declaration to be nillable.

For more information, see the j avax. xnl . bi nd. annot at i on. Xni El ement Javadoc at
http://docs. oracl e. contjavaee/ 7/ api /j avax/ xnl / bi nd/ annot ati on/ Xml El enent . ht i .

5.4.4 Specifying the MIME Type (@XmIMimeType Annotation)

The @m M meType annotation specifies the MIME type that controls the XML
representation of the property. The annotation can be specified for data types, such as
I mage or Sour ce, that are bound to the xsd: base64Bi nary binary in XML.

The following table lists the required element that can be passed to the @n M neType
annotation.

Table 5-8 Required Element for @XMLMimeType Annotation

________________________________________________________________________|
Element Description

val ue Specifies the textual representation of the MIME type, such as i mage/ j peg,
text/xnl, and so on.

For more information, see the j avax. xnl . bi nd. annot ati on. Xnl M neType Javadoc at
http://docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/ annot ati on/ Xm M meType. ht nl .

5.4.5 Mapping a Top-level Class to a Global Element
(@XmIRootElement)

ORACLE

The @ Root El enent annotation maps a top-level class to a global element in the XML
Schema that is used by the WSDL of the web service. The annotation can be specified
for the following Java program elements:

e Top-level class
e Enum type

The @ Root El enent can be specified with the @nl Type (see Mapping a Value Class to
a Schema Type (@XmIType)) and @m Accessor Type (see Specifying Default
Serialization of Fields and Properties (@XmlAccessorType Annotation)) annotations.

The following table lists the optional elements that can be passed to the
@ Root El ement annotation.

Table 5-9 Optional Elements for @XmIRootElement Annotation

Element Description
name Local name of the XML element. This element defaults to the class name.
namespace Namespace of the XML element. By default, the namespace is derived from

the package of the class.

5-13


http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlElement.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlMimeType.html

Chapter 5
Customizing Java-to-XML Schema Mapping Using JAXB Annotations

For more information, see the j avax. xnl . bi nd. annot at i on. Xnl Root El enent Javadoc at
http://docs. oracl e. com javaee/ 7/ api / j avax/ xnl / bi nd/ annot at i on/ Xnl Root El ement . ht i .
An example is provided in Example of JAXB Annotations.

5.4.6 Binding a Set of Classes (@XmISeeAlso)

The @m SeeAl so annotation binds a list of classes when binding the current class. The
following table lists the optional element that can be passed to the @M.Root El ement
annotation.

Table 5-10 Optional Element for @XmiISeeAlso Annotation

Element Description

val ue List of classes that JAXB uses when binding the current class.

5.4.7 Mapping a Value Class to a Schema Type (@XmiIType)

The @m Type annotation maps a class or enum type to an XML Schema type. The type
can be a simple or complex type. The annotation can be specified for the following
Java program elements:

e Top-level class
*  Enum type

The @ Type can be specified with the @m Root El enent (see Mapping a Top-level
Class to a Global Element (@XmlIRootElement)) and @m Accessor Type (see Specifying
Default Serialization of Fields and Properties (@XmlAccessorType Annotation))
annotations.

The following table lists the optional elements that can be passed to the @nl Type
annotation.

Table 5-11 Optional Elements for @XmIType Annotation
|

Element Description
name Name of the XML Schema type to which the class is mapped.
namespace Name of the target namespace of the XML Schema type. By default, the

target namespace to which the package containing the class is mapped.

propCr der List of JavaBean property names defined in a class. The list defines an order
for the XML Schema elements when the class is mapped to an XML Schema
complex type. Each name in the list is the name of a Java identifier of the
JavaBean property. All of the JavaBean properties must be listed.

For more information, see the j avax. xnl . bi nd. annot ati on. Xnl Type Javadoc at http://
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / bi nd/ annot at i on/ Xnl Type. ht i . An example is
provided in Example of JAXB Annotations.

ORACLE 5-14


http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlRootElement.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlType.html
http://docs.oracle.com/javaee/7/api/javax/xml/bind/annotation/XmlType.html

Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

5.5 Customizing XML Schema-to-Java Mapping Using
Binding Declarations

Due to the distributed nature of a WSDL, you cannot always control or change its
contents to meet the requirements of your application. For example, the WSDL may
not be owned by you or it may already be in use by your partners, making changes
impractical or impossible.

If directly editing the WSDL is not an option, you can customize how the WSDL
components are mapped to Java objects by specifying custom binding declarations.
You can use binding declarations to control specific features, as well, such as
asynchrony, wrapper style, and so on, and to control the JAXB data binding artifacts
that are produced by customizing the XML Schema.

You can define binding declarations in one of the following ways:

* Create an external binding declarations file that contains all binding declarations
for a specific WSDL or XML Schema document. See Creating an External Binding
Declarations File.

# Note:

If customizations are required, Oracle recommends this method to
maintain flexibility by keeping the customizations separate from the
WSDL or XML Schema document.

*  Embed binding declarations within the WSDL or XML Schema document. See
Embedding Binding Declarations.

The binding declarations are semantically equivalent regardless of which method you
choose.

Custom binding declarations are associated with a scope, as shown in the following
figure.

Figure 5-2 Scopes for Custom Binding Declarations

Global Scope
Schema Scope
Definition Scope
Component Scope

The following table describes the meaning of each scope.

ORACLE 5-15



ORACLE

Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-12 Scope for Custom Binding Declarations

______________________________________________________________________|
Scope Definition

Global scope Describes customization values with global scope. Specifically:

e For JAX-WS binding declarations, describes customization values
that are defined as part of the root element, as described in
Specifying the Root Element.

e For JAXB annotations, describes customization values that are
contained within the <gl obal Bi ndi ngs> binding declaration. Global
scope values apply to all of the schema elements in the source
schema as well as any schemas that are included or imported.

Schema scope Describes JAXB customization values that are contained within the

<schenmaBi ndi ngs> binding declaration. Schema scope values apply to
the elements in the target namespace of a schema.

Note: This scope applies for JAXB binding declarations only.

Definition scope Describes JAXB customization values that are defined in binding

declarations of a type definition or global declaration. Definition scope
values apply to elements that reference the type definition or global
declaration.

Note: This scope applies for JAXB binding declarations only.

Component scope Describes customization values that apply to the WSDL or schema

element that was annotated.

Scopes for custom binding declarations adhere to the following inheritance and
overriding rules:

Inheritance—Customization values are inherited from the top down. For example,
a WSDL element (JAX-WS) in a component scope inherits a customization value
defined in global scope. A schema element (JAXB) in a component scope inherits
a customization value defined in global, schema, and definition scopes.

Overriding—Customization values are overridden from the bottom up. For
example, a WSDL element (JAX-WS) in a component scope overrides a
customization value defined in global scope. A schema element (JAXB) in a
component scope overrides a customization value defined in definition, schema,
and global scopes.

The following sections describe how to create custom binding declarations and
describe the standard custom binding declarations:

Creating an External Binding Declarations File
Embedding Binding Declarations

JAX-WS Custom Binding Declarations

JAXB Custom Binding Declarations

For more information about using custom binding declarations, see:

JAX-WS WSDL Customizations at http://jax-ws.java. net/nonav/ 2. 1. 2/ docs/
custoni zations. htni

"Customizing XML Schema to Java Representation Binding" in the JAXB
specification at http://jcp. org/ en/j sr/ detail ?i d=222.

5-16


http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jcp.org/en/jsr/detail?id=222

Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

5.5.1 Creating an External Binding Declarations File

Create an external binding declarations file that contains all binding declarations for a
specific WSDL or XML Schema document. Then, pass the binding declarations file to
the <bi ndi ng> child element of the wsdl c, j wsc, or cl i ent gen Ant task.

The following sections describe:

* Creating an External Binding Declarations File Using JAX-WS Binding
Declarations

* Creating an External Binding Declarations File Using JAXB Binding Declarations

5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding
Declarations

The following sections describe how to specify the root and child elements of the JAX-
WS binding declarations file. For information about the custom binding declarations
that you can define, see JAX-WS Custom Binding Declarations.

5.5.1.1.1 Specifying the Root Element

The j axws: bi ndi ngs declaration is the root of all other binding declarations and defines
the location of the WSDL file and the namespace to which the XML Schema conforms:
http://java.sun. com xn /ns/jaxws.

The format of the root declaration is as follows:

<j axws: bi ndi ngs
wsdl Location="uri _of _wsdl"
jaxws: xm ns="http://java. sun. com xm / ns/j axws" >

uri _of _wsdl specifies the URI of the WSDL file.

The package, wrapper style, and asynchronous mapping customizations, defined in
Table 5-5, can be globally defined as part of the root binding declaration in the external
customization file. Global bindings apply to the entire scope of the wsdl : defini tion in
the WSDL referenced by the wsdl Locat i on attribute.

The following provides an example of the root binding element that defines the
package name, wrapper style, and asynchronous mapping customizations.

<j axws: bi ndi ngs
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://|ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL"
xm ns: jaxws="http://java. sun. com xm / ns/j axws" >
<package name="example.webservices.simple.simpleservice">
<enableWrapperStyle>true</enableWrapperStyle>
<enableAsyncMapping>false</enableAsyncMapping>
</j axws: bi ndi ngs>

5.5.1.1.2 Specifying Child Elements

The root j axws: bi ndi ngs element can contain child elements. You specify the WSDL
node that is being customized by passing an XPath expression in the node attribute.

ORACLE 5-17



Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customization” in
JAX-WS WSDL Customizations at http://jax-ws.java. net/nonav/ 2. 1. 2/ docs/

custoni zati ons. ht m . For information about the custom JAXB binding declarations that
you can define, see JAXB Custom Binding Declarations.

For example, the following example defines the package name as
exanpl es. webser vi ces. conpl ex. conpl exservi ce for the wsdl : defi ni ti ons node of the
WSDL document.

<j axws: bi ndi ngs

xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"

wsdl Location="http://l ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL

xm ns: jaxws="http://java. sun. con xnl / ns/j axws" >

<j axws: bi ndi ngs node="wsdl :definitions"

xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /">
<j axws: package nane="exanpl es. webservi ces. si npl e. si npl eservi ce"/ >

</ bi ndi ngs>

5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding
Declarations

The JAXB binding declarations file is an XML document that conforms to the XML
Schema for the following hamespace: http://java. sun. com xm / ns/ j axb. The following
sections describe how to specify the root and child elements of the JAXB binding
declarations file. For information about the custom binding declarations that you can
define, see JAXB Custom Binding Declarations.

5.5.1.2.1 Specifying the Root Element

The j axb: bi ndi ngs declaration is the root of all other binding declarations.The format
of the root declaration is as follows:

<j axb: bi ndi ngs
schemalLocation="uri _of _schem">

uri _of _schema specifies the URI of the XML Schema file.

5.5.1.2.2 Specifying Child Elements

The root j axb: bi ndi ngs element can contain child elements. You specify the schema
node that is being customized by passing an XPath expression in the node attribute.

For example, the following example defines the package name as
exanpl es. webser vi ces. si npl e. si npl eservi ce.

<j axb: bi ndi ngs
schemalocat i on="si npl eservi ce. xsd" >
<j axb: bi ndi ngs node="//xs:simpleType[@name="valuel*]">
<jaxb:package name="examples.webservices.simple.simpleservice"/>
</j axb: bi ndi ngs>
</ j axb: bi ndi ngs>

5.5.2 Embedding Binding Declarations

You can embed binding declarations in a WSDL file using one of the following
methods:

ORACLE 5-18


http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

e Enbed a JAX-WS or JAXB binding declaration in the WSDL file using the
j axws: bi ndi ngs element as a WSDL extension. See Embedding JAX-WS or JAXB
Binding Declarations in the WSDL File.

* Embed a JAXB binding declaration in the XML Schema as part of an <appi nf 0>
element. See Embedding JAXB Binding Declarations in the XML Schema.

5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File

You can embed a binding declaration in the WSDL file using the j axws: bi ndi ngs
element as a WSDL extension. For information about the custom binding declarations
that you can define, see JAX-WS Custom Binding Declarations.

For example, the following example defines the class name as Si npl eSer vi ce for the
Si npl eServi cel npl service endpoint interface (or port).

<wsdl : port Type name="Si npl eServi cel npl ">
<jaxws:bindings xmIns:jaxws="http://java.sun.com/xml/ns/jaxws">
<jaxws:class name="SimpleService"/>
</jaxws:bindings>
</ wsdl : port Type>

If this binding declaration had not been specified, the class name of the service
endpoint interface would be set to the wsdl : port Type name—Si npl eSer vi cel mpl —by
default.

An XML Schema inlined inside a compiled WSDL file can be customized by using
standard JAXB bindings. For more information, see "XML Schema Customizations" in
JAX-WS WSDL Customizations, which is available at htt p: //j ax-ws. j ava. net / nonav/
2. 1.2/ docs/ cust oni zati ons. ht m . For information about the custom JAXB binding
declarations that you can define, see JAXB Custom Binding Declarations.

5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema

ORACLE

You can embed a JAXB custom declaration within the <appi nf 0> element of the XML
Schema, as illustrated below.

<Xs:annot ation>
<xs: appi nf 0>
<bi ndi ng decl arati on>
</ xs: appi nf 0>
</ xs:annot ati on>

For example, the following defines the package name for the schema:

<schema xm ns="http://ww. w3. or g/ 2001/ XM.Schena"
target Nanespace="htt p: // www. w3. or g/ 2001/ XM_Schena"
xmi ns: jaxb="http://java.sun.conf xm /ns/jaxb"
j axb: version="2.0">
<annot at i on>
<appi nf 0>
<j axb: schenaBi ndi ngs>
<jaxb:package name="example.webservices.simple.simpleservice"/>
</ j axh: schemaBi ndi ngs>
</ appi nf 0>
</ annot ati on>
</ schema>

5-19


http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html
http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

Chapter 5

Customizing XML Schema-to-Java Mapping Using Binding Declarations

5.5.3 JAX-WS Custom Binding Declarations

The following table summarizes the typical JAX-WS customizations. For a complete
list of JAX-WS custom binding declarations, see JAX-WS WSDL Customization at
http://jax-ws.java. net/nonav/2.1.2/docs/ custoni zations. htm .

ORACLE

Table 5-13 JAX-WS Custom Binding Declarations
|

Customization

Description

Package name

Use the j axws: package binding declaration to define the
package name.

If you do not specify this customization, the wsdl ¢ Ant task
generates a package name based on the t ar get Nanespace
of the WSDL. This data binding customization is overridden
by the packageNane attribute of the wsdl c, j wsc, or

cl i ent gen Ant task. For more information, see wsdlc in the
WebLogic Web Services Reference for Oracle WebLogic
Server.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on the wsdl : defi ni ti ons node,
as shown in the following example:

<bi ndi ngs
xm ns:wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Locat i on=
“http://1ocal host: 7001/ si npl e/ Si npl eSer vi ce?WsDL"
xm ns="http://java.sun.com xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions"
xm ns:wsdl ="http://schemas. xm soap. or g/
wsdl /">
<package
name="example.webservices.simple_simpleService"/>
</ bi ndi ngs>

5-20


http://jax-ws.java.net/nonav/2.1.2/docs/customizations.html

ORACLE

Chapter 5

Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations
|

Customization

Description

Wrapper-style rules

Use the j axws: enabl esW apper St yl e binding declaration to
enable or disable the wrapper style rules that control how the
parameter types and return types of a WSDL operation are
generated.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on one of the following nodes:

o wsdl: definitions—Applies to all wsdl : oper ati ons of
all wsdl : port Type attributes.

e wsdl: port Type—Applies to all wsdl : operati ons in the
wsdl : port Type.

e wsdl: operati on—Applies to the wsdl : oper ati on only.

The following example disables the wrapper style rules for
the wsdl : defi ni ti ons node:

<bi ndi ngs
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://local host: 7001/ si npl e/
Si npl eSer vi ce?WsDL"
xm ns="http://java.sun.conl xm /ns/jaxws">
<bi ndi ngs node="wsdl : definitions"
xm ns: wsdl ="htt p://schemas. xn soap. or g/
wsdl /">
<enableWrapperStyle>
false
</enableWrapperStyle>
</ bi ndi ngs>

5-21



Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations

________________________________________________________________________|
Customization Description

Asynchrony Use the j axws: enabl eAsycMappi ng binding declaration to
instruct the cl i ent gen Ant task to generate asynchronous
polling and callback operations along with the normal
synchronous methods when it compiles a WSDL file.

This binding declaration can be specified as part of the root
binding element, as described in Creating an External
Binding Declarations File, or on one of the following nodes:

e wsdl: definitions—Applies to all wsdl : operati ons of
all wsdl : port Type attributes.

e wsdl: port Type—Applies to all wsdl : operati ons in the
wsdl : port Type.
* wsdl: operati on—Applies to the wsdl : oper at i on only.

The following example disables asynchronous polling and
callback operations:

<bi ndi ngs
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Location="http://Iocal host: 7001/ si npl e/
Si npl eSer vi ce?WsDL"
xm ns="http://java.sun.conl xm /ns/jaxws">
<bi ndi ngs node="wsdl : definitions"
xm ns: wsdl ="http://schemas. xnl soap. or g/
wsdl /">
<enableAsyncMapping>
false
</enableAsyncMapping>
</ bi ndi ngs>

Provider Use the j axws: provi der binding declaration to mark the part
as a provider interface. This binding declaration can be
specified as part of the wsdl : port Type. This binding
declaration applies when you are developing a service
starting from a WSDL file.

Class name Use the j axws: cl ass binding declaration to define the class
name. This binding declaration can be specified for one of
the following nodes:

e wsdl: port Type—Defines the interface class name.

* wsdl: faul t —Defines fault class names.

* soap: headerf aul t —Defines exception class hames.

e wsdl: servi ce—Defines the implementation class
names.

The following example defines the class name for the
implementation class.

<bi ndi ngs node="wsdl : definitions/

wsdl : service[ @ane=" Si npl eService']">
<class name="myService'"></class>

</ bi ndi ngs>

ORACLE 5-22



Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-13 (Cont.) JAX-WS Custom Binding Declarations

________________________________________________________________________|
Customization Description

Method name Use the j axws: net hod binding declaration to customize the
generated Java method name of a service endpoint interface
or the port accessor method in the generated Ser vi ce class.

The following example defines the Java method name for the
wsdl : operation EchoHel | o.

<bi ndi ngs node="wsdl : definitions/

wsdl : port Type[ @ane="Si npl eServi cel npl ']/

wsdl : operation[ @ane=" EchoHel | 0']">
<method name="Greeting"></method>

</ bi ndi ngs>

Java parameter name Use the j axws: par anet er binding declaration to customize
the parameter name of generated Java methods. This
declaration can be used to change the method parameter of
awsdl : operationinawsdl: portType.

The following example defines the Java method name for the
wsdl : operation echoHel | o.

<bi ndi ngs node="wsdl : definitions/

wsdl : port Type[ @ranme="Si npl eServi cel npl ' ]/

wsdl : operation[ @ane="EchoHel | 0" ]">
<parameter part="definitions/

message[@name="EchoHello"]/
part[@name="parameters™]" element="hello"
name="greeting"/>

</ bi ndi ngs>

Javadoc Use the j axws: j avadoc binding declaration to specify
Javadoc text for a package, class, or method.

For example, the following defines Javadoc at the method
level.

<bi ndi ngs node="wsdl : definitions/
wsdl : port Type[ @ane="Si npl eServi cel npl ']/
wsdl : operati on[ @ane=" EchoHel [ 0'] ">
<met hod name="Hel | 0" >
<javadoc>Prints hello.</javadoc>
</method>
</ bi ndi ngs>

Handler chain Use the j avaee: handl er chai n binding declaration to
customize or add handlers. The inline handler must conform
to the handler chain configuration defined in the Web
Services Metadata for the Java Platform specification
(JSR-181) at http: //www. j cp. org/ en/jsr/detail ?i d=181.

5.5.4 JAXB Custom Binding Declarations

The following table lists the typical JAXB customizations.

ORACLE 5-23


http://www.jcp.org/en/jsr/detail?id=181

ORACLE

# Note:

Chapter 5

Customizing XML Schema-to-Java Mapping Using Binding Declarations

The following table only summarizes the JAXB custom binding declarations,
to help get you started. For a complete list and description of all JAXB
custom binding declarations, see the JAXB specification (http://
jcp.org/en/jsr/detail ?i d=222) or "Customizing JAXB Bindings" in the Java
EE 5 Tutorial.

Table 5-14 JAXB Custom Binding Declarations
|

Customization

Description

Global bindings

Use the <gl obal Bi ndi ngs> binding declaration to define
binding declarations with global scope (see Figure 5-2).

You can specify attributes and elements to the
<gl obal Bi ndi ngs> binding declaration. For example, the
following binding declaration defines:

e collectionType attribute that specifies a type class,
myArr ay, that implements the j ava. util . Li st interface
and that is used to represent all lists in the generated
implementation.

e generatel sSet Met hod attribute to generate the i sSet ()
method corresponding to the getter and setter property
methods.

e javaType element to customize the binding of an XML
Schema atomic datatype to a Java datatype (built-in or
application-specific).

<j axb: gl obal Bi ndi ngs
col l ectionType ="java.util.nyArray"
gener at el sSet Met hod="f al se">
<j axb: javaType name="java.util.Date"
xm Type="xsd: dat e"
</jaxbh:javaType>
</ j axb: gl obal Bi ndi ngs>

Schema bindings

Use the <schemaBi ndi ngs> binding declaration to define
binding declarations with schema scope (see Figure 5-2).

For an example, see the description of "Package name" in
this table.

5-24


http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Chapter 5
Customizing XML Schema-to-Java Mapping Using Binding Declarations

Table 5-14 (Cont.) JAXB Custom Binding Declarations
|

Customization Description

Package name Use the <package> element of the <schemaBi ndi ngs> binding
declaration (see Table 5-12) to define the package name for
the schema.

If you do not specify this customization, the wsdl ¢ Ant task
generates a package name based on the t ar get Nanespace
of the WSDL. This data binding customization is overridden
by the packageName attribute of the wsdl c, j wsc, or

cli ent gen Ant task. For more information, see wsdlc in the
WebLogic Web Services Reference for Oracle WebLogic
Server.

For example, the following defines the package name for all
JAXB classes generated from the si npl eser vi ce. xsd file:

<j axb: bi ndi ngs
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schena"
schemalocat i on="si npl eservi ce. xsd"
node="/xs: schema" >
<j axb: schemaBi ndi ngs>
<jaxb:package name="examples.jaxb"/>
</j axb: schemaBi ndi ngs>
</ j axb: bi ndi ngs>

The following shows how to define the package name for an
imported XML Schema:

<j axb: bi ndi ndgs
xm ns: xs="http://wwm. w3. or g/ 2001/ XM_Schenma"
node="//xs:schema/xs: import[@namespace="http://
examples.webservices.org/complexservice®]">
<j axb: schemaBi ndi ngs>
<jaxb:package name="examples.jaxb"/>
</ j axb: schemaBi ndi ngs>
</ j axb: bi ndi ngs>

Class name Use the <cl ass> binding declaration to define the class
name for a schema element.

The following example defines the class name for an
xsd: conpl exType:

<xs: conpl exType nane="Conpl exType" >
<Xs:annot at i on><xs: appi nf 0>
<jaxb:javadoc>This is my class.</
jaxb:javadoc>
</jaxb:cl ass>
</ xs: appi nf 0></ xs: annot at i on>
</ xs: conpl exType>

ORACLE 5-25



5.6 Using
Providers

ORACLE

Chapter 5
Using the Glassfish RI JAXB Data Binding and JAXB Providers

Table 5-14 (Cont.) JAXB Custom Binding Declarations

_______________________________________________________________________|
Customization Description

Java property name Use the <proper t y> binding declaration to define the
property name for a schema element.

The following example shows how to define the Java
property name:

<j axb: bi ndi ndgs
xm ns: xs="http://ww. w3. or g/ 2001/ XM.Schena"
node="//xs:schema/">
<j axb: schemaBi ndi ngs>
<jaxb:property generatelsSetMethod=""true"/>
</ j axb: schemaBi ndi ngs>
</ j axb: bi ndi ngs>

Java datatype Use the <j avaType> binding declaration to customize the
binding of an XML Schema atomic datatype to a Java
datatype (built-in or application-specific).

For example, see Global bindings (above).

Javadoc Use the <j avadoc> child element of the <cl ass> or
<propert y> binding declaration to specify Javadoc for the
element.

For example:

<xs: conpl exType nane="Conpl exType" >

<XS: annot at i on><xs: appi nf 0>
<jaxb:class name="MyClass">

<jaxb:javadoc>This is my class.</
jaxb: javadoc>
</jaxbh: class>

</ xs: appi nf 0></ xs: annot ati on>

</ xs: conpl exType>

the Glassfish Rl JAXB Data Binding and JAXB

The Glassfish Rl JAXB data binding and JAXB providers provide the standard
Glassfish JAXB implementation, and were the default JAXB providers in previous
WebLogic Server releases. If desired, you can restore the Glassfish RI providers,
either globally on the server, or on a per application basis.

Note that the JAXB data binding provider and the JAXB provider are two distinct
entities, although both use EclipseLink MOXy as the default. The JAXB data binding
provider is used by the web services tooling and runtime, and performs tasks such as
WSDL generation from a Java endpoint, as in the JWS task, and the runtime
marshalling and unmarshalling of the contents of the SOAP message. The JAXB
provider, on the other hand, specifies which JAXBContext provider to use for all other
JAXB-related tasks. Although the JAXB provider configuration does apply to some of
the web services tooling, such as Java class generation from WSDL/schema files, it
includes all other JAXB usage as well. These two providers can be configured
independently. For example, you could retain EclipseLink MOXy for data binding, but
revert to the Glassfish Rl JAXB provider for other JAXB tasks.

5-26



Chapter 5
Using the Glassfish Rl JAXB Data Binding and JAXB Providers

The data binding and JAXB providers are configured using the following Java Service
Provider Interface (SPI) files in M\ HOVE/ or acl e_conmon/ nodul es/
com oracl e. webservi ces. w s. W s-ws- et ai nf -services-inpl.jar:

°  META-I NF/services/com sun. xm . ws. spi . db. Bi ndi ngCont ext Factory
°  META-INF/services/javax. xm . bi nd. JAXBCont ext

# Note:

In 12.1.2.0, the providers were located in MV HOVE/ or acl e_conmon/ nodul es/
com oracl e. webservi ces. wl s. wl s-ws-net ai nf-services_2.0.0.0.jar. In
12.1.1.0, the providers were located in W._HOVE/ server/ | i b/ webl ogi c. j ar.

Global and application-level configuration is described in the following sections.

5.6.1 Configuring Global Server-Level Data Binding and JAXB

Providers

ORACLE

The following jar file is provided in the WebLogic Server distribution to simplify the task
of overriding the default data binding configuration:

modul es/ dat abi ndi ng. override.jar

This jar file is not included in the classpath by default. To restore the Glassfish Rl data
binding and JAXB provider settings, edit the WebLogic Server start script to prepend
this jar file to the classpath.

For the tooling and client, you can apply this jar file globally to Ant scripts or to another
build environment.

Note that the nodul es/ dat abi ndi ng. overri de. j ar file overrides both the data binding
provider and the JAXB provider. If you desire to override one of these providers, but
not both, you can do so by creating a simple jar file containing only the service
provider entry that you want to override, and putting this first in the classpath.

For example, to configure only the Glassfish Rl JAXB provider:

1. Create a file named META- | NF/ servi ces/ j avax. xmi . bi nd. JAXBCont ext that contains a
single entry for the Glassfish Rl JAXB provider:

com sun. xm . bi nd. v2. Cont ext Fact ory
2. Create a jar file, for example j axb_overri de. j ar, and add the file created in Step 1.
3. Prepend this jar file to the classpath to use the Glassfish JAXB provider.

The same procedure applies if you want to configure only the Glassfish RI data
binding provider. In this case, however, name the file you create in Step 1 META- | NF/
servi ces/ com sun. xm . ws. spi . db. Bi ndi ngCont ext Fact ory containing a single entry for the
Glassfish RI data binding provider:

com sun. xm . ws. db. gl assfi sh. JAXBRI Cont ext Fact ory.

5-27



Chapter 5
Using the Glassfish RI JAXB Data Binding and JAXB Providers

# Note:

Configuring the data binding provider may affect other behavior in addition to
runtime data binding. For example, WebLogic Server generates its WSDL at
runtime using the data binding provider. Conversely, some runtime SOAP
faults are produced by invoking the JAXB provider directly.

As an alternative to placing the override jar file in the classpath, you can edit the Java
system properties directly. For more information, see Configuring Java System
Properties for JAXB.

5.6.2 Configuring Application-Level Data Binding and JAXB Providers

To configure the data binding and JAXB providers for a single Web application, you
can use the filtering loading mechanism provided by WebLogic Server. This
mechanism allows the system classpath search to be bypassed when looking for
specific application classes and resources that are on the application classpath.
Specifically, you use the <pref er-applicati on-resources> tag in the webl ogi c-
application. xm file for the application EAR or build-out directory.

For example, to configure the Glassfish Rl data binding provider for an application:

1. Edit the webl ogi c- appl i cation. xn file to include an entry for the data binding
resource, as shown in the following example:

<prefer-application-resources> <resour ce- name>META- | NF/ servi ces/
com sun. xm . ws. spi . db. Bi ndi ngCont ext Fact or y</ r esour ce- nane>
</ prefer-application-resources>

2. Create a file named META- | NF/ ser vi ces/
com sun. xni . ws. spi . db. Bi ndi ngCont ext Fact ory containing an entry for the desired
provider, in this case, com sun. xnl . ws. db. gl assfi sh. JAXBRI Cont ext Fact ory.

3. Add the file created in step 2 to the build-out directory, or add it as an entry in the
EAR file.

Use the same procedure to configure the Glassfish Rl JAXB provider using the values
appropriate for the JAXB provider. Specifically, add the resource name NETA- | NF/

servi ces/javax. xm . bi nd. JAXBCont ext to the webl ogi c-appl i cation.xn file and set the
provider name in the file to com sun. xni . bi nd. v2. Cont ext Fact ory.

For more information about the filtering loading mechanism in WebLogic Server, see
Filtering Loader Mechanism in Tuning Performance of Oracle WebLogic Server.

5.6.3 Configuring Java System Properties for JAXB

You can configure the Java system properties to revert to the Glassfish RI providers
and to configure the default EclipseLink MOXy providers if you had previously
reverted.

ORACLE 5-28



Chapter 5
Using the Glassfish Rl JAXB Data Binding and JAXB Providers

# Note:

In certain situations, it can be difficult to propagate the system properties to
an indirectly invoked Java instance, such as a client forked from an Ant task.
In these situations, it is important to ensure that the environment you are
using propagates the properties.

To configure the Glassfish RI data binding and JAXB providers, set the Java system
properties as shown in Table 5-15.

Table 5-15 Java System Property Settings for Glassfish RI Providers
|

Set this Java system property . . . To this value . . .
com.sun.xml.ws.spi.db.BindingContextFactory com.sun.xml.ws.db.glassfish.JAXBRIContextFactory
javax.xml.bind.JAXBContext com.sun.xml.bind.v2.ContextFactory

To configure the default EclipseLink MOXy providers, set the Java system properties
as shown in Table 5-16.

Table 5-16 Java System Property Settings for EclipseLink MOXy Providers
]

Set this Java system property . . . To this value.. ..
com.sun.xml.ws.spi.db.BindingContextFactory com.sun.xml.ws.db.toplink.JAXBContextFactory
javax.xml.bind.JAXBContext org.eclipse.persistence.jaxb.JAXBContextFactory

ORACLE 5-29



Examples of Developing JAX-WS Web
Services

This chapter provides some common examples of developing WebLogic web services
using Java API for XML-based Web services (JAX-WS).
This chapter includes the following sections:

* Creating a Simple HelloWorld Web Service
e Creating a Web Service With User-Defined Data Types
e Creating a Web Service from a WSDL File

Each example provides step-by-step procedures for creating simple WebLogic web
services and invoking an operation from a deployed web service. The examples
include basic Java code and Ant bui | d. xnl files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The examples do not go into detail about the processes and tools used in the
examples; later chapters are referenced for more detail.

" Note:

For best practice examples demonstrating advanced web service features,
see Roadmap for Developing JAX-WS Web Service Clients and Roadmap
for Developing Reliable Web Services and Clients.

6.1 Creating a Simple HelloWorld Web Service

ORACLE

This section describes how to create a very simple web service that contains a single
operation. The Java Web Service (JWS) file that implements the web service uses just
the one required JWS annotation: @ebServi ce. A JWS file is a standard Java file that
uses JWS metadata annotations to specify the shape of the web service. Metadata
annotations were introduced with JDK 5.0, and the set of annotations used to annotate
web service files are called JWS annotations. WebLogic web services use standard
JWS annotations. For a complete list of JWS annotations that are supported, see Web
Service Annotation Support in WebLogic Web Services Reference for Oracle
WebLogic Server.

The following example shows how to create a web service called Hel | oVbr | dSer vi ce
that includes a single operation, sayHel | oWr | d. For simplicity, the operation returns the
inputted String value.

1. Setyour WebLogic Server environment.

6-1



Chapter 6
Creating a Simple HelloWorld Web Service

Open a command window and execute the set Domai nEnv. cnd (Windows) or

set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOMVE/

user _proj ect s/ donai ns/ domai nNanme, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and donai nNane is the
name of your domain.

2. Create a project directory, as follows:
pronpt > nmkdir /myExanpl es/ hel lo_world

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

pronpt> cd /nyExanpl es/ hel | o_world
pronpt> nkdir src/exanpl es/ webservices/ hel l o_world

4. Create the JWS file that implements the web service.

Open your favorite Java IDE or text editor and create a Java file called
Hel | oWor | di npl . j ava using the Java code specified in Sample HelloWorldimpl.java
JWS File.

The sample JWS file shows a Java class called Hel | oWr | dI npl that contains a
single public method, sayHel | oWor | d(String). The @ébServi ce annotation specifies
that the Java class implements a web service called Hel | oWr | dSer vi ce. By default,
all public methods are exposed as operations.

5. Save the Hel | oWr | dl npl . j ava file in the src/ exanpl es/ webservi ces/ hel | o_wor | d
directory.

6. Create a standard Ant bui I d. xnl file in the project directory (myExanpl es/
hel l o_world/src) and add a taskdef Ant task to specify the full Java classname of
the j wsc task:

<proj ect name="webservices-hello_world" default="all">
<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ proj ect>

See Sample Ant Build File for HelloWorldimpl.java for a full sample bui | d. xni file
that contains additional targets from those described in this procedure, such as
cl ean, undepl oy, client, and run. The full bui I d. xnl file also uses properties, such
as ${ear-dir}, rather than always using the hard-coded name for the EAR
directory.

7. Add the following call to the j wsc Ant task to the bui I d. xnl file, wrapped inside of
the bui | d- servi ce target:

<target name="buil d-service">
<jwsc
srcdir="src"
destdir="out put/hel | oWr | dEar" >
<jws file="exanpl es/webservices/hello_world/ HelloWrldlmpl.java"
type="JAXWS"/ >
</jwsc>
</target>

The j wsc WebLogic web service Ant task generates the supporting artifacts,
compiles the user-created and generated Java code, and archives all the artifacts
into an Enterprise Application EAR file that you later deploy to WebLogic Server.

ORACLE 6-2



Chapter 6
Creating a Simple HelloWorld Web Service

You specify the type of web service (JAX-WS) that you want to create using
type="JAXWS".

8. [Execute the j wsc Ant task by specifying the bui | d-servi ce target at the command
line:

pronpt > ant buil d-service

See the out put/ hel | oWor | dEar directory to view the files and artifacts generated by
the j wsc Ant task.

9. Start the WebLogic Server instance to which the web service will be deployed.

10. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the w depl oy
Ant task. In either case, you deploy the hel | oWor | dEar Enterprise application,
located in the out put directory.

To use the w depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. management . W.Depl oy" />
<target name="depl oy">
<wl depl oy action="depl oy"
name="hel | oWor | dEar" source="out put/hel | oWr | dEar"
user="${w s. username}" passwor d="${w s. password}"
ver bose="true"
adminurl ="t3://${w s. hostname}: ${w s. port}"
targets="${w s. server.nane}" />
</target>

Substitute the values for w s. user nane, W s. passwor d, w s. host name, w s. port, and
w s. server. nane that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

11. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/Hel | oWorl dl npl / Hel | oWr | dSer vi ce?WsDL

You construct the URL using the default values for the cont ext Pat h and ser vi ceUri
attributes. The default value for the cont ext Pat h is the name of the Java class in
the JWS file. The default value of the servi ceURl attribute is the servi ceNane
element of the @¢bSer vi ce annotation if specified. Otherwise, the name of the
JWS file, without its extension, followed by Servi ce. For example, if the ser vi ceName
element of the @¢bSer vi ce annotation is not specified and the name of the JWS
file is Hel | oWor | di npl . j ava, then the default value of its servi ceuri is

Hel | oWor | dI npl Servi ce.

These attributes will be set explicitly in the next example, Creating a Web Service
With User-Defined Data Types. Use the hostname and port relevant to your
WebLogic Server instance.

You can use the cl ean, bui | d-servi ce, undepl oy, and depl oy targets in the bui | d. xni file
to iteratively update, rebuild, undeploy, and redeploy the web service as part of your
development process.

ORACLE 6-3



Chapter 6
Creating a Simple HelloWorld Web Service

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.1.1 Sample HelloWorldimpl.java JWS File

package exanpl es.webservices. hel | o_worl d;
/] Inport the @wbService annotation
inport javax.jws.\WbService;
@WebService(name="HelloWorldPortType", serviceName="HelloWorldService™)
/**
* This JWs file forms the basis of sinple Java-class inplemented WebLogic
* Web Service with a single operation: sayHelloWrld
*/
public class Hel | oWorldlnpl {
/1 By default, all public nethods are exposed as Web Services operation
public String sayHel | oWorld(String nessage) {
try {
Systemout. println("sayHel | oWrld:" + nmessage);
} catch (Exception ex) { ex.printStackTrace(); }

return "Here is the nessage: '" + nessage + "'"

}
}

6.1.2 Sample Ant Build File for HelloWorldimpl.java

ORACLE

The following bui | d. xm file uses properties to simplify the file.

<proj ect name="webservices-hello_world" default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nanme" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="hel | oWor| dEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-out put}/hel | oWor| dEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. O i ent GenTask" />
<taskdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="al|" depends="cl ean, bui | d-service, depl oy,client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"

destdir="%${ear-dir}">
<jws file="exanpl es/webservices/hello_world/ Hel | oWrldlnpl.java"

6-4



Chapter 6
Creating a Web Service With User-Defined Data Types

type="JAXWS"/ >
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernanme}" password="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ Hel | oVr | dl npl / Hel | oWor | dSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. hel | o_world.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservices/hel lo_world/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservices. hel l o_worl d.client.Min"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
line="http://${ws.hostnane}: ${w s. port}/Hel | oWorl dl npl / Hel | oVr | dServi ce" />
</java> </target>
</ project>

6.2 Creating a Web Service With User-Defined Data Types

The preceding example uses only a simple data type, String, as the parameter and
return value of the web service operation. This next example shows how to create a
web service that uses a user-defined data type, in particular a JavaBean called

Basi cStruct, as both a parameter and a return value of its operation.

There is actually very little a programmer has to do to use a user-defined data type in
a web service, other than to create the Java source of the data type and use it
correctly in the JWS file. The j wsc Ant task, when it encounters a user-defined data
type in the JWS file, automatically generates all the data binding artifacts needed to
convert data between its XML representation (used in the SOAP messages) and its
Java representation (used in WebLogic Server).The data binding artifacts include the
XML Schema equivalent of the Java user-defined type.

The following procedure is very similar to the procedure in Creating a Simple
HelloWorld Web Service. For this reason, although the procedure does show all the
needed steps, it provides details only for those steps that differ from the simple
Helloworld example.

ORACLE 6-5



ORACLE

Chapter 6
Creating a Web Service With User-Defined Data Types

Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or

set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOMVE/

user _proj ect s/ donai ns/ domai nNanme, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and donai nNane is the
name of your domain.

Create a project directory:
pronpt > nkdir /nyExanpl es/ conpl ex

Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS file (shown later in this procedure):

pronpt> cd / nyExanpl es/ conpl ex
pronpt> nkdir src/exanpl es/ webser vi ces/ conpl ex

Create the source for the Basi cStruct JavaBean.

Open your favorite Java IDE or text editor and create a Java file called
Basi cStruct . j ava, in the project directory, using the Java code specified in Sample
BasicStruct JavaBean.

Save the Basi cStruct . j ava file in the src/ exanpl es/ webser vi ces/ conpl ex
subdirectory of the project directory.

Create the JWS file that implements the web service using the Java code specified
in Sample Compleximpl.java JWS File.

The sample JWS file uses several JWS annotations: @ébMet hod to specify
explicitly that a method should be exposed as a web service operation and to
change its operation name from the default method name echoStruct to

echoConpl exType; @ébParamand @¢bResul t to configure the parameters and return
values; and @QOAPBi ndi ng to specify the type of web service. The Conpl ex!| npl . j ava
JWS file also imports the exanpl es. webser vi ce. conpl ex. Basi cStruct class and then
uses the Basi cStruct user-defined data type as both a parameter and return value
of the echoStruct () method.

For more in-depth information about creating a JWS file, see Programming the
JWS File.

Save the Conpl exI npl . j ava file in the src/ exanpl es/ webser vi ces/ conpl ex
subdirectory of the project directory.

Create a standard Ant bui | d. xni file in the project directory and add a t askdef Ant
task to specify the fully Java classname of the j wsc task:

<proj ect name="webservices-conpl ex" default="all">
<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ project>

See Sample Ant Build File for Compleximpl.java JWS File for a full sample
bui | d. xnl file.

Add the following call to the j wsc Ant task to the bui | d. xm file, wrapped inside of
the bui | d- servi ce target:
<target name="buil d-service">
<jwsc
srcdir="src"
dest di r="out put/ Conpl exServi ceEar" >

6-6



ORACLE

10.

11.
12.

13.

14.

Chapter 6
Creating a Web Service With User-Defined Data Types

<jws file="exanpl es/ webservi ces/ conmpl ex/ Conpl ex| npl . j ava"
type="JAXWS" >
<W.Htt pTransport
cont ext Pat h="conpl ex" servi ceUri ="Conpl exServi ce"
por t Nane=" Conpl exSer vi cePort"/ >
</ jws>
</jwsc>
</target>

In the preceding example:

* The type attribute of the <j ws> element specifies the type of web service (JAX-
WS or JAX-RPC).

e The <WHtpTransport> child element of the <j ws> element of the j wsc Ant task
specifies the context path and service URI sections of the URL used to invoke
the web service over the HTTP/S transport, as well as the name of the port in
the generated WSDL. For more information about defining the context path,
see Defining the Context Path of a WebLogic Web Service.

Execute the j wsc Ant task:

pronpt > ant buil d-service

See the out put / Conpl exSer vi ceEar directory to view the files and artifacts
generated by the j wsc Ant task.

Start the WebLogic Server instance to which the web service will be deployed.

Deploy the web service, packaged in the Conpl exSer vi ceEar Enterprise Application,
to WebLogic Server, using either the WebLogic Server Administration Console or
the w depl oy Ant task. For example:

pronpt > ant depl oy

Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the w depl oy
Ant task. In either case, you deploy the Conpl exSer vi ceEar Enterprise application,
located in the out put directory.

To use the w depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target nane="depl oy">
<wl depl oy action="depl oy"
nane=" Conpl exServi ceEar" sour ce="out put/ Conpl exSer vi ceEar"
user="${w s. usernane}" password="${w s. password}"
verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>

Substitute the values for wl s. user nane, w s. passwor d, w s. host name, w s. port, and
w s. server. nane that correspond to your WebLogic Server instance.
Deploy the WAR file by executing the depl oy target:

pronpt > ant depl oy

Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host: port/conpl ex/ Conpl exServi ce?WsDL

6-7



Chapter 6
Creating a Web Service With User-Defined Data Types

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.2.1 Sample BasicStruct JavaBean

package exanpl es.webservi ces. conpl ex;

/**

* Defines a sinple JavaBean cal | ed BasicStruct that has integer, String,
* and String[] properties
*|
public class BasicStruct {
Il Properties
private int intValue;
private String stringVal ue;
private String[] stringArray;
Il Cetter and setter nethods
public int getlntValue() {
return intVal ue;

public void setlntValue(int intValue) {
this.intValue = intValue;

1

public String getStringVal ue() {
return stringVal ue;

public void setStringValue(String stringValue) {
this.stringValue = stringVal ue;

1
public String[] getStringArray() {
return stringArray;

public void setStringArray(String[] stringArray) {
this.stringArray = stringArray;
1
public String toString() {
return "I ntVal ue="+intVal ue+", StringVal ue="+stringVal ue;
1
}

6.2.2 Sample ComplexIimpl.java JWS File

ORACLE

package exanpl es.webservi ces. conpl ex;
[l Inport the standard JWS annotation interfaces
inport javax.jws.\WbMet hod;
inport javax.jws.\WbParam
inport javax.jws.\WbResult;
inport javax.jws.\WbService;
i mport javax.jws.soap. SOAPBi ndi ng;
[l Inport the BasicStruct JavaBean
i mport exanpl es. webservi ces. conpl ex. Basi ¢Struct;
/1 Standard JWS annotation that specifies that the portType name of the Wb
Il Service is "Conpl exPortType", its public service name is "ConplexService",
/1 and the target Namespace used in the generated WSDL is "http://exanple.org"
@ebSer vi ce(servi ceName="Conpl exServi ce", nane="Conpl exPort Type",
target Nanespace="http://exanpl e. org")
[/ Standard JWS annotation that specifies this is a docunent-literal-wapped
/1 Wb Service
@QOAPBI ndi ng( styl e=SOAPBI ndi ng. Styl e. DOCUMENT,

6-8



Chapter 6
Creating a Web Service With User-Defined Data Types

use=SOAPBi ndi ng. Use. LI TERAL,
par anmet er St yl e=SOAPBI ndi ng. Par anet er St yl e. WRAPPED)

/**

* This JWs file forns the basis of a WbLogic Wb Service. The Wb Services
* has two public operations:
*
* - echolnt(int)
* - echoConpl exType(Basi cStruct)
*
* The Web Service is defined as a "docunent-literal" service, which neans
* that the SOAP nessages have a single part referencing an XM. Scherma el enent
* that defines the entire body.
*/
public class Conplexlnpl {
/1 Standard JWS annotation that specifies that the method should be exposed
I/ as a public operation. Because the annotation does not include the
/'l menber-val ue "operationName", the public name of the operation is the
Il same as the method name: echolnt.
I
/1 The WebResult annotation specifies that the name of the result of the
I/ operation in the generated WSDL is "IntegerQutput”, rather than the
Il default name "return".  The WebParam annotation specifies that the input
Il parameter name in the WDL file is "Integerlnput" rather than the Java
Il name of the paraneter, "input".
@\ebMet hod()
@¢bResul t (name="1nt eger Qut put",
t arget Nanespace="htt p: // exanpl e. or g/ conpl ex")
public int echolnt(
@\ébPar an( nane="1nt eger | nput ",
target Nanespace="htt p://exanpl e. or g/ conpl ex")
int input)
{
Systemout.printIn("echolnt '"" + input +"' to you too!");
return input;
1
/1 Standard JWS annotation to expose nethod "echoStruct" as a public operation
/1 called "echoConpl exType"
/1 The WebResult annotation specifies that the name of the result of the
I/ operation in the generated WSDL is "EchoStruct ReturnMessage"”,
Il rather than the default nane "return".
@\ebMet hod( oper at i onName="echoConpl exType")
@¢bResul t (name="EchoSt ruct Ret ur nMessage",
t ar get Nanespace="htt p: // exanpl e. or g/ conpl ex")
public BasicStruct echoStruct(BasicStruct struct)
{
System out. println("echoConmpl exType cal |l ed");
return struct;

}

}

6.2.3 Sample Ant Build File for Compleximpl.java JWS File

ORACLE

The following bui | d. xm file uses properties to simplify the file.

<proj ect name="webservices-conpl ex" default="all">

<I-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />

6-9



ORACLE

Chapter 6
Creating a Web Service With User-Defined Data Types

<property name="w s. server.nanme" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="conpl exServi ceEAR"' />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-out put}/ conpl exServi ceEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">

<pat hel ement path="${clientclass-dir}"/>

<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"

cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<taskdef name="clientgen"

cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
<t askdef name="wl depl oy"

cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="al|" depends="cl ean, bui | d-service, depl oy, client"/>
<target nane="cl ean" depends="undepl oy">

<del ete dir="${exanpl e-out put}"/>

</target>
<target name="buil d-service">
<jwsc
srcdir="src"

destdir="${ear-dir}"
keepGener at ed="t r ue"
>
<jws file="exanpl es/ webservices/ conpl ex/ Conpl ex| npl . j ava"
type="JAXW\S' >
<W.H tpTransport
cont ext Pat h="conpl ex" servi ceUri =" Conpl exServi ce"
por t Name=" Conpl exServi cePort"/>
</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy"
nane="${ear. depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server.name}"/>
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" failonerror="fal se"
nane="${ear. depl oyed. nane}"
user="${w s. usernanme}" password="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server.name}"/>
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webser vi ces. conpl ex. cl i ent"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/ conpl ex/client/**/* java"/>
</target>

6-10



Chapter 6
Creating a Web Service from a WSDL File

<target name="run" >
<java fork="true"
cl assname="exanpl es. webser vi ces. conpl ex. cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>
<arg line="http://${w s. hostnane}: ${w s. port}/conpl ex/ Conpl exServi ce"
/>
</java>
</target>
</ proj ect>

6.3 Creating a Web Service from a WSDL File

ORACLE

Another common example of creating a web service is to start from an existing WSDL
file, often referred to as the golden WSDL. A WSDL file is a public contract that
specifies what the web service looks like, such as the list of supported operations, the
signature and shape of each operation, the protocols and transports that can be used
when invoking the operations, and the XML Schema data types that are used when
transporting the data. Based on this WSDL file, you generate the artifacts that
implement the web service so that it can be deployed to WebLogic Server. You use
the wsdl ¢ Ant task to generate the following artifacts.

* JWS service endpoint interface (SEI) that implements the web service described
by the WSDL file.

* JWS implementation file that contains a partial (stubbed-out) implementation of the
generated JWS SEI. This file must be customized by the developer.

* JAXB data binding artifacts.
e Optional Javadocs for the generated JWS SEI.

# Note:

The only file generated by the wsdl ¢ Ant task that you update is the JWS
implementation file. You never need to update the JAR file that contains
the JWS SEI and data binding artifacts.

Typically, you run the wsdl ¢ Ant task one time to generate a JAR file that contains the
generated JWS SEI file and data binding artifacts, then code the generated JWS file
that implements the interface, adding the business logic of your web service. In
particular, you add Java code to the methods that implement the web service
operations so that the operations behave as needed and add additional JWS
annotations.

After you have coded the JWS implementation file, you run the j wsc Ant task to
generate the deployable web service, using the same steps as described in the
preceding sections. The only difference is that you use the conpi | edédl attribute to
specify the JAR file (containing the JWS SEI file and data binding artifacts) generated
by the wsdl ¢ Ant task.

The following simple example shows how to create a web service from the WSDL file
shown in Sample WSDL File. The web service has one operation, get Tenp, that returns
a temperature when passed a zip code.

1. Setyour WebLogic Server environment.

6-11



ORACLE

Chapter 6
Creating a Web Service from a WSDL File

Open a command window and execute the set Domai nEnv. cnd (Windows) or

set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOMVE/

user _proj ect s/ donai ns/ domai nNanme, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and donai nNane is the
name of your domain.

Create a working directory:
prompt> nkdir /nyExanpl es/wsdl ¢
Put your WSDL file into an accessible directory on your computer.

For the purposes of this example, it is assumed that your WSDL file is called
Tenper at ur eSer vi ce. wsdl and is located in the / myExanpl es/ wsdl ¢/ wsdl _files
directory. See Sample WSDL File for a full listing of the file.

Create a standard Ant bui | d. xni file in the project directory and add a t askdef Ant
task to specify the full Java classname of the wsdl ¢ task:

<proj ect name="webservices-wsdl c" defaul t="all">
<t askdef name="wsdl c"
cl assname="webl ogi c. wsee. t ool s. ant t asks. Wdl cTask"/ >
</ project>

See Sample Ant Build File for TemperatureService for a full sample bui | d. xni file
that contains additional targets from those described in this procedure, such as
cl ean, undepl oy, client, and run. The full bui I d. xnl file also uses properties, such
as ${ear-dir}, rather than always using the hard-coded name for the EAR
directory.

Add the following call to the wsdl ¢ Ant task to the bui | d. xnl file, wrapped inside of
the generate-fromwsdl target:

<target nane="generate-fromwsdl ">
<wsdl ¢

src\Wdl ="wsdl _fil es/ Tenperat ureService. wsdl "
dest JwsDi r="out put/ conpi | edVédl "
dest I npl Dir="output/inpl"
packageName="exanpl es. webser vi ces. wsdl ¢"
type="JAXWS"/ >

</target>

The wsdl ¢ task in the examples generates the JAR file that contains the JWS SEI
and data binding artifacts into the out put/ conpi | edvsdl directory under the current
directory. It also generates a partial implementation file

(Tenper at ur eSer vi ce_Tenper at urePort | npl . j ava) of the JWS SEI into the out put/

i npl / exanpl es/ webser vi ces/ wsdl ¢ directory (which is a combination of the output
directory specified by dest | npl Di r and the directory hierarchy specified by the
package name). All generated JWS files will be packaged in the

exanpl es. webservi ces. wsdl ¢ package.

Execute the wsdl ¢ Ant task by specifying the generate-fromwsdl target at the
command line:

pronpt> ant generate-fromwsdl

See the out put directory if you want to examine the artifacts and files generated by
the wsdl ¢ Ant task.

Update the generated out put /i npl / exanpl es/ webser vi ces/ wsdl ¢/
Tenper at ur eSer vi ce_Tenper at urePort | npl . j ava JWS implementation file using your

6-12



Chapter 6
Creating a Web Service from a WSDL File

favorite Java IDE or text editor to add Java code to the methods so that they
behave as you want.

See Sample TemperatureService_TemperaturePortimpl Java Implementation File
for an example; the added Java code is in bold. The generated JWS
implementation file automatically includes values for the @¢ébSer vi ce JWS
annotation that corresponds to the value in the original WSDL file.

# Note:

There are restrictions on the JWS annotations that you can add to the
JWS implementation file in the "starting from WSDL" use case. See
wsdlc in the WebLogic Web Services Reference for Oracle WebLogic
Server for details.

For simplicity, the sample get Tenp() method in

Tenper at ur eServi ce_Tenperat urePort | npl . j ava returns a hard-coded number. In real
life, the implementation of this method would actually look up the current
temperature at the given zip code.

8. Copy the updated Tenper at ur eSer vi ce_Tenper at urePort | npl . j ava file into a
permanent directory, such as a src directory under the project directory; remember
to create child directories that correspond to the package name:

pronpt > cd /exanpl es/wsdl ¢

pronpt > nkdir src/exanpl es/ webservi ces/wsdl ¢

pronpt > cp out put/inpl/exanpl es/ webservi ces/wsdl c/

Tenper at ureServi ce_Tenperat urePort | npl.java.java \src/exanpl es/ webservi ces/ wsdl ¢/
Tenper at ureServi ce_TenperaturePort | npl.java.java

9. Add a bui | d-servi ce target to the bui | d. xni file that executes the jwsc Ant task
against the updated JWS implementation class. Use the conpi | edWdl attribute of
j wsc to specify the name of the JAR file generated by the wsdl ¢ Ant task:

<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<target nanme="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws file="exanpl es/ wehservices/wsdl c/
Tenper at ur eSer vi ce_Tenperat urePort | npl.java"
conpi | edWdl =" ${ conpi | edVédI - di r}/ Tenper at ureServi ce_wsdl . jar"
type="JAXS' >
<W.Ht tpTransport
cont ext Path="t enp" servi ceUri ="Tenper at ur eServi ce"
por t Nane="Tenper at ur ePort ">
</W.H t pTransport >
</jws>
</jwsc>
</target>

In the preceding example:

* The type attribute of the <j ws> element specifies the type of web services
(JAX-WS or JAX-RPC).

ORACLE 6-13



Chapter 6
Creating a Web Service from a WSDL File

* The <WHtpTransport > child element of the <j ws> element of the j wsc Ant task
specifies the context path and service URI sections of the URL used to invoke
the web service over the HTTP/S transport, as well as the name of the port in
the generated WSDL.

10. Execute the bui | d-servi ce target to generate a deployable web service:

pronpt > ant buil d-service

You can re-run this target if you want to update and then re-build the JWS file.
11. Start the WebLogic Server instance to which the web service will be deployed.

12. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the w depl oy
Ant task. In either case, you deploy the wsdl cEar Enterprise application, located in
the out put directory.

To use the w depl oy Ant task, add the following target to the bui | d. xm file:

<t askdef name="w depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target name="depl oy">
<wl depl oy action="depl oy" nanme="wsdl cEar"
source="out put/wsdl cEar" user="${w s. user name}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server.nane}" />
</target>

Substitute the values for w s. user nane, w s. passwor d, w s. host name, w s. port, and
w s. server . nane that correspond to your WebLogic Server instance.

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

13. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host: port/tenp/ Tenperat ureServi ce?WsDL

The context path and service URI section of the preceding URL are specified by
the original golden WSDL. Use the hostname and port relevant to your WebLogic
Server instance. Note that the deployed and original WSDL files are the same,
except for the host and port of the endpoint address.

You can use the cl ean, bui | d-servi ce, undepl oy, and depl oy targets in the bui | d. xni file
to iteratively update, rebuild, undeploy, and redeploy the web service as part of your
development process.

To run the web service, you need to create a client that invokes it. See Invoking a Web
Service from a WebLogic Web Service for an example of creating a Java client
application that invokes a web service.

6.3.1 Sample WSDL File

<?xm version="1.0"?>

<definitions
nanme="Tenper at ur eSer vi ce"
target Namespace="htt p: // www. xmet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
xmns:tns="http://ww:. xnet hods. net / sd/ Tenper at ur eSer vi ce. wsdl "

ORACLE 6-14



Chapter 6
Creating a Web Service from a WSDL File

xm ns: xsd="http: // www. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns="http://schemas. xn soap. org/ wsdl /" >
<types>
<xsd: schema
target Nanespace="htt p: // www. xnet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
xm ns: xsd="http: // wwwn. w3. or g/ 2001/ XM_.Schema" >
<xsd: el ement nane="get TenpRequest ">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nanme="zip" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
<xsd: el ement nane="get TenpResponse" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="return" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>
</types>
<message name="get TenpRequest ">
<part name="paraneters" element="tns: get TenpRequest"/>
</ nessage>
<message name="get TenpResponse" >
<part name="paraneters" el ement="tns: get TenpResponse"/>
</ nessage>
<port Type name="Tenper at ur ePort Type" >
<operation name="get Temp" >
<input nessage="tns: get TenpRequest"/>
<out put message="tns: get TenpResponse"/ >
</ operation>
</ port Type>
<bi ndi ng name="Tenper at ur eBi ndi ng" type="tns: Tenper at ur ePort Type" >
<soap: bi ndi ng styl e="document"”
transport="http://schemas. xn soap. or g/ soap/ http"/>
<operation name="get Temp" >
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="Tenper at ureService">
<docunent ati on>
Returns current tenperature in a given U S. zipcode
</ docunent ati on>
<port name="TenperaturePort" bindi ng="tns: Tenper at ur eBi ndi ng" >
<soap: addr ess
| ocation="http://local host: 7001/t enp/ Tenper at ur eServi ce"/ >
</port>
</ service>
</ definitions>

ORACLE 6-15



Chapter 6
Creating a Web Service from a WSDL File

6.3.2 Sample TemperatureService_TemperaturePortimpl Java
Implementation File

package exanpl es.wehservi ces. wsdl c;
inport javax.jws.\WbService;
import javax.xm .ws. Bi ndi ngType;

/**
* Returns current temperature in a given U S. zipcode
* This class was generated by the JAX-WS RI.
* JAX-WB Rl 2.2.8-b13684
* Cenerated source version: 2.2
*
*/
@ebSer vi ce(
portName = "TenperaturePort",
servi ceNane = "Tenperat ureService",
target Nanespace="htt p: // www. xmet hods. net/ sd/ Tenper at ur eSer vi ce. wsdl "
wsdl Location = "/wsdl s/ Tenper at ureServi ce. wsdl ",
endpoi ntInterface = "exanpl es. webservi ces. wsdl ¢. Tenper at ur ePort Type")
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
public class TenperatureService_TenperaturePortlnpl inplenents

Tenper at ur ePort Type
{
public TenmperatureService_TenperaturePortinpl () { }
/**
*
* @aram zip
* @eturn
* returns float
*/
public float getTenp(String zip) {
return 1.234f;
1
}

6.3.3 Sample Ant Build File for TemperatureService

ORACLE

The following bui | d. xm file uses properties to simplify the file.

<project default="all">
<I-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="| ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nane" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="wsdl cEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="conpil edWdl -di r" val ue="${exanpl e-out put}/ conpi | edVédl " />
<property name="inpl-dir" val ue="${exanpl e-output}/inpl" />
<property name="ear-dir" val ue="${exanpl e-out put}/wsdl car" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ pat h>
<t askdef name="wsdl c"

6-16



Chapter 6
Creating a Web Service from a WSDL File

cl assname="webl ogi c. wsee. t ool s. antt asks. édl cTask"/ >
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nanme="all'
depends="cl ean, gener at e-from wsdl , bui | d-servi ce, depl oy, client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>
</target>
<target nane="generate-fromwsdl ">
<wsdl ¢
src\Wdl ="wsdl _files/ Tenperat ureService. wsdl "
dest JwsDi r="${conpi | eddl -dir}"
destInpl Dir="${inpl-dir}"
packageName="exanpl es. webser vi ces. wsdl ¢"

type="JAXWS"/ >
</target>
<target name="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}">
<jws

file="exanpl es/ webservi ces/ wsdl ¢/ Tenper at ureServi ce_Tenperat urePort|npl . java"
conpi | edWdl =" ${ conpi | edVédl - di r}/ Tenperat ureServi ce_wsdl .jar"
type="JAXWS" >
<W.Ht tpTransport
cont ext Path="t enp" servi ceUri =" Tenper at ur eServi ce"
por t Nane="Tenper at urePort"/>
</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernanme}" password="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/tenp/ Tenper at ur eSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. wsdl c. client"”
type="JAXWS"' >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/wsdl c/client/**/* java"/>
</target>

ORACLE 6-17



Chapter 6
Creating a Web Service from a WSDL File

<target name="run">
<java cl assnane="exanpl es. webservi ces.wsdl c. client. Tenperaturedient"
fork="true" failonerror="true" >
<classpath refid="client.class.path"/>
<arg
[ine="http://${w s.hostnane}: ${w s. port}/tenp/ Tenperat ureServi ce" />
</java>
</target>
</ project>

ORACLE 6-18



Developing Basic JAX-WS Web Service
Clients

Part 11l describes how to develop basic WebLogic web service clients using Java API
for XML-based web services (JAX-WS).

Sections include:
* Roadmap for Developing JAX-WS Web Service Clients

» Developing Web Service Clients

*  Examples of Developing JAX-WS Web Service Clients

ORACLE



Roadmap for Developing JAX-WS Web
Service Clients

This chapter presents best practices for developing WebLogic web service clients for
Java API for XML Web Services (JAX-WS).

Table 7-1 lists each best practice and is followed by an example that illustrates the
best practices presented. The best practices are described in more detail later in this
document.

For additional best practices, refer to the following sections:

*  For best practices when developing asynchronous web service clients, see
Roadmap for Developing Asynchronous Web Service Clients.

*  For best practices when developing reliable web service clients, see Roadmap for
Developing Reliable Web Services and Clients.

< Note:

In the following table, client instance can be a port or a Dispatch instance.

Table 7-1 Roadmap for Developing Web Service Clients
]

Best Practice Description

Synchronize use of client Create client instances as you need them; do not store them long term.
instances.

Use a stored list of features, Define all features for the web service client instance, including client ID, so that
including client ID, to create they are consistent each time the client instance is created. For example:

client instances. _servi ce. get BackendSer vi cePort (_f eatures);

Explicitly define the client ID. Use the G i ent | dentityFeature to define the client ID explicitly. This client ID is
used to group statistics and other monitoring information, and for reporting
runtime validations, and so on. For more information, see Managing Client
Identity.

Note: Oracle strongly recommends that you define the client ID explicitly. If not
explicitly defined, the server generates the client ID automatically, which may not
be user-friendly.

Explicitly close client instances For example:

when processing is complete.  ((j ava. i 0. d oseabl e) port). cl ose();
If not closed explicitly, the client instance will be closed automatically when it
goes out of scope.

Note: The client ID remains registered and visible until the container (Web
application or EJB) is deactivated. For more information, see Client Identity
Lifecycle.

The following example illustrates best practices for developing web service clients.

ORACLE 7-1



Chapter 7

Example 7-1 Web Service Client Best Practices Example

i mport java.io.lCException;
import java.util.*;

i mport javax.servlet.*;
i mport javax.xn .ws.*;

i mport webl ogic.jws.jaxws.client.CientldentityFeature;

/**

* Exanple client for invoking a web service.

*/

public class BestPracticedient
extends GenericServlet {

private BackendServiceService _service;
private WebServiceFeature[] _features;
private ClientldentityFeature _clientldFeature;

@verride
public void init()

}

throws ServletException {

Il Create a single instance of a web service as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendServi ceService();

}

/'l Best Practice: Use a stored list of features, per client ID, to create client instances.
I/ Define all features for the web service client instance, per client ID, so that they are
/'l consistent each time the client instance is created. For exanple:

/'l _service. get BackendServi cePort (_f eat ures);

Li st <VebServi ceFeature> features = new ArrayLi st <WebServi ceFeature>();

/'l Best Practice: Explicitly define the client ID.

/1 TODO Maybe allow ClientldentityFeature to store other features, and
1 then create new client instances sinply by passing the

1 ClientldentityFeature (and the registered features are used).
_clientldFeature = new QientldentityFeature("MBackendServicedient");
features.add(_clientldFeature);

/1 Set the features used when creating clients with

Il the client 1D "MBackendServicedient". The features are stored in an array to
Il reinforce that the list should be treated as imutable.

_features = features.toArray(new WebServi ceFeature[features.size()]);

@verride
public void service(Servl et Request req, ServletResponse res)

throws Servl et Exception, |COException {
/1 ... Read the servlet request ...

/'l Best Practice: Synchronize use of client instances.

/1 Create a web service client instance to talk to the backend service.

/1 Note, at this point the client IDis "registered and becones

/1 visible to monitoring tools such as the Administration Console and W.ST.
/1 The client ID *remins* registered and visible until the container

/1 (the Web application hosting our servlet) is deactivated (undepl oyed).

ORACLE 7-2



Chapter 7

/11
/1 Aclient ID can be used when creating multiple client instances (port or Dispatch client).
[l The client instance should be created with the sane set of features each tinme, and should
/] use the sane service class and refer to the same port type.
/1 Agiven a client 1D should be used for a given port type, but not across port types.
/1 1t can be used for both port and Dispatch clients.
BackendServi ce port =
_service. get BackendSer vi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der)port).get Request Cont ext ().
put ( Bi ndi ngPr ovi der . ENDPOl NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best Practi ceServi ce/ BackendService");

/1 Print out the explicit client ID, and conpare it to the client ID
/1 that woul d have been generated automatically for the client instance.
showC i entldentity();

/1 Make the invocation on our real port

String request = "Make a cake";

Systemout. println("Invoking DoSonething with request: " + request);
String response = port.doSonet hi ng(request);

Systemout. println("Got response: " + response);
res.getWiter().wite(response);

/'l Best Practice: Explicitly close client instances when processing is complete.

/1 1f not closed, the client instance will be closed automatically when it goes out of
/'l scope. Note, this client IDwll remain registered and visible until our

/] container (Wb application) is undeployed.

((java.io. O oseabl e)port).close();

}

/**
[/ Print out the client's full ID, which is a conbination of
/1 the client 1D provided above and qualifiers fromthe application and
/1 Wb application that contain the client. Then conpare this with the client ID that
/1 woul d have been generated for the client instance if not explicitly set.
11
private void showdientldentity()
throws | CException {

Systemout.printIn("Cient ldentity is: " + _clientldFeature.getCientld());

/] Create a client instance without explicitly defining the client IDto viewthe
/1 client IDthat is generated automatically.
ClientldentityFeature dumydient|dFeature =
new CientldentityFeature(null);
BackendServi ce dummyPort =
_service. get BackendSer vi cePort (dummyCl i ent | dFeature);
Systemout.printin("Generated Client Identity is: " +
dumydient|dFeature.getCientld());
/'l Best Practice: Explicitly close client instances when processing is complete.
/1 1f not closed, the client instance will be closed automatically when it goes out of
/] scope. Note, this client IDwll remain registered and visible until our
/1 container (Wb application) is undeployed.
((java.io.d oseabl ) dumyPort).cl ose();
1

@verride
public void destroy() {

ORACLE 7-3



Chapter 7

ORACLE 7.4



Developing Web Service Clients

This chapter describes how to develop Java EE clients to invoke a WebLogic web
service using Java API for XML-based Web Services (JAX-WS).
This chapter includes the following sections:

e Overview of WebLogic Web Services Client Development

e Invoking a Web Service from a Java SE Client

e Invoking a Web Service from a Standalone Java SE Client

e Invoking a Web Service from Another WebLogic Web Service

e Configuring Web Service Clients

» Defining a Web Service Reference Using the @WebServiceRef Annotation
e Managing Client Identity

e Using a Proxy Server When Invoking a Web Service

e Client Considerations When Redeploying a Web Service

e Client Considerations When Web Service and Client Are Deployed to the Same
Managed Server

8.1 Overview of WebLogic Web Services Client
Development

Invoking a web service refers to the actions that a client application performs to use
the web service.

There are two types of client applications:

* Java SE client—In its simplest form, a Java SE client is a Java program that has
the Mai n public class that you invoke with the j ava command. A Java SE client can
be invoked within a WebLogic Server environment (with access to the WebLogic
Server classpath) or as a standalone client application.

e Java EE component deployed to WebLogic Server—In this type of client
application, the web service runs inside a Java Platform, Enterprise Edition (Java
EE) Version 5 component deployed to WebLogic Server, such as an EJB, servlet,
or another web service. This type of client application, therefore, runs inside a
WebLogic Server container.

The sections that follow describe how to use Oracle's implementation of the JAX-WS
specification to invoke a web service from a Java client application. You can use this
implementation to invoke web services running on any application server, both
WebLogic and non-WebLogic.

WebLogic Server optionally includes examples of creating and invoking WebLogic web
services in the ORACLE_HOVE/ wl ser ver/ sanpl es/ server/ exanpl es/ src/ exanpl es directory,
where ORACLE_HOME represents the directory in which you installed WebLogic Server.

ORACLE 8-1



Chapter 8
Invoking a Web Service from a Java SE Client

For detailed instructions on how to build and run the examples, open the ORACLE_HOVE/
w server/sanpl es/ server/docs/i ndex. ht i Web page in your browser and expand the
WebLogic Server Examples->Examples->API->Web Services node. For more
information, see Sample Applications and Code Examples in Understanding Oracle
WebL ogic Server.

For more information about:

e Invoking message-secured web services, see Updating a Client Application to
Invoke a Message-Secured Web Service in Securing WebLogic Web Services for
Oracle WebLogic Server.

e Best practices for developing web service clients, see Roadmap for Developing
JAX-WS Web Service Clients.

e Invoking web services asynchronously, see Developing Asynchronous Clients.

e Creating a dynamic proxy client, using the j avax. xm . ws. Servi ce API, that enables
a web service client to invoke a web service based on a service endpoint interface
(SEI) dynamically at run-time (without using cl i ent gen), see Developing Dynamic
Proxy Clients. This chapter focuses on how to generate a static Java class of the
Servi ce interface implementation for the particular web service you want to invoke.

8.2 Invoking a Web Service from a Java SE Client

The following table summarizes the main steps to create a Java SE application that
invokes a web service.

# Note:
In this section, it is assumed that:

* When you invoke a web service using the client-side artifacts generated
by the cli ent gen or wsdl ¢ Ant tasks, you have the entire set of WebLogic
Server classes in your CLASSPATH. Support for standalone Java
applications that are running in an environment where WebLogic Server
libraries is described in Invoking a Web Service from a Standalone Java
SE Client.

e You use Ant in your development environment to build your client
application, compile Java files, and so on, and that you have an existing
bui | d. xni file that you want to update with web services client tasks. For
general information about using Ant in your development environment,
see Creating the Basic Ant build.xml File. For a full example of a
bui I d. xm file used in this section, see Sample Ant Build File for a Java
Client.

ORACLE 8-2



Chapter 8
Invoking a Web Service from a Java SE Client

Table 8-1 Steps to Invoke a Web Service from a Java SE Client

# Step

Description

Set up the environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or
set Domai nEnv. sh (UNIX) command, located in the bi n subdirectory of your
domain directory. The default location of WebLogic Server domains is
ORACLE_HOVE/ user _proj ect s/ donai ns/ domai nNarre, where ORACLE_HOME is
the directory you specified as Oracle Home when you installed Oracle
WebLogic Server and dormai nNane is the name of your domain.

2 Update your bui | d. xm file to
execute the cl i ent gen Ant
task to generate the needed
client-side artifacts to invoke a

web service.

See Using the clientgen Ant Task To Generate Client Artifacts.

3 Get information about the web
service, such as the signature
of its operations and the
name of the ports.

See Getting Information About a Web Service.

4 Write the client application
Java code that includes code
for invoking the web service

operation.

See Writing the Java Client Application Code to Invoke a Web Service.

5 Create a basic Ant build file,

bui I d. xm .

See Creating the Basic Ant build.xml File.

6  Compile and run your Java
client application.

See Compiling and Running the Client Application.

8.2.1 Using the clientgen Ant Task To Generate Client Artifacts

The cli ent gen WebLogic web services Ant task generates, from an existing WSDL file,
the client artifacts that client applications use to invoke both WebLogic and non-
WebLogic web services. These artifacts include:

ORACLE

The Java class for the Servi ce interface implementation for the particular web
service you want to invoke.

JAXB data binding artifacts.

The Java class for any user-defined XML Schema data types included in the

For additional information about the cl i ent gen Ant task, such as all the available
attributes, see Ant Task Reference in the WebLogic Web Services Reference for
Oracle WebLogic Server.

Update your bui | d. xm file, adding a call to the cl i ent gen Ant task, as shown in the
following example:

<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<target name="build-client">

wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="clientclasses"
packageNanme="exanpl es. webservi ces. si npl e_client"

8-3



Chapter 8
Invoking a Web Service from a Java SE Client

type="JAXWS"/ >
</target>

Before you can execute the cl i ent gen WebLogic web service Ant task, you must
specify its full Java classname using the standard t askdef Ant task.

You must include the wsdl and dest Di r attributes of the cl i ent gen Ant task to specify
the WSDL file from which you want to create client-side artifacts and the directory into
which these artifacts should be generated. The packageNane attribute is optional; if you
do not specify it, the cl i ent gen task uses a package name based on the

t ar get Nanespace of the WSDL. The type is required in this example; otherwise, it
defaults to JAXRPC.

In this example, the package name is set to the same package name as the client
application, exanpl es. webser vi ces. si npl e_cl i ent . If you set the package name to one
that is different from the client application, you would need to import the appropriate
class files. For example, if you defined the package name as

exanpl es. webser vi ces. conpl ex, you would need to import the following class files in the
client application:

i mport exanpl es. webservi ces. conpl ex. Basi cStruct ;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

< Note:

The client gen Ant task also provides the dest Fi | e attribute if you want the
Ant task to automatically compile the generated Java code and package all
artifacts into a JAR file. For details and an example, see "“clientgen” in the
WebLogic Web Services Reference for Oracle WebLogic Server.

If the WSDL file specifies that user-defined data types are used as input parameters or
return values of web service operations, cl i ent gen automatically generates a
JavaBean class that is the Java representation of the XML Schema data type defined
in the WSDL. The JavaBean classes are generated into the dest Di r directory.

For a full sample bui I d. xnd file that contains additional targets from those described in
this procedure, such as cl ean, see Sample Ant Build File for a Java Client.

To execute the cli ent gen Ant task, along with the other supporting Ant tasks, specify
the bui | d-cl i ent target at the command line:

pronpt > ant build-client

See the clientcl asses directory to view the files and artifacts generated by the
cli ent gen Ant task.

8.2.2 Getting Information About a Web Service

ORACLE

You need to know the name of the web service and the signature of its operations
before you write your Java client application code to invoke an operation. There are a
variety of ways to find this information.

The best way to get this information is to use the cl i ent gen Ant task to generate the
web service-specific Servi ce files and look at the generated *. j ava files. These files are

8-4



Chapter 8
Invoking a Web Service from a Java SE Client

generated into the directory specified by the dest Di r attribute, with subdirectories
corresponding to either the value of the packageNane attribute, or, if this attribute is not
specified, to a package based on the t ar get Nanespace of the WSDL.

*  The Servi ceNane. j ava source file contains the get Port Nane() methods for getting
the web service port, where Servi ceNane refers to the name of the web service and
Por t Nare refers to the name of the port. If the web service was implemented with a
JWS file, the name of the web service is the value of the servi ceNare attribute of
the @ébServi ce JWS annotation and the name of the port is the value of the
por t Nane attribute of the <W.H: t pTranspor t > child element of the <j ws> element of
the j wsc Ant task.

e The Port Type. j ava file contains the method signatures that correspond to the
public operations of the web service, where Port Type refers to the port type of the
web service. If the web service was implemented with a JWS file, the port type is
the value of the nane attribute of the @ébServi ce JWS annotation.

You can also examine the actual WSDL of the web service; see Browsing to the
WSDL of the Web Service for details about the WSDL of a deployed WebLogic web
service. The name of the web service is contained in the <servi ce> element, as shown
in the following excerpt of the Trader Servi ce WSDL:

<servi ce name="Trader Service">
<port name="Trader Servi cePort"
bi ndi ng="t ns: Trader Ser vi ceSoapBi ndi ng" >

</port>
</ service>

The operations defined for this web service are listed under the corresponding

<bi ndi ng> element. For example, the following WSDL excerpt shows that the

Trader Ser vi ce web service has two operations, buy and sel | (for clarity, only relevant
parts of the WSDL are shown):

<bi ndi ng nane="Tr ader Servi ceSoapBi ndi ng" ...>
<operation nane="sel | ">

</ operati on>
<operation nane="buy">
</ operati on>

</ bi ndi ng>

8.2.3 Writing the Java Client Application Code to Invoke a Web

Service

ORACLE

In the following code example, a Java application invokes a web service operation.
The application uses standard JAX-WS API code and the web service-specific
implementation of the Servi ce interface, generated by cl i ent gen, to invoke an
operation of the web service.

The example also shows how to invoke an operation that has a user-defined data type
(exanpl es. webser vi ces. si mpl e_cl i ent. Basi cStruct ) as an input parameter and return
value. The cli ent gen Ant task automatically generates the Java code for this user-
defined data type.

Because the <cl i ent gen> packageNane attribute was set to the same package name as
the client application, we are not required to import the <cl i ent gen>-generated files.

8-5



Chapter 8
Invoking a Web Service from a Java SE Client

package exanpl es.webservices. sinple_client;
/**
* This is a sinple Java application that invokes the
* the echoConpl exType operation of the Conpl exService web service.
*/
public class Main {
public static void main(String[] args) {
Conpl exService test = new Conpl exService();
Conpl exPort Type port = test. get Conpl exPort TypePort();
Basi cStruct in = new BasicStruct();
in.setlntVal ue(999);
in.setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);
System out. println("echoConpl exType called. Result: " + result.getlntValue() +
", " +result.getStringVvalue());
1
}

In the preceding example:

*  The following code shows how to create a Conpl exPort Type stub:

Conpl exServi ce test = new Conpl exService(),
Conpl exPort Type port = test. get Conpl exPort TypePort();

The Conpl exSer vi ce class implements the JAX-WS Servi ce interface. The
get Conpl exSer vi cePort TypePort () method is used to return an instance of the
Conpl exPor t Type stub implementation.

e The following code shows how to invoke the echoConpl exType operation of the
Conpl exServi ce web service:

Basi cStruct result = port.echoConpl exType(in);

The echoConpl exType operation returns the user-defined data type called
Basi cStruct .

8.2.4 Compiling and Running the Client Application

Add j avac tasks to the bui | d-cl i ent target in the buil d. xn file to compile all the Java
files (both of your client application and those generated by cl i ent gen) into class files,
as shown by the bold text in the following example:

<target nane="build-client">
<clientgen
wsdl ="http://${w s. host name}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="clientclasses"
packageName="exanpl es. webservi ces. si nple_client"
type="JAXWS"/ >
<javac
srcdir="clientclasses"
destdir="clientclasses"
includes="**/*_java"/>
<javac
srcdir="src"
destdir="clientclasses"
includes="examples/webservices/simple_client/*.java"/>
</target>

ORACLE 8-6



Chapter 8
Invoking a Web Service from a Java SE Client

In the example, the first j avac task compiles the Java files in the cli ent cl asses
directory that were generated by cl i ent gen, and the second j avac task compiles the
Java files in the exanpl es/ webser vi ces/ si npl e_cl i ent subdirectory of the current
directory; where it is assumed your Java client application source is located.

In the preceding example, the cl i ent gen-generated Java source files and the resulting
compiled classes end up in the same directory (cl i ent cl asses). Although this might be
adequate for prototyping, it is often a best practice to keep source code (even
generated code) in a different directory from the compiled classes. To do this, set the
dest dir for both javac tasks to a directory different from the srcdir directory. To run the
client application, add a run target to the bui | d. xm that includes a call to the j ava task,
as shown below:

<path id="client.class.path">
<pat hel ement pat h="clientcl asses"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>

</ pat h>
<target nanme="run" >
<java
fork="true"

cl assname="exanpl es. webSer vi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<classpath refid="client.class.path"/>

</target>

The pat h task adds the cl i ent cl asses directory to the CLASSPATH. The run target
invokes the Mai n application, passing it the URL of the deployed web service as its
single argument.

See Sample Ant Build File for a Java Client for a full sample bui | d. xnl file that
contains additional targets from those described in this procedure, such as cl ean.

Rerun the bui | d-cl i ent target to regenerate the artifacts and recompile into classes,
then execute the run target to invoke the echoSt ruct operation:

pronpt> ant build-client run

You can use the bui | d-client and run targets in the bui | d. xnl file to iteratively update,
rebuild, and run the Java client application as part of your development process.

8.2.5 Sample Ant Build File for a Java Client

ORACLE

The following example shows a complete bui | d. xnl file for generating and compiling a
Java client. See Using the clientgen Ant Task To Generate Client Artifacts and
Compiling and Running the Client Application for explanations of the sections in bold.

<proj ect name="webservices-sinple_client" default="all">
<!-- set global properties for this build -->
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="exanpl e-out put" val ue="output" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">
<pathelement path="${clientclass-dir}"/>
<pathelement path="${java.class.path}"/>
</path>
<taskdef name="clientgen"
classname="weblogic.wsee.tools.anttasks.ClientGenTask" />
<target nane="clean" >

8-7



Chapter 8
Invoking a Web Service from a Standalone Java SE Client

<delete dir="${clientclass-dir}"/>
</target>
<target nanme="all" depends="cl ean, build-client,run" />
<target name="build-client">
<clientgen
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
destDir="${clientclass-dir}"
packageName="examples.webservices.simple_client"
type="JAXWS"/>
<javac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*_java"/>
<javac
srcdir="src" destdir="${clientclass-dir}"
includes="examples/webservices/simple_client/*.java"/>
</target>
<target name="run" >
<java fork="true"
classname="examples.webservices.simple_client_Main"
failonerror="true" >
<classpath refid="client.class.path"/>
</java>
</target>
</ project>

8.3 Invoking a Web Service from a Standalone Java SE
Client

In Invoking a Web Service from a Java SE Client, it is assumed that when you invoke
a Web Service using the client-side artifacts generated by the cli ent gen or wsdl ¢ Ant
tasks, you have the entire set of WebLogic Server classes in your classpath. If,
however, you do not have WebLogic Server installed locally, you can still invoke a
Web Service by using one of the standalone WebLogic web services client JAR files.

Table 8-2 summarizes the standalone web service client JAR files that are available in
the installation.

ORACLE 8-8



Chapter 8

Invoking a Web Service from a Standalone Java SE Client

Table 8-2 Standalone Web Service Client JAR Files
]

JAR File

Location

Description

com or acl e. webservi ces. w s.
jaxws-w swss-client.jar

ORACLE_HOVE/ W ser ver/
modul es/ clients/

Supports basic JAX-WS client-side functionality

including:

*  Using client-side artifacts created by both
the cl i ent gen Ant tasks

e Processing SOAP messages

* Using advanced features, such as web
services reliable messaging, WS
addressing, asynchronous request-
response, and MTOM

e Using WS-Security

e Using client-side SOAP message handlers

e Invoking both JAX-WS and JAX-RPC web
services

e Using SSL

The standalone client JAR does not support
invoking web services that use the following
advanced features:

«  SOAP over JMS transport

*  Conversations

e Buffering

com oracl e. webservices. W s.
j axws-owsmclient.jar

ORACLE_HOWE or acl e_conmon/
nodul es/ clients/

Supports the same functionality as

com oracl e. webser vi ces. wl sj axws-
client_12.1.2.ar (above), plus support for
Oracle Web Services Manager (OWSM)
security policies, as described in Web Services
Security and Policy Management in Securing
Web Services and Managing Policies with
Oracle Web Services Manager.

com oracl e. webservi ces. f mw.

ORACLE_HOME/ or acl e_conmmon/

Provides support for WS-Secure Conversation

client.jar modul es/ clients/ security, as described in Configuring Secure
Conversation in Securing Web Services and
Managing Policies with Oracle Web Services
Manager.
To use a standalone web services client JAR file with your client application, perform
the following steps:
1. Create a Java SE client using your favorite IDE, such as Oracle JDeveloper. For
more information, see Developing and Securing Web Services and Clients in
Developing Applications with Oracle JDeveloper.
2. Copy the required JAR files, defined in Table 8-2, from the computer hosting
WebLogic Server to the appropriate directory on the standalone client computer.
For example, you might copy the files into the directory that contains other classes
used by your client application.
3. Add the JAR files to your CLASSPATH.
ORACLE 8-9



ORACLE

4,

Chapter 8
Invoking a Web Service from a Standalone Java SE Client

# Note:

Ensure that your CLASSPATH includes the JAR file that contains the Ant
classes (ant . jar) as a subset are used by the standalone client JAR
files. This JAR file is typically located in the i b directory of the Ant
distribution.

Configure your environment for Oracle Web Services Manager (OWSM) policies.
This step is optional, required only if you are attaching OWSM security policies to
the web service client.

The configuration steps required vary based on the type of policy being attached.
Examples are provided below. For additional configuration requirements, see
Configuring Java SE Applications to Use OPSS in Securing Applications with
Oracle Platform Security Services.

Example: Basic Authentication

For example, to support basic authentication, using the or acl e/
wss_http_token_client_policy security policy, perform the following steps:

a. Copy thejps-config-jse.xn and audit-store.xnl files from the domai n_hone/
confi g/ f mconfi g directory, where domai n_hore is the name and location of the
domain, to a location that is accessible to the web service client.

b. Create a wallet (cwal | et . sso) in the same location that you copied the files in
step 2 that defines a map called oracl e. wsm securi ty and the credential key
name that the client application will use (for example, webl ogi c- csf - key).

The location of the file cwal | et . sso is specified in the configuration file j ps-
config-jse. xnl with the element <servi cel nst ance>.For more information, see
Using a Wallet-based Credential Store in Securing Applications with Oracle
Platform Security Services.

c. Onthe Java command line, pass the following property defining the JPS
configuration file copied in step 1:

-Doracl e. security.jps.config=<pathToConfigFil e>

For more information, see Scenario 3: Securing a Java SE Application in
Securing Applications with Oracle Platform Security Services.

Example: SSL
For example, to support SSL policies, perform the following steps:

a. Copy thejps-config-jse.xn and audit-store.xnl files from the domai n_hone/
confi g/ f mmconfi g directory, where domai n_hone is the name and location of the
domain, to a location that is accessible to the web service client.

b. On the Java command line, pass the following properties:defining the JPS
configuration file copied in step 1:

Define the JPS configuration file copied in step 1:

-Doracl e.security.jps.config=<pathToConfigFile>

For more information, see Scenario 3: Securing a Java SE Application in
Securing Applications with Oracle Platform Security Services.

Define the trust store containing the trusted certificates:

8-10



Chapter 8
Invoking a Web Service from Another WebLogic Web Service

- D avax. net. ssl . trust Store=<trust Store>

For more information, see "Setting Up the WebLogic Server in Case of a Java
SE Application" in Setting Up a One-Way SSL Connection to the LDAP in
Securing Applications with Oracle Platform Security Services.

Define the trust store password:

- D avax. net. ssl . trust St or ePasswor d=<passwor d>

8.4 Invoking a Web Service from Another WebLogic Web

Service

ORACLE

Invoking a web service from a Java EE client, such as another WebLogic web service,
is similar to invoking one from a Java SE application, as described in Invoking a Web
Service from a Java SE Client, with the following variation:

» Instead of using the cl i ent gen Ant task to generate the JAX-WS Servi ce interface
of the web service to be invoked, you use the <cl i ent gen> child element of the
<j ws> element, inside the j wsc Ant task that compiles the invoking web service. In
the JWS file that invokes the other web service, however, you still use the same
standard JAX-WS APIs to get Servi ce and Port Type instances to invoke the web
service operations.

e You can use the @ebServi ceRef annotation to define a reference to a web service,
as described in Sample JWS File That Invokes a Web Service.

This section describes the differences between invoking a web service from a client in
a Java EE component, specifically another web service, and invoking from a Java SE
client. It is assumed that you use Ant in your development environment to build your
client application, compile Java files, and so on, and that you have an existing

bui | d. xnl that builds a web service that you want to update to invoke another web
service.

The following list describes the changes you must make to the bui | d. xni file that builds
your client web service, which will invoke another web service. See Sample build.xml
File for a Web Service Client for the full sample bui | d. xnl file:

* Add a<clientgen> child element to the <j ws> element that specifies the JWS file
that implements the web service that invokes another web service. Set the
required wsdl attribute to the WSDL of the web service to be invoked. Set the
required packageName attribute to the package into which you want the JAX-WS
client stubs to be generated.

The following list describes the changes you must make to the JWS file that
implements the client web service; see Sample JWS File That Invokes a Web Service
for the full JWS file example.

* Import the files generated by the <cl i ent gen> child element of the j wsc Ant task.
These include the JAX-WS Servi ce interface of the invoked web service, as well as
the Java representation of any user-defined data types used as parameters or
return values in the operations of the invoked web service.

8-11



Chapter 8
Invoking a Web Service from Another WebLogic Web Service

# Note:

If the package name set using the packageNare attribute of <cl i ent gen> is
set to the same package name as the client application, then you are not
required to import the <cl i ent gen>-generated files.

» Get the Service and Port Type interface implementation and invoke the operation on
the port as usual; see Writing the Java Client Application Code to Invoke a Web
Service for details.

8.4.1 Sample build.xml File for a Web Service Client

The following sample bui | d. xnl file shows how to create a web service that itself
invokes another web service; the relevant sections that differ from the bui | d. xm for
building a simple web service that does not invoke another web service are shown in
bold.

The bui | d- servi ce target in this case is very similar to a target that builds a simple web
service; the only difference is that the j wsc Ant task that builds the invoking web
service also includes a <cl i ent gen> child element of the <j ws> element so that j wsc also
generates the required JAX-WS client stubs.

<proj ect name="webservices-service_to_service" default="all">
<I-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nanme" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="Cient Servi ceEar" />
<property name="exanpl e-out put" val ue="output" />
<property nanme="ear-dir" val ue="${exanpl e-output}/CientServiceEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ pat h>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="al|" depends="cl ean, bui | d-service, depl oy,client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-output}"/>

</target>
<target nane="buil d-service">
<jwsc

srcdir="src"
destdir="${ear-dir}" >
<jws
file="exanpl es/ webservices/service_to_service/ dientServicelnpl.java"
type="JAXW\S' >

<clientgen
wsdl="http://${wls.hostname}:${wls.port}/complex/ComplexService?WSDL"
packageName="examples.webservices.complex" />

ORACLE 8-12



Chapter 8
Invoking a Web Service from Another WebLogic Web Service

</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernane}"
passwor d="${w s. password}" verbose="true"
adminurl ="t3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. hostnane}: ${w s. port}/ Cient Service/ Cient Servi ce?WsDL"
destDir="${clientclass-dir}"
packageName="exanpl es. webservi ces. service_to_service.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/service_to_service/client/**/* java"/>
</target>
<target name="run">
<java cl assnane="exanpl es. webservi ces. service_to_service.client.Min"
fork="true"
failonerror="true" >
<classpath refid="client.class.path"/>
</java>
</target>
</ proj ect>

8.4.2 Sample JWS File That Invokes a Web Service

The following sample JWS file, called d i ent Servi cel npl . j ava, implements a web
service called d i ent Servi ce that has an operation that in turn invokes the

echoConpl exType operation of a web service called Conpl exSer vi ce. This operation has a
user-defined data type (Basi cStruct) as both a parameter and a return value. The
relevant code is shown in bold and described after the example.

package exanpl es.webservi ces. service_to_service

import javax.jws.\WbService
import javax.jws.\WbMet hod
import javax.xm .ws.\WebServi ceRef;

/1 Inport the BasicStruct data type, generated by clientgen and used
/1 by the Conpl exService Wb Service
i mport exanpl es. webservi ces. conpl ex. Basi cStruct

/1 Inport the JAX-WS stubs generated by clientgen for invoking
/1 the Conpl exService web service

ORACLE 8-13



Chapter 8
Invoking a Web Service from Another WebLogic Web Service

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

@ebServi ce(name="C i ent Port Type", serviceNane="C i ent Service",
target Nanespace="http://exanpl es. org")
public class CientServicelnpl {
/1 Use the @¥bServiceRef annotation to define a reference to a web service.
@WebServiceRef()
ComplexService test;

@\ebMet hod()
public String call Conpl exService(BasicStruct input, String servicelrl)
{

// Create a port stub to invoke ComplexService
ComplexPortType port = test.getComplexPortTypePort();

// Invoke the echoComplexType operation of ComplexService
BasicStruct result = port.echoComplexType(input);
Systemout. println("lnvoked Conpl exPort Type. echoConpl exType." );
return "Invoke went okay! Here's the result: '" + result.getlntValue() +
", " +result.getStringValue() +"'"
1

}

Follow these guidelines when programming the JWS file that invokes another web
service; code snippets of the guidelines are shown in bold in the preceding example:

* Import any user-defined data types that are used by the invoked web service. In
this example, the Conpl exServi ce uses the Basi cStruct JavaBean:

i mport exanpl es. webservi ces. conpl ex. Basi cStruct ;

* Import the JAX-WS interfaces of the Conpl exServi ce web service; the stubs are
generated by the <cl i engen> child element of <j ws>:

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

» Define a reference to a web service and an injection target for it using the
@ebSer vi ceRef annotation:

@ebSer vi ceRef ()
Conpl exServi ce service;

For more information about @ebSer vi ceRef , see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

Alternatively, you can create a proxy stub to the Conpl exServi ce web service, as
shown below:

Conpl exServi ce service = new Conpl exService();

e Return an instance of the Conpl exPort Type stub implementation by calling the
get Conpl exPort TypePort () operation on the web service reference:

Conpl exPort Type port = service. get Conpl exPort TypePort ();

e Invoke the echoConpl exType operation of Conpl exSer vi ce using the port you just
instantiated:

Basi cStruct result = port.echoConpl exType(input);

ORACLE 8-14



Chapter 8
Configuring Web Service Clients

8.5 Configuring Web Service Clients

By default, web service clients use the web service configuration defined for the
server. You can override the configuration settings used by the web service client
using one of the following methods:

* Using the Administration or WLST, if applicable. Only a subset of web service
features are configurable on the client.

» Using the @ebServi ceRef annotation to associate the web service client with the
configuration defined for the specified web service reference. The web service
reference configuration is defined in the webl ogi c. xm for Web containers and
webl ogi c-ej b-jar. xm for EJB containers. For more information about the
@MebSer vi ceRef annotation, see Defining a Web Service Reference Using the
@WebServiceRef Annotation.

e Using the WrnQ i ent | ni t Feat ure when creating a web services reliable messaging
client. For more information, see Configuring Reliable Messaging on Web Service
Clients.

8.6 Defining a Web Service Reference Using the
@WebServiceRef Annotation

ORACLE

The @e¢bServi ceRef annotation enables you to define a reference to a web service and
attach the configuration of the web service to the client instance.

For example, in the following code excerpt, @¢bSer vi ceRef is used to attach the
configuration for Rel i abl eEchoSer vi ce to the client's web service instance. The port that
is subsequently created and initialized uses the properties defined for

Rel i abl eEchoSer vi ce service reference in the webl ogi c. xm for the Web application.

package wsrm j axws. exanpl e;

i mport java.xm .ws. WebServi ce;

import java.xml.ws.WebServiceRef;

i mport wsrm j axws. exanpl e.client_service.*;

i mport wsrm j axws. exanpl e. cl i ent_service. EchoResponse;

@\ebService
public class OientServicelnpl {

@WebServiceRef(name="MyServiceRef'")
private Reliabl eEchoService service;
private Reliabl eEchoPort Type port = null;

@ost Const ruct

public void initPort() {
port = service.getReliableEchoPort();

}

Example 8-1 shows an example of a webl ogi c. xni file that contains a web service
reference description. For information about the reliable messaging properties shown
in this example, see Configuring Reliable Messaging.

8-15



Chapter 8
Defining a Web Service Reference Using the @WebServiceRef Annotation

Example 8-1 Example weblogic.xml File Containing Web Service Reference Description

<?xm version="1.0" encodi ng=" UTF-8' ?>
<webl ogi c-web-app xm ns="http://xm ns. oracl e. conf webl ogi ¢/ webl ogi c- web- app" >
<servi ce-ref erence-description>
<l-- Any nane you want, but use this sane name on
@\ebSer vi ceRef (nane=<ny nane>). This anno goes on the service
field in your client container -->
<servi ce-ref - name>M Ser vi ceRef </ servi ce-r ef - nane>
<l-- Use / and any path within the web app to get a local WsDL, or
use a resource name as defined by the Java O assLoader, or use an
absol ute/external URL you can guarantee is depl oyed when this web
app deploys -->
<wsdl - url >/ VEB- | NF/ wsdl s/ Rel i abl eEcho. wsdl </ wsdl -url >
<l-- One or nore port-infos, one for each type of port/stub you'll create
inyour JWS -->
<port-info>
<I-- The local name of wsdl:port (not portType). The Java type for this
port, when created fromthe @ebServiceRef JWS field, will contain,
in Request Context, the props you define bel ow -->
<port - name>Rel i abl eEchoPort </ port - name>

<l-- Any prop name/val ue pairs you want to show up on you service stub
The Java type for this port, when created fromthe @ébServiceRef JWS field,
will contain, in RequestContext, the stub-props you define bel ow -->

<!-- RM Source Properties -->

<st ub- property>
<nanme>webl ogi c. wsee. wsr m BaseRet r ansmi ssi onl nt er val </ nane>
<val ue>PT30S</ val ue>

</ st ub- property>

<st ub- property>
<nanme>webl ogi c. wsee. wsr m Ret ransmi ssi onExponent i al Backof f </ name>
<val ue>t rue</ val ue>

</ st ub- property>

<!-- RM Destination Properties -->

<st ub- property>
<nanme>webl ogi c. wsee. wsr m Ret r yCount </ nane>
<val ue>5</ val ue>
</ st ub- property>

<st ub- property>
<name>webl ogi c. wsee. wsr m Ret r yDel ay</ name>
<val ue>PT30S</ val ue>

</ st ub- property>

<st ub- property>
<nanme>webl ogi c. wsee. wsr m Acknow edgenent | nt er val </ nane>
<val ue>PT5S</ val ue>

</ st ub- property>

<st ub- property>
<nanme>webl ogi c. wsee. wsr m NonBuf f er edDest i nat i on</ name>
<val ue>t rue</ val ue>

</ st ub- property>

<!-- RM Source *or* Destination Properties -->

ORACLE 8-16



Chapter 8
Managing Client Identity

<stub- property>
<nanme>webl ogi c. wsee. wsrm | nact i vityTi meout </ nane>
<val ue>PT5MK/ val ue>

</ st ub- property>

<st ub- property>
<name>webl ogi c. wsee. wsr m SequenceExpi rati on</ name>
<val ue>PT10MK/ val ue>

</ st ub- property>

</port-info>

</ service-reference-description>
<w - di spat ch-pol i cy>webl ogi c. wsee. mdb. Di spat chPol i cy</wl - di spat ch- pol i cy>
</ webl ogi c- web- app>

8.7 Managing Client Identity

ORACLE

Web services enable you to assign any meaningful name to a client, which is
represented as the client identity (client ID). This client ID is used to group statistics
and other monitoring information, and for reporting runtime validations, and so on.

For on-server clients (clients running in a container within a WebLogic Server
instance), the client ID can be generated in one of the following ways:

e By the client when it initializes connection to web service port. This is the
recommended approach. See Defining the Client ID During Port Initialization.

e By the server and discovered later by the client. See Accessing the Server-
generated Client ID.

# Note:

Although optional, Oracle strongly recommends that you define the client ID
explicitly.

The webl ogi c. wsee. j axws. persi stence. dientldentityFeature client feature enables
web service clients to set and access the web service client ID. The following table
summarizes the dientldentityFeature methods.

Table 8-3 Methods of ClientldentityFeature for Setting and Accessing Client ID

Method Description
getCientlD() Gets the currently defined client ID for the web service port.
setCientlD() Sets the client ID for the web service port.

In addition, you can set the client ID by passing it as an
argument when instantiating the C i ent | dent i t yFeat ur e object.
For example:

ClientldentityFeature clientlDFeature = new
ClientldentityFeature("MBackendServiceAsyncCient");

8-17



Chapter 8
Managing Client Identity

Table 8-3 (Cont.) Methods of ClientldentityFeature for Setting and Accessing

Client ID
__________________________________________________________________________|
Method Description
di spose() Disposes the client ID.

If a client ID is not disposed of explicitly, it will be done when the
container for the client instances that use the client ID is
deactivated (for example, the host Web application or EJB is
deactivated). For more information, see Client Identity Lifecycle.

The following sections describe the methods for managing the client ID:

» Defining the Client ID During Port Initialization
e Accessing the Server-generated Client ID

e Client Identity Lifecycle

8.7.1 Defining the Client ID During Port Initialization

To provide its client ID, the web service client can pass an instance of the
ClientldentityFeature containing the client ID to the web service port at initialization
time.

The client ID must be unique within the Web application or EJB that contains the
client. It is recommended that the client ID appropriately reflect the business purpose.
In order to ensure that the client ID is unique, the system prepends the names of the
containing server, application, and component (Web application or EJB) to the client
ID.

# Note:

Care should be taken when choosing a client ID. If a client instance is
created with the same client ID as an existing client instance, the two client
instances will be treated as the same instance. No exception will be thrown
to alert you to the duplication.

The following example demonstrates this method of specifying the client ID. It is
recommended that you close the client instance once all processing has been
complete, as shown.

This example is excerpted from Roadmap for Developing JAX-WS Web Service
Clients.

Example 8-2 Example of Specifying the Client ID During Port Initialization

i mport javax.servlet.*;
i mport javax.xn .ws.*;
i mport webl ogic.jws.jaxws.client.CientldentityFeature;

public class BestPracticeAsyncdient
extends GenericServlet {

ORACLE 8-18



Chapter 8
Managing Client Identity

private BackendServiceService _service;

/I Cient ID

ClientldentityFeature clientldFeature =
new CientldentityFeature("MBackendServiceAsyncClient");
features.add(clientldFeature);

_features = features.toArray(new VebServi ceFeature[features.size()]);

BackendServi ce port = _service. get BackendServi cePort(_features);

((java.io. O oseable) _port).close();

}
}

8.7.2 Accessing the Server-generated Client ID

ORACLE

< Note:

As described in this section, in order to ensure that the client ID is unique,
the server-generated version may be long and difficult to read. To guarantee
that the client ID is presented in a user-friendly format, it is recommended
that you define the client ID during port initialization, as described in Defining
the Client ID During Port Initialization.

Client IDs that are generated automatically by the server use the following format:

appl i cati onnane[ _appl i cati onversion]: conponent nane: uni quel D

Where:

appl i cati onname—Name of the application hosting the client.

appl i cati onver si on—Version of the application. Only used if multiple versions of
the same application is running simultaneously.

conponent name—Name of the component (Web application or EJB) hosting the
client.

uni quel D—Calculated based on the information that is available when the client
instance is created. The uni quel D is constructed by choosing one of the following
(whichever is available):

— Web service reference name, as defined by the @¢bSer vi ceRef annotation.

— [ portNamespaceURI : portLocal Nane] [ : ][ endpoi nt Addr ess] —port name, endpoint
address, or both (separated by a colon).

— Port class simple name.

The following information, when available, may also be concatenated to the
uni quel D, separated by a colon (:), in the order presented below:

— WSDL location (minus ?wsdl )

— Features used to create the client instance, represented by the features class
name and separated by dash (-).

8-19



Chapter 8
Managing Client Identity

For example, assume that you deploy a web service client with the following
information associated with it:

*  Application name: exanpl e

e Component: Web application called Best Practi ced i ent
e Port name: http://exanpl e/ BackendSer vi cePor t

* Port class: BackendServi ce

e WSDL:jar:file:/C /exanpl e/ BackendServi ce. war !/ WEB- | NF/
BackendSer vi ceServi ce. wsdl

The server-generated client ID will be:

exanpl e: Best PracticeCient:http://exanpl e/ :BackendServicePort:jar:file:/C: /exanplel
BackendSer vi ce. war ! / WEB- | NF/ BackendSer vi ceServi ce. wsdl : AsyncC i ent Transport Feat ure() -
ClientldentityFeature

Each time the code is executed, assuming it is in the same containment hierarchy, the
same client ID is generated. This provides a stable client ID that can be used across
server VM instances and allows for asynchronous responses to be delivered to the
client even after a server restart.

# Note:

A given Client ID can be used from multiple locations in the client code, but
care should be taken to initialize any port or Dispatch instance that uses that
client ID in the same way (same features, service, and so on) as was used in
any other location for that client ID.

For best practice information on the recommended approach to client
instance (port or Dispatch) initialization, see Roadmap for Developing JAX-
WS Web Service Clients.

The following example demonstrates how to access the server-generated client ID.
This example is excerpted from Table 7-1.

Example 8-3 Example of Accessing the Server-generated Client ID

/] Create a port without explicitly defining the client IDto viewthe client IDthat is
/1 generated automatically.

CientldentityFeature dummyCientldFeature = new ClientldentityFeature(null);

BackendServi ce dunmyPort = _servi ce. get BackendServi cePort (dummyd i ent | dFeat ure);
Systemout.printIn("CGenerated Cient Identity is: " + dumyCientldFeature.getCientld());

/1 Best Practice: Explicitly close client instances when processing i s conplete.
[/ 1f not closed, the port will be closed automatically when it goes out of scope.
/1 Note, this client IDwll remain registered and visible until our

/] container (Wb application) is undeployed.

((java.io.d oseabl ) dumyPort). cl ose();

8.7.3 Client Identity Lifecycle

A client ID is registered with the web services runtime when the first client instance
(port or Dispatch instance) using the client ID is created. Any asynchronous response

ORACLE 8-20



8.8 Using

Chapter 8
Using a Proxy Server When Invoking a Web Service

endpoint associated with the client instances is also tracked along with the registered
client ID.

The client ID remains registered until one of the following occurs:

e The client ID is explicitly disposed using the di spose() method on
ClientldentityFeature, as described in Table 8-3.

e The container for the client instances that use the client ID is deactivated (for
example, the host Web application or EJB is deactivated).

a Proxy Server When Invoking a Web Service

You can use a proxy server to proxy requests from a client application to an
application server (either WebLogic or non-WebLogic) that hosts the invoked web
service. You typically use a proxy server when the application server is behind a
firewall. You can specify the proxy server in your client application using Java system
properties. There are two ways to specify the proxy server in your client application:
programmatically using the WebLogic O i ent ProxyFeat ure APl or using system
properties.

8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server

You can programmatically specify within the Java client application itself the details of
the proxy server that will proxy the web service invoke using the

webl ogi c. wsee. j axws. proxy. C i ent ProxyFeat ure API. For more about the

d i ent ProxyFeat ure API, see the Java API Reference for Oracle WebLogic Server.

The proxy server settings defined by the d i ent ProxyFeat ur e override the settings
defined at the JVM-level, as described in Using System Properties to Specify the
Proxy Server.

" Note:

The d i ent ProxyFeat ur e configures the port for WebLogic HTTP over SSL. It
is recommended that you configure SSL for WebLogic Server. For more
information, see "Configuring SSL" in Administering Security for Oracle
WebLogic Server.

The d i ent ProxyFeat ur e set UseSunHt t pHandl er method forces WebLogic
Server to use the Sun HTTP implementation on a per-connection-request
basis. You can instead use the - DUseSunH: t pHandl er =t r ue WebLogic Server
startup configuration option, which applies the setting for the WebLogic
Server instance.

You can configure the proxy server information using the C i ent ProxyFeat ur e and pass
the feature as an argument when creating the web service port, as shown in the
following example.

Example 8-4 Pass ClientProxyFeature as an Argument When Creating Port

package exanpl es. webservices.sinple_client;
import weblogic.wsee.jaxws.proxy
public class Min {

ORACLE

8-21



public static void main(String[] args) {
Conpl exService test = new Conpl exService();
ClientProxyFeature cpf = new ClientProxyFeature();
cpf.setProxyHost("localhost™);
cpf.setProxyPort(8888);
cpf.setProxyUserName("proxyu™);
cpf.setProxyPassword("proxyp");

ComplexPortType port = test.getComplexPortTypePort(cpf);

Basi cStruct in = new BasicStruct();
in.setlntValue(999);

in.setStringValue("Hello Struct");

Basi cStruct result = port.echoConpl exType(in);

Chapter 8
Using a Proxy Server When Invoking a Web Service

System out. println("echoConmpl exType called. Result: " + result.getlintValue() +", " +

result.getStringValue());
1
}

Alternatively, you can configure the proxy server information after the port is created,
as shown in the following example. In this case, you execute the attachsPort () method
to attach the d i ent ProxyFeat ur e to the existing port.

Example 8-5 Configuring the ClientProxyFeature After Creating the Port

package exanpl es.webservices.sinple_client;

import weblogic.wsee.jaxws.proxy

public class Min {

public static void main(String[] args) {

Conpl exService test = new Conpl exService();
Conpl exPort Type port = test.get Conpl exPort TypePort();
ClientProxyFeature cpf = new ClientProxyFeature();
cpf.setProxyHost("localhost™);
cpf.setProxyPort(8888);
cpf.setProxyUserName("'proxyu™);
cpf.setProxyPassword("'proxyp™);
cpf.attachsPort(port);
BasicStruct in = new BasicStruct();
in.setlntVal ue(999);
in.setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);

Systemout. println("echoConpl exType called. Result: " + result.getlntValue() +", " +

result.getStringValue());

}
}

If after configuring the C i ent ProxyFeat ur e and attaching it to the port you want to
disable the client proxy settings, you set the proxy port to a negative value. For

example:

Example 8-6 Disabling Client Proxy Settings

ClientProxyFeature cpf = new ClientProxyFeature();
cpf.setProxyPort(-1);\
cpf.attachsPort(port);

ORACLE

8-22



Chapter 8
Client Considerations When Redeploying a Web Service

8.8.2 Using System Properties to Specify the Proxy Server

To use system properties to specify the proxy server, write your client application in
the standard way, and then specify Java system properties when you execute the
client application.

The following table summarizes the Java system properties.

# Note:

In this case, the proxySet system property must not be set. If the proxySet
system property is set to (proxySet=false), proxy properties will be ignored
and no proxy will be used.

Table 8-4 Java System Properties Used to Specify Proxy Server

__________________________________________________________________________|
Property Description

http.proxyHost=proxyHost or Name of the host computer on which the proxy server is running.
https.proxyHost=proxyHost  Use https.proxyHost for HTTP over SSL.

http.proxyPort=proxyPort or Port to which the proxy server is listening. Use https.proxyPort
https.proxy.Port=proxyPort ~ for HTTP over SSL.

http.non.proxyHosts=hostna List of hosts that should be reached directly, bypassing the
me | hostname | ... proxy. Separate each host name using a | character. This
property applies to only HTTP.

https.nonProxyHosts=hostn List of hosts that should be reached directly, bypassing the
ame | hostname | ... proxy. Separate each host name using a | character. This
property applies to only HTTPS.

The following excerpt from an Ant build script shows an example of setting Java
system properties when invoking a client application called cl i ent s. | nvokeMySer vi ce:

<target name="run-client">
<java fork="true"
cl assname="cl i ents. | nvokeMServi ce"
failonerror="true">
<cl asspath refid="client.class.path"/>
<arg line="${http-endpoint}"/>
<jvmarg |ine=
"-Dhtt p. proxyHost =${ pr oxy- host}
-Dht t p. proxyPort =${ pr oxy-port}
- Dht t p. nonPr oxyHost s=${ myhost }
/>
</java>
</target>

8.9 Client Considerations When Redeploying a Web Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated WebLogic web service alongside an older version
of the same web service.

ORACLE 8-23



Chapter 8
Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service.

You can continue using the old client application with the new version of the web
service, as long as the following web service artifacts have not changed in the new
version:

e WSDL that describes the web service
WS-Policy files attached to the web service

If any of these artifacts have changed, you must regenerate the JAX-WS stubs used
by the client application by re-running the cl i ent gen Ant task.

For example, if you change the signature of an operation in the new version of the web
service, then the WSDL file that describes the new version of the web service will also
change. In this case, you must regenerate the JAX-WS stubs. If, however, you simply

change the implementation of an operation, but do not change its public contract, then
you can continue using the existing client application.

8.10 Client Considerations When Web Service and Client
Are Deployed to the Same Managed Server

If a web service and client are deployed to the same Managed Server, and one of the
following is true:

* The web service client uses the @ébServi ceRef annotation, but does not specify a
value for the wsdl Locat i on element.

* The web service client uses the wsdl Locat i on element of the @¢ébSer vi ceRef
annotation to refer to the live WSDL location (for example,
@nebSer vi ceRef (wsdl Locati on="http://xyz. com nmyServi ce?WsDL") ), as opposed to a
WSDL that is packaged with the web service application (for example,
@MebSer vi ceRef (wsdl Locat i on="rmyServi ce. wsdl ")).

Then, when you restart the Managed Server on which the web service and client are
deployed, the web service client may fail to redeploy, regardless of the deployment
order, because the applications are deployed initially in administration mode, and later
transition to production mode to accept HTTP requests. In this situation, you must
restart the application manually once the server has restarted.

If a web service and client are deployed to the same Managed Server, to avoid this
situation, it is recommended that you package the WSDL as part of the web service
application and refer to the packaged version from the @ébSer vi ceRef annotation.

ORACLE 8-24



Examples of Developing JAX-WS Web
Service Clients

This chapter provides some common examples of developing WebLogic web service
clients using Java API for XML-based Web services (JAX-WS).
This chapter includes the following sections:

o Developing a JAX-WS Java SE Client
* Invoking a Web Service from a WebLogic Web Service

Each example provides step-by-step procedures for creating simple WebLogic web
services and invoking an operation from a deployed web service. The examples
include basic Java code and Ant bui | d. xnl files that you can use in your own
development environment to recreate the example, or by following the instructions to
create and run the examples in an environment that is separate from your
development environment.

The examples do not go into detail about the processes and tools used in the
examples; later chapters are referenced for more detail.

" Note:

For best practice examples demonstrating advanced web service features,
see Roadmap for Developing JAX-WS Web Service Clients and Roadmap
for Developing Reliable Web Services and Clients.

9.1 Developing a JAX-WS Java SE Client

ORACLE

# Note:

You can invoke a web service from any Java SE or Java EE application
running on WebLogic Server (with access to the WebLogic Server
classpath). Invoking a web service from standalone Java applications that
are running in an environment where WebLogic Server libraries are not
available is not supported in this release for JAX-WS web services.

When you invoke an operation of a deployed web service from a client application, the
web service could be deployed to WebLogic Server or to any other application server,
such as .NET. All you need to know is the URL to its public contract file, or WSDL.

In addition to writing the Java client application, you must also run the cli ent gen
WebLogic web service Ant task to generate the artifacts that your client application
needs to invoke the web service operation. These artifacts include:

9-1



ORACLE

Chapter 9
Developing a JAX-WS Java SE Client

* The Java class for the Servi ce interface implementation for the particular web
service you want to invoke.

e JAXB data binding artifacts.

e The Java class for any user-defined XML Schema data types included in the
WSDL file.

The following example shows how to create a Java client application that invokes the
echoConpl exType operation of the Conpl exSer vi ce WebLogic web service described in
Creating a Web Service With User-Defined Data Types. The echoConpl exType operation
takes as both a parameter and return type the Basi cStruct user-defined data type.

" Note:

It is assumed in this procedure that you have created and deployed the
Conpl exSer vi ce web service.

1. Set your WebLogic Server environment.

Open a command window and execute the set Donai nEnv. cnd (Windows) or

set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOME/

user _proj ect s/ donai ns/ domai nNarme, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and donai nNane is the
name of your domain.

2. Create a project directory:
pronpt > nmkdir /nmyExanpl es/sinple_client

3. Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the Java client application (shown later on in
this procedure):

pronpt > cd /nyExanpl es/ sinpl e_client
pronpt > nkdir src/exanmpl es/ webservi ces/sinple_client

4. Create a standard Ant bui | d. xni file in the project directory and add a t askdef Ant
task to specify the full Java classname of the cl i ent gen task:

<proj ect name="webservices-sinmple_client" default="all">
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />
</ project>

See Sample Ant Build File For Building Java Client Application for a full sample
bui I d. xnl file. The full bui I d. xm file uses properties, such as ${clientcl ass-dir},
rather than always using the hard-coded name output directory for client classes.

5. Add the following calls to the cl i ent gen and j avac Ant tasks to the bui | d. xni file,
wrapped inside of the bui | d-cl i ent target:

<target name="build-client">
<clientgen
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="output/clientclass"
packageName="exanpl es. webservi ces. si npl e_client"
type="JAXWS"/ >

9-2



ORACLE

Chapter 9
Developing a JAX-WS Java SE Client

<j avac
srcdir="output/clientclass" destdir="output/clientclass"
includes="**/*_java"/>
<j avac
srcdir="src" destdir="output/clientclass"
i ncl udes="exanpl es/ webservices/sinple_client/*.java"/>
</target>

The client gen Ant task uses the WSDL of the deployed Conpl exSer vi ce web
service to generate the necessary artifacts and puts them into the out put/
clientclass directory, using the specified package name. Replace the variables
with the actual hostname and port of your WebLogic Server instance that is
hosting the web service.

In this example, the package name is set to the same package name as the client
application, exanpl es. webser vi ces. si npl e_cl i ent. If you set the package name to
one that is different from the client application, you would need to import the
appropriate class files. For example, if you defined the package name as

exanpl es. webser vi ces. conpl ex, you would need to import the following class files in
the client application;

i mport exanpl es. webservi ces. conpl ex. Basi cStruct;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

The cli ent gen Ant task also automatically generates the
exanpl es. webser vi ces. si npl e_cl i ent. Basi ¢St ruct JavaBean class, which is the
Java representation of the user-defined data type specified in the WSDL.

The bui | d-cli ent target also specifies the standard j avac Ant task, in addition to
clientgen, to compile all the Java code, including the Java program described in
the next step, into class files.

The cli ent gen Ant task also provides the dest Fi | e attribute if you want the Ant task
to automatically compile the generated Java code and package all artifacts into a
JAR file. For details and an example, see clientgen in the WebLogic Web Services
Reference for Oracle WebLogic Server.

Create the Java client application file that invokes the echoConpl exType operation.

Open your favorite Java IDE or text editor and create a Java file called Mi n. j ava
using the code specified in Sample Java Client Application.

The application follows standard JAX-WS guidelines to invoke an operation of the
web service using the web service-specific implementation of the Servi ce interface
generated by cl i ent gen. For details, see Developing Web Service Clients.

Save the Mi n. j ava file in the src/ exanpl es/ webser vi ces/ si npl e_cl i ent subdirectory
of the main project directory.

Execute the clientgen and j avac Ant tasks by specifying the bui | d-cli ent target at
the command line:

pronpt > ant build-client

See the out put/clientcl ass directory to view the files and artifacts generated by
the cli ent gen Ant task.

Add the following targets to the bui | d. xnl file, used to execute the Mai n application:

<path id="client.class.path">
<pat hel ement pat h="out put/clientclass"/>

9-3



Chapter 9
Developing a JAX-WS Java SE Client

<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<target name="run" >
<java fork="true"
cl assname="exanpl es. webser vi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</target>

The run target invokes the Mai n application, passing it the WSDL URL of the
deployed web service as its single argument. The cl asspat h element adds the
clientclass directory to the CLASSPATH, using the reference created with the
<pat h> task.

10. Execute the run target to invoke the echoConpl exType operation:

prompt> ant run

If the invoke was successful, you should see the following final output:

run:
[java] echoConpl exType called. Result: 999, Hello Struct

You can use the bui I d-client and run targets in the bui | d. xnl file to iteratively update,
rebuild, and run the Java client application as part of your development process.

9.1.1 Sample Java Client Application

The following provides a simple Java client application that invokes the

echoConpl exType operation. Because the <cl i ent gen> packageNanme attribute was set to
the same package name as the client application, we are not required to import the
<cl i ent gen>-generated files.

package exanpl es.webservices.sinple_client;
/**
* This is a sinple Java application that invokes the
* echoConpl exType operation of the Conpl exService web service.
*
public class Min {
public static void main(String[] args) {
Conpl exService test = new Conpl exService();
Conpl exPort Type port = test.get Conpl exPort TypePort();
Basi cStruct in = new BasicStruct();
in.setlntVal ue(999);
in. setStringValue("Hello Struct");
Basi cStruct result = port.echoConpl exType(in);
System out. println("echoConpl exType called. Result: " + result.getlntValue() +
", " +result.getStringValue());
}
}

9.1.2 Sample Ant Build File For Building Java Client Application

The following bui | d. xnl file defines tasks to build the Java client application. The
example uses properties to simplify the file.

<proj ect name="webservices-sinple_client" default="all">
<I-- set global properties for this build -->
<property name="w s. host name" val ue="| ocal host" />
<property name="w s.port" val ue="7001" />

ORACLE 9-4



Chapter 9
Invoking a Web Service from a WebLogic Web Service

<property name="exanpl e-out put" val ue="output" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclass" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. i ent GenTask" />
<target nane="clean" >
<delete dir="${clientclass-dir}"/>
</target>
<target nane="al|l" depends="cl ean, build-client,run" />
<target name="build-client">
<clientgen
type="JAXW\E'
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
destDir="${clientclass-dir}"
packageNane="exanpl es. webservi ces.sinple_client"/>
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservices/sinple_client/*.java"/>
</target>
<target name="run" >
<java fork="true"
cl assname="exanpl es. webservi ces. si npl e_cl i ent. Mai n"
failonerror="true" >
<classpath refid="client.class.path"/>
</java>
</target>
</ proj ect>

9.2 Invoking a Web Service from a WebLogic Web Service

You can invoke a web service (WebLogic, Microsoft .NET, and so on) from within a
deployed WebLogic web service.

The procedure is similar to that described in Developing a JAX-WS Java SE Client
except that instead of running the cl i ent gen Ant task to generate the client stubs, you
use the <cl i ent gen> child element of <j ws>, inside of the j wsc Ant task. The jwsc Ant
task automatically packages the generated client stubs in the invoking web service
WAR file so that the web service has immediate access to them. You then follow
standard JAX-WS programming guidelines in the JWS file that implements the web
service that invokes the other web service.

The following example shows how to write a JWS file that invokes the echoConpl exType
operation of the Conpl exSer vi ce web service described in Creating a Web Service With
User-Defined Data Types.

¢ Note:

It is assumed that you have successfully deployed the Conpl exSer vi ce web
service.

ORACLE 9-5



ORACLE

Chapter 9
Invoking a Web Service from a WebLogic Web Service

Set your WebLogic Server environment.

Open a command window and execute the set Domai nEnv. cnd (Windows) or

set Domai nEnv. sh (UNIX) script, located in the bi n subdirectory of your domain
directory. The default location of WebLogic Server domains is ORACLE_HOMVE/

user _proj ect s/ donai ns/ domai nNanme, where ORACLE_HOME is the directory you specified
as Oracle Home when you installed Oracle WebLogic Server and donai nNane is the
name of your domain.

Create a project directory:
pronpt> nkdir /nyExanpl es/ service_to_service

Create a src directory under the project directory, as well as subdirectories that
correspond to the package name of the JWS and client application files (shown
later on in this procedure):

pronpt> cd / nyExanpl es/ servi ce_to_service
pronpt> nkdir src/exanpl es/ webservices/ service_to_service

Create the JWS file that implements the web service that invokes the
Conpl exSer vi ce web service.

Open your favorite Java IDE or text editor and create a Java file called
CientServicel npl . java using the Java code specified in Sample
ClientServicelmpl.java JWS File.

The sample JWS file shows a Java class called C i ent Servi cel npl that contains a
single public method, cal | Conpl exServi ce() . The Java class imports the JAX-WS
stubs, generated later on by the j wsc Ant task, as well as the Basi ¢St ruct
JavaBean (also generated by cl i ent gen), which is the data type of the parameter
and return value of the echoConpl exType operation of the Conpl exSer vi ce web
service.

The dient Servi cel npl Java class defines one method, cal | Conpl exServi ce(),
which takes one parameter: a Basi cStruct which is passed on to the

echoConpl exType operation of the Conpl exSer vi ce web service. The method then
uses the standard JAX-WS APIs to get the Servi ce and Port Type of the

Conpl exServi ce, using the stubs generated by j wsc, and then invokes the
echoConpl exType operation.

Save the Cient Servi cel npl . j ava file in the src/ exanpl es/ webser vi ces/
service_to_servi ce directory.

Create a standard Ant bui | d. xni file in the project directory and add the following
task:

<proj ect name="webservices-service_to_service" default="all">
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
</ proj ect>

The t askdef task defines the full classname of the j wsc Ant task.

See Sample Ant Build File For Building ClientService for a full sample bui | d. xn
file that contains additional targets from those described in this procedure, such as
cl ean, depl oy, undepl oy, client, and run. The full bui | d. xm file also uses properties,
such as ${ear-dir}, rather than always using the hard-coded name for the EAR
directory.

Add the following call to the j wsc Ant task to the bui | d. xm file, wrapped inside of
the bui | d- servi ce target:

9-6



Chapter 9
Invoking a Web Service from a WebLogic Web Service

<target name="buil d-service">

<jwsc
srcdir="src"
destdir="output/CientServi ceEar" >
<jws
file="exanpl es/ webservi ces/service_to_service/ CientServicelnpl.java"
type="JAXWE" >
<WLHt t pTransport
cont ext Pat h="0 i ent Servi ce" serviceUri="CientService"
port Nanme="d i ent Servi cePort"/>
<clientgen
type="JAXWS"

wsdl ="http://${w s. host nane}: ${w s. port}/conpl ex/ Conpl exSer vi ce?WsDL"
packageNane="exanpl es. webservi ces. conpl ex" />
</jws>
</jwsc>
</target>

In the preceding example, the <cl i ent gen> child element of the <j ws> element of
the j wsc Ant task specifies that, in addition to compiling the JWS file, j wsc should
also generate and compile the client artifacts needed to invoke the web service
described by the WSDL file.

In this example, the package name is set to exanpl es. webser vi ces. conpl ex, which
is different from the client application package name,

exanpl es. webservi ces. si npl e_cl i ent. As a result, you need to import the
appropriate class files in the client application:

i nport exanpl es. webser vi ces. conpl ex. Basi ¢Struct;
i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;
i mport exanpl es. webser vi ces. conmpl ex. Conpl exSer vi ce;

If the package name is set to the same package name as the client application,
the import calls would be optional.

8. Execute the jwsc Ant task by specifying the bui | d- servi ce target at the command
line:

pronpt> ant buil d-service
9. Start the WebLogic Server instance to which you will deploy the web service.

10. Deploy the web service, packaged in an Enterprise Application, to WebLogic
Server, using either the WebLogic Server Administration Console or the w depl oy
Ant task. In either case, you deploy the d i ent Servi ceEar Enterprise application,
located in the out put directory.

To use the w depl oy Ant task, add the following target to the bui | d. xni file:

<t askdef name="wl depl oy"
cl assnane="webl ogi c. ant . t askdef s. management . W.Depl oy"/ >
<target nane="depl oy">
<wl depl oy action="depl oy" name="Cl i ent Servi ceEar"
source="ClientServiceEar" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server.name}" />
</target>

Substitute the values for wl s. user nane, w s. passwor d, w s. host name, w s. port, and
w s. server. nane that correspond to your WebLogic Server instance.

ORACLE o



Chapter 9
Invoking a Web Service from a WebLogic Web Service

Deploy the WAR file by executing the depl oy target:
pronpt > ant depl oy

11. Test that the web service is deployed correctly by invoking its WSDL in your
browser:

http://host:port/CientServicel CientService?WDL

See Developing a JAX-WS Java SE Client for an example of creating a Java client
application that invokes a web service.

9.2.1 Sample ClientServicelmpl.java JWS File

The following provides a simple web service client application that invokes the
echoConpl exType operation.

package exanpl es.webservi ces. service_to_service;

import javax.jws.\WebhServi ce;
import javax.jws.\WebMet hod,;
import javax.xm .ws.\WbServiceRef;

/1 Inport the BasicStruct data type, generated by clientgen and used
/1 by the Conpl exService Wb Service
i mport exanpl es. webservi ces. conpl ex. Basi cStruct;

/1 Inport the JAX-WS stubs generated by clientgen for invoking
/1 the Conpl exService web service.

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;

i mport exanpl es. webservi ces. conpl ex. Conpl exSer vi ce;

@ebServi ce(name="C i ent Port Type", serviceName="Cli ent Service",
target Nanespace="http://exanpl es. org")
public class CientServicelnpl {
/1 Use the @W¥bServiceRef annotation to define a reference to the
/1 Conpl exService web service.
@\ébSer vi ceRef ()
Conpl exService test;

@\ebMet hod()
public String cal |l Conpl exService(BasicStruct input, String serviceUrl)

{
/] Create a port stub to invoke Conpl exService

Conpl exPort Type port = test. get Conpl exPort TypePort();

/1 Invoke the echoConpl exType operation of Conpl exService

Basi cStruct result = port.echoConpl exType(input);

Systemout. println("Invoked Conpl exPort Type. echoConpl exType." );

return "Invoke went okay! Here's the result: "" + result.getlIntValue() +
", " +result.getStringvalue() +"'";

}
}

9.2.2 Sample Ant Build File For Building ClientService

The following bui | d. xn file defines tasks to build the client application. The example
uses properties to simplify the file.

The following bui | d. xm file uses properties to simplify the file.

ORACLE 9-8



ORACLE

Chapter 9
Invoking a Web Service from a WebLogic Web Service

<proj ect name="webservices-service_to_service" default="all">
<!-- set global properties for this build -->
<property name="w s. usernane" val ue="webl ogi ¢" />
<property name="w s. password" val ue="webl ogi ¢" />
<property name="w s. host nane" val ue="l ocal host" />
<property name="w s.port" val ue="7001" />
<property name="w s. server.nane" val ue="nyserver" />
<property name="ear. depl oyed. nane" val ue="Client Servi ceEar" />
<property name="exanpl e-out put" val ue="output" />
<property name="ear-dir" val ue="${exanpl e-output}/CientServiceEar" />
<property name="clientclass-dir" val ue="${exanpl e-output}/clientclasses" />
<path id="client.class.path">
<pat hel ement path="${clientclass-dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<taskdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. antt asks. JwscTask" />
<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. anttasks. O i ent GenTask" />
<t askdef name="wl depl oy"
cl assname="webl ogi c. ant . t askdef s. managenent . W.Depl oy"/ >
<target nane="all" depends="cl ean, bui | d-service, depl oy,client" />
<target nane="cl ean" depends="undepl oy">
<del ete dir="${exanpl e-out put}"/>

</target>
<target nanme="buil d-service">
<jwsc
srcdir="src"
destdir="${ear-dir}" >
<jws
file="exanpl es/ webservices/service_to_service/ dientServicelnpl.java"
type="JAXW\S' >
<W.Ht tpTransport

cont ext Path="Cl i ent Servi ce" serviceUri="CientService"
port Name="0l i ent Servi cePort"/>
<clientgen
type="JAXWS"
wsdl ="http://${w s. host nane}: ${w s. port}/ conpl ex/ Conpl exSer vi ce?WsDL"
packageName="exanpl es. webservi ces. conpl ex" />
</jws>
</jwsc>
</target>
<target nane="depl oy">
<wl depl oy action="depl oy" name="${ear.depl oyed. nane}"
source="${ear-dir}" user="${w s. username}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nane="undepl oy">
<wl depl oy action="undepl oy" name="${ear. depl oyed. name}"
failonerror="fal se"
user="${w s. usernane}"
passwor d="${w s. password}" verbose="true"
adminurl ="t 3://${w s. host name}: ${w s. port}"
targets="${w s. server. name}" />
</target>
<target nanme="client">
<clientgen
wsdl ="http://${w s. hostnane}: ${w s. port}/ Cient Service/ Cient Servi ce?WsDL"
destDir="${clientclass-dir}"

9-9



Chapter 9
Invoking a Web Service from a WebLogic Web Service

packageNane="exanpl es. webservi ces. service_to_service.client"
type="JAXWS"/ >
<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
includes="**/*java"/>
<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/service_to_service/client/**/* java"/>
</target>
<target name="run">
<j ava cl assnane="exanpl es. webservi ces. service_to_service.client.Min"
fork="true"
failonerror="true" >
<cl asspath refid="client.class.path"/>
</java>
</target>
</ proj ect>

ORACLE 9-10



Developing Advanced Features of JAX-WS
Web Services

Part IV describes how to develop advanced features of WebLogic web services using
Java API for XML-based Web services (JAX-WS).

Sections include:

* Using Web Services Addressing

* Roadmap for Developing Asynchronous Web Service Clients
*  Developing Asynchronous Clients

* Roadmap for Developing Reliable Web Services and Clients
* Using Web Services Reliable Messaging

* Using Web Services Atomic Transactions

e Optimizing XML Transmission Using Fast Infoset

e Using SOAP Over JMS Transport

e Creating and Using SOAP Message Handlers

* Handling Exceptions Using SOAP Faults

e Optimizing Binary Data Transmission

* Managing Web Service Persistence

*  Configuring Message Buffering for Web Services

* Managing Web Services in a Cluster

* Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP
Messages

*  Sending and Receiving SOAP Headers

e Using Callbacks

* Developing Dynamic Proxy Clients

*  Publishing a Web Service Endpoint

e Using XML Catalogs

*  Programming Web Services Using XML Over HTTP

*  Programming Stateful JAX-WS Web Services Using HTTP Session

e Testing and Monitoring Web Services

ORACLE



Using Web Services Addressing

This chapter describes how to use Web Services Addressing (WS-Addressing) for
WebLogic web services using Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

Overview of WS-Addressing

Enabling WS-Addressing on the Web Service
Enabling WS-Addressing on the Web Service Client
Associating WS-Addressing Action Properties
Configuring Anonymous WS-Addressing

10.1 Overview of WS-Addressing

WS-Addressing provides a transport-neutral mechanism to address web services and
their associated messages. Using WS-Addressing, endpoints are uniquely and
unambiguously defined in the SOAP header.

ORACLE

WS-Addressing provides two key components that enable transport-neutral
addressing, including:

Endpoint reference (EPR)—Communicates the information required to address a
web service endpoint.

Message addressing properties—Communicates end-to-end message
characteristics, including addressing for source and destination endpoints and
message identity, that allows uniform addressing of messages independent of the
underlying transport.

Message addressing properties can include one or more of the properties defined
in Table 10-1. All properties are optional except wsa: Acti on.

Table 10-1 WS-Addressing Message Addressing Properties
]

Component Description

wsa: To Destination. If not specified, the destination defaults to
http: // ww. w3. or g/ 2005/ 08/ addr essi ng/ anonynous.

wsa: From Source endpoint.

wsa: Repl yTo Reply endpoint. If not specified, the reply endpoint defaults
to http:// wwv. w3. or g/ 2005/ 08/ addr essi ng/ anonynous.

wsa: Faul t To Fault endpoint.

wsa: Action Required action.

This property is required when WS-Addressing is enabled.
It can be implicitly or explicitly configured, as described in
Associating WS-Addressing Action Properties.

wsa: Messagel D Unique ID of the message.

10-1



Chapter 10
Overview of WS-Addressing

Table 10-1 (Cont.) WS-Addressing Message Addressing Properties

__________________________________________________________________________|
Component Description

wsa: Rel atesTo Message ID to which the message relates. This element
can be repeated if there are multiple related messages.
You can specify Rel ati onshi pType as an attribute of this
property, which defaults to ht t p: / / www. w3. or g/ 2005/ 08/
addressing/reply.

wsa: Ref erencePar anet er s Reference parameters that need to be communicated.

Example 10-1 shows a SOAP 1.2 request message sent over HTTP 1.2 with WS-
Addressing enabled. As shown in bold, WS-Addressing provides a transport-neutral
mechanism for defining a unique ID for the message (wsa: Messagel D), the destination
(wsa: To) endpoint, the reply endpoint (wsa: Repl yTo), and the required action

(wsa: Acti on).

A response to this message may appear as shown in Example 10-2. The Rel at esTo
property correlates the response message with the original request message.

WS-Addressing is used by the following advanced WebLogic JAX-WS features:

« Asynchronous client transport, as described in Developing Asynchronous Clients.
* WS-ReliableMessaging, as described in Using Web Services Reliable Messaging.
» Callbacks, as described in Using Callbacks.

The following sections describe how to enable WS-Addressing on the web service or
client, and explicitly define the action and fault properties.

A Note About WS-Addressing Standards Supported
WebLogic web services support the following standards for web service addressing:

e W3C WS-Addressing, as described at: htt p: // ww. w3. or g/ 2002/ ws/ addr /

*  Member Submission, as described at: htt p: // www. w3. or g/ Subni ssi on/ ws-
addr essi ng/

This chapter focuses on the use of W3C WS-Addressing only.

Example 10-1 SOAP 1.2 Message With WS-Addressing—Request Message

<S: Envel ope xnins
xm ns

<S: Header >
<wsa:Messagel
http://exam
</wsa:Message
<wsa:ReplyTo

:S="http://www. w3. or g/ 2003/ 05/ soap- envel ope"
:wsa="http:// ww. w3. or g/ 2005/ 08/ addr essi ng/ ">

D>
ple.com/someuniquestring
1D>

<wsa:Address>http://example.com/Myclient</wsa:Address>
</wsa:ReplyTo>

<wsa:To>
http://exam
</wsa:To>
<wsa:Action>
http://exam
</wsa:Action>
<S: Header >
<S: Body>

ORACLE

ple.com/fabrikam/Purchasing

ple.com/fabrikam/SubmitPO

10-2


http://www.w3.org/2002/ws/addr/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

Chapter 10
Enabling WS-Addressing on the Web Service

</ S: Body>
</ S: Envel ope>

Example 10-2 SOAP 1.2 Message Without WS-Addressing—Response Message

<S: Envel ope

xnl ns: S="ht t p: // wwwn. w3. or g/ 2003/ 05/ soap- envel ope"

xnl ns: wsa="htt p: // www. w3. or g/ 2005/ 08/ addr essi ng" >

<S: Header >
<wsa:MessagelD>http://example.com/someotheruniquestring</wsa:MessagelD>
<wsa:RelatesTo>http://example.com/someuniquestring</wsa:RelatesTo>
<wsa:To>http://example.com/MyClient/wsa:To>
<wsa:Action>

http://example.com/fabrikam/SubmitPOAck

</wsa:Action>

</ S: Header >

<S: Body>

</ S: Body>
</ S: Envel ope>

10.2 Enabling WS-Addressing on the Web Service

By default, WS-Addressing is disabled on a web service endpoint, and any WS-
Addressing headers received are ignored. You can enable WS-Addressing on the
Web Service starting from Java or WSDL, as described in the following sections:

e Enabling WS-Addressing on the Web Service (Starting From Java)
e Enabling WS-Addressing on the Web Service (Starting from WSDL)

When you enable WS-Addressing on a web service endpoint:

* All WS-Addressing headers are understood by the endpoint. That is, if any WS-
Addressing header is received with nust Under st and enabled, then no fault is
thrown.

* WS-Addressing headers received are validated to ensure:
— Correct syntax
—  Correct number of elements

— wsa: Action header in the SOAP header matches what is required by the
operation

* Response messages returned to the client contain the required WS-Addressing
headers.

10.2.1 Enabling WS-Addressing on the Web Service (Starting From
Java)
To enable WS-Addressing on the web service starting from Java, use the

java. xm . ws. soap. Addr essi ng annotation on the web service class. Optionally, you can
pass one or more of the Boolean attributes defined in Table 10-2.

ORACLE 10-3



Chapter 10
Enabling WS-Addressing on the Web Service

Table 10-2 Attributes of the @Addressing Annotation

__________________________________________________________________________|
Attribute Description

enabl ed Specifies whether WS-Addressing is enabled. Valid values
include t rue (enabled) and f al se (disabled). This attribute
defaults to true.

required Specifies whether WS-Addressing rules are enforced for the
inbound message. Valid values include t r ue (enforced) and
fal se (not enforced). If set to f al se, the inbound message is
checked to see if WS-Addressing is enabled, and, if so, the rules
are enforced. This attribute defaults to f al se.

Once enabled, the wsaw. Usi ngAddr essi ng element is generated in the corresponding
wsdl : bi ndi ng element. For more information, see Enabling WS-Addressing on the Web
Service (Starting from WSDL).

The following provides an example of how to enable WS-Addressing starting from
Java. In this example, WS-Addressing is enforced on the endpoint (requi red is set to
true).

Example 10-3 Enabling WS-Addressing on the Web Service (Starting From
Java)

package exanpl es;
import javax.jws.\WebService;
inport javax.xm .ws.soap. Addressing;

@ebServi ce(nanme="Hel | oWr | d", serviceNane="Hel | oWor | dService")
@Addressing(enabled=true, required=false)

public class HelloWrld {
public String sayHel | oWorld(String message) throws MssingName { ... }

}

10.2.2 Enabling WS-Addressing on the Web Service (Starting from

WSDL)

ORACLE

To enable WS-Addressing on the web service starting from WSDL, add the

wsaw Usi ngAddr essi ng element to the corresponding wsdl : bi ndi ng element. Optionally,
you can add the wsdl : requi red Boolean attribute to specify whether WS-Addressing
rules are enforced for the inbound message. By default, this attribute is f al se.

The following provides an example of how to enable WS-Addressing starting from
WSDL. In this example, WS-Addressing is enforced on the endpoint (wsdl : required is
settotrue).

Example 10-4 Enabling WS-Addressing on the Web Service (Starting From
WSDL)

<bi ndi ng name="Hel | oWr | dPort Bi ndi ng" type="tns: Hel | oWr| d">
<wsaw:UsingAddressing wsdl:required="true" />
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="document” />
<operation nanme="sayHel | oWr| d">

10-4



Chapter 10
Enabling WS-Addressing on the Web Service Client

<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input>
<out put >
<soap: body use="literal"/>
</ out put >
<fault name="M ssi ngNane" >
<soap: fault name="M ssi ngNane" use="literal"/>
</fault>
</ operati on>
</ bi ndi ng>

10.3 Enabling WS-Addressing on the Web Service Client

WS-Addressing can be enabled on the web service client implicitly or explicitly. Once
enabled on the client:

* All WS-Addressing headers received on the client are understood. That is, if any
WS-Addressing header is received with nust Under st and enabled, then no fault is
thrown.

The JAX-WS runtime:

— Maps all wsaw: Acti on elements, including i nput, out put, and faul t elements in
the wsdl : operation tojavax. xnl . ws. Action and j avax. xnl . ws. Faul t Acti on
annotations in the generated service endpoint interface (SEI).

— Generates Action, To, Messagel D, and anonymous Repl yTo headers on the
outbound request.

The following sections describe how to enable WS-Addressing on the web service
client explicitly and implicitly, and how to disable WS-Addressing explicitly.

» Explicitly Enabling WS-Addressing on the Web Service Client
* Implicitly Enabling WS-Addressing on the Web Service Client
» Disabling WS-Addressing on the Web Service Client

10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client

ORACLE

The web service client can enable WS-Addressing explicitly by passing

javax. xm . ws. soap. Addr essi ngFeat ure as an argument to the get Port or creat eDi spat ch
methods on the j avax. xn . ws. Servi ce object. Optionally, you can pass one or more of
the Boolean parameters defined in Table 10-3.

Table 10-3 Parameters of the AddressingFeature Feature

Parameter Description

enabl ed Specifies whether WS-Addressing is enabled for an outbound
message. Valid values include t r ue (enabled) and f al se
(disabled). This attribute defaults to t r ue.

10-5



Chapter 10
Enabling WS-Addressing on the Web Service Client

Table 10-3 (Cont.) Parameters of the AddressingFeature Feature

__________________________________________________________________________|
Parameter Description

required Specifies whether WS-Addressing rules are enforced for the
inbound messages. Valid values include t r ue (enforced) and
fal se (not enforced). If set to f al se, the inbound message is
checked to see if WS-Addressing is enabled, and, if so, the rules
are enforced. This attribute defaults to f al se.

The following shows an example of enabling WS-Addressing on a web service client
when creating a web service proxy, by passing the Addr essi ngFeat ur e to the get Port
method.

Example 10-5 Enabling WS-Addressing on a Web Service Client on the Web
Service Proxy

package exanpl es.client;

i mport javax.xnl.nanespace. QNane;

import java.net. Ml formedURLException;

inport java.net.URL;

i mport exanpl es. client. M ssingNane_Excepti on;
import javax.xnm .ws.soap. Addressi ngFeat ure;

public class Min {
public static void main(String[] args) throws M ssingNane_Exception {
Hel | oWor | dServi ce servi ce;

try {
service = new Hel | oWor | dServi ce(new URL(args[0] + "?WsDL"),

new QNane("http://exanples/", "HelloWrldService") );
} catch (MalformedURLException nurl) { throw new RuntimeException(nurl); }

HelloWorld port = service.getHelloWorldPort(
new AddressingFeature(true, true));

)
)

The following shows an example of enabling WS-Addressing on a web service client
when creating a Dispatch instance, by passing the Addr essi ngFeat ur e to the
cr eat eDi spat ch method.

Example 10-6 Enabling WS-Addressing on a Web Service Client on the
Dispatch Instance

Hel | oWorl d port = service. getHel | oWrl dPort (new Addressi ngFeature(true));

10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client

WS-Addressing is enabled implicitly if the wsaw: Usi ngAddr essi ng extensibility element
exists in the WSDL For more information, see Enabling WS-Addressing on the Web
Service (Starting from WSDL).

ORACLE 10-6



Chapter 10
Associating WS-Addressing Action Properties

10.3.3 Disabling WS-Addressing on the Web Service Client

A web service client may need to disable WS-Addressing processing explicitly, for
example, if it has its own WS-Addressing processing module. For example, a Dispatch
client in MESSAGE mode may be used to perform non-anonymous ReplyTo and
FaultTo processing.

The following shows an example of how to disable explicitly WS-Addressing on a web
service client when creating a web service proxy. In this example, the
Addr essi ngFeat ur e feature is called with enabl ed set to f al se.

Example 10-7 Disabling WS-Addressing on a Web Service Client

new AddNumber sl npl Servi ce() . get AddNunber sl npl Port ( new
javax. xnl . ws. Addr essi ngFeat ure(fal se));

10.4 Associating WS-Addressing Action Properties

WS-Addressing defines an attribute, wsaw. Acti on, that can be used to explicitly
associate WS-Addressing action message addressing properties with the web service.
By default, an implicit action association is made when WS-Addressing is enabled and
no action is explicitly associated with the web service.

The following sections describe how to associate WS-Addressing Action properties
either explicitly or implicitly:

»  Explicitly Associating WS-Addressing Action Properties (Starting from Java)
e Explicitly Associating WS-Addressing Action Properties (Starting from WSDL)
e Implicitly Associating WS-Addressing Action Properties

10.4.1 Explicitly Associating WS-Addressing Action Properties
(Starting from Java)

ORACLE

To explicitly associate WS-Addressing action properties with the web service starting
from Java, use the javax. xm . ws. Acti on and j avax. xnl . ws. Faul t Acti on annotations.

Optionally, you can pass to the @cti on annotation one or more of the attributes
defined in Table 10-4.

Table 10-4 Attributes of the @Action Annotation

__________________________________________________________________________|
Attribute Description

i nput Associates Action message addressing property for the input
message of the operation.

out put Associates Action message addressing property for the output
message of the operation.

10-7



Chapter 10
Associating WS-Addressing Action Properties

Table 10-4 (Cont.) Attributes of the @Action Annotation

__________________________________________________________________________|
Attribute Description

faul t Associates Action message addressing property for the fault
message of the operation. Each exception that is mapped to a
SOAP fault and requires explicit association must be specified
using the @aul t Acti on annotation, as described in Table 10-5.

You can pass to the @aul t Acti on annotation one or more of the attributes defined in
Table 10-4.

Table 10-5 Attributes of the @FaultAction Annotation
|

Attribute Description
cl assNane Name of the exception class. This attribute is required.
val ue Value of the WS-Addressing Action message addressing

property for the exception.

Once you explicitly associate the WS-Addressing action properties, the wsaw: Acti on
attribute is generated in the corresponding i nput, out put, and faul t elements in the
wsdl : port Type element. For more information, see Enabling WS-Addressing on the
Web Service (Starting from WSDL).

The following provides an example of how to explicitly associate the WS-Addressing
action message addressing properties for the input, output, and fault messages on the
sayHel | owor | d method, using the @cti on and @aul t Acti on annotations.

Example 10-8 Example of Explicitly Associating an Action (Starting from Java)

@\ction(
input = "http://exanpl es/Hel | oWor | d/ sayHel | oVr | dRequest ",
output = "http://exanpl es/ Hel | oWor| d/ sayHel | oWor | dResponse”,
fault = { @aul tAction(className = M ssingNane. cl ass,
val ue = "http://exanpl es/ M ssi ngNaneFaul t")})

public String sayHel | oWorld(String message) throws M ssingName {

Once defined, the wsaw. Acti on element is generated in the corresponding i nput ,

out put, and faul t elements of the wsdl : operat i on element for the endpoint. For more
information about these elements, see Explicitly Associating WS-Addressing Action
Properties (Starting from WSDL).

10.4.2 Explicitly Associating WS-Addressing Action Properties
(Starting from WSDL)

ORACLE

To explicitly associate WS-Addressing action properties with the web service starting
from WSDL, add the wsaw Act i on element to the corresponding wsdl : bi ndi ng element.
Optionally, you can add the wsdl : requi r ed Boolean attribute to specify whether WS-
Addressing rules are enforced for the inbound message. By default, this attribute is
fal se.

10-8



Chapter 10
Associating WS-Addressing Action Properties

The following provides an example of how to, within the WSDL file, explicitly associate
the WS-Addressing action message addressing properties for the i nput , out put , and
fault messages on the sayHel | ovor | d method of the HelloWorld endpoint.

Example 10-9 Example of Explicitly Associating an Action (Starting from
WSDL)

<port Type name="Hel | oVor| d">
<operation nanme="sayHel | oWor| d">
<input wsaw Action="http://exanpl es/ Hel | oWr| d/ sayHel | oWor | dRequest "
message="t ns: sayHel | oWr| d"/>
<out put wsaw: Action="http://exanpl es/ Hel | oWor| d/ sayHel | oWr | dResponse”
message="t ns: sayHel | oWr| dResponse”/ >
<fault message="tns: M ssingName" nanme="M ssi ngNang"
wsaw: Action="http://exanpl es/ M ssi ngNaneFaul t"/>
</ operation>
</ port Type>

10.4.3 Implicitly Associating WS-Addressing Action Properties

ORACLE

When WS-Addressing is enabled, if no explicit action is defined in the WSDL, the
client sends an implicit wsa: Acti on header using the following formats:

e Input message action: t ar get Nanespace/ por t TypeName/ i nput Nane
*  Output message action: t ar get Nanespace/ por t TypeNane/ out put Nane

e Fault message action: t ar get Namespace/ por t TypeName/ oper at i onNane/ Faul t /
Faul t Narre

t ar get Nanespace/ port TypeNane/ [ i nput Name | out put Nane]

For example, for the following WSDL excerpt:

<definitions targetNamespace="http://exanples/"...>

<port Type name="Hel | oVr | d">
<operation nanme="sayHel | oWr| d">
<input message="tns:sayHel | oWrld" name="sayHel | oRequest"/>
<out put message="tns: sayHel | oWr | dResponse” name="sayHel | oResponse”/ >
<fault message="tns: M ssingName" nanme="M ssi ngNane" />
</ operation>
</ port Type>

</ aefi nitions>
The default input and output actions would be defined as follows:
e Input message action: http://exanpl es/ Hel | oWor | d/ sayHel | oRequest

*  Output message action: http://exanpl es/ Hel | oWr | d/ sayHel | oResponse

* Fault message action: http://exanpl es/ Hel | oWor | d/ sayHel | oWor | d/ Faul t/
M ssi ngNane

If the input or output message name is not specified in the WSDL, the operation name
is used with Request or Response appended, respectively. For example:
sayHel | oWor | dRequest or sayHel | oWr | dResponse.

10-9



Chapter 10
Configuring Anonymous WS-Addressing

10.5 Configuring Anonymous WS-Addressing

In some cases, the network technologies used in an environment (such as, firewalls,
Dynamic Host Configuration Protocol (DHCP), and so on) may prohibit the use of
globally addressed URI for a given endpoint. To enable non-addressable endpoints to
exchange messages, the WS-Addressing specification supports "anonymous"
endpoints using the wsaw: Anonynous element.

The wsaw. Anonynous element can be set to one of the values defined in Table 10-6.

Table 10-6 Valid Values for the wsaw:Anonymous Element

|
Value Description

optional The response endpoint EPR in a request message may contain
an anonymous URI.

required The response endpoint EPR in a request message must contain
an anonymous URL. Otherwise, an | nval i dAddr essi ngHeader
fault is returned.

prohi bited The response endpoint EPRs in a request message must not
contain an anonymous URI. Otherwise, an
I nval i dAddr essi ngHeader fault is returned.

To configure anonymous WS-Addressing:

1. Enable WS-Addressing on the web service, add the wsaw: Usi ngAddr essi ng element
to the corresponding wsdl : bi ndi ng element. For more information, see Enabling
WS-Addressing on the Web Service (Starting from WSDL).

# Note:

When anonymous WS-Addressing is enabled, the wsdl : requi r ed attribute
must not be enabled in the wsaw: Usi ngAddr essi ng element.

2. Add the wsaw. Anonynous element to the wsdl : oper at i on within the wsdl : bi ndi ng
element.

Example 10-10 Enabling Anonymous WS-Addressing on the Web Service

The following provides an example of how to enable anonymous WS-Addressing in
the WSDL file. In this example, anonymous addressing is required.

<bi ndi ng name="Hel | oWor | dPort Bi ndi ng" type="tns: Hel | oWr| d">
<wsaw:UsingAddressing wsdl:required="true" />
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="docunent"/ >
<operation nanme="sayHel | oWor| d">
<soap: operation soapAction=""/>
<i nput >
<soap: body use="literal"/>
</input >
<out put >
<soap: body use="literal"/>

ORACLE 10-10



Chapter 10
Configuring Anonymous WS-Addressing

</ out put >
<fault nanme="M ssi ngNang" >
<soap: fault name="M ssi ngNane" use="literal"/>
</fault>
</ operati on>
<wsaw:Anonymous>requi red</wsaw:Anonymous>
</ bi ndi ng>

ORACLE 10-11



Roadmap for Developing Asynchronous
Web Service Clients

This chapter presents best practices for developing asynchronous WebLogic web
service clients for Java API for XML Web Services (JAX-WS).

Table 11-1 provides best practices for developing asynchronous web service clients,
and is followed by an example that illustrates the best practices presented. These
guidelines should be used in conjunction with the general guidelines provided in
Roadmap for Developing JAX-WS Web Service Clients.

For best practices when developing reliable web service clients, see Roadmap for
Developing Reliable Web Services and Clients.

# Note:

In the following table, client instance can be a port or a Dispatch instance.

Table 11-1 Roadmap for Developing Asynchronous Web Service Clients

Best Practice

Description

Define a port-based asynchronous
callback handler,

Asyncd i ent Handl er Feat ur e, for
asynchronous and dispatch callback
handling.

Use of AsyncC i ent Handl er Feat ur e is recommended as a best practice
when using asynchronous invocation due to its scalability and ability to
survive a JVM restart. It can be used by any client (survivable or not.) For
information, see Developing the Asynchronous Handler Interface.

Define a singleton port instance and
initialize it when the client container
initializes (upon deployment).

Creation of the singleton port:

»  Triggers the asynchronous response endpoint to be published upon
deployment.

*  Supports failure recovery by re-initializing the singleton port instance
after VM restart.

Within a cluster, initialization of a singleton port will ensure that all

member servers in the cluster publish an asynchronous response

endpoint. This ensures that the asynchronous response messages can

be delivered to any member server and optionally forwarded to the

correct server via in-place cluster routing. For complete details, see

Clustering Considerations for Asynchronous Web Service Messaging.

If using Make Connection for clients
behind a firewall, set the Make
Connection polling interval to a value
that is realistic for your scenario.

The Make Connection polling interval should be set as high as possible
to avoid unnecessary polling overhead, but also low enough to allow
responses to be retrieved in a timely fashion. A recommended value for
the Make Connection polling interval is one-half of the expected average
response time of the web service being invoked. For more information
setting the Make Connection polling interval, see Configuring the Polling
Interval.

Note: This best practice is not demonstrated in Example 11-1.

ORACLE

11-1



Chapter 11

Table 11-1 (Cont.) Roadmap for Developing Asynchronous Web Service Clients
]

Best Practice Description

If using the JAX-WS Reference Use of the AsyncHandl er <T> interface is more efficient than the
Implementation (RI), implement the Response<T> interface. For more information and an example, see Using
AsyncHandl er <T> interface. the JAX-WS Reference Implementation.

Note: This best practice is not demonstrated in Example 11-1.

Define a Work Manager and set the For example, if a web service client issues 20 requests in rapid

thread pool minimum size constraint succession, the recommended thread pool minimum size constraint

(m n-threads-constraint)toavalue value would be 20 for the application hosting the client. If the configured
that is at least as large as the expected constraint value is too small, performance can be severely degraded as

number of concurrent requests or incoming work waits for a free processing thread.

responses into the service. For more information about the thread pool minimum size constraint, see
Constraints in Administering Server Environments for Oracle WebLogic
Server.

The following example illustrates best practices for developing asynchronous web
service clients.

Example 11-1 Asynchronous Web Service Client Best Practices Example

inport java.io.*;
inport java.util.?*;

i mport javax.servlet.*
inport javax.xn.ws.*

i mport webl ogic.jws.jaxws.client.CientldentityFeature;
i mport webl ogic.jws.jaxws.client.async. AsyncC i entHandl er Feat ure;
i mport webl ogic.jws.jaxws.client.async. AsyncC ient Transport Feat ure;

import com sun. xn . ws. devel oper. JAXWSPr operti es;

/**
* Exanple client for invoking a web service asynchronously.
*/
public class BestPracticeAsyncC i ent
extends GenericServlet {

private static final String MY_PROPERTY = "MProperty";

private BackendServiceService _service;
private WebServiceFeature[] _features;
private BackendService _singletonPort;

private static String _| astResponse;
private static int _requestCount;

@wverride
public void init()
throws ServletException {

/1 Only create the web service object once as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendServi ceService();

}

ORACLE 11-2



/| Best Practice: Use a stored list of features, including client ID, to create client

/I instances.

Il Define all features for the web service client instance, including client ID, so that they

/1 are consistent each time the client instance is created. For exanple:
Il _service. get BackendServi cePort (_f eat ures);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/'l Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServi ceAsyncCient");
features.add(clientldFeature);

/'l Asynchronous endpoi nt
AsyncCl i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/| Best Practice: Define a port-based asynchronous callback handler,

/'l AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.

BackendSer vi ceAsyncHand| er handl er =
new BackendServi ceAsyncHandl er () {
/1 This class is stateless and should not depend on
/1 having nmenber variables to work with across restarts.
public voi d onDoSonet hi ngResponse( Response<DoSonet hi ngResponse> res) {
Il ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
res. get Context();
_last Response = response. get Return();
Systemout. println("Got async response: " + _|astResponse);
/] Retrieve the request property. This property can be used to
/1 "remenber' the context of the request and subsequently process
/'l the response.
Map<String, Serializable> requestProps =
(Map<String, Serializable>)
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;
String nyProperty = (String)requestProps. get (MY_PROPERTY);

Systemout. println("Got MyProperty value propagated fromrequest: "+

myProperty);

} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();

}

}
B
AsyncC i ent Handl er Feat ure handl er Feature =
new Asyncd i ent Handl er Feat ur e( handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
/1 the client 1D "MBackendServiceAsyncCient".

_features = features.toArray(new WebServi ceFeature[features.size()]);
/| Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).
/1 The singleton port will be available for the life of the servlet.

Il Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Wb application) is undeployed.

/1 Note, the destroy() method will be called before this.

ORACLE

Chapter 11

11-3



Chapter 11

/1 The singleton port ensures proper/robust operation in both
/] recovery and clustered scenari0s.
_singletonPort = _service. getBackendServi cePort(_features);

}

@wverride
public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from
/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse !=null) {
res.getWiter().wite(_| astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Set _lastResponse to NULL to to support the invocation against
/1 BackendService to generate a new response.

/] Best Practice: Synchronize use of client instances.
I/ Create another client instance using the *exact* sane features used when creating _
/'l singletonPort. Note, this port uses the sanme client ID as the singleton port
[l and it is effectively the same as the singleton
/1 fromthe perspective of the web services runtine.
[l This port will use the asynchronous response endpoint for the client ID,
/] as it is defined in the features |ist.
BackendServi ce anotherPort =
_service. get BackendSer vi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der) anot her Port) . get Request Cont ext ().
put ( Bi ndi ngPr ovi der . ENDPOl NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best Practi ceServi ce/ BackendService");

/1 Add a persistent context property that will be retrieved on the
/'l response. This property can be used as a rem nder of the context of this
/'l request and subsequently process the response. This property will *not*
/'l be passed over the wire, so the properties can change independent of the
/1 application message.
Map<String, Serializable> persistentContext =
(Map<String, Serializable>)((BindingProvider)anotherPort).
get Request Cont ext (). get ( JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;
String nyProperty = "Request " + (++_request Count);
per si st ent Cont ext . put (MY_PROPERTY, nyProperty);
System out. println("Request being made with MyProperty value: " +
myProperty);

/1 Make the asychronous invocation. The asynchronous handl er inplenmentation (set

/1 into the AsyncOientHandl er Feat ure above) receives the response.

String request = "Dance and sing";

System out. println("lnvoking DoSonething asynchronously with request: " +
request);

anot her Port . doSomet hi ngAsync(request);

/1 Return a canned string indicating the response was not received

/'l synchronously. Cient will need to invoke the servlet again to get
/'l the response.

ORACLE 11-4



Chapter 11

res.getWiter(). wite("Waiting for response...");

/| Best Practice: Explicitly close client instances when processing is complete.
/1 1f not closed explicitly, the port will be closed automatically when it goes out of scope.
((java.io.d oseabl e)anot herPort). cl ose();

}

@verride
public void destroy() {

try {
Il Best Practice: Explicitly close client instances when processing is complete.

I/ Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*

/1 published until our container (Web application) is undepl oyed.

((java.io.C oseabl e) _singletonPort).close();

/1 Upon return, the Wb application is undeployed, and the asynchronous
/'l response endpoint is stopped (unpublished). At this point,
Il the client 1D used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.
} catch (Exception e) {
e.printStackTrace();

ORACLE 11-5



Developing Asynchronous Clients

This chapter describes how to develop asynchronous WebLogic web service clients
using Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

e Overview of Asynchronous Web Service Invocation

e Steps to Invoke Web Services Asynchronously

e Configuring Your Servers for Asynchronous Web Service Invocation

» Building the Client Artifacts for Asynchronous Web Service Invocation

» Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client
Transport)

e Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection)

* Using the JAX-WS Reference Implementation
* Propagating Request Context to the Response
*  Monitoring Asynchronous Web Service Invocation

e Clustering Considerations for Asynchronous Web Service Messaging

# Note:

See also Roadmap for Developing Asynchronous Web Service Clients.

12.1 Overview of Asynchronous Web Service Invocation

To support asynchronous web services invocation, WebLogic web services can use an
asynchronous client programming model, asynchronous transport, or both.

Table 12-1 provides a description and key benefits of the asynchronous client
programming model and transport types, and introduces the configuration options
available to support asynchronous web service invocation.

" Note:

The method of generating a WSDL for the asynchronous web service
containing two one-way operations defined as two portTypes—one for the
asynchronous operation and one for the callback operation—is not supported
in the current release.

ORACLE 12-1



Chapter 12

Overview of Asynchronous Web Service Invocation

Table 12-1 Support for Asynchronous Web Service Invocation

Type

Description

Benefits

Client programming model

Describes the invocation semantics used to call
a web service operation: synchronous or
asynchronous.

When you invoke a web service synchronously,
the invoking client application waits for the
response to return before it can continue with its
work. In cases where the response returns
immediately, this method of invoking the web
service might be adequate. However, because
request processing can be delayed, it is often
useful for the client application to continue its
work and handle the response later on.

By calling a web service asynchronously, the
client can continue its processing, without
interruption, and be notified when the
asynchronous response is returned.

To support asynchronous invocation, you
generate automatically an asynchronous flavor
of each operation on a web service port using
the cl i ent gen Ant task, as described later in
Building the Client Artifacts for Asynchronous
Web Service Invocation. Then, you add methods
in your client, including your business logic, that
handle the asynchronous response or failures
when it returns later on. Finally, to invoke a web
service asynchronously, rather than invoking the
operation directly, you invoke the asynchronous
flavor of the operation. For example, rather than
invoking an operation called addNunber s directly,
you would invoke addNunber sAsync instead.

Asynchronous invocation
enables web service clients to
initiate a request to a web
service, continue processing
without blocking, and receive
the response at some point in
the future.

Transport There are three transport types: asynchronous  Asynchronous client transport
client transport, Make Connection transport, and and Make Connection transport
synchronous transport. For a comparison of deliver the following key
each transport type, see Table 12-2. benefits:

e Improves fault tolerance in
the event of network
outages.

e Enables servers to absorb
more efficiently spikes in
traffic.

Configuration Configure web service persistence and buffering Benefits of configuring the web

(optional) to support asynchronous web service
invocation.

For more information, see Configuring Your

Servers for Asynchronous Web Service
Invocation.

service features include:

«  Persistence supports long
running requests and
provides the ability to
survive server restarts.

- Buffering enables all
requests to a web service to
be handled asynchronously.

ORACLE

12-2



Chapter 12
Overview of Asynchronous Web Service Invocation

Table 12-2 summarizes the transport types that WebLogic Server supports for
invoking a web service asynchronously (or synchronously, if configured) from a web

service client.

Table 12-2 Transport Types for Invoking Web Services Asynchronously

Transport Types

Description

Asynchronous Client Transport

Provides a scalable asynchronous client programming model
through the use of an addressable client-side asynchronous
response endpoint and WS-Addressing.

Asynchronous client transport decouples the delivery of the
response message from the initiating transport request used to
send the request message. The response message is sent to the
asynchronous response endpoint using a new connection
originating from the web service. The client correlates request and
response messages through WS-Addressing headers.

Asynchronous client transport provides improved fault tolerance
and enables servers to better absorb spikes in server load.

For details about using asynchronous client transport, see
Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport).

Asynchronous client transport supports the following programming
models:

*  Asynchronous and dispatch callback handling using one of the
following methods:

- Port-based asynchronous callback handler,
AsyncC i ent Handl er Feat ur e, described in Developing the
Asynchronous Handler Interface. This is recommended as a
best practice when using asynchronous invocation due to its
scalability and ability to survive a JVM restart.
- Per-request asynchronous callback handler, as described in
Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

*  Synchronous invocation by enabling a flag, as described in
Configuring Asynchronous Client Transport for Synchronous
Operations.

ORACLE

12-3



Chapter 12
Overview of Asynchronous Web Service Invocation

Table 12-2 (Cont.) Transport Types for Invoking Web Services Asynchronously

_____________________________________________________________________________________________|]
Transport Types Description

Make Connection Transport Enables asynchronous web service invocation from behind a
firewall using Web Services Make Connection 1.1 or 1.0.

Make Connection is a client polling mechanism that provides an
alternative to asynchronous client transport. As with asynchronous
client transport, Make Connection enables the decoupling of the
response message from the initiating transport request used to
send the request message. However, unlike asynchronous client
transport which requires an addressable asynchronous response
endpoint to forward the response to, with Make Connection
typically the sender of the request message is non-addressable
and unable to accept an incoming connection. For example, when
the sender is located behind a firewall.

Make Connection transport provides improved fault tolerance and
enables servers to better absorb spikes in server load.

For details about Make Connection transport, see Using
Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

Make Connection transport is recommended as a best practice
when using asynchronous invocation from behind a firewall due to
its scalability and ability to survive a JVM restart. It supports the
following programming models:

*  Asynchronous and dispatch callback handling using one of the
following methods:

- Port-based asynchronous callback handler,
AsyncC i ent Handl er Feat ur e, described in Developing the
Asynchronous Handler Interface.

- Per-request asynchronous callback handler, as described in
Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

*  Synchronous invocation by enabling a flag, as described in
Configuring Make Connection as the Transport for
Synchronous Methods.

Use of Make Connection transport with

AsyncC i ent Handl er Feat ur e is recommended as a best practice

when using asynchronous invocation due to its scalability and

ability to survive a JVM restart.

Synchronous Transport Provides support for synchronous and asynchronous web service
invocation with very limited support for WS-Addressing. For
details, see Using the JAX-WS Reference Implementation.

Synchronous transport is recommended when using synchronous
invocation. It can be used for asynchronous invocation, as well,
though this is not considered a best practice. It supports the
following programming models:

* Asynchronous and dispatch callback handling on a per
request basis using the standard JAX-WS RI implementation,
described in Using the JAX-WS Reference Implementation.

* Asynchronous polling, as described in Using the JAX-WS
Reference Implementation.

e Synchronous invocation.

ORACLE 12-4



Chapter 12
Steps to Invoke Web Services Asynchronously

12.2 Steps to Invoke Web Services Asynchronously

This section describes the steps required to invoke web services asynchronously.

ORACLE

It is assumed that you have set up an Ant-based development environment and that
you have a working bui I d. xni file to which you can add targets for running the j wsc Ant
task and deploying the web services. For more information, see Developing JAX-WS
Web Services.

Table 12-3 Steps to Invoke Web Services Asynchronously

#  Step Description
Configure web service Configure web service persistence on the servers hosting the
persistence to support web service and client to retain context information required for
asynchronous web processing a message at the web service or client. For more
service invocation. information, see Configuring Your Servers for Asynchronous

Web Service Invocation.

Note: This step is not required if you are programming the web

service client using the standard JAX-WS Rl implementation

and synchronous transport (in Step 3), as described in Using
the JAX-WS Reference Implementation.

2 Configure web service This step is optional. To configure the web service to process
buffering to enable the requests asynchronously, configure buffering on the server
web service to process  hosting the web service. Buffering enables you to store
requests messages in a JMS queue for asynchronous processing by the
asynchronously. web service. For more information, see Configuring Your
(Optional) Servers for Asynchronous Web Service Invocation.

3 Build the client artifacts = To generate asynchronous polling and asynchronous callback
required for handler methods in the service endpoint interface, create an
asynchronous external binding declarations that enables asynchronous
invocation. mappings and pass the bindings file as an argument to the

cl i ent gen when compiling the client. See Building the Client

Artifacts for Asynchronous Web Service Invocation.

4 Implement the web Refer to one of the following sections based on the transport
service client based on  and programming model required:
the transport and «  Use asynchronous client transport, as described in
programming model Developing Scalable Asynchronous JAX-WS Clients
required. (Asynchronous Client Transport). (Recommended as a

best practice.)

«  Enable asynchronous access from behind a firewall using
Make Connection. See Using Asynchronous Web Service
Clients From Behind a Firewall (Make Connection).

e Implement standard JAX-WS programming models, such
as asynchronous polling or per-request asynchronous
callback handling, using synchronous transport. See
Using the JAX-WS Reference Implementation.

When using web services in a cluster, review the guidelines

described in Clustering Considerations for Asynchronous Web

Service Messaging.

5 Compile the web service For more information, see Compiling and Running the Client

client and package the
client artifacts.

Application.

12-5



Chapter 12
Configuring Your Servers for Asynchronous Web Service Invocation

Table 12-3 (Cont.) Steps to Invoke Web Services Asynchronously

___________________________________________________________________________|
# Step Description

Deploy the web service  See Deploying and Undeploying WebLogic Web Services.
client.

7 Monitor the web service  You can monitor runtime information for clients that invoke
client. web services asynchronously, such as number of invocations,
errors, faults, and so on, using the WebLogic Server
Administration Console or WLST. See Monitoring
Asynchronous Web Service Invocation.

12.3 Configuring Your Servers for Asynchronous Web
Service Invocation

# Note:

This step is not required if you are programming the web service client using
the standard JAX-WS RI implementation and synchronous transport, as
described in Using the JAX-WS Reference Implementation.

To support asynchronous web service invocation, you need to configure the features
defined in the following table on the servers to which the web service and client are
deployed.

ORACLE 12-6



Chapter 12
Configuring Your Servers for Asynchronous Web Service Invocation

Table 12-4 Configuration for Asynchronous Web Service Invocation

________________________________________________________________________|
Feature Description

Persistence Web service persistence is used to save the following
types of information:
e Client identity and properties
e SOAP message, including its headers and body
e Context properties required for processing the
message at the web service or client (for both
asynchronous and synchronous messages)

The Make Connection transport protocol makes use of
web service persistence as follows:

*  Web service persistence configured on the MC
Receiver (web service) persists response
messages that are awaiting incoming Make
Connection messages for the Make Connection
anonymous URI to which they are destined.
Messages are persisted until either they are
returned as a response to an incoming Make
Connection message or the message reaches the
maximum lifetime for a persistent store object,
resulting in the message being cleaned from the
store.

e web service persistence configured on the MC
Initiator (web service client) is used with the
asynchronous client handler feature to recover
after a VM restart.

You can configure web service persistence using the

Configuration Wizard to extend the WebLogic Server

domain using a web services-specific extension

template. Alternatively, you can configure the
resources required for these advanced features using
the Oracle WebLogic Server Administration Console or

WLST. For information about configuring web service

persistence, see Configuring Web Service Persistence

for Web Service Clients. For information about the APIs
available for persisting client and message information,
see Propagating Request Context to the Response.

Message buffering When a buffered operation is invoked by a client, the
request is stored in a IMS queue and WebLogic Server
processes it asynchronously. If WebLogic Server goes
down while the request is still in the queue, it will be
processed as soon as WebLogic Server is restarted.
Message buffering is configured on the server hosting
the web service. For configuration information, see
Configuring Message Buffering for Web Services.

Note: Message buffering is enabled automatically on
the web service client.

ORACLE 12-7



Chapter 12
Building the Client Artifacts for Asynchronous Web Service Invocation

12.4 Building the Client Artifacts for Asynchronous Web
Service Invocation

ORACLE

Using the WebLogic Server client-side tooling (for example, cl i ent gen), you can
generate automatically the client artifacts required for asynchronous web service
invocation. Specifically, the following artifacts are generated:

*  Service endpoint interfaces for invoking the web service asynchronously with or
without a per-request asynchronous callback handler. For example, if the web
service defined the following method:

public int addNunbers(int opA, int opB) throws M/Exception

Then the following methods will be generated:

public Future<?> addNumbersAsync(int opA, int opB,
AsyncHandl er <AddNunber sResponse>)
public Response<AddNunmber sResponse> addNunber sAsync(int opA, int opB)

* Asynchronous handler interface for implementing a handler and setting it on the
port using AsyncC i ent Handl er Feat ure. The asynchronous handler interface is
named as follows: port | nt er f aceNaneAsyncHandl er, where port | nt er f aceNane
specifies the name of the port interface.

For example, for a web service with a port type name AddNunber sPort Type, an
asynchronous handler interface named AddNunber sPor t TypeAsyncHandl er is
generated with the following method:

public voi d onAddNunber sResponse( Response<AddNunber sResponse>)

The AsyncC i ent Handl er Feat ur e is described later, in Developing the Asynchronous
Handler Interface.

To generate asynchronous client artifacts in the service endpoint interface when the
WSDL is compiled, enable the j axws: enabl eAsyncMappi ng binding declaration in the
WSDL file.

Alternatively, you can create an external binding declarations file that contains all
binding declarations for a specific WSDL or XML Schema document. Then, pass the
binding declarations file to the <bi ndi ng> child element of the wsdl c, j wsc, or cl i ent gen
Ant task. For more information, see Creating an External Binding Declarations File
Using JAX-WS Binding Declarations.

The following provides an example of a binding declarations file (j axws- bi ndi ng. xn )
that enables the j axws: enabl eAsyncMappi ng binding declaration:

<bi ndi ngs
xm ns: xsd="http: //ww. w3. or g/ 2001/ XM_Schema"
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
wsdl Locat i on="AddNunber s. wsdl "
xm ns="http://java. sun. com xm / ns/j axws">
<bi ndi ngs node="wsdl : definitions">
<package nane="exanpl es. webservi ces. async"/>
<enableAsyncMapping>true</enableAsyncMapping>
</ bi ndi ngs>
</ bi ndi ngs>

12-8



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Then, to update the bui | d. xnl file to generate client artifacts necessary to invoke a
web service operation asynchronously:

1. Use the taskdef Anttask to define the full classname of the cli ent gen Ant tasks.

2. Add atarget that includes a reference to the external binding declarations file
containing the asynchronous binding declaration, as defined above. In this case,
the cli ent gen Ant task generates both synchronous and asynchronous flavors of
the web service operations in the JAX-WS stubs.

For example:

<t askdef name="clientgen"
cl assname="webl ogi c. wsee. t ool s. antt asks. O i ent GenTask" />

<target name="build client">

<clientgen

type="JAXWS"
wsdl =" AddNunber s. wsdl "
destDir="${clientclasses.dir}"
packageNane="exanpl es. webservi ces. async. cl i ent">
<binding file="jaxws-binding.xml" />

</clientgen>

<j avac
srcdir="${clientclass-dir}" destdir="${clientclass-dir}"
i ncludes="**/*_java"/>

<j avac
srcdir="src" destdir="${clientclass-dir}"
i ncl udes="exanpl es/ webservi ces/ async/ client/**/* java"/>

</target>

12.5 Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport)

ORACLE

The asynchronous client transport feature provides a scalable asynchronous client
programming model. Specifically, this feature:

e Publishes a client-side asynchronous response endpoint, shown in Figure 12-1.

e Creates and publishes a service implementation that invokes the requested
asynchronous handler implementation.

e Automatically adds WS-Addressing non-anonymous ReplyTo headers to all non-
one-way, outbound messages. This header references the published response
endpoint.

e Correlates asynchronous request and response messages using the facilities
listed above.

When the asynchronous client transport feature is enabled, all other JAX-WS client
programming models (such as asynchronous polling, callback handler, dispatch, and
S0 on) continue to be supported. Synchronous web service operations will, by default,
use synchronous transport, unless explicitly configured to use asynchronous client
transport feature when enabling the feature.

The following figure shows the message flow used by the asynchronous client
transport feature.

12-9



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Figure 12-1 Asynchronous Client Transport Feature

Client Asynchronous
Application Response Endpoint
] Response Message
Asynchronous Correlation Web
Handler 4 Service

Invoke
Asynchronous
Operation

|, Client Request Message
@ >

o

As shown in the previous figure:

1. The client enables the asynchronous client transport feature on the client proxy
and invokes an asynchronous web service operation.

2. The web service operation is invoked via the client proxy.

3. The web service processes the request and sends a response message (at some
time in the future) back to the client. The response message is sent to the client's
asynchronous response endpoint. The address of the asynchronous response
endpoint is maintained in the WS-Addressing headers.

4. The response message is forwarded to the appropriate client via the client proxy.
5. The client asynchronous handler is invoked to handle the response message.

The following sections describe how to develop scalable asynchronous JAX-WS
clients using asynchronous client transport:

* Enabling and Configuring the Asynchronous Client Transport Feature
* Developing the Asynchronous Handler Interface

* Propagating User-defined Request Context to the Response

12.5.1 Enabling and Configuring the Asynchronous Client Transport
Feature

# Note:

The Make Connection and asynchronous client transport features are
mutually exclusive. If you attempt to enable both features on the same web
service client, an error is returned. For more information about Make
Connection, see Using Asynchronous Web Service Clients From Behind a
Firewall (Make Connection).

To enable the asynchronous client transport feature on a client, pass an instance of
webl ogi c. j ws. j axws. cl i ent. async. AsyncC i ent Transport Feat ure as a parameter when
creating the web service proxy or dispatch.

ORACLE 12-10



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

The asynchronous response endpoint described by the Asyncd i ent Transport Feat ur e is
used by all client instances that share the same client ID and is in effect from the time
the first client instance using the client ID is published. The asynchronous response
endpoint remains published until the client ID is explicitly disposed or the container for
the client is deactivated (for example, the host Web application or EJB is undeployed).
For more information about managing the client ID, see Managing Client Identity.

The asynchronous response endpoint address is generated automatically using the
following format:

http://context Address: port/context/targetPort-AsyncResponse

In the above:

e context Addr ess: port —Specifies one of the following:
— If clustered application, cluster address and port.

— If not clustered application, default WebLogic Server address and port for the
selected protocol.

— If no default address is defined, first network channel address for the given
protocol. For more information about network channels, see Configuring
Network Resources in Administering Server Environments for Oracle
WebL ogic Server.

* context —Current servlet context, if running within an existing context. Otherwise, a
new context named by the UUID and scoped to the application.

e target Port - AsyncResponse—Port name of the service accessed by the client
appended by - AsyncResponse.

You can configure the asynchronous client transport feature, as described in the
following sections:

*  Configuring the Address of the Asynchronous Response Endpoint

*  Configuring the ReplyTo and FaultTo Headers of the Asynchronous Response
Endpoint

*  Configuring the Context Path of the Asynchronous Response Endpoint
*  Publishing the Asynchronous Response Endpoint
»  Configuring Asynchronous Client Transport for Synchronous Operations

For more information about the AsyncC i ent Transport Feat ure() constructor formats,
see the Java API Reference for Oracle WebLogic Server.

12.5.1.1 Configuring the Address of the Asynchronous Response Endpoint

You can configure an address for the asynchronous response endpoint by passing it
as an argument to the AsyncC i ent Transpor t Feat ur e, as follows:

String responseAddress = "http://myserver.com 7001/ nmyRel i abl eServi ce/ nyd i ent Cal | back”;
AsyncC i ent Transport Feat ure asyncFeature = new Asyncd i ent Transport Feat ur e( responseAddress) ;
BackendService port = _service. get BackendServi cePort (asyncFeature);

ORACLE

The specified address must be a legal address for the server or cluster (including the
network channels or proxy addresses). Ephemeral ports are not supported. The
specified context must be scoped within the current application or refer to an unused

12-11



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

context; it cannot refer to a context that is scoped to another deployed application,
otherwise an error is thrown.

The following tables summarizes the constructors that can be used to configure the
address of the asynchronous response endpoint.

Table 12-5 Constructors for Configuring the Address of the Asynchronous Response Endpoint
|

Constructor Description

Asyncd i ent Transport Feat ure(j ava. | ang. String Configures the address of the asynchronous response
addr ess) endpoint.

Asyncd i ent Transport Feat ure(j ava.lang. String Configures the following:

address, bool ean doPubl i sh) +  Address of the asynchronous response endpoint.

*  Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

AsyncC i ent Transport Feat ure(j ava.l ang. String Configures the following:

address, bool ean doPublish, bool ean «  Address of the asynchronous response endpoint.

useAsyncW t hSyncl nvoke) < Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

*  Whether to enable asynchronous client transport for

synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous
Response Endpoint

You can configure the address to use for all outgoing ReplyTo and FaultTo headers of
type j avax. xnl . ws. wsaddr essi ng. WVBCEndpoi nt Ref er ence for the asynchronous response
endpoint by passing them as arguments to the Asyncd i ent Transport Feat ure.

For example, to configure only the ReplyTo header address:

VBCEndpoi nt Ref erence replyToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ myQ i ent Cal | back";
AsyncC i ent Transport Feat ure asyncFeature = new AsyncC i ent Transport Feat ure( replyToAddress);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

To configure both the ReplyTo and FaultTo header addresses:

VBCEndpoi nt Ref erence replyToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ nyQd i ent Cal | back";
VBCEndpoi nt Ref erence faultToAddress = "http://nyserver.com 7001/ nyRel i abl eServi ce/ Faul t To";

AsyncC i ent Transport Feat ure asyncFeature = new AsyncC i ent Transport Feat ur e( replyToAddress,
faultToAddress);

BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

The following tables summarizes the constructors that can be used to configure the
endpoint reference address for the outgoing ReplyTo and FaultTo headers.

ORACLE 12-12



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

Table 12-6 Constructors for Configuring the ReplyTo and FaultTo Headers
]

Constructor Description

AsyncC i ent Transport Feat ure(j avax. xm . ws. wsaddre Configures the endpoint reference address for the
ssi ng. WBCEndpoi nt Ref erence repl yTo) outgoing ReplyTo headers.

Asyncd i ent Transport Feat ure(j avax. xn . ws. wsaddre Configures the following:

ssi ng. WBCEndpoi nt Ref er ence repl yTo, bool ean «  Endpoint reference address for the outgoing
doPubl i sh) ReplyTo headers.

*  Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.

Asyncd i ent Transport Feat ure(j avax. xn . ws. wsaddre Configures the following:

ssi ng. VBCEndpoi nt Ref erence repl yTo, bool ean «  Endpoint reference address for the outgoing
doPubl i sh, bool ean useAsyncW t hSyncl nvoke) ReplyTo headers.
*  Whether to publish the endpoint at the specified
address. For more information, see Publishing the
Asynchronous Response Endpoint.
*  Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

Asyncd i ent Transport Feat ure(j avax. xn . ws. wsaddre Configures the endpoint reference address for the

ssi ng. WBCEndpoi nt Ref erence repl yTo, outgoing ReplyTo and FaultTo headers

j avax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence

faul t To)

Asyncd i ent Transport Feat ure(j avax. xn . ws. wsaddre Configures the following:

ssi ng. VBCEndpoi nt Ref er ence repl yTo, «  Endpoint reference address for the outgoing
javax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence ReplyTo and FaultTo headers.

faul'tTo, bool ean doPublish) «  Whether to publish the endpoint at the specified

address. For more information, see Publishing the
Asynchronous Response Endpoint.

Asyncd i ent Transport Feat ure(j avax. xn . ws. wsaddre Configures the following:

ssi ng. VBCEndpoi nt Ref erence repl yTo, «  Endpoint reference address for the outgoing
javax. xnm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence ReplyTo and FaultTo headers.

faul tTo, bool ean doPublish, bool ean «  Whether to publish the endpoint at the specified
useAsyncW t hSyncl nvoke) address. For more information, see Publishing the

Asynchronous Response Endpoint.

*  Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint

When a client is running within a servlet or Web application-based web service, it can
use its ServletContext and context path to construct the asynchronous response
endpoint. You pass the information as an argument to the

AsyncC i ent Transport Feat ure, as follows:

e When running inside a servlet:

AsyncC i ent Transport Feat ure asyncFeature =
new AsyncCl i ent Transport Feat ur e( get Servl et Cont ext ());

ORACLE 12-13



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

* When running inside a web service or an EJB-based web service:

import com sun. xn . ws. api . server. Cont ai ner;

Contai ner ¢ = Cont ai ner Resol ver. get | nstance(). get Container();
Servl et Context servletContext = c.getSPI(ServletContext.class);
AsyncCl i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(servl et Cont ext);

The specified context must be scoped within the current application or refer to an
unused context; it cannot refer to a context that is scoped to another deployed
application.

" Note:

When you use the empty constructor for Asyncd i ent Transpor t Feat ur e, the
web services runtime attempts to discover the container in which the current
feature was instantiated and publish the endpoint using any available
container context.

The following tables summarizes the constructors that can be used to configure the
context path of the asynchronous response endpoint.

Table 12-7 Constructors for Configuring the Context Path of the Asynchronous Response
Endpoint

Constructor Description

Asyncd i ent Transport Feat ure(j ava. | ang. Qbj ect Configures the context path of the asynchronous

cont ext) response endpoint.

AsyncC i ent Transport Feat ure(j ava. | ang. Obj ect Configures the following:

context, bool ean useAsyncW thSynclnvoke) - Context path of the asynchronous response
endpoint.

*  Whether to enable asynchronous client transport for
synchronous operations. For more information, see
Configuring Asynchronous Client Transport for
Synchronous Operations.

12.5.1.4 Publishing the Asynchronous Response Endpoint

You can configure whether to publish the asynchronous response endpoint by passing
the doPubl i sh boolean value as an argument to Asycnd i ent Transport Feat ure() when
configuring the following properties:

e Address of the asynchronous response endpoint. See Table 12-5.
e ReplyTo and FaultTo headers. See Table 12-6.
e Context path of the asynchronous response endpoint. See Table 12-7.

If doPubl i sh is set to false, then the asynchronous response endpoint is not published
automatically, but WS-Addressing headers will be added to outbound non-one-way
messages. This scenario supports the following programming models:

e Asynchronous polling (with no attempt to access the Response object)

ORACLE 12-14



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

» Dispatch asynchronous polling (with no attempt to access the Response object)
» Dispatch one-way invocation
*  Synchronous invocation using synchronous transport option (default)

For all other asynchronous programming models, the availability of a asynchronous
response endpoint is required and the web service client is responsible for publishing it
prior to making outbound requests if doPubl i sh is set to false.

The following example configures the asynchronous response endpoint address and
publishes the asynchronous response endpoint:

String responseAddress = "http://|ocal host: 7001/ nyRel i abl eServi ce/ nyRel i abl eResponseEndpoint";
bool ean doPublish = true;
AsyncC i ent Transport Feat ure asyncFeature =
new AsyncCl i ent Transport Feat ur e(r esponseAddress, doPublish);
BackendServi ce port = _service. get BackendServi cePort (asyncFeature);

12.5.1.5 Configuring Asynchronous Client Transport for Synchronous
Operations

You can enable or disable asynchronous client transport for synchronous operations
using the useAsyncW t hSyncl nvoke boolean flag when configuring the following
properties:

* Address of the asynchronous response endpoint. See Table 12-5.
* ReplyTo and FaultTo headers. See Table 12-6.
*  Context path of the asynchronous response endpoint. See Table 12-7.

The following example configures the asynchronous response endpoint address and
enables use of asynchronous client transport for synchronous operations:

String responseAddress = "http://local host: 7001/ nyRel i abl eServi ce/ nyRel i abl eResponseEndpoi nt";
bool ean useAsyncWithSynclnvoke = true;
AsyncC i ent Transport Feature asyncFeature =
new Asyncd i ent Transport Feat ur e(responseAddr ess, useAsyncWithSynclnvoke);
BackendService port = _service. get BackendServi cePort (asyncFeat ure);

12.5.2 Developing the Asynchronous Handler Interface

" Note:

If you set a single asynchronous handler instance on the port, as described
in this section, and subsequently attempt to configure a per-request
asynchronous handler, as described in Using the JAX-WS Reference
Implementation, then a runtime exception is returned.

As described in Building the Client Artifacts for Asynchronous Web Service Invocation,
the asynchronous handler interface,

webl ogi c. j ws. j axws. cl i ent. async. AsyncC i ent Handl er Feat ur e, sets a single
asynchronous handler instance on the port rather than on a per-request basis.

ORACLE 12-15



Chapter 12
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)

For example, when you build the client classes using clientgen, as described in
Building the Client Artifacts for Asynchronous Web Service Invocation, the
asynchronous handler interface is generated, as shown below.

Example 12-1 Example of the Asynchronous Handler Interface

import javax.xn .ws.Response;

/**
* This class was generated by the JAX-WS RI.

* Oracle JAX-W5 2.1.5

* CGenerated source version: 2.1
*

*/
public interface BackendServi ceAsyncHandl er {

/**

*

* (@aram response

*/

public voi d onDoSonet hi ngResponse( Response<DoSonet hi ngResponse> response) ;

The asynchronous handler interface is generated as part of the same package as the
port interface and represents the methods required to accept responses for any
operation defined on the service. You can import and implement this interface in your
client code to provide a way to receive and process asynchronous responses in a
strongly-typed manner.

To set a single asynchronous handler instance on the port, pass an instance of the
webl ogi c. j ws. j axws. cl i ent. async. AsyncC i ent Handl er Feat ure as a parameter when
creating the web service proxy or dispatch. You specify the name of the asynchronous
handler that will be invoked when a response message is received.

The following example shows how to develop an asynchronous handler interface. The
example demonstrates how to initialize the Asyncd i ent Handl er Feat ur e to connect the
asynchronous handler implementation to the port used to make invocations on the
backend service. This example is excerpted from Example 11-1.

Example 12-2 Example of Developing the Asynchronous Handler Interface

i mport webl ogic.jws.jaxws.client.async. AsyncC i entHandl er Feat ure;

BackendServi ceAsyncHandl er handl er = new BackendSer vi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse( Response<DoSonet hi ngResponse> res) {
/1 ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout.printIn("Got async response: " + _|astResponse);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
b
AsyncC i ent Handl er Feat ure handl er Feature = new AsyncC i ent Handl er Feat ure( handl er);
features. add(handl er Feature);

ORACLE 12-16



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

_features = features.toArray(new WebServi ceFeature[features.size()]);
BackendServi ce anotherPort = _service. get BackendServi cePort(_features);

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set

/1 into the AsyncOientHandl er Feature above) receives the response.

String request = "Dance and sing";

System out. println("Invoking DoSonet hing asynchronously with request: " + request);
anot her Port . doSomet hi ngAsync(request);

12.5.3 Propagating User-defined Request Context to the Response

The webl ogi c. wsee. j axws. JAXWSPr oper ti es API defines the following properties that
enables users to propagate user-defined request context information to the response
message, without relying on the asynchronous handler instance state.

The asynchronous handler instance may be created at any time; for example, if the
client's server goes down and is restarted. Therefore, storing request context in the
asynchronous handler interface will not be useful.

The JAXWSPr operti es properties are defined in the following table.

Table 12-8 Properties Supported by the JAXWSProperties API

|
This property . .. Specifies . . .

MESSAGE_|I D Message ID for the request. The client can set this property on the request context
to override the auto-generation of the per-request Message ID header.

PERSI STENT_CONTEXT Context properties required by the client or the communication channels. Web
service clients can persist context properties, as long as they are Serializable, for
the request message. These properties will be available in the response context
map available from the Response object when the asynchronous handler is
invoked. For more information, see Propagating Request Context to the Response.

RELATES_TO Message ID to which the response correlates.

REQUEST_TI MEQUT For synchronous operations using asynchronous client transport, maximum
amount of time to block and wait for a response. This property default to O
indicating no timeout.

In addition, web service clients can persist context properties, as long as they are
Serializable, for the request message. Context properties can include those required
by the client or the communication channels. Message properties can be stored as
part of the webl ogi c. wsee. j axws. JAXWSPr oper t i es. PERSI STENT_CONTEXT Map property and
retrieved after the response message is returned. For complete details, see
Propagating Request Context to the Response.

12.6 Using Asynchronous Web Service Clients From Behind
a Firewall (Make Connection)

Web Services Make Connection is a client polling mechanism that provides an
alternative to asynchronous client transport, typically to provide support for clients that
are behind a firewall. WebLogic Server supports WS-MakeConnection version 1.1, as
described in the Make Connection specification at: http:// docs. oasi s-open. or g/ ws-r x/
wsnt/ 200702, and is backwards compatible with version 1.0.

ORACLE 12-17


http://docs.oasis-open.org/ws-rx/wsmc/200702
http://docs.oasis-open.org/ws-rx/wsmc/200702

ORACLE

Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Specifically, Make Connection:

» Enables the decoupling of the response message from the initiating transport
request used to send the request message (similar to asynchronous client
transport).

e Supports web service clients that are non-addressable and unable to accept an
incoming connection (for example, clients behind a firewall).

* Enables a web service client to act as an MC-Initiator and the web service to act
as an MC-Receiver, as defined by the WS-MakeConnection specification.

The following figure, borrowed from the Web Services Make Connection specification,
shows a typical Make Connection message flow.

Figure 12-2 Make Connection Message Flow

(" \I @ getQuote() Request Message ( h
(wsa:ReplyTo=MCAnonURI7uuid=1234567)

Empty Response (HTTP 202) (2)

Web Service

Client @ MakeConnection Web Service
(wsa:ReplyTo=MCAnonURITuuid=1 23456?]} Addressable
Non-addressable Empty Response (HTTP 202) (4) Endpoint

Endpoint B e b

(MC Initiator) @ MakeConnection
(wsa:ReplyTo=MCAnonURI?uuid=1234567)

getQuoteResponse()

{MC Receiver)

As shown in the previous figure, the Make Connection message flow is as follows:

1. The get Quote() request message is sent from the web service client (MC Initiator)
to the web service (MC Receiver). The ReplyTo header contains a Make
Connection anonymous URI that specifies the UUID for the MC Initiator.

The MC Receiver receives the get Quot e() message. The presence of the Make
Connection anonymous URI in the ReplyTo header indicates that the response
message can be sent back on the connection's back channel or the client will use
Make Connection polling to retrieve it.

2. The MC Receiver closes the connection by sending back an empty response
(HTTP 202) to the MC Initiator.

Upon receiving an empty response, the MC Initiator initializes and starts its polling
mechanism to enable subsequent polls to be sent to the MC Receiver.
Specifically, the MC Initiator polling mechanism starts a timer with expiration set to
the interval configured for the time between successive polls.

3. Upon timer expiration, the MC Initiator sends a Make Connection message to the
MC Receiver with the same Make Connection anonymous URI information in its
message.

4. Asthe MC Receiver has not completed process the getQuote() operation, no
response is available to send back to the MC Initiator. As a result, the MC

12-18



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Receiver closes the connection by sending back another empty response (HTTP
202) indicating that no responses are available at this time.

Upon receipt of the empty message, the MC Initiator restarts the timer for the
Make Connection polling mechanism.

Before the timer expires, the get Quot e() operation completes. Since the original
request contained a Make Connection anonymous URI in its ReplyTo header, the
MC Receiver stores the response and waits to receive the next Make Connection
message with a matching address.

5. Upon timer expiration, the MC Initiator sends a Make Connection message to the
MC Receiver with the same Make Connection anonymous URI information in its
message.

6. Upon receipt of the Make Connection message, the MC Receiver retrieves the
stored response message and sends it as a response to the received Make
Connection message.

The MC Initiator receives the response message and terminates the Make
Connection polling mechanism.

Make Connection transport is recommended when using asynchronous invocation
from behind a firewall. For a list of programming models supported, see Table 12-2.

The following sections describe how to enable and configure Make Connection on a
web service and client:

* Enabling and Configuring Make Connection on a Web Service

* Enabling and Configuring Make Connection on a Web Service Client

12.6.1 Enabling and Configuring Make Connection on a Web Service

Make Connection can be enabled by attaching a Make Connection policy assertion to
the web service and then calling its methods from a client using the standard JAX-WS
client APIs. A policy can be attached to a web service in one of the following ways:

e Adding an @wol i cy annotation to the JWS file. You can attach a Make Connection
policy at the class level only.

* Adding reference to the policy to the web service WSDL.

The following sections describe the steps required to enable Make Connection on a
web service:

* Creating the Web Service Make Connection WS-Policy File (Optional)

*  Programming the JWS File to Enable Make Connection

12.6.1.1 Creating the Web Service Make Connection WS-Policy File (Optional)

ORACLE

A WS-Policy file is an XML file that contains policy assertions that comply with the WS-
Policy specification. In this case, the WS-Policy file contains web service Make
Connection policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical Make
Connection assertions that you can use if you do not want to create your own WS-
Policy file. The pre-packaged WS-Policy files that support Make Connection are listed
in the following table. In some cases, both reliable messaging and Make Connection

12-19



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

are enabled by the policy. For more information, see Pre-packaged WS-Policy Files for
Web Services Reliable Messaging and Make Connection.

# Note:

You can attach Make Connection policies at the class level only; you cannot
attach the Make Connection policies at the method level.

Table 12-9 Pre-packaged WS-Policy Files That Support Make Connection

|
Pre-packaged WS-Policy File Description

Ml 1. xm

Enables Make Connection support on the web service and specifies usage
as optional on the web service client. The WS-Policy 1.5 protocol is used.
See Mcl.1.xml (WS-Policy File).

Me. xmi

Enables Make Connection support on the web service and specifies usage
as optional on the web service client. The WS-Policy 1.2 protocol is used.
See Mc.xml (WS-Policy File).

Reliabilityl.2_ExactlyOnce_Wth Specifies policy assertions related to quality of service. It enables Make

MCL. 1. xm

Connection support on the web service and specifies usage as optional on
the web service client. See Reliabilityl.2_ExactlyOnce_WithMC1.1.xml
(WS-Policy File).

Reliabilityl.2_SequenceSTR xm Specifies that in order to secure messages in a reliable sequence, the

runtime will use the wsse: Securit yTokenRef er ence that is referenced in the
Cr eat eSequence message. It enables Make Connection support on the web
service and specifies usage as optional on the web service client. See
Reliabilityl.2_SequenceSTR.xml (WS-Policy File).

Reliabilityl.0_1.2.xm

Combines 1.2 and 1.0 WS-Reliable Messaging policy assertions. The policy
assertions for the 1.2 version Make Connection support on the web service
and specifies usage as optional on the web service client. This sample
relies on smart policy selection to determine the policy assertion that is
applied at runtime. See Reliability1.0_1.2.xml (WS-Policy File).

ORACLE

You can use one of the pre-packaged Make Connection WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. For example, you may wish to configure support of Make Connection
as required on the web service client side. The Make Connection policy assertions
conform to the WS-PolicyAssertions specification.

To create a custom WS-Policy file that contains Make Connection assertions, use the
following guidelines:

e The root element of a WS-Policy file is always <wsp: Pol i cy>.

* To configure web service Make Connection, you simply add a <wsnt: MCSuppor t ed>
child element to define the web service Make Connection support.

e The <wsnt: MCSuppor t ed> child element contains one policy attribute, Opti onal , that
specifies whether Make Connection must be configured on the web service client.
This attribute can be setto true or fal se, and is set to t rue by default. If set to
fal se, then use of Make Connection is required and both the ReplyTo and FaultTo
(if specified) headers must contain Make Connection anonymous URIs.

12-20



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

The following example enables Make Connection on the web service and specifies
that Make Connection must be enabled on the web service client. In this example, the
WS-Policy 1.5 protocol is used.

<?xm version="1.0"?>

<wspl5: Policy xmns:wspl5="http://ww. w3. org/ ns/ws-policy"
xnl ns: wsne="http://docs. oasi s- open. or g/ ws- r x/ wsnt/ 200702" >
<wsnt: MCSupport ed wspl5: Optional ="fal se" />

</wspl5: Pol i cy>

12.6.1.2 Programming the JWS File to Enable Make Connection

ORACLE

This section describes how to enable Make Connection on the web service using a
pre-packaged or custom Make Connection WS-Policy file. For information about
creating a custom policy file, see Creating the Web Service Make Connection WS-
Policy File (Optional).

Use the @ol i cy annotation in your JWS file to specify that the web service has a WS-
Policy file attached to it that contains Make Connection assertions. WebLogic Server
delivers a set of pre-packaged WS-Policy files, as described in Pre-packaged WS-
Policy Files for Web Services Reliable Messaging and Make Connection.

Refer to the following guidelines when using the @ol i cy annotation for web service
reliable messaging:

* You can attach the Make Connection policy at the class level only; you cannot
attach the Make Connection policy at the method level.

* Usethe uri attribute to specify the build-time location of the policy file, as follows:

— If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@olicy(uri="MPolicy.xm", attachToWdl =true)

In this example, the MPol i cy. xnl file is located in the same directory as the
JWS file.

— To specify one of the pre-packaged WS-Policy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the j wsc Ant task at build-
time not to look for an actual file on the file system, but rather, that the web
service will retrieve the WS-Policy file from WebLogic Server at the time the
service is deployed.

12-21



ORACLE

Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

# Note:

Shared Java EE libraries are useful when you want to share a WS-
Policy file with multiple web services that are packaged in different
Enterprise applications. As long as the WS-Policy file is located in
the META- I NF/ pol i ci es or VEB- | NF/ pol i ci es directory of the shared
Java EE library, you can specify the policy file in the same way as if
it were packaged in the same archive at the web service. See
Creating Shared Java EE Libraries and Optional Packages in
Developing Applications for Oracle WebLogic Server for information
about creating libraries and setting up your environment so the web
service can locate the policy files.

— To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@olicy(uri="http://someSite.conlpolicies/nypolicy.xm"
attachToWsdl =true)

e Setthe attachTowdl attribute of the @ol i cy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of
the web service. Typically, you want to publicly publish the policy so that client
applications know the reliable messaging capabilities of the web service. For this
reason, the default value of this attribute is t r ue.

For more information about the @ol i cy annotation, see weblogic.jws.Policy in
WebLogic Web Services Reference for Oracle WebLogic Server.

The following example shows a simple JWS file that enables Make Connection; see
the explanation after the example for coding guidelines that correspond to the Java
code in bold.

package exanpl es. webservi ces. async

import javax.jws.\WebMet hod,;
import javax.jws.\WehService;
import weblogic.jws._Policy;

/**

* Sinple reliable Wb Service.
*/

@ebServi ce(name="Hel | oWr| dPort Type",
servi ceNanme="Hel | oWr | dServi ce")

@Policy(uri="McPolicy.xml", attachToWsdl=true)
public class Hel | oWorldlnpl {
private static String onewaySaved| nput = null;

/**
* A one-way helloWrld nmethod that saves the given string for later
* concatenation to the end of the nessage passed into hel | oWrl dReturn.
*/
@\ebMet hod()
public void helloWrld(String input) {
Systemout.printIn(" Hello Wrld " + input);
onewaySaved| nput = input;

}

12-22



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

/**

* This echo nethod concatenates the saved nessage from hell oVrld
* onto the end of the provided nessage, and returns it.
*/
@\ebMet hod()
public String echo(String input2) {
Systemout.printin(" Hello World " + input2 + onewaySaved! nput);
return input + onewaySaved| nput;

}
}

As shown in the previous example, the custom MPolicy. xm policy file is attached to
the web service at the class level, which means that the policy file is applied to all
public operations of the web service. You can attach a Make Connection policy at the
class level only; you cannot attach a Make Connection policy at the method level.

The policy file is attached to the WSDL file. For information about the pre-packaged
policies available and creating a custom policy, see Creating the Web Service Make
Connection WS-Policy File (Optional).

The echo() method has been marked with the @¢bMet hod JWS annotation, which
means it is a public operation called echo. Because of the @ol i cy annotation, the
operation using Make Connection transport protocol.

12.6.2 Enabling and Configuring Make Connection on a Web Service

Client

ORACLE

# Note:

The Make Connection and asynchronous client transport features are
mutually exclusive. If you attempt to enable both features on the same web
service client, an error is returned. For more information about asynchronous
client transport, see Developing Scalable Asynchronous JAX-WS Clients
(Asynchronous Client Transport).

It is recommended that you use the asynchronous handler feature,
Asyncd i ent Handl er Feat ure when using the asynchronous callback handler
programming model. For more information, see Developing the
Asynchronous Handler Interface.

To enable Make Connection on a web service client, pass an instance of the
webl ogi c. wsee. nt. api . McFeat ur e as a parameter when creating the web service proxy
or dispatch. A simple example of how to enable Make Connection is shown below.

# Note:

This example will use synchronous transport for synchronous methods. To
configure Make Connection as the transport for synchronous methods, see
Configuring Make Connection as the Transport for Synchronous Methods.

12-23



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

package exanpl es.webservices. nyservice.client;
i mport webl ogi c. wsee. nt. api . McFeat ur e;
Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

McFeature mcFeature = new McFeature();
features.add(mcFeature);

[l ... Inplenent asynchronous handler interface as described in

/I Developing the Asynchronous Handler Interface.

oo

Asyncd i ent Handl er Feat ure handl er Feat ure = new Asyncd i ent Handl er Feat ur e(handl er) ;
features. add(handl er Feature);

_features = features.toArray(new VbServi ceFeature[features.size()]);
BackendService port = _service. get BackendServi cePort(_features);

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set

/1 into the AsyncdientHandl er Feature above) receives the response.

String request = "Dance and sing";

System out. println("Invoking DoSonet hi ng asynchronously with request: " + request);
anot her Por t . doSomet hi ngAsync(request);

To configure specific features of Make Connection on the web service client, as
described in the following sections.

e Configuring the Expiration Time for Sending Make Connection Messages
e Configuring the Polling Interval
e Configuring the Exponential Backoff

e Configuring Make Connection as the Transport for Synchronous Methods

12.6.2.1 Configuring the Expiration Time for Sending Make Connection
Messages

Table 12-10 defines that MFeat ur e methods for configuring the maximum interval of
time before an MC Initiator stops sending Make Connection messages to an MC
Receiver.

Table 12-10 Methods for Configuring the Expiration Time for Sending Make Connection
Messages

Method Description
String getsExpires() Returns the expiration value currently
configured.

ORACLE 12-24



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

Table 12-10 (Cont.) Methods for Configuring the Expiration Time for Sending Make Connection
Messages

____________________________________________________________________________________________|]
Method Description

voi d set Expires(String expires) Set the expiration time.

The value specified must be a positive value
and conform to the XML schema duration
lexical format, PnYnMhDTnHNMS, where nY
specifies the number of years, nMspecifies
the number of months, nD specifies the
number of days, T is the date/time
separator, nH specifies the number of hours,
nMspecifies the number of minutes, and nS
specifies the number of seconds. This value
defaults to P1D (1 day).

12.6.2.2 Configuring the Polling Interval

Table 12-11 defines that MFeat ur e methods for configuring the interval of time that
must pass before a Make Connection message is sent by an MC Initiator to an MC
Receiver after the receipt of an empty response message. If the MC Initiator does not
receive a non-empty response for a given message within the specified interval, the
MC Initiator sends another Make Connection message.

Table 12-11 Methods for Configuring the Polling Interval
]

Method Description
String getlnterval () Gets the polling interval.
voi d setInterval (Stringpollinglnterval) Set the polling interval.

The value specified must be a positive value
and conform to the XML schema duration
lexical format, PnYnMhDTnHNMVhS, where nY
specifies the number of years, nMspecifies
the number of months, nD specifies the
number of days, T is the date/time
separator, nH specifies the number of hours,
nMspecifies the number of minutes, and nS
specifies the number of seconds. This value
defaults to PODT5S (5 seconds).

In the following example, the polling interval is set to 36 hours.

MFeature ncFeature = new MFeature();
mcFeature.setinterval (""PODT36H")
MyServi ce port = service.get M/ServicePort (ntFeature);

12.6.2.3 Configuring the Exponential Backoff

Table 12-12 defines the MFeat ure methods for configuring the exponential backoff
flag. This flag specifies whether the polling interval, described in Configuring the
Polling Interval, will be adjusted using the exponential backoff algorithm. In this case, if

ORACLE 12-25



Chapter 12
Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)

the MC Initiator does not receive a non-empty response for the time interval specified
by the polling interval, the exponential backoff algorithm is used for timing successive
retransmissions by the MC Initiator, should the response not be received.

The exponential backoff algorithm specifies that successive polling intervals should
increase exponentially, based on the polling interval. For example, if the polling
interval is 2 seconds, and the exponential backoff element is set, successive polling
intervals if the response is not received are 2, 4, 8, 16, 32, and so on.

This value defaults to false, the same polling interval is used in successive retries; the
interval does not increase exponentially.

Table 12-12 Methods for Configuring the Exponential Backoff

Method Description

bool ean i sExponent i al Backof f () Returns a boolean value indicating whether
exponential backoff is enabled.

voi d set Exponenti al Backof f (bool ean backof f) Set the exponential backoff flag. Valid

values are true and f al se. This flag
defaults to f al se.

In the following example, enables the exponential backoff flag.

MFeature ncFeature = new MFeature();

ncFeat ur e. set Messagel nt er val ( PODT36H)
mcFeature.setExponentialBackoff(true);

MyService port = service.get M/ServicePort (ntFeature);

12.6.2.4 Configuring Make Connection as the Transport for Synchronous

Methods

ORACLE

By default, synchronous methods use synchronous transport even when Make
Connection is enabled on the client. You can configure your client to use Make
Connection as the transport for synchronous methods. In this case, Make Connection
messages are sent by the MC Initiator based on the configured polling interval
(described in Configuring the Polling Interval) until a non-empty response message is
received.

To configure Make Connection as the transport protocol to use for synchronous
methods, use one of the following methods:

* When instantiating a new MFeat ure() object, you can pass as a parameter a
boolean value that specifies whether Make Connection should be used as the
transport protocol for synchronous methods. For example:

McFeature mcFeature = new McFeature(true);
MyServi ce port = service.get MyServicePort (ncFeature);

e Use the MFeat ure methods defined in Table 12-13. For example:

MFeature ncFeature = new MFeature();
mcFeature.setUseMCWithSynclnvoke(true);

12-26



Chapter 12
Using the JAX-WS Reference Implementation

MyService port = service.get M/ServicePort(ntFeature);

Table 12-13 Methods for Configuring Synchronous Method Support

____________________________________________________________________________________________|]
Method Description

bool ean i sUseMCW t hSyncl nvoke() Returns a boolean value indicating whether
synchronous method support is enabled.

voi d set UseMCW t hSyncl nvoke( bool ean useMCW t hSyncl nvoke) Sets the synchronous method support flag.
Valid values are true and f al se. This flag
defaults to f al se.

You can set the maximum amount of time a synchronous method will block and wait
for a response using the webl ogi c. wsee. j axws. JAXWSPr oper t i es. REQUEST_TI MEQUT
property. This property default to O indicating no timeout. For more information about
setting message properties, see Propagating User-defined Request Context to the
Response.

12.7 Using the JAX-WS Reference Implementation

The JAX-WS Reference Implementation (RI) supports the following programming
models:

*  Asynchronous client polling through use of the j ava. util.concurrent. Future
interface.

* Asynchronous callback handlers on a per request basis. The calling client
specifies the callback handler at invocation time. When the response is available,
the callback handler is invoked to process the response.

Unlike with asynchronous client transport feature, the JAX-WS RI provides very limited
support for WS-Addressing, including:

*  Manual support for adding client-side outbound WS-Addressing headers.
*  Manual support for publishing the client-side endpoint to receive responses.

*  No support for detecting incorrect client-side programming model (resulting in
synchronous call hanging, for example).

*  No support for surviving a client-side or service-side restart.

The following example shows a simple client file, AsyncC i ent, that has a single
method, AddNunber sTest Dr i ve, that asynchronously invokes the AddNunber sAsync method
of the AddNunber sSer vi ce service. The Java code in bold is described following the
code sample.

package exanpl es.webservices. async.client;

inport java.util.concurrent.ExecutionException;
inport java.util.concurrent. TimeUnit;

i mport javax.xnl.ws. Bi ndi ngProvi der;
inport java.util.concurrent.Future;

import javax.xml.ws.AsyncHandler;
import javax.xnl.ws.Response;

ORACLE 12-27



ORACLE

Chapter 12
Using the JAX-WS Reference Implementation

public class AsyncCient ({

private AddNumbersPort Type port = null;
protected void setUp() throws Exception {
AddNunber sServi ce service = new AddNurber sServi ce();
port = service.getAddNumbersPort();
String serverURl = System getProperty("w s-server");
((Bi ndi ngProvider) port).getRequest Context (). put(
Bi ndi ngProvi der. ENDPO NT_ADDRESS_PROPERTY,
"http://" + serverUR + "/ JAXWS_ASYNC/ AddNunber sServi ce");

/**
*
* Asynchronous cal | back handl er
*/
class AddNumbersCallbackHandler implements AsyncHandler<AddNumbersResponse> {
private AddNunber sResponse out put;
public void handleResponse(Response<AddNumbersResponse> response) {
try {
output = response. get();
} catch (ExecutionException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();
1
}

AddNunber sResponse get Response() {
return output;

1
}
public void AddNurmbersTest Drive() throws Exception {
int numberl = 10;
int number2 = 20;
/'l Asynchronous Cal | back nethod
AddNunber sCal | backHandl er cal | backHandl er =
new AddNunber sCal | backHandl er () ;
Fut ure<?> resp = port.addNunber sAsync(nunber1, nunber2,
cal I backHandl er);
Il For the purposes of a test, block until the async call conpletes
resp.get(5L, TimeUnit.MINUTES);
int result = callbackHandler.getResponse().getReturn();
/1 Poll'ing method
Response<AddNumbersResponse> addNumbersResp =
port.AddNumbersAsync(numberl, number2);
whi | e (!addNunber sResp. i sDone()) {
Thr ead. sl eep(100);
1
AddNumbersResponse reply = addNumbersResp.get();
Systemout. println("Server responded through polling with: " +
reply. get ResponseType());
}

}

The example demonstrates the steps to implement both the asynchronous polling and
asynchronous callback handler programming models.

To implement an asynchronous callback handler:

12-28



Chapter 12
Using the JAX-WS Reference Implementation

1. Create an asynchronous handler that implements the
javax. xm . ws. AsyncHandl er <T> interface (see http://docs. oracl e. con j avaee/ 7/ api /
javax/ xm /ws/ AsyncHandl er. ht ni ). The asynchronous handler defines one method,
handl eResponse, that enables clients to receive callback notifications at the
completion of service endpoint operations that are invoked asynchronously. The
type should be set to AddNunber Response.

cl ass AddNunber sCal | backHandl er inpl ements AsyncHandl er <AddNunber sResponse> {
private AddNumber sResponse out put;

public void handl eResponse( Response<AddNunber sResponse> response) {

try {
output = response. get();
} catch (ExecutionException e) {
e.printStackTrace();
} catch (InterruptedException e) {
e.printStackTrace();

}
}

AddNunber sResponse get Response() {
return output;

}
}

2. Instantiate the asynchronous callback handler.

AddNunber sCal | backHandl er cal | backHandl er =
new AddNumber sCal | backHandl er () ;

3. Instantiate the AddNunber sServi ce web service and call the asynchronous version of
the web service method, addNurber sAsync, passing a handle to the asynchronous
callback handler.

AddNunber sServi ce service = new AddNumbersServi ce();
port = service. get AddNunbersPort();

Future<?> resp = port.addNunber sAsync(nunber1, nunber2,
cal | backHandl er);

java.util.concurrent.Future (See https://docs. oracle. con javase/ 8/ docs/ api/
javal/util/concurrent/Future. htnl) represents the result of an asynchronous
computation and provides methods for checking the status of the asynchronous
task, getting the result, or canceling the task execution.

4. Get the result of the asynchronous computation. In this example, a timeout value
is specified to wait for the computation to complete.

resp.get (5L, TinmeUnit.M NUTES);
5. Use the callback handler to access the response message.
int result = call backHandl er. get Response(). get Return();

To implement an asynchronous polling mechanism:

1. Instantiate the AddNurber sServi ce web service and call the asynchronous version of
the web service method, addNunber sAsync.

Response<AddNunmber sResponse> addNunber sResp =
port . AddNunber sAsync(nunber 1, nunber2);

ORACLE 12-29


http://docs.oracle.com/javaee/7/api/javax/xml/ws/AsyncHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/AsyncHandler.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html

Chapter 12
Propagating Request Context to the Response

2. Sleep until a message is received.

whi | e (!addNunbersResp.isDone()) {
Thr ead. sl eep(100);

3. Poll for a response.

AddNunber sResponse reply = addNunmber sResp. get () ;

12.8 Propagating Request Context to the Response

WebLogic Server provides a powerful facility that enables you to attach your business
context—for example, a business-level message ID—to the request message and
access it when the response is returned, regardless of what the request and response
messages convey over the wire. For example, you may have a business-level
message ID that will not otherwise be available in the response message. By
propagating this information with the message, you can access it when the response
message is returned.

Web service clients can store any request message context property, as long as it is
Serializable. Message context properties can be stored as part of the

webl ogi c. wsee. j axws. JAXWSPr oper t i es. PERSI STENT_CONTEXT Map property and retrieved
after the response message is returned.

The following example shows how to use the PERSI STENT_CONTEXT Map property to
define and set a message context property.

Example 12-3 Setting Message Context Properties

i mport webl ogi c. wsee. j axws. JAXWSPr operti es;

MWdientPort port = myService.getPort();
Map<String, Serializable> clientPersistProps =
port. get Request Cont ext (). get (JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;
Serializable obj = <ny_property>;
clientPersistProps. put ("MProperty", obj);

port. nyQOperati onAsync(<args> new AsyncHandl er <M/Qper ati onResponse>() {
public void handl eResponse( Response<M/Cper at i onResponse> res) {
try {
/1 Get the actual response
MyOper at i onResponse response = res. get().getReturn();

/1 Get the property stored when meking request. Note, this property did not get
/| passed over the wire with the reugest. The web services runtine stores it.
Map<String, Serializable> clientPersistProps =
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;
Serializable obj = clientPersistProps.get("MProperty");
/1 Do something with MyProperty
} catch (Exception e) {
[l Error handling

ORACLE 12-30



Chapter 12
Monitoring Asynchronous Web Service Invocation

12.9 Monitoring Asynchronous Web Service Invocation

You can monitor runtime information for clients that invoke web services
asynchronously, such as number of invocations, errors, faults, and so on, using the
WebLogic Server Administration Console. To monitor web service clients, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab.

If you use the Make Connection transport protocol, you can monitor the Make
Connection anonymous endpoints for a web service or client. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on.

You can customize the information that is shown in the table by clicking Customize
this table.

To monitor Make Connection anonymous endpoints for a web service, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service is packaged.
Expand the application by clicking the + node; the web services in the application are
listed under the Web Services category. Click on the name of the web service and
select Monitoring> Ports> Make Connection.

To monitor Make Connection anonymous endpoints for a web service client, click on
the Deployments node in the left pane and, in the Deployments table that appears in
the right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Make
Connection.

12.10 Clustering Considerations for Asynchronous Web
Service Messaging

When a web service client runs in a cluster, you need to make special allowances to
ensure that the response messages can be delivered properly to the asynchronous
response endpoint for asynchronous calls. You defined the asynchronous response
endpoint with the AsyncClientTransportFeature, as described in Enabling and
Configuring the Asynchronous Client Transport Feature.

Consider the scenario shown in the following figure.

ORACLE 12-31



ORACLE

Chapter 12
Clustering Considerations for Asynchronous Web Service Messaging

Figure 12-3 Clustering Scenario Resulting in an Error

Web Service Client |
]

Extarnal HTTP :
Request @ )

Cliant Cluster
EE— Front End

N\ © )

Load balanced Response to asynchronous
external request response endpoint —— ERROR!
[There is no asynchronous
response endpoint
Sarverl @ Server2 on Serverl.)

N Asynchronous )
Client Response Client

WebApp, Endpoint WebApp,

dosomechinghsync ¢ doSoemethinghayne ™
Respanse {ReplyTo=asynchronous |
“.. response endpoint] -

“u

Service Endpoint

% Service

In the scenario shown in the previous figure:

» Atwo-node cluster hosts the client application; the nodes are named Serverl and
Server2. The cluster has a simple load-balancing front-end proxy.

* The client application is a Web application called ClientWebApp which is deployed
homogeneously to the cluster. In other words, the Web application runs on both
member servers in the cluster.

« External clients of the ClientWebApp application make requests through the
cluster front-end address.

Now consider the following sequence:

1. An external client requests a page from ClientWebApp via the cluster front-end.

2. The cluster front-end load balances the page request and sends it to the
ClientWebApp on Serverl.

3. ClientWebApp on Serverl creates an instance of a web service client,
BackendServiceClient, to communicate with its back-end service,
BackendService. The creation of BackendServiceClient causes an asynchronous
response endpoint to be published to receive asynchronous responses whenever
BackendServiceClient is used to make an asynchronous request.

4. ClientWebApp on Serverl calls BackendSer vi ced i ent . doSonet hi ngAsync() to
perform an operation on the backend service. The address of the asynchronous

12-32



ORACLE

Chapter 12
Clustering Considerations for Asynchronous Web Service Messaging

response endpoint is included in the ReplyTo address. This address starts with the
address of the cluster front end, and not the address of Serverl.

The cluster receives the response to the doSonet hi ng operation.
The cluster load balances the message, this time to Server2.

The message delivery fails because there is no asynchronous response endpoint
on Server2 to receive the response.

You can use one of the following to resolve this problem:

Use a SOAP-aware cluster front-end proxy plug-in, such as WebLogic Server
HttpClusterServlet. For more information, see Configure Proxy Plug-ins in
Administering Clusters for Oracle WebLogic Server. This option may not be
feasible, for example if your company has standardized on a cluster front-end
technology.

Ensure that all member servers in a cluster publish an asynchronous response
endpoint so that the asynchronous response messages can be delivered to any
member server and optionally forwarded to the correct server via in-place cluster
routing.

To implement the second option, it is recommended that you define a singleton port
instance and initialize it when the client container initializes (upon deployment). For an
example illustrating the recommended method for initializing the asynchronous
response endpoint in a cluster, see Example 11-1.

# Note:

You may choose to initialize the endpoint in different ways depending on the
container type. For example, if the client is hosted in a web service, a
method on the web service container could be annotated with @ost Const r uct
and that method could initialize the singleton port. In an EJB container, you
could use the ej bCreat e() method as the trigger point for creating the
singleton port.

12-33



Roadmap for Developing Reliable Web
Services and Clients

This chapter presents best practices for developing WebLogic web services and
clients for Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

* Roadmap for Developing Reliable Web Service Clients

* Roadmap for Developing Reliable Web Services

« Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make

Connection)

* Roadmap for Securing Reliable Web Services

# Note:

See also Roadmap for Configuring Web Service Persistence.

13.1 Roadmap for Developing Reliable Web Service Clients

Table 13-1 provides best practices for developing reliable web service clients,
including an example that illustrates the best practices presented. These guidelines
should be used in conjunction with the guidelines provided in Roadmap for Developing
JAX-WS Web Service Clients.

Table 13-1 Roadmap for Developing Reliable Web Service Clients

Best Practice

Description

Always implement a reliability error
listener.

For more information, see Implementing the Reliability Error Listener.

Group messages into units of work.

Rather than incur the RM sequence creation and termination protocol
overhead for every message sent, you can group messages into
business units of work—also referred to as batching. For more
information, see Grouping Messages into Business Units of Work
(Batching).

Note: This best practice is not demonstrated in Example 13-1.

Set the acknowledgement interval to a
realistic value for your particular
scenario.

The recommended setting is two times the nominal interval between
requests. For more information, see Configuring the Acknowledgement
Interval.

Note: This best practice is not demonstrated in Example 13-1.

ORACLE

13-1



Chapter 13
Roadmap for Developing Reliable Web Service Clients

Table 13-1 (Cont.) Roadmap for Developing Reliable Web Service Clients

Best Practice Description

Set the base retransmission interval to  The recommended setting is two times the acknowledgement interval or
a realistic value for your particular nominal response time, whichever is greater. For more information, see
scenario. Configuring the Base Retransmission Interval.

Note: This best practice is not demonstrated in Example 13-1.

Set timeouts (inactivity and sequence  For more information, see Configuring Inactivity Timeout and Configuring
expiration) to realistic values for your the Sequence Expiration.

particular scenario. Note: This best practice is not demonstrated in Example 13-1.

The following example illustrates best practices for developing reliable web service
clients.

Example 13-1 Reliable Web Service Client Best Practices Example

i mport
i mport

i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport

i mport

/**

java.io.*;
java. util.*;

j avax. servl et.*;
j avax. xni . bi nd. JAXBCont ext ;
javax. xm . ws. *;

webl ogic.jws.jaxws.client.CientldentityFeature;

webl ogi c. jws. jaxws. client.async. Asyncd i ent Handl er Feat ur e;
webl ogi . jws. jaxws. client.async. Asyncd i ent Transport Feat ure;
webl ogi c. wsee.reliability2. api.ReliabilityErrorContext;

webl ogi c. wsee.reliability2. api.ReliabilityErrorlListener;
webl ogi c. wsee.reliability2. api.WrnOientlnitFeature;

com sun. xm . ws. devel oper. JAXWSPr oper ti es;

* Exanple client for invoking a reliable web service asynchronously.

*/

public class BestPracticeAsyncRnCl i ent
extends GenericServlet {

private BackendReliabl eServiceService _service;
private BackendReliabl eService _singletonPort;
private WebServiceFeature[] _features;

private static int _requestCount;
private static String _|astResponse;
private static final String MY_PROPERTY = "M/Property";

@verride

publ

icvoidinit()

throws ServletException {

_r
i

1
if

}

equest Count = 0;
ast Response = nul | ;

Only create the web service object once as it is expensive to create repeatedly.
(_service == null) {
_service = new BackendRel i abl eServi ceServi ce();

ORACLE 13-2



Chapter 13

Roadmap for Developing Reliable Web Service Clients

/'l Best Practice: Use a stored list of features, per client ID, to create client instances.

/] Define all features for the web service port, per client ID, so that they are
/1 consistent each time the port is called. For exanple:
/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/'l Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServi ceAsyncRnClient");
features.add(clientldFeature);

/'l Best Practice: Always implement a reliability error listener.
/1 Include this feature in your reusable feature list. This enables you to deternine

/1 a reason for failure, for exanple, RMcannot deliver a request or the RMsequence fails in

Il some way (for exanple, client credentials refused at service).
VérnClientlnitFeature rnfFeature = new WsrnClientlnitFeature();
features. add(rnfeature);
rnfeat ure. setErrorListener(new ReliabilityErrorListener() {

public void onReliabilityError(ReliabilityErrorContext context) {

[/ At a *minimnt do this
Systemout. println("RM sequence failure: " +

cont ext . get Faul t Summar yMessage());
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;

/1 And optionally do this...

/1 The context parameter conveys whether a request or the entire
/'l sequence has failed. |If a sequence fails, you will get a notification
[l for each undelivered request (if any) on the sequence.
if (context.isRequestSpecific()) {
/1 Single request failure (possibly as part of a l|arger sequence failure).
I/ Retrieve the original request.
String operationNanme = context.get OperationNane();
Systemout.printin("Failed to deliver request for operation'" +
operationNane + "'. Fault summary: " +
cont ext . get Faul t Sunmar yMessage());
if ("DoSonet hing".equal s(operationName)) {
try {
String request = context.get Request (JAXBCont ext. newl nstance(),
String.class);
Systemout.printin("Failed to deliver request for operation'" +
operationName + "' with content: " +
request);
Map<String, Serializable> requestProps =
cont ext . get User Request Cont ext Properties();
if (requestProps !=null) {
/] Retrieve the request property. Use MyProperty
/1 to describe the request that failed and print this value
[l during the sinple "error recovery' bel ow.
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println("Got MyProperty value propagated fromrequest: "+
myProperty);
Systemout. println(nyProperty + " failed!");

} catch (Exception e) {
e.printStackTrace();

}
}

ORACLE

13-3



Chapter 13
Roadmap for Developing Reliable Web Service Clients

} else {
/1 The entire sequence has encountered an error.
Systemout.printin("Entire sequence failed: " +
cont ext . get Faul t Sunmar yMessage());

1

/'l Asynchronous endpoi nt.
AsyncCl i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/| Best Practice: Define a port-based asynchronous callback handler,
/'l AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.
BackendRel i abl eServi ceAsyncHandl er handl er =
new BackendRel i abl eServi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse( Response<DoSonet hi ngResponse> res) {
Il ... Handl e Response ...
try {
/] Show getting the MyProperty val ue back.
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout.printIn("Got (reliable) async response: " + _|astResponse);
/] Retrieve the request property. This property can be used to
/1 "remenber' the context of the request and subsequently process
/'l the response.
Map<String, Serializable> requestProps =
(Map<String, Serializable>)
res. get Cont ext (). get (JAXWSPr operti es. PERSI STENT_CONTEXT) ;
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println("Got MyProperty value propagated fromrequest: "+
myProperty);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
B
AsyncC i ent Handl er Feat ure handl er Feature =
new AsyncC i ent Handl er Feat ur e( handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
Il the client 1D "MBackendServiceAsyncRrClient."

_features = features.toArray(new WebServi ceFeature[features.size()]);

/| Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).

/1 The singleton port will be available for the life of the servlet.

Il Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Wb application) is undeployed.

/] Note, we will get a call to destroy() before this.

_singletonPort = _service. getBackendRel i abl eServicePort(_features);

1
@verride

public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

ORACLE 13-4



Chapter 13
Roadmap for Developing Reliable Web Service Clients

[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from
/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse !=null) {
res.getWiter().wite(_| astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Set _lastResponse to NULL in order to make a new invocation agai nst
/1 BackendService to generate a new response

/] Best Practice: Synchronize use of client instances.

/1 Create another port using the *exact* same features used when creating _singletonPort.
/1 Note, this port uses the sane client 1D as the singleton port and it is effectively the
/] same as the singleton fromthe perspective of the web services runtine.

/1 This port will use the asynchronous response endpoint for the client ID,

/] as it is defined in the features |ist.

/1 NOTE: This is *DEFINITELY* not best practice or ideal because our applicationis

/1 incurring the cost of an RM handshake and sequence termination

/1 for *every* reliable request sent. It would be better to send

/1 mul tiple requests on each sequence. |f there is not a natural grouping
/1 for nmessages (a business 'unit of work'), then you could batch

/1 requests onto a sequence for efficiency. For nore information, see

/1 Grouping Messages into Business Units of Work (Batching).

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

/1 Set the endpoint address for BackendServi ce.
((Bi ndi ngProvi der) anot her Port) . get Request Cont ext ().
put ( Bi ndi ngProvi der . ENDPOI NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best Practi ceRel i abl eServi ce/ BackendRel i abl eService");

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set
/1 into the Asyncd ientHandl er Feat ure above) receives the response.

String request = "Protect and serve";
System out. println("Invoking DoSonething reliably/async with request: " +
request);

/1 Add a persistent context property that will be returned on the response.
/1 This property can be used to 'renmenber’ the context of this
/1 request and subsequently process the response. This property will *not*
/1 get passed over wire, so the properties can change independent of the
/1 application message.
Map<String, Serializabl e> persistentContext =
(Map<String, Serializable>)((BindingProvider)anotherPort).
get Request Cont ext () . get (JAXWSPr oper ti es. PERSI STENT_CONTEXT) ;
String nyProperty = "Request " + (++_request Count);
per si st ent Cont ext . put (MY_PROPERTY, nyProperty);
Systemout. println("Request being made (reliably) with M/Property value: " +
nyProperty);
anot her Por t . doSomet hi ngAsync(request);

/1 Return a canned string indicating the response was not received
/1 synchronously. Cient needs to invoke the servlet again to get
/'l the response.

res.getWiter().wite("Waiting for response...");

/1 Best Practice: Explicitly close client instances when processing is complete.

ORACLE 13-5



1
1
1
11
11
11
11
11
11
11

((

Chapter 13
Roadmap for Developing Reliable Web Services

If not closed, the port will be closed automatically when it goes out of scope.

This will force the termnation of the RM sequence we created when sending the first

doSoret hi ng request. For a better way to handle this, see

Grouping Messages into Business Units of Work (Batching).

NOTE: Even though the port is closed explicitly (or even if it goes out of scope)
the reliable request sent above will still be delivered
under the scope of the client ID used. So, even if the service endpoint
is down, RMretries the request and delivers it when the service endpoi nt
avail abl e. The asynchronous resopnse will be delivered as if the port instance was
still available.

java.io.C oseabl e)anot herPort).cl ose();

}
@verride
public void destroy() {
try {
Il Best Practice: Explicitly close client instances when processing is complete.
Il Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*
Il published until our container (Web application) is undepl oyed.
((java.io.C oseabl e) _singletonPort).close();
/1 Upon return, the Wb application is undepl oyed, and our asynchronous
Il response endpoint is stopped (unpublished). At this point,
Il the client ID used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.
} catch (Exception e) {
e.printStackTrace();
}
}

13.2 Roadmap for Developing Reliable Web Services

Table 13-2 provides best practices for developing reliable web services. For best
practices when accessing reliable web services from behind a firewall, see Roadmap
for Accessing Reliable Web Services from Behind a Firewall (Make Connection).

Table 13-2 Roadmap for Developing Reliable Web Services

Best Practice Description

Set the base retransmission interval to  For more information, see Configuring the Base Retransmission Interval.
a realistic value for your particular
scenario.

Set the acknowledgement interval to a  The recommended setting is two times the nominal interval between
realistic value for your particular requests. For more information, see Configuring the Acknowledgement
scenario. Interval.

Set timeouts (inactivity and sequence Consider the following:

expiration) to realistic values foryour . For very short-lived exchanges, the default timeouts may be too long
particular scenario. and sequence state might be maintained longer than necessary.

*  Settimeouts to two times the expected lifetime of a given business
unit of work. This allows the sequence to live long enough

For more information, see Configuring Inactivity Timeout and Configuring

the Sequence Expiration.

ORACLE 13-6



Chapter 13

Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make Connection)

Table 13-2 (Cont.) Roadmap for Developing Reliable Web Services

Best Practice

Description

Use an reliable messaging policy that
reflects the minimum delivery
assurance (or quality of service)
required.

By default, the delivery assurance is set to Exactly Once, In Order. If you
do not require ordering, it can increase performance to set the delivery
assurance to simply Exactly Once. Similarly, if your service can tolerate
duplicate requests, delivery assurance can be set to At Least Once.

For more information about delivery assurance for reliable messaging,
see Table 14-1 and Creating the Web Service Reliable Messaging WS-
Policy File.

13.3 Roadmap for Accessing Reliable Web Services from
Behind a Firewall (Make Connection)

Table 13-3 provides best practices for accessing reliable web services from behind a
firewall using Make Connection. These guidelines should be used in conjunction with
the general guidelines provided in Roadmap for Developing Reliable Web Services
and Roadmap for Developing Asynchronous Web Service Clients.

Table 13-3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make

Connection)

Best Practice

Description

Coordinate the Make Connection
polling interval with the reliable
messaging base retransmission
interval.

The polling interval you set for Make Connection transport sets the lower
limit for the amount of time it takes for reliable messaging protocol
messages to make the round trip between the client and service. If you
set the reliable messaging base retransmission interval to a value near to
the Make Connection polling interval, it will be unlikely that a reliable
messaging request will be received by the web service, and the
accompanying RM acknowledgement sent for that request (at best one
Make Connection polling interval later) before the reliable messaging
runtime attempts to retransmit the request. Setting the reliable
messaging base retransmission interval to a value that is too low results
in unnecessary retransmissions for requests, and potentially a cascading
load on the service side as it attempts to process redundant incoming
requests and Make Connection poll messages to retrieve the responses
from those requests.

Oracle recommends setting the base retransmission interval to a value
that is at least two times the Make Connection polling interval.

Note: When web services reliable messaging and Make Connection are
used together, the Make Connection polling interval value will be
adjusted at runtime, if necessary, to ensure that the value is set at least 3
seconds less than the reliable messaging base transmission interval. If
the base transmission interval is three seconds or less, the Make
Connection polling interval is set to the value of the base retransmission
interval.

For more information setting the Make Connection polling interval and
reliable messaging base retransmission interval, see Configuring the
Polling Interval and Configuring the Base Retransmission Interval,
respectively.

ORACLE

13-7



Chapter 13
Roadmap for Securing Reliable Web Services

13.4 Roadmap for Securing Reliable Web Services

Table 13-4 provides best practices for securing reliable web services using WS-
SecureConversation. These guidelines should be used in conjunction with the
guidelines provided in Roadmap for Developing Reliable Web Services.

Table 13-4 Roadmap for Securing Reliable Web Services

Best Practice

Description

Coordinate the WS-
SecureConversation lifetime with the
reliable messaging base retransmission
and acknowledgement intervals.

A WS-SecureConversation lifetime that is set to a value near to or less
than the reliable messaging base retransmission and acknowledgement
intervals may result in the WS-SecureConversation token expiring before
the reliable messaging handshake message can be sent to the web
service. For this reason, Oracle recommends setting the WS-
SecureConversation lifetime to a value that is at least two times the base
retransmission interval.

For more information setting the base retransmission interval, see
Configuring the Base Retransmission Interval.

ORACLE

13-8



Using Web Services Reliable Messaging

This chapter describes how to use web services reliable messaging (WS-
ReliableMessaging) for WebLogic web services using Java API for XML Web Services
(JAX-WS).

See also Roadmap for Developing Reliable Web Services and Clients.

This chapter includes the following sections:

*  Overview of Web Services Reliable Messaging

» Steps to Create and Invoke a Reliable Web Service

*  Configuring the Source and Destination WebLogic Server Instances
*  Creating the Web Service Reliable Messaging WS-Policy File

*  Programming Guidelines for the Reliable JWS File

* Invoking a Reliable Web Service from a Web Service Client

»  Configuring Reliable Messaging

* Implementing the Reliability Error Listener

* Managing the Life Cycle of a Reliable Message Sequence

*  Monitoring Web Services Reliable Messaging

*  Grouping Messages into Business Units of Work (Batching)

* Client Considerations When Redeploying a Reliable Web Service
* Interoperability with WebLogic Web Service Reliable Messaging

The WebLogic Server Examples Server includes three reliable messaging examples:

*  Configuring Reliable Messaging for JAX-WS Web Services
* Using Make Connection and Reliable Messaging for JAX-WS Web Services
» Configuring Secure and Reliable Messaging for JAX-WS Web Services

For more information, see Web Services Samples in the WebLogic Serer Distribution
in Understanding WebLogic Web Services for Oracle WebLogic Server.

14.1 Overview of Web Services Reliable Messaging

ORACLE

Web service reliable messaging is a framework that enables an application running on
one application server to reliably invoke a web service running on another application
server, assuming that both servers implement the WS-ReliableMessaging
specification. Reliable is defined as the ability to guarantee message delivery between
the two endpoints (web service and client) in the presence of software component,
system, or network failures.

WebLogic web services conform to the WS-ReliableMessaging 1.2 specification
(February 2009) at htt p: // docs. oasi s- open. or g/ ws-r x/ wsr mf 200702 (and supports
version 1.1). This specification describes how two endpoints (web service and client)

14-1


http://docs.oasis-open.org/ws-rx/wsrm/200702

Chapter 14
Overview of Web Services Reliable Messaging

on different application servers can communicate reliably. In particular, the
specification describes an interoperable protocol in which a message sent from a
source endpoint (or client web service) to a destination endpoint (or web service
whose operations can be invoked reliably) is guaranteed either to be delivered,
according to one or more delivery assurances, or to raise an error.

A reliable WebLogic web service provides the following delivery assurances.

Table 14-1 Delivery Assurances for Reliable Messaging

_______________________________________________________________________|
Delivery Assurance  Description

At Most Once Messages are delivered at most once, without duplication. It is
possible that some messages may not be delivered at all.

At Least Once Every message is delivered at least once. It is possible that some
messages are delivered more than once.

Exactly Once Every message is delivered exactly once, without duplication.

In Order Messages are delivered in the order that they were sent. This delivery
assurance can be combined with one of the preceding three
assurances.

The following sections describe how to create reliable web services and clients and
how to configure WebLogic Server instances to which the web services are deployed.

14.1.1 Using WS-Policy to Specify Reliable Messaging Policy

Assertions

WebLogic web services use WS-Policy files to enable a destination endpoint to
describe and advertise its web service reliable messaging capabilities and
requirements. The WS-Policy files are XML files that describe features such as the
version of the supported WS-ReliableMessaging specification and quality of service
requirements. The WS-Policy specification (ht t p: // www. w3. or g/ TR/ ws- pol i cy/ ) provides
a general purpose model and syntax to describe and communicate the policies of a
web service.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions, as described in Pre-packaged WS-Policy Files for Web
Services Reliable Messaging and Make Connection. If the pre-packaged WS-Policy
files do not suit your needs, you must create your own WS-Palicy file. See Creating
the Web Service Reliable Messaging WS-Policy File for details. See Web Service
Reliable Messaging Policy Assertion Reference in the WebLogic Web Services
Reference for Oracle WebLogic Server for reference information about the reliable
messaging policy assertions.

14.1.2 Supported Transport Types for Reliable Messaging

ORACLE

You can use web service reliable messaging asynchronously or synchronously. When
delivering messages asynchronously, you can configure buffering to support automatic
message delivery retries, if desired.

The following table summarizes the transport type support for web services reliable
messaging. For information about transport type support for web service clients, see
Invoking a Reliable Web Service from a Web Service Client. For failure recovery
information, see Reliable Messaging Failure Recovery Scenarios.

14-2


http://www.w3.org/TR/ws-policy/

# Note:

Chapter 14
Overview of Web Services Reliable Messaging

Message buffering is configurable for web services, as described in
Configuring Message Buffering for Web Services. For web service clients,
message buffering is enabled by default.

Table 14-2 Transport Types for Web Services Reliable Messaging

________________________________________________________________________________________________|]
Transport Type Features

Asynchronous transport For buffered web services:

Most robust usage mode, but requires the most overhead.

Automatically retries message delivery.

Survives network outages.

Enables restart of the source or destination endpoint.

Uses non-anonymous ReplyTo.

Employs asynchronous client transport enabling a single thread to service
multiple requests, absorbing load more efficiently. For more information, see
Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client
Transport).

Web service clients can use asynchronous or synchronous invocation
semantics to invoke the web service. For more information, see Table 12-1.

For non-buffered web services:

Less overhead than asynchronous, buffered usage mode.

Persists sequence state only.

Uses non-anonymous ReplyTo.

Web service clients can use asynchronous or synchronous invocation
semantics to invoke the web service. For more information, see Table 12-1.

Synchronous transport .

Offers the least overhead and simplest programming model.

Uses anonymous ReplyTo.

Web service clients can use asynchronous or synchronous invocation
semantics to invoke the web service. For more information, see Table 12-1.
If a web service client invokes a buffered web service using synchronous
transport, one of following will result:

- If this is the first request of the sequence, the destination sequence will be set
to be non-buffered (as though the web service configuration was set as non-
buffered).

- If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

14.1.3 The Life Cycle of the Reliable Message Sequence

The following figure shows a one-way reliable message exchange.

ORACLE

14-3



Chapter 14
Overview of Web Services Reliable Messaging

Figure 14-1 Web Service Reliable Message Exchange

inpoart webgarvice . ports

Web Service .
Client Web Service
-~

4:; o % o

@ th @

= @ =

M

% »w f‘f?l -
Transmit -«

RM Source < RM Destination

Acknowledge

A reliable message sequence is used to track the progress of a set of messages that
are exchanged reliably between an RM source and RM destination. A sequence can
be used to send zero or more messages, and is identified by a string identifier. This
identifier is used to reference the sequence when using reliable messaging.

The web service client application sends a message for reliable delivery which is
transmitted by the RM source to the RM destination. The RM destination
acknowledges that the reliable message has been received and delivers it to the web
service application. The message may be retransmitted by the RM source until the
acknowledgement is received. The RM destination, if configured to buffer requests,
may redeliver the request to the web service if the web service fails to process the
request.

A web service client sends messages to a target web service by invoking methods on
the client instance (port or Dispatch instance). A port is associated with the port type of
the reliable web service and represents a programmatic interface to that service. The
port is created by the <cl i ent gen> child element of the j wsc Ant task. A Dispatch
instance is a loosely-typed, general-purpose interface for delivering whole messages
from the client to the web service. For more information about Dispatch clients, see
Developing a Web Service Dispatch Client.

WebLogic stores the identifier for the reliable message sequence within this client
instance. This causes the reliable message sequence to be connected to a single
client instance. All messages that are sent using a given client instance will use the
same reliable messaging sequence, regardless of the number of messages that are
sent. (Unless you using batching, as described in Grouping Messages into Business
Units of Work (Batching).)

Because WebLogic Server retains resources associated with the reliable sequence, it
is recommended that you take steps to release these resources in a timely fashion.
this can be done by managing the lifecycle of the client instance itself, or by using the
webl ogi c. wsee. reliability2. api.WrnQient APl Use the WrnQient API to perform
common tasks such as set configuration options, get the sequence id, and terminate a
reliable sequence. For more information, see Managing the Life Cycle of a Reliable
Message Sequence.

14.1.4 Reliable Messaging Failure Recovery Scenarios

The following sections outline reliable messaging failure recovery for various
scenarios.

ORACLE 14-4



Chapter 14
Overview of Web Services Reliable Messaging

* RM Destination Down Before Request Arrives

* RM Source Down After Request is Made

* RM Destination Down After Request Arrives

* Failure Scenarios with Non-buffered Reliable Web Services

The first three scenarios assume that buffering is enabled on both the web service and
client. The last scenario describes reliable messaging failure recovery for non-buffered
web services. Buffering is enabled on web service client by default. To configure
buffering on the web service, see Configuring Message Buffering for Web Services.

14.1.4.1 RM Destination Down Before Request Arrives

Table 14-3 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable before a request from the RM source arrives.

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service client by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

Table 14-3 Reliable Messaging Failure Recovery Scenario—RM Destination Down Before

Request Arrives

Transport Type Scenario Description
Asynchronous Transport 1. Client invokes an asynchronous method.

2. Reliable messaging runtime accepts the request; client returns to do
other work.

3. Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

4. Reliable messaging runtime waits for the retry interval and tries to send
the request again. The request delivery fails again.

5. RM destination comes up.

6. Reliable messaging runtime waits for the retry interval and tries to send
the request again. The request delivery succeeds.

7. Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

8. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

ORACLE

14-5



Chapter 14
Overview of Web Services Reliable Messaging

Table 14-3 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Destination Down
Before Request Arrives

Transport Type Scenario Description
Synchronous Transport 1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request and fails
because the RM destination is down.

4. Reliable messaging runtime waits for the retry interval and tries to send
the request again. The request delivery fails again.

5. RM destination comes up.

6. Reliable messaging runtime waits for the retry interval and tries to send
the request again. The request delivery succeeds.

7. Response and acknowledgement are sent to the client via the transport
back-channel. The acknowledgement includes the message number of
the request. The reliable messaging runtime removes the message
from the retry list.

8. Reliable messaging runtime unblocks the client thread and returns the
response.

9. Client receives the response as the return value of the method

invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Note: To achieve true reliability with synchronous transport, it is
recommended that you use Make Connection. For more information, see
Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

14.1.4.2 RM Source Down After Request is Made

Table 14-4 describes the reliable messaging failure recovery scenario when an RM
source goes down after a request is made.

ORACLE

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service clients by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

14-6



Chapter 14
Overview of Web Services Reliable Messaging

Table 14-4 Reliable Messaging Failure Recovery Scenario—RM Source Down After Request is

Made

______________________________________________________________________________________________|]
Scenario Description

Transport Type

Asynchronous Transport

1.
2.

8.

Client invokes an asynchronous method.

Reliable messaging runtime accepts the request; client returns to do
other work.

Client (RM source) goes down.

Client comes up. Client must re-initialize the client instance using the
same client ID. The runtime will use this client ID to retrieve the reliable
sequence ID that was active for the client. For more information, see
Managing the Client ID.

Reliable messaging runtime detects the reliable sequence ID that was
in use prior to the client going down and recovers the accepted
requests.

Note: This step is accomplished only after the client re-initializes the
client instance that was used to send the request because delivery of
the request depends on resources provided by the client instance. It is
recommended that clients initialize the client instance in a static block,
or use a @Post Const ruct annotation or other mechanism to ensure
early initialization of the client instance. For more information, see the
best practices examples presented in Roadmap for Developing
Asynchronous Web Service Clients.

Reliable messaging runtime sends the request and succeeds.

Acknowledgement is sent to the client which includes the message
number of the request. The reliable messaging runtime removes the
message from the retry list.

Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

ORACLE

14-7



Chapter 14
Overview of Web Services Reliable Messaging

Table 14-4 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Source Down After

Request is Made

Transport Type Scenario Description
Synchronous Transport 1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. Before response can be sent, the client (RM source) goes down. Client
thread is lost as the VM exits, along with the invocation state and
calling stack of the client itself.

5. Client (RM source) comes up. Client must re-initialize the client
instance (port or Dispatch) using the same client ID. For more
information, see Managing the Client ID.

6. Reliable messaging runtime detects the previous sequence ID for the
client, and sees that the last request was made synchronously.

7. Reliable messaging runtime delivers a permanent failure notification for
this request, and fails the entire RM sequence associated with the
client instance. Any Rel i abi | i tyErrorLi stener associated with the
client instance will be called at this point.

8. Client is responsible for retrieving the original request (via some client-

specific mechanism) and resending it by re-invoking the client instance
with the request.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

Note: To achieve true reliability with synchronous transport, it is
recommended that you use Make Connection. For more information, see
Using Asynchronous Web Service Clients From Behind a Firewall (Make
Connection).

14.1.4.3 RM Destination Down After Request Arrives

Table 14-5 describes the reliable messaging failure recovery scenario when an RM
destination is unavailable after a request has been accepted from the RM source.

It is assumed that web service buffering is enabled on both the web service and client.
Buffering is enabled on web service client by default. To configure buffering on the
web service, see Configuring Message Buffering for Web Services.

ORACLE

14-8



Chapter 14
Overview of Web Services Reliable Messaging

Table 14-5 Reliable Messaging Failure Recovery Scenario—RM Destination Down After

Request Arrives

______________________________________________________________________________________________|]
Scenario Description

Transport Type

Asynchronous Transport

1.
2.

Client invokes an asynchronous method.

Reliable messaging runtime accepts the request; client returns to do
other work.

Reliable messaging runtime attempts to deliver the request and
succeeds.

The RM destination accepts the request and send an
acknowledgement on the back channel.

Reliable messaging runtime sees the acknowledgement and removes
the message from the retry list.

RM destination goes down.

Reliable messaging runtime on RM source retries any pending
requests during this time.

RM destination comes up.

RM destination recovers the stored request, processes it, and sends
the response.

10. Response arrives and the client processes it.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

ORACLE

14-9



Chapter 14
Overview of Web Services Reliable Messaging

Table 14-5 (Cont.) Reliable Messaging Failure Recovery Scenario—RM Destination Down After

Request Arrives

Transport Type

Scenario Description

Synchronous Transport Note: If you attempt to invoke a buffered web service using synchronous

transport, one of following will result:

« Ifthis is the first request of the sequence, the destination sequence will
be set to be non-buffered (as though the web service configuration was
set as non-buffered).

« Ifthis is not the first request of the sequence (that is, the client sent a
request using asynchronous transport previously), then the request is
rejected and a fault returned.

The following describes the sequence of this scenario:
1. Client invokes a synchronous method.

2. Reliable messaging runtime accepts the request and blocks the client
thread.

3. Reliable messaging runtime attempts to deliver the request. The
request delivery succeeds.

4. RM destination accepts the request and sends an acknowledgement
via the transport back channel.

5. Client (RM source) detects the acknowledgement and removes the
request from the retry list.

6. RM destination goes down.
7. Client thread remains blocked.

8. RM Destination comes up, recovers, and processes the request, and
sends the response to the client.

9. Reliable messaging runtime unblocks the client thread and returns the
response.

10. Client receives the response as the return value of the method
invocation, and processes the response.

Note: At any time, the client can check acknowledgement status, access
information about a message, and so on, as described in Managing the Life
Cycle of a Reliable Message Sequence.

14.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services

ORACLE

A non-buffered web service operates differently than a buffered web service in that it
does not buffer a request to hardened storage before acknowledging it and attempting
to process it. A non-buffered web service will not attempt to reprocess a request if the
service logic fails, whereas a buffered web service will attempt to reprocess the
request. In both cases, buffered or non-buffered, any response generated by the web
service will be buffered before it is sent back to the client.

A non-buffered web service may be useful in the following cases:

e Web service operates against non-transactional resources and should not process
any request more than once (because rolling back the transaction that dequeued
the buffered request cannot roll back the side effects of the non-transactional
service).

14-10



Chapter 14
Steps to Create and Invoke a Reliable Web Service

* Web service is relatively light weight, and does not take very long to process
requests.

*  Web service performance is of paramount importance and risk of losing request or
response is acceptable. Non-buffered web services will not incur the overhead of
buffering the request to a store, and thus can deliver better throughput than a
buffered web service. The performance gain is dependent on how much time and
resources are required to buffer the requests (for example, very large request
messages may take significant time and resources to buffer).

A non-buffered web service is operationally similar to a buffered web service in most
failure scenarios. The exceptions are cases where the service (RM destination) itself
fails. For example, in all the RM source failure scenarios described, the behavior is the
same for a buffered or a non-buffered web service (RM destination). For non-buffered
web services the failure window is open between the following two points:

* The request is accepted for processing.

» The response from the web service is registered for delivery to the client (RM
source).

If the web service (RM destination) fails between these two points, the RM source will
assume the request has been successfully processed (since it has been
acknowledged) but will never receive a response, and the request may never have
been processed.

Carefully consider this failure window before configuring a web service to run as non-
buffered.

14.2 Steps to Create and Invoke a Reliable Web Service

ORACLE

Configuring reliable messaging for a WebLogic web service requires standard JMS
tasks such as creating JMS servers and Store and Forward (SAF) agents, as well as
web service-specific tasks, such as adding additional JWS annotations to your JWS
file. Optionally, you create custom WS-Policy files that describe the reliable messaging
capabilities of the reliable web service if you do not use the pre-packaged ones.

If you are using the WebLogic client APIs to invoke a reliable web service, the client
application must run on WebLogic Server. Thus, configuration tasks must be
performed on both the source WebLogic Server instance on which the web service
client code is deployed, as well as the destination WebLogic Server instance on which
the reliable web service itself is deployed.

Table 14-6 summarizes the steps to create a reliable web service and a client that
invokes an operation of the reliable web service. The procedure describes how to
create the JWS files that implement the web service and client from scratch; if you
want to update existing JWS files, use this procedure as a guide. The procedure also
describes how to configure the source and destination WebLogic Server instances.

It is assumed that you have completed the following tasks:

* You have created the destination and source WebLogic Server instances. You
deploy the reliable web service to the destination WebLogic Server instance, and
the client that invokes the reliable web service to the source WebLogic Server
instance.

* You have set up an Ant-based development environment.

14-11



Chapter 14
Steps to Create and Invoke a Reliable Web Service

* You have working bui | d. xm files that you can edit, for example, to add targets for
running the j wsc Ant task and deploying the generated reliable web service.

For more information, see Developing JAX-WS Web Services. For best practices for
developing asynchronous and reliable web services and clients, see Roadmap for
Developing Reliable Web Services and Clients.

Table 14-6 Steps to Create and Invoke a Reliable Web Service

#  Step Description
Configure the destination You deploy the reliable web service to the destination WebLogic Server
and source WebLogic instance, and the client that invokes the reliable web service to the source
Server instances. WebLogic Server instance. For information about configuring the destination
WebLogic Server instance, see Configuring the Source and Destination
WebLogic Server Instances.
2 Create the WS-Policy file.  Using your favorite XML or plain text editor, optionally create a WS-Policy file
(Optional) that describes the reliable messaging capabilities of the web service running on
the destination WebLogic Server. For details about creating your own WS-
Policy file, see Creating the Web Service Reliable Messaging WS-Policy File.
Note: This step is not required if you plan to use one of the WS-Palicy files that
are included in WebLogic Server; see Pre-packaged WS-Policy Files for Web
Services Reliable Messaging and Make Connection for more information.
3 Create or update the JWS  This web service will be deployed to the destination WebLogic Server instance.
file that implements the See Programming Guidelines for the Reliable JWS File.
reliable web service. For examples demonstrating best practices, see Roadmap for Developing
Reliable Web Services and Clients.
4 Update the bui | d. xn file  Update your bui | d. xnl fil e to include a call to the j wsc Ant task which will
that is used to compile the  compile the reliable JWS file into a web service.
reliable web services. See Running the jwsc WebLogic Web Services Ant Task for general information
about using the j wsc task.
5 Compile and deploy the Compile the reliable JWS file by calling the appropriate target and deploy to the
reliable JWS file. destination WebLogic Server. For example:
pronpt > ant build-reliabl eService deploy-reliableService
6 Create or update the web  The web service client invokes the reliable web service and will be deployed to
service client. the source WebLogic Server. See Invoking a Reliable Web Service from a Web
Service Client.
7 Configure reliable Configure reliable messaging for the reliable web service using the WebLogic
messaging. (Optional) Server Administration Console. The WS-Policy file attached to the reliable web
service provides the initial configuration settings. See Configuring Reliable
Messaging.
8 Implement a reliability error Implement a reliability error listener to receive notifications if a reliable delivery
listener. (Optional) fails. See Implementing the Reliability Error Listener.
9 Manage the life cycle ofa  WebLogic Server provides a client API,
reliable message webl ogi c. wsee. reliability2. api.Wrndient, for use with the web service
sequence. (Optional) reliable messaging. Use this API to perform common life cycle tasks such as set
configuration options, get the reliable sequence id, and terminate a reliable
sequence. See Managing the Life Cycle of a Reliable Message Sequence.
10 Update the bui | d. xm file  Update your bui | d. xn fil e to include a call to the j wsc Ant task which will
that is used to compile the  compile the reliable JWS file into a web service.
client web service. See Running the jwsc WebLogic Web Services Ant Task for general information
about using the j wsc task.
ORACLE 14-12



Chapter 14
Configuring the Source and Destination WebLogic Server Instances

Table 14-6 (Cont.) Steps to Create and Invoke a Reliable Web Service
]

# Step

Description

11 Compile and deploy the Compile your client file by calling the appropriate target and deploy to the
web service client file. source WebLogic Server. For example:

pronpt > ant build-clientService depl oy-clientService

12  Monitor web services Use the WebLogic Server Administration Console to monitor web services
reliable messaging. reliable messaging. See Monitoring Web Services Reliable Messaging.

Each of these steps is described in more detail in the following sections. In addition,
the following topics are discussed:

*  Grouping Messages into Business Units of Work (Batching)—Describes how to
group messages into business units of work—also called batching—to improve
performance when using reliable messaging.

» Client Considerations When Redeploying a Reliable Web Service—Describes
client considerations for when you deploy a new version of an updated reliable
WebLogic web service alongside an older version of the same web service.

* Interoperability with WebLogic Web Service Reliable Messaging—Provides
recommendations for interoperating with WebLogic web services reliable
messaging.

14.3 Configuring the Source and Destination WebLogic
Server Instances

ORACLE

You need to configure web service persistence on the destination and source
WebLogic Server instances. You deploy the reliable web service to the destination
WebLogic Server instance, and the client that invokes the reliable web service to the
source WebLogic Server instance.

When using web services reliable messaging, the web services reliable messaging
sequence is saved to the web service persistent store any time its state changes.
Examples of state change include:

* Reliable messaging state is updated (creating, created, terminating, terminated,
and so on).

e Security property is updated (such as security context token)

* Message is sent on the reliable messaging sequence (if message buffering is
enabled)

* Acknowledgement when a message arrives

You can configure web service persistence using the Configuration Wizard to extend
the WebLogic Server domain using a web services-specific extension template.
Alternatively, you can configure the resources required for these advanced features
using the Oracle WebLogic Server Administration Console or WLST. For information
about configuring web service persistence, see Configuring Web Service Persistence.

14-13



Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

You may also wish to configure buffering for web services. For considerations and
steps to configure message buffering, see Configuring Message Buffering for Web
Services.

14.4 Creating the Web Service Reliable Messaging WS-
Policy File

A WS-Policy file is an XML file that contains policy assertions that comply with the WS-
Policy specification. In this case, the WS-Policy file contains web service reliable
messaging policy assertions.

WebLogic Server includes pre-packaged WS-Policy files that contain typical reliable
messaging assertions that you can use if you do not want to create your own WS-
Policy file.

The pre-packaged WS-Policy files are listed in the following table. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value
in this column is no, then the WS-Policy file can be attached at the class level only. For
more information, see Pre-packaged WS-Policy Files for Web Services Reliable
Messaging and Make Connection.

¢ Note:

The Defaul t Rel i ability.xm and LongRunni ngRel i ability.xnl files are
deprecated in this release. Use of the Def aul t Rel i abi lityl. 2. xnl,
Reliabilityl.2 SequenceTransportSecurity, or Reliabilityl.0_1.2.xnl fileis
recommended and required to comply with the 1.2 version of the WS-
ReliableMessaging specification at htt p: // docs. oasi s- open. or g/ ws-r x/ wsr nf
200702/ wsr m 1. 2- spec- os. pdf .

Table 14-7 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Defaul tReliabilityl.2.xm Specifies policy assertions related to delivery assurance. Yes

The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.2 at http: //
docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702. See
DefaultReliability1.1.xml (WS-Policy File).

Defaul tReliabilityl. 1. xn Specifies policy assertions related to quality of service. The Yes

web service reliable messaging assertions are based on
WS Reliable Messaging Policy Assertion 1.1 at http://
docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1-
spec-0s-01. ht n . See DefaultReliabilityl.1.xml (WS-Policy
File).

Reliabilityl.2_ExactlyOnce_Wth Specifies policy assertions related to quality of service. It No

MCL. 1. xm enables Make Connection support on the web service and
specifies usage as optional on the web service client. See
Reliabilityl.2_ExactlyOnce_WithMC1.1.xml (WS-Policy
File).

ORACLE 14-14


http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

Table 14-7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Reliabilityl.2_SequenceSTRSecur Specifies that in order to secure messages in a reliable No

ity

sequence, the runtime will use the

wsse: Securit yTokenRef er ence that is referenced in the

Cr eat eSequence message. It enables Make Connection
support on the web service and specifies usage as optional
on the web service client. The web service reliable
messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.2 at htt p: // docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702. See
Reliabilityl.2_SequenceTransportSecurity.xml (WS-Policy
File).

Reliabilityl.1_SequenceSTRSecur
ity

The web service reliable messaging assertions are based  Yes
on WS Reliable Messaging Policy Assertion 1.1 athttp://

docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1-
spec-0s-01. htn . See

Reliabilityl.1 SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.2_SequenceTranspor
t Security

Specifies policy assertions related to transport-level Yes
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable

Messaging Policy Assertion 1.2 at http: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702. See
Reliabilityl.2_SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.1_SequenceTranspor
t Security

Specifies policy assertions related to transport-level Yes
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable

Messaging Policy Assertion 1.1 at htt p: // docs. oasi s-

open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec-

0s-01. htn . See

Reliabilityl.1 _SequenceTransportSecurity.xml (WS-Policy

File).

Reliabilityl.0_1.2. xni

Combines 1.2 and 1.0 WS-Reliable Messaging policy No
assertions. The policy assertions for the 1.2 version Make
Connection support on the web service and specifies

usage as optional on the web service client. This sample

relies on smart policy selection to determine the policy
assertion that is applied at runtime. See

Reliability1.0_1.2.xml (WS-Policy File).

Reliabilityl.0_1.1.xni

Combines 1.1 and 1.0 WS Reliable Messaging policy Yes
assertions. See Reliability1.0_1.1.xml (WS-Policy.xml File).

ORACLE

14-15


http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

Table 14-7 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Defaul t Reliability.xn Deprecated. The web service reliable messaging Yes

assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 at ht t p: // schemas. xni soap. or g/ ws/
2005/ 02/ r i W5- RMPol i cy. pdf. In this release, many of the
reliable messaging policy assertions are managed through
JWS annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See
DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

LongRunni ngRel i abi l'ity. xm Deprecated. The web service reliable messaging Yes

assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 for long running processes. In this
release, many of the reliable messaging policy assertions
are managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-
Policy file, except that it specifies a much longer activity
timeout interval (24 hours.) See LongRunningReliability.xml
WS-Policy File (WS-Policy) [Deprecated].

You can use one of the pre-packaged reliable messaging WS-Policy files included in
WebLogic Server; these files are adequate for most use cases. You cannot modify the
pre-packaged files. If the values do not suit your needs, you must create a custom
WS-Policy file. The following sections describe how to create a custom WS-Policy file.

e Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Versions 1.2 and 1.1

e Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions
Version 1.0 (Deprecated)

e Using Multiple Policy Alternatives

14.4.1 Creating a Custom WS-Policy File Using WS-
ReliableMessaging Policy Assertions Versions 1.2 and 1.1

ORACLE

This section describes how to create a custom WS-Policy file that contains web
service reliable messaging assertions that are based on the following specifications:

* WS Reliable Messaging Policy Assertion Version 1.2 at htt p: // docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 2- spec-0s. ht m

* WS Reliable Messaging Policy Assertion Version 1.1 at http:// docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec- 0s- 01. ht i

The root element of the WS-Policy file is <Pol i cy> and it should include the following
namespace declaration:

<wsp: Pol i cy
xm ns: wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy" >

14-16


http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

You wrap all web service reliable messaging policy assertions inside of a
<wsr np: RMAsserti on> element. This element should include the following namespace
declaration for using web service reliable messaging policy assertions:

<wsr np: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-rx/ wsr np/ 200702" >

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. The order in which the assertions appear is important.
You can specify the following assertions; the order they appear in the following list is
the order in which they should appear in your WS-Policy file:

Table 14-8 Web Service Reliable Messaging Assertions (Versions 1.2 and 1.1)

L ___________________________________________________________________________________________|]
Assertion Description

To secure messages in a reliable sequence, the runtime will use the
wsse: Securit yTokenRef er ence that is referenced in the

Cr eat eSequence message. You can only specify one security
assertion; that is, you can specify wsr np: SequenceSTR or

wsr np: SequenceTr ansport Securi ty, but not both.

<wsr np: SequenceSTR>

To secure messages in a reliable sequence, the runtime will use the
SSL transport session that is used to send the Cr eat eSequence
message. This assertion must be used in conjunction with the

sp: Transpor t Bi ndi ng assertion that requires the use of some
transport-level security mechanism (for example, sp: H t psToken).
You can only specify one security assertion; that is, you can specify
wsr p: SequenceSTR or wsr np: SequenceTr ansport Securi ty, but not
both.

<wsrp: SequenceTr ansport Security>

Delivery assurance (or quality of service) of the web service. Valid
values are At Mbst Once, At Least Once, Exact | yOnce, and | nOrder. You
can set one of the delivery assurances defined in the following table.
If not set, the delivery assurance defaults to Exact | yOnce. For more
information about delivery assurance, see Table 14-1.

<wsrm Del i ver yAssur ance>

The following example shows a simple web service reliable messaging WS-Policy file:

<?xm version="1.0"?>

<wsp: Pol i cy xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsr np: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsrnp: SequenceTr ansport Security/>
<wsrnp: Del i veryAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Pol i cy>

For more information about Reliable Messaging policy assertions in the WS-Policy file,

see Web Service Reliable Messaging Policy Assertion Reference in WebLogic Web
Services Reference for Oracle WebLogic Server.

ORACLE 14-17



Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

14.4.2 Creating a Custom WS-Policy File Using WS-
ReliableMessaging Policy Assertions Version 1.0 (Deprecated)

This section describes how to create a custom WS-Policy file that contains web
service reliable messaging assertions that are based on WS Reliable Messaging
Policy Assertion Version 1.0 at htt p: // schemas. xn soap. or g/ ws/ 2005/ 02/ r m W&
RWPol i cy. pdf .

" Note:

Many of the reliable messaging policy assertions described in this section
are managed through JWS annotations or configuration.

The root element of the WS-Policy file is <Pol i cy> and it should include the following
namespace declarations for using web service reliable messaging policy assertions:

<wsp: Pol i cy
xm ns:wsrne"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r nf
xm ns: wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="http://www. bea. conf wsrn policy">

You wrap all web service reliable messaging policy assertions inside of a

<wsr m RMAsserti on> element. The assertions that use the wsrm namespace are
standard ones defined by the WS-ReliableMessaging specification at http://

docs. oasi s- open. or g/ ws-r x/ wsr ml 200702/ wsr m 1. 1- spec- os- 01. pdf . The assertions that
use the beapol i cy: namespace are WebLogic-specific. See Web Service Reliable
Messaging Policy Assertion Reference in the WebLogic Web Services Reference for
Oracle WebLogic Server for detalils.

The following table lists the web service reliable messaging assertions that you can
specify in the WS-Policy file. All web service reliable messaging assertions are
optional, so only set those whose default values are not adequate. The order in which
the assertions appear is important. You can specify the following assertions; the order
they appear in the following list is the order in which they should appear in your WS-
Policy file,

Table 14-9 Web Service Reliable Messaging Assertions (Version 1.0)

Assertion

Description

<wsrm | nactivityTi meout >

Number of milliseconds, specified with the M | | i seconds attribute,
which defines an inactivity interval. After this amount of time, if the
destination endpoint has not received a message from the source
endpoint, the destination endpoint may consider the sequence to
have terminated due to inactivity. The same is true for the source
endpoint. By default, sequences never timeout.

<wsr m BaseRet ransmi ssi onl nt erval >

Interval, in milliseconds, that the source endpoint waits after
transmitting a message and before it retransmits the message if it
receives no acknowledgment for that message. Default value is set
by the SAF agent on the source endpoint's WebLogic Server
instance.

ORACLE

14-18


http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Chapter 14
Creating the Web Service Reliable Messaging WS-Policy File

Table 14-9 (Cont.) Web Service Reliable Messaging Assertions (Version 1.0)

____________________________________________________________________________________________________|]
Assertion Description

Specifies that the retransmission interval will be adjusted using the

< i >
ver m Exponenti al Backof f exponential backoff algorithm. This element has no attributes.

Maximum interval, in milliseconds, in which the destination endpoint
must transmit a standalone acknowledgement. The default value is
set by the SAF agent on the destination endpoint's WebLogic Server
instance.

<wsr m Acknow edgnent | nt erval >

Amount of time after which the reliable web service expires and does
not accept any new sequence messages. The default value is to
never expire. This element has a single attribute, Expi r es, whose
data type is an XML Schema duration type (see http://

www. W3. or g/ TR/ 2001/ REC- xml schema- 2- 20010502/ #dur at i on). For
example, if you want to set the expiration time to one day, use the
following: <beapol i cy: Expires Expires="P1D" />,

<beapol i cy: Expi res>

Delivery assurance level, as described in Table 14-1. The element
has one attribute, QOS, which you set to one of the following values:
At Most Once, At Least Once, or Exact | yOnce. You can also include the
I nOr der string to specify that the messages be in order. The default
value is Exact | yOnce | nOr der . This element is typically not set.

<beapol i cy: QOS>

The following example shows a simple web service reliable messaging WS-Policy file:

<?xnl version="1.0"?>

<wsp: Pol i cy
xm ns:wsrme"htt p: // schemas. xnl soap. or g/ ws/ 2005/ 02/ r i pol i cy"
xm ns: wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="htt p:// wwmv. bea. coml wsrn pol i cy"
>
<wsr m RMAsserti on>
<wsrm | nactivityTi meout
M11iseconds="600000" />
<wsrm BaseRet ransni ssi onl nt erval
M1 1iseconds="500" />
<wsr m Exponenti al Backof f />
<wsr m Acknow edgement I nt er val
M11iseconds="2000" />
</wsrm RMAssertion>
</wsp: Pol i cy>

For more information about reliable messaging policy assertions in the WS-Policy file,
see Web Service Reliable Messaging Policy Assertion Reference in WebLogic Web
Services Reference for Oracle WebLogic Server.

14.4.3 Using Multiple Policy Alternatives

You can configure multiple policy alternatives—also referred to as smart policy
alternatives—for a single web service by creating a custom policy file. At runtime,
WebLogic Server selects which of the configured policies to apply. It excludes policies
that are not supported or have conflicting assertions and selects the appropriate
policy, based on your configured preferences, to verify incoming messages and build
the response messages.

ORACLE 14-19


http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/#duration

Chapter 14
Programming Guidelines for the Reliable JWS File

The following example provides an example of a security policy that supports both 1.2
and 1.0 WS-Reliable Messaging. Each policy alternative is enclosed in a <wsp: Al | >
element.

# Note:

The 1.0 web service reliable messaging assertions are prefixed by wsrnp10.

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsp: Exact | yOne>
<wsp:All>
<wsrnmpl0: RVAssertion
xm ns: wsrnpl0="http://schemas. xn soap. or g/ ws/ 2005/ 02/ r m pol i cy" >
<wsr npl0: I nactivityTi meout MI1iseconds="1200000"/>
<wsr np10: BaseRet ransmi ssionlnterval MI1iseconds="60000"/>
<wsr np10: Exponent i al Backof f/>
<wsr np10: Acknowl edgenent I nterval M11iseconds="800"/>
</ wsrnp10: RMAsserti on>
</wsp:All>
<wsp:All>
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: At Most Once/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp:All>
</ wsp: Exact | yOne>
</ wsp: Policy>

For more information about multiple policy alternatives, see Smart Policy Selection in
Securing WebLogic Web Services for Oracle WebLogic Server.

14.5 Programming Guidelines for the Reliable JWS File

# Note:

For best practices for developing reliable web services, see Roadmap for
Developing Reliable Web Services and Clients.

Use the @ol i cy annotation in your JWS file to specify that the web service has a WS-
Policy file attached to it that contains reliable messaging assertions. WebLogic Server
delivers a set of pre-packaged WS-Policy files, as described in Pre-packaged WS-
Policy Files for Web Services Reliable Messaging and Make Connection.

Follow the following guidelines when using the @wol i cy annotation for web service
reliable messaging:

e Usethe uri attribute to specify the build-time location of the policy file, as follows:

ORACLE 14-20



ORACLE

Chapter 14
Programming Guidelines for the Reliable JWS File

If you have created your own WS-Policy file, specify its location relative to the
JWS file. For example:

@olicy(uri="ReliableHel | oWrldPolicy.xm",
direction=Policy.Direction.both,
attachToVédl =t r ue)

In this example, the Rel i abl eHel | oWor | dPol i cy. xni file is located in the same
directory as the JWS file.

To specify one of the pre-packaged WS-Palicy files or a WS-Policy file that is
packaged in a shared Java EE library, use the policy: prefix along with the
name and path of the policy file. This syntax tells the j wsc Ant task at build-
time not to look for an actual file on the file system, but rather, that the web
service will retrieve the WS-Policy file from WebLogic Server at the time the
service is deployed.

# Note:

Shared Java EE libraries are useful when you want to share a WS-
Policy file with multiple web services that are packaged in different
Enterprise applications. As long as the WS-Policy file is located in
the META- I NF/ pol i ci es or VEB- | NF/ pol i ci es directory of the shared
Java EE library, you can specify the policy file in the same way as if
it were packaged in the same archive at the web service. See
Creating Shared Java EE Libraries and Optional Packages in
Developing Applications for Oracle WebLogic Server for information
about creating libraries and setting up your environment so the web
service can locate the policy files.

To specify that the policy file is published on the Web, use the http: prefix
along with the URL, as shown in the following example:

@olicy(uri="http://someSite.conlpolicies/nypolicy.xm"
direction=Policy.Direction.both,
attachToWsdl =true)

By default, WS-Policy files are applied to both the request (inbound) and response
(outbound) SOAP messages. You can change this default behavior with the

di recti on attribute by setting the attribute to Pol i cy. Di recti on. i nbound or

Pol i cy. Direction. out bound.

You can specify whether the web service requires the operations to be invoked
reliably and have the responses delivered reliably using the wsp: opti onal attribute
within the policy file specified by uri .

Please note:

If the client uses synchronous transport to invoke a web service, and the
inbound direction of the operation requires reliability (opti onal attribute is

f al se), the client must provide an offer sequence (<wsrm Cffer...>as
described in the WS-ReliableMessaging specification at htt p: // docs. oasi s-
open. or g/ ws-r x/ wsr mf 200702/ wsr m 1. 1- spec- os- 01. pdf ) for use when sending
reliable responses.

If the client uses asynchronous transport, the client is not required to send an
offer sequence. If a request is made reliably, and the outbound direction has
any RM policy (optional or not), the reliable messaging runtime will enforce the

14-21


http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.1-spec-os-01.pdf

Chapter 14
Invoking a Reliable Web Service from a Web Service Client

handshaking of a new RM sequence for sending the response. This new
sequence will be associated with the request sequence, and all responses
from that point onward are sent on the new response sequence. The response
sequence is negotiated with the endpoint indicated by the ReplyTo address of
the request.

e Setthe attachTowsdl attribute of the @wol i cy annotation to specify whether the
policy file should be attached to the WSDL file that describes the public contract of
the web service. Typically, you want to publicly publish the policy so that client
applications know the reliable messaging capabilities of the web service. For this
reason, the default value of this attribute is t r ue.

For more information about the @ol i cy annotation, see weblogic.jws.Policy in
WebLogic Web Services Reference for Oracle WebLogic Server.

Example 14-1 shows a simple JWS file that implements a reliable web service.

Example 14-1 Example of a Reliable Web Service

import javax.jws.\WebServi ce;

i mport webl ogi c. jws. Policies;
i mport webl ogi c. jws. Policy;

/**
* Exanpl e web service for reliable client best practice exanples
*/
@\ebServi ce
/1 Enable RMon this service.
@olicies( { @olicy(uri = "policy:DefaultReliabilityl.2.xm") })
public class BackendReliabl eService {

public String doSomething(String what) {
System out. print!|n("BackendRel i abl eService doing: " + what);

return "Did (Reliably) '" + what + "' at: " + SystemcurrentTimeMIlis();

}
}

In the example, the predefined Def aul t Rel i abi | ityl. 2. xnl policy file is attached to the
web service at the class level, which means that the policy file is applied to all public
operations of the web service—the doSonet hi ng() operation can be invoked reliably.
The policy file is applied to both request and response by default. For information
about the pre-packaged policies available and creating a custom policy, see Creating
the Web Service Reliable Messaging WS-Policy File.

14.6 Invoking a Reliable Web Service from a Web Service
Client

# Note:

For best practices for developing reliable web service clients, see Roadmap
for Developing Reliable Web Service Clients.

ORACLE 14-22



Chapter 14
Invoking a Reliable Web Service from a Web Service Client

The following table summarizes how to invoke a reliable web service from a web
service client based on the transport type that you want to employ. For a description of
transport types, see Table 14-2.

Table 14-10 Invoking a Reliable Web Service Based on Transport Type

____________________________________________________________________________________________|]
Transport Type Description

Asynchronous transport To use asynchronous transport, perform the following steps:

1. Implement the web service client, as described in Table 12-3.

In step 3 of Table 12-3, implement one of the following transport mechanisms,
depending on whether the client is behind a firewall or not:

-Asynchronous client transport feature, as described in Developing Scalable
Asynchronous JAX-WS Clients (Asynchronous Client Transport).

- Make Connection if the client is behind a firewall, as described in Using
Asynchronous Web Service Clients From Behind a Firewall (Make Connection).

2. Invoke the web service using either asynchronous or synchronous invocation
semantics.

Note: You can invoke synchronous operations when asynchronous client
transport or Make Connection is enabled, as described in Configuring
Asynchronous Client Transport for Synchronous Operations and Configuring
Make Connection as the Transport for Synchronous Methods.

Synchronous transport To use synchronous transport, invoke an asynchronous or synchronous method on
the reliable messaging service port instance using the standard JAX-WS Reference
Implementation, as described in Using the JAX-WS Reference Implementation.

Note: If you attempt to invoke a buffered web service using synchronous transport,
one of following will result:

e If this is the first request of the sequence, the destination sequence will be set to
be non-buffered (as though the web service configuration was set as non-
buffered).

e If this is not the first request of the sequence (that is, the client sent a request
using asynchronous transport previously), then the request is rejected and a
fault returned.

For additional control on the client side, you may wish to perform one or more of the
following tasks:

«  Configure reliable messaging on the client side, as described in Configuring
Reliable Messaging.

* Implement the reliability error listener to receive notifications if a reliable delivery
fails, as described in Implementing the Reliability Error Listener. Oracle
recommends that you always implement the reliability error listener as a best
practice.

» Perform common life cycle tasks on the reliable messaging sequence, such as set
configuration options, get the reliable sequence id, and terminate a reliable
sequence, as described in Managing the Life Cycle of a Reliable Message
Sequence.

ORACLE 14-23



Chapter 14
Configuring Reliable Messaging

14.7 Configuring Reliable Messaging

< Note:

For best practices for configuring reliable web services, see Roadmap for
Developing Reliable Web Services and Clients.

You can configure properties for a reliable web service and client at the WebLogic
Server, web service endpoint, or web service client level.

The properties that you define at the WebLogic Server level apply to all reliable web
services and clients on that server. For information about configuring reliable
messaging at the WebLogic Server level, see Configuring Reliable Messaging on
WebLogic Server.

If desired, you can override the reliable message configuration options defined at the
server level, as follows:

e At the web service endpoint level by updating the application deployment plan.
The deployment plan associates new values with specific locations in the
descriptors for your application, and is stored in the webl ogi c- webser vi ces. xm
descriptor. At deployment time, a deployment plan is merged with the descriptors
in the application by applying the values in its variable assignments to the
locations in the application descriptors to which the variables are linked. For more
information, see Configuring Reliable Messaging on the Web Service Endpoint.

* At the web service client level, as described in Configuring Reliable Messaging on
Web Service Clients.

The following sections describe how to configure reliable messaging at the WebLogic
Server, web service endpoint, and web service client levels.

e Configuring Reliable Messaging on WebLogic Server

e Configuring Reliable Messaging on the Web Service Endpoint
e Configuring Reliable Messaging on Web Service Clients

e Configuring the Base Retransmission Interval

e Configuring the Retransmission Exponential Backoff

»  Configuring the Sequence Expiration

e Configuring Inactivity Timeout

e Configuring a Non-buffered Destination for a Web Service

e Configuring the Acknowledgement Interval

e Implementing the Reliability Error Listener

14.7.1 Configuring Reliable Messaging on WebLogic Server

You can configure reliable messaging on WebLogic Server using the WebLogic Server
Administration Console or WLST, as described in the following sections.

ORACLE 14-24



Chapter 14
Configuring Reliable Messaging

* Using the Administration Console

e Using WLST

14.7.1.1 Using the Administration Console

To configure reliable messaging for WebLogic Server using the WebLogic Server
Administration Console:

1. Invoke the WebLogic Server Administration Console, as described in Using the
Administration Console in Understanding WebLogic Web Services for Oracle
WebLogic Server.

2. In the left navigation pane, select Environment, then Servers.

3. Select the Configuration tab and in the Server tables, click on the name of the
server for which you want to configure reliable messaging.

4. Click the Configuration tab, then the Web Services tab, then the Reliable
Message tab.

5. Edit the reliable messaging properties, as described in the following sections:

e Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

*  Configuring the Retransmission Exponential Backoff on WebLogic Server or
Web Service Endpoint

»  Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

e Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

»  Configuring a Non-buffered Destination for a Web Service
e Configuring the Acknowledgement Interval
6. Click Save.

For more information, see Web Service Reliable Messaging in the Oracle WebLogic
Server Administration Console Online Help.

14.7.1.2 Using WLST

Alternatively, you can use WLST to configure reliable messaging. For information
about using WLST to extend the domain, see Configuring Existing Domains in
Understanding the WebLogic Scripting Tool.

14.7.2 Configuring Reliable Messaging on the Web Service Endpoint

By default, web service endpoints use the reliable messaging configuration defined for
the server. You can override the reliable messaging configuration used by the web
service endpoint using the WebLogic Server Administration Console, as follows:

ORACLE 14-25



Chapter 14
Configuring Reliable Messaging

# Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console, as described in Invoking the
Administration Console in Understanding WebLogic Web Services for Oracle
WebLogic Server.

In the left navigation pane, select Deployments.

Click the name of the web service in the Deployments table.
Select the Configuration tab, then the Port Components tab.
Click the name of the web service endpoint in the Ports table.

Select the Reliable Message tab.

N o o M w0 DN

Click Customize Reliable Message Configuration and follow the instructions to
save the deployment plan, if required.

8. Edit the reliable messaging properties, as described in the following sections:

e Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

e Configuring the Retransmission Exponential Backoff on WebLogic Server or
Web Service Endpoint

e Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

e Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

e Configuring a Non-buffered Destination for a Web Service
e Configuring the Acknowledgement Interval
9. Click Save.

For more information, see Configure Web Service Reliable Messaging in the Oracle
WebLogic Server Administration Console Online Help.

14.7.3 Configuring Reliable Messaging on Web Service Clients

ORACLE

For general information about configuring reliable messaging on web service clients,
see Configuring Web Service Clients.

For information about using the webl ogi c. wsee. reliability2.api.WrnOientlnitFeature
when creating a web services reliable messaging client, refer to the following sections:

» Configuring the Base Retransmission Interval on the Web Service Client
*  Configuring the Retransmission Exponential Backoff on the Web Service Client
»  Configuring the Sequence Expiration on the Web Service Client

*  Configuring the Inactivity Timeout on the Web Service Client

14-26



Chapter 14
Configuring Reliable Messaging

14.7.4 Configuring the Base Retransmission Interval

If the source endpoint does not receive an acknowledgement for a given message
within the specified base retransmission interval, the source endpoint retransmits the
message. The source endpoint can modify this retransmission interval at any point
during the lifetime of the sequence of messages.

This interval can be used in conjunction with the retransmission exponential backoff,
described in Configuring the Retransmission Exponential Backoff, to specify the
algorithm that is used to adjust the retransmission interval.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHIMS, where nY specifies the number of years, nMspecifies the
number of months, nD specifies the number of days, T is the date/time separator, nH
specifies the number of hours, nMspecifies the number of minutes, and nS specifies the
number of seconds. This value defaults to PODT5S (5 seconds).

The following sections describe how to configure the base retransmission interval:

e Configuring the Base Retransmission Interval on WebLogic Server or the Web
Service Endpoint

»  Configuring the Base Retransmission Interval on the Web Service Client

14.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or
the Web Service Endpoint

ORACLE

To configure the retransmission exponential backoff on WebLogic Server or the web
service endpoint level using the WebLogic Server Administration Console, perform the
following steps:

# Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

e Configuring Reliable Messaging on WebLogic Server
e Configuring Reliable Messaging on the Web Service Endpoint

2. Setthe Base Retransmission Interval value, as required.

14-27



Chapter 14
Configuring Reliable Messaging

14.7.4.2 Configuring the Base Retransmission Interval on the Web Service
Client

¢ Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-11 defines that webl ogi c. wsee. rel i ability2. api.WrnCientlnitFeature
methods for configuring the interval of time that must pass before a message is
retransmitted to the RM destination.

Table 14-11 Methods for Configuring the Base Retransmission Interval

Method Description
String getBaseRetransm ssionlnterval () Gets the base retransmission interval.
voi d set BaseRetransm ssionlnterval (Stringinterval) Sets the base retransmission interval.

In the following example, the base retransmission interval is set to 3 hours.

inport java.xm.ws.WebService;

import java.xm .ws.WebServi ceRef;

import wsrm jaxws. exanpl e.client_service.*;

inport wsrm jaxws. exanpl e. client_service. EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

@\ebServi ce
public class CientServicelnpl {

@\ébSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
initFeature.setBaseRetransmissionlnterval (""PODT3H");

port = service.get M/Rel i abl eServi cePort (i nitFeature);

The base retransmission interval configuration appears in the webl ogi c. xni file as
follows:

<service-reference-description>

<port-info>
<st ub- property>
<nane>webl ogi c. wsee. wsr m BaseRet ransni ssi onl nt er val </ nane>
<val ue>PT30S</ val ue>
</ stub- property>

</ port-info>
</ service-reference-description>

ORACLE 14-28



Chapter 14
Configuring Reliable Messaging

14.7.5 Configuring the Retransmission Exponential Backoff

The retransmission exponential backoff is used in conjunction with the base
retransmission interval, described in Configuring the Base Retransmission Interval. If a
destination endpoint does not acknowledge a sequence of messages for the time
interval specified by the base retransmission interval, the exponential backoff
algorithm is used for timing successive retransmissions by the source endpoint, should
the message continue to go unacknowledged.

The exponential backoff algorithm specifies that successive retransmission intervals
should increase exponentially, based on the base retransmission interval. For
example, if the base retransmission interval is 2 seconds, and the exponential backoff
element is set, successive retransmission intervals if messages continue to go
unacknowledged are 2, 4, 8, 16, 32, and so on.

By default, this flag is disabled (false), indicating that the same retransmission interval
is used in successive retries; the interval does not increase exponentially.

The following sections describe how to configure the retransmission exponential
backoff:

»  Configuring the Retransmission Exponential Backoff on WebLogic Server or Web
Service Endpoint

e Configuring the Retransmission Exponential Backoff on the Web Service Client

14.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic
Server or Web Service Endpoint

To configure the retransmission exponential backoff on WebLogic Server or the web
service endpoint level using the WebLogic Server Administration Console, perform the
following steps:

" Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

» Configuring Reliable Messaging on WebLogic Server
e Configuring Reliable Messaging on the Web Service Endpoint

2. Setthe Enable Retransmission Exponential Backoff flag, as required.

ORACLE 14-29



Chapter 14
Configuring Reliable Messaging

14.7.5.2 Configuring the Retransmission Exponential Backoff on the Web
Service Client

< Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-12 defines the webl ogi c. wsee. rel i ability2. api.WrnCientlnitFeature
methods for configuring whether the message retransmission interval will be adjusted
using the retransmission exponential backoff algorithm.

Table 14-12 Methods for Configuring the Retransmission Exponential Backoff

L ___________________________________________________________________________________________]
Method Description

Bool ean i sRetransmi ssi onExponent i al Backof f () Indicates whether retransmission
exponential backoff is enabled.

voi d set BaseRet ransm ssi onExponent i al Backof f (bool ean val ue) Specifies whether base retransmission
exponential backoff is enabled. Valid values
aretrue orfal se.

In the following example, the retransmission exponential backoff is enabled.

inmport java.xm .ws.WebService;

import java.xm .ws.WebServiceRef;

import wsrm jaxws. exanpl e.client_service.*;

import wsrm j axws. exanpl e. client_service. EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

@\ebService
public class CientServicelnpl {

@\ébSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
i ni t Feature. set BaseRet ransmi ssi onl nterval ("PODT3H'");
initFeature.setBaseRetransmissionExponentialBackoff(true);

port = service.get M/Rel i abl eServi cePort (initFeature);

The retransmission exponential backoff configuration appears in the webl ogi c. xni file
as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m Ret ransmi ssi onExponent i al Backof f </ nane>
<val ue>true</val ue>
</ st ub-property>

ORACLE 14-30



Chapter 14
Configuring Reliable Messaging

</ port-info>
</ service-reference-description>

14.7.6 Configuring the Sequence Expiration

The sequence expiration specifies the expiration time for a sequence regardless of
activity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNMS, where nY specifies the number of years, nMspecifies the
number of months, nD specifies the number of days, T is the date/time separator, nH
specifies the number of hours, nMspecifies the number of minutes, and nS specifies the
number of seconds. This value defaults to P1D (1 day).

The following sections describe how to configure the sequence expiration:

»  Configuring the Sequence Expiration on WebLogic Server or Web Service
Endpoint

»  Configuring the Sequence Expiration on the Web Service Client

14.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web
Service Endpoint

To configure the sequence expiration on WebLogic Server or the web service endpoint
level using the WebLogic Server Administration Console, perform the following steps:

" Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

*  Configuring Reliable Messaging on WebLogic Server
»  Configuring Reliable Messaging on the Web Service Endpoint

2. Setthe Sequence Expiration value, as required.

14.7.6.2 Configuring the Sequence Expiration on the Web Service Client

# Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

ORACLE 14-31



Chapter 14
Configuring Reliable Messaging

Table 14-13 defines that webl ogi c. wsee. rel i ability2.api.\WrnCientlnitFeature
methods for expiration time for a sequence regardless of activity.

Table 14-13 Methods for Configuring Sequence Expiration

Method Description

String get SequenceExpiration() Returns the sequence expiration currently
configured.

voi d set SequenceExpiration(String expiration) Expiration time for a sequence regardless of
activity.

In the following example, the sequence expiration is set to 36 hours.

import java.xm .ws.WebService;

import java.xm .ws.WebServi ceRef;

import wsrm jaxws.exanpl e.client_service.*;

import wsrm jaxws. exanpl e. client_service. EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

@\ebServi ce

public class CientServicelnpl {

@ebSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
initFeature.setSequenceExpiration(*"PODT36H");

port = service. get M/Rel i abl eServi cePort (initFeature);

The sequence expiration configuration appears in the webl ogi c. xm file as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<name>webl ogi c. wsee. wsr m SequenceExpi rati on</ name>
<val ue>PT10MK/ val ue>
</ st ub- property>

</ port-info>
</ service-reference-description>

14.7.7 Configuring Inactivity Timeout

ORACLE

If, during the inactivity timeout interval, an endpoint (the RM source or destination) has
not received messages application or protocol messages, the endpoint may consider
the RM sequence to have been terminated due to inactivity.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHNMS, where nY specifies the number of years, nMspecifies the
number of months, nD specifies the number of days, T is the date/time separator, nH
specifies the number of hours, nMspecifies the number of minutes, and nS specifies the
number of seconds. This value defaults to PODT600S (600 seconds).

The following sections describe how to configure the inactivity timeout:

»  Configuring the Inactivity Timeout on WebLogic Server or Web Service Endpoint

14-32



Chapter 14
Configuring Reliable Messaging

»  Configuring the Inactivity Timeout on the Web Service Client

14.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service
Endpoint

To configure the inactivity timeout on WebLogic Server or the web service endpoint
level using the WebLogic Server Administration Console, perform the following steps:

" Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

» Configuring Reliable Messaging on WebLogic Server
»  Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Inactivity Timeout value, as required.

14.7.7.2 Configuring the Inactivity Timeout on the Web Service Client

# Note:

For more information about configuring web service clients, see Configuring
Web Service Clients.

Table 14-14 defines that webl ogi c. wsee. rel i ability2. api.\WrnCientlnitFeature
methods for configuring the inactivity timeout.

Table 14-14 Methods for Configuring Inactivity Timeout

Method Description

String getlnactivityTi meout () Returns the inactivity timeout currently
configured.

void setlnactivityTimeout(Stringtimeout) Sets the inactivity timeout.

In the following example, the inactivity timeout interval is set to 1 hour.

i mport java.xnl .ws. WebServi ce;

i mport java.xm .ws. WebServi ceRef;

i mport wsrm j axws. exanpl e. client_service.*;

i mport wsrm j axws. exanpl e. client_service. EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

ORACLE 14-33



@\ebServi ce

Chapter 14
Configuring Reliable Messaging

public class OientServicelnpl {

@ébSer vi ceRef (name="Rel i abl eEchoServi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

VérnClientInitFeature initFeature = new WrnCientlnitFeature(true);
initFeature.setlnactivityTimeout("PODT1H");

port = service. get M/Rel i abl eServi cePort (i nitFeature);

The inactivity timeout configuration appears in the webl ogi c. xni file as follows:

<service-reference-description>

<port-info>
<stub- property>
<nane>webl ogi ¢. wsee. wsrm | nacti vi tyTi meout </ nane>
<val ue>PT5M/ val ue>
</ st ub- property>

</ port-info>
</ service-reference-description>

14.7.8 Configuring a Non-buffered Destination for a Web Service

ORACLE

You can control whether you want to disable message buffering on a particular
destination server to control whether buffering is used when receiving messages. You
can configure non-buffering on the destination server at the WebLogic Server or web
service endpoint level only, not at the web service client level (buffering is enabled by
default on a web service client).

# Note:

If you configure a non-buffered destination, any web service client that uses
@ebSer vi ceRef to define a reference to the configuration will receive
responses without buffering them.

The non-buffered destination configuration appears in the webl ogi c. xm file
as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<nane>webl ogi c. wsee. wsr m NonBuf f er edDest i nat i on</ name>
<val ue>t rue</val ue>
</ st ub- property>

</ port-info>
</ service-reference-description>

For more information about @¢bSer vi ceRef , see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

14-34



Chapter 14
Configuring Reliable Messaging

To configure the destination server to disable message buffering, on WebLogic Server
or the web service endpoint level using the WebLogic Server Administration Console,
perform the following steps:

# Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

» Configuring Reliable Messaging on WebLogic Server
* Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Non-buffered Destination value, to configure the destination server,
respectively, as required.

# Note:

On the source server, message buffering should always be enabled.
That is, the Non-buffered Source value should always be disabled.

14.7.9 Configuring the Acknowledgement Interval

ORACLE

The acknowledgement interval specifies the maximum interval during which the
destination endpoint must transmit a standalone acknowledgement. You can configure
the acknowledgement interval at the WebLogic Server or web service endpoint level
only, not at the web service client level.

14-35



Chapter 14
Configuring Reliable Messaging

# Note:

A web service client that uses @ebSer vi ceRef to define a reference to the
web service uses the acknowledgement interval value to control the amount
of time that the client's response handling will wait until acknowledging
responses that it receives. In other words, the client acts like an RM
destination when receiving response messages.

The non-buffered destination configuration appears in the webl ogi c. xm file
as follows:

<servi ce-reference-description>

<port-info>
<st ub- property>
<nane>webl ogi c. wsee. wsr m Acknow edgenent | nt er val </ name>
<val ue>PT5S</ val ue>
</ st ub- property>

</ port-info>
</ service-reference-description>

For more information about @ebSer vi ceRef , see Defining a Web Service
Reference Using the @WebServiceRef Annotation.

A destination endpoint can send an acknowledgement on the return message
immediately after it has received a message from a source endpoint, or it can send
one separately as a standalone acknowledgement. If a return message is not available
to send an acknowledgement, a destination endpoint may wait for up to the
acknowledgement interval before sending a standalone acknowledgement. If there are
no unacknowledged messages, the destination endpoint may choose not to send an
acknowledgement.

The value specified must be a positive value and conform to the XML schema duration
lexical format, PnYnMhDTnHIMVhS. Table 14-15 describes the duration format fields. This
value defaults to PODTO. 2S (0.2 seconds).

Table 14-15 Duration Format Description
|

Field Description

ny Number of years (n).

nM Number of months (n).
nD Number of days (n).

T Date and time separator.
nH Number of hours (n).

nM Number of minutes (n).
nS Number of seconds (n).

To configure the acknowledgement interval, on WebLogic Server or the web service
endpoint level using the WebLogic Server Administration Console, perform the
following steps:

ORACLE 14-36



Chapter 14
Implementing the Reliability Error Listener

# Note:

Alternatively, you can use WLST to configure reliable messaging. For
information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

1. Invoke the WebLogic Server Administration Console and access the web service
reliable messaging pages at the server-level or web service endpoint level, as
described in the following sections, respectively:

e Configuring Reliable Messaging on WebLogic Server
e Configuring Reliable Messaging on the Web Service Endpoint

2. Set the Acknowledgement Interval value, as required.

14.8 Implementing the Reliability Error Listener

To receive natifications related to reliability delivery failures in the event that a request
cannot be delivered, you can implement the following
webl ogi c. wsee. reliability2. api.ReliabilityErrorListener interface:

public interface ReliablityErrorListener {

public void onReliabilityError(ReliabilityErrorContext context);
}

Table 14-16 defines that webl ogi c. wsee. rel i ability2. api. WrnClientlnitFeature
methods for configuring the reliability error listener.

Table 14-16 Methods for Configuring the Reliability Error Listener
]

Method Description

ReliabilityErrorListener getReliabilityListener() Gets the reliability listener currently
configured.

voi d setErrorListener(ReliabilityErrorlListener Sets the reliability error listener.

errorlListener)

The following provides an example of how to implement and use a reliability error
listener in your web service client. This example is excerpted from Example 13-1.

i mport webl ogi c. wsee. reliability2. api.ReliabilityErrorListener;
i mport webl ogi c. wsee.reliability2.api.WrnCientlnitFeature;

@\ebService
public class OientServicelnpl {

VérnClientInitFeature rnfFeature = new WsrnClientlnitFeature();
features. add(rnfeature);

ReliabilityErrorListener listener = new ReliabilityErrorListener() {
public void onReliabilityError(ReliabilityErrorContext context) {

/I At a *mninunt do this

ORACLE 14-37



Chapter 14
Implementing the Reliability Error Listener

Systemout. println("RM sequence failure: " +
cont ext . get Faul t Summar yMessage() ) ;
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;

/1 And optionally do this...

/1 The context parameter tells you whether a request or the entire
/'l sequence has failed. |f a sequence fails, you'll get a notification
/1 for each undelivered request (if any) on the sequence.
if (context.isRequestSpecific()) {
/1 W have a single request failure (possibly as part of a larger
Il sequence failure).
/1 W can get the original request back like this:
String operationNanme = context.get OperationNane();
Systemout.printin("Failed to deliver request for operation'" +
operationName + "'. Fault summary: " +
cont ext . get Faul t Sunmar yMessage());
if ("DoSonet hing".equal s(operationName)) {
try {
String request = context.get Request (JAXBCont ext. newl nstance(),
String.class);
Systemout.printin("Failed to deliver request for operation'" +
operationName + "' with content: " +
request);
Map<String, Serializable> requestProps =
cont ext . get User Request Cont ext Properties();
if (requestProps !=null) {
/] Fetch back any property you sent in
/1 JAXWEPr operti es. PERSI STENT_CONTEXT when you sent the
/'l request.
String nyProperty = (String)requestProps. get (MY_PROPERTY);
Systemout. println(nyProperty + " failed!");

} catch (Exception e) {
e.printStackTrace();
}

} else {
/1 The entire sequence has encountered an error.
Systemout.printIn("Entire sequence failed: " +
cont ext . get Faul t Sunmar yMessage());

}
}
b
rnfFeature. setReliabilityErrorListener(listener);

_features = features.toArray(new WebServi ceFeat ure[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

ORACLE 14-38



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

14.9 Managing the Life Cycle of a Reliable Message
Sequence

WebLogic Server provides a client API, webl ogi c. wsee. rel i ability2.api.WrnCient, for
use with the web service reliable messaging. Use this API to perform common life
cycle tasks such as set configuration options, get the reliable sequence id, and
terminate a reliable sequence.

An instance of the WrnCl i ent APl can be accessed from the reliable web service port
using the webl ogi c. wsee. rel i ability2. api.Wrnd ientFactory method, as follows:

package wsrm j axws. exanpl e;

i mport java.xnl .ws. WebServi ce;

i mport java.xm .ws. WebServi ceRef;

i mport wsrm j axws. exanpl e. client_service.*;

i mport wsrm j axws. exanpl e. client_servi ce. EchoResponse;
import weblogic.wsee.reliability2.api.WsrmClientInitFeature;

@\ebServi ce
public class OientServicelnpl {

@\ebSer vi ceRef (name="Rel i abl eEchoSer vi ce")

private Reliabl eEchoService service;

private Reliabl eEchoPort Type port = null;

port = service.getReliableEchoPort();

WsrmClient wsrmClient = WsrmClientFactory.getWsrmClientFromPort(port);

The following sections describe how to manage the life cycle of a reliable message
sequence using Wrnd i ent .

* Managing the Reliable Sequence

* Managing the Client ID

* Managing the Acknowledged Requests

* Accessing Information About a Message

» Identifying the Final Message in a Reliable Sequence
» Closing the Reliable Sequence

* Terminating the Reliable Sequence

* Resetting a Client to Start a New Message Sequence

For complete details on the web service reliable messaging client API, see
webl ogi c. wsee. reliability2. api.WrnCient in Java APl Reference for Oracle
WebLogic Server.

14.9.1 Managing the Reliable Sequence

To manage the reliable sequence, you can perform one or more of the following tasks.

» Get and set the reliable sequence ID, as described in Getting and Setting the
Reliable Sequence ID.

ORACLE 14-39



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

* Access the state of the reliable sequence, for example, to determine if it is active
or terminated, as described in Accessing the State of the Reliable Sequence.

14.9.1.1 Getting and Setting the Reliable Sequence ID

The sequence ID is used to identify a specific reliable sequence. You can get and set
the sequence ID using the webl ogi c. wsee. rel i ability2. api.Wrndient.get Sequencel D()
and webl ogi c. wsee. reliability2. api.WrnCient.setSequencel D() methods,
respectively. If no messages have been sent when you issue the get Sequencel I )
method, the value returned is null.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnQientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnQOient;

_service = new BackendRel i abl eServi ceService();

features.add(... sone features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anotherPort =
_service. get BackendRel i abl eServi cePort (_features);

VrnClient rnClient = WsrnCientFactory. get WrnC i ent FronPort (anot herPort);

/1 WIIl be null

String sequenceld = rmClient.getSequenceld();
/] Send first message

anot her Port . doSonet hi ng("Bake a cake");

/1 WIIl be non-null

sequenceld = rmClient.getSequenceld();

During recovery from a server failure, you can set the reliable sequence on a newly
created web service port or dispatch instance after a client or server restart. Setting
the sequence ID for a client instance is an advanced feature. Advanced clients may
use set Sequencel d to connect a client instance to a known RM sequence.

14.9.1.2 Accessing the State of the Reliable Sequence

ORACLE

To access the state of a sequence, use
webl ogi c. wsee. reliability2. api.WrnCient.getSequenceSt ate(). This method returns
an j ava. | ang. Enumconstant of the type webl ogi c. wsee. rel i abi | i ty2. api . SequenceSt at e.

The following table defines valid values that may be returned for sequence state.

Table 14-17 Sequence State Values

__________________________________________________________________________|
Sequence State Description

CLCSED Reliable sequence is closed.

Note: Closing a sequence should be considered a last resort,
and only to prepare to close down a reliable messaging
sequence for which you do not expect to receive the full range of
requests. For more information, see Closing the Reliable
Sequence.

14-40



ORACLE

Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

Table 14-17 (Cont.) Sequence State Values
|

Sequence State

Description

CLCSI NG

Reliable sequence is in the process of being closed.

Note: Closing a sequence should be considered a last resort,
and only to prepare to close down a reliable messaging
sequence for which you do not expect to receive the full range of
requests. For more information, see Closing the Reliable
Sequence.

CREATED

Reliable sequence has been created and the initial handshaking
is complete.

CREATI NG

Reliable sequence is being created; the initial handshaking is in
progress.

LAST_MESSAGE

Deprecated. WS-ReliableMessaging 1.0 only. The last message
in the sequence has been received.

LAST_MESSAGE_PENDI NG

Deprecated. WS-ReliableMessaging 1.0 only. The last message
in the sequence is pending.

NEW

Reliable sequence is in its initial state. Initial handshaking has
not started.

TERM NATED

Reliable sequence is terminated.

Under normal processing, after all messages up to and including
the final message are acknowledged, the reliable message
sequence is terminated. Though not recommended, you can
force the termination of a reliable sequence, as described in
Terminating the Reliable Sequence.

TERM NATI NG

Reliable sequence is in the process of being terminated.

Under normal processing, after all messages up to and including
the final message are acknowledged, the reliable message
sequence is terminated. Though not recommended, you can
force the termination of a reliable sequence, as described in
Terminating the Reliable Sequence.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2.api.WrnCient;
i mport webl ogi c. wsee. reliability2.api.SequenceState;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... sonme features ...);
_features = features.toArray(new WebServi ceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnCient rnCient = WrnClientFactory. get WsrnC i ent FronPort (anot her Port);

SequenceState rmState = rmClient.getSequenceState();
if (rnBtate == SequenceState.TERMINATED) {
Do some work or log a nessage ...

}

14-41



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

14.9.2 Managing the Client ID

The client ID identifies the web service client. Each client has its own unique ID. The
client ID can be used to access saved requests that may exist for a reliable sequence
after a client or server restart.

The client ID is configured automatically by WebLogic Server. You can set the client ID
to a custom value when creating the port using the

webl ogi c. wsee. j axws. persi stence. i entldentityFeature. For more information, see
Managing Client Identity.

Reliable messaging uses the client ID to find any requests that were sent prior to a VM
restart that were not sent before the VM exited. When you establish the first client
instance using the prior client ID, reliable messaging uses the resources associated
with that port to begin sending requests on behalf of the restored client ID.

You can get the client ID using the webl ogi c. wsee. rel i ability2. api.WrnCient.getlD()
method.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnOientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... some features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnmClient rnCient = WrnCientFactory. get WrnCl i ent FronPort (anot herPort);

String clientld = rmClient.getld();

14.9.3 Managing the Acknowledged Requests

ORACLE

Use the webl ogi c. wsee. rel i ability2. api.WrnCient.ackRanges() method to display the
requests that have been acknowledged during the life cycle of a reliable message
sequence. The ackRanges() method returns a set of

webl ogi c. wsee. reliability. MessageRange objects.

After reviewing the range of requests that have been acknowledged, the client may
choose to:

* Send an acknowledgement request to the RM destination using the
webl ogi c. wsee. reliability2. api.WrnCient.request Acknow edgement () method.

» Close the sequence (see Closing the Reliable Sequence) and perform error
handling to account for unacknowledged messages after a specific amount of
time.

Note: Clients may call get AckRanges() repeatedly, to keep track of the reliable
message sequence over time. However, you should take into account that there is a
certain level of additional overhead associated each call.

14-42



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

14.9.4 Accessing Information About a Message

ORACLE

Use the webl ogi c. wsee. rel i ability2. api.WrnCient.get Messagel nfo() method to get
information about a reliable message sent from the client based on the message
number. This method accepts a long value representing the sequential message
number of a request message sent from the client instance, and returns information
about the message of type webl ogi c. wsee. rel i abi i ty2. sequence. Sour ceMessagel nf o.
You can use the WrnC i ent . get Mbst Recent MessageNumber () method to determine the
maximum value of the message number value to pass to get Messagel nf o() .

The returned Sour ceMessagel nf o object should be treated as immutable, and only the
get methods should be used.

The following table list the Sour ceMessagel nf o methods that you can use to access
specific details about the source message.

Table 14-18 Methods for SourceMessagelnfo()
|

Method Description
get Messagel () Gets the message ID as a String value.
get MessageNum() Gets the number of the message as a long value.

get ResponseMessagel nfo() Returns a
webl ogi c. wsee. reliability2. sequence. Destinati onMessagel
nf o object representing the response that has been correlated to
the request represented by the current Sour ceMessagel nf o()
object. Returns NULL if no response has been received for this
request or if none is expected (for example, request was one
way).

i sAck() Indicates whether the message has been acknowledged.

The following table lists the Desti nati onMessagel nf o methods that you can use to
access specific details about the destination message.

Table 14-19 Methods for DestinationMessagelnfo()
|

Method Description
get Messagel () Gets the message ID as a String value.
get MessageNun() Gets the number of the message as a long value.

The get Messagel nf o() method can be used in conjunction with

webl ogi c. wsee. reliability2. api.WrnCient.get MstRecent MessageNunber () to obtain
information about the most recently sent reliable message. This method returns a
monotonically increasing long value, starting from 1. This method will return -1 in the
following circumstances:

» If the reliable sequence ID has not been established (get Sequencel D() returns null).
* The first reliable message has not been sent yet.

e The reliable sequence has been terminated.

14-43



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

14.9.5 Identifying the Final Message in a Reliable Sequence

Because WebLogic Server retains resources associated with the reliable sequence, it
is recommended that you take steps to release these resources in a timely fashion.
Under normal circumstances, a reliable sequence should be retained until all
messages have been sent and acknowledged by the RM destination. To facilitate the
timely and proper termination of a sequence, it is recommended that you identify the
final message in a reliable message sequence. Doing so indicates you are done
sending messages to the RM destination and that WebLogic Server can begin looking
for the final acknowledgement before automatically terminating the reliable sequence.
Indicate the final message using the

webl ogi c. wsee. reliability2. api.WrnCient.setFinal Message() method.

When you identify a final message, after all messages up to and including the final
message are acknowledged, the reliable message sequence is terminated, and all
resources are released. Otherwise, the sequence is terminated automatically after the
configured sequence expiration period is reached.

For example:

i mport webl ogi c. wsee.reliability2.api.WrnCientFactory;
i mport webl ogi c. wsee.reliability2. api.WrnCient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... some features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

WrnClient rnCient = WrnCientFactory. get WrnCl i ent FronPort (anot herPort);

anot her Port . doSonet hi ng(" One potato");

anot her Port . doSonet hi ng(" Two potato");

anot her Port . doSonet hi ng(" Three potato");

/1 Indicate this next invoke marks the 'final' nessage for the sequence
rmClient._setFinalMessage();

anot her Port . doSonet hi ng(" Four");

14.9.6 Closing the Reliable Sequence

Use the webl ogi c. wsee. reliability2. api.WrnCient.closeMessage() to close a reliable
messaging sequence.

" Note:

This method is valid for WS-ReliableMessaging 1.1 only; it is not supported
for WS-ReliableMessaging 1.0.

When a reliable messaging sequence is closed, no new messages will be accepted by
the RM destination or sent by the RM source. A closed sequence is still tracked by the

ORACLE 14-44



Chapter 14
Managing the Life Cycle of a Reliable Message Sequence

RM destination and continues to service acknowledgment requests against it. It allows
the RM source to get a full and final accounting of the reliable messaging sequence
before terminating it.

Note: Closing a sequence should be considered a last resort, and only to prepare to
close down a reliable messaging sequence for which you do not expect to receive the
full range of requests. For example, after reviewing the range of requests that have
been acknowledged (see Managing the Acknowledged Requests), the client may
decide it necessary to close the sequence and perform error handling to account for
unacknowledged messages after a specific amount of time.

Once a reliable messaging sequence is closed, it is up to the client to terminate the
sequence; it will no longer be terminated automatically by the server after a configured
timeout has been reached. See Terminating the Reliable Sequence.

For example:

import webl ogi c. wsee.reliability2. api.WrnOientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;

_service = new BackendRel i abl eServi ceService();

features.add(... sonme features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

VermCient rnCient = VérnOientFactory. get WrnQ i ent FronPort (anot herPort);

anot her Port . doSonet hi ng(" One potato");
anot her Port . doSonet hi ng(" Two potato");

[l ... Wit some anount of tinme, and check for acks
Il ... using WrnQient.get AckRanges() ...

[l ... If wedon't find all of our acks ...
rmClient.closeSequence();

/I ... Do sone error recovery like telling our

Il ... client we couldn't deliver all requests ...

rnClient.tern nateSequence();

14.9.7 Terminating the Reliable Sequence

ORACLE

Although not recommended, you can terminate the reliable message sequence
regardless of whether all messages have been acknowledged using the
webl ogi c. wsee. reliability2. api.\WrnCient.terninateSequence() method.

¢ Note:

It is recommended that, instead, you use the set Fi nal Message() method to
identify the final message in a reliable sequence. When you identify a final
message, after all messages up to and including the final message are
acknowledged, the reliable message sequence is terminated, and all
resources are released. For more information, see Identifying the Final
Message in a Reliable Sequence.

14-45



Chapter 14
Monitoring Web Services Reliable Messaging

Terminating a sequence causes the RM source and RM destination to remove all state
associated with that sequence. The client can no longer perform any action on a
terminated sequence. When a sequence is terminated, any pending requests being
delivered through server-side retry (SAF agents) for the sequence are rejected and
sent as a notification on the Rel i abl i tyErrorLi stener.

For example:

i mport webl ogi c. wsee.reliability2. api.WrnCOientFactory;
import weblogic.wsee.reliability2.api.WsrmClient;

_service = new BackendRel i abl eServi ceServi ce();

features.add(... sonme features ...);
_features = features.toArray(new WebServiceFeature[features.size()]);

BackendRel i abl eServi ce anot herPort =
_service. get BackendRel i abl eServi cePort (_features);

VrnmCient rnCient = VérnOientFactory. get WrnQ ient FronPort (anot herPort);

anot her Port . doSonet hi ng(" One potato");
anot her Port . doSonet hi ng(" Two potato");

[l ... Wit some anmount of time, and check for acks
Il ... using WrnQient.get AckRanges() ...

[l ... If wedon't find all of our acks ...
rnCient.cl oseSequence();

/1 ... Do sone error recovery like telling our

Il ... client we couldn't deliver all requests ...

rmClient.terminateSequence();

14.9.8 Resetting a Client to Start a New Message Sequence

Use the webl ogi c. wsee. reliability2. api.WrnOient.reset() method to clear all
Request Cont ext properties related to reliable messaging that do not need to be retained
once the reliable sequence is closed. Typically, this method is called when you want to
initiate another sequence of reliable messages from the same client.

For an example of using reset (), see Example B-1.

14.10 Monitoring Web Services Reliable Messaging

ORACLE

You can monitor reliable messaging sequences for a web service or client using the
WebLogic Server Administration Console. For each reliable messaging sequence,
runtime monitoring information is displayed, such as the sequence state, the source
and destination servers, and so on. You can customize the information that is shown in
the table by clicking Customize this table.

In particular, you can use the monitoring pages to determine:

*  Whether or not you are cleaning up sequences in a timely fashion. If you view a
large number of sequences in the monitoring tab, you may wish to review your
client code to determine why.

*  Whether an individual sequence has unacknowledged requests, or has not
received expected responses.

14-46



Chapter 14
Grouping Messages into Business Units of Work (Batching)

To monitor reliable messaging sequences for a web service, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service is packaged.
Expand the application by clicking the + node; the web services in the application are
listed under the Web Services category. Click on the name of the web service and
select Monitoring> Ports> Reliable Messaging.

To monitor reliable messaging sequences for a web service client, click on the
Deployments node in the left pane and, in the Deployments table that appears in the
right pane, locate the Enterprise application in which the web service client is
packaged. Expand the application by clicking the + node and click on the application
module within which the web service client is located. Click the Monitoring tab, then
click the Web Service Clients tab. Then click Monitoring> Servers> Reliable
Messaging.

14.11 Grouping Messages into Business Units of Work

(Batching)

ORACLE

Often, the messages flowing between a web service client and service are part of a
single business transaction or unit of work. An example might be a travel agency
reservation process that requires messages between the agency, airline, hotel, and
rental car company. All of the messages flowing between any two endpoints could be
considered a business unit of work.

Reliable messaging is tailored to handling messages related to a unit of work by
grouping them into an RM sequence. The entire unit of work (or sequence) is treated
as a whole, and error recovery, and so on can be applied to the entire sequence (see
the I nconpl et eSequenceBehavi or element description in the WS-ReliableMessaging 1.2
specification (February 2009) at htt p: // docs. oasi s- open. or g/ ws-r x/ wsr mf 200702). For
example, an RM sequence can be configured to discard requests that occur after a
gap in the sequence, or to discard the entire sequence of requests if any request is
missing from the sequence.

You can indicate that a message is part of a business unit of work by creating a new
client instance before sending the first message in the unit, and by disposing of the
client instance after the last message in the unit. Alternatively, you can use the
Wrndient API (obtained by passing a client instance to the

VérnCl i ent Fact ory. get Wer nCl i ent FronPor t () method) to identify the final request in a
sequence is about to be sent. This is done by calling VérnQ i ent . set Fi nal Message() just
before performing the invoke on the client instance, as described in Identifying the
Final Message in a Reliable Sequence.

There is some significant overhead associated with the RM protocol. In particular,
creating and terminating a sequence involves a round-trip message exchange with the
service (RM destination). This means that four messages must go across the wire to
establish and then terminate an RM sequence. For this reason, it is to your advantage
to send the requests within a single business unit of work on a single RM sequence.
This allows you to amortize the cost of the RM protocol overhead over a number of
business messages.

In some cases, the client instance being used to talk to the reliable service runs in an
environment where there is no intrinsic notion of the business unit of work to which the
messages belong. An example of this is an intermediary such as a message broker. In
this case, the broker is often aware only of the message itself, and not the context in
which the message is being sent. The broker may not do anything to demarcate the

14-47


http://docs.oasis-open.org/ws-rx/wsrm/200702

Chapter 14
Grouping Messages into Business Units of Work (Batching)

start and end of a business unit of work (or sequence); as a result, when using reliable
messaging to send requests, the broker will incur the RM sequence creation and
termination protocol overhead for every message it sends. This can result in a serious
negative performance impact.

In cases where no intrinsic business unit of work is known for a message, you can
choose to arbitrarily group (or batch) messages into an artificially created unit of work
(called a batch). Batching of reliable messages can overcome the performance impact
described above and can be used to tune and optimize network usage and throughput
between a reliable messaging client and service. Testing has shown that batching
otherwise unrelated requests into even small batches (say 10 requests) can as much
as triple the throughput between the client and service when using reliable messaging
(when sending small messages).

" Note:

Oracle does not recommend batching requests that already have an
association with a business unit of work. This is because error recovery can
become complicated when RM sequence boundaries and unit of work
boundaries do not match. For example, when you add a

Rel i abi lityErrorListener to your client instance (via VrnCl i ent | ni t Feat ure),
as described in Implementing the Reliability Error Listener, this listener can
be used to perform error recovery for single requests in a sequence or
whole-sequence failures. When batching requests, this error recovery logic
would need to store some information about each request in order to
properly handle the failure of a request. A client that does not employ
batching will likely have more context about the request given the business
unit of work it belongs to.

The following code excerpt shows an example class called Bat chi ngRrCl i ent W apper
that can be used to make batching of RM requests simple and effective. This class
batches requests into groups of a specified number of requests. It allows you to create
a dynamic proxy that takes the place of your regular client instance. When you make
invocations on the client instance, the batching wrapper seamlessly groups the
outgoing requests into batches, and assigns each batch its own RM sequence. The
batching wrapper also takes a duration specification that indicates the maximum
lifetime of any given batch. This allows incomplete batches to be completed in a timely
fashion even if there are not enough outgoing requests to completely fill a batch. If the
batch has existed for the maximum lifetime specified, it will be closed as if the last
message in the batch had been sent.

An example of the client wrapper class that can be used for batching reliable
messaging is provided in Example Client Wrapper Class for Batching Reliable
Messages. You can use this class as-is in your own application code, if desired.

Example 14-2 Example of Grouping Messages into Units of Work (Batching)

i mport
i mport
i mport

i mport
i mport

ORACLE

java.io. | OException;
java.util.*;
java.util.*;

javax.servlet.*;
javax. xn . ws. *;

14-48



Chapter 14
Grouping Messages into Business Units of Work (Batching)

import weblogic.jws.jaxws.client.CientldentityFeature;

i mport webl ogic. jws.jaxws.client.async. AsyncC i entHandl er Feat ure;

i mport webl ogic.jws.jaxws.client.async. AsyncC ient Transport Feat ure;
i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorContext;

i mport webl ogi c. wsee.reliability2. api.ReliabilityErrorListener;

i mport webl ogi c. wsee.reliability2. api.WrnCientlnitFeature;

/

*
*
*
*
*
*
*

*

/

Exanmple client for invoking a reliable web service and 'batching' requests
artificially into a sequence. A wapper class called

Bat chi ngRnCl i ent Wapper is called to begin and end RM sequences for each batch of
requests. This avoi ds per-message RM sequence handshaki ng

and termnation overhead (delivering better performance).

public class BestPracticeAsyncRiBat chi ngQ i ent
extends GenericServlet {

private BackendReliabl eServiceService _service;
private BackendReliabl eService _singletonPort;
private BackendRel i abl eService _batchingPort;

private static int _requestCount;
private static String _| astResponse;

@verride
public void init()

throws ServletException {

_request Count = 0;
_last Response = nul | ;

/1 Only create the web service object once as it is expensive to create repeatedly.
if (_service == null) {
_service = new BackendRel i abl eServi ceServi ce();

}

/'l Best Practice: Use a stored list of features, per client ID, to create client instances.
/] Define all features for the web service port, per client ID, so that they are

/1 consistent each time the port is called. For exanple:

/| _service. get BackendServi cePort (_features);

Li st <WebServi ceFeat ure> features = new ArrayLi st <WebServi ceFeature>();

/'l Best Practice: Explicitly define the client ID.
ClientldentityFeature clientldFeature =

new CientldentityFeature("MBackendServi ceAsyncRnBat chingCient");
features.add(clientldFeature);

/'l Best Practice: Always implement a reliability error listener.
Il Include this feature in your reusable feature Iist. This enables you to deternine
/1 a reason for failure, for exanple, RMcannot deliver a request or the RM sequence fails in
/1 some way (for exanple, client credentials refused at service).
WrnClientlnitFeature rnfFeature = new VérnClientinitFeature();
features. add(rnfeature);
rnfeat ure. setErrorlistener(new ReliabilityErrorListener() {
public void onReliabilityError(ReliabilityErrorContext context) {
[/ At a *minimnt do this
Systemout. println("RM sequence failure: " +
cont ext . get Faul t Summar yMessage() ) ;
_l ast Response = cont ext. get Faul t Sumrar yMessage() ;

}

ORACLE 14-49



Chapter 14
Grouping Messages into Business Units of Work (Batching)

1

/'l Asynchronous endpoi nt
AsyncC i ent Transport Feat ure asyncFeature =

new AsyncCl i ent Transport Feat ure(get Servl et Context ());
features. add(asyncFeature);

/| Best Practice: Define a port-based asynchronous callback handler,
/'l AsyncClientHandlerFeature, for asynchronous and dispatch callback handling.
BackendRel i abl eServi ceAsyncHandl er handl er =
new BackendRel i abl eServi ceAsyncHandl er () {
public voi d onDoSonet hi ngResponse( Response<DoSonet hi ngResponse> res) {
Il ... Handl e Response ...
try {
DoSonet hi ngResponse response = res. get();
_last Response = response. get Return();
Systemout. println("Got reliable/async/batched response: " + _|astResponse);
} catch (Exception e) {
_lastResponse = e.toString();
e.printStackTrace();
1
}
b
AsyncC i ent Handl er Feat ure handl er Feature =
new AsyncCl i ent Handl er Feat ure( handl er);
features. add(handl er Feature);

/1 Set the features used when creating clients with
/1 this client 1D "MBackendServi ceAsyncRmBat chi ngClient"”

\\ebServi ceFeature[] featuresArray =
features.toArray(new WebServi ceFeature[features.size()]);

/'l Best Practice: Define a singleton port instance and initialize it when

/1 the client container initializes (upon deployment).

/1 The singleton port will be available for the life of the servlet.

/1 Creation of the singleton port triggers the asynchronous response endpoint to be published
[/ and it will remain published until our container (Wb application) is undeployed.

/1 Note, we will get a call to destroy() before this.

_singletonPort = _service. getBackendRel i abl eServicePort (featuresArray);

/] Create a wapper class to 'batch' nmessages onto RM sequences so
/1 aclient with no concept of which nmessages are related as a unit can still achieve
/'l good performance fromRM The class will send a given nunber of requests on
/1 the same sequence, and then terminate that sequence before starting
/1 another to carry further requests. A batch has both a max size and
/1 lifetime so no sequence is left open for too |ong.
/1 The exanpl e batches 10 nessages or executes for 20 seconds, whichever cones
[l first. Assuming there were 15 total requests to send, the class would start and conplete
/1 one full batch of 10 requests, then send the next batch of five requests.
/1 Once the batch of five requests has been open for 20 seconds, it will be closed and the
/] associated sequence termnated (even though 10 requests were not sent to fill the batch).
BackendRel i abl eServi ce batchingPort =
_service. get BackendRel i abl eServi cePort (featuresArray);
Bat chi ngRCl i ent W apper <BackendRel i abl eSer vi ce> bat chi ngSeq
= new Bat chi ngRC i ent W apper <BackendRel i abl eSer vi ce>(bat chi ngPort,
BackendRel i abl eServi ce. cl ass,
10, "PT20S",
Systemout);
_bat chi ngPort = bat chi ngSeq. creat eProxy();

}

ORACLE 14-50



Chapter 14
Grouping Messages into Business Units of Work (Batching)

@wverride
public void service(Servl et Request req, ServletResponse res)
throws ServletException, |CException {

[/ TODO ... Read the servlet request ...

[l For this sinple exanple, echo the _|astResponse captured from
/1 an asynchronous DoSonet hi ngResponse response nessage.

if (_lastResponse != null) {
res.getWiter().wite(_| astResponse);
Systemout. printIn("Servlet returning _|astResponse value: " + _|astResponse);
_lastResponse = null; // Clear the response so we can get another
return;

}

/1 Synchronize on _batchingPort since it is a class-level variable and it m ght
/1 be in this method on multiple threads fromthe servlet engine.

synchroni zed(_bat chi ngPort) {

/1 Use the 'batching' port to send the requests instead of creating a
Il new request each tine.
BackendRel i abl eServi ce port = _batchingPort;

/1 Set the endpoint address for BackendService.
((Bi ndi ngProvi der) port). get Request Cont ext ().
put ( Bi ndi ngPr ovi der . ENDPOI NT_ADDRESS_PROPERTY,
"http://1ocal host: 7001/ Best PracticeRel i abl eServi ce/ BackendRel i abl eService");

/1 Make the invocation. Qur asynchronous handl er inplenmentation (set
/1 into the AsyncOientHandl er Feature above) receives the response.
String request = "Protected and serve " + (++_request Count);
Systemout. println("Invoking DoSonething reliably/async/batched with request: " +
request);
port. doSomet hi ngAsync(request);
}

/1 Return a canned string indicating the response was not received
/'l synchronously. Cient needs to invoke the servlet again to get
/'l the response.

res.getWiter().wite("Waiting for response...");

}

@verride
public void destroy() {

try {
Il Best Practice: Explicitly close client instances when processing is complete.
I/ Close the singleton port created during initialization. Note, the asynchronous
/'l response endpoi nt generated by creating _singletonPort *remains*
/1 published until our container (Web application) is undepl oyed.
((java.io.C oseabl e) _singletonPort).close();
Il Best Practice: Explicitly close client instances when processing is complete.
/1 Close the batching port created during initialization. Note, this will close
Il the underlying client instance used to create the batching port.
((java.io.C oseabl ) _batchingPort).close();

/1 Upon return, the Wb application is undeployed, and the asynchronous
/'l response endpoint is stopped (unpublished). At this point,

ORACLE 14-51



Chapter 14
Client Considerations When Redeploying a Reliable Web Service

Il the client 1D used for _singletonPort will be unregistered and will no |onger be
Il visible fromthe Administration Console and W.ST.

} catch (Exception e) {
e.printStackTrace();

}
}
}

14.12 Client Considerations When Redeploying a Reliable
Web Service

WebLogic Server supports production redeployment, which means that you can
deploy a new version of an updated reliable WebLogic web service alongside an older
version of the same web service.

WebLogic Server automatically manages client connections so that only new client
requests are directed to the new version. Clients already connected to the web service
during the redeployment continue to use the older version of the service until they
complete their work, at which point WebLogic Server automatically retires the older
web service. If the client is connected to a reliable web service, its work is considered
complete when the existing reliable message sequence is explicitly ended by the client
or as a result of a timeout.

For additional information about production redeployment and web service clients, see
Client Considerations When Redeploying a Web Service.

14.13 Interoperability with WebLogic Web Service Reliable
Messaging

ORACLE

The WebLogic web services reliable messaging implementation will interoperate with
the web service reliable messaging implementations provided by the following third-
party vendor web services: IBM and Microsoft .NET. For best practices when
interoperating with Microsoft .NET, see Interoperability with Microsoft WCF/.NET in
Understanding WebLogic Web Services for Oracle WebLogic Server.

To enhance interoperability with Oracle SOA services that use web services reliable
messaging, please consider the following interoperability guidelines:

* Do no use Make Connection for asynchronous transport, as described in Using
Asynchronous Web Service Clients From Behind a Firewall (Make Connection).
Reliable SOA services do not support Make Connection.

* Do no use WS-SecureConversation to secure reliable web services. SOA services
do not support the use of web services reliable messaging and WS-
SecureConversation together.

*  For reliable WebLogic web service clients that are accessing reliable SOA
services:

— Use synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or
one-way MEP (Message exchange pattern).

— Do not use asynchronous (non-anonymous WS-Addressing ReplyTo EPR)
request-reply MEP.

14-52



Chapter 14
Interoperability with WebLogic Web Service Reliable Messaging

* For reliable SOA clients that are accessing reliable WebLogic web services, use
one of the following:

— Synchronous (anonymous WS-Addressing ReplyTo EPR) request-reply or
one-way MEP.

— Asynchronous (non-anonymous WS-Addressing ReplyTo EPR) request-reply
MEP.

ORACLE 14-53



Using Web Services Atomic Transactions

This chapter describes how to use web services atomic transactions for WebLogic
web services using Java API for XML Web Services (JAX-WS) to enable
interoperability with other external transaction processing systems.

This chapter includes the following sections:

*  Overview of Web Services Atomic Transactions

e Configuring the Domain Resources Required for Web Service Advanced Features
« Enabling the Web Services Atomic Transactions Feature

e Enabling Web Services Atomic Transactions on Web Services

» Enabling Web Services Atomic Transactions on Web Service Clients

e Configuring Web Services Atomic Transactions Using the Administration Console
e Using Web Services Atomic Transactions in a Clustered Environment

*  More Examples of Using Web Services Atomic Transactions

15.1 Overview of Web Services Atomic Transactions

WebLogic web services enable interoperability with other external transaction
processing systems, such as Websphere, Microsoft .NET, and so on, through the
support of the following specifications:

*  Web Services Atomic Transaction (WS-AtomicTransaction) Versions 1.0, 1.1, and
1.2: http://docs. oasi s-open. or g/ ws-t x/ wst X- wsat - 1. 2- spec- ¢s- 01/ wst x- wsat - 1. 2-
spec-cs-01. htnl

*  Web Services Coordination (WS-Coordination) Versions 1.0, 1.1, and 1.2: http://
docs. oasi s- open. or g/ ws-t x/ wst Xx-wscoor - 1. 2- spec- cs- 01/ wst x- wscoor - 1. 2- spec-
cs-01. htm

These specifications define an extensible framework for coordinating distributed
activities among a set of participants. The coordinator, shown in the following figure, is
the central component, managing the transactional state (coordination context) and
enabling web services and clients to register as participants.

ORACLE 15-1


http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec-cs-01/wstx-wsat-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html
http://docs.oasis-open.org/ws-tx/wstx-wscoor-1.2-spec-cs-01/wstx-wscoor-1.2-spec-cs-01.html

Chapter 15
Overview of Web Services Atomic Transactions

Figure 15-1 Web Services Atomic Transactions Framework

"Web Service A
(Create[nordination[nntext)
Reqgist
\
Activation Registration
Service Service
Protocol Protocol
Apﬂliﬂﬁﬂﬂi—ﬂ Service X ServiceY (#—>Application
Protocol X - Protocol ¥
Coordinator

The following table describes the components of web services atomic transactions,
shown in the previous figure.

Table 15-1 Components of Web Services Atomic Transactions
|
Component Description

Coordinator Manages the transactional state (coordination context) and
enables web services and clients to register as participants.

Activation Service Enables the application to activate a transaction and create a
coordination context for an activity. Once created, the
coordination context is passed with the transaction flow.

Registration Service Enables an application to register as a participant.

Application Protocol X, Y Supported coordination protocols, such as WS-
AtomicTransaction.

The following figure shows two instances of WebLogic Server interacting within the
context of a web services atomic transaction. For simplicity, two WebLogic web
service applications are shown.

Figure 15-2 Web Services Atomic Transactions in WebLogic Server
Environment

Server A (WebLogic Server) Server B (WebLogic Server)
»

Application A . SOAP X Application B
= + T
= Contaxt E

JTA Transaction £ L T JTA Transaction

Manager b Manager
i —T
Coordinator < —_| Participant

Please note the following:

ORACLE 15-2



Chapter 15
Configuring the Domain Resources Required for Web Service Advanced Features

» Using the local JTA transaction manager, a transaction can be imported to or
exported from the local JTA environment as a subordinate transaction, all within
the context of a web service request.

»  Creation and management of the coordination context is handled by the local JTA
transaction manager.

« All transaction integrity management and recovery processing is done by the local
JTA transaction manager.

For more information about JTA, see Developing JTA Applications for Oracle
WebL ogic Server.

The following describes a sample end-to-end web services atomic transaction
interaction, illustrated in Figure 15-2:

1. Application A begins a transaction on the current thread of control using the JTA
transaction manager on Server A.

2. Application A calls a web service method in Application B on Server B.

3. Server A updates its transaction information and creates a SOAP header that
contains the coordination context, and identifies the transaction and local
coordinator.

4. Server B receives the request for Application B, detects that the header contains a
transaction coordination context and determines whether it has already registered
as a participant in this transaction. If it has, that transaction is resumed and if not,
a new transaction is started.

Application B executes within the context of the imported transaction. All
transactional resources with which the application interacts are enlisted with this
imported transaction.

5. Server B enlists itself as a participant in the WS-AtomicTransaction transaction by
registering with the registration service indicated in the transaction coordination
context.

6. Server A resumes the transaction.

7. Application A resumes processing and commits the transaction.

15.2 Configuring the Domain Resources Required for Web
Service Advanced Features

ORACLE

When creating or extending a domain, if you expect that you will be using other web
service advanced features in addition to web service atomic transactions (either now
or in the future), you can apply the WebLogic Advanced Web Services for JAX-WS
Extension template (or acl e. w s-webser vi ce-j axws-tenpl at e. j ar) to configure
automatically the resources required to support the advanced web service features.
Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can configure the resources
required for these advanced features using the Oracle WebLogic Server
Administration Console or WLST. For more information, see Configuring Your Domain
For Advanced Web Services Features.

15-3



Chapter 15
Enabling the Web Services Atomic Transactions Feature

# Note:

If you do not expect to use other web service advanced features with web
service atomic transactions, application of this extension template is not
required, minimizing start-up times and memory footprint.

15.3 Enabling the Web Services Atomic Transactions

Feature

ORACLE

Web services atomic transactions feature (WSAT) is disabled by default in WebLogic
Server version 12.2.1.0 and later.

" Note:

If you do not enable the WSAT feature, WebLogic Server ignores the WSAT
configurations that you set using the WSDL and WebLogic Server
Administration console. Therefore, before you configure WSAT you must
enable it.

You can use WLST both offline and online to enable WSAT as shown in the following
examples. See Invoking WLST in Understanding the WebLogic Scripting Tool.

Example 15-1 Enabling WSAT Using WLST Online

In the following example, WebLogic Server is running. The arguments username and
password represent the credentials for the user who is connecting WLST to the server.

#set flag
bEnabl ed=t rue

connect ()

[l At the systempronpts, enter the usernane, password, and server URL, for exanple
t3://host:port.

edit()

startEdit()

#get Optional Feat ur eDepl oyment MBean

swi t cher =cno. get Opt i onal Feat ur eDepl oynent ()
print 'switcher=",swtcher

print 'switcher.get Optional Features='

for iamin swtcher.getOptional Features():

if iam!=None:

print iam getNane(),'enabl ed=',iamisEnabled()

#get an Optional Feature

abean=swi t cher. | ookupOpt i onal Feat ur (" WSAT")
i f abean !=None:

abean. set Enabl ed( bEnabl ed)

el se:

abean=swi t cher. cr eat eOpt i onal Feat ur e(" WBAT")
abean. set Enabl ed( bEnabl ed)

15-4



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

save()
activate()

di sconnect ()
exit()

# Note:

Restart WebLogic Server after running the WLST script.

Example 15-2 Enabling WSAT Using WLST Offline

In the following example, domain represents the path of your domain (for example,
Oracl e_Hone/ user _proj ect s/ domai ns/ nydomai n). Also note that O acl e_Hone and
nydonai n and must match the folder name and the domain name. The parameter ofs
represents the optional features such as WSAT.

readDonai n("' domai n')

create('ofs',' Optional Feat ureDepl oynent ')
cd(' Optional Feat ureDepl oyment / of s")
create(' WBAT', ' Optional Feature')

cd(' Optional Feat ur e/ WSAT" )

set (' Enabled', true)

updat eDonai n()

cl oseDomai n()

exit()

15.4 Enabling Web Services Atomic Transactions on Web

Services

ORACLE

The Web services atomic transactions feature (WSAT) is disabled by default in
WebLogic Server version 12.2.1.0 and later.

# Note:

If you do not enable the WSAT feature, WebLogic Server ignores the WSAT
configurations that you set using the WSDL and WebLogic Server
Administration console. Therefore, before you configure WSAT you must
enable it. For more information see, Enabling the Web Services Atomic
Transactions Feature.

To enable web services atomic transactions on a web service:

e When starting from Java (bottom-up), add the
@bl ogi c. wsee. wst x. wsat . Transact i onal annotation to the web service endpoint
implementation class or method. For more information, see Using the
@Transactional Annotation in Your JWS File.

*  When starting from WSDL (top-down), use wsdl ¢ to generate a web service from
an existing WSDL file. In this case, The WS-AtomicTransaction policy assertions
that are advertised in the WSDL are carried forward and are included in the WSDL

15-5



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

file for the new web service generated by wsdl c. See Enabling Web Services
Atomic Transactions Starting From WSDL.

e At deployment time, enable and configure web services atomic transactions at the
web service endpoint or method level using the WebLogic Server Administration
Console. For more information, see Configuring Web Services Atomic
Transactions Using the Administration Console.

The following tables summarizes the configuration options that you can set when
enabling web services atomic transactions.

Table 15-2 Web Services Atomic Transactions Configuration Options

Attribute

Description

Ver si on

Version of the web services atomic transaction coordination context that is used for
web services and clients. For clients, it specifies the version used for outbound
messages only. The value specified must be consistent across the entire transaction.

Valid values include WSAT10, WAT11, WEAT12, and DEFAULT. The DEFAULT value for web
services is all three versions (driven by the inbound request); the DEFAULT value for
web service clients is WSAT10.

Fl ow type

Whether the web services atomic transaction coordination context is passed with the
transaction flow. For valid values, see Table 15-3.

The following table summarizes the valid values for flow type and their meaning on the
web service and client. The table also summarizes the valid value combinations when
configuring web services atomic transactions for an EJB-style web service that uses
the @r ansacti onAttri bute annotation.

Table 15-3 Flow Types Values

Value Web Service Client Web Service Valid EJB @TransactionAttribute
Values
NEVER JTA transaction: Do Transaction flow exists: Do  NEVER, NOT_SUPPCORTED, REQUI RED,
not export transaction not import transaction REQUI RES_NEW SUPPORTS
coordination context. coordination context. If the
No JTA transaction: CoordinationContext header
Do not export contains N
transaction coordination Mustunderstand="true", a
context. SOAP fault is thrown.
No transaction flow: Do not
import transaction
coordination context.
SUPPORTS JTA transaction: Transaction flow exists: REQUI RED, SUPPORTS
(Default) Export transaction Import transaction context.
coordination context. No transaction flow: Do not
No JTA transaction: import transaction
Do not export coordination context.
transaction coordination
context.
MANDATORY JTA transaction: Transaction flow exists: MANDATORY, REQUI RED, SUPPORTS
Export transaction Import transaction context.
coordination context.  Ng transaction flow: Service-

No JTA transaction: An side exception is thrown.
exception is thrown.

ORACLE

15-6



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

15.4.1 Using the @Transactional Annotation in Your JWS File

To enable web services atomic transactions, specify the
@ebl ogi c. wsee. wst x. wsat . Transact i onal annotation on the web service endpoint
implementation class or method.

# Note:

This annotation is not to be mistaken with webl ogi c. j ws. Transact i onal , which
ensures that the annotated class or operation runs inside of a transaction,
but not an atomic transaction.

Please note the following:

» If you specify the @ransacti onal annotation at the web service class level, the
settings apply to all two-way methods defined by the service endpoint interface.
You can override the flow type value at the method level; however, the version
must be consistent across the entire transaction.

* You cannot explicitly specify the @Transacti onal annotation on a Web method that
is also annotated with @neway.

» web services atomic transactions cannot be used with the client-side
asynchronous programming model.

The format for specifying the @transacti onal annotation is as follows:

@ransacti onal (
ver si on=Transact i onal . Ver si on. [ WSAT10| WSAT11| WSAT12| DEFAULT],
val ue=Transact i onal . Transact i onFowType. [ MANDATORY| SUPPORTS| NEVER]

)

For more information about the version and flow type configuration options, see
Table 15-2.

The following sections provide examples of using the @t ansacti onal annotation at the
web service implementation class and method levels, and with the EJB
@TransactionAttribute annotation.

*  Example: Using @Transactional Annotation on a Web Service Class
* Example: Using @Transactional Annotation on a Web Service Method

* Example: Using the @Transactional and the EJB @ TransactionAttribute
Annotations Together

15.4.1.1 Example: Using @Transactional Annotation on a Web Service Class

The following example shows how to add @t ansacti onal annotation on a web service
class. Relevant code is shown in bold. As shown in the example, there is an active
JTA transaction.

ORACLE 15-7



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

# Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For
more information, see More Examples of Using Web Services Atomic
Transactions.

package exanpl es.webservi ces. j axws. wsat . si npl e. servi ce;

i mport webl ogi c. jws. Policy;
import javax.transaction.UserTransaction;

i mport javax.jws.\WebService;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional.Version;

import weblogic.wsee.wstx.wsat.Transactional.TransactionFlowType;

/**
* This JWs file fornms the basis of a WeblLogic Ws-Atonic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*l

@ebServi ce(serviceName = "Wsat BankTr ansfer Servi ce", targetNamespace = "http://tenmpuri.org/",
portName = "WBHt t pBi ndi ngl Servi ce")
@Transactional (value=Transactional . TransactionFlowType .MANDATORY,
version=weblogic.wsee.wstx.wsat.Transactional .Version.WSAT10)
public class WsatBankTransfer Service {

public String createAccount(String acctNo, String anmount) throws java.lang. Exception{
Context ctx = null;
UserTransaction tx = null;
try {
ctx = new Initial Context();
tx = (UserTransaction)ctx. lookup(*javax.transaction.UserTransaction™);

try {
Dat aSour ce dat aSource = (DataSource)ctx. | ookup("exanpl es- denoXA-2");
String sql = "insert into wsat_acct_renote (acctno, amount) values (" + acctNo +

", " +amount +")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at remte.");
return ":acctno=" + acctNo + " anount=" + amount + "
} catch (SQLException e) {
Systemout. printIn("**** Exception caught *****"):
e.printStackTrace();
t hrow new SQLException("SQ. Exception during createAccount() at remote.");

creating. “;

}

} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}
public String del eteAccount(String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws

ORACLE 15-8



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

java.lang. Exception{

public String listAccount() throws java.lang. Exception{

}...

package jaxws.interop.rsp;

inport javax.jws.\WbService;

import javax.xm .ws. Bi ndi ngType;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional .Version;

@eébSer vi ce(
portNane = "Flight Servi ceBi ndi ngs_Basi c",
servi ceNane = "Flight Service",
target Nanespace = "http://wsinterop.org/ sanples",
wsdl Location = "/wsdl s/ FlightService. wsdl",
endpointInterface = "jaxws.interop.rsp.|FlightService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@avax. xnm . ws. soap. Addr essi ng
@Transactional (value = Transactional.TransactionFlowType.SUPPORTS,
version = Transactional .Version.WSAT12)
public class FlightServicelnpl inplenents |FlightService {

}

15.4.1.2 Example: Using @Transactional Annotation on a Web Service Method

The following example shows how to add @t ansacti onal annotation on a web service
implementation method. Relevant code is shown in bold.

package jaxws.interop.rsp;

import javax.jws.\WbService;

import javax.xm .ws. Bi ndi ngType;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional .Version;

@\ébSer vi ce(

portNanme = "Flight Servi ceBi ndi ngs_Basi c",

servi ceNanme = "Fl i ght Service",

target Nanespace = "http://wsinterop.org/ sanples",

wsdl Location = "/wsdl s/ FlightService.wsdl",

endpoi ntInterface = "jaxws.interop.rsp.|FlightService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@ avax. xm . ws. soap. Addr essi ng
public class FlightServicelnpl inplenents |FlightService {

@Transactional (value = Transactional .TransactionFlowType.SUPPORTS,
version = Transactional .Version.WSAT12)
public FlightReservationResponse reserveFlight(FlightReservationRequest request) {
[lreplace with your inpl here
Fl i ght ReserverationEnitity entity = new FlightReserverationEnitity();
entity.setAirlinelD(request.getAirlinelD());

ORACLE 15-9



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

entity.setFlightNunber(request. get FlightNurmber());
entity.setFlight Type(request.getFlightType());
bool ean successful = saveRequest(entity);
FI i ght Reservati onResponse response = new Fl i ght Reservati onResponse();
if (!successful) {
response. set Confirmati onNunber ("OF" + CONF_NUMBER++ + "-" + request.getAirlinel () +
String.val ueCf (entity.getld()));
} else if (request.getFlightNunber() == null ||
request. get Fl i ght Nunber (). trin().endsWth("LAS")) {
successful = fal se;
response. set Confirmati onNumber ("OF" + "- No flight available for " +
request.getAirlinel ());
} else {
response. set ConfirmationNunber ("OF" + CONF_NUMBER++ + "-" + request.getAirlinel () +
String.val ueCf (entity.getld()));
}
response. set Success(successful);
return response;

}

package exanpl es.webservi ces. j axws. wsat . si npl e. servi ce;

i mport webl ogi c. jws. Policy;
import javax.transaction.UserTransaction;

i mport javax.jws.\WbService;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional .Version;

import weblogic.wsee.wstx.wsat.Transactional .TransactionFlowType;

/**

* This JWs file forms the basis of a WebLogic Ws-Atomic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*/

@\ebServi ce(serviceName = "Wsat BankTr ansfer Servi ce", targetNanmespace = "http://tenmpuri.org/",
portNane = "WSHt t pBi ndi ngl Servi ce")
public class WsatBankTransfer Service {

@Transactional (value=Transactional . TransactionFlowType.MANDATORY,
version=weblogic.wsee.wstx.wsat.Transactional .Version.WSAT10)
public String createAccount(String acctNo, String anmount) throws java.lang. Exception{

Context ctx = null;

UserTransaction tx = null;

try {
ctx = new Initial Context();
tx = (UserTransaction)ctx. lookup(*javax.transaction.UserTransaction™);

try {
Dat aSour ce dataSource = (DataSource)ctx. | ookup("exanpl es- denpXA-2");
String sql = "insert into wsat_acct_renote (acctno, anmount) values (" + acctNo +

", " + amount +")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at remte.");
return ":acctno=" + acctNo + " ampunt=" + anmpunt + " creating. ";
} catch (SQLException e) {
Systemout. printIn("**** Exception caught *****").
e.printStackTrace();
throw new SQLException("SQ. Exception during createAccount() at remnte.");

ORACLE 15-10



Chapter 15
Enabling Web Services Atomic Transactions on Web Services

} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****").
e.printStackTrace();
throw new j ava. | ang. Exception(e);

}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws
java.lang. Exception{

public String listAccount() throws java.lang. Exception{

.
}

15.4.1.3 Example: Using the @Transactional and the EJB
@TransactionAttribute Annotations Together

The following example illustrates how to use the @t ansacti onal and EJB
@ransacti onAttri but e annotations together. In this case, the flow type values must be
compatible, as outlined in Table 15-3. Relevant code is shown in bold.

package exanpl es.webservi ces. j axws. wsat . si npl e. servi ce;

i mport webl ogi c. jws. Policy;
import javax.transaction.UserTransaction;

import javax.jws.\WehServi ce;

import javax.ejb.TransactionAttribute;

import javax.ejb.TransactionAttributeType;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional .Version;

import weblogic.wsee.wstx.wsat.Transactional .TransactionFlowType;

/**
* This JWs file forms the basis of a WebLogic Ws-Atomic Transaction Wb Service with the
* operations: createAccount, deleteAccount, transferMnet, |istAccount

*

*/

@ebServi ce(serviceName = "Wat BankTr ansf er Servi ce", targetNamespace = "http://tenpuri.org/",
port Name = "WBHt t pBi ndi ngl Servi ce")
@Transactional (value=Transactional . TransactionFlowType .MANDATORY,
version=weblogic.wsee.wstx.wsat.Transactional .Version.WSAT10)
@TransactionAttribute(TransactionAttributeType.REQUIRED
public class WatBankTransfer Service {

j .

15.4.2 Enabling Web Services Atomic Transactions Starting From
WSDL

When enabled, web services atomic transactions are advertised in the WSDL file
using a policy assertion.

ORACLE 15-11



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

Table 15-4 summarizes the WS-AtomicTransaction 1.2 policy assertions that
correspond to a set of common web services atomic transaction flow type and EJB
Transaction attribute combinations. All other combinations result in a build-time error.

Table 15-4 Web Services Atomic Transaction Policy Assertion Values (WS-AtomicTransaction

1.2)
__________________________________________________________________________________________|]
Atomic Transaction Flow EJB WS-AtomicTransaction 1.2 Policy Assertion
Type @TransactionAttribute
MANDATCORY MANDATORY, REQUI RED, <wsat : ATAssertion/ >
SUPPCRTS
SUPPORTS REQUI RED, SUPPORTS <wsat : ATAssertion wsp: Optional ="true"/>
NEVER REQUI RED, REQUI RES_NEW  No policy advertisement

NEVER, SUPPORTS,
NOT_SUPPORTED

You can use wsdl ¢ Ant task to generate, from an existing WSDL file, a set of artifacts
that together provide a partial Java implementation of the web service described by
the WSDL file. The WS-AtomicTransaction policy assertions that are advertised in the
WSDL are carried forward and are included in the WSDL file for the new web service
generated by wsdl c.

The wsdl ¢ Ant tasks creates a JWS file that contains a partial (stubbed-out)
implementation of the generated JWS interface. You need to modify this file to include
your business code. After you have coded the JWS file with your business logic, run
the jwsc Ant task to generate a complete Java implementation of the web service. Use
the conpi | edvsdl attribute of j wsc to specify the JAR file generated by the wsdl ¢ Ant
task which contains the JWS interface file and data binding artifacts. By specifying this
attribute, the j wsc Ant task does not generate a new WSDL file but instead uses the
one in the JAR file. Consequently, when you deploy the web service and view its
WSDL, the deployed WSDL will look just like the one from which you initially started
(with the WS-AtomicTransaction policy assertions).

For complete details about using wsdl ¢ to generate a web service from a WSDL file,
see Developing WebLogic Web Services Starting From a WSDL File: Main Steps.

15.5 Enabling Web Services Atomic Transactions on Web
Service Clients

ORACLE

On a web service client, enable web services atomic transactions using one of the
following methods:

e Add the @bl ogi c. wsee. wst x. wsat . Transacti onal annotation on the web service
reference injection point for a client. For more information, see Using
@Transactional Annotation with the @WebServiceRef Annotation.

e Pass an instance of the webl ogi c. wsee. wst x. wsat . Transact i onal Feature as a
parameter when creating the web service proxy or dispatch. For more information,
see Passing the TransactionalFeature to the Client.

* At deployment time, enable and configure web services atomic transactions at the
web service client endpoint or method level using the WebLogic Server

15-12



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

Administration Console. For more information, see Configuring Web Services
Atomic Transactions Using the Administration Console.

* At run-time, if the non-atomic transactional web service client calls an atomic
transaction-enabled web service, then based on the flow type advertised in the
WSDL:

— If the flow type is set to SUPPORTS or NEVER on the service-side, then the call is
included as part of the transaction.

— If the flow type is set to MANDATCRY, then an exception is thrown.
" Note:
Web services atomic transactions are not supported by Java SE clients.

For information about the configuration options that you can set when enabling web
services atomic transactions, see Table 15-2.

15.5.1 Using @Transactional Annotation with the @WebServiceRef

Annotation

To enable web services atomic transactions, specify the
@webl ogi c. wsee. wst x. wsat . Transacti onal annotation on the web service client at the
web service reference (@¢bSer vi ceRef ) injection point.

The format for specifying the @transacti onal annotation is as follows:

@ransact i onal (
versi on=Transacti onal . Ver si on. [ WSAT10| WSAT11| WSAT12| DEFAULT],
val ue=Transacti onal . Transact i onFl owType. [ MANDATORY| SUPPORTS| NEVER]

)

For more information about the version and flow type configuration options, see
Table 15-2.

The following example illustrates how to annotate the web service reference injection
point. Relevant code is shown in bold. As shown in the example, the active JTA
transaction becomes a part of the atomic transaction.

" Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For
more information, see More Examples of Using Web Services Atomic
Transactions.

package exanpl es.webhservi ces. j axws. wsat. sinple.client;

inport javax.servlet.*;
inport javax.servlet.http.*;

inport java.net.URL;

ORACLE

15-13



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

i mport javax.xnl.namespace. QNane;

inport javax.transaction.UserTransaction;
inport javax.transaction. SystenException;

import javax.xml.ws.WebServiceRef;
import weblogic.wsee.wstx.wsat.Transactional;
*|

/**
* This exanple denonstrates using a Ws-Atonic Transaction to create or delete an account,

* or transfer nmoney via web service as a single atonic transaction.
*|

public class WsatBankTransferServl et extends HttpServlet {

String url = "http://local host: 7001";
URL wsdl URL = new URL(url + "/WsatBankTransfer Servi ce/ Wsat BankTr ansf er Servi ce");

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();
utx = (UserTransaction) ctx.|ookup("javax.transaction. UserTransaction");
ut x. set Transact i onTi neout (900) ;
} catch (java.lang. Exception e) {
e.printStackTrace();
}

Wat BankTr ansfer Service port = getWebServi ce(wsdl URL);

try {
ut x. begi n();
if (renoteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No, anount);
} else if (action.equals("delete")) {
result = port.del et eAccount (remot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMpney(remoteAccount No, amount, direction);
}

}
utx.comit();
result = "The transaction is commtted " + result;
} catch (java.lang. Exception e) {
try {
e.printStackTrace();
ut x. rol I back();
result = "The transaction is rolled back. " + e.get Message();
} catch(java.lang. Exception ex) {
e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
1

request.setAttribute("result", result);

@Transactional (value = Transactional.TransactionFlowType.MANDATORY,
version = Transactional.Version.WSAT10)
@WebServiceRef(wsdlLocation =
"http://localhost:7001/WsatBankTransferService/WsatBankTransferService?WSDL", value =

ORACLE 15-14



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

examples.webservices. jaxws.wsat.simple._service._WsatBankTransferService.class)
V\6at BankTr ansf er Servi ce_Servi ce service;
private Wat BankTransfer Servi ce get WebService() {

return service. get WsHt t pBi ndi ngl Servi ce();

}

public String createAccount(String acctNo, String anount) throws java.lang. Exception{
Context ctx = null; User Transaction tx = null;
try {

ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction. UserTransaction");

try {
Dat aSour ce dataSource = (DataSource)ctx. | ookup("exanpl es- dat aSour ce- demoXAPool ") ;
String sql = "insert into wsat_acct_local (acctno, amount) values (

"+ acctNo + ", " + amount + ")";
int insCount = dataSource. get Connection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at local.");
return ":acctno=" + acctNo + " ampunt=" + anmount + " creating.. ";
} catch (SQLException e) {
Systemout.println("**** Exception caught *****").
e.printStackTrace();
t hrow new SQLException("SQ Exception during createAccount() at local.");

} catch (java.lang. Exception e) {
Systemout. printIn("**** Exception caught *****"):
e.printStackTrace();
throw new j ava. | ang. Exception(e);
}
}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String amount, String direction) throws
java.l ang. Exception{

public String listAccount() throws java.lang. Exception{
}

package exanpl es.webservices. service_to_service;

inport javax.jws.\WbService;

i mport javax.jws.\\ebMet hod;

import javax.xml.ws.WebServiceRef;

import weblogic.wsee.wstx.wsat.Transactional;

import weblogic.wsee.wstx.wsat.Transactional.TransactionalFlowType;
import weblogic.wsee.wstx.wsat.Transactional .Version;

i mport exanpl es. webservi ces. conpl ex. Conpl exPort Type;

i mport exanpl es. webservi ces. conpl ex. Conpl exServi ce;

@ebServi ce(name="C i ent Port Type", serviceNane="C i ent Service",
target Nanespace="http://exanpl es. org")
public class OientServicelnpl {
@Transactional (value = Transactional.TransactionFlowType.SUPPORTS,
version = Transactional .Version.WSAT12)
@WebServiceRef()
ComplexService service;
@ebMet hod()

ORACLE 15-15



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

public String call Conpl exService(BasicStruct input)
{

/] Create service and port stubs to invoke Conpl exService
Conpl exPort Type port = service. get Conpl exPort TypePort ();
/1 Include your inplenentation here.

}
}

15.5.2 Passing the TransactionalFeature to the Client

To enable web services atomic transactions on the client of the web service, you can
pass an instance of the webl ogi c. wsee. wst x. wsat . Transact i onal Feat ure as a parameter
when creating the web service proxy or dispatch, as illustrated in the following
example. Relevant code is shown in bold.

# Note:

The following excerpt is borrowed from the web services atomic transaction
example that is delivered with the WebLogic Server Samples Server. For
more information, see More Examples of Using Web Services Atomic
Transactions.

package exanpl es.webservi ces.jaxws. wsat . sinple.client;

import javax.servlet.*;
inport javax.servlet.http.*;

i mport java.net.URL;
i mport javax.xm .nanespace. QNane;

inport javax.transaction.UserTransaction;
inport javax.transaction. SystenException;

import weblogic.wsee.wstx.wsat.TransactionalFeature;

import weblogic.wsee.wstx.wsat.Transactional .Version;

import weblogic.wsee.wstx.wsat.Transactional .TransactionFlowType;
*|

/**

* This exanpl e denonstrates using a Ws-Atonic Transaction to create or delete an account,
* or transfer noney via web service as a single atonic transaction.

*/

public class WatBankTransferServl et extends HttpServlet {

String url = "http://local host:7001";
URL wsdl URL = new URL(url + "/WatBankTransfer Servi ce/ Wat BankTr ansf er Servi ce");

Dat aSource ds = null;
User Transaction utx = null;

try {
ctx = new Initial Context();
utx = (UserTransaction) ctx.lookup("javax.transaction. UserTransaction");

ut x. set Transact i onTi meout ( 900) ;
} catch (java.lang. Exception e) {

ORACLE 15-16



Chapter 15
Enabling Web Services Atomic Transactions on Web Service Clients

e.printStackTrace();
}

Wat BankTr ansf er Service port = getWebServi ce(wsdl URL);

try {
ut x. begi n();
if (renoteAccountNo.length() > 0) {
if (action.equals("create")) {
result = port.createAccount (renoteAccount No, anount);
} else if (action.equals("delete")) {
result = port.del et eAccount (renmot eAccount No) ;
} else if (action.equals("transfer")) {
result = port.transferMpney(remoteAccount No, amount, direction);
}

}
utx.comit();
result = "The transaction is commtted " + result;
} catch (java.lang. Exception e) {
try {
e.printStackTrace();
ut x. rol I back();
result = "The transaction is rolled back. " + e.get Message();
} catch(java.lang. Exception ex) {
e.printStackTrace();
result = "Exception is caught. Check stack trace.";
}
1

request.setAttribute("result", result);

/'l Passing the Transactional Feature to the Cient

private Wat BankTransfer Servi ce get WebServi ce(URL wsdl URL) {
TransactionalFeature feature = new TransactionalFeature();
feature.setFlowType(TransactionFlowType.MANDATORY);
feature.setVersion(Version.WSAT10);
Wat BankTr ansf er Servi ce_Servi ce service = new \WWat BankTr ansf er Servi ce_Servi ce(wsdl URL,

new QNane("http://tenpuri.org/", "WatBankTransferService"));

return service.getWSHttpBindinglService(new javax.xml.ws.soap.AddressingFeature(),

feature);
}
public String createAccount(String acctNo, String anmount) throws java.lang. Exception{
Context ctx = null; User Transaction tx = null;
try {

ctx = new Initial Context();
tx = (UserTransaction)ctx.|ookup("javax.transaction.UserTransaction");

try {
Dat aSour ce dataSource = (DataSource)ctx. | ookup("exanpl es- dat aSour ce- demoXAPool ") ;
String sql = "insert into wsat_acct_local (acctno, amount) val ues (

"+ acctNo + ", " + amount + ")";
int insCount = dataSource. getConnection().prepareStatenent(sql).executeUpdate();
if (insCount != 1)
throw new java. | ang. Exception("insert fail at local.");
return ":acctno=" + acctNo + " ampunt=" + anmount + " creating.. ";
} catch (SQLException e) {
Systemout.println("**** Exception caught *****").
e.printStackTrace();
t hrow new SQLException("SQ. Exception during createAccount() at local.");

} catch (java.lang. Exception e) {
Systemout. println("**** Exception caught *****"):

ORACLE 15-17



Chapter 15
Configuring Web Services Atomic Transactions Using the Administration Console

e.printStackTrace();
throw new j ava. | ang. Exception(e);
}
}

public String del eteAccount (String acctNo) throws java.lang. Exception{

public String transferMney(String acctNo, String anmount, String direction) throws
java.l ang. Exception{

public String listAccount() throws java.lang. Exception{
}
}

package jaxws.interop.rsp;

inport javax.jws.\WbService;
i mport javax.xm .ws.*;
import weblogic.wsee.wstx.wsat.TransactionalFeature;

@ébSer vi ce(
port Name = "Travel AgencyServi ceBi ndi ngs_Basi c",
servi ceNane = "Travel AgencyServi ce",
target Nanespace ="http://wsinterop. org/sanpl es",
wsdl Location = "/wsdl s/ Travel AgencyServi ce. wsdl ",
endpoi ntInterface = "jaxws.interop.rsp.|Travel AgencyService"
)
@i ndi ngType("http://schemas. xm soap. or g/ wsdl / soap/ http")
@ avax. xm . ws. soap. Addr essi ng()
public class Travel AgencyServicelnpl inplenments |Travel AgencyService {

private | FlightService getFlightProxy(String endpoint, String stsEndpoint) throws Exception {
TransactionalFeature feature = new TransactionalFeature();
/1 Optional setting.
feature.setVersion(Transactional .Version.WSAT12);
/1 Optional setting.
feature. set Enabl ed("ReserveFlight", true);
IFlightService flightProxy = flightService.getFlightServiceBindingsBasic(feature);

)
}

15.6 Configuring Web Services Atomic Transactions Using

the Administration Console

The following sections describe how to configure web services atomic transactions

using the WebLogic Server Administration Console.

»  Securing Messages Exchanged Between the Coordinator and Participant

* Enabling and Configuring Web Services Atomic Transactions

ORACLE

15-18



Chapter 15
Using Web Services Atomic Transactions in a Clustered Environment

15.6.1 Securing Messages Exchanged Between the Coordinator and
Participant

Using transport-level security, you can secure messages exchanged between the web
services atomic transaction coordinator and participant by configuring the properties
defined in the following table using the WebLogic Server Administration Console.
These properties are configured at the domain level. For detailed steps, see Configure
web services atomic transactions in the Oracle WebLogic Server Administration
Console Online Help.

Table 15-5 Securing Web Services Atomic Transactions

_______________________________________________________________________________________________|]
Property Description

Web Services Transactions Transport Security Mode Specifies whether two-way SSL is used for the message
exchange between the coordinator and participant. This
property can be set to one of the following values:

*  SSL Not Required—All web service transaction protocol
messages are exchanged over the HTTP channel.

*  SSL Required—All web service transaction protocol
messages are exchanged over the HTTPS channel.
This flag must be enabled when invoking
Microsoft .NET web services that have atomic
transactions enabled.

»  Client Certificate Required—All web service transaction
protocol messages are exchanged over HTTPS and a
client certificate is required.

For more information, see "Configure two-way SSL" in the

Oracle WebLogic Server Administration Console Online

Help.

Web Service Transactions Issued Token Enabled Flag the specifies whether to use an issued token to enable
authentication between the coordinator and participant.

The | ssuedToken is issued by the coordinator and consists
of a security context token (SCT) and a session key used for
signing. The participant sends the signature, signed using
the shared session key, in its registration message. The
coordinator authenticates the participant by verifying the
signature using the session key.

15.6.2 Enabling and Configuring Web Services Atomic Transactions

To enable web services atomic transactions and configure the version and flow type,
you can customize the configuration at the endpoint or method level for the web
service or client. For detailed steps, see Configure web services atomic transactions in
the Oracle WebLogic Server Administration Console Online Help.

15.7 Using Web Services Atomic Transactions in a
Clustered Environment

For considerations when using atomic transaction-enabled web services in a clustered
environment, see Managing Web Services in a Cluster.

ORACLE 15-19



Chapter 15
More Examples of Using Web Services Atomic Transactions

15.8 More Examples of Using Web Services Atomic
Transactions

Refer to the following sections for additional examples of using web services atomic
transactions:

» For an example of how to sign and encrypt message headers exchanged during
the web services atomic transaction, see Securing Web Services Atomic
Transactions in Securing WebLogic Web Services for Oracle WebLogic Server.

" Note:

You can secure applications that enable web service atomic transactions
using only WebLogic web service security policies. You cannot secure
them using Oracle Web Services Manager (WSM) policies.

* A detailed example of web services atomic transactions is provided as part of the
WebLogic Server sample application. For more information about running the
sample application and accessing the example, see Sample Application and Code
Examples in Understanding Oracle WebLogic Server.

ORACLE 15-20



Optimizing XML Transmission Using Fast

Infoset

This chapter describes how to use Fast Infoset for WebLogic web services using Java
API for XML Web Services (JAX-WS).
This chapter includes the following sections:

*  Overview of Fast Infoset
* Enabling Fast Infoset on Web Services
* Enabling and Configuring Fast Infoset on Web Services Clients

» Disabling Fast Infoset on Web Services and Clients

16.1 Overview of Fast Infoset

Fast Infoset is a compressed binary encoding format that provides a more efficient
serialization than the text-based XML format. Fast Infoset optimizes both document
size and processing performance.

When enabled, Fast Infoset converts the XML Information Set in the SOAP envelope
into a compressed binary format before transmitting the data. Fast Infoset optimizes
encrypted and signed messages, MTOM-enabled messages, and SOAP attachments,
and supports both HTTP and JMS transports.

The Fast Infoset specification, ITU-T Rec. X.891 and ISO/IEC 24824-1 (Fast Infoset) is
defined by both the ITU-T and ISO standards bodies. The specification can be
downloaded from the ITU Web site: http://wwmv. i tu.int/rec/ T- REC- X. 891-200505- 1/ en

The Fast Infoset capability is enabled on all web services, by default. For web service
clients, Fast Infoset is enabled if it is enabled on the web service and advertised in the
WSDL.

You can explicitly enable and configure Fast Infoset on a web service or client, as
described in the following sections.

16.2 Enabling Fast Infoset on Web Services

ORACLE

The Fast Infoset capability is enabled on a web service and advertised in the WSDL,
by default. You can enable Fast Infoset explicitly on a web service, using one of the
following methods:

e At design time, using com or acl e. webser vi ces. api . Fast | nf oset Servi ce annotation,
as shown in Example Using @FastinfosetService Annotation at Design Time. For
more information about the annotation, see @FastinfosetService in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

» Post-deployment, by attaching the oracl e/ f ast _i nf oset _servi ce_pol i cy to the web
service. For more information, see the following sections:

16-1


http://www.itu.int/rec/T-REC-X.891-200505-I/en

Chapter 16
Enabling and Configuring Fast Infoset on Web Services Clients

Attaching Policies to Web Services and Clients Using Fusion Middleware
Control in Securing Web Services and Managing Policies with Oracle Web
Services Manager

Configuring Fast Infoset Using WLST in Administering Web Services

oracle/fast_infoset_service_policy in Securing Web Services and Managing
Policies with Oracle Web Services Manager

Example Using @FastinfosetService Annotation at Design Time

The following code excerpt provides an example of using the
com oracl e. webser vi ces. api . Fast | nf oset Ser vi ce annotation to enable and configure
Fast Infoset on a web service at design time.

package exanpl es.webservices. hel | o_worl d;
inport javax.jws.\WebService;
import com.oracle.webservices.api.FastinfosetService;

@ébServi ce(name="Hel | oWor| dPort Type", serviceName="Hel | oWor | dService")
@FastinfosetService(enabled=true)

public class HelloWrldlnpl {
public String sayHel | oWorld(String nmessage) {

}

try {

Systemout. println("sayHel l oWrld:" + nessage);
} catch (Exception ex) { ex.printStackTrace(); }

return "Message from Fl Enabl ed Service:

}

+ message + ;

16.3 Enabling and Configuring Fast Infoset on Web Services

Clients

ORACLE

You can explicitly enable and configure Fast Infoset on a web service client, using one
of the following methods:

At design time, using com or acl e. webser vi ces. api . Fast | nf oset O i ent Feat ure
feature class, as shown in Example Using FastinfosetClientFeature Feature Class
at Design Time.

com oracl e. webservi ces. api . Fast I nf oset C i ent annotation, as shown in
Example Using @FastIinfosetClient Annotation at Design Time. For more
information about the annotation, see @FastinfosetService in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

com oracl e. webservi ces. api . Fast I nf oset C i ent Feat ur e feature class, as shown
in Example Using FastinfosetClientFeature Feature Class at Design Time.

Post-deployment, by attaching oracl e/ f ast _i nfoset _cl i ent_pol i cy to the web
service. For more information, see the following sections:

Attaching Policies to Web Services and Clients Using Fusion Middleware
Control in Securing Web Services and Managing Policies with Oracle Web
Services Manager

Configuring Fast Infoset Using WLST in Administering Web Services

oracle/fast_infoset_client_policy in Securing Web Services and Managing
Policies with Oracle Web Services Manager

16-2



Chapter 16
Enabling and Configuring Fast Infoset on Web Services Clients

16.3.1 Configuring the Content Negotiation Strategy

When enabling Fast Infoset on the client, you can configure the content negotiation
policy. Table 16-1 summarizes the valid content negotiation strategies defined by
com oracl e. webser vi ces. api . Fast | nf oset Cont ent Negot i ati onType.

Table 16-1 Content Negotiation Strategy

|
Value Description

OPTIM STIC Assumes that Fast Infoset is enabled on the service. All requests
will be sent using Fast Infoset.

PESSI M STI C Initial request from client is sent without Fast Infoset enabled, but
with an HTTP Accept header that indicates that the client
supports the Fast Infoset capability. If the service response is in
Fast Infoset format, confirming that Fast Infoset is enabled on
the service, then subsequent requests from the client will be sent
in Fast Infoset format.

NONE Client requests will not use Fast Infoset.

Please note:

» If the content negotiation strategy is configured explicitly on the client:
— It takes precedence over the negotiation strategy advertised in the WSDL.

— If the configured content negotiation strategy conflicts with the capabilities
advertised by the service (for example, if the client configures OPTI M STI C and
the service has Fast Infoset disabled), then an exception is generated.

» If the content negotiation strategy is not configured explicitly by the client:

— If Fast Infoset is enabled and advertised on the service, the OPTI M STI C content
negotiation strategy is used.

— If Fast Infoset is disabled and not advertised on the service, the NONE content
negotiation strategy is used.

16.3.2 Example Using @FastinfosetClient Annotation at Design Time

The following code excerpt provides an example of using the
com oracl e. webservi ces. api . Fast I nfoset C i ent annotation to enable and Fast Infoset
on a Web service client at design time and configure the content negotiation strategy.

THIS EXAMPLE NEEDS TO BE UPDATED.

package exanpl es. webservices. fastinfoset.client;

import com.oracle.webservices.api.FastinfosetClient;

import com.oracle.webservices.api.FastinfosetContentNegotiationType;
import javax.xm .ws.\WbServi ceRef;

public class Hell oServicePortCient {
@\ebSer vi ceRef
@FastinfosetClient(fastinfosetContentNegotiation =
FastInfosetContentNegotiationType.OPTIMISTIC)
private static HelloServiceService hell oServiceService;

ORACLE 16-3



Chapter 16
Disabling Fast Infoset on Web Services and Clients

16.3.3 Example Using FastinfosetClientFeature Feature Class at
Design Time

The following code excerpt provides an example of using the
com or acl e. webser vi ces. api . Fast I nf oset O i ent Feat ur e feature class to enable and
configure Fast Infoset on a web service at design time.

package exanpl es. webservices. hello_world.client;

i mport javax.xnl.namespace. QNane;

import java.net. Ml formedURLException;

inport java.net.URL;

import com.oracle.webservices.api.FastinfosetClientFeature;

import com.oracle.webservices.api.FastinfosetContentNegotiationType;

public class Min {

public static void main(String[] args) {
Hel | oWor [ dServi ce servi ce;
FastInfosetContentNegotiationType clientNeg =
FastlInfosetContentNegotiationType.PESSIMISTIC;

FastInfosetClientFeature feature =
FastlInfosetClientFeature.builder().fastinfosetContentNegotiation(clientNeg).enabled(t
rue).build();

try {
service = new Hel | oWor | dServi ce(new URL(args[0] + "?WSDL"), new QName("http://
hel | o_wor | d. webservi ces. exanpl es/", "Hel |l oWrl dService") );

} catch (Mal formedURLException murl) { throw new RuntinmeException(murl); }

Hel | oWor | dPort Type port = service. get Hel | oWor| dPort TypePort ( feature) ;

String result = null;
result = port.sayHelloWrld("H there!");
Systemout.printin( "CGot result: " + result );
}
}

16.4 Disabling Fast Infoset on Web Services and Clients

ORACLE

At design time, to disable Fast Infoset explicitly:

* On aweb service, set the enabl ed flag to f al se on the annotation, as described in
Enabling Fast Infoset on Web Services.

* On aweb service client, set the enabl ed flag to f al se or set the content negotiation
strategy to NONE on the annotation or Feature class, as described in Enabling and
Configuring Fast Infoset on Web Services Clients.

The following code excerpt provides an example of using the
com oracl e. webservi ces. api . Fast I nf oset Servi ce annotation to disable Fast Infoset on a
web service at design time.

package exanpl es. webservi ces. hel | o_wor| d;
i mport javax.jws.\WebService;
import com.oracle.webservices.api.FastinfosetService;

16-4



ORACLE

Chapter 16
Disabling Fast Infoset on Web Services and Clients

@ébServi ce(nanme="Hel | oWor | dPort Type", serviceName="Hel | oWor | dServi ce")
@FastinfosetService(enabled=false)

public class HelloWrldlnpl {
public String sayHel | oWrld(String nessage) {

try {
Systemout. println("sayHel | oWrld:" + nmessage);

} catch (Exception ex) { ex.printStackTrace(); }
return "Message fromFl Enabled Service: '" + nmessage + """

}
}

At post-deployment time, to disable Fast Infoset:

e Detach the oracl e/fast_infoset_service_policy ororacl e/
fast_infoset_client_policy policy from the web service or client, respectively.

For complete details, see the following sections:

— Attaching Policies to Web Services and Clients Using Fusion Middleware
Control in Securing Web Services and Managing Policies with Oracle Web
Services Manager.

— Configuring Fast Infoset Using WLST in Administering Web Services.

* To disable Fast Infoset globally, at a higher scope on a web service or client,
define a policy set that includes or acl e/ no_f ast _i nf oset _servi ce_pol i cy or oracl e/
no_fast _i nfoset _client_policy policy, respectively.

For complete details, see the following sections:

— Attaching Policies Globally Using Policy Sets in Securing Web Services and
Managing Policies with Oracle Web Services Manager.

— Attaching Policies Globally Using Policy Sets Using WLST in Securing Web
Services and Managing Policies with Oracle Web Services Manager.

16-5



Using SOAP Over JMS Transport

This chapter describes how to use SOAP over Java Messaging Service (JMS)
transport as the connection protocol for WebLogic web services using Java API for
XML Web Services (JAX-WS).

" Note:

SOAP over JMS transport is not compatible with the following web service
features: reliable messaging and HTTP transport-specific security.

This chapter includes the following sections:

e Overview of SOAP Over JMS Transport

e Configuring the WebLogic Server Domain for JMS Transport

» Developing Web Services Using JMS Transport—Starting From Java

»  Developing Web Services Using JMS Transport—Starting From WSDL
e Invoking a WebLogic Web Service Using JMS Transport

e Configuring JMS Transport Properties

e Monitoring SOAP Over JMS Transport

17.1 Overview of SOAP Over JMS Transport

ORACLE

Typically, web services and clients communicate using SOAP over HTTP/S as the
connection protocol. You can, however, configure a WebLogic web service so that
client applications use JMS as the transport.

Using SOAP over JMS transport, web services and clients communicate using JMS
destinations instead of HTTP connections, offering the following benefits:

e Reliability
e Scalability
*  Quality of service

As with web service reliable messaging, if WebLogic Server goes down while the
method invocation is still in the queue, it will be handled as soon as WebLogic Server
is restarted. When a client invokes a web service, the client does not wait for a
response, and the execution of the client can continue. Using SOAP over JMS
transport does require slightly more overhead and programming complexity than
HTTP/S.

For each transport that you specify, WebLogic Server generates an additional port in
the WSDL. For this reason, if you want to give client applications a choice of transports
they can use when they invoke the web service (JMS, HTTP, or HTTPS), you should

17-1



Chapter 17
Overview of SOAP Over JMS Transport

explicitly configure each transport. You configure transports using JWS annotations or
child elements of the j wsc Ant task.

If you configure JMS transport only, although you cannot invoke the web service using
HTTP, you can view its WSDL using HTTP, which is how the cl i ent gen is still able to
generate JAX-WS stubs for the web service.

# Note:

Using JMS transport is a WebLogic feature; non-WebLogic client
applications, such as a .NET client, may not be able to invoke the web
service using the JMS port.

Figure 17-1 shows the flow of request and response messages for a web service
invocation using SOAP over JMS transport.

e The client stub invokes the web service and sends the SOAP request message to
the web service via the JMS request queue, and then waits for the response.

e Onthe server side, the MDB listener receives the request and invokes the service
endpoint.

e Once processed, the service endpoint sends the response to the JMS response
queue.

e The JMS listener on the client side receives the response and passes it to the
client.

e The JMS response endpoint and listener are removed when the client issues the
java.io. C osable.close() command.

Figure 17-1 Web Service Invocation Using SOAP Over JMS Transport

T Request Request Request
¢ ient Stu
A Message Message Message
o —J Service 9 F:;:':::t 9 MDB g »
'ﬁ‘:.,“:‘w"r Invocation
s l Service
en Endpoint

(Call Initiator) Response Response

IMS Message | Response Message

Listener | Queue €

ORACLE

Figure 17-2 shows the flow of request and response messages for an asynchronous
web service invocation using SOAP over JMS transport.

* The client stub invokes the web service asynchronously and sends the SOAP
request message to the web service via the JMS request queue. The client stub
returns aj avax. xn . ws. Response Or j ava. util.concurrent. Fut ure<T> instance, and
does not wait for the response.

e Onthe server side, the MDB listener receives the request and invokes the service
endpoint.

17-2



Chapter 17

Overview of SOAP Over JMS Transport

* Once processed, the service endpoint sends the response to the JMS response

queue.

* The JMS listener invokes the response endpoint which populates the Response or

Fut ur e<T> instance for the client.

*  The JMS response endpoint and listener are removed when the client issues the
java.io.C osabl e.cl ose() command.

Figure 17-2 Asynchronous Web Service Invocation Using SOAP Over JMS Transport

- Request Request Request
,r:‘ J cl;‘.:.:i 5(:“" Message | Request | Message o Messagi
e I . Queue
l-..,__‘_LH,,-"' nvocation
. L Service
c"?'?t Endpoint
(Call Initiator) Response Response Response
R Message Message Message
esponse _JMS ) Response e
Endpoint Listener Queue

Before sending the request message to the JMS destination, the client sets the JMS
message properties defined in Table 17-1.

Table 17-1 JMS Message Properties Defined in the Request Message

________________________________________________________________________________________|]
JMS Message Property

Description

SOAPJMS_bi ndi ngVer si on

Version of the SOAP JMS binding. This value must be set to 1. 0 for this
release.

SOAPJMS_cont ent Type

MIME content type of the message

SOAPJMS_r equest URI

JMS request URI. For more information about how the value is configured,
see Configuring the JMS Request URI.

SOAPJMS_soapActi on

SOAP action which defines the intent of the request.

SOAPJNVS t ar get Servi ce

Port component name of the web service.

messageType

Message type to use with the request message. A value of BYTES indicates
the com oracl e. webservi ces. api . j ns. JMSMessageType. BYTES object is
used. A value of TEXT indicates

com oracl e. webservi ces. api . j ns. JMSMessageType. TEXT object is used.
This value defaults to BYTES.

JMSMessagel D

ID that uniquely identifies the JIMS message and that is used to correlate
the response message with the request. The JMSCorr el at i onl D property
of the response message must match the JMSMessagel D of the request
message.

ECI DCont ext

Execution Context Identifier (ECID), wrapper code, and encoding details.
This content is similar to what is provided for the HTTP header, and is
required for the client only.

ORACLE

Before sending the response message to the JMS destination, the service sets the
JMS message properties defined in Table 17-1.

17-3



Chapter 17
Configuring the WebLogic Server Domain for JMS Transport

Table 17-2 JMS Message Properties Defined in the Response Message
]

JMS Message Property Description

SQAPJMS_bi ndi ngVer si on Version of the SOAP JMS binding. This value must be set to 1. 0 for this
release.

SOAPJMS_cont ent Type MIME content type of the message

JMsCorrel ationl D ID used to correlate the request and response messages. The

JMBCorr el ati onl D must match the JMSMessagel D of the request message.

JMSMessagel D ID that uniquely identifies the JMS message and that is used to correlate
the response message with the request.

17.2 Configuring the WebLogic Server Domain for JMS
Transport

Table 17-3 lists the default resources used by JMS transport in your WebLogic Server
domain, by default.

Table 17-3 Default Resources Used by JMS Transport

Resource Name (Default) Resource Type Description

V\$eeSoapj msJnsSer ver JMS server JMS server management container.
To configure the JMS server manually, see
JMS Configuration in Administering JIMS
Resources for Oracle WebLogic Server.

WseeSoapj msFi | eStore File store File store, or physical store, used by the
WebLogic Server to handle the 1/0 operations
to save and retrieve data from the physical
storage (such as file, DBMS, and so on).

To configure the file stores manually, see
Using Custom File Stores in Administering the
WebLogic Persistent Store.

V\6eeSoapj msJnsModul e JMS Module JMS module that defines the JMS resources
needed for SOAP over JMS transport.

To configure the JIMS module manually, see
JMS Configuration in Administering IMS
Resources for Oracle WebLogic Server.

V6eeSoapj msJnsSer ver Sub JMS subdeployment JMS subdeployment for targeting the JIMS
resources to the WseeSoapJnsSer ver .

To configure the JMS subdeployment
manually, see JMS Configuration in
Administering JMS Resources for Oracle
WebLogic Server.

com oracl e. webservi ces. api . j ns. C JMS Connection Factory = Default JIMS connection factory used to create
onnect i onFactory connections for SOAP over JMS transport.

You can configure a different connection
factory using the j ndi Connecti onFact or yNanme
JMS transport property, as described in
Configuring JMS Transport Properties.

ORACLE 17-4



Chapter 17
Developing Web Services Using JMS Transport—Starting From Java

Table 17-3 (Cont.) Default Resources Used by JMS Transport

_____________________________________________________________________________________________|]
Resource Name (Default) Resource Type Description

com oracl e. webservi ces. api . j ms. R JMS Queue Default IMS request queue.

equest Queue

You can configure a different IMS request
queue using the desti nati onName JMS
transport property, as described in Configuring
JMS Transport Properties.

com oracl e. webservi ces. api . j n5. R JIMS Queue Default JIMS response queue.

esponseQueue

You can configure a different JMS response
queue, as described in Configuring the JMS
Response Queue.

When creating or extending a domain, you can apply the WebLogic JAX-WS
SOAP/IMS Extension template (W s_webservi ce_soapj ms. j ar) to configure
automatically the JMS resources required to support JMS transport.

To configure automatically the JMS resources required to support JMS transport, use
one of the following methods:

» Use the Configuration Wizard to create or extend a domain, as described in
Creating a WebLogic Domain in the Creating WebLogic Domains Using the
Configuration Wizard. When prompted to specify a template to use to create or
extend the domain, select the WebLogic JAX-WS SOAP/JMS Extension
template.

* Use WLST to extend a domain, using the wi s_webser vi ce_soapj ns. j ar extension
template JAR file, as described in Editing a WebLogic Domain (Offline) in
Understanding the WebLogic Scripting Tool.

Although use of this extension template is not required, it makes the configuration of
the required resources much easier. Alternatively, you can manually configure the
resources required using the Oracle WebLogic Server Administration Console or
WLST.

To configure manually the resources required to support JMS transport, use one of the
following methods:

» Use the WebLogic Server Administration Console to create the resources, as
described in Table 17-3. For more information, see JMS Configuration in
Administering JMS Resources for Oracle WebLogic Server.

* Use WLST to create the resources defined in Table 17-3. For more information,
see Creating Existing WebLogic Domains in Understanding the WebLogic
Scripting Tool.

17.3 Developing Web Services Using JMS Transport—
Starting From Java

ORACLE

To use JMS transport for web services when starting from Java, you must perform at
least one of the following tasks:

e Add the @om oracl e. webser vi ces. api . j ms. JMSTr anspor t Servi ce annotation to your
JWS file.

17-5



Chapter 17
Developing Web Services Using JMS Transport—Starting From Java

* Add a<jnstransportservice> child element in the <j ws> element of the j wsc Ant
task. This setting overrides the transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from Java.

Table 17-4 Steps to Develop Web Services With JMS Transport—Starting From Java

# Step

Description

Complete the prerequisites. It is assumed that you have created a basic JWS file that implements a

web service and that you want to configure the web service to be
invoked using JMS transport

It is also assumed that you have set up an Ant-based development
environment and that you have a working bui | d. xn1 file that includes
targets for running the j wsc Ant task and deploying the service.

For more information, see Developing JAX-WS Web Services.

2 Configure the WebLogic See Configuring the WebLogic Server Domain for JIMS Transport.
Server domain for the
required JMS components.

3 Add the This step is optional. If you do not add the @MSTr ansport Servi ce
@om or acl e. webservi ces. annotation to your JWS file, then you must add a
api . j ms. JMSTransport Serv <j nstransportservi ce> child element in the <j ws> element of the j wsc
i ce annotation to your JWS Ant task, as described in Step 4.

file. (Optional) See Using the @JMSTransportService Annotation.
4 Add a Use the <j nstransport servi ce> child element to override the transports
<j mstransportservice> defined in the JWS file.
child element to the jwsc  Thjs step is required if you did not add the @nsTr anspor t Ser vi ce
Ant task. (Optional) annotation to your JWS file in Step 3. Otherwise, this step is optional.

See Using the <jmstransportservice> Child Element in the Ant build.xml
File for details.

5 Build your web service by For example, if the target that calls the j wsc Ant task is called bui | d-
running the target in the servi ce, then you would run:
bui I d. xm Ant file that calls

pronpt > ant buil d-service

the j wsc task.
See Running the jwsc WebLogic Web Services Ant Task.
6 Deploy your web service to  See Deploying and Undeploying WebLogic Web Services.

WebLogic Server.

See Invoking a WebLogic Web Service Using JMS Transport for information about
updating your client application to invoke the web service using JMS transport.

17.3.1 Using the @JMSTransportService Annotation

ORACLE

If you know at the time that you program the JWS file that you want client applications
to use JMS transport (instead of HTTP/S) to invoke the web service, you can use the
@om oracl e. webser vi ces. api . j ms. JMSTr ansport Servi ce annotation to specify the details
of the invocation.

You can include only one @MsTransport Servi ce annotation in a JWS file.

Optionally, you can configure the destination name, connection factory, delivery mode,
and other JMS transport properties using the @MsTr anspor t Ser vi ce annotation. For
more information, see Configuring JMS Transport Properties.

17-6



Chapter 17
Developing Web Services Using JMS Transport—Starting From Java

Later, at build-time, you can override the invocation defined in the JWS file and add
additional JMS transport specifications, by specifying the <j nst r anspor t ser vi ce> child
element in the <j ws> element of "jwsc" j wsc Ant task, as described in Using the
<jmstransportservice> Child Element in the Ant build.xml File.

Example 17-1 shows an excerpt from a JWS file, implemented as a stateless EJB, that
uses the @MsTr ansport Ser vi ce annotation, with the relevant code in bold.

Example 17-1 Enabling JMS Transport for a Stateless EJB Using @JMSTransportService
Annotation

package jaxws.ejb;

import javax.ejb. Stateless;
import javax.jws.\WebServi ce;
import com.oracle.webservices.api.jms.JMSTransportService;

@ebService(name = "Sinple", targetNanmespace = "http://exanple.org")

@JIMSTransportService(
targetService="SimpleEjbService",
destinationName="com.oracle.webservices.api.jms.RequestQueue",
jndiConnectionFactoryName="weblogic.jms.ConnectionFactory",
mdbPerDestination=false,
activationConfig=(""transAttribute=Never;maxBeansInFreePool=1000;

dispatchPolicy=weblogic.wsee.jaxws.mdb.DispatchPolicy"

)

@t at el ess

public class SinpleEb { ... }

Example 17-2 shows an excerpt from a provider-based web service that uses the
@MSTr anspor t Servi ce annotation, with the relevant code in bold.

Example 17-2 Enabling JMS Transport for a Provider-based Web Service Using
@JMSTransportService Annotation

package exanpl es.webservi ces. j axws;

import javax.xn .transform Source;

import javax.xm .ws.Provider;

i mport javax.xm .ws. Servi ceMode;

import javax.xm .ws.\WebServi ceProvider;

import javax.xm .ws. Service;

import java.io.ByteArraylnput Stream

import com.oracle.webservices.api.jms.JMSTransportService;

@er vi ceMbde(val ue=Servi ce. Mode. PAYLQAD)
@\ebSer vi ceProvi der (port Name="\\ar ehouseSer vi cePort",
servi ceNane="War ehouseServi ce", t ar get Nanespace="htt p: / / exanpl es. org/")
@JIMSTransportService(destinationName="myQueue')
public class WarehouseServicel npl inplements Provider<Source> {

public Source invoke(Source source) { ... }

ORACLE 17-7



Chapter 17
Developing Web Services Using JMS Transport—Starting From Java

17.3.2 Using the <jmstransportservice> Child Element in the Ant
build.xml File

You can specify the JMS transport at build-time by adding the <j nst ransport servi ce>
child element in the <j ws> element of the j wsc Ant task. You may want to configure
JMS transport at build-time for one of the following reasons:

* You want to override the attribute values specified in the JWS file using the
@MBTranspor t Servi ce annotation.

* The JWS file does not include a @MSTr ansport Ser vi ce annotation and you
determine at build-time that you want clients to use the JMS transport to invoke
the web service.

The <j mstranspor t servi ce> child element of the j wsc Ant task takes precedence over
the @MBTr anspor t Servi ce transport annotation in the JWS file.

Optionally, you can configure the destination name, destination type, delivery mode,
and other JMS transport properties, using the <j mst ransport servi ce> element. For a

complete list of JMS transport properties supported, see Configuring JMS Transport
Properties.

Example 17-3 shows an excerpt from a bui | d. xnl file that shows how to enable and
configure JMS transport using the <j mst r anspor t servi ce> child element in the <j ws>
element of the j wsc Ant task. The relevant code is shown in bold.

Example 17-3 Enabling JMS Transport Using the <jmstransportservice> Child Element

<?xnml version="1.0"?>
<proj ect name="jaxws.jns.jwsc" default="all">
<inmport file="../build-jnms.xm"/>
<path id="client.class.path">
<pat hel ement path="${clientclasses.dir}"/>
<pat hel ement pat h="${j ava. cl ass. path}"/>
</ path>
<target nanme="jwsc">
<jwsc srcdir="." sourcepath="client" destdir="${output.dir}" debug="on"
keepGener at ed="yes" >
<jws file="JWSCEndpoint.java" type="JAXWS" expl ode="true">
<jmstransportservice
targetService="JWSCEndpointService"
destinationName="com.oracle.webservices.api.jms.RequestQueue"
jndilnitialContextFactory="weblogic.jndi.WLInitialContextFactory"
jndiConnectionFactoryName="weblogic.jms.XAConnectionFactory"
JndiURL="t3://1ocalhost:7001"
deliveryMode=com.oracle.webservices.api.jms.IMSDeliveryMode.PERSISTENT
timeToLive=60000
priority=1
messageType=com.oracle.webservices.api.jms.JIMSMessageType .BYTES
activationConfig = "transAttribute=Supports"
/>
</jws>
</jwsc>
</target>
</ project>

ORACLE 17-8



Chapter 17
Developing Web Services Using JMS Transport—Starting From WSDL

For more information about using the j wsc Ant task, see jwsc in WebLogic Web
Services Reference for Oracle WebLogic Server.

17.4 Developing Web Services Using JMS Transport—
Starting From WSDL

To use JMS transport for web services when starting from WSDL, you must perform at
least one of the following tasks:

* Update the WSDL to use JMS transport before running the wsdl ¢ Ant task.

» Update the stubbed-out JWS implementation file generated by the wsdl ¢ Ant task
to add the @om or acl e. webser vi ces. api . j ms. JMSTr anspor t Servi ce annotation.

e Add a <j nstransport servi ce> child element in the <j ws> element of the j wsc Ant
task used to build the JWS implementation file. This setting overrides the
transports defined in the JWS file.

The following procedure describes the complete set of steps required so that your web
service can be invoked using the JMS transport when starting from WSDL.

Table 17-5 Steps to Developing Web Services With JIMS Transport—Starting From WSDL

# Step

Description

Complete the prerequisites.

It is assumed in this procedure that you have an existing WSDL file.

2 Configure the WebLogic
Server domain for the
required JMS components.

See Configuring the WebLogic Server Domain for JMS Transport.

3 Update the WSDL to use JMS
transport. (Optional)

This step is optional. If you do not update the WSDL to use JMS transport,

then you must do at least one of the following:

e Edit the stubbed out JWS file to add the @MSTr ansport Servi ce
annotation to your JWS file, as described in Step 5.

e Add a<jnstransportservi ce> child element in the <j ws> element of the
j wsc Ant task, as described in Step 7.

See Updating the WSDL to Use JMS Transport.

4 Run the wsdl ¢ Ant task
against the WSDL file.

For example, if the target that calls the wsdl ¢ Ant task is called generate-
from-wsdl, then you would run:

pronmpt> ant generate-from wsdl

See Running the wsdlc WebLogic Web Services Ant Task.

5 Update the stubbed-out JWS
file.

The wsdl ¢ Ant task generates a stubbed-out JWS file.You need to add your
business code to the web service so it behaves as you want. See Updating
the Stubbed-out JWS Implementation Class File Generated By wsdlc.

If you updated the WSDL to use the JMS transport in Step 3, the JWS file
includes the @MsTr anspor t Ser vi ce annotation that defines the JIMS
transport. If the @MSTr anspor t Ser vi ce annotation is not included in the JWS
file, you must do at least one of the following:

e Edit the JWS file to add the @MSTr ansport Servi ce annotation to your
JWS file, as described in Using the @JMSTransportService Annotation.

e Adda<jnstransportservi ce> child element in the <j ws> element of the
j wsc Ant task, as described in Step 7.

ORACLE

17-9



Chapter 17
Developing Web Services Using JMS Transport—Starting From WSDL

Table 17-5 (Cont.) Steps to Developing Web Services With JMS Transport—Starting From

WSDL
_____________________________________________________________________________________________|]
# Step Description

Add a Use the <j nst ranspor t servi ce> child element to override the transports

<j mst ransportservi ce> child defined in the JWS file. This step is required if the JWS file does not include
element to the j wsc Ant task. the @MSTransport Servi ce annotation, as noted in Step 5. Otherwise, this

(Optional)

step is optional.

See Using the <jmstransportservice> Child Element in the Ant build.xml File
for details.

7 Run the j wsc Ant task against Specify the artifacts generated by the wsdl ¢ Ant task as well as your updated
the JWS file to build the web  JWS implementation file, to generate an Enterprise Application that

service.

implements the web service.
See Running the jwsc WebLogic Web Services Ant Task.

8 Deploy the web service to See Deploying and Undeploying WebLogic Web Services.
WebLogic Server.

See Invoking a WebLogic Web Service Using JMS Transport for information about
updating your client application to invoke the web service using JMS transport.

17.4.1 Updating the WSDL to Use JMS Transport

To update the WSDL to use JMS transport, you need to add the <wsdl : bi ndi ng>
definition that defines JMS transport information. You can add the definition in one of
the following ways, depending on whether you want to specify multiple transport
options:

e Edit the existing HTTP <wsdl : bi ndi ng> definition.

*  To specify multiple transport options in the WSDL (such as HTTP and JMS
transport), copy the existing HTTP <wsdl : bi ndi ng> definition and edit it to use JIMS
transport.

Optionally, you can configure JMS transport properties at the binding or JIMS URI
level.

The following sections describe how to update the WSDL to use JMS transport:
*  Enabling JMS Transport at the WSDL Binding Level

*  Configuring JMS Transport Properties in the WSDL

*  Example of Enabling JMS Transport in WSDL

17.4.1.1 Enabling JMS Transport at the WSDL Binding Level

ORACLE

To enable JMS transport at the WSDL binding level, set the transport attribute of the
<soapwsdl : bi ndi ng> child element of the <wsdl : bi ndi ng> element to http: // ww. w3. or g/
2010/ soapj ns.

Optionally, you can configure JMS transport properties within the <wsdl : bi ndi ng>
element definition, as described in Configuring JMS Transport Properties in the WSDL.

Example 17-4 provides an example of the <wsd! : bi ndi ng> element for JIMS transport.
In this example, an HTTP binding is also defined.

17-10



Chapter 17
Developing Web Services Using JMS Transport—Starting From WSDL

Example 17-4 Enabling JMS Transport at the WSDL Binding Level

<bi ndi ng xm ns: soapj ns="htt p: // ww. w3. or g/ 2010/ soapj s/ "
name="AddNurmber sJVMBBi ndi ng" type="tns: AddNunber sPort Type" >
<soap: bi ndi ng transport="http://www.w3.0rg/2010/soapjms/" styl e="document" />
<operation nane="addNunbers">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</i nput >
<out put >
<soap: body use="literal" />
</ out put >
</ operation>
</ bi ndi ng>
<bi ndi ng nane="AddNunber sSOAPBi ndi ng" type="t ns: AddNurmber sPort Type" >
<soap: bi nding transport="http://schemas. xn soap. or g/ soap/ http" styl e="docunent" />

</ bi ndl ﬁg>

17.4.1.2 Configuring JMS Transport Properties in the WSDL

Optionally, you can configure a subset of JMS transport properties within the following
WSDL elements:

e <wsdl : bi ndi ng> element—Propagates to all ports using the binding.
e <wsdl : servi ce> element—Propagates to all ports.

e <wsdl : port> element—Used only by the port.

* JMS URI, as described in Configuring the JMS URI.

Specifically, you can configure the following JMS transport properties in the WSDL.
For a description of the properties, see Table 17-6.

e deliveryMde

* jndi Connecti onFact or yName
° jndi ContextParaneters

* jndilnitial ContextFactory
° jndi URL

e priority

* replyToName

° timeTolive

Example 17-5 provides an example of the <wsdl : bi ndi ng> element with JIMS transport
properties defined. In this case, the JMS transport properties propagate to all ports
that use the binding.

Example 17-5 Configuring JMS Transport Properties in the WSDL
<bi ndi ng xm ns: soapj ns="http://ww. w3. or g/ 2010/ soapj ns/ "
nane="AddNunber sBi ndi ng" type="tns: AddNunber sPort Type">

<soap: bi ndi ng transport="http://www.w3.0rg/2010/soapjms/"
styl e="docunent" />

ORACLE 17-11



Chapter 17
Developing Web Services Using JMS Transport—Starting From WSDL

<soapjms: jndiInitialContextFactory>
weblogic.jndi.WLInitialContextFactory
</soapjms:jndilnitialContextFactory>
<soapjms: jndiConnectionFactoryName>
weblogic.jms.XAConnectionFactory
</soapjms: jndiConnectionFactoryName>
<soapjms:bindingVersion>1.0</soapjms:bindingVersion>
<soapjms:destinationName>
com.oracle.webservices.api.jms.RequestQueue
</soapjms:destinationName>
<soapjms:targetService>AddNumbersService</soapjms:targetService>
<soapjms:deliveryMode>
com.oracle.webservices.api.jms.JIMSDeliveryMode.PERSISTENT
</soapjms:deliveryMode>
<soapjms:priority>0</soapjms:priority>
<soapjms:messageType>
com.oracle._webservices.api . jms.JIMSMessageType .BYTES
</soapjms:messageType>
<soapjms:destinationType>
com.oracle._webservices.api . jms.JMSDestinationType.QUEUE
</soapjms:destinationType>
<operation nanme="addNunbers">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input>
<out put >
<soap: body use="literal" />
</ out put >
</ operati on>
</ bi ndi ng>

17.4.1.3 Example of Enabling JMS Transport in WSDL

Example 17-6 provides an example of a WSDL that is configured for SOAP over JMS
transport.

Example 17-6 Enabling JMS Transport in WSDL

<?xm version="1.0" encodi ng="UTF-8"?>

<definitions
name="AddNunber s"
t ar get Namespace="http: // exanpl e. org"
xmns:tns="http://exanple. org"
xm ns="http://schemas. xn soap. or g/ wsdl /
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ ">
<types>
<xsd: schema
xm ns="http:// ww. w3. or g/ 2001/ XM.Schema"
t ar get Nanespace="http: // exanpl e. org"
el ement For mDef aul t ="qual i fied">

<conpl exType name="addNunber sResponse"”
<sequence>
<el ement name="return" type="xsd:int" />
</ sequence>
</ conpl exType>
<el ement nanme="addNunber sResponse” type="tns: addNunber sResponse"/ >

ORACLE 17-12



Chapter 17

Developing Web Services Using JMS Transport—Starting From WSDL

<conpl exType nane="addNunbers" >
<sequence>
<el ement name="arg0" type="xsd:int" />
<el ement nanme="argl" type="xsd:int" />
</ sequence>
</ conpl exType>
<el ement nanme="addNunmbers" type="tns: addNurmbers"/>
</ xsd: schema>
</types>
<nessage nane="addNunbers" >
<part name="paraneters" el ement="tns:addNunbers" />
</ message>
<nessage nane="addNunber sResponse" >
<part name="result" el enent="tns:addNunber sResponse" />
</ nessage>
<port Type nane="AddNunber sPort Type">
<operation nanme="addNunbers">
<i nput nmessage="tns: addNunbers" />
<out put message="t ns: addNunber sResponse" />
</ operation>
</ port Type>
<bi ndi ng xn ns: soapj ms="http://ww. w3. or g/ 2010/ soapj ns/ " name="AddNurber sBi ndi ng"
type="tns: AddNurber sPort Type" >
<soap: bi nding transport="http://ww:. w3. org/ 2010/ soapj ns/" styl e="docunent" />
<soapj ns:j ndi | nitial Context Fact ory>webl ogic.jndi.W.Initial ContextFactory
</ soapj ns: j ndi | ni tial Context Fact ory>
<soapj ns: j ndi Connect i onFact or yName>webl ogi c. j ms. XAConnect i onFact ory
</ soapj ns: j ndi Connect i onFact or yName>
<soapj ms: bi ndi ngVer si on>1. 0</ soapj ms: bi ndi ngVer si on>
<soapj ns: desti nati onNane>com or acl e. webservi ces. api . j m5. Request Queue
</ soapj ns: dest i nati onNane>
<soapj ns: t ar get Servi ce>AddNunber sSer vi ce</ soapj ns: t ar get Servi ce>
<soapj ns: del i ver yMode>com or acl e. webser vi ces. api . j ms. JMSDel i ver yMode. PERS| STENT
</ soapj ns: del i ver yMde>
<soapj ms: pri ority>0</soapj ms: priority>
<soapj ns: nessageType>com or acl e. webservi ces. api . j ns. IMSMessageType. BYTES
</ soapj ns: nessageType>

<soapj ns: dest i nati onType>com or acl e. webservi ces. api . j ms. JMSDest i nat i onType. QUEUE

</ soapj ms: desti nati onType>
<operation name="addNunbers">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input >
<out put >
<soap: body use="literal" />
</ out put >
</ operation>
</ bi ndi ng>
<servi ce name="AddNunber sServi ce">
<port name="AddNunmbersPort" bi ndi ng="tns: AddNunber sBi ndi ng" >
<soap: address |ocation="jms:jndi:com oracl e. webservi ces. api . j m. Request Queue?

</port>
</ service>

</definitions>

ORACLE

tar get Servi ce=AddNunber sSer vi ce&anp; j ndi I ni ti al Cont ext Fact or y=webl ogi c. j ndi . W.I ni ti al Cont ext Fact or y&m
p; j ndi Connect i onFact or yName=webl ogi c. j ns. XAConnect i onFact ory"/ >

17-13



Chapter 17
Invoking a WebLogic Web Service Using JMS Transport

17.5 Invoking a WebLogic Web Service Using JMS

Transport

You write a client application to invoke a web service using JMS transport in the same
way as you write one using the HTTP transport. In the case of JMS transport, the
client sends SOAP request messages to the JMS request destination and receives
SOAP response messages from the JMS response destination. For examples of
invoking a web service, see Examples of Developing JAX-WS Web Service Clients.

You enable and optionally configure JMS transport on the web service client using one
of the following methods:

e Use the <jnstransportclient>element of the client gen Ant task to generate
automatically client artifacts with JIMS transport enabled, as described in Using the
<jmstransportclient> Element in the Ant build.xml File.

* Update the web service client to configure JMS transport, using one of the
following methods:

— Adding @om oracl e. webser vi ces. api . j ms. JMSTransport 0 i ent annotation, as
described in Using the @JMSTransportClient Annotation.

— Adding com oracl e. webser vi ces. api . j ms. JMSTransport C i ent Feat ur e feature
client API, as described in Using the JMSTransportClientFeature Client API.

— Configure the JMS URI as the target endpoint address for synchronous
clients, as described in Configuring the JMS URI as the Target Endpoint
Address.

» Update the asynchronous web service client to enable and configure JMS
transport, as described in Using AsyncClientTransportFeature to Configure
Asynchronous Clients.

17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File

ORACLE

The cli ent gen tool generates a JMS transport client proxy from a WSDL file containing
a JMS transport binding. When generating the client proxy using cl i ent gen, you can
enable JMS transport by adding the <j nstransportclient> elementin clientgen Ant
task.

# Note:

Although you cannot invoke a JMS-transport-configured web service using
HTTP, you can view its WSDL using HTTP, which is how the cl i ent gen Ant
task is still able to create the JAX-WS artifacts for the web service.

Optionally, you can configure the destination name, destination type, delivery mode,
request and response queues, and other JMS transport properties, using the

<j nmstransportclient>element. For a complete list of JMS transport properties
supported, see Configuring JMS Transport Properties.

17-14



Chapter 17
Invoking a WebLogic Web Service Using JMS Transport

Example 17-7 shows an excerpt from a bui | d. xnl file that shows how to enable and
configure JMS transport using the <j nstransportclient > element of the cl i ent gen Ant
task. The relevant code is shown in bold.

Example 17-7 Using the <jmstransportclient> Element in the Ant build.xml File

<target name="clientgen">

<clientgen

wsdl =". / War ehouseSer vi ce. wsdl "
destDir="clientcl asses"
packageName="cl i ent . war ehouse"
type="JAXWS' >
<jmstransportclient

/>
</clientgen>

targetService="JWSCEndpointService"
destinationName="com.oracle.webservices.api.jms._RequestQueue"
jndilnitialContextFactory="weblogic.jndi_WLInitialContextFactory"
jndiConnectionFactoryName="weblogic.jms.ConnectionFactory"
JndiURL="t3://localhost:7001"

timeToLive=60000

priority=1
messageType=com.oracle.webservices.api - jms.JMSMessageType . TEXT
replyToName=""com.oracle.webservices.api . jms.ResponseQueue"

For more information about using the cl i ent gen Ant task, see clientgen in WebLogic
Web Services Reference for Oracle WebLogic Server.

17.5.2 Using the @JMSTransportClient Annotation

ORACLE

When you run cl i ent gen to generate the web service client artifacts from the WSDL
file, the @om oracl e. webser vi ces. api . j ns. IMSTransport d i ent annotation is included
automatically to the generated client proxy if JIMS transport is enabled in the build file
using the <j nstransportclient> element, as described in Using the
<jmstransportclient> Element in the Ant build.xml File.

If the @MSTransport C i ent annotation is not configured automatically through
clientgen, you can add it to the file manually.

Optionally, you can configure the following JMS transport properties using the
@MsTransport C i ent annotation. For a description of the properties, see Table 17-6.

e destinationName

e destinationType

* enabled

* jmsMessageHeader

° jnsMessageProperty

* jndi Connecti onFact or yName
* jndi ContextParaneters

* jndilnitial ContextFactory
° jndi URL

* nessageType

e priority

17-15



repl yToName
target Service

timeToLive

Chapter 17
Invoking a WebLogic Web Service Using JMS Transport

Example 17-8 shows an excerpt from a client file that uses the @MsTransport d i ent
annotation, with the relevant code in bold.

Example 17-8 Enabling JMS Transport for a Client Proxy Using the @JMSTransportClient

Annotation

import javax.xm .ws.\WebServiceCient

import com.oracle.webservices.api.jms.JMSTransportClient;

@bServiced ient(name = "WarehouseService", targetNanespace = "http://oracle.conm sanples/"

wsdl Locat i on="\\r ehouseSer vi ce. wsdl ")
@JIMSTransportClient (

destinationName="myQueue",
replyToName="myReplyToQueue",
JndiURL="t3://1ocalhost:7001",
jndilnitialContextFactory="weblogic.jndi_WLInitialContextFactory" ,
jndiConnectionFactoryName="weblogic.jms.ConnectionFactory" ,
timeToLive=1000, priority=1,
messageType=com.oracle.webservices.api.jms.JMSMessageType . TEXT

)

public class WarehouseService extends Service { ... }

17.5.3 Using the JMSTransportClientFeature Client API

You can use the com oracl e. webser vi ces. api . j ms. JMSTr anspor t O i ent Feat ur e client API
to configure JMS transport in the web service client.

Optionally, you can configure the following JMS transport properties using the
com oracl e. webservi ces. api . j ms. JMSTranspor t d i ent Feat ure. For a description of the
properties, see Table 17-6.

ORACLE

destinati onName
destinationType

enabl ed

j mMessageHeader

j msMessagePr operty

j ndi Connect i onFact or yNanme
j ndi Cont ext Par amet er s
jndi I nitial ContextFactory
j ndi URL

messageType

priority

repl yToName

target Service

17-16



Chapter 17
Invoking a WebLogic Web Service Using JMS Transport

e timeTolive

Example 17-9 shows an excerpt from a Web client that uses
JMSTransport O i ent Feat ur e, with the relevant code in bold.

Example 17-9 Enabling JMS Transport for a Client Proxy Using JMSTransportClientFeature

i mport javax.xm .nanespace. QNane;
import java.net.URL;
import com.oracle.webservices.api.jms.JMSTransportClientFeature;

URL url = new URL("http://Iocal host: 7001/ War ehouseSer vi cePor t / War ehouseSer vi ce?WsDL" ) ;
Nane serviceName = new QName("http://waw. oracl e. com sanpl es/", "WarehouseService");
\Mr ehouseSer vi ce service = new \WrehouseService (url, serviceNane);
JVMSTransportClientFeature feature =
JVMSTransportClientFeature.builder().jndilnitialContextFactory("weblogic.jndi.WLInitialContextFactory')
-JndiURL(""t3://1ocalhost:7001") .build();

port = service. get War ehouseShi pnent sPort (new WebSer vi ceFeat ur e[ ] { feature});
Itemitem= new |tem);

i tem set Product Number (10001) ;

itemsetQuantity(100);

port. shi pGoods(item "BEA");

Example 17-10 shows an excerpt from a Dispatch client that uses
JVBTransport O i ent Feat ur e, with the relevant code in bold.

Example 17-10 Enabling JMS Transport for a Dispatch Client Using JMSTransportClientFeature

i mport javax.xnl.namespace. QNane;

import java.net.URL;

i mport javax.xnl . bind. JAXBCont ext ;

i mport javax.xn .ws. Servicelbde;

i mport javax.xn .ws.Dispatch;

import com.oracle.webservices.api.jms.JIMSTransportClientFeature;

Service service = Service.create(new URL(wsdl ), new QNanme(naneSpace, serviceNane));
JAXBCont ext j axbContext = JAXBCont ext.newl nstance(Cbj ect Factory. cl ass);
JVMSTransportClientFeature feature =
JVMSTransportClientFeature.builder().jndiURL(*"t3://adc2170585:7003").build();
Di spatch dispatch =
servi ce. creat eDi spat ch(new QNane( naneSpace, "WarehouseServicePort"), jaxbContext,
Servi ce. Mbde. PAYLOAD, new WbServi ceFeat ur e[ ] {feature});

17.5.4 Configuring the JMS URI as the Target Endpoint Address

You can specify the JMS URI as the target endpoint address for the client binding to
enable and configure JMS transport in the web service client. For information about
constructing the JMS URI, see Configuring the JMS URI.

Example 17-11 shows an excerpt from a Web client that sets the target endpoint
address to the JMS URI with the relevant code in bold. In this example, if the
repl yToName had been configured using JMSTransport O i ent Feat ur e, it would take
precedence over the target endpoint address value.

ORACLE 17-17



Chapter 17
Invoking a WebLogic Web Service Using JMS Transport

Example 17-11 Enabling JMS Transport for a Client Proxy Using JMS URI

i mport javax.xnl.namespace. QNane;

i mport java.net.URL;

i mport javax.xnl.ws. Bi ndi ngProvi der;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport com oracl e. webservi ces. api . j ms. JMSTransport d i ent Feat ure;

URL url = new URL("http://Iocal host: 7001/ War ehouseSer vi cePor t / War ehouseSer vi ce?WsDL" ) ;
QNane servi ceName = new QNane("http://ww. oracl e. conl sanpl es/", "WarehouseService");
War ehouseServi ce service = new WarehouseService (url, serviceNane);
JMSTransport Client Feature feature = new JVMSTransport ClientFeature(). build();
feature.setJndi I nitial ContextFactory ("weblogic.jndi.WlInitial ContextFactory");
feature.setJndi Url ("t3://1ocal host:7001");
port = service. get War ehouseShi pnent sPort (new WebSer vi ceFeature[]{feature});
Bi ndi ngProvi der bp = (BindingProvider) port;
bp.getRequestContext().put(BindingProvider .ENDPOINT_ADDRESS_PROPERTY,

"jms: jndi:myQueue?targetService=WarehouseService&replyToName=myReplyToQueue");
Itemitem= new Iten();
i tem set Product Nunber (10001) ;
item set Quantity(100);
port.shi pGoods(item "BEA");

Example 17-12 shows an excerpt from a Dispatch client that uses

JMBTransport C i ent Feat ur e, with the relevant code in bold. In this example, the IMS
transport properties specified in the JMSTranspor t d i ent Feat ur e take precedence over
the JMS URI.

Example 17-12 Example of Enabling JMS Transport for a Dispatch Client Using JMS URI

String uri = "jms:jndi:myQueue?
targetService=WarehouseService&jndiConnectionFactoryName=weblogic.jms.ConnectionFactory&jndiURL=t3://
adc2170585:7003&jndi InitialContextFactory=weblogic. jndi.WLInitialContextFactory";

Service service = Service.create(new URL(wsdl), new QNanme(nameSpace, serviceNane));

JAXBCont ext j axbContext = JAXBContext.newl nstance(Chj ect Factory. cl ass);

JMSTransport Client Feature feature = new JMSTransportClientFeature(). build();

feature.setJndi Url ("t3://adc2170585; 7003");

Di spatch dispatch =
servi ce. creat eDi spat ch(new QNanme( naneSpace, "WarehouseServicePort"), jaxbContext,
Servi ce. Mbde. PAYLOAD, new WebSer vi ceFeat ur e[ ] {feature});

dispatch.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, uri );

17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous
Clients

The asynchronous client transport feature, described in Developing Scalable
Asynchronous JAX-WS Clients (Asynchronous Client Transport), provides a scalable
asynchronous client programming model.

To enable SOAP over JMS transport for an asynchronous client:

1. Specify the JMS URI as the target endpoint address for the client binding. For
information about constructing the JMS URI, see Configuring the JMS URI.

ORACLE 17-18



Chapter 17
Configuring JMS Transport Properties

# Note:

When using JMS transport, the context path of the asynchronous
response endpoint is ignored if specified using
Asyncd i ent Transport Feat ure.

2. Optionally, configure a permanent response queue by configuring the addr ess or
Repl yTo header using the AsyncC i ent Transport Feat ure, as described in Enabling
and Configuring the Asynchronous Client Transport Feature.

If you do not configure the address of the JMS response queue or if the

desti nati onName property is set to anonymous (which is not supported by JMS
transport), then a temporary response queue is used. For more information about
configuring the JMS response queue, see Configuring the JMS Response Queue.

Example 17-13 Example of Enabling JMS Transport and Configuring Permanent Queue for an
Asynchronous Client

\Mr ehouseServi ce service = new \WrehouseService(url, serviceNane);
AsyncClientTransportFeature replyTo = new AsyncClientTransportFeature (
"jms: jndi :myReplyToQueue?targetService=WarehouseService™);
AsyncClientTransportFeature faultTo = new AsyncClientTransportFeature (
"jms: jndi :myFaultToQueue?targetService=WarehouseService™);
AsyncClientTransportFeature callbackFeature = new AsyncClientTransportFeature (
replyTo.getEndpointReference(W3CEndpointReference.class),
faultTo.getEndpointReference(W3CEndpointReference.class));
port = service. get War ehouseSer vi cePort (new WebServi ceFeature[] { callbackFeature });
status = port.shipGoods(item "BEAN');
(BindingProvider) port.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS PROPERTY,
"jms: jndi:myQueue?targetService=WarehouseService™);
((C osabl e)port).close();

When the endpoint is invoked, the client runtime environment publishes the response
endpoint and deploys the JMS listener on the response JMS queue. Once attached to
the client, the AsyncCl i ent Transport Feat ur e instance determines the response endpoint
of all client invocations; the repl yToNane property in the target endpoint address and
JVBTransport C i ent Feat ur e are ignored.

Example 17-13 shows an excerpt from an asynchronous client that uses
AsyncC i ent Transpor t Feat ur e, with the relevant code in bold. In this example, the
repl yTo and f aul t To addresses are defined and passed to the client.

17.6 Configuring JMS Transport Properties

Optionally, you can configure JMS transport properties when enabling JMS transport,
as described in the following sections:

e Summary of JMS Transport Configuration Properties

»  Configuration Methods and Order of Precedence

e Configuring JMS Transport Using the Administration Console
*  Configuring JMS Transport Using WLST

»  Configuring the JMS URI

ORACLE 17-19



Configuring the JMS Request URI
Configuring the WS-Addressing Headers
Configuring the JMS Response Queue
Configuring the JMS Message Type
Configuring HTTP Access to the WSDL File

Chapter 17
Configuring JMS Transport Properties

17.6.1 Summary of JMS Transport Configuration Properties

Table 17-6 lists the JMS transport properties that can be configured and the supported
configuration methods, defined in Table 17-7.

Table 17-6 Summary of JMS Transport Configuration Properties

Name

Description

Supported Configuration Methods

activationConfig

Activation configuration properties passed
to the JMS provider. Each property is
specified as name-value pairs using the
following format:

"namel=val uel; ... ; nameN=val ueN"

For example: "keyl=val uel; key2=val ue2"

For a list of activation configuration
properties that are supported by this
property, see Table 17-7.

This value defaults to: " "

e <jmstransportservice> child element
in the <j ws> element of the j wsc Ant
task

. @MSTr anspor t Servi ce annotation

bi ndi ngVer si on

Version of the SOAP JMS binding. This
value must be set to 1. 0 for this release,
which equates to

com oracl e. webservi ces. api . j ns. JMSBi n

di ngVer si on. SOAP_JMS_1_0.

This value maps to the
SOQAPJMS_bi ndi ngVer si on IMS message
property, as defined in Table 17-1.

e <jnstransportservice> child element
in the <j ws> element of the j wsc Ant
task

e @MSTransport Servi ce annotation

del i ver yMode

Delivery mode indicating whether the

request message is persistent. Valid values

are

com oracl e. webhservi ces. api . j ns. JMSDel

i ver yMode. PERSI STENT and

com oracl e. webservi ces. api . j ns. JMSDel

i ver yMode. NON_PERS| STENT.
This value defaults to:

com or acl e. webser vi ces. api . j ms. JMSDel

i ver yMbde. PERSI STENT

e <jnstransportservice> child element
in the <j ws> element of the j wsc Ant
task

e @MBsTransport Servi ce annotation

desti nati onNanme

JNDI name of the destination queue or
topic.
This value defaults to:

"com or acl e. webservi ces. api . j ms. Reque

st Queue"

All configuration methods in Table 17-8

ORACLE

17-20



Chapter 17
Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties

Name

Description

Supported Configuration Methods

destinationType

Destination type. Valid values include:

com oracl e. webservi ces. api . j ms. JMSDes
tinationType. QUEUE or

com oracl e. webhservi ces. api . j ns. JMSDes
tinationType. TOPI C.

This value defaults to:
com oracl e. webservi ces. api . j ns. JMSDes
tinationType. QUEUE

This value overrides the desti nati onType
value specified as an entry in
activationConfi g property (as defined in
Table 17-7), if applicable.

Topics are supported only for one-way
communication.

All configuration methods in Table 17-8

enabl ed

Boolean flag that specifies whether IMS
transport is enabled. This value defaults to
true.

@MSTr ansport Servi ce and
@MSTransport d i ent annotations

enabl eHt t pWsdl Access

Boolean flag that specifies whether to
publish the WSDL through HTTP. This flag
defaults to t r ue.

e <jmstransportservice> child element
in the <j ws> element of the j wsc Ant
task

. @MSTr ansport Servi ce annotation

j mMessageHeader

JMS header properties. Each property is
specified as name-value pairs using the
following format:

“namel=val uel& .. &naneN=val ueN'

For example:
" JMSType=car &INBPri ority=4"

This value defaults to:

* <jnstransportservice> child element
in the <j ws> element of the j wsc Ant
task

e @MSTransport Servi ce annotation
. @MSTransport d i ent annotation

j mMessageProperty

JMS message properties. Each property is
specified as name-value pairs using the
following format:

"namel=val uel& .. &naneN=val ueN'

For example:
" JMSType=car &NBPri ority=4"

This value defaults to:

* <jnstransportservice> child element
in the <j ws> element of the j wsc Ant
task

e @MSTransport Servi ce annotation

e @MsTransportdient annotation

j ndi Connecti onFact ory
Nane

JNDI name of the connection factory that is
used to establish a JMS connection.

This value defaults to:
"com or acl e. webser vi ces. api . j ms. Conne
ctionFactory"

All configuration methods in Table 17-8

j ndi Cont ext Par anet er

JNDI properties. Each property is specified
as name-value pairs using the following
format: "namel=val uel& .. &naneN=val ueN'

The properties are added to the
java.util.Hashtabl e sentto the

I nitial Context constructor for the JNDI
provider.

This value defaults to:

All configuration methods in Table 17-8

ORACLE

17-21



Chapter 17
Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties

Name

Description

Supported Configuration Methods

jndiI'nitial ContextFac
tory

Name of the initial context factory class
used for JNDI lookup. This value maps to
the j ava. naning. factory.initial
property.

This value defaults to:

"webl ogi ¢.j ndi.W.Initial ContextFactor
v

All configuration methods in Table 17-8

i ndi URL

JNDI provider URL.

This value defaults to: "t 3:// 1 ocal host :
7001"

This value maps to the
j ava. nami ng. provi der. ur| property.

All configuration methods in Table 17-8

| ookupVari ant

Method used for looking up the specified

destination name. This value must be set to

j ndi to support JMS transport; this is the
default.

None (cannot be modified)

mdbPer Dest i nati on

Boolean flag that specifies whether to
create one listening message-driven bean
(MDB) for each requested destination. This
value defaults to t r ue.

If set to f al se, one listening MDB is
created for each web service port, and that
MDB cannot be shared by other ports.

e <jmstransportservice> child element
in the <j ws> element of the j wsc Ant
task

. @MSTr ansport Servi ce annotation

messageType Message type to use with the request All configuration methods in Table 17-8
message. Valid values are
com oracl e. webservi ces. api . j ns. JMSMes
sageType. BYTES and
com oracl e. webservi ces. api . j ns. JMSMes
sageType. TEXT.
This value defaults to:
com oracl e. webhservi ces. api . j ns. JMSMes
sageType. BYTES
For more information about configuring the
message type, see Configuring the JMS
Message Type.
priority JMS priority associated with the request All configuration methods in Table 17-8

and response message. Specify this value
as a positive Integer from 0, the lowest
priority, to 9, the highest priority. The
default value is 0.

ORACLE

17-22



Chapter 17
Configuring JMS Transport Properties

Table 17-6 (Cont.) Summary of JMS Transport Configuration Properties

Name

Description Supported Configuration Methods

repl yToNane

JNDI name of the JMS destination to which All configuration methods in Table 17-8
the response message is sent.

For a two-way operation, a temporary
response queue is generated by default.
Using the default temporary response
gueue minimizes the configuration that is
required. However, in the event of a server
failure, the response message may be lost.

This property enables the client to use a
previously defined, "permanent” queue or
topic rather than use the default temporary
gueue or topic, for receiving replies. For
more information about configuring the JMS
response queue, see Configuring the JMS
Response Queue.

The value maps to the JMSRepl yTo JMS
header in the request message.

This value defaults to: " "

runAsPrinci pal

runAsRol e

Principal used to run the listening MDB. e <jnstransportservice> child element
This value defaults to: "" in the <j ws> element of the j wsc Ant
task
e @MSTransport Servi ce annotation
Role used to run the listening MDB. e <jmstransportservice> child element
This value defaults to: "" in the <j ws> element of the j wsc Ant
task

. @MSTr anspor t Servi ce annotation

target Service

Port component name of the web service. +  <jnstransportservi ce> child element
This value is used by the service in the <j ws> element of the j wsc Ant
implementation to dispatch the service task

request. If not specified, the service name .  @MsTr anspor t Servi ce annotation
from the WSDL or @ avax. j ws. \ebService @MSTransport d i ent annotation
annotation is used.

This value maps to the
SOAPJMS_t ar get Servi ce JMS message
property.

This value defaults to:

timeTolLive

Lifetime, in milliseconds, of the request All configuration methods in Table 17-8
message. A value of 0 indicates an infinite

lifetime. If not specified, the IMS-defined

default value of 180000L is used.

On the service side, ti meTolLi ve also

specifies the expiration time for each MDB
transaction.

ORACLE

The following table lists the activation properties that are supported by the
activationConfig property in Table 17-6. For information about using the activation
properties to tune MDBs, see Tuning Message-Driven Beans in Tuning Performance
of Oracle WebLogic Server.

17-23



Chapter 17
Configuring JMS Transport Properties

Table 17-7 Activation Properties Supported by the activationConfig Property

Name

Description

acknow edgeMode

Acknowledgment mode that controls how the JMS provider is notified that the message

was received and processed. Valid values include:

*  AUTO_ACKNOW.EDGE—Message is acknowledged immediately. This is the default.

*  DUPS_OK_ACKNOW.EDGE—Acknowledgement may be delayed, allowing duplicate
messages to be received.

The acknowledgement mode is ignored if you are using container-managed transactions.

(In this case, the acknowledgement is performed within the context of the transaction.)

connect i onFact oryJn
di Narre

JNDI name of the JMS connection factory that the MDB uses to create its queues and
topics. This value defaults to webl ogi c. j ns. MessageDri venBeanConnect i onFact ory.

dest i nationJndi Nane

JNDI name used to associate an MDB with an actual JMS queue or topic deployed in the
WebLogic Server JNDI tree.

destinationType

Type of the JIMS destination. Valid values include: QUEUE and TOPI C.

di spat chPol i cy

Work manager for the MDB. This value defaults to
webl ogi ¢. wsee. j axws. ndb. Di spat chPol i cy.

di stributedDestinati
onConnecti on

Connection setting that specifies whether an MDB that accesses a WebLogic JMS
distributed destination (topic or queue) in the same cluster consumes from all distributed
destination members or only those members local to the current WebLogic Server
instance. Valid values include:

e Local Onl y—MDB consumes JMS distributed destinations from members local to the
current WebLogic Server instance. This is the default.

e EveryMenber —MDB consumes JMS distributed destinations from all distributed
destination members.

dur abl eSubscri ption
Del etion

Flag that specifies whether you want durable topic subscriptions to be automatically
deleted when an MDB is undeployed or removed. This value defaults to f al se.

initial ContextFacto
ry

Initial context factory that the EJB container uses to create its connection factories. This
value defaults to webl ogi c. j ndi . W.I ni ti al Cont ext Factory.

i ni t SuspendSeconds

Initial number of seconds to suspend an MDB's JMS connection when the EJB container
detects a JMS resource outage. This value can be set to any Integer value and defaults to
5.

jmsClientld

Client ID for the MDB when it connects to a JMS destination. This value is used for durable
subscriptions to JMS topics.

jmsPol I'inglnterval S
econds

Number of seconds between attempts by the EJB container to reconnect to a JMS
destination that has become unavailable. This value can be set to any Integer value and
defaults to 10.

maxBeans| nFr eePool

Maximum number of inactive MDBs in the free pool. This value can be set to any positive
Integer value or 0. This value defaults to 1000.

maxMessagesl nTransa
ction

Maximum number of messages that can be in a transaction for this MDB. This value can
be set to any positive Integer value or 0. This value defaults to 1.

maxSuspendSeconds

Maximum number of seconds to suspend an MDB's JMS connection when the EJB
container detects a JMS resource outage. This value can be set to any Integer and
defaults to 60.

messageSel ect or

String used by a client to specify, by header field references and property references, the
messages it should receive. Only messages whose header and property values match the
specified selector are delivered. This value can be set to a message header or a
conditional expression using message properties. This value defaults to nul | .

ORACLE

17-24



Chapter 17
Configuring JMS Transport Properties

Table 17-7 (Cont.) Activation Properties Supported by the activationConfig Property

Name

Description

provi der URL

URL provider to be used by the I ni ti al Cont ext, typically, host : port . This value can be
any valid URL and defaults to nul | .

subscri pti onDur abi |
ity

Flag that specifies whether a JMS topic subscription is Dur abl e or NonDur abl e. This value
defaults to Dur abl e.

t opi cMessagesDi stri
but i onMbde

Distribution mode for topic messages. Valid values include: One- Copy- Per - Appl i cati on,
One- Copy- Per - Server, Conpati bi | ty. This value defaults to Conpati bility. For more
information about the valid values, see Topic Deployment Scenarios in Developing
Message-Driven Beans for Oracle WebLogic Server.

transAttribute

Transaction setting that specifies how the container must manage the transaction
boundaries when delegating a method invocation to an enterprise bean's business
method. Valid values include: Requi r ed, Not Support ed, Supports, Requi r esNew,
Mandat ory, and Never . This value defaults to Requi r ed. For more information about the
valid values, see Using Web Services Atomic Transactions .

t ransTi neout Seconds

Maximum duration for an EJB's container-initiated transactions, in seconds, after which the
transaction is rolled back and the service will return a SOAP fault. This value can be set to
any positive Integer or 0.

If the transaction timeout is not specified or is set to 0, the transaction timeout configured
for the domain is used. If a timeout is not configured for the domain, the default is 30.

use81Styl ePol I'i ng

Flag that specifies whether backwards compatibility for WebLogic Server version 8.1-style
polling is supported. Valid values include: Tr ue or Fal se. This value defaults to Fal se.

17.6.2 Configuration Methods and Order of Precedence

Optionally, you can configure JMS transport properties when enabling JMS transport
using one of the methods defined in Table 17-8.

Table 17-8 Methods Used to Configure JMS Properties.

__________________________________________________________________________________________|
Configuration Methods Description

JMBTransport d i ent Feat ure API Create the web service client and pass JMS transport properties as

arguments to the

webl ogi c. jws. jaxws. client.JnsTransportC i ent Feat ure API. For
more information, see Invoking a WebLogic Web Service Using IMS
Transport.

Target service endpoint address Construct the target service endpoint address and include JMS

transport properties as part of the query string. For more information,
see Configuring the JMS URI.

@MSTransport d i ent annotation Create the web service client and pass JMS transport properties as

attributes to the

@om oracl e. webservi ces. api . j ms. JMSTransport 0 i ent annotation
in the JWS file, as described in Using the @JMSTransportClient
Annotation.

@MNBTr anspor t Servi ce annotation Create the web service and pass JMS transport properties as

attributes to the

@om oracl e. webser vi ces. api . j ms. JMSTr ansport Servi ce
annotation in the JWS file, as described in Using the
@JMSTransportService Annotation.

ORACLE

17-25



Chapter 17
Configuring JMS Transport Properties

Table 17-8 (Cont.) Methods Used to Configure JMS Properties.

____________________________________________________________________________________________|]
Configuration Methods Description

<jmstransportclient>
cl i ent gen Ant task

element of the Build the web service including the <j mst ransport cl i ent > element in
the cl i ent gen Ant task For more information, see Using the
<jmstransportclient> Element in the Ant build.xml File.

<j mstransportservice
the <j ws> element of th

> child element in  Build the web service including the <j st r ansport servi ce> child

e j wsc Ant task element in the <j ws> element of the j wsc Ant task For more
information, see Using the <jmstransportservice> Child Element in the
Ant build.xml File.

WSDL

Create the web service from a WSDL that includes JMS transport
property elements, as defined in Configuring JMS Transport
Properties in the WSDL.

Administration Console

Configure the JMS transport properties for the deployed web service
using the WebLogic Server Administration Console, as described in
Configuring JMS Transport Using the Administration Console.

<soapj ms- servi ce- end

poi nt - addr ess> You can update the webl ogi c- webservi ces. xm deployment

element in the webl ogi c- webservi ces. xm descriptor manually, though it is not recommended. For more

deployment descriptor

information about the <soapj ns- servi ce- endpoi nt - addr ess>
elements, see WebLogic Web Service Deployment Descriptor
Schema Reference in WebLogic Web Services Reference for Oracle
WebLogic Server.

The

following summarizes the order of precedence for JMS transport property

configuration on the web service or client at design time and run time:

ORACLE

For the web service at design time (from high to low):

— <jmstransportservi ce> child element in the <j ws> element of the j wsc Ant task
—  @MsTransport Servi ce annotation

For the web service at run time (from high to low):

— Administration Console

—  <soapj ms- servi ce- endpoi nt - addr ess> element in the webl ogi ¢c- webser vi ces. xm
deployment descriptor

—  @MsTransport Servi ce annotation

For the client at design time (from high to low):

— <jmstransportclient> child element of clientgen
— JMS transport properties defined in the WSDL
For the client at run time (from high to low):

— JMS URI service endpoint address

— JMBTransportdient Feat ure API

— @MsTransportdient annotation

17-26



Chapter 17
Configuring JMS Transport Properties

17.6.3 Configuring JMS Transport Using the Administration Console

After you have deployed your web service with JIMS transport enabled, you can
configure JMS transport properties using the WebLogic Server Administration
Console.

To configure JMS transport properties using the WebLogic Server Administration
Console:

1. Invoke the WebLogic Server Administration Console, as described in Invoking the
Administration Console in Understanding WebLogic Web Services for Oracle
WebLogic Server.

In the left navigation pane, select Deployments.

Click the name of the web service in the Deployments table.
Select the Configuration tab, then the Port Components tab.
Click the name of the web service endpoint in the Ports table.
Select the SOAP over JMS Transport tab.

N o o » »w Db

Click Customize SOAP over JMS Transport Configuration and follow the
instructions to save the deployment plan, if required.

8. Edit the SOAP over JMS transport properties, as described in Configuring JMS
Transport Properties.

9. Click Save.

For more information, see Configuring SOAP Over JMS Transport in the Oracle
WebLogic Server Administration Console Online Help.

17.6.4 Configuring JMS Transport Using WLST

Alternatively, you can use WLST to configure JMS transport. For information about
using WLST to extend the domain, see Configuring Existing Domains in
Understanding the WebLogic Scripting Tool.

17.6.5 Configuring the JMS URI

ORACLE

When a WebLogic web service is configured to use SOAP over JMS as the connection
transport, the endpoint address specified for the corresponding port in the generated
WSDL of the web service uses jms: in its URL rather than http://.

The JMS URI format is shown below:

j ms: | ookupVari ant : desti nati onName[ ?t ar get Servi ce=val ue[ &r operty=val ue]
[ &property=val ue] . ..
]

The JMS URI is constructed as follows:
e Prefixjns:
e Lookup variant type (must be set toj ndi)

e JMS destination name (dest i nati onNane)

17-27



Chapter 17
Configuring JMS Transport Properties

* Query string containing a list of property-value pairs used to specify JMS endpoint
information. The t ar get Servi ce property must be specified to define the port
component name of the web service.

Other valid properties include:
—  bindi ngVersion

— deliveryMde

— deliveryType

— jndi Connecti onFact or yNane
— jndi Cont ext Par anet er

— jndilnitial ContextFactory
— jndi URL

— messageType

— priority

— repl yToNare

— tinmeTolive

The | ookupVari ant, desti nati onNane, and t ar get Servi ce JMS properties are required in
the JMS endpoint address.

For more information about the JMS transport properties that construct the JMS URI,
see Table 17-6. Optionally, you can configure JMS transport properties when enabling
JMS transport using one of the methods defined in Table 17-7.

Examples:

The following provides an example of a JMS endpoint address. In this example, the
JMS destination is nyQueue and the port component name of the web service is
\Wr ehouseSer vi cePort .

j ms: j ndi: myQueue?t ar get Servi ce=War ehouseSer vi cePor t

The following example shows the same JMS endpoint address with replyToName
property set to specify the JNDI name of the JMS destination to which the response
message is sent.

j ms: j ndi: myQueue?t ar get Ser vi ce=\ar ehouseSer vi cePor t & epl yToName=nyRepl yToQueue

The following example shows how to specify additional INDI environment properties,
such as j ndi - com acre. j ndi . enabl e. traci ng and j ndi -j ava. nanming. referral .

j ms: j ndi: myQueue?t ar get Ser vi ce=War ehouseSer vi cePort & ndi -
com acne. j ndi . enabl e. traci ng=true& ndi - j ava. nani ng. ref erral =i gnore

17.6.6 Configuring the JMS Request URI

ORACLE

Each JMS transport message has a message property defined as SOAPINS_r equest UR|
that is derived from the JMS URI. The JMS Request URI is constructed using the IMS
URI and stripping off the query parameters.

The JMS request URI format is shown below:

j ms: | ookupVari ant : desti nati onName

17-28



Chapter 17
Configuring JMS Transport Properties

The JMS Request URI is constructed as follows:
e Prefixjns:

*  Lookup variant type (must be set to j ndi)

e JMS destination name (dest i nati onNane)

For more information about the JMS transport properties that construct the JMS
Request URI, see Table 17-6. Optionally, you can configure JMS transport properties
when enabling JMS transport using one of the methods defined in Table 17-7.

Example:

The following provides an example of a JMS endpoint address. In this example, the
JMS destination is nyQueue.

j ms: j ndi: myQueue

17.6.7 Configuring the WS-Addressing Headers

ORACLE

Web services and clients that use SOAP over JMS transport populate the WS-
Addressing headers To and Repl yTo of the request and response messages with a
value that is derived from the JMS URI.

The WS-Addressing header format is shown below:

j ms: | ookupVari ant : desti nati onName?t ar get Ser vi ce=val ue

For more information about the JMS transport properties that construct the WS-
Addressing headers, see Table 17-6. Optionally, you can configure JMS transport
properties when enabling JMS transport using one of the methods defined in
Table 17-7.

Examples:

The following provides an example of the WS-Addressing headers in a SOAP request
message.

<S: Header >
<To xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
jms: j ndi: myQueue?t ar get Servi ce=\ar ehouseSer vi ce
</ To>
<Action xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
http://www. oracl e. cont sanpl es/ Shi pGoodsRequest
</ Action>
<Repl yTo xm ns="http://waw. w3. or g/ 2005/ 08/ addr essi ng" >
<Addr ess>j ns: j ndi : myRepl yToQueue?t ar get Ser vi ce=\ar ehouseSer vi ce</ Addr ess>
</ Repl yTo>
<Messagel D xm ns="htt p: // ww. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 3b9e7b20- 3aa0- 4ada- 9422- 470f a7b9adal
</ Messagel D>
</ S: Header >

The following provides an example of the WS-Addressing headers in a SOAP
response message.

<S: Header >
<To xm ns="http://ww. w3. or g/ 2005/ 08/ addr essi ng" >
jms: j ndi: myRepl yToQueue?t ar get Ser vi ce=\War ehouseSer vi ce
</ To>

17-29



Chapter 17
Configuring JMS Transport Properties

<Action xm ns="http://ww. w3. org/ 2005/ 08/ addr essi ng" >
http: //www. or acl e. cont sanpl es/ Shi pGoodsResponse

</ Action>

<Messagel D xm ns="htt p: // wwmv. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 9d0be951- 79f c- 4a56- b3e6- 4775bde2bd82

</ Messagel D>

<Rel at esTo xm ns="http:// wwv. w3. or g/ 2005/ 08/ addr essi ng" >
uui d: 3b9e7b20- 3aa0- 4ada- 9422- 470f a7h9adal

</ Rel at esTo>

</ S: Header >

17.6.8 Configuring the JMS Response Queue

ORACLE

For a two-way operation, a temporary response queue is generated by default. Using
the default temporary response queue minimizes the configuration that is required.
However, in the event of a server failure, the response message may be lost.

You can configure a "permanent" JMS response queue—one that is available after
server restart. A permanent JMS response queue provides the following benefits:

e Ensures that the response message can be restored following a server restart.

* Improves performance, avoiding the overhead required to create the temporary
gueue at initial invocation.

e Enables you to configure the queue for quality of service (QoS).

You can configure the JMS response queue using one of the following methods (in
order of precedence):

»  Configuring the addr ess or Repl yTo header using the Asyncd i ent Tr anspor t Feat ur e,
as described in Enabling and Configuring the Asynchronous Client Transport
Feature.

e Configuring the repl yToNane property using one of the following methods:

— <jnmstransportclient>element of clientgen, as described in Using the
<jmstransportclient> Element in the Ant build.xml File.

— Target endpoint address, as described in Summary of JMS Transport
Configuration Properties.

— JMSTransportdient Feat ure, as described in Using the
JMSTransportClientFeature Client API.

— @MsTransport 0 i ent annotation, as described in Using the
@JMSTransportClient Annotation.

# Note:

If the destinationName property is set to anonymous (which is not supported
by JMS transport), then a temporary response queue is used.

By default, the JMS response queue is used as the fault queue for JMS transport
service invocation. You can configure the faul t To header using the

AsyncC i ent Transport Feat ure, as described in Configuring the ReplyTo and FaultTo
Headers of the Asynchronous Response Endpoint.

17-30



Chapter 17
Monitoring SOAP Over JMS Transport

17.6.9 Configuring the JMS Message Type

You can configure one of the following message types to use with the request
message.

com or acl e. webservi ces. api . j ms. JMSMessageType. BYTES—The body of the JIMS
message is binary data. This is the default.

com or acl e. webser vi ces. api . j ns. JMSMessageType. TEXT— The body of the JIMS
message is String data.

You can configure the nessageType property using any of the configuration methods
defined in Table 17-8.

The web service uses the same message type when sending the response. If the
request is received as a BYTES, the reply will be sent as a BYTES.

When setting the messageType property to TEXT, consider the following:

For large payloads, the memory requirements for TEXT messages can be
significantly greater than BYTES messages because the data requirements for the
in-memory representation is larger.

Messages with binary attachments must be base64-encoded, which can also
increase the size of the message significantly.

17.6.10 Configuring HTTP Access to the WSDL File

By default, the WSDL of the deployed web service is still accessible using HTTP. If
you want to disable access to the WSDL file, in particular if your web service can be
accessed outside of a firewall, then you can do one of the following:

Use the enabl eHt t pvsdl Access attribute of the <j nstransport servi ce> child element
of the <j ws> element, as described in Using the <jmstransportservice> Child
Element in the Ant build.xml File.

@MBTransport Servi ce annotation, as described in Using the
@JMSTransportService Annotation.

Use the WebLogic Server Administration Console to disable access to the WSDL
file after the web service has been deployed. In this case, the configuration
information will be stored in the deployment plan rather than through the
annotation.

To use the WebLogic Server Administration Console to perform this task, go to the
Configuration -> General page of the deployed web service and uncheck the View
Dynamic WSDL Enabled check box. After saving the configuration to the
deployment plan, you must redeploy (update) the web service, or Enterprise
Application which contains it, for the change to take effect.

17.7 Monitoring SOAP QOver JMS Transport

You can monitor web services that use SOAP over JMS transport from the following
perspectives:

ORACLE

Monitor web service performance, as described in:

17-31



ORACLE

Chapter 17
Monitoring SOAP Over JMS Transport

— Monitor SOAP Web Services in Oracle WebLogic Server Administration
Console Online Help

— Monitoring and Auditing Web Services in Administering Web Services

Monitor JMS destination metrics, as described in Monitoring JMS Statistics and

Managing Messages in Administering JMS Resources for Oracle WebLogic
Server.

17-32



Creating and Using SOAP Message
Handlers

This chapter describes how to create and use SOAP message handlers for WebLogic
web services using Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

e Overview of SOAP Message Handlers

e Adding Server-side SOAP Message Handlers: Main Steps

e Adding Client-side SOAP Message Handlers: Main Steps

» Designing the SOAP Message Handlers and Handler Chains
e Creating the SOAP Message Handler

e Configuring Handler Chains in the JWS File

e Creating the Handler Chain Configuration File

e Compiling and Rebuilding the Web Service

e Configuring the Client-side SOAP Message Handlers

18.1 Overview of SOAP Message Handlers

Web services and their clients may need to access the SOAP message for additional
processing of the message request or response. A SOAP message handler provides a
mechanism for intercepting the SOAP message in both the request and response of
the web service. You can create SOAP message handlers to enable web services and
clients to perform additional processing on the SOAP message.

A simple example of using handlers is to access information in the header part of the
SOAP message. You can use the SOAP header to store web service specific
information and then use handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your web
service. After your web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your web service by caching the results of popular invokes of the web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.

JAX-WS supports two types of SOAP message handlers: SOAP handlers and logical
handlers. SOAP handlers can access the entire SOAP message, including the
message headers and body. Logical handlers can access the payload of the message
only, and cannot change any protocol-specific information (like headers) in a message.

ORACLE 18-1



Chapter 18
Adding Server-side SOAP Message Handlers: Main Steps

< Note:

If SOAP handlers are used in conjunction with policies (security, WS-
ReliableMessaging, MTOM, and so on), for inbound messages, the policy
interceptors are executed before the user-defined message handlers. For
outbound messages, this order is reversed.

18.2 Adding Server-side SOAP Message Handlers: Main

Steps

ORACLE

The following procedure describes the high-level steps to add SOAP message
handlers to your web service.

It is assumed that you have created a basic JWS file that implements a web service
and that you want to update the web service by adding SOAP message handlers and
handler chains. It is also assumed that you have set up an Ant-based development
environment and that you have a working bui | d. xni file that includes a target for
running the j wsc Ant task. For more information, see:

e Developing JAX-WS Web Services
e Programming the JWS File

e Developing Web Service Clients

Table 18-1 Steps to Add SOAP Message Handlers to a Web Service
|

# Step Description
Design the handlers and Design SOAP message handlers and group them
handler chains. together in a handler chain. See Designing the SOAP

Message Handlers and Handler Chains.

2 For each handler in the See Creating the SOAP Message Handler.
handler chain, create a Java
class that implements the
SOAP message handler
interface.

3 Update your JWS file, adding See Configuring Handler Chains in the JWS File.
annotations to configure the
SOAP message handlers.

4 Create the handler chain See Creating the Handler Chain Configuration File.
configuration file.

5 Compile all handler classes in  See Compiling and Rebuilding the Web Service .
the handler chain and rebuild
your web service.

18-2



Chapter 18
Adding Client-side SOAP Message Handlers: Main Steps

18.3 Adding Client-side SOAP Message Handlers: Main
Steps

You can configure client-side SOAP message handlers for both standalone clients and
clients that run inside of WebLogic Server. You create the actual Java client-side
handler in the same way you create a server-side handler (by creating a Java class
that implements the SOAP message handler interface). In many cases you can use
the exact same handler class on both the web service running on WebLogic Server
and the client applications that invoke the web service. For example, you can write a
generic logging handler class that logs all sent and received SOAP messages, both for
the server and for the client.

The following procedure describes the high-level steps to add client-side SOAP
message handlers to the client application that invokes a web service operation.

It is assumed that you have created the client application that invokes a deployed web
service, and that you want to update the client application by adding client-side SOAP
message handlers and handler chains. It is also assumed that you have set up an Ant-
based development environment and that you have a working bui | d. xnl file that
includes a target for running the cl i ent gen Ant task. For more information, see
Invoking a Web Service from a Java SE Client.

Table 18-2 Steps to Add SOAP Message Handlers to a Web Service Client

# Step Description
Design the handlers and This step is similar to designing the server-side SOAP
handler chains. message handlers, except the perspective is from the

client application, rather than a web service. See
Designing the SOAP Message Handlers and Handler

Chains.

2 For each handler in the This step is similar to designing the server-side SOAP
handler chain, create a Java message handlers, except the perspective is from the
class that implements the client application, rather than a web service. See Creating
SOAP message handler the SOAP Message Handler for details about
interface. programming a handler class.

3 Update your client to See Configuring the Client-side SOAP Message

programmatically configure Handlers.
the SOAP message handlers.

4 Update the build.xml file that See Compiling and Rebuilding the Web Service .
builds your application,
specifying to the clientgen Ant
task the customization file.

5 Rebuild your client application

. ronpt> ant build-client
by running the relevant task. promp

When you next run the client application, the SOAP messaging handlers listed in the
configuration file automatically execute before the SOAP request message is sent and
after the response is received.

ORACLE 18-3



Chapter 18
Designing the SOAP Message Handlers and Handler Chains

# Note:

You do not have to update your actual client application to invoke the client-
side SOAP message handlers; as long as you specify to the cl i ent gen Ant
task the handler configuration file, the generated interface automatically
takes care of executing the handlers in the correct sequence.

18.4 Designing the SOAP Message Handlers and Handler

Chains

When designing your SOAP message handlers, you must decide:

e The number of handlers needed to perform the work.
*  The sequence of execution.

You group SOAP message handlers together in a handler chain. Each handler in a
handler chain may define methods for both inbound and outbound messages.

Typically, each SOAP message handler defines a separate set of steps to process the
request and response SOAP message because the same type of processing typically
must happen for the inbound and outbound message. You can, however, design a
handler that processes only the SOAP request and does no equivalent processing of
the response. You can also choose not to invoke the next handler in the handler chain
and send an immediate response to the client application at any point.

18.4.1 Server-side Handler Execution

ORACLE

When invoking a web service, WebLogic Server executes handlers as follows:

1. The inbound methods for handlers in the handler chain are all executed in the
order specified by the JWS annotation. Any of these inbound methods might
change the SOAP message request.

2. When the last handler in the handler chain executes, WebLogic Server invokes the
back-end component that implements the web service, passing it the final SOAP
message request.

3. When the back-end component has finished executing, the outbound methods of
the handlers in the handler chain are executed in the reverse order specified by
the JWS annotation. Any of these outbound methods might change the SOAP
message response.

4. When the first handler in the handler chain executes, WebLogic Server returns the
final SOAP message response to the client application that invoked the web
service.

For example, assume that you are going to use the @andl er Chai n JWS annotation in
your JWS file to specify an external configuration file, and the configuration file defines
a handler chain called Si npl eChai n that contains three handlers, as shown in the
following sample:

<?xm version="1.0" encodi ng="UTF-8" ?>
<handl er-chai ns xm ns="http://java. sun. conm xn /ns/javaee">
<hand| er - chai n>

18-4



Chapter 18
Creating the SOAP Message Handler

<handl er >
<handl er - cl ass>
Handl er 1
</ handl er-cl ass>
</ handl er>
</ handl er - chai n>
<handl er - chai n>
<handl er >
<handl er - cl ass>
Handl er 2
</ handl er-cl ass>
</ handl er>
</ handl er - chai n>
<handl er - chai n>
<handl er >
<handl er - cl ass>
Handl er 3
</ handl er-cl ass>
</ handl er>
</ handl er - chai n>
</ handl er - chai ns>

The following graphic shows the order in which WebLogic Server executes the
inbound and outbound methods of each handler.

Figure 18-1 Order of Execution of Handler Methods

- handlerThree.
| | handleMessagel)
inbownd

handerTwo.
P handlele ssagel)
imbowved

hand erDne.
handl el essagel)
imbownd

Back-end
C ot potent

- handlerCne. handletrTwo. handlerThree.
handleMessage() ™ | handleMessagel) handlellessazel)
cutboumd crdbovmd oufboumed

18.4.2 Client-side Handler Execution

In the case of a client-side handler, the handler executes twice:

» Directly before the client application sends the SOAP request to the web service

» Directly after the client application receives the SOAP response from the web
service

18.5 Creating the SOAP Message Handler

There are two types of SOAP message handlers that you can create, as defined in the
following table.

ORACLE 18-5



ORACLE

Chapter 18
Creating the SOAP Message Handler

Table 18-3 Types of SOAP Message Handlers

__________________________________________________________________________|
Handler Type Description

SOAP handler Enables you to access the full SOAP message including headers.
SOAP handlers are defined using the
javax. xn . ws. handl er. soap. SOAPHandl er interface. They are
invoked using the import
j avax. xm . ws. handl er. soap. SOAPMessageCont ext which extends
j avax. xn . ws. handl er. MessageCont ext The
SOAPMessageCont ext . get Message() method returns a
j avax. xm . soap. SOAPMessage.

Logical handlers Provides access to the payload of the message. Logical handlers
cannot change any protocol-specific information (like headers) in a
message. Logical handlers are defined using the
javax. xm . ws. handl er. Logi cal Handl er interface (see http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/ handl er/

Logi cal Handl er. ht m ). They are invoked using the

javax. xm . ws. handl er. Logi cal MessageCont ext which extends
j avax. xnm . ws. handl er. MessageCont ext The

Logi cal MessageCont ext . get Message() method returns a
javax. xn . ws. Logi cal Message.

The payload can be accessed either as a JAXB object or as a
j avax. xn . transform Sour ce object (see http://

docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/

Logi cal Message. htni).

Each type of message handler extends the j avax. xnl . ws. Handl er interface (see http://
docs. oracl e. com j avaee/ 7/ api / j avax/ xm / ws/ handl er/ Handl er . ht ni ), which defines the
methods defined in the following table.

Table 18-4 Handler Interface Methods

___________________________________________________________________________|
Method Description

Manages normal processing of inbound and outbound messages. A
property in the MessageCont ext object is used to determine if the
message is inbound or outbound. See Implementing the
Handler.handleMessage() Method.

handl eMessage()

Manages fault processing of inbound and outbound messages. See

handl eFaul t() Implementing the Handler.handleFault() Method.

Concludes the message exchange and cleans up resources that
were accessed during processing. See Implementing the
Handler.close() Method.

cl ose()

In addition, you can use the @ avax. annot at i on. Post Const ruct and
@ avax. annot at i on. PreDest r oy annotations to identify methods that must be executed
after the handler is created and before the handler is destroyed, respectively.

Sometimes you might need to directly view or update the SOAP message from within
your handler, in particular when handling attachments, such as image. In this case,
use the j avax. xm . soap. SOAPMessage abstract class, which is part of the SOAP With
Attachments API for Java 1.1 (SAAJ) specification at http://j ava. net/ proj ect s/ saaj /
For details, see Directly Manipulating the SOAP Request and Response Message
Using SAAJ.

18-6


http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalHandler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/LogicalMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/Handler.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/Handler.html
http://java.net/projects/saaj/

Chapter 18
Creating the SOAP Message Handler

18.5.1 Example of a SOAP Handler

The following example illustrates a simple SOAP handler that returns whether the
message is inbound or outbound along with the message content.

package exanpl es.webservi ces. handl er;

inport java.util.Set;
inmport java.util.Collections;

i mport javax.
i mport javax.
i mport javax.
i mport javax.

i mport javax.

public class

{

xm . namespace. QNane;

xm . ws. handl er. soap. SCAPHandl er ;

xm . ws. handl er. MessageCont ext ;

xm . ws. handl er. soap. SOAPMessageCont ext ;
xm . soap. SOAPMessage;

Handl er1 inpl ements SOAPHandl er <SOAPMessageCont ext >

public Set<QNane> get Headers()

{

return Collections.enptySet();

}

publi ¢ bool ean handleMessage( SOAPMessageCont ext messageCont ext)

{

Bool ean

out boundProperty = (Bool ean)

messageCont ext . get (MessageCont ext. MESSAGE_OUTBOUND_PROPERTY) ;

i f (outboundProperty.bool eanVal ue()) {
Systemout. println("\nQutbound message:");

} else {

Systemout. println("\nlnbound nessage:");

}

Systemout. printIn("** Response: "+messageContext.getMessage().toString());
return true;

}

publi ¢ bool ean handleFault( SOAPMessageCont ext nmessageCont ext)

{

return true;

}

public void close(MessageCont ext nmessageCont ext)

{
}
}

18.5.2 Example of a Logical Handler

The following example illustrates a simple logical handler that returns whether the
message is inbound or outbound along with the message content.

ORACLE

package exanpl es. webservi ces. handl er;

import java.util.Set;

inmport java.util.Collections;

i mport javax.xnl.namespace. QNane;

i mport javax.xnl.ws. handl er. Logi cal Handl er;
i mport javax.xnl.ws. handl er. MessageCont ext ;

18-7



Chapter 18
Creating the SOAP Message Handler

i mport javax.xnl .ws. handl er. Logi cal MessageCont ext ;
i mport javax.xnl.ws. Logi cal Message;
i mport javax.xnl.transform Source;

public class Handl er2 inplenents Logi cal Handl er <Logi cal MessageCont ext >

{
public Set<QName> get Headers()
{
return Collections.enptySet();
1

publ i c bool ean handleMessage(Logi cal MessageCont ext nmessageCont ext)
{
Bool ean out boundProperty = (Bool ean)
messageCont ext . get (MessageCont ext. MESSAGE_OUTBOUND PROPERTY) ;
i f (outboundProperty.bool eanVal ue()) {
System out. print!n("\nQutbound nessage:");
} else {
System out. println("\nlnbound message:");
}

Systemout. println("** Response: "+messageContext.get Message().toString());
return true;

}

publ i c bool ean handleFault(Logi cal MessageCont ext messageCont ext)

{

return true,;

}

public void close(MessageCont ext nessageCont ext)
{
1

}

18.5.3 Implementing the Handler.handleMessage() Method

ORACLE

The Handl er . handl eMessage() method is called to intercept a SOAP message request
before and after it is processed by the back-end component. Its signature is:

public bool ean handl eMessage(C cont ext)
throws java.lang. RuntimeException, java.xm .ws.Protocol Exception {}

Implement this method to perform such tasks as encrypting/decrypting data in the
SOAP message before or after it is processed by the back-end component, and so on.

C extends j avax. xni . ws. handl er. MessageCont ext (See http://docs. oracl e. com

javaee/ 7/ api / j avax/ xnl / ws/ handl er/ MessageCont ext . ht i ). The MessageCont ext
properties allow the handlers in a handler chain to determine if a message is inbound
or outbound and to share processing state. Use the SOAPMessageCont ext or

Logi cal MessageCont ext sub-interface of MessageCont ext to get or set the contents of the
SOAP or logical message, respectively. For more information, see Using the Message
Context Property Values and Methods.

After you code all the processing of the SOAP message, code one of the following
scenarios:

* Invoke the next handler on the handler request chain by returning tr ue.

18-8


http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Chapter 18
Creating the SOAP Message Handler

The next handler on the request chain is specified as the next <handl er >
subelement of the <handl er - chai n> element in the configuration file specified by the
@andl er Chai n annotation.

e Block processing of the handler request chain by returning f al se.

Blocking the handler request chain processing implies that the back-end
component does not get executed for this invoke of the web service. You might
want to do this if you have cached the results of certain invokes of the web
service, and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler.

e Throw the j ava. | ang. Runti meException or j ava. xnl . ws. Prot ocol Excepti on for any
handler-specific runtime errors.

WebLogic Server catches the exception, terminates further processing of the
handler request chain, logs the exception to the WebLogic Server log file, and
invokes the handl eFaul t () method of this handler.

18.5.4 Implementing the Handler.handleFault() Method

The Handl er. handl eFaul t () method processes the SOAP faults based on the SOAP
message processing model. Its signature is:

publi ¢ bool ean handl eFaul t (C context)
throws java.lang. RuntineException, java.xm .ws.Protocol Exception{}

Implement this method to handle processing of any SOAP faults generated by the
handl eMessage() method, as well as faults generated by the back-end component.

C extends j avax. xni . ws. handl er. MessageCont ext (see http://docs. oracl e. com

javaeel 7/ api / j avax/ xn / ws/ handl er/ MessageCont ext . ht n ). The MessageCont ext
properties allow the handlers in a handler chain to determine if a message is inbound
or outbound and to share processing state.Use the Logi cal MessageCont ext or
SOAPMessageCont ext sub-interface of MessageCont ext to get or set the contents of the
logical or SOAP message, respectively. For more information, see Using the Message
Context Property Values and Methods.

After you code all the processing of the SOAP fault, do one of the following:

* Invoke the handl eFaul t () method on the next handler in the handler chain by
returning true.

»  Block processing of the handler fault chain by returning f al se.

18.5.5 Implementing the Handler.close() Method

The Handl er. cl ose() method concludes the message exchange and cleans up
resources that were accessed during processing. Its signature is:

public bool ean cl ose(MessageCont ext context) {}

18.5.6 Using the Message Context Property Values and Methods

The following context objects are passed to the SOAP message handlers.

ORACLE 18-9


http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Chapter 18
Creating the SOAP Message Handler

Table 18-5 Message Context Property Values

_______________________________________________________________________|
Message Context Property Values Description

javax. xm . ws. handl er. Logi cal MessageCont ext Context object for logical handlers.

j avax. xm . ws. handl er. soap. SOAPMessageCont ext Context object for SOAP handlers.

Each context object extends j avax. xm . ws. handl er . MessageCont ext , which enables you
to access a set of runtime properties of a SOAP message handler from the client
application or web service, or directly from the j avax. xnl . ws. WebSer vi ceCont ext from a
web service (see https://jax-ws.java. net/nonav/j ax-ws- 20- pf d/ api /j avax/ xnl / ws/
WebSer vi ceCont ext . htni ).

For example, the MessageCont ext . MESSAGE_OUTBOUND_PROPERTY holds a Bool ean value that
is used to determine the direction of a message. During a request, you can check the
value of this property to determine if the message is an inbound or outbound request.
The property would be true when accessed by a client-side handler or f al se when
accessed by a server-side handler.

For more information about the MessageCont ext property values that are available, see
Accessing the Web Service Context.

The Logi cal MessageCont ext class defines the following method for processing the
Logical message. For more information, see the

java.xm . ws. handl er. Logi cal MessageCont ext Javadoc at http:// docs. oracl e. com
j avaeel 7/ api / j avax/ xm / ws/ handl er/ Logi cal MessageCont ext. htmi .

Table 18-6 LogicalMessageContext Class Method

_________________________________________________________________________|
Method Description

Gets a j avax. xm . ws. Logi cal Message object that contains the SOAP

get Nessage() message.

The SOAPMessageCont ext class defines the following methods for processing the SOAP
message. For more information, see the j ava. xnl . ws. handl er. soap. SOAPMessageCont ext
Javadoc at http://docs. oracl e. con j avaee/ 7/ api / j avax/ xm / ws/ handl er / soap/
SOAPMessageCont ext . htni .

" Note:

The SOAP message itself is stored in a j avax. xnl . soap. SOAPMessage object at
http://docs. oracl e. com j avaee/ 7/ api / j avax/ xn / soap/ SOAPMessage. ht nl . For
detailed information on this object, see Directly Manipulating the SOAP
Request and Response Message Using SAAJ.

ORACLE 18-10


https://jax-ws.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html
https://jax-ws.java.net/nonav/jax-ws-20-pfd/api/javax/xml/ws/WebServiceContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/LogicalMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/soap/SOAPMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/soap/SOAPMessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html

Chapter 18
Creating the SOAP Message Handler

Table 18-7 SOAPMessageContext Class Methods
|

Method Description

get Header s() Gets headers that have a particular qualified name from the message in the
message context.

get Message( ) 2ets ajavax.xm .soap. SOAPMessage object that contains the SOAP

essage.

Gets the SOAP actor roles associated with an execution of the handler

get Rol es() chain

set Message() Sets the SOAP message.

18.5.7 Directly Manipulating the SOAP Request and Response
Message Using SAAJ

The j avax. xn . soap. SOAPMessage abstract class is part of the SOAP With Attachments
API for Java 1.1 (SAAJ) specification at htt p: //j ava. sun. com webser vi ces/ saaj /

docs. htnl . You use the class to manipulate request and response SOAP messages
when creating SOAP message handlers. This section describes the basic structure of
a SOAPMessage object and some of the methods you can use to view and update a
SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual SOAP
XML document) and zero or more attachments.

Refer to the SAAJ Javadocs for the full description of the SOAPMessage class.

18.5.7.1 The SOAPPart Object

ORACLE

# Note:

The set Content and get Cont ent methods of the SOAPPart object support
javax. xm . transform stream StreanSour ce content only; the methods do not
support j avax. xm . t ransf orm dom DOVBour ce content.

The SOAPPart object contains the XML SOAP document inside of a SOAPEnvel ope object.
You use this object to get the actual SOAP headers and body.

The following sample Java code shows how to retrieve the SOAP message from a
MessageCont ext object, provided by the Handl er class, and get at its parts:

SOAPMessage soapMessage = messageCont ext. get Message();
SOAPPart soapPart = soapMessage. get SOAPPart ();
SOAPEnvel ope soapEnvel ope = soapPart . get Envel ope();
SOAPBody soapBody = soapEnvel ope. get Body();

SOAPHeader soapHeader = soapEnvel ope. get Header () ;

18-11


http://java.sun.com/webservices/saaj/docs.html
http://java.sun.com/webservices/saaj/docs.html

Chapter 18
Creating the SOAP Message Handler

18.5.7.2 The AttachmentPart Object

The j avax. xn . soap. At t achment Part object (see http://docs. oracl e. conl j avaee/ 7/ api /
javax/ xm / soap/ At tachment Part . ht ni ) contains the optional attachments to the SOAP
message. Unlike the rest of a SOAP message, an attachment is not required to be in
XML format and can therefore be anything from simple text to an image file.

" Note:

If you are going to access a j ava. aw . | mage attachment from your SOAP
message handler, see Manipulating Image Attachments in a SOAP Message
Handler for important information.

Use the following methods of the SOAPMessage class to manipulate the attachments. For
more information, see the j avax. xm . soap. SOAPMessage Javadoc at http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / soap/ SOAPMessage. htm .

Table 18-8 SOAPMessage Class Methods to Manipulate Attachments

__________________________________________________________________________|
Method Description

Adds an Att achnent Part object, after it has been created,

addAt t achment Part () to the SOAPMessage

Returns the number of attachments in this SOAP

count At t achment s() message

Create an Att achnent Part object from another type of

creat eAttachment Part () Obj ect

Gets all the attachments (as Att achment Part objects) into

et Attachnent s .
g 0 an | terator object.

18.5.7.3 Manipulating Image Attachments in a SOAP Message Handler

ORACLE

It is assumed in this section that you are creating a SOAP message handler that
accesses ajava. awt . | mge attachment and that the | nage has been sent from a client
application that uses the client JAX-WS ports generated by the cl i ent gen Ant task.

In the client code generated by the cli ent gen Ant task, aj ava. awt . | nage attachment is
sent to the invoked WebLogic web service with a MIME type of text/xnl rather than

i mage/ gi f, and the image is serialized into a stream of integers that represents the
image. In particular, the client code serializes the image using the following format:

e int width
° int height
e int[] pixels

This means that, in your SOAP message handler that manipulates the received Image
attachment, you must deserialize this stream of data to then re-create the original
image.

18-12


http://docs.oracle.com/javaee/7/api/javax/xml/soap/AttachmentPart.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/AttachmentPart.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html
http://docs.oracle.com/javaee/7/api/javax/xml/soap/SOAPMessage.html

Chapter 18
Configuring Handler Chains in the JWS File

18.6 Configuring Handler Chains in the JWS File

ORACLE

The @avax. j ws. Handl er Chai n annotation (also called @1and! er Chai n in this chapter for
simplicity) enables you to configure a handler chain for a web service. Use the fil e
attribute to specify an external file that contains the configuration of the handler chain
you want to associate with the web service. The configuration includes the list of
handlers in the chain, the order in which they execute, the initialization parameters,
and so on.

The following JWS file shows an example of using the @andl er Chai n annotation; the
relevant Java code is shown in bold:

package exanpl es. webservi ces. handl er;

i mport javax.jws.\\ebMet hod;
i mport javax.jws.\ebService;
import javax.jws.HandlerChain;
i mport javax.annotation. Resour ce;
i mport javax.xnl.ws. WbServi ceCont ext ;
@\ebService(nane = "Handl er", targetNamespace = "http://exanple.org")
@HandlerChain(file="handler-chain.xml")
public class Handl erWs
{
@Resour ce
\WebSer vi ceCont ext ctx;
@ebMet hod()
public String getProperty(String propertyName)
{
return (String) ctx.getMessageContext (). get(propertyNane);
}
}

Before you use the @andl er Chai n annotation, you must import it into your JWS file, as
shown above.

Use the fi | e attribute of the @andl er Chai n annotation to specify the name of the
external file that contains configuration information for the handler chain. The value of
this attribute is a URL, which may be relative or absolute. Relative URLs are relative to
the location of the JWS file at the time you run the j wsc Ant task to compile the file.

" Note:

It is an error to specify more than one @4andl er Chai n annotation in a single
JWS file.

For details about creating the external configuration file, see Creating the Handler
Chain Configuration File.

For additional detailed information about the standard JWS annotations discussed in
this section, see the web services Metadata for the Java Platform specification at
http://wwmv jcp.org/en/jsr/detail ?i d=181.

18-13


http://www.jcp.org/en/jsr/detail?id=181

Chapter 18
Creating the Handler Chain Configuration File

18.7 Creating the Handler Chain Configuration File

As described in the previous section, you use the @andl er Chai n annotation in your
JWS file to associate a handler chain with a web service. You must create the handler
chain file that consists of an external configuration file that specifies the list of handlers
in the handler chain, the order in which they execute, the initialization parameters, and
so on.

Because this file is external to the JWS file, you can configure multiple web services to
use this single configuration file to standardize the handler configuration file for all web
services in your enterprise. Additionally, you can change the configuration of the
handler chains without needing to recompile all your web services.

The configuration file uses XML to list one or more handler chains, as shown in the
following simple example:

<?xm version="1.0" encodi ng="UTF-8"?>
<handl er-chai ns xm ns="http://java. sun. com xm /ns/j avaee">
<handl er - chai n>
<handl er >
<hand| er - cl ass>exanpl es. webser vi ces. handl er. Handl er 1</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
<handl er - chai n>
<handl er >
<hand| er - cl ass>exanpl es. webser vi ces. handl er. Handl er 2</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

In the example, the handler chain contains two handlers implemented with the class
names specified with the <handl er - cl ass> element. The two handlers execute in
forward order before the relevant web service operation executes, and in reverse order
after the operation executes.

Use the <ini t - paran® and <soap- r ol e>child elements of the <handl er > element to
specify the handler initialization parameters and SOAP roles implemented by the
handler, respectively.

You can include logical and SOAP handlers in the same handler chain. At runtime, the
handler chain is re-ordered so that all logical handlers are executed before SOAP
handlers for an outbound message, and vice versa for an inbound message.

For the XML Schema that defines the external configuration file, additional information
about creating it, and additional examples, see the web services Metadata for the Java
Platform specification at htt p: //ww. j cp. or g/ en/j sr/ det ai | ?i d=181.

18.8 Compiling and Rebuilding the Web Service

ORACLE

It is assumed in this section that you have a working bui | d. xm Ant file that compiles
and builds your web service, and you want to update the build file to include handler
chain.

To ensure that handl er - chai n. xnl is added to the WAR file, add the following lines to
bui I d. xni , inside the JWS file, immediately under </ W.H: t pTr anspor t >:

18-14


http://www.jcp.org/en/jsr/detail?id=181

Chapter 18
Configuring the Client-side SOAP Message Handlers

<zipfileset dir="src">

<incl ude name="**/handl er-chai n. xn "/>

<l zipfileset>

See Developing JAX-WS Web Services for information on creating this bui | d. xni file.

Follow these guidelines to update your development environment to include message
handler compilation and building:

After you have updated the JWS file with the @andl er Chai n annotation, you must
rerun the j wsc Ant task to recompile the JWS file and generate a new web service.
This is true anytime you make a change to an annotation in the JWS file.

If you used the @1andl er Chai n annotation in your JWS file, reran the j wsc Ant task
to regenerate the web service, and subsequently changed only the external
configuration file, you do not need to rerun j wsc for the second change to take
affect.

The j wsc Ant task compiles SOAP message handler Java files into handler classes
(and then packages them into the generated application) if all the following
conditions are true:

— The handler classes are referenced in the @and! er Chai n annotation of the
JWS file.

— The Java files are located in the directory specified by the sour cepat h attribute.
— The classes are not currently in your CLASSPATH.

If you want to compile the handler classes yourself, rather than let j wsc compile
them automatically, ensure that the compiled classes are in your CLASSPATH
before you run the j wsc Ant task.

You deploy and invoke a web service that has a handler chain associated with it in
the same way you deploy and invoke one that has no handler chain. The only
difference is that when you invoke any operation of the web service, the WebLogic
web services runtime executes the handlers in the handler chain both before and
after the operation invoke.

18.9 Configuring the Client-side SOAP Message Handlers

You configure client-side SOAP message handlers in one of the following ways:

ORACLE

Set a handler chain directly on the j avax. xm . ws. Bi ndi ngPr ovi der, such as a port
proxy or j avax. xnl . ws. Di spat ch object. For example:

package exanpl es.webservices. handl er.client;

i mport javax.xm .nanespace. Q\ame
import java.net.Mal formedURLException
import java.net.URL

import javax.xml.ws_handler_Handler;
import javax.xml.ws_Binding;

import javax.xml.ws_BindingProvider;
inmport java.util.List;

import examples.webservices._handler.Handlerl;
import examples.webservices._handler.Handler2;

public class Min {

18-15



Chapter 18
Configuring the Client-side SOAP Message Handlers

public static void main(String[] args) {

Handl er W5 test;
try {

test = new Handl er Ws(new URL(args[0] + "?WSDL"), new

QName("http://exanple.org", "HandlerWs") );
} catch (Mal formedURLException nurl) { throw new
Runti meException(nurl); }

Handl er WsPor t Type port = test. get Handl er WsPor t TypePort ();

Binding binding = ((BindingProvider)port).getBinding();
List<Handler> handlerList = binding.getHandlerChain();
handlerList.add(new Handlerl());

handlerList.add(new Handler2());
binding.setHandlerChain(handlerList);

String result = null;

result = port.sayHello("foo bar");

Systemout.printin( "CGot result: " + result );

}
}
* Implement aj avax. xm . ws. handl er. Handl er Resol ver on a Servi ce instance. For
example:
public static class MyHandl er Resol ver inpl ements Handl er Resol ver {
public List<Handl er> get Handl er Chai n(PortInfo portinfo) {
Li st <Handl er> handl ers = new ArrayLi st <Handl er>();
/1 add handlers to list based on PortInfo information
return handl ers;
}
}

Add a handler resolver to the Servi ce instance using the set Handl er Resol ver ()
method. In this case, the port proxy or Di spat ch object created from the Servi ce
instance uses the Handl er Resol ver to determine the handler chain. For example:

test. set Handl er Resol ver (new MyHandl er Resol ver ());

»  Create a customization file that includes a <bi ndi ng> element that contains a
handler chain description. The schema for the <handl er - chai ns> element is the
same for both handler chain files (on the server) and customization files. For
example:

<bi ndi ngs xm ns: xsd="ht t p: // ww. w3. or g/ 2001/ XM_Schema"
xm ns: wsdl ="ht t p: // schemas. xnl soap. or g/ wsdl /"
wsdl Location="http://I ocal host: 7001/ handl er/ Handl er W6?WsDL"
xm ns="http://java. sun. com xm / ns/j axws" >
<bi ndi ngs node="wsdl : defini tions"
xm ns:jws="http://java. sun.conf xn / ns/j avaee" >
<handl er - chai ns>
<handl er - chai n>
<handl er >
<handl er - cl ass>exanpl es. webser vi ces. handl er. Handl er 1
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
<handl er - chai n>
<handl er >
<handl er - cl ass>exanpl es. webser vi ces. handl er. Handl er 2
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>

ORACLE 18-16



Chapter 18
Configuring the Client-side SOAP Message Handlers

</ handl er - chai ns>
</ bi ndi ngs>

Use the <bi ndi ng> child element of the cl i ent gen command to pass the
customization file.

ORACLE 18-17



Handling Exceptions Using SOAP Faults

This chapter describes how to handle exceptions that occur when a message is being
processed using Simple Object Access Protocol (SOAP) faults for WebLogic web
services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

e Overview of Exception Handling Using SOAP Faults
*  Contents of the SOAP Fault Element

e Using Modeled Faults

e Using Unmodeled Faults

e Customizing the Exception Handling Process

» Disabling the Stack Trace from the SOAP Fault

e Other Exceptions

19.1 Overview of Exception Handling Using SOAP Faults

ORACLE

When a web service request is being processed, if an error is encountered, the nature
of the error needs to be communicated to the client, or sender of the request. Because
clients can be written on a variety of platforms using different languages, there must
exist a standard, platform-independent mechanism for communicating the error.

The SOAP specification (available at htt p: / / wwv. w3. or g/ TR/ soap/ ) defines a standard,
platform-independent way of describing the error within the SOAP message using a
SOAP fault. In general, a SOAP fault is analogous to an application exception. SOAP
faults are generated by receivers to report business logic errors or unexpected
conditions.

In JAX-WS, Java exceptions (j ava. | ang. Excepti on) that are thrown by your Java web
service are mapped to a SOAP fault and returned to the client to communicate the
reason for failure. SOAP faults can be one of the following types:

e Modeled—Maps to an exception that is thrown explicitly from the business logic of
the Java code and mapped to wsdl : faul t definitions in the WSDL file, when the
web service is deployed. In this case, the SOAP faults are predefined.

* Unmodeled—Maps to an exception (for example, j ava. | ang. Runti meExcept i on) that
is generated at run-time when no business logic fault is defined in the WSDL. In
this case, Java exceptions are represented as generic SOAP fault exceptions,

j avax. xm . ws. soap. SOAPFaul t Excepti on.

The faults are returned to the sender only if request/response messaging is in use. If a
web service operation is configured as one-way, the SOAP fault is not returned to the
sender, but stored for further processing.

As illustrated in Figure 19-1, JAX-WS handles SOAP fault processing during SOAP
protocol binding. The SOAP binding maps exceptions to SOAP fault messages.

19-1


http://www.w3.org/TR/soap/

Chapter 19
Contents of the SOAP Fault Element

Figure 19-1 How SOAP Faults Are Processed

S0AP Web
Protocol Service
SOAP | Endpoint il Java/XML =
Request Serviet ~ SOAP 7 Binding
Client
EoAP Fault Other
Re o 1 Processing Classes
JAX-WS Runtime Services

19.2 Contents of the SOAP Fault Element

The SOAP <Faul t > element is used to transmit error and status information within a
SOAP message. The <Faul t > element is a child of the body element. There can be
only one <Faul t > element in the body of a SOAP message.

The SOAP <Faul t > element contents for SOAP 1.2 and 1.1 are defined in the following
sections:

*  SOAP 1.2 <Fault> Element Contents
e SOAP 1.1 <Fault> Element Contents

19.2.1 SOAP 1.2 <Fault> Element Contents

The <Faul t > element for SOAP 1.2 contains the subelements defined in Table 19-1.

Table 19-1 Subelements of the SOAP 1.2 <Fault> Element

Subelement Description Required?
env: Code Information pertaining to the fault error code. The env: Code element consists of  Required
the following two subelements:
e env:Val ue
e env: Subcode
The subelements are defined below.
env: Val ue Code value that provides more information about the fault. A set of code values is Required
predefined by the SOAP specification, including:
*  \VersionM smat ch—Invalid namespace defined in SOAP envelope element.
The SOAP envelope must conform to the htt p: // schemas. xm soap. or g/
soap/ envel ope namespace.
e Must Under st and—SOAP header entry not understood by processing party.
»  Sender —Message was incorrectly formatted or is missing information.
*  Recei ver—Problem with the server that prevented the message from being
processed.
e Dat aEncodi ngUnknown—Received message has an unrecognized encoding
style value. You can define encoding styles for SOAP headerblocks and child
elements of the SOAP body, and this encoding style must be recognized by
the web services server.
ORACLE 19-2



Chapter 19
Contents of the SOAP Fault Element

Table 19-1 (Cont.) Subelements of the SOAP 1.2 <Fault> Element

_____________________________________________________________________________________________|]
Subelement Description Required?

env: Subcode Subcode value that provides more information about the fault. This subelement  Optional
can have a recursive structure.

env: Reason Human-readable description of fault. Required

The <env: Reason> element contains one or more <Text > elements, each of which
contains information about the fault in a different language.

env: Node Information regarding the actor (SOAP node) that caused the fault. Optional
env: Rol e Role being performed by actor at the time of the fault. Optional
env: Detai | Application-specific information, such as the exception that was thrown. Optional

The following provides an example of a SOAP 1.2 fault message.
Example 19-1 Example of SOAP 1.2 Fault Message

<?xm version="1.0"?>
<env: Envel ope xnl ns:env=http://ww. w3. or g/ 2003/ 05/ soap- envel ope>
<env: Body>
<env: Faul t >
<env: Code>
<env: Val ue>env: Sender </ env: Val ue>
<env: Subcode>
<env: Val ue>r pc: BadAr gument s</ env: Val ue>
</ env: Subcode>
</ env: Code>
<env: Reason>
<env: Text xml:|ang=en- US>Processing error<env: Text >
</ env: Reason>
<env: Detai |l >
<e:myFaul tDetails
xm ns: e=http://travel conpany. exanpl e. org/faul t s>
<e: message>Name does not match card nunber</e: nessage>
<e:errorcode>999</ e: error code>
</ e:nyFaul t Det ai | s>
</env: Detail >
</ env: Faul t >
</ env: Body>
</ env: Envel ope>

19.2.2 SOAP 1.1 <Fault> Element Contents

The <Faul t > element for SOAP 1.1 contains the subelements defined in Table 19-2.

ORACLE 19-3



Chapter 19
Using Modeled Faults

Table 19-2 Subelements of the SOAP 1.1 <Fault> Element

_______________________________________________________________________________________________|]
Subelement Description

faul t code Standard code that provides more information about the fault. A set of code values is predefined

by the SOAP specification, as defined below. This set of fault code values can be extended by

the application.

Predefined fault code values include:

e \VersionM smat ch—Invalid namespace defined in SOAP envelope element. The SOAP
envelope must conform to the htt p: // schemas. xm soap. or g/ soap/ envel ope nhamespace.

e Mist Under st and—SOAP header entry not understood by processing party.

e ({ient—Message was incorrectly formatted or is missing information.

e Server—Problem with the server that prevented message from being processed.

faultstring Human-readable description of fault.

faul tactor URI associated with the actor (SOAP node) that caused the fault. In RPC-style messaging, the
actor is the URI of the web service.

detail Application-specific information, such as the exception that was thrown. This element can be an
XML structure or plain text.

The following provides an example of a SOAP 1.1 fault message.
Example 19-2 Example of SOAP 1.1 Fault Message

<?xm version="1.0"?>
<soap: Envel ope
xni ns: soap="http://schemas. xn soap. or g/ soap/ envel ope' >
<soap: Body>
<soap: Faul t>
<faul t code>soap: Ver si onM smat ch</ f aul t code>
<faultstring, xn:lang="en">
Message was not SOAP 1.1 conpliant
</faultstring>
<faul tact or>
http://sanmple.org.ocn jws/authnticator
</faul tactor>
</ soap: Faul t >
</ soap: Body>
</ soap: Envel ope>

19.3 Using Modeled Faults

As described previously, a modeled fault is mapped to an exception that is thrown
explicitly from the business logic of the Java code. In this case, the exception is
mapped to a wsdl : faul t definitions in the WSDL file, when the web service is
deployed.

The following sections provide more information about using modeled faults:

e Creating and Using a Custom Exception
*  How Modeled Faults are Mapped in the WSDL File
*  How the Fault is Communicated in the SOAP Message

» Creating the Web Service Client

ORACLE 19-4



Chapter 19
Using Modeled Faults

19.3.1 Creating and Using a Custom Exception

To use modeled faults, you need to create a custom Java exception and throw it from
within your web service.

Example 19-3 provides a simple example of a custom exception being thrown by a
web service. The exception is called M ssi ngNane and is thrown when the input
argument is empty.

Example 19-3 Web Service With Custom Exception

package exanpl es;
import javax.jws.\WebServi ce;

@ebServi ce(name="Hel | oWr | d", serviceName="Hel | oWor | dService")
public class Hel lovrld {
public String sayHelloWorld(String message) throws MissingName {
Systemout.printIn("Say Hello Wrld: " + nessage);
if (message == null || message.isEnpty()) {
throw new MissingName();
}

return "Here is the nessage: '" + nessage + "'"

}

}

Example 19-4 shows the he class for the exception, M ssi ngNane. j ava.
Example 19-4 Custom Exception Class (MissingName)

package exanpl es;
import java.lang. Exception;

public class M ssingName extends Exception {
public M ssingName() {
super ("Your nane is required.");
}
}

19.3.2 How Modeled Faults are Mapped in the WSDL File

ORACLE

The JAX-WS Java-to-WSDL mapping binds subclasses of j ava. | ang. Excepti on to
wsdl : faul t messages. Example 19-4 shows the WSDL that is generated from the
annotated web service in Example 19-3.

In this example:

*  The <message nane="M ssi ngNane" > element defines the parts of the M ssi ngNarme
message, namely f aul t, and its associated data type, t ns: M ssi ngNane.

<nessage name="M ssi ngNanme">
<part name="fault" el enent="tns:M ssingName" />
</ message>

*  The M ssi ngNane SOAP fault is mapped to the sayHel | oWor | d operation.

<operation nane="sayHel | oWor | d">

<i nput message="tns:sayHel | oWrld" />

<out put message="tns: sayHel | oWor | dResponse” />

<fault message="tns: M ssingNane" name="M ssi ngNanme" />
</ operation>

19-5



Chapter 19
Using Modeled Faults

This <f aul t > subelement in this example is derived from the t hrows M ssi ngNarme
clause of the sayHel | oWor | d() method declaration (see Example 19-3).

public String sayHel | oWor !l d(String message) throws M ssingName {

e The fault message is mapped to the sayHel | oWr | d operation in the <bi ndi ng>
element, as well.

<fault name="M ssi ngNange" >
<soap: fault nanme="M ssingNane" use="literal" />
</fault>

Example 19-5 Example of WSDL with Modeled Exceptions

<?xm version="1.0" encodi ng="UTF-8" ?>
<definitions
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xmns:tns="http://exanpl es/"
xm ns: xsd="http: // www. w3. or g/ 2001/ XM_Schena"
xm ns="http://schemas. xn soap. or g/ wsdl /"
target Namespace="http://exanpl es/"
name=""Hel | oWr | dServi ce">
<types>
<xsd: schema>
<xsd:inport nanespace="http://exanples/"
schemaLocation="http://| ocal host: 7001/ Hel | oWor | d/ Hel | oWor | dSer vi ce?xsd=1"/>
</ xsd: schema>
</types>
<nessage nanme="sayHel | oWor | d">
<part name="parameters" elenment="tns:sayHel | oWrld" />
</ message>
<nessage nanme="sayHel | oWr | dResponse" >
<part name="paranmeters" elenent="tns:sayHel | oWr| dResponse" />
</ message>
<message name="MissingName''>
<part name="fault" element="tns:MissingName" />
</message>
<port Type nane="Hel | oWor| d">
<operation nane="sayHel | oWor|d">
<input message="tns:sayHel | oWrld" />
<out put message="t ns: sayHel | oWor | dResponse" />
<fault message="tns:MissingName" name="MissingName" />
</ operati on>
</ port Type>
<bi ndi ng name="Hel | oWor | dPort Bi ndi ng" type="tns: Hel | oWor| d">
<soap: bi nding transport="http://schemas. xm soap. or g/ soap/ http"
styl e="docunent" />
<operation nane="sayHel | oWor|d">
<soap: operation soapAction="" />
<i nput >
<soap: body use="literal" />
</input>
<out put >
<soap: body use="literal" />
</ out put >
<fault name="MissingName">
<soap:fault name="MissingName" use="literal" />
</fault>
</ operati on>
</ bi ndi ng>

ORACLE 19-6



Chapter 19
Using Modeled Faults

<servi ce name="Hel | oWor| dServi ce">
<port name="Hel | oWorl dPort" bindi ng="t ns: Hel | oWr | dPort Bi ndi ng" >
<soap: addr ess
| ocation="http://local host: 7001/ Hel | oWr | d/ Hel | oWr | dServi ce" />
</ port>
</ service>

19.3.3 How the Fault is Communicated in the SOAP Message

Example 19-6 shows how the SOAP fault is communicated in the resulting SOAP
message when the M ssi ngNane Java exception is thrown.

Example 19-6 Example SOAP Fault Message for MissingName Exception

<?xm version = "1.0" encoding = 'UTF-8' 2>
<S: Envel ope xm ns: S="http://schemas. xm soap. or g/ soap/ envel ope/ " >
<S: Body>
<S:Fault xnlns:ns4="http://ww. w3. org/ 2003/ 05/ soap- envel ope" >
<faul t code>S: Server </ faul t code>
<faul tstring>Your name is required.</faul tstring>
<detail >
<ns2: M ssi ngNane xnl ns: ns2="http://exanpl es/">
<nmessage>Your nane is required. </ message>
</ ns2: M ssi ngNane>
<ns2: exception xmns:ns2="http://jax-ws.java.net/"
cl ass="exanpl es. M ssi ngName" note="To disable this feature, set
com sun. xm . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ureSt ackTrace system
property to fal se">
<nessage>Your nane is required. </ nessage>
<ns2:stackTrace>
<ns2:frame class="exanpl es. Hel | oWor | d" file="HelloWrld.java"
line="14" nethod="sayHel | oWor|d"/>

</ ns2: stackTrace>
</ ns2: exception>
</detail >
</ S: Faul t>
</ S: Body>
</ S: Envel ope>

19.3.4 Creating the Web Service Client

When you generate a web service client from a WSDL file that contains mapped faults
using cli ent gen, the required exception classes are generated automatically, including
the mapped exception, fault bean, service implementation classes client
implementation class, which you must modify, as described in the following sections.

* Reviewing the Generated Java Exception Class

* Reviewing the Generated Java Fault Bean Class
* Reviewing the Client-side Service Implementation
* Creating the Client Implementation Class

For more information about clientgen, see clientgen in WebLogic Web Services
Reference for Oracle WebLogic Server.

ORACLE 19-7



Chapter 19
Using Modeled Faults

19.3.4.1 Reviewing the Generated Java Exception Class

An example of the generated Java exception class is shown in Example 19-7. The
@#ebFaul t annotation identifies the class as a mapped exception.

Example 19-7 Example of Generated Java Exception Class

package exanpl es.client;
inport javax.xm .ws.\WebFault;

@ébFaul t (name = "M ssi ngNane", targetNanespace = "http://exanples/")
public class M ssingName_Exception extends Exception {
private M ssingName faul tlnfo;
public M ssingName_Exception(String nessage, MssingNane faultinfo) { ... }
public M ssingName_Exception(String nessage, M ssingNane faul tlnfo,
Throwabl e cause) { ... }
public M ssingName getFaultinfo() { ... }
}

19.3.4.2 Reviewing the Generated Java Fault Bean Class

An example of the generated Java fault bean class is shown in Example 19-8, defining
the getters and setters for the fault message.

Example 19-8 Example of Generated Java Fault Bean Class

package exanpl es.client;

i mport javax.xnl.bind. annotation. Xm AccessType;
i mport javax.xnl.bind. annotation. Xm Accessor Type;
i mport javax.xnl.bind.annotation. Xn Type;

@m Accessor Type( Xm AccessType. FI ELD)
@ Type(nanme = "M ssingNarme", propOrder = {
"message”
1y
public class M ssingName {
protected String message;
public String getMessage() {
return message;
}
public void setMessage(String value) {

this. message = val ue;
}

}

19.3.4.3 Reviewing the Client-side Service Implementation

ORACLE

An example of the generated client-side service implementation class is shown in
Example 19-9.

Example 19-9 Client-side Service Implementation

package exanpl es.client;

19-8



Chapter 19
Using Modeled Faults

@eébService(nane = "Hel | oWorl d", targetNanespace = "http://exanples/")
@ SeeAl so({

oj ect Factory. cl ass
1y

public interface Hell oWrld {

@\ebMet hod
@ébResul t (target Nanespace = "")
@Request W apper (| ocal Nane = "sayHel | oWorld",
target Nanespace = "http://exanples/",
cl assNanme = "exanpl es. client. SayHel | oWor | d")
@ResponseW apper (| ocal Nane = "sayHel | oWor | dResponse”,
target Nanespace = "http://exanples/",
cl assNane = "exanpl es. client. SayHel | oWr| dResponse")
public String sayHel | oVor I d(
@\ébPar an{nane = "arg0", targetNanespace = "")
String arg0)
throws M ssingNane_Excepti on;

}

19.3.4.4 Creating the Client Implementation Class

Create the client implementation class to call the web service method and throw the
custom exception. Then, compile and run the client. For more information about
creating web service clients, see Invoking Web Services in Developing JAX-WS Web
Services for Oracle WebLogic Server.

Example 19-10 shows an example client implementation class.
Example 19-10 Client Implementation Class

package exanpl es.client;

i mport javax.xnl.namespace. QNane;

import java.net. Ml formedURLException;

import java.net.URL;

i mport exanpl es. client.M ssi ngNane_Except i on;

public class Min {

public static void main(String[] args) throws M ssingName_Exception {
Hel | oWor | dServi ce service;

try {
service = new Hel | oWor | dServi ce(new URL(args[0] + "?WsDL"),
new QNane("http://exanples/", "HelloWrldService") );
} catch (Mal formedURLException murl) { throw new RuntineException(murl); }
Hel | oWor | d port = service. getHelloWrldPort();

String result = null;
try {
result = port.sayHelloWrld("");
} catch (M ssingNanme_Exception e) {
Systemerr.printIn("Error: " + e);

}
Systemout.printIn( "Got result:

+result );

ORACLE 19-9



Chapter 19
Using Unmodeled Faults

19.4 Using Unmodeled Faults

As noted previously, an unmodeled fault maps to an exception (for example,
java.lang. RuntimeException) that is generated at run-time when no business logic fault
is defined in the WSDL. In this case, Java exceptions are represented as generic
SOAP fault exceptions, j avax. xnl . ws. soap. SOAPFaul t Except i on.

The following shows an example of an exception that maps to an unmodeled fault.

Example 19-11 Example of Web Service Using Unmodeled Fault

package exanpl es;

i mport javax.jws.\WebService;

@ébServi ce(name="Hel | oWor | d", serviceNanme="Hel | oWor| dService")

public class HelloWrld {

public String sayHel | oWorld(String message) throws M ssingName {
Systemout.printin("Say Hello Wrld: " + nessage);
if (message == null || nessage.isEmpty()) {
throw new M ssingName(); // Mdeled fault

} else if (message. equal sl gnoreCase("abc")) {
throw new RuntimeException(*'Please enter a name."); //Unnodel ed faul t

}

return "Here is the nessage: '" + nessage + "'"

}
}

In this example, if the string "abc" is passed to the method, the following
SOAPFaul t Excepti on and Runti meExcept i on messages are returned in the log file:

Example 19-12 Example of Log File Message for Unmodeled Fault

run;
[java] Exception in thread "main" javax.xnl.ws.soap. SOAPFaul t Exception: Pl ease
enter a name.

Caused by: java.lang.RuntimeException: Please enter a nane.\

19.5 Customizing the Exception Handling Process

You can customize the SOAP fault handling process using SOAP message handlers.
A SOAP message handler provides a mechanism for intercepting the SOAP message
in both the request and response of the web service. You can create SOAP message
handlers to enable web services and clients to perform additional processing on the
SOAP message. For more information, see Creating and Using SOAP Message
Handlers.

ORACLE 19-10



Chapter 19
Disabling the Stack Trace from the SOAP Fault

19.6 Disabling the Stack Trace from the SOAP Fault

¢ Note:

The com sun. xn . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ur eSt ackTr ace
property is supported as an extension to the JDK 6.0. Because this API is not
provided as part of the JDK 6.0 kit, it is subject to change.

By default, the entire stack trace, including nested exceptions, is included in the details
of the SOAP fault message. For example, the following shows an example of a SOAP
fault message that includes the stack trace:

You can disable the inclusion of the stack trace in the SOAP fault message by setting
the com sun. xm . ws. f aul t . SOAPFaul t Bui | der . di sabl eCapt ur eSt ackTr ace Java startup
property to f al se.

To disable the stack trace:

1. Locate the following entry in the ORACLE_HOME/ user _pr oj ect s/ donai ns/ domai nNane/
st art WebLogi c. cmd file, where ORACLE_HOME is the directory you specified as the
Oracle Home when you installed Oracle WebLogic Server:

set JAVA OPTI ONS=%BAVE _JAVA OPTI ONS%
2. Edit the entry as follows:

set JAVA OPTI ONS=-
Dcom sun. xm . ws. faul t. SOAPFaul t Bui | der . di sabl eCapt ur eSt ackTrace=f al se
YSAVE_JAVA_OPTI ONS%

3. Save the startWbLogi c. cnd file.

Example 19-13 Example of Stack Trace in SOAP Fault Message

<?xm version = "1.0' encoding = 'UTF-8' 7>
<S: Envel ope xmi ns: S="http://ww. w3. or g/ 2003/ 05/ soap- envel ope" >

<S: Body>

<S:Fault xm ns:ns4="http://schemas. xm soap. or g/ soap/ envel ope/ ">

<S: Code>

<S: Val ue>S: Recei ver </ S: Val ue>
</ S: Code>
<S: Reason>
<S: Text xml:lang="en">String index out of range: 3</S:Text>
</ S: Reason>
<S: Detail >
<ns2:exception xmns:ns2="http://jax-ws.java.net/"
cl ass="java.l ang. Stri ngl ndexQut Of BoundsExcepti on" note="To disable this feature, set
com sun. xm . ws. faul t. SOAPFaul t Bui | der. di sabl eCapt ur eSt ackTrace system property
to false">

ORACLE

<nmessage>String index out of range: 3</nessage>
<ns2:stackTrace>

<ns2:frame class="java.lang.String" file="String.java" line="1934"
method="substring"/>

<ns2:frame class="ratingservice.CreditRating” file="CreditRating.java"
line="21" method="processRating"/>

<ns2:frame class="sun.reflect.NativeMethodAccessorImpl"
file="NativeMethodAccessorImpl.java" line="native" method="invoke0"/>

19-11



Chapter 19
Other Exceptions

<ns2:frame class="sun.reflect.NativeMethodAccessorImpl"
file="NativeMethodAccessoriImpl._java" line="39" method="invoke"/>

<ns2:frame class="sun.reflect.DelegatingMethodAccessorImpl"
file="DelegatingMethodAccessorimpl.java" line="25" method="invoke"/>

<ns2:frame class="java.lang.reflect.Method" file="Method.java" line="597"
method="1invoke"/>

</ns2:stackTrace>
</ ns2: exception>
</ S: Detail >
</ S: Faul t>
</ S: Body>
</ S: Envel ope>

19.7 Other Exceptions

Note that in addition to the custom exceptions that are thrown explicitly in your web
service and the SOAPFaul t Except i ons that are used to map exceptions that are not
caught by your business logic, there are two other exceptions that might be
communicated to the web service client, and that you should be aware of.

Table 19-3 Other Exceptions

Exception Description

javax. xm . ws. WebSer vi ceExcepti on Base exception for all JAX-WS API runtime exceptions, used
when calls to JAX-WS Java classes fail, such as
Servi ce. Bi ndi ngProvi der and Di spat ch.

java.util.concurrent. Executi onException Used by JAX-WS asynchronous calls, when a client tries to
get the response from an asynchronous call.

ORACLE 19-12



Optimizing Binary Data Transmission

This chapter describes how to send SOAP messages as attachments to optimize
transmission for WebLogic web services using Java API for XML Web Services (JAX-
WS).

This chapter includes the following sections:

e Optimizing Binary Data Transmission Optimization Using MTOM/XOP

e Streaming SOAP Attachments

e Sending SOAP Messages With Attachments Using swaRef

20.1 Optimizing Binary Data Transmission Optimization
Using MTOM/XOP

ORACLE

SOAP Message Transmission Optimization Mechanism/XML-binary Optimized
Packaging (MTOM/XOP) defines a method for optimizing the transmission of XML
data of type xs: base64Bi nary or xs: hexBi nary in SOAP messages. When the transport
protocol is HTTP, Multipurpose Internet Mail Extension (MIME) attachments are used
to carry that data while at the same time allowing both the sender and the receiver
direct access to the XML data in the SOAP message without having to be aware that
any MIME artifacts were used to marshal the base64Bi nary or hexBi nary data.

The binary data optimization process involves the following steps:

1. Encode the binary data.

2. Remove the binary data from the SOAP envelope.

3. Compress the binary data.

4. Attach the binary data to the MIME package.

5. Add references to the MIME package in the SOAP envelope.

MTOM/XOP support is standard in JAX-WS via the use of JWS annotations. The
MTOM specification does not require that, when MTOM is enabled, the web service
runtime use XOP binary optimization when transmitting base64bi nary or hexBi nary data.
Rather, the specification allows the runtime to choose to do so. This is because in
certain cases the runtime may decide that it is more efficient to send the binary data
directly in the SOAP Message; an example of such a case is when transporting small
amounts of data in which the overhead of conversion and transport consumes more
resources than just inlining the data as is.

The following Java types are mapped to the base64Bi nary XML data type, by default:
javax. activation. Dat aHandl er, j ava. awt . | mage, and j avax. xm . t ransf or m Sour ce. The
elements of type base64Bi nary or hexBi nary are mapped to byte[], by default.

The following table summarizes the steps required to use MTOM/XOP to send
base64Bi nary or hexBi nary attachments.

20-1



Chapter 20

Optimizing Binary Data Transmission Optimization Using MTOM/XOP

Table 20-1 Steps to Use MTOM/XOP to Send Binary Data
|

# Step

Description

Annotate the data types that
you are going to use as an
MTOM attachment. (Optional)

Depending on your programming model, you can
annotate your Java class or WSDL to define the content
types that are used for sending binary data. This step is
optional. By default, XML binary types are mapped to
Java byt e[ ] . For more information, see Annotating the
Data Types.

2 Enable MTOM on the web
service.

See Enabling MTOM on the Web Service.

3 Enable MTOM on the client of
the web service.

See Enabling MTOM on the Client.

4 Set the attachment threshold.

Set the attachment threshold to specify when the
xs: bi nary64 data is sent inline or as an attachment. See
Setting the Attachment Threshold.

5 (Optional) Enable HTTP
chunking.

Enable HTTP chunking to minimize excessive buffering
on the client side during the processing of MTOM
attachments. See Enabling HTTP Chunking.

For more information see:

MTOM specification at htt p: / / wwwv. w3. or g/ TR/ soap12- nt om

»  XOP specification at htt p: / / wwv. w3. or g/ TR/ xop10

20.1.1 Annotating the Data Types

Depending on your programming model, you can annotate your Java class or WSDL
to define the MIME content types that are used for sending binary data. This step is

ORACLE

optional.

The following table defines the mapping of MIME content types to Java types. In some
cases, a default MIME type-to-Java type mapping exists. If no default exists, the MIME
content types are mapped to Dat aHandl er .

Table 20-2 Mapping of MIME Content Types to Java Types
|

MIME Content Type

Java Type

i mge/ gi f java.aw . | mge
i mge/ j peg java.aw . | mge
text/plain java.lang. String

text/xm or application/xm

javax. xnl . transf orm Sour ce

*/*

javax. activation. Dat aHandl er

20-2


http://www.w3.org/TR/soap12-mtom
http://www.w3.org/TR/xop10

Chapter 20
Optimizing Binary Data Transmission Optimization Using MTOM/XOP

The following sections describe how to annotate the data types based on whether you
are starting from Java or WSDL.

e Annotating the Data Types: Start From Java
* Annotating the Data Types: Start From WSDL

20.1.1.1 Annotating the Data Types: Start From Java

When starting from Java, to define the content types that are used for sending binary
data, annotate the field that holds the binary data using the @nl M meType annotation.

The field that contains the binary data must be of type Dat aHandl er .

The following example shows how to annotate a field in the Java class that holds the
binary data.

@\ebMet hod
@neway
public void dataUpl oad(
@m M neType("application/octet-streant) DataHandl er data)
{

}

20.1.1.2 Annotating the Data Types: Start From WSDL

When starting from WSDL, to define the content types that are used for sending binary
data, annotate the WSDL element of type xs: base64Bi nary or xs: hexBi nary using one of
the following attributes:

e xnine: cont ent Type - Defines the content type of the element.

e xni ne: expect edCont ent Type - Defines the range of media types that are acceptable
for the binary data.

The following example maps the i nage element of type base64bi nary to i mage/ gi f MIME
type (which maps to the j ava. awt . | rage Java type).

<el enent nane="i mage" type="base64Bi nary"
xm ne: expect edCont ent Types="i mage/ gi f"
xm ns: xmi me="http:// www. w3. or g/ 2005/ 05/ xn mi me"/ >

20.1.2 Enabling MTOM on the Web Service

You can enable MTOM on the web service using an annotation or WS-Policy file, as
described in the following sections:

* Enabling MTOM on the Web Service Using Annotation
*  Enabling MTOM on the Web Services by Attaching a WS-Policy File

20.1.2.1 Enabling MTOM on the Web Service Using Annotation

ORACLE

To enable MTOM in the web service, specify the @ ava. xm . ws. soap. MFTOMannotation on
the service endpoint implementation class, as illustrated in the following example.
Relevant code is shown in bold.

package exanpl es.webservi ces. ntom

i mport javax.jws.\\ebMet hod;

20-3



Chapter 20
Optimizing Binary Data Transmission Optimization Using MTOM/XOP

i mport javax.jws.\WbService;
import javax.xml.ws.soap.MTOM;

@mrom
@ébServi ce( name="M onPort Type",
servi ceName="M onfer vi ce",
target Nanespace="http://exanple.org")
public class MIOM npl {
@\ebMet hod
public String echoBinaryAsString(byte[] bytes) {
return new String(bytes);

}
}

20.1.2.2 Enabling MTOM on the Web Services by Attaching a WS-Policy File

ORACLE

In addition to the @MTOM annotation, described in the previous section, support for
MTOM/XOP in WebLogic JAX-WS web services is implemented using the pre-
packaged WS-Policy file M om xnl . WS-Policy files follow the WS-Policy specification,
described at htt p: / / wwwv. w3. or g/ TR/ ws- pol i cy; this specification provides a general
purpose model and XML syntax to describe and communicate the policies of a web
service, in this case the use of MTOM/XOP to send binary data. The installation of the
pre-packaged M om xmi WS-Policy file in the t ypes section of the web service WSDL is
as follows (provided for your information only; you cannot change this file):

<wsp: Policy wsu:ld="nyService_policy">
<wsp: Exact | yOne>
<wsp: Al >
<wsoma: Optim zedM neSeri al i zation
xm ns: wsoma="htt p: / / schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy/
optim zedm neserialization" />
</wsp: Al | >
</ wsp: Exact | yOne>
</wsp: Pol i cy>

When you deploy the compiled JWS file to WebLogic Server, the dynamic WSDL will
automatically contain the following snippet that references the MTOM WS-Policy file;
the snippet indicates that the web service uses MTOM/XOP:

<wsdl : bi ndi ng name="Basi cHt t pBi ndi ng_| M onTest "
type="i 0: | M onTest " >
<wsp: Pol i cyRef erence URI ="#nyService_policy" />
<soap: bi nding transport="http://schemas. xn soap. or g/ soap/ http" />

You can associate the M om xmi WS-Policy file with a web service at development-time
by specifying the @ol i cy metadata annotation in your JWS file. Be sure you also
specify the at t achTowsdl =t r ue attribute to ensure that the dynamic WSDL includes the
required reference to the M om xnl file; see the example below.

You can associate the M om xni WS-Policy file with a web service at deployment time
by modifying the WSDL to add the Policy to the types section just before deployment.

In addition, you can attach the file at runtime using by the WebLogic Server
Administration Console; for details, see Attach a WS-Policy file to a web service in the
Oracle WebLogic Server Administration Console Online Help. This section describes
how to use the JWS annotation.

20-4


http://www.w3.org/TR/ws-policy

Chapter 20
Optimizing Binary Data Transmission Optimization Using MTOM/XOP

The following simple JWS file example shows how to use the @bl ogi c. j ws. Pol i cy
annotation in your JWS file to specify that the pre-packaged M om xni file should be
applied to your web service (relevant code shown in bold):

package exanpl es.webservi ces. ntom
import javax.jws.\WebMet hod,;
import javax.jws.\WehService;
import weblogic.jws.Policy;
@ébSer vi ce( name="M onPort Type",
servi ceName="M onfer vi ce",
tar get Nanespace="htt p://exanpl e. org")
@Policy(uri="policy:Mtom.xml", attachToWsdl=true)
public class Mom nmpl {
@\ebMet hod
public String echoBinaryAsString(byte[] bytes) {
return new String(bytes);

}

20.1.3 Enabling MTOM on the Client

To enable MTOM on the client of the web service, pass an instance of the
javax. xm . ws. soap. MTOVFeat ur e as a parameter when creating the web service proxy or
dispatch, as illustrated in the following example. Relevant code is shown in bold.

package exanpl es. webservices. momclient;
i mport javax.xnl.ws.soap. MTOMFeat ur e;

public class Main {
public static void main(String[] args) {
String FOO = "FOO';
M onfBervi ce service = new M onfBervice()
MtomPortType port = service.getMtomPortTypePort(new MTOMFeature());
String result = null;
result = port.echoBi naryAsString(FQO. getBytes());
Systemout.printIn( "Cot result: " + result );
}
}

20.1.4 Setting the Attachment Threshold

ORACLE

You can set the attachment threshold to specify when the xs: bi nary64 data is sent
inline or as an attachment. By default, the attachment threshold is 0 bytes. All
xs: bi nary64 data is sent as an attachment.

To set the attachment threshold:

* Onthe web service, pass the t hreshol d attribute to the @ ava. xm . ws. soap. MTOM
annotation. For example:

@moM t hr eshol d=3072)

«  On the client of the web service, pass the threshold value to
javax. xm . ws. soap. MTOVFeat ur e. For example:

M onPort Type port = service. get M onPort TypePort (new MIOVFeat ure(3072));

20-5



Chapter 20
Optimizing Binary Data Transmission Optimization Using MTOM/XOP

In each of the examples above, if a message is greater than or equal to 3 KB, it will be
sent as an attachment. Otherwise, the content will be sent inline, as part of the SOAP
message body.

20.1.5 Enabling HTTP Chunking

You can minimize excessive buffering on the client side when processing MTOM
attachments by enabling HTTP chunking on the transport layer using one of the
following methods:

e Setthejaxws.transport.streani ng system property to true. In this case, no code
modifications are required.

e Setcomsun. xm . ws. devel oper. JAXWSPr operti es. HTTP_CLI ENT_STREAM NG _CHUNK_SI ZE
property on the protocol binding request context. For more information, see the
JAXWEPr oper ti es Javadoc at: http://jax-ws. | ava. net/ nonav/j ax- ws- 20- f cs/
arch/ com sun/ xm / ws/ devel oper/ JAXWSPr operties. htn .

It is recommended that you enable HTTP chunking for CPU-intensive applications that
are running on a WebLogic Server instance that is participating in web services
interactions as a client and is sending out large messages.

The following excerpt from an Ant build script shows an example of setting the system
property when invoking a client application called cl i ents. | nvokeMrOVSer vi ce:

<target name="run-client">
<java fork="true"
cl assnane="cl i ents. | nvokeMrOVSer vi ce"
failonerror="true">
<cl asspath refid="client.class.path"/>
<arg line="${http-endpoint}"/>
<jvmarg line=
"-Dj axws. transport. stream ng=true"
/>
</java>
</target>

The following code excerpt shows how to set the HTTP_CLI ENT_STREAM NG _CHUNK_SI ZE
property.

package exanpl es.webservi ces. ntonstreamn ng.client;
inmport java.util.Mp;

i mport javax.xm .ws. Bi ndi ngProvi der;
import com sun. xm . ws. devel oper. JAXWSPr operti es;

public class Min {
public static void main(String[] args) {

Map<String, Object> ctxt=((BindingProvider)port).getRequest Context();
ct xt. put (JAXWSPr operties. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);

ORACLE 20-6


http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html
http://jax-ws.java.net/nonav/jax-ws-20-fcs/arch/com/sun/xml/ws/developer/JAXWSProperties.html

Chapter 20
Streaming SOAP Attachments

20.2 Streaming SOAP Attachments

¢ Note:

The com sun. xm . ws. devel oper. St reani ngDat aHandl er API is supported as an
extension to the JAX-WS RI. Because this APl is not provided as part of the
WebLogic software, it is subject to change.

Using MTOM and the j avax. acti vati on. Dat aHandl er and

com sun. xnl . ws. devel oper . Streani ngDat aHandl er APIs you can specify that a web
service use a streaming APl when reading inbound SOAP messages that include
attachments, rather than the default behavior in which the service reads the entire
message into memory. This feature increases the performance of web services whose
SOAP messages are particularly large.

# Note:

Streaming MTOM cannot be used in conjunction with message encryption.

The following sections describe how to employ streaming SOAP attachments on the
client and server sides.

20.2.1 Client Side Example

ORACLE

The following provides an example that employs streaming SOAP attachments on the
client side.

package exanpl es.webservi ces. ntonstrean ng.client;

inport java.util.Mp;

i mport java.io.lnputStream

i mport javax.xnl.ws.soap. MTOVFeat ur e;

i nport javax.activation. DataHandl er;

i mport javax.xm .ws. Bi ndi ngProvi der;

import com sun. xn . ws. devel oper. JAXWSPr operti es;

i mport com sun. xn . ws. devel oper. Streani ngDat aHand| er;

public class Main {

public static void main(String[] args) {
M onBt r eami ngSer vi ce service = new M onft ream ngService();
MIOVFeat ure feature = new MIOVFeat ure();
M onBt r eam ngPort Type port = service. get M onfst r eani ngPor t TypePor t (

feature);
Map<String, Object> ctxt=((BindingProvider)port).getRequestContext();
ctxt. put (JAXWSProperties. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);
Dat aHandl er dh = new Dat aHand! er (new
Fi | eDat aSource("/tnp/ exanple.jar"));

port.fileUpload("/tnp/tnp.jar", dh);

Dat aHandl er dhn = port.fileDownl oad("/tnp/tnp.jar");

20-7



Chapter 20
Streaming SOAP Attachments

St reani ngDat aHandl er sdh = (Streani ngDat aHandl er) dhn;

try{
File file = new File("/tnp/tnp.jar");
sdh. moveTo(file);
sdh. cl ose();

}

cat ch( Exception e){
e.printStackTrace();

}

}
}

The preceding example demonstrates the following:

* To enable MTOM on the client of the web service, pass an instance of the
javax. xm . ws. soap. MTOVFeat ur e as a parameter when creating the web service
proxy or dispatch.

»  Configure HTTP streaming support by enabling HTTP chunking on the MTOM
streaming client. For more information, see Enabling HTTP Chunking.

Map<String, Object> ctxt = ((BindingProvider)port).getRequestContext();
ctxt. put (JAXWSProperties. HTTP_CLI ENT_STREAM NG_CHUNK_SI ZE, 8192);

e Call the port. fil eUpl oad method.

e Cast the Dat aHandl er to Stream ngDat aHandl er and use the
St r eani ngDat aHandl er . readOnce() method to read the attachment.

20.2.2 Server Side Example

ORACLE

The following provides an example that employs streaming SOAP attachments on the
server side.

package exanpl es.webservi ces. nt onst ream ng;

import java.io.File;

inport java.jws.Oneway;

i mport javax.jws.\WbMet hod;

i mport java.io.lnputStream

import javax.jws.\WbService;

i mport javax.xnl.bind.annotation. Xm M neType;

i mport javax.xm .ws. WbServi ceExcepti on;

i mport javax.xnl.ws.soap. MTOM

i mport javax.activation. Dat aHandl er;

i mport javax.activation. Fil eDataSource;

i mport com sun. xm . ws. devel oper. Streani ngAttachnent;
i mport com sun. xm . ws. devel oper. Stream ngDat aHandl er;

@t r eani ngAt t achnent ( par seEager | y=true, menoryThreshol d=40000L)
@mram
@\ebServi ce(name="M onSt reani ng",
servi ceName="M ontt r eani ngSer vi ce",
target Nanespace="http://exanple.org",
wsdl Locati on="St reani ngl npl Servi ce. wsdl ")
@neway
@\ebMet hod
public class Stream nglnpl {

/] Use @m M nmeType to map to DataHandler on the client side
public void fileUpload(String fileNane,

20-8



Chapter 20
Streaming SOAP Attachments

@nm M neType("appl i cation/octet-streant)
Dat aHandl er data) {

try {
St ream ngDat aHandl er dh = (Streani ngDat aHandl er) dat a;

File file = new File(fileName);
dh. noveTo(file);
dh. cl ose();
} catch (Exception e) {
t hrow new WebSer vi ceException(e);
}

@nm M neType("appl i cation/octet-streant)
@\ebMet hod
publ i c DataHandl er fileDownl oad(String filenane)

{

return new Dat aHandl er (new Fi | eDat aSource(filenane));

}
}

The preceding example demonstrates the following:

e The @t rean ngAttachement annotation is used to configure the streaming SOAP
attachment. For more information, see Configuring Streaming SOAP Attachments.

*  The @m M neType annotation is used to map the Dat aHandl er, as follows:

— If starting from WSDL, it is used to map the
xm me: expect edCont ent Types="appl i cati on/ oct et - st r eant to Dat aHandl er in the
generated SEI.

— If starting from Java, it is used to generate an appropriate schema type in the
generated WSDL.

e Cast the Dat aHandl er to Streani ngDat aHandl er and use the
St r eani ngDat aHand! er . noveTo(Fi | e) method to store the contents of the attachment
to afile.

20.2.3 Configuring Streaming SOAP Attachments

You can configure streaming SOAP attachments on the client and server sides to
specify the following:

» Directory in which large attachments are stored.
*  Whether to parse eagerly the streaming attachments.

Maximum attachment size (bytes) that can be stored in memory. Attachments that
exceed the specified number of bytes are written to a file.

20.2.3.1 Configuring Streaming SOAP Attachments on the Server

" Note:

The com sun. xnl . ws. devel oper. Streani ngAttachment API is supported as an
extension to the JDK 6.0. Because this APl is not provided as part of the JDK
6.0 kit, it is subject to change.

ORACLE 20-9



Chapter 20
Sending SOAP Messages With Attachments Using swaRef

To configure streaming SOAP attachments on the server, add the

@5t r eanmi ngAt t achnent annotation on the endpoint implementation. The following
example specifies that streaming attachments are to be parsed eagerly (read or write
the complete attachment) and sets the memory threshold to 4MB. Attachments under
4MB are stored in memory.

import com.sun.xml.ws.developer.StreamingAttachment;
import javax.jws.\WbService;

@StreamingAttachment(parseEagerly=true, memoryThreshold=4000000L)
@ébServi ce(name="Hel | oWor| dPort Type", serviceName="Hel | oWor | dServi ce")
public class Stream nglnpl {

}

20.2.3.2 Configuring Streaming SOAP Attachments on the Client

< Note:

The com sun. xm . ws. devel oper. Streani ngAt t achment Feat ur e API is supported
as an extension to the JDK 6.0. Because this APl is not provided as part of
the JDK 6.0 kit, it is subject to change.

To configure streaming SOAP attachments on the client, create a

St r eani ngAt t achnent Feat ur e object and pass this as an argument when creating the
Port Type stub implementation. The following example sets the directory in which large
attachments are stored to / t np, specifies that streaming attachments are to be parsed
eagerly and sets the memory threshold to 4MB. Attachments under 4MB are stored in
memory.

import com.sun.xml.ws.developer.StreamingAttachmentFeature;

MIOMFeat ure ntom = new MIOMFeat ure();

StreamingAttachmentFeature stf = new StreamingAttachmentFeature(*'/tmp", true,
4000000L);

M onft ream ngServi ce service = new M onftreanm ngService();

M onft ream ngPort Type port = service. get M ontt r eani ngPort TypePort (
mtom, stf);

20.3 Sending SOAP Messages With Attachments Using
swaRef

Together, the specifications defined in Table 20-3 define a mechanism for sending
SOAP messages with attachments using the swaRef XML attachment type.

ORACLE 20-10



Chapter 20
Sending SOAP Messages With Attachments Using swaRef

Table 20-3 Specifications Supported for Sending SOAP Messages With Attachments

___________________________________________________________________________________________|]
Specification Description

SOAP With Attachments ~ Defines a MIME nul ti part/rel at ed structure for packaging attachments with SOAP

(SwA)

messages. For more information, see http: // ww. w3. or g/ TR/ SOAP- at t achment s

WS-I Attachments Profile  Defines the swaRef schema type that can be used in the WSDL description to

represent a reference to an attachment as a content-ID (CID) URL. WS-I publishes a
public schema which defines the swaRef type, as defined by the following XSD:
http://ws-i.org/profiles/basic/1l. 1/ xsdl swaref.xsd

JAXB maps the swaRef schema type to j avax. activati on. Dat aHandl er .

For more information, see: htt p: // ww. ws-i . org/ Profil es/
Attachment sProfil e-1.0-2004-08-24. htni

The following shows an example of how to use swaRef in a WSDL file to specify that
the cl ai nFor mrequest and response messages be passed as an attachment.

Example 20-1 Example of WSDL File Using swaRef Data Type

<?xm version="1.0" encoding="utf-8"?>
<wsdl : definitions name="SOAPBui | ders-nine-cr-test”
xm ns: types="http://exanpl e. org/ m ne/ dat a"
xm ns: xsd="http: //ww. w3. or g/ 2001/ XM.Schena"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: wsdl ="http://schemas. xm soap. or g/ wsdl /"
xm ns:tns="http://exanpl e. org/ ni me"
xm ns: m me="http://schemas. xm soap. or g/ wsdl / m me/"
target Nanespace="htt p://exanpl e. or g/ m ne" >

<wsdl : types>

<schema
xm ns="http://ww. w3. or g/ 2001/ XM.Schena"
t ar get Nanespace="htt p: // exanpl e. or g/ m ne/ dat a"
xm ns: xm me="ht t p: / / www. w3. or g/ 2005/ 05/ xn mi ne"
el ement For mDef aul t ="qual i fi ed"
xmIns:ref="http://ws-i.org/profiles/basic/1.1/xsd">
<import namespace="http://ws-i.org/profiles/basic/1.1/xsd"
schemaLocation="WS-1SwA.xsd"/>

<conpl exType name="cl ai nfFor nTypeRequest ">
<sequence>
<el ement name="request" type="ref:swaRef"/>
</ sequence>
</ conpl exType>
<conpl exType nanme="cl ai nfFor nTypeResponse” >
<sequence>
<el ement nanme="response" type="ref:swaRef"/>
</ sequence>
</ conpl exType>

<el ement nane="cl ai nFor mRequest" type="types: cl ai nFor niTypeRequest "/ >
<el ement nane="cl ai nFor nResponse” type="types: cl ai nFor nTypeResponse"/ >
</ schema>

</wsdl : types>

<wsdl : message name="cl ai nForm n">

<wsdl : part name="data" el enent ="types: cl ai nFor nRequest "/ >

ORACLE 20-11


http://www.w3.org/TR/SOAP-attachments
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html
http://www.ws-i.org/Profiles/AttachmentsProfile-1.0-2004-08-24.html

Chapter 20
Sending SOAP Messages With Attachments Using swaRef

</ wsdl : message>

<wsdl : message name="cl ai nFor mQut " >
<wsdl : part nane="data" el enent ="types: cl ai nFor nResponse"/ >
</ wsdl : message>

<wsdl : port Type name="Hel | o0">

<wsdl : operation name="claimForm">
<wsdl :input message="tns: cl ai nForm n"/>
<wsdl : out put nmessage="tns: cl ai nFornmQut"/>
</wsdl : operati on>
</ wsdl : port Type>

</wsdl : definitions>

As specified in the WSDL example in Example 20-1, the XML content that is tagged as
type swaRef is sent as a MIME attachment and the element inside the SOAP body
holds the reference to this attachment, as shown in Example 20-2.

Example 20-2 Example of SOAP Message with MIME Attachment

Content-Type: Miltipart/Related; start-info="text/xm"; type="application/xop+xm"
boundary="----=_Part_4 32542424, 1118953563492" Cont ent - Lengt h: 1193SOAPAction: ""
------ = Part_5 32550604. 1118953563502Cont ent - Type: appl i cation/ xop+xnt; type="text/xm"

charset=utf-8
<soapenv: Envel ope xnl ns: soapenv="http://schenas. xn soap. or g/ soap/ envel ope/ ">

<soapenv: Body>
<request xm ns="http://exanple.org/ntonm data">
ci d: b0a597f d- 5ef 7- 4f Oc- 9d85- 6666239f 1d25@xanpl e. j axws. sun. com
</request >
</ soapenv: Body>
</ soapenv: Envel ope>

------ = Part_5_32550604. 1118953563502

Content-Type: application/xm Content-ID:
<h0a597f d- 5ef 7- 4f Oc- 9d85- 6666239f 1d25@xanpl e. j axws. sun. con®

<?xm
version="1.0" encodi ng="UTF-8"?><application xm ns="http://java. sun. com xm /ns/j2ee"
xm ns: xsi ="http: //ww. w3. or g/ 2001/ XM.Schema- i nst ance”
xsi: schemalocaption="http://java. sun.conf xm / ns/j 2ee
http://java.sun.com xm /ns/j2ee/ application_1 4.xsd" version="1.4">
<di spl ay- nanme>Si npl e exanpl e of application</displ ay- name>
<description>Sinpl e exanpl e</descri ption>
<nodul e>

<ejb>ejbl.jar</ejb>
</ modul e>
<nodul e>
<ej b>ej b2.jar</ej b>
</ modul e>
<nodul e>
<web> <web- uri >web. war </ web-uri > <cont ext - r oot >web</ cont ext - r oot ></ web>
</ nodul e></ appl i cati on>

Example 20-3 shows a sample web service that defines the cl ai nFor moperation. As
defined in the WSDL, the request and response messages are sent as MIME
attachments.

Example 20-3 Example Web Service

package mi me. server

ORACLE 20-12



Chapter 20
Sending SOAP Messages With Attachments Using swaRef

inport javax.jws.\WbService;

i mport javax.xn .ws. Hol der;

i mport javax.xnl.transform Source;

i mport javax.xnl.transform stream StreanSour ce;
i mport javax.activation. Dat aHandl er;

inport java.awt.*;

inport java.io.ByteArraylnput Stream

@ébService (endpointinterface = "mine.server. Hello")
public class Hellolnpl {

public ClaimFormTypeResponse claimForm(ClaimFormTypeRequest data){
C ai nFor nTypeResponse resp = new O ai nfFor niTypeResponse() ;
resp. set Response(dat a. get Request ());
return resp;

Example 20-4 shows a sample web service client that calls the cl ai nFor moperation.
Note that the client request data that will be transmitted as an attachment is mapped to
the Dat aHandl er data type.

Example 20-4 Example Web Service Client With MIME Attachments

package mine.client;

import javax.xm .transform stream StreanSource;
import javax.xm .transform Source;

i mport javax.activation. Dat aHandl er;

inport java.io.ByteArraylnput Stream

inport java.awt.*;

public class M neApp {
public static void main (String[] args){
try {
(bj ect port = new Hel | oService().getHelloPort ();
test Swaref ((Hello)port);
} catch (Exception ex) {
ex. printStackTrace ();

}
}

private static void testSwaref (Hello port) throws Exception{
Dat aHandl er cl ai nForm = new Dat aHandl er (new StreanSour ce(
new Byt eArrayl nput St rean( sanpl eXM.. get Bytes())), “"text/xm");
C ai nfFor nTypeRequest req = new C ai nFor niTypeRequest () ;
req. set Request (cl ai nForm;
C ai nFor nTypeResponse resp = port.clainForm (req);
Dat aHandl er out = resp. get Response();

}

private static final String sampleXM. = "<?xml version=\"1.0\" encodi ng=\"UTF-8\" ?>\n" +
"<NMEAst d>\n" +
" <Devl dSent encel d>$GPRMC</ Devl dSent encel d>\ n" +
"<Ti me>212949</ Ti me>\n" +
"<Navi gat i on>A</ Navi gation>\n" +
"<Nor t hOr Sout h>4915. 61N</ Nor t hOr Sout h>\ n"  +
"<W\est Or East >12310. 55W/ West Or East >\ n" +
" <SpeedOnG ound>000. 0</ SpeedOnG ound>\n" +

ORACLE 20-13



Chapter 20
Sending SOAP Messages With Attachments Using swaRef

"<Cour se>360. 0</ Cour se>\ n" +

"<Dat e>030904</ Dat e>\ n" +

"<Magneti cVari ati on>020. 3</ Magneti cVariation>\n" +
"<Magnet i cPol eEast Or West >E</ Magnet i cPol eEast Or West >\ n" +
"<Checksum nHex>*6B</ Checksunl nHex>\n" +

"</ NVEAst d>";

ORACLE 20-14



Managing Web Service Persistence

This chapter describes how to manage persistence for WebLogic web services using
Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

Overview of Web Service Persistence

Roadmap for Configuring Web Service Persistence
Configuring Web Service Persistence

Using Web Service Persistence in a Cluster

Cleaning Up Web Service Persistence

21.1 Overview of Web Service Persistence

WebLogic Server provides a default web service persistence configuration that
provides a built-in, high-performance storage solution for web services. Web service
persistence is used by the following advanced features to support long running
requests and to survive server restarts:

Asynchronous web service invocation using asynchronous client transport or Make
Connection

Web services reliable messaging
Message buffering

Security using WS-SecureConversation

Specifically, web service persistence is used to save the following types of information:

Client identity and properties
SOAP message, including its headers and body

Context properties required for processing the message at the web service or
client (for both asynchronous and synchronous messages)

The following figure illustrates an example web service persistence configuration.

ORACLE

21-1



Chapter 21
Overview of Web Service Persistence

Figure 21-1 Example Web Service Persistence Configuration

Cluster
Serverl ( Web Servicel Server2 ( Web Servicel
A A
Logical Store Logical Store
"Storel" "Storel"
Physical Store Physical Store
"Server]Storel” "Server2Storel”
F Y F Y
..-""'_'__-‘ ..--""'_'__-‘
Physical Physical
Storage Storage
(File, DEMS, etc) (File, DEMS, etc)

The following table describes the components of web service persistence, shown in
the previous figure.

Table 21-1 Components of the Web Service Persistence

Component

Description

Logical Store

Provides the configuration requirements and connects the web service to the physical
store and buffering queue.

Physical store

Handles the I/O operations to save and retrieve data from the physical storage (such
as file, DBMS, and so on). The physical store can be a WebLogic Server persistent
store, as configured using the WebLogic Server Administration Console or WLST, or
in-memory store.

Note: When using a WebLogic Server persistent store as the physical store for a
logical store, the names of the request and response buffering queues are taken from
the logical store configuration and not the buffering configuration.

Buffering queue

Stores buffered requests and responses for the web service.

ORACLE

When configuring web service persistence, you associate:

* Alogical store with a buffering queue.
* A buffering queue that is associated with a physical store via JMS configuration.

The association between the logical store and buffering queue is used to infer the
association between the logical store and physical store. The default logical store is
named WeeSt or e and is created automatically when a domain is created using the
WebLogic Advanced Web Services for JAX-WS Extension template

(w s_webservi ce_j axws. j ar). By default, the physical store that is configured for the
server is associated with the buffering queue. This strategy ensures that the same
physical store is used for all web service persistence and buffering. Using a single
physical store ensures a more efficient, single-phase XA transaction and facilitates
migration.

21-2



Chapter 21
Roadmap for Configuring Web Service Persistence

You can configure one or more logical stores for use within your application
environment. In Table 21-1, the servers Server 1 and Server 2 use the same logical
store. This configuration allows applications that are running in a cluster to be
configured globally to access a single store name. As described later in Configuring
Web Service Persistence, you can configure web service persistence at various levels
for fine-grained management. Best practices are provided in Roadmap for Configuring
Web Service Persistence.

21.2 Roadmap for Configuring Web Service Persistence

Table 21-2 provides best practices for configuring web service persistence to support
web service reliable messaging.

Table 21-2 Roadmap for Configuring Web Service Persistence

Best Practice Description
Define a logical store for each By defining separate logical stores, you can better manage the service-
administrative unit (for example, level agreements for each administrative unit. For more information, see

business unit, department, and so on).  Configuring the Logical Store.

Use the correct logical store for each You can configure the logical store at the WebLogic Server, web service,

client or service related to the or web service client level. For more information, see Configuring Web
administrative unit. Service Persistence.
Define separate physical stores and For more information, see Figure 21-1.

buffering queues for each logical store.

The best practices defined in Table 21-2 facilitates maintenance, and failure recovery
and resource migration.

For example, assume Company X is developing web services for several departments,
including manufacturing, accounts payable, accounts receivable. Following best
practices, Company X defines a minimum of three logical stores, one for each
department.

Furthermore, assume that the manufacturing department has a service-level
agreement with the IT department that specifies that it can tolerate system outages
that are no longer than a few minutes in duration. The accounts payable and
receivable departments, on the other hand, have a more relaxed service-level
agreement, tolerating system outages up to one hour in duration. If the systems that
host web services and clients for the manufacturing department become unavailable,
the IT department is responsible for ensuring that any resources required by those
web services and clients are migrated to new active servers within minutes of the
failure. Because separate logical stores were defined, the IT department can migrate
the file store, JMS servers, and so on, associated with the manufacturing department
logical store independently of the resources required for accounts payables and
receivables.

21.3 Configuring Web Service Persistence

The following table summarizes the information that you can configure for each of the
web service persistence components.

ORACLE 21-3



Chapter 21
Configuring Web Service Persistence

Table 21-3 Summary of the Web Service Persistence Component Configuration

___________________________________________________________________________________________|]
Component Summary of Configuration Requirements

Logical Store You configure the following information for each logical store:
*  Name of the logical store.
e Maximum lifetime of an object in the store.
e The cleaner thread that removes stale objects from the store. For more
information, see Cleaning Up Web Service Persistence.
e Accessibility from other servers in a network.

* Request and response buffering queues. The request buffering queue is used to
infer the physical store by association.

Physical store You configure the following information for the physical store:
*  Name of the physical store.
e Type and performance parameters.
e Location of the store.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

Buffering queue You configure the following information for the buffering queue:

* Request and response queue details
e Retry counts and delays

You can configure web service persistence at the levels defined in the following table.

Table 21-4 Configuring Web Service Persistence

______________________________________________________________________________________|
Level Description

WebLogic Server The web service persistence configured at the server level defines the
default configuration for all web services and clients running on that
server. To configure web service persistence for WebLogic Server, use
one of the following methods:

*  When creating or extending a domain using Configuration Wizard,
you can apply the WebLogic Advanced Web Services for JAX-WS
Extension template (W s_webservi ce_j axws. j ar) to configure
automatically the resources required to support web services
persistence.

Although use of this extension template is not required, it makes
the configuration of the required resources much easier.

»  Configure the resources required for web service persistence
using the Oracle WebLogic Server Administration Console or
WLST. For more information, see:

- WebLogic Server Administration Console: Configure web service
persistence in Oracle WebLogic Server Administration Console
Online Help

- WLST: Configuring Existing Domains in Understanding the
WebLogic Scripting Tool

For more information, see Configuring Your Domain For Advanced
Web Services Features.

Web service endpoint Configure the default logical store used by the web service endpoint,
as described in Configuring Web Service Persistence for a Web
Service Endpoint.

ORACLE 21-4



Chapter 21
Configuring Web Service Persistence

Table 21-4 (Cont.) Configuring Web Service Persistence

Level Description

Web service client Configure the default logical store used by the web service client, as
described in Configuring Web Service Persistence for Web Service
Clients.

The following sections provide more information about configuring web service
persistence:

»  Configuring the Logical Store
»  Configuring Web Service Persistence for a Web Service Endpoint

*  Configuring Web Service Persistence for Web Service Clients

21.3.1 Configuring the Logical Store

You can configure one or more logical stores for use within your application
environment, and identify the logical store that is used as the default.

The default logical store, WeeSt or e, is generated automatically when you create or
extend a domain using the WebLogic Advanced Web Services for JAX-WS Extension
template (W s_webservi ce_j axws. j ar), as described in Configuring Your Domain For
Advanced Web Services Features.

You can configure the logical store using the WebLogic Server Administration
Console, see Configure web service persistence in Oracle WebLogic Server
Administration Console Online Help. Alternatively, you can use WLST to configure the

resources. For information about using WLST to extend the domain, see Configuring
Existing Domains in Understanding the WebLogic Scripting Tool.

The following table summarizes the properties that you define for the logical store.

Table 21-5 Configuration Properties for the Logical Store

Property

Description

Default Logical Store
Name

Name of the logical store. The name must begin with an alphabetical character and
can contain alphabetical characters, spaces, dashes, underscores, and numbers only.

This field defaults to Logi cal St ore_n. This field is required.

If you create or extend a single server domain using the web service extension
template, a logical store named WWeeSt or e is created by default.

Default Logical Store

Flag that specifies whether the logical store is used, by default, to persist state of all
web services on the server.

Only one logical store can be set as the default. If you enable this flag on the current
logical store, the flag is disabled on the current default store.

Persistence strategy

Persistence strategy. Select one of the following values from the drop-down menu.

e Local Access Onl y—Accessible to the local server only.
e In Menory—Accessible by the local VM only. In this case, the buffering queue
and physical store configuration information is ignored.

ORACLE

21-5



Chapter 21
Configuring Web Service Persistence

Table 21-5 (Cont.) Configuration Properties for the Logical Store

___________________________________________________________________________________________|]
Property Description

Request Buffering Queue JNDI name for the request buffering queue. The request buffering queue is used to
JNDI Name infer the physical store by association. If this property is not set, then the default
physical store that is configured for the server is used.

Note: You configure the physical store or buffering queue, but not both. If the
buffering queue is configured, then the physical store information is inferred.

It is recommended that the same physical storage resource be used for both
persistent state and message buffering to allow for a more efficient, single-phase XA
transaction and facilitate service migration. By setting this value, you ensure that the
buffering queue and physical store reference the same physical storage resource.

If you create or extend a domain using the web service extension template, a
buffering queue named webl ogi c. wsee. Buf f er edRequest Queue is created by default.

Note: This property is ignored if Persistence strategy is setto I n Menory.

Response Buffering JNDI name for the response buffering queue.

Queue JNDI Name If this property is not set, then the request queue is used, as defined by the Request
Buffering Queue JNDI Name property.

If you create or extend a domain using the web service extension template, a
buffering queue named webl ogi c. wsee. Buf f er edRequest Er r or Queue is created by
default.

Note: This property is ignored if Persistence strategy is setto I n Menory.

Cleaner Interval Interval at which the logical store will be cleaned. For more information, see Cleaning
Up Web Service Persistence.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nMspecifies the number of minutes, and
nS specifies the number of seconds. This value defaults to PTLOM(10 minutes).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, PTI0M(10 minutes).

Default Maximum Object Default value used as the maximum lifetime of an object. This value can be
Lifetime overridden by the individual objects saved to the logical store.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHnMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nMspecifies the number of minutes, and
nS specifies the number of seconds. This value defaults to P1D (one day).

Note: This field is available when editing the logical store only. When creating the
logical store, the field is set to the default, P1D (one day).

21.3.2 Configuring Web Service Persistence for a Web Service
Endpoint

By default, web service endpoints use the web service persistent store defined for the
server. You can override the logical store used by the web service endpoint using the
WebLogic Server Administration Console. For more information, see Configure web
service persistence in Oracle WebLogic Server Administration Console Online Help.

ORACLE 21-6



Chapter 21
Using Web Service Persistence in a Cluster

21.3.3 Configuring Web Service Persistence for Web Service Clients

For information about configuring persistence for web service clients, see Configuring
Web Service Clients.

21.4 Using Web Service Persistence in a Cluster

ORACLE

The following provides some considerations for using web services persistence in a
cluster:

» If you create or extend a clustered domain using the WebLogic Advanced Web
Services for JAX-WS Extension template (W s_webser vi ce_j axws. j ar), the
resources required to support web services persistence in a cluster are
automatically created. For more information, see Configuring Your Domain For
Advanced Web Services Features.

* To facilitate service migration, it is recommended that the same physical storage
resource be used for both persistent state and message buffering. To ensure that
the buffering queue and physical store reference the same physical storage
resource, you configure the Request Buffering Queue JNDI Name property of
the logical store, as described in Configuring the Logical Store.

* Itis recommended that the buffering queues be defined as JMS uniform
distributed destinations (UDDs). JMS defines a member queue for the UDD on
each JMS Server that you identify. Because a logical store is associated with a
physical store through the defined buffering queue, during service migration, this
allows a logical store to use the new physical stores seamlessly for the member
gueues that migrate onto the new server.

* Itis recommended that you target the JMS Server, store-and-forward (SAF)
service agent, and physical store (file store) resources to migrateable targets. For
more information, see Resources Required by Advanced Web Service Features.

For example, consider the two-node cluster configuration shown in Figure 21-2. The
domain resources are configured and targeted using the guidelines provided above.

21-7



Chapter 21
Using Web Service Persistence in a Cluster

Figure 21-2 Example of a Two-Node Cluster Configuration (Before Migration)

Cluster
Serverl ( Web Servical Server2 ( Web Servical
r r
Logical Store Logical Store
"Storel" "Storel"

Server1JMS5erver Server2JMS5erver
e S
SarverlAgent Sarver2Agent
Physical Storage Physical Storage
(File, DBMS, etc) l (File, DBMS, etc) l
— 7 — 7
Server]Service2MigTarget Server2Service2MigTarget

The following figure shows how the resources on Serverl can be easily migrated to

Server2 in the event

Serverl fails.

Figure 21-3 Example of a Two-Node Cluster Configuration (After Migration)

Cluster

Server2

[ Web Servical

Queual F 3
{(UDD)
V _"""-..._\? Logical Store
” "Storel"
AN
Physical Store Buffering
"Server2Storal” Queus
A "Queusal”
Server1JM5SServer Server2)M5SServer
—_—
< Serverl Agent <yl Server2Agent
Physical Storage Physical Storage |
(File, DBMS, etc) l (File, DBMS, etc) l
\T____/ il \T____/ il
Server]ServiceZMigTarget Server2Service2ZMigTarget
ORACLE 21-8



Chapter 21
Cleaning Up Web Service Persistence

21.5 Cleaning Up Web Service Persistence

ORACLE

The persisted information is cleaned up periodically to remove expired or stale objects.
Typically, an object is associated with a specific expiration time or a maximum lifetime.
In addition, a stale object may represent a request for which no response was received
or a reliable messaging sequence that was not explicitly terminated.

You configure the interval of time at which web service persistence will be cleaned by
setting the Cleaner Interval configuration property on the logical store. For more
information about setting this property, see Configuring the Logical Store.

21-9



Configuring Message Buffering for Web
Services

This chapter describes how to configure message buffering for WebLogic web
services using Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

*  Overview of Message Buffering

e Configuring Messaging Buffering

22.1 Overview of Message Buffering

When an operation on a buffered web service is invoked, the message representing
that invocation is stored in a JMS queue. WebLogic Server processes this buffered
message asynchronously. If WebLogic Server goes down while the message is still in
the queue, it will be processed as soon as WebLogic Server is restarted.

WebLogic Server then processes the request message on a separate thread obtained
from a pre-configured and managed pool of threads. This allows WebLogic Server to
absorb spikes in client load, and continue to process the requests in an orderly fashion
over a period of time. Message buffering is a powerful tool to avoid denial of service
attacks and general overload conditions on the server.

To assist you in determining whether to configure message buffering on the web
service, it is recommended that you review Failure Scenarios with Non-buffered
Reliable Web Services.

22.2 Configuring Messaging Buffering

ORACLE

You can configure message buffering for web services at the WebLogic Server or web
service endpoint levels. The message buffering configured at the server level defines
the default message buffering defined for all web services and clients running on that
server, unless explicitly overridden at the web service endpoint level.

For detailed steps to configure message buffering for web services at the WebLogic
Server or web service endpoint level using the WebLogic Server Administration
Console, see Configure message buffering for web services in Oracle WebLogic
Server Administration Console Online Help.

When you configure message buffering at the web service endpoint level, select
Customize Buffering Configuration to indicate that you want to customize the
buffering configuration defined in the web service descriptor or deployment plan at the
web service endpoint level. If not checked, the buffering configuration specified at the
WebLogic Server level is used.

Alternatively, you can use WLST to configure message buffering. For information
about using WLST to extend the domain, see Configuring Existing Domains in
Understanding the WebLogic Scripting Tool.

22-1



Chapter 22
Configuring Messaging Buffering

The following sections describe message buffering configuration properties:

e Configuring the Request Queue

e Configuring the Response Queue

e Configuring Message Retry Count and Delay

22.2.1 Configuring the Request Queue

The following table summarizes the properties used to configure the request queue.

Table 22-1 Configuring the Request Queue
|

Property

Description

Request Queue Enabled

Flag that specifies whether the request queue is enabled. By default, the request
queue is disabled. The request queue name is defined by the logical store enabled at
this level.

When using a WebLogic Server persistent store as the physical store for a logical
store, the names of the request and response buffering queues are taken from the
logical store configuration and not the buffering configuration.

Request Queue
Connection Factory JNDI
Name

JNDI name of the connection factory to use for request message buffering. This value
defaults to the default IMS connection factory defined by the server.

Request Queue
Transaction Enabled

Flag that specifies whether transactions should be used when storing and retrieving
messages from the request buffering queue. This flag defaults to false.

22.2.2 Configuring the Response Queue

The following table summarizes the properties used to configure the response queue.

Table 22-2 Configuring the Response Queue
|

Property

Description

Response Queue
Enabled

Flag that specifies whether the response queue is enabled. By default, the response
queue is disabled. The response queue name is defined by the logical store enabled
at this level.

When using a WebLogic Server persistent store as the physical store for a logical
store, the names of the request and response buffering queues are taken from the
logical store configuration and not the buffering configuration.

Response Queue
Connection Factory JNDI
Name

JNDI name of the connection factory to use for response message buffering. This
value defaults to the default IMS connection factory defined by the server.

Response Queue
Transaction Enabled

Flag that specifies whether transactions should be used when storing and retrieving
messages from the response buffering queue. This flag defaults to false.

22.2.3 Configuring Message Retry Count and Delay

The following table summarizes the properties used to configure the message retry
count and delay.

ORACLE

22-2



Chapter 22
Configuring Messaging Buffering

Table 22-3 Configuring Message Retry Count and Delay

___________________________________________________________________________________________|]
Property Description

Retry Count Number of times that the JMS queue on the invoked WebLogic Server instance
attempts to deliver the message to the web service implementation until the operation
is successfully invoked. This value defaults to 3.

Retry Delay Amount of time between retries of a buffered request and response. Note, this value
is only applicable when RetryCount is greater than 0.

The value specified must be a positive value and conform to the XML schema
duration lexical format, PnYnMhDTnHNMhS, where nY specifies the number of years, nM
specifies the number of months, nD specifies the number of days, T is the date/time
separator, nH specifies the number of hours, nMspecifies the number of minutes, and
nS specifies the number of seconds. This value defaults to PODT30S (30 seconds).

ORACLE 22-3



Managing Web Services in a Cluster

This chapter describes how to manage WebLogic web services in a cluster.
This chapter includes the following sections:

e Overview of Web Services Cluster Routing
e Cluster Routing Scenarios

*  How Web Service Cluster Routing Works
e Configuring Web Services in a Cluster

e Monitoring Cluster Routing Performance

# Note:

For considerations specific to using web service persistence in a cluster, see
Using Web Service Persistence in a Cluster.

23.1 Overview of Web Services Cluster Routing

Clustering of stateless web services—services that do not require knowledge of state
information from prior invocations—is straightforward and works with existing
WebLogic HTTP routing features on a third-party HTTP load balancer.

Clustering of web services that require state information be maintained provides more
challenges. Each instance of such a web service is associated with state information
that must be managed and persisted. The cluster routing decision is based on whether
the message is bound to a specific server in the cluster. For example, if a particular
server stores state information that is needed to process the message, and that state
information is available only locally on that server.

" Note:

Services that use session state replication to maintain their state are a
separate class of problem from those that make use of advanced web
service features, such as Reliable Secure Profile. The latter require a more
robust approach to persistence that may include storing state that may be
available only from the local server. For more information, see A Note About
Persistence.

In addition to ensuring that the web service requests are routed to the appropriate
server, the following general clustering requirements must be satisfied:

ORACLE 23-1



ORACLE

Chapter 23
Overview of Web Services Cluster Routing

* The internal topology of a cluster must be transparent to clients. Clients interact
with the cluster only through the front-end host, and do not need to be aware of
any particular server in the cluster. This enables the cluster to scale over time to
meet the demands placed upon it.

»  Cluster migration must be transparent to clients. Resources within the cluster
(including persistent stores and other resources required by a web service or web
service client) can be migrated from one server to another as the cluster evolves,
responds to failures, and so on.

To meet the above requirements, the following methods are available for routing web
services in a cluster:

* In-place SOAP router—Assumes request messages arrive on the correct server
and, if not, forwards the messages to the correct server ("at most one additional
hop"). The routing decision is made by the web service that receives the message.
This routing strategy is the simplest to implement and requires no additional
configuration. Though, it is not as robust as the next option.

*  Front-end SOAP router (HTTP cluster servlet only)—Message routing is
managed by the front-end host that accepts messages on behalf of the cluster and
forwards them onto a selected member server of the cluster. For web services, the
front-end SOAP router inspects information in the SOAP message to determine
the correct server to which it should route messages.

This routing strategy is more complicated to configure, but is the most efficient
since messages are routed directly to the appropriate server (avoiding any
"additional hops").

" Note:

When using Make Connection, as described in Using Asynchronous
Web Service Clients From Behind a Firewall (Make Connection), only
front-end SOAP routing can guarantee proper routing of all messages
related to a given Make Connection anonymous URI.

This chapter describes how to configure your environment to optimize the routing of
web services within a cluster. Use of the HTTP cluster servlet for the front-end SOAP
router is described. The in-place SOAP router is also enabled and is used in the event
the HTTP cluster servlet is not available or has not yet been initialized.

A Note About Persistence

While it is possible to maintain state for a web service using the HttpSession as
described in Programming Stateful JAX-WS Web Services Using HTTP Session, in
some cases this simple persistence may not be robust enough. Advanced web
services features like reliable messaging, Make Connection, secure conversation, and
so on, have robust persistence requirements that cannot be met by using the
HttpSession alone. Advanced web service features use a dedicated persistence
implementation based on the concept of a logical store. For more information, see
Managing Web Service Persistence.

At this time, these two approaches to persistence of web service state are not
compatible with each other. If you choose to write a clustered stateful web service
using HttpSession persistence and then use the advanced web service features from
that service (either as a client or service), Oracle cannot guarantee correct operation

23-2



Chapter 23
Cluster Routing Scenarios

of your service in a cluster. This is because HttpSession replication may make the
HttpSession available on a different set of servers than are hosting the persistence for
advanced web service features.

23.2 Cluster Routing Scenarios

The following sections illustrate several scenarios for routing web service request and
response messages within a clustered environment:

* Scenario 1: Routing a Web Service Response to a Single Server

* Scenario 2: Routing Web Service Requests to a Single Server Using Routing
Information

* Scenario 3: Routing Web Service Requests to a Single Server Using an ID

23.2.1 Scenario 1: Routing a Web Service Response to a Single

Server

ORACLE

In this scenario, an incoming request is load balanced to a server. Any responses to
that request must be routed to that same server, which maintains state information on
behalf of the original request.

Figure 23-1 Routing a Web Service Response to a Single Server

Wab Service Client

|
I
=
M - ¢ _..-‘I
Front-end SOAP Router
{(WebLogic Server Instance) /
Routing

\ Serviet

Load Balanced
Response Request  pouted Response

h 4

Serverl Server2

My
Client

 Routing w\. .

Hnformation | Wzbﬁemrg,ﬁ S
v (Server2) | equest,” Routing
e -}-’f - information

v (herver?) J,'
4 -

Service Endpoint

My
% Service

As shown in the previous figure:

23-3



Chapter 23
Cluster Routing Scenarios

1. The front-end SOAP router routes an incoming HTTP request and sends it to
Server2 using standard load balancing techniques.

2. Server2 calls Myservice at the web service endpoint address. The ReplyTo header
in the SOAP message contains a pointer back to the front-end SOAP router.

3. MyService returns the response to the front-end SOAP router.

4. The front-end SOAP router must determine where to route the response. Because
Server2 maintains state information that is relevant to the response, the front-end
SOAP router routes the response to Server2.

23.2.2 Scenario 2: Routing Web Service Requests to a Single Server
Using Routing Information

ORACLE

In this scenario, an incoming request is load balanced to a server. The response
contains routing information that targets the original server for any subsequent
requests

Figure 23-2 Routing Web Service Requests to a Single Server

o -

Web Service Client s

|
: [ Requesil ][ Raguest? ]
|
|
|
|
|

|
I
I
I
————— .l
[ Routing b
|information e ‘

| '\ (Server2) J

*e h > ————
Front-end SOAP Router o
/ Routing *
(WebLogic Server Instance) {information
Routing  Information | -
Serviet ' ¢5er|.rer2}x / / Routing
Load Balanced ) | ' :ir‘lfﬂrmatiuni
]
Request],  Routed Request? Response 1 ', F_EE Ve FEI}J ;

Response 2

Serverl Serverl

As shown in the previous figure:

1. The front-end SOAP router routes an incoming HTTP request (Requestl) and
sends it to Server 2 using standard load balancing techniques. The request has no
routing information.

2. Server2 calls the Myservice at the web service endpoint address. The ReplyTo
header in the SOAP message contains a pointer back to the front-end SOAP
router.

3. MyService returns the response to the caller. The response contains routing
information that targets Server2 for any subsequent requests. The caller is
responsible for passing the routing information contained in the response in any
subsequent requests (for example, Request?2).

23-4



Chapter 23
Cluster Routing Scenarios

4. The front-end SOAP router uses the routing information passed with Request2 to
route the request to Server2.

23.2.3 Scenario 3: Routing Web Service Requests to a Single Server

Using an ID

ORACLE

In this scenario, an incoming SOAP request contains an identifier, but no routing
information. All subsequent requests with the same identifier must go to the same
server.

Figure 23-3 Routing Web Service Requests to a Single Server Using an ID

-

o Web Service Client \
| |
I |
| [ Request] j [ Request? j i
|
G s |
| = — o -
" 1D = MakeConnection ( SamelD, ® |
I anonymous LRI, | !. but_v._-uth _! J.
._no affinity to a server . . affinity A

Front-end SOAP Router
(WebLogic Server Instance)
Routing

Affinity
Store
(IC-to-Server

Mapping)

Serviet

Load Balanced
Request] Affinity Routed

Requestd

Serverl Serverd

As shown in the previous figure:

1. Arequest comes from a web service client that includes an ID (Make Connection
anonymous URI) that will be shared by future requests that are relevant to
Requestl. The form of this ID is protocol-specific.

2. The front-end SOAP router detects an ID in Requestl and checks the affinity store
to determine if the ID is associated with a particular server in the cluster. In this
case, there is no association defined.

3. The front-end SOAP router load balances the request and sends it to Server 2 for
handling.

4. The MyService web service instance on Server2 handles the request (generating
a response, if required). Unlike in Scenario 2: Routing Web Service Requests to a
Single Server Using Routing Information, routing information cannot be
propagated in this case.

5. Request? arrives at the front-end SOAP router using the same ID as that used in
Requestl.

23-5



Chapter 23
How Web Service Cluster Routing Works

6. The front-end SOAP router detects the ID and checks the affinity store to
determine if the ID is associated with a particular server. This time, it determines
that the ID is mapped to Server2.

7. Based on the affinity information, the front-end SOAP router routes Request2 to
Server2.

23.3 How Web Service Cluster Routing Works

The following sections describe how web service cluster routing works:
* Adding Routing Information to Outgoing Requests

» Detecting Routing Information in Incoming Requests

* Routing Requests Within the Cluster

* Maintaining the Routing Map on the Front-end SOAP Router

23.3.1 Adding Routing Information to Outgoing Requests

The web services runtime adds routing information to the SOAP header of any
outgoing message to ensure proper routing of messages in the following situations:

e The request is sent from a web service client that uses a store that is not
accessible from every member server in the cluster.

e The request requires in-memory state information used to process the response.

When processing an outgoing message, the web services runtime:

» Creates a message ID for the outgoing request, if one has not already been
assigned, and stores it in the Rel at esTo/Messagel D SOAP header using the following
format:

uui d: W.Sf or mat _ver si on: st ore_nane: uni quel D
Where:

— format_version specifies the WebLogic Server format version, for example
W.S1.

— store_nane specifies the name of the persistent store, which specifies the store
in use by the current web service or web service client sending the message.
For example, Server 1St ore. This value may be a system-generated name, if
the default persistent store is used, or an empty string if no persistent store is
configured.

— uni que_| D specifies the unique message ID. For example:
68d6f c6f 85a3clch: - 2d3b89ah8: 12068ad2e60: - 7f eb

»  Allows other web service components to inject routing information into the
message before it is sent.

23.3.2 Detecting Routing Information in Incoming Requests

ORACLE

The SOAP router (in-place or front-end) inspects incoming requests for routing
information. In particular, the SOAP router looks for a Rel at esTo/Messagel D SOAP
header to find the name of the persistent store and routes the message back to the
server that hosts that persistent store.

23-6



Chapter 23
How Web Service Cluster Routing Works

In the event that there is an error in determining the correct server using front-end
SOAP routing, then the message is sent to any server within the cluster and the in-
place SOAP router is used. If in-place SOAP routing fails, then the sender of the
message receives a fault on the protocol-specific back channel.

# Note:

SOAP message headers that contain routing information must be presented
in clear text; they cannot be encrypted.

23.3.3 Routing Requests Within the Cluster

To assist in making a routing determination, the SOAP router (in-place or front-end)
uses a dynamic map of store-to-server name associations. This dynamic map
originates on the Managed Servers within a cluster and is accessed in memory by the
in-place SOAP router and via HTTP response headers by the front-end SOAP router.
The HTTP response headers are included automatically by WebLogic Server in every
HTTP response sent by a web service in the cluster.

# Note:

For more information about the HTTP response headers, see Maintaining the
Routing Map on the Front-end SOAP Router.

Initially, the dynamic map is empty. It is only initialized after receiving its first response
back from a Managed Server in the cluster. Until it receives back its first response with
the HTTP response headers, the front-end SOAP router simply load balances the
requests, and the in-place SOAP router routes the request to the appropriate server.

In the absence of SOAP-based routing information, it defers to the base routing that
includes HTTP-session based routing backed by simple load balancing (for example,
round-robin).

23.3.4 Maintaining the Routing Map on the Front-end SOAP Router

As noted in Routing Requests Within the Cluster, to assist in making a routing
determination, the SOAP router (in-place or front-end) uses a dynamic map of store-
to-server name associations.

To generate this dynamic map, two new HTTP response headers are provided, as
described in the following sections. These headers are included automatically by
WebLogic Server in every HTTP response sent by a web service in the cluster.

ORACLE 23-7



Chapter 23
Configuring Web Services in a Cluster

# Note:

When implementing a third-party front-end to include the HTTP response
headers described below, clients should send an HTTP request header with
the following variable set to any value: X- webl ogi c- wsee- r equest -
storetoserver-|ist

23.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header

A complete list of store-to-server mappings is maintained in the X- webl ogi c- wsee-
storetoserver-1ist HTTP response header. The front-end SOAP router uses this
header to populate a mapping that can be referenced at runtime to route messages.

The X-webl ogi c-wsee- st oret oserver-1ist HTTP response header has the following
format:

storenanel: host _server_spec | storename2: host_server_spec |
st or enane3: host _server _spec

In the above:

* storenane specifies the name of the persistent store.

e host_server_spec is specifies using the following format:
servernane: host : port: ssl port. If not known, the ssl port is setto -1.

23.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header

A hash mapping of the store-to-server list is provided in X- webl ogi ¢c- wsee-
storet oserver - hash HTTP response header. This header enables you to determine
whether the new mapping list needs to be refreshed.

The X-webl ogi c- wsee- st or et oser ver -hash HTTP response header contains a String
value representing the hash value of the list contained in the X- webl ogi c- wsee-
storetoserver-list HTTP response header. By keeping track of the last entry in the
list, it can be determined whether the list needs to be refreshed.

23.4 Configuring Web Services in a Cluster

The following table summarizes the steps to configure web services in a cluster.

Table 23-1 Steps to Manage Web Services in a Cluster

# Step

Description

Set up the WebLogic cluster. See Setting Up the WebLogic Cluster.

2 Configure the clustered domain resources required You can configure automatically the clustered domain
for advanced web service features. resources required using the cluster extension

template script. Alternatively, you can configure the
resources using the Oracle WebLogic Server
Administration Console or WLST. See Configuring the
Domain Resources Required for Web Service
Advanced Features in a Clustered Environment.

ORACLE

23-8



Chapter 23
Configuring Web Services in a Cluster

Table 23-1 (Cont.) Steps to Manage Web Services in a Cluster

#  Step Description
Extend the front-end SOAP router to support web Note: This step is required only if you are using the
services. front-end SOAP router.

The web services routing servlet extends the
functionality of the WebLogic HTTP cluster servlet to
support routing of web services in a cluster. See
Extending the Front-end SOAP Router to Support
Web Services.

4 Enable routing of web services atomic transaction See Enabling Routing of Web Services Atomic
messages. Transaction Messages.

5 Enable routing of web services Make Connection See Enabling Routing of Web Services Make
messages. Connection Messages.

6 Configure the identity of the front-end SOAP router. Each WebLogic Server instance in the cluster must
be configured with the address and port of the front-
end SOAP router. See Configuring the Identity of the
Front-end SOAP Router.

23.4.1 Setting Up the WebLogic Cluster

Set up the WebLogic cluster, as described in Setting up WebLogic Clusters in
Administering Clusters for Oracle WebLogic Server. Please note:

e To configure the clustered domain, see Configuring the Domain Resources
Required for Web Service Advanced Features in a Clustered Environment.

* To enable SOAP-based front-end SOAP routing, configure an HTTP cluster
servlet, as described in Set Up the HttpClusterServlet in Administering Clusters for
Oracle WebLogic Server.

23.4.2 Configuring the Domain Resources Required for Web Service
Advanced Features in a Clustered Environment

When creating or extending a domain using Configuration Wizard, you can apply the
WebLogic Advanced Web Services for JAX-WS Extension template

(W s_webservi ce_j axws. j ar) to configure automatically the resources required to
support the advanced web service features in a clustered environment. Although use
of this extension template is not required, it makes the configuration of the required
resources much easier. Alternatively, you can configure the resources required for
these advanced features using the Oracle WebLogic Server Administration Console or
WLST.

In addition, the template installs scripts into the domain directory that can be used to
manage the resource required for advanced web services in-sync as the domain
evolves (for example, servers are added or removed, and so on).

For more information about how to configure the domain and run the scripts to
manage resources, see Configuring Your Domain For Advanced Web Services
Features.

ORACLE 23-9



Chapter 23
Configuring Web Services in a Cluster

23.4.3 Extending the Front-end SOAP Router to Support Web

Services

< Note:

If you are not using the front-end SOAP router, then this step is not required.

You extend the front-end SOAP router to support web services by specifying the
Rout i ngHand! er 0 assName parameter shown in the following example (in bold), as part
of the WebLogic HTTP cluster servlet definition.

<! DOCTYPE web-app PUBLIC
"-//'Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java.sun. com dt d/ web-app_2_3.dtd">
<web- app>
<servl et>
<servl et - name>Ht t pCl ust er Ser vl et </ servl et - nane>
<servl et -cl ass>webl ogi c. servl et. proxy. H t pC ust er Servl et </ servl et - cl ass>
<init-paranp
<par am name>\W\ebLogi ¢ ust er </ par am nane>
<par am val ue>Server 1: 7001| Server 2: 7001</ par am val ue>
</init-paran
<init-param>
<param-name>RoutingHandlerClassName</param-name>
<param-value>
weblogic.wsee.jaxws.cluster.proxy.SOAPRoutingHandler
</param-value>
</init-param>
</servlet>
<servl et - mappi ng>
<servl et - name>Ht t pd ust er Ser vl et </ servl et - nane>
<url-pattern>/</url-pattern>
</ servl et - mppi ng>

</ web- app>

23.4.4 Enabling Routing of Web Services Atomic Transaction

Messages

ORACLE

High availability and routing of web services atomic transaction messages is
automatically enabled in web service clustered environments. However, if the
WebLogic HTTP cluster servlet is being used as the front-end server, you need to set
the following system property to f al se on the server hosting the WebLogic HTTP
cluster servlet:

webl ogi c. wsee. wst x. wsat . depl oyed=f al se

In addition, when using a WebLogic Server plugin, you should configure the

WLI OTi neout Secs parameter value appropriately. This parameter defines the amount of
time the plug-in waits for a response to a request from WebLogic Server. If the value is
less than the time the servlets take to process, then you may see unexpected results.

23-10



Chapter 23
Configuring Web Services in a Cluster

For more information about the W.I OTi neout Secs parameter, see General Parameters
for Web Server Plug-ins in Using Oracle WebLogic Server Proxy Plug-Ins.

23.4.5 Enabling Routing of Web Services Make Connection Messages

To support Web Service Make Connection, as described in Using Asynchronous Web
Service Clients From Behind a Firewall (Make Connection), you must configure a
default logical store on the WebLogic Server that is hosting the WebLogic HTTP
cluster servlet. For information about configuring the default logical store, see
Configuring the Logical Store.

23.4.6 Configuring the Identity of the Front-end SOAP Router

Each WebLogic Server instance in the cluster must be configured with the address
and port of the front-end SOAP router.

You can configure the identity of the front-end SOAP router using one of the following
methods, listed in order of precedence:

* Create a network channel, as describe in Configuring the Identity of the Front-end
SOAP Router Using Network Channels. This is the recommended method.

e Configure the front-end host and port for the cluster, as described in Configure
HTTP Settings for a Cluster in Oracle WebLogic Server Administration Console
Online Help.

e Configure the front-end host and port for the local server, as described in
Configure HTTP Protocol in Oracle WebLogic Server Administration Console
Online Help.

» Define the A uster Address for the cluster, as described in Configure Clusters in
Oracle WebLogic Server Administration Console Online Help. The O uster Address
is required if no other values are set.

23.4.7 Configuring the Identity of the Front-end SOAP Router Using
Network Channels

ORACLE

Network channels enable you to provide a consistent way to access the front-end
address of a cluster. For more information about network channels, see Understanding
Network Channels in Administering Server Environments for Oracle WebLogic Server.

To configure the identity of the front-end SOAP router using network channels, for
each server instance:

1. Create a network channel for the protocol you use to invoke the web service. You
must name the network channel webl ogi c- wsee- pr oxy- channel - XXX, where XXX
refers to the protocol. For example, to create a network channel for HTTPS, call it
webl ogi ¢c- wsee- proxy- channel - htt ps.

See Configure custom network channels in Oracle WebLogic Server
Administration Console Online Help for general information about creating a
network channel.

2. Configure the network channel, updating the External Listen Address and
External Listen Port fields with the address and port of the proxy server,
respectively.

23-11



Chapter 23
Monitoring Cluster Routing Performance

23.5 Monitoring Cluster Routing Performance

ORACLE

You can monitor the following cluster routing statistics to evaluate the application
performance:

e Total number of requests and responses.

e Total number of requests and responses that were routed specifically to the
server.

* Routing failure information, including totals and last occurrence.

You can use the WebLogic Server Administration Console or WLST to monitor cluster
routing performance. For information about using WebLogic Server Administration
Console to monitor cluster routing performance, see Monitor SOAP web services and
Monitor SOAP web service clients in Oracle WebLogic Server Administration Console
Online Help.For information about using WLST to monitor cluster routing performance,
see Configuring Existing Domains in Understanding the WebLogic Scripting Tool.

23-12



Using Provider-based Endpoints and
Dispatch Clients to Operate on SOAP
Messages

This chapter describes how to develop web service provider-based endpoints and
dispatch clients to operate on SOAP messages at the XML message level for
WebLogic web services using Java API for XML Web Services (JAX-WS).

This chapter includes the following sections:

*  Overview of Web Service Provider-based Endpoints and Dispatch Clients
» Usage Modes and Message Formats for Operating at the XML Level

» Developing a Web Service Provider-based Endpoint (Starting from Java)

» Developing a Web Service Provider-based Endpoint (Starting from WSDL)
e Using SOAP Handlers with Provider-based Endpoints

» Developing a Web Service Dispatch Client

24.1 Overview of Web Service Provider-based Endpoints
and Dispatch Clients

ORACLE

Although the use of JAXB-generated classes is simpler, faster, and likely to be less
error prone, there are times when you may want to generate your own business logic
to manipulate the XML message content directly. Message-level access can be
accomplished on the server side using web service Provider-based endpoints, and on
the client side using Dispatch clients.

A web service Provider-based endpoint offers a dynamic alternative to the Java
service endpoint interface (SEl)-based endpoint. Unlike the SEI-based endpoint that
abstracts the details of converting between Java objects and their XML representation,
the Provider interface enables you to access the content directly at the XML message
level—without the JAXB binding. web service Provider-based endpoints can be
implemented synchronously or asynchronously using the j avax. xn . ws. Provi der <T> or
com sun. xnl . ws. api . server. AsyncProvi der <T> interfaces, respectively. For more
information about developing web service Provider-based endpoints, see Developing a
Web Service Provider-based Endpoint (Starting from Java).

A web service Dispatch client, implemented using the j avax. xnl . ws. Di spat ch<T>
interface, enables clients to work with messages at the XML level. The steps to
develop a web service Dispatch client are described in Developing a Web Service
Dispatch Client.

Provider endpoints and Dispatch clients can be used in combination with other
WebLogic web services features as long as a WSDL is available, including:

*  WS-Security

24-1



Chapter 24

Usage Modes and Message Formats for Operating at the XML Level

*  WS-ReliableMessaging

e WS-MakeConnection

« WS-AtomicTransaction

In addition, Dispatch clients can be used in combination with the asynchronous client
transport and asynchronous client handler features. These features are described in
detail in Developing Asynchronous Clients, and a code example is provided in
Creating a Dispatch Instance.

24.2 Usage Modes and Message Formats for Operating at

the XML Level

When operating on messages at the XML level using Provider-based endpoints or
Dispatch clients, you use one of the usage modes defined in the following table. You
define the usage mode using the j avax. xnl . ws. Servi ceMbde annotation, as described in
Specifying the Usage Mode (@ServiceMode Annotation).

Table 24-1 Usage Modes for Operating at the XML Message Level

Usage Mode Description

Message Operates directly with the entire message. For example, if a SOAP binding is used,
then the entire SOAP envelope is accessed.

Payload Operates on the payload of a message only. For example, if a SOAP binding is used,

then the SOAP body is accessed.

Provider-based endpoints and Dispatch clients can receive and send messages using
one of the message formats defined in Table 24-2. This table also defines the valid

message format and usage mode combinations based on the configured binding type
(SOAP or XML over HTTP).

Table 24-2 Message Formats Supported for Operating at the XML Message Level

Message Format

Usage Mode Support for SOAP/
HTTP Binding

Usage Mode Support for XML/
HTTP Binding

j avax. xm . transform Source

Message mode: SOAP envelope
Payload mode: SOAP body

Message mode: XML content as
Source

Payload mode: XML content as
Source

javax. activation. Dat aSour ce

Not valid in either mode because
attachments in SOAP/HTTP
binding are sent using
SOAPMessage format.

Message mode: Dat aSour ce
object

Not valid in payload mode
because Dat aSour ce is used for
sending attachments.

j avax. xm . soap. SOAPMessage

Message mode: SOAPMessage
object

Not valid in payload mode
because the entire SOAP
message is received, not just the
payload.

Not valid in either mode because
the client can send a non-SOAP
message in XML/HTTP binding.

ORACLE

24-2



Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

24.3 Developing a Web Service Provider-based Endpoint
(Starting from Java)

You can develop both synchronous and asynchronous web service Provider-based
endpoints, as described in the following sections:

» Developing a Synchronous Provider-based Endpoint

» Developing an Asynchronous Provider-based Endpoint

" Note:

To start from WSDL and flag a port as a web service provider, see
Developing a Web Service Provider-based Endpoint (Starting from WSDL).

24.3.1 Developing a Synchronous Provider-based Endpoint

A web service Provider-based endpoint, implemented using the

javax. xm . ws. Provi der <T>, enables you to access content directly at the XML message
level—without the JAXB binding. The Provi der interface processes messages
synchronously—the service waits to process the response before continuing with its
work. For more information about the j avax. xm . ws. Provi der <T> interface, see http://
docs. oracl e. coni j avaeel 7/ api / j avax/ xm / ws/ Provi der. ht nl .

The following procedure describes the typical steps for programming a JWS file that
implements a synchronous web service Provider-based endpoint.

Table 24-3 Steps to Develop a Synchronous Web Service Provider-based Endpoint

_____________________________________________________________________________________________|]
# Step Description

Import the JWS annotations  The standard JWS annotations for a web service Provider-based JWS file
that will be used in your web include:
service Provider-based JWS

file. import javax.xm .ws.Provider;

import javax.xm .ws.\WebServi ceProvider;
i mport javax.xm .ws. Servi ceMode;

Import additional annotations, as required. For a complete list of IWS
annotations that are supported, see Web Service Annotation Support in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Specify one of the message  See Specifying the Message Format.
formats supported, defined in
Table 24-2, when developing
the Provider-based
implementation class.

ORACLE 24-3


http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html

Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

Table 24-3 (Cont.) Steps to Develop a Synchronous Web Service Provider-based Endpoint

# Step

Description

Add the standard required See Specifying that the JWS File Implements a Web Service Provider
@\ébSer vi ceProvi der JWS (@WebServiceProvider Annotation).

annotation at the class level

to specify that the Java class

exposes a web service

provider.
4 Add the standard See Specifying the Usage Mode (@ ServiceMode Annotation).
@er vi ceMode JWS The service mode defaults to Ser vi ce. Mbde. Payl oad.

annotation at the class level
to specify whether the web
service provider is accessing
information at the message or
message payload level.

(Optional)

5 Define the i nvoke() method. The i nvoke() method is called and provides the message or message

payload as input to the method using the specified message format. See
Defining the invoke() Method for a Synchronous Provider-based Endpoints.

ORACLE

The following sample JWS file shows how to implement a simple synchronous web
service Provider-based endpoint. The steps to develop a synchronous web service
Provider-based endpoint are described in detail in the sections that follow. To review
the JWS file within the context of a complete sample, see "Creating JAX-WS Web
Services for Java EE" in the Web Services Samples distributed with Oracle WebLogic
Server.

¢ Note:

RESTful Web Services can be built using XML/HTTP binding Provider-based
endpoints. For an example of programming a Provider-based endpoint within
the context of a RESTful web service, see Programming Web Services Using
XML Over HTTP.

Example 24-1 Example of a JWS File that Implements a Synchronous Provider-
based Endpoint

package exanpl es.wehservi ces. j axws;
i mport org.w3c. dom Node;

import javax.xnl.transform Source;

import javax.xm .transform TransfornerFactory;
import javax.xn.transform Transfornmer;

import javax.xm .transform dom DOVResul t;
import javax.xm .transform stream StreanSource;
import javax.xm .ws. Provider;

import javax.xm .ws. Servi ceMde;

import javax.xm .ws.\WebServi ceProvider;

inport javax.xm .ws. Service;

inport java.io.ByteArraylnput Stream

24-4



ORACLE

Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

/**

* A sinple Provider-based web service inplenentation.

*

* @ut hor Copyright (c¢) 2010, Oracle and/or its affiliates.

* All Rights Reserved.

*/

/1 The @erviceMde annotation specifies whether the Provider instance
/] receives entire messages or nessage payl oads.

@er vi ceMbde(val ue = Servi ce. Mbde. PAYLOAD)

/1 Standard JWS annotation that configures the Provider-based web service.
@\ébSer vi ceProvi der (portName = "SinpledientPort",

servi ceNane = "Sinpl el i ent Servi ce",

target Nanespace = "http://]axws. webservi ces. exanpl es/",

wsdl Location = "SinpledientService. wsdl ")
public class SinpleQientProviderlnpl inplements Provider<Source> {

/11 nvokes an operation according to the contents of the request nessage.
public Source invoke(Source source) {
try {
DOVResul t dom = new DOVResul t();
Transforner trans = Transformer Fact ory. new nst ance(). newTransforner();
trans.transforn{source, dom;
Node node = dom get Node();
I/ Get the operation nane node.
Node root = node.getFirstChild();
I/ Get the parameter node.
Node first = root.getFirstChild();
String input = first.getFirstChild().getNodeVal ue();
/| Get the operation name.
String op = root. getLocal Nane();
if ("invokeNoTransaction".equal s(op)) {
return sendSource(input);
} else {
return sendSource2(input);
1
}
catch (Exception e) {
throw new Runti meException("Error in provider endpoint", e);
}
1

private Source sendSource(String input) {
String body =
"<ns:invokeNoTransact i onResponse

xm ns:ns=\"http://]axws. webservi ces. exanpl es/\ " ><ret urn>"
+ "constructed: " + input
+ "</return></ns:invokeNoTransacti onResponse>";

Source source = new StreanSource(new Byt eArrayl nput St rean(body. get Bytes()));

return source;

}

private Source sendSource2(String input) {
String body =
"<ns:invokeTransacti onResponse

xm ns:ns=\"http://jaxws.webservi ces. exanpl es/\ " ><ret urn>"
+ "constructed: " + input
+ "</return></ns:invokeTransacti onResponse>";

Source source = new StreanSource(new Byt eArrayl nput St rean(body. get Bytes()));

return source;

24-5



}

Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

24.3.2 Developing an Asynchronous Provider-based Endpoint

As with the Provi der interface, web service Provider-based endpoints implemented
using the com sun. xm . ws. api . server. AsyncPr ovi der <T> interface enable you to access
content directly at the XML message level—without the JAXB binding. However, the
AsyncProvi der interface processes messages asynchronously—the service can
continue its work and process the request when it becomes available, without blocking

the thread.

The following procedure describes the typical steps for programming a JWS file that
implements an asynchronous web service Provider-based endpoint.

Table 24-4 Steps to Develop an Asynchronous Web Service Provider-based Endpoint

# Step

Description

Import the JWS annotations
that will be used in your web
service Provider-based JWS
file.

The standard JWS annotations for an asynchronous web service Provider-
based JWS file include:

import com sun. xm . ws. api . server. AsyncProvi der;
import com sun. xm . ws. api . server. AsyncProvi der Cal | back;
i mport javax.xm .ws. Servi ceMode;

Import additional annotations, as required. For a complete list of JWS
annotations that are supported, see Web Service Annotation Support in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Specify one of the message
formats supported, defined in
Table 24-2, when developing
the Provider-based
implementation class.

See Specifying the Message Format.

3 Add the standard required
@\ebSer vi ceProvi der JWS
annotation at the class level
to specify that the Java class
exposes a web service
provider.

See Specifying that the JWS File Implements a Web Service Provider
(@WebServiceProvider Annotation).

4 Add the standard
@er vi ceMbde JWS
annotation at the class level
to specify whether the web
service provider is accessing
information at the message or
message payload level.
(Optional)

See Specifying the Usage Mode (@ ServiceMode Annotation).
The service mode defaults to Servi ce. Mbde. Payl oad.

5 Define the i nvoke() method.

The i nvoke() method is called and provides the message or message
payload as input to the method using the specified message format. See
Defining the invoke() Method for an Asynchronous Provider-based Endpoints.

6 Define the asynchronous
handler callback method to
handle the response.

The method handles the response when it is returned. See Defining the
Callback Handler for the Asynchronous Provider-based Endpoint.

ORACLE

24-6



Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

The following sample JWS file shows how to implement a simple asynchronous web
service Provider-based endpoint. The steps to develop an asynchronous web service
Provider-based endpoint are described in detail in the sections that follow.

Example 24-2 Example of a JWS File that Implements an Asynchronous Provider-based
Endpoint

package asyncprovider. server;

import com sun. xm . ws. api . server. AsyncProvi der;
i mport com sun. xm . ws. api . server. AsyncProvi der Cal | back;

i mport javax.xm .bind. JAXBCont ext ;

import javax.xn .transform Source;

import javax.xm .transform stream StreanSource;
i mport javax.xm .ws.\WebServi ceCont ext;

import javax.xm .ws.\WebServi ceExcepti on;

import javax.xm .ws.\WebServi ceProvider;

import java.io.ByteArraylnput Stream

import java.io.ByteArrayQut put Stream

@\ébSer vi ceProvi der (
wsdl Locati on="VEB- | NF/ wsdl / hel l o_l i teral .wsdl ",
target Nanespace = "urn:test",
servi ceName="Hel [ 0")

public class Hel | oAsyncl npl inplenments AsyncProvi der <Source> {

private static final JAXBContext jaxbContext = createJAXBContext();
private int bodylndex;

public javax.xm .bind. JAXBCont ext get JAXBCont ext () {
return jaxbContext;

}
private static javax.xm .bind. JAXBCont ext createJAXBContext (){
tryf
return javax.xm . bi nd. JAXBCont ext . new nst ance( Cbj ect Fact ory. cl ass);
}cat ch(j avax. xm . bi nd. JAXBException e){
t hrow new WebSer vi ceException(e. get Message(), e€);
}
}

private Source sendSource() {
Systemout. println("**** sendSource ******");

String[] body = {
"<Hel | oResponse xm ns=\"urn:test:types\">
<argunment xm ns=\"\">foo</ ar gument >
<extra xm ns=\"\">bar</extra>
</ Hel | oResponse>",
"<ansl: Hel | oResponse xm ns:ansl=\"urn:test:types\">
<ar gunent >f oo</ ar gument >
<extra>bar</extra>
</ansl: Hel | oResponse>",
h
int i = (+tbodyl ndex)%ody. | ength;
return new Streanfour ce(
new Byt eArrayl nput Strean(body[i].getBytes()));

ORACLE 24-7



Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

private Hell o_Type recvBean(Source source) throws Exception {
Systemout.println("**** recvBean ******"):
return (Hell o_Type)jaxbContext. createUnmarshal | er(). unmarshal (source);

}

private Source sendBean() throws Exception {
Systemout. println("**** sendBean ******"):
Hel | oResponse resp = new Hel | oResponse();
resp. set Argunent ("f 00");
resp.setExtra("bar");
Byt eArrayQut put Stream bout = new Byt eArrayQut put Strean();
j axbCont ext . creat eMarshal | er (). marshal (resp, bout);
return new StreanSource(new Byt eArrayl nput Strean(bout.toByteArray()));

}

public void invoke(Source source, AsyncProviderCal | back<Source> chak,
VeébServi ceContext ctxt) {
Systemout. printIn("**** Received in AsyncProvider |npl ***x**").
try {
Hel | o_Type hell o = recvBean(source);
String arg = hello.get Argunent ();
if (arg.equals("sync")) {
String extra = hello.getExtra();
if (extra.equals("source")) {
chak. send(sendSource());
} else if (extra.equal s("bean")) {
cbak. send(sendBean());
} else {
t hrow new WebSer vi ceException("Expected extra =
(source| bean|fault), Got="+extra);

} else if (arg.equals("async")) {
new Thread(new Request Handl er (chak, hello)).start();
} else {
t hrow new WebSer vi ceException("Expected Argunent =
(sync| async), Got="+arg);

} catch(Exception e) {
t hrow new WebServi ceException("Endpoint failed", e);
}
}

private class RequestHandl er inplements Runnable {
final AsyncProviderCal | back<Source> chak;
final Hello_Type hello;
publi ¢ Request Handl er (AsyncProvi der Cal | back<Source> chak, Hello_Type hello) {
this.chak = chak;
this.hello = hello;

}

public void run() {
try {
Thr ead. sl eep(5000) ;
} catch(InterruptedException ie) {
chak. sendError (new WebServi ceException("Interrupted..."));
return;
}

try {
String extra = hello.getExtra();

if (extra.equal s("source")) {
cbak. send(sendSource());

ORACLE 24-8



Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

} else if (extra.equals("bean")) {
cbak. send(sendBean());
} else {
chak. sendError (new WebSer vi ceExcept i on(
"Expected extra = (source|bean|fault), Cot="+extra));

} catch(Exception e) {
cbak. sendError (new WebSer vi ceException(e));

}

}

24.3.3 Specifying the Message Format

Specify one of the message formats supported, defined in Table 24-2, when
developing the Provider-based implementation class.

For example, in the Provider implementation example shown in Example 24-1, the
Si npl ed i ent Provi der I npl class implements the Provi der <Sour ce> interface, indicating
that both the input and output types are j ava. xnl . t ransf or m Sour ce objects.

public class SinpledientProviderlnpl inplements Provider<Source> {

Similarly, in the AsyncProvider implementation example shown in Example 24-2, the
Hel | oAsyncl npl class implements the AsyncPr ovi der <Sour ce> interface, indicating that
both the input and output types are j ava. xnl . t ransf or m Sour ce objects.

public class Hel | oAsyncl npl inplenments AsyncProvi der<Source> {

24.3.4 Specifying that the JWS File Implements a Web Service
Provider (@WebServiceProvider Annotation)

Use the standard j avax. xm . ws. \ebSer vi cePr ovi der annotation to specify, at the class
level, that the JWS file implements a web service provider, as shown in the following
code excerpt:

@ébServi ceProvi der (portName = "SinpledientPort",
servi ceNane = "Sinpl eCl i ent Servi ce",
target Nanespace = "http://]axws. webservi ces. exanpl es/",
wsdl Location = "SinpledientService. wsdl ")

In the example, the service name is Si npl ed i ent Servi ce, which will map to the

wsdl : servi ce element in the generated WSDL file. The port name is Si npl eCl i ent Port,
which will map to the wsdl : port element in the generated WSDL. The target
namespace used in the generated WSDL is htt p://j axws. webser vi ces. exanpl es/ and
the WSDL location is local to the web service provider, at Si npl eCl i ent Ser vi ce. wsdl .

For more information about the @ébServi ceProvi der annotation, see https://j ax-
ws. j ava. net/ nonav/ 2. 1. 5/ docs/ annot ati ons. ht i .

ORACLE 24-9


https://jax-ws.java.net/nonav/2.1.5/docs/annotations.html
https://jax-ws.java.net/nonav/2.1.5/docs/annotations.html

Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

24.3.5 Specifying the Usage Mode (@ServiceMode Annotation)

The j avax. xnl . ws. Servi ceMbde annotation is used to specify whether the web service
Provider-based endpoint receives entire messages (Ser vi ce. Mbde. MESSAGE) or message
payloads (Servi ce. Mode. PAYLQAD) only.

For example:

@er vi ceMbde(val ue = Servi ce. Mbde. PAYLOAD)

If not specified, the @er vi ceMbde annotation defaults to Servi ce. Mode. PAYLOAD.

For a list of valid message format and usage mode combinations, see Table 24-2.

For more information about the @er vi ceMbde annotation, see https://j ax-ws.java. net/
nonav/ 2. 1. 4/ docs/ annot ati ons. htm .

24.3.6 Defining the invoke() Method for a Synchronous Provider-based

Endpoints

ORACLE

The Provi der <T> interface defines a single method that you must define in your
implementation class:

T invoke(T request)

When a web service request is received, the i nvoke() method is called and provides
the message or message payload as input to the method using the specified message
format.

For example, in the Provider implementation example shown in Example 24-1,
excerpted below, the class defines an i nvoke method to take as input the Sour ce
parameter and return a Sour ce response.

public Source invoke(Source source) {
try {
DOVResul t dom = new DOVResul t ();
Transformer trans = TransformerFact ory. new nst ance(). newTransforner();
trans.transforn{source, dom;
Node node = dom get Node();
Il Get the operation nanme node.
Node root = node. getFirstChild();
Il Get the parameter node.
Node first = root.getFirstChild();
String input = first.getFirstChild().getNodeVal ue();
/1 Get the operation name.
String op = root.getLocal Nane();
if ("invokeNoTransaction".equal s(op)) {
return sendSource(input);
} else {
return sendSource2(input);

}

catch (Exception e) {
t hrow new Runti meException("Error in provider endpoint", e);

}
}

24-10


https://jax-ws.java.net/nonav/2.1.4/docs/annotations.html
https://jax-ws.java.net/nonav/2.1.4/docs/annotations.html

Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from Java)

24.3.7 Defining the invoke() Method for an Asynchronous Provider-
based Endpoints

The AsycnProvi der <T> interface defines a single method that you must define in your
implementation class:

voi d invoke(T request, AsyncProviderCall back<t> cal | back, WebserviceContext context))

You pass the following parameters to the invoke method:

* Request message or message payload in the specified format.

e comsun. xnl.ws. api . server. AsyncProvi der Cal | back implementation that will handle
the response once it is returned. For more information, see Defining the Callback
Handler for the Asynchronous Provider-based Endpoint.

e Thejavax. xnl.ws. iebServi ceCont ext that defines the message context for the
request being served. An asynchronous Provider-based endpoint cannot use the
injected WebSer vi ceCont ext which relies on the calling thread to determine the
request it should return information about. Instead, it passes the WbSer vi ceCont ext
object which remains usable until you invoke AsyncPr ovi der Cal | back.

For example, in the AysncProvider implementation example shown in Example 24-2,
excerpted below, the class defines an i nvoke method as shown below:

public void invoke(Source source, AsyncProviderCal | back<Source> chak,
ViebServi ceCont ext ctxt) {
Systemout. printIn("**** Received in AsyncProvider |npl| ***xxx").
try {
Hel | o_Type hell o = recvBean(source);
String arg = hello.getArgunent();
if (arg.equals("sync")) {
String extra = hello.getExtra();
if (extra.equals("source")) {
chak. send(sendSource());
} else if (extra.equals("bean")) {
chak. send(sendBean());
} else {
t hrow new WebSer vi ceException("Expected extra =
(source| bean|fault), Got="+extra);

} else if (arg.equal s("async")) {
new Thread(new Request Handl er (cbak, hello)).start();
} else {
t hrow new WebServi ceException(" Expected Argunent =
(sync| async), CGot="+arg);

} catch(Exception e) {
throw new WebServi ceException("Endpoint failed", e);
}

ORACLE 24-11



Chapter 24
Developing a Web Service Provider-based Endpoint (Starting from WSDL)

24.3.8 Defining the Callback Handler for the Asynchronous Provider-
based Endpoint

The AsyncProvi der Cal | back interface enables you to define a callback handler for
processing the asynchronous response once it is received.

For example, in the AysncProvider implementation example shown in Example 24-2,
excerpted below, the Request Handl er method uses the AsyncProviderCallback callback
handler to process the asynchronous response.

private class RequestHandl er inplenents Runnable {
final AsyncProviderCal | back<Source> chak;
final Hello_Type hello;
publi ¢ Request Handl er ( AsyncProvi der Cal | back<Source> chak, Hello_Type hello) {
this.cbak = chak;
this.hello = hello;

}

public void run() {
try {
Thr ead. sl eep(5000) ;
} catch(InterruptedException ie) {
cbak. sendError (new WebServi ceException("Interrupted..."));
return;
}

try {
String extra = hello.getExtra()

if (extra.equal s("source")) {
chak. send(sendSource());
} else if (extra.equal s("bean")) {
cbhak. send(sendBean());
} else {
chak. sendError (new WebSer vi ceExcept i on(
"Expected extra = (source|bean|fault), Cot="+extra));

} catch(Exception e) {
cbak. sendError (new WebSer vi ceException(e));

}

}

24.4 Developing a Web Service Provider-based Endpoint
(Starting from WSDL)

If the Provider-based endpoint is being generated from a WSDL file, the <pr ovi der >
WSDL extension can be used to mark a port as a provider. For example:

<?xm version="1.0" encodi ng="UTF-8" standal one="yes"?>
<bi ndi ngs wsdl Location="Si npl ed i ent Servi ce. wsdl "
xm ns="http://java.sun.com xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions" >
<package name="provi der.server"/>
<provider>true</provider>
</ bi ndi ngs>

ORACLE 24-12



Chapter 24
Using SOAP Handlers with Provider-hased Endpoints

24.5 Using SOAP Handlers with Provider-based Endpoints

Provider-based endpoints may need to access the SOAP message for additional
processing of the message request or response. You can create SOAP message
handlers to enable Provider-based endpoints to perform this additional processing on
the SOAP message, just as you do for an SEl-based endpoint. For more information
about creating the SOAP handler, see Creating the SOAP Message Handler.

Table 18-1 enumerates the steps required to add a SOAP handler to a web service.
These steps apply to web service Provider-based endpoints, as well.

For example:

1.

ORACLE

Design SOAP message handlers and group them together in a handler chain, as
described in Designing the SOAP Message Handlers and Handler Chains.

For each handler in the handler chain, create a Java class that implements the
SOAP message handler interface, as described in Creating the SOAP Message
Handler.

An example of the SOAP handler, MyHandl er , is shown below.

package provider.rootpart_charset_772.server;

i mport javax.activation. Dat aHandl er;

i mport javax.activation. DataSource;

i mport javax.xm .nanmespace. QNane;

import javax.xm .soap. AttachnentPart;

i mport javax.xn .soap. SOAPMessage;

import javax.xm .ws.\WebServi ceExcepti on;

import javax.xm .ws. handl er. MessageCont ext ;

import javax.xm .ws. handl er. soap. SOAPHandl er;

i mport javax.xm .ws. handl er. soap. SOAPMessageCont ext ;
inmport java.io.lnputStream

inmport java.io.CQutputStream.inport java.io.ByteArraylnputStream
inmport java.util.Set;

public class MyHandl er inplenents SOAPHandl er <SOAPMessageCont ext > {

public Set<QNanme> get Headers() {
return null;

}

public bool ean handl eMessage( SOAPMessageCont ext snt) {
if (!
(Bool ean) snt. get ( MessageCont ext . MESSAGE_CUTBOUND_PROPERTY) )
return true;
try {
SOAPMessage msg = snt. get Message();
AttachmentPart part =
meg. cr eat eAt t achment Part (get Dat aHandl er ());

part.set Content | d(" SOAPTest Handl er @xanpl e. j axws. sun. cont');
meg. addAt t achment Part (part);
meg. saveChanges() ;
snt. set Message(nsg);
} catch (Exception e) {
t hrow new WebSer vi ceException(e);

}

24-13



ORACLE

}

Chapter 24

Using SOAP Handlers with Provider-based Endpoints

return true,

publi c bool ean handl eFaul t (SOAPMessageCont ext context) {

}

return true,;

public void close(MessageContext context) {}

private DataHandl er getDataHandl er() throws Exception {

}

return new Dat aHandl er (new Dat aSource() {
public String getContent Type() {
return "text/xm";
}

public InputStream getlnputStrean() {
return new Byt eArrayl nput Stream("<a/>".getBytes());
}

public String getName() {
return nul l;
}

public QutputStream get Qutput Stream() {
t hrow new Unsupport edOper ati onException();

1

Add the @ avax. j ws. Handl er Chai n annotation to the Provider implementation, as
described in Configuring Handler Chains in the JWS File.

For example:

package provider.rootpart_charset_772.server;

import javax.jws.HandlerChain;

i mport
i mport
i mport
i mport
i mport
i mport

j avax. xnl . soap. MessageFact ory;

j avax. xnl . soap. SOAPMessage;

javax. xn . transform Sour ce;

javax. xm . transform stream StreanSour ce;
javax. xm . ws. *;

java.io.ByteArrayl nput Stream

@\ebSer vi ceProvi der (target Nanespace="urn:test", portNanme="Hel|oPort",
servi ceName="Hel | 0")

@er vi ceMbde(val ue=Servi ce. Mode. MESSAGE)
@HandlerChain(file="handlers.xml")

public class SCAPMsgProvi der inplenments Provider <SOAPMessage> {

public SOAPMessage invoke( SOAPMessage nsg) {

11

try {
keepi ng white space in the string is intentional
String content = "<soapenv: Envel ope

xm ns: soapenv=\"http://schemas. xm soap. or g/ soap/ envel ope/\" >

<soapenv: Body> <Voi dTest Response

xmns=\"urn:test:types\">

</ Voi dTest Response></ soapenv: Body></ soapenv: Envel ope>";
Source source = new StreanfSour ce(new

Byt eArrayl nput St rean(content. get Bytes()));
MessageFactory fact = MessageFact ory. newl nstance();

24-14



Chapter 24
Developing a Web Service Dispatch Client

SOAPMessage soap = fact. createMessage();
soap. get SOAPPart (). set Cont ent (source);
soap. get M neHeader s() . addHeader ("fo0", "bar");
return soap;
} catch(Exception e) {
t hrow new WebSer vi ceException(e);
}

}

4. Create the handler chain configuration file, as described in Creating the Handler
Chain Configuration File.

An example of the handler chain configuration file, handl ers. xnl , is shown below.

<handl er-chai ns xm ns="http://java. sun. com xnm /ns/javaee' >
<handl er - chai n>
<hand| er >
<hand| er - name>MyHandl er </ handl er - name>
<hand| er - cl ass>
provider.rootpart_charset_772.server. MyHandl er
</ handl er - cl ass>
</ handl er >
</ handl er - chai n>
</ handl er - chai ns>

5. Compile all handler classes in the handler chain and rebuild your web service, as
described in Compiling and Rebuilding the Web Service .

24.6 Developing a Web Service Dispatch Client

A web service Dispatch client, implemented using the j avax. xm . ws. Di spat ch<T>
interface, enables clients to work with messages at the XML level.

The following procedure describes the typical steps for programming a web service
Dispatch client.

Table 24-5 Steps to Develop a Web Service Provider-based Endpoint

#  Step Description

Import the JWS annotations  The standard JWS annotations for a web service Provider-based JWS file
that will be used in your web include:
service Provider-based JWS

file. import javax.xm .ws. Service;

import javax.xm .ws.Dispatch;
i mport javax.xm .ws. ServiceMbde;

Import additional annotations, as required. For a complete list of IWS
annotations that are supported, see Web Service Annotation Support in
WebLogic Web Services Reference for Oracle WebLogic Server.

2 Create a Di spatch instance.  See Creating a Dispatch Instance.

3 Invoke a web service You can invoke a web service operation synchronously (one-way or two-way)
operation. or asynchronously (polling or asynchronous handler). See Invoking a Web
Service Operation.

ORACLE 24-15



Chapter 24
Developing a Web Service Dispatch Client

24.6.1 Example of a Web Service Dispatch Client

The following sample shows how to implement a basic web service Dispatch client.
The sample is described in detail in the sections that follow.

Example 24-3 Example of a Web Service Dispatch Client

package jaxws.dispatch.client;

import java.io.ByteArrayQut put Stream
inport java.io.QutputStream

inport java.io.StringReader;

import java.net.URL;

i mport javax.xm .soap. SOAPExcepti on;

import javax.xm .soap. SOAPMessage;

import javax.xm .transform Qutput Keys;

import javax.xn .transform Source;

import javax.xm .transform Transforner;

import javax.xm .transform Transforner Excepti on;
import javax.xm .transform TransfornerFactory;
import javax.xm .transform stream StreanResult;
import javax.xm .transform stream StreanSource;

import javax.xn .ws.Dispatch;

import javax.xm .ws. Service;

import javax.xm .ws.\WebServi ceExcepti on;
i mport javax.xm .bind. JAXBCont ext ;

i mport javax.xm .bind. JAXBEl enent ;

i mport javax.xm .nanespace. QNane;

import javax.xm .ws.soap. SOAPBi ndi ng;

public class WbTest extends TestCase {
private static String in_str = "wiseking";
private static String request =
"<nsl:sayHell o xm ns:nsl=\"http://exanple.org\"><arg0>"+i n_str+"</arg0></nsl: sayHel | 0>";

private static final QName portQName = new QName("http://exanple.org", "SinplePort");
private Service service = null;

protected void setUp() throws Exception {

String url_str = SystemgetProperty("wsdl");

URL url = new URL(url _str);

QName servi ceName = new QNane("http://exanple.org", "SinplelnplService");
service = Service. create(serviceNanme);

servi ce. addPort (port QNanme, SOAPBi ndi ng. SOAPL1HTTP_BINDING, url _str);
Systemout. printIn("Setup conplete.");

}

public void testSayHel | oSource() throws Exception {
set Un();
Di spat ch<Sour ce> sour ceDi spatch =
servi ce. creat eDi spat ch(port QName, Source. cl ass, Service. Mode. PAYLOAD);
Systemout. printIn("\nlnvoking xm request: " + request);
Source result = sourceDi spatch.invoke(new StreanSource(new StringReader (request)));
String xm Result = sourceToXM.String(result);
Systemout. println("Received xm response: " + xm Result);
assert True(xm Resul t. i ndexOf ("HELLO " +i n_str)>=0);

ORACLE 24-16



}

Chapter 24
Developing a Web Service Dispatch Client

private String sourceToXM.String(Source result) {
String xm Result = null;

try {

TransfornerFactory factory = TransformerFactory. new nstance();
Transforner transformer = factory. newlransformer();
transforner. set Qut put Property(Qut put Keys. OM T_XM._DECLARATI ON, "yes");
transforner. set Qut put Property(Qut put Keys. METHOD, "xm");
Qut put Stream out = new Byt eArrayQut put Strean();
StreanResult streanResult = new StreanResul t();
streanResul t. set Qut put Streanf{out);
transforner.transformresult, streanResult);
xm Resul't = streanResul t.get Qutput Strean().toString();

} catch (TransfornerException e) {
e.printStackTrace();

}

return xm Resul t;

}

24.6.2 Creating a Dispatch Instance

The javax. xnl . ws. Servi ce interface acts as a factory for the creation of Di spat ch
instances. So to create a Dispatch instance, you must first create a Servi ce instance.
Then, create the Dispatch instance using the Servi ce. creat eDi spat ch() method.

You can pass one or more of the following parameters to the creat eDi spat ch() method:

Qualified name (QName) or endpoint reference of the target service endpoint.

Class of the type parameter T. In this example, the j avax. xm . t ransf orm Sour ce
format is used. For valid values, see Table 24-2.

Usage mode. In this example, the message payload is specified. For valid usage
modes, see Table 24-1.

A list of web service features to configure on the proxy.

JAXB context used to marshal or unmarshal messages or message payloads.

For more information about the valid parameters that can be used to call the
Servi ce. creat eDi spat ch() method, see the javax. xm . ws. Servi ce Javadoc at: https://
j ax-ws. j ava. net/nonav/ 2. 1. 1/ docs/ api / j avax/ xm / ws/ Servi ce. htm .

For example:

String url_str = SystemgetProperty("wsdl");
QName servi ceNane = new QNane("http://exanple.org", "SinplelnplService");
service = Service. create(serviceName);
servi ce. addPort (port QNane, SOAPBi ndi ng. SOAPL1HTTP_BI NDING, url _str);
Dispatch<Source> sourceDispatch =

service.createDispatch(portQName, Source.class, Service.Mode.PAYLOAD);

In the example above, the creat ebi spat ch() method takes three parameters:

ORACLE

Qualified name (QName) of the target service endpoint.

24-17


https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Service.html
https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Service.html

Chapter 24
Developing a Web Service Dispatch Client

» Class of the type parameter T. In this example, the j avax. xm . t ransf or m Sour ce
format is used. For valid values, see Table 24-2.

» Usage mode. In this example, the message payload is specified. For valid usage
modes, see Table 24-1.

The following example shows how to pass a list of web service features, specifically
the asynchronous client transport feature and asynchronous client handler feature. For
more information about these features, see Developing Asynchronous Clients.

protected Dispatch createDispatch(bool ean i sSoapl2, C ass dateType,
Servi ce. Mbde node, AsyncClientHandlerFeature feature)
throws Exception {
String address = publishEndpoi nt (i sSoapl2);
Service service = Service.create(new URL(address + "?wsdl"),
new QNanme("http://exanple.org", "AddNunbersService"));
QNarme portName = new QName("http://exanple.org", "AddNunbersPort");
AsyncClientTransportFeature transportFeature = new
AsyncClientTransportFeature('http://localhost:8238/clientsoapl2/" +
UUID. randomUUID() . toString());
Di spatch di spatch = service. createDi spat ch(port Name, dateType, node,
feature, transportFeature);
return dispatch;

24.6.3 Invoking a Web Service Operation

Once the Di spat ch instance is created, use it to invoke a web service operation. You
can invoke a web service operation synchronously (one-way or two-way) or
asynchronously (polling or asynchronous handler). For complete details about the
synchronous and asynchronous invoke methods, see the j avax. xm . ws. Di spat ch
Javadoc at: https://jax-ws.java. net/nonav/ 2. 1. 1/ docs/ api / j avax/ xm / ws/ Di spat ch. ht m

For example, in the following code excerpt, the XML message is encapsulated as a
javax. xm . transform stream Streanour ce object and passed to the synchronous

i nvoke() method. The response XML is returned in the resul t variable as a Sour ce
object, and transformed back to XML. The sourcet oXM_St ri ng() method used to
transform the message back to XML is shown in Example 24-3.

private static String request = "<nsl:sayHello xm ns:nsl=\"http://exanple.org\"><arg0>"+in_str+"</
arg0></nsl: sayHel | 0>";

Source result = sourceDispatch.invoke(new StreanSource(new StringReader (request)));

String xm Result = sourceToXM.String(result);

ORACLE

24-18


https://jax-ws.java.net/nonav/2.1.1/docs/api/javax/xml/ws/Dispatch.html

Sending and Receiving SOAP Headers

This chapter describes how use the methods available from

com sun. xnl . ws. devel oper . W8Bi ndi ngPr ovi der to send outbound or receive inbound
SOAP headers for WebLogic web services using Java API for XML Web Services
(JAX-WS).

This chapter includes the following sections:

*  Overview of Sending and Receiving SOAP Headers
* Sending SOAP Headers Using WSBindingProvider
* Receiving SOAP Headers Using WSBindingProvider

# Note:

The com sun. xn . ws. devel oper. WSBi ndi ngPr ovi der and

com sun. xni . ws. api . message. Header s APIs are supported as an extension to
the JDK 6.0. Because the APIs are not provided as part of the JDK 6.0 kit,
they are subject to change.

25.1 Overview of Sending and Receiving SOAP Headers

When you create a proxy or Dispatch client, the client implements the
javax. xm . ws. Bi ndi ngProvi der interface. If you need to send or receive a SOAP
header, you can downcast the web service proxy or Dispatch client to

com sun. xnl . ws. devel oper. W8Bi ndi ngPr ovi der and use the methods on the interface to

send outbound or receive inbound SOAP headers.

25.2 Sending SOAP Headers Using WSBIndingProvider

Use the set Qut boundHeader s method to the com sun. xnl . ws. devel oper. W8Bi ndi ngPr ovi der

ORACLE

to send SOAP headers. You create SOAP headers using the
com sun. xnl . ws. api . message. Header s method.

For example, the following provides a code excerpt showing how to pass a simple
string value as a header.

Example 25-1 Sending SOAP Headers Using WSBindingProvider

i mport com sun. xm . ws. devel oper. WSBi ndi ngPr ovi der;
import com sun. xm . ws. api . message. Headers;
i mport javax.xm .nanespace. QNane;

Hel | oService hel | oService = new Hel | oService();
Hel | oPort port = helloService. getHelloPort();
WSBindingProvider bp = (WSBindingProvider)port;

25-1



Chapter 25
Receiving SOAP Headers Using WSBindingProvider

bp.setOutboundHeaders(
I/ Sets a sinple string value as a header
Headers.create(new QName("'simpleHeader™),"stringValue™)

);

25.3 Receiving SOAP Headers Using WSBIindingProvider

ORACLE

Use the get | nboundHeader s method to the com sun. xnl . ws. devel oper . W8Bi ndi ngPr ovi der
to receive SOAP headers.

For example, the following provides a code excerpt showing how to get inbound
headers.

Example 25-2 Receiving SOAP Headers Using WSBindingProvider

i mport com sun. xm . ws. devel oper. WSBi ndi ngPr ovi der;
import com sun. xm . ws. api . message. Headers;

i mport javax.xm .namespace. QNane;

inmport java.util.List;

Hel | oService hel | oService = new Hel | oService();
Hel | oPort port = helloService. getHelloPort();
WSBindingProvider bp = (WSBindingProvider)port;

List inboundHeaders = bp.getlnboundHeaders();

25-2



Using Callbacks

This chapter describes how to use callbacks to notify clients of events for WebLogic
web services using Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

Overview of Callbacks

Example Callback Implementation

Steps to Program Callbacks

Programming Guidelines for Target Web Service
Programming Guidelines for the Callback Client Web Service
Programming Guidelines for the Callback Web Service

Updating the build.xml File for the Target Web Service

26.1 Overview of Callbacks

A callback is a contract between a client and service that allows the service to invoke
operations on a client-provided endpoint during the invocation of a service method for
the purpose of querying the client for additional data, allowing the client to inject
behavior, or notifying the client of progress. The service advertises the requirements
for the callback using a WSDL that defines the callback port type and the client informs
the service of the callback endpoint address using WS-Addressing.

26.2 Example Callback Implementation

The example callback implementation described in this section consists of the
following three Java files:

ORACLE

JWS file that implements the callback web service: The callback web service
defines the callback methods. The implementation simply passes information back
to the target web service that, in turn, passes the information back to the client
web service.

In the example in this section, the callback web service is called Cal | backSer vi ce.
The web service defines a single callback method called cal | back() .

JWS file that implements the target web service: The target web service
includes one or more standard operations that invoke a method defined in the
callback web service and sends the message back to the client web service that
originally invoked the operation of the target web service.

In the example, this web service is called Tar get Servi ce and it defines a single
standard method called t ar get Qper ati on().

JWS file that implements the client web service: The client web service invokes
an operation of the target web service. Often, this web service will include one or
more methods that specify what the client should do when it receives a callback
message back from the target web service via a callback method.

26-1



Chapter 26
Steps to Program Callbacks

In the example, this web service is called Cal | er Servi ce. The method that invokes
Tar get Servi ce in the standard way is called cal I ().

The following shows the flow of messages for the example callback implementation.

Figure 26-1 Example Callback Implementation

WeblLogic Server A

CallerService

call (String 5)-g

WeblLogic Server B

(1) TargetService
tcargetOperation{String s,
/1 WACEndpointReference callback)

CallbackService

K /@{
callback (String &)

#1

The cal | () method of the Cal | er Servi ce web service, running in one WebLogic
Server instance, explicitly invokes the t ar get Oper ati on() method of the

Tar get Servi ce and passes a web service endpoint to the Cal | backSer vi ce.
Typically, the Tar get Ser vi ce service is running in a separate WebLogic Server
instance.

The implementation of the Tar get Ser vi ce. t ar get Oper ati on() method explicitly
invokes the cal | back() method of the Cal | backServi ce, which implements the
callback service, using the web service endpoint that is passed in from

Cal | er Servi ce when the method is called.

The Cal | backSer vi ce. cal | back() method sends information back to the
Tar get Ser vi ce web service.

The Tar get Servi ce. tar get Operati on() method, in turn, sends the information back
to the Cal | er Servi ce service, completing the callback sequence.

26.3 Steps to Program Callbacks

The procedure in this section describes how to program and compile the three JWS
files that are required to implement callbacks: the target web service, the client web
service, and the callback web service. The procedure shows how to create the JWS
files from scratch; if you want to update existing JWS files, you can also use this
procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working bui I d. xni file to which you can add targets for running the j wsc Ant
task and deploying the web services. For more information, see Programming the
JWS File.

ORACLE

26-2



ORACLE

Chapter 26
Steps to Program Callbacks

Table 26-1 Steps to Program Callbacks

# Step Description
Create a new JWS file,  Use your favorite IDE or text editor. See Programming
or update an existing Guidelines for Target Web Service.
one, that implements the  Note: The JWS file that implements the target web service
target web service. invokes one or more callback methods of the callback web
service. However, the step that describes how to program the
callback web service comes later in this procedure. For this
reason, programmers typically program the three JWS files at
the same time, rather than linearly as implied by this
procedure. The steps are listed in this order for clarity only.
2 Update your bui I d. xmM  See Updating the build.xml File for the Target Web Service.
file to include a call to the
j wsc Ant task to compile
the target JWS file into a
web service.
3 Run the Ant target to For example:
build the target web )
service. pronpt> ant buil d-target
4 Deploy the target web See Deploying and Undeploying WebLogic Web Services.
service as usual.
5 Create a new JWS file, Itis assumed that the client web service is deployed to a
or update an existing different WebLogic Server instance from the one that hosts the
one, that implements the target web service. See Programming Guidelines for the
client web service. Callback Client Web Service.
6 Create the JWS file that See Programming Guidelines for the Callback Web Service.
implements the callback
web service.
7 Update the bui | d. xm The j wsc Ant task that builds the client web service also
file that builds the client  compiles Cal | backW8. j ava and includes the class file in the
web service. WAR file using the Fi | eset Ant task element. For example:
<clientgen
type="JAXWS"
wsdl =" ${ awsdl } "
packageNane="j axws. cal | back. cl i ent.add"/>
<clientgen
type="JAXWS"
wsdl ="${twsdl }"
packageNane="j axws. cal | back.client.target"/>
<FileSet dir="." >
<include nanme="Cal | backWs. j ava" />
</ FileSet>
8 Run the Ant target to For example:
build the client and )
callback web services, ~ Prompt> ant build-caller
9 Deploy the client web See Deploying and Undeploying WebLogic Web Services.

service as usual.

26-3



Chapter 26
Programming Guidelines for Target Web Service

26.4 Programming Guidelines for Target Web Service

ORACLE

The following example shows a simple JWS file that implements the target web
service; see the explanation after the example for coding guidelines that correspond to
the Java code in bold.

package exanpl es. webservi ces. cal | back;

import javax.jws.\WebhService;

i mport javax.xn .ws. Bi ndi ngType;

import javax.xm .ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. cal | backser vi ce. *;

@ebSer vi ce(
port Name="Tar get Port",
servi ceNane="Tar get Servi ce",
tar get Nanespace="htt p://exanpl e. oracl e. cont',
endpoi ntI nterface=
"exanpl es. webservi ces. cal | back. target. Target Port Type",
wsdl Locati on="/wsdl s/ Tar get . wsdl ")
@i ndi ngType(val ue="http://schemas. xm soap. or g/ wsdl / soap/ htt p")

public class Targetlnpl {
public String targetOperation(String s, W3CEndpointReference callback)
{

Cal | backService aservice = new Cal | backService();
Cal | backPort Type aport =
aservi ce. get Port (cal I back, CallbackPortType.class);
String result = aport.callback(s);
return result + " processed by target”;

}
}

Follow these guidelines when programming the JWS file that implements the target
web service. Code snippets of the guidelines are shown in bold in the preceding
example.

e Import the packages required to pass the callback service endpoint and access
the Cal | backServi ce stub implementation.

import javax.xnl.ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. cal | backservi ce. *;

» Create an instance of the Cal | backSer vi ce implementation using the stub
implementation and get a port by passing the Cal | backSer vi ce service endpoint,
which is passed by the calling application (Cal | er Ser vi ce).

Cal | backService aservice = new Cal | backService();
Cal | backPort Type aport =
aservi ce. get Port (cal I back, CallbackPortType. cl ass);

* Invoke the callback operation of Cal | backServi ce using the port you instantiated:
String result = aport.callback(s);
* Return the result to the Cal | er Servi ce service.

return result + " processed by target";

26-4



Chapter 26
Programming Guidelines for the Callback Client Web Service

26.5 Programming Guidelines for the Callback Client Web
Service

The following example shows a simple JWS file for a client web service that invokes
the target web service described in Programming Guidelines for Target Web Service;
see the explanation after the example for coding guidelines that correspond to the
Java code in bold.

package exanpl es.webservi ces. cal | back;

i mport javax.annotation. Resour ce;

import javax.jws.\WebMet hod,;

import javax.jws.\WebhService;

i mport javax.xni .ws. Bi ndi ngType;

import javax.xml.ws_Endpoint;

import javax.xml.ws_WebServiceContext;

import javax.xm .ws.\WebServi ceExcepti on;

import javax.xm .ws.\bServiceRef;

import javax.xml.ws_handler _MessageContext;

import javax.xml.ws.wsaddressing.W3CEndpointReference;

import examples.webservices.callback.target.*;

@ébSer vi ce(
port Name="Cal | er Port",
servi ceNane="Cal | er Servi ce",
target Nanespace="http://exanpl e. oracl e. cont')
@i ndi ngType(val ue="http://schemas. xm soap. or g/ wsdl / soap/ htt p")

public class Callerlnpl

{
@esour ce

private WebServiceContext context;

@ebSer vi ceRef ()
private Target Service target;

@ebMet hod()
public String call(String s) {
Object sc =
context.getMessageContext() .get(MessageContext.SERVLET_CONTEXT);
Endpoint callbackimpl = Endpoint.create(new CallbackWS());
callbackImpl.publish(sc);
TargetPortType tPort = target.getTargetPort();
String result = tPort.targetOperation(s,
cal IbacklImpl .getEndpointReference(W3CEndpointReference.class));
calIbacklImpl.stop();
return result;
}
}

Follow these guidelines when programming the JWS file that invokes the target web
service; code snippets of the guidelines are shown in bold in the preceding example:

e Import the packages required to access the servlet context, publish the web
service endpoint, and access the Tar get Ser vi ce stub implementation.

ORACLE 26-5



Chapter 26
Programming Guidelines for the Callback Web Service

i mport javax.xn .ws. Endpoint;

i mport javax.xnl .ws. WbServi ceCont ext ;

i mport javax.xnl.ws. handl er. MessageCont ext ;

i mport javax.xnl.ws.wsaddressi ng. WBCEndpoi nt Ref er ence;
i mport exanpl es. webservi ces. cal | back. target. *;

* Get the servlet context using the WebSer vi ceCont ext and MessageCont ext . You will
use the servlet context when publishing the web service endpoint, later.

@Resour ce

private \WebServi ceContext context;

oj ect sc
cont ext . get MessageCont ext () . get (MessageCont ext . SERVLET_CONTEXT) ;

For more information about accessing runtime information using WebSer vi ceCont ext
and MessageCont ext , see Accessing Runtime Information About a Web Service.

e Create a web service endpoint to the Cal | backSer vi ce implementation and publish
that endpoint to accept incoming requests.

Endpoi nt cal | backl npl = Endpoint. create(new Cal | backWs());
cal I backl npl . publish(sc);

For more information about web service publishing, see Publishing a Web Service
Endpoint.

*  Access an instance of the Tar get Servi ce stub implementation and invoke the
t ar get Qper at i on operation of Tar get Servi ce using the port you instantiated. You
pass the Cal | backSer vi ce service endpoint as a
javax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence data type:

# Note:

Ensure that the callback web service is deployed during the range of
time that callbacks may arrive.

@\ébSer vi ceRef ()
private Target Service target;

Tar get Port Type tPort = target.getTargetPort();
String result = tPort.targetQperation(s,
cal I backl npl . get Endpoi nt Ref er ence( WBCEndpoi nt Ref erence. cl ass));

*  Stop publishing the endpoint:
cal I backl npl . stop();

26.6 Programming Guidelines for the Callback Web Service

The following example shows a simple JWS file for a callback web service. The
cal I back operation is shown in bold.

ORACLE 26-6



Chapter 26
Updating the build.xml File for the Target Web Service

package exanpl es.webservi ces. cal | back;

i mport javax.jws.\WbService;
import javax.xm .ws. Bi ndi ngType;

@eébSer vi ce(
por t Nane="Cal | backPort",
servi ceNanme="Cal | backServi ce",
target Nanespace="http://exanpl e. oracl e. cont',
endpoi ntI nterface=
"exanpl es. webservi ces. cal | back. cal | backservi ce. Cal | backPort Type",
wsdl Locati on="/wsdl s/ Cal | back. wsdl ")

@i ndi ngType(val ue="http://schemas. xn soap. or g/ wsdl / soap/ http")

public class Cal | backWs inpl enents
exanpl es. webservi ces. cal | back. cal | backservi ce. Cal | backPort Type {

public Cal | backWs() {
}

public java.lang.String callback(java.lang.String arg0) {
return arg0.toUpperCase();
}
}

26.7 Updating the build.xml File for the Target Web Service

You update a bui | d. xnd file to generate a target web service that invokes the callback
web service by adding t askdef s and a bui | d-t arget target that resemble the following
example. See the description after the example for details.

<t askdef name="jwsc"
cl assname="webl ogi c. wsee. t ool s. ant t asks. JwscTask" />

<target nanme="build-target">
<jwsc srcdir="src" destdir="${ear-dir}" listfiles="true">
<jws file="Targetlnpl.java"
conpi | edWdl ="${cowDi r}/target/ Target _wsdl.jar" type="JAXWS">
<W.Htt pTransport contextPath="target" serviceUri="Target Service"/>
</jws>
<clientgen
type="JAXWS"
wsdl =" Cal | back. wsdl "
packageNanme="exanpl es. webservi ces. cal | back. cal | backservice"/>
</jwsc>
<zip destfile="${ear-dir}/jws.war" update="true">
<zipfileset dir="src/exanpl es/webservices/call back" prefix="wsdl s">
<include name="Cal | back*. wsdl "/>
</ zipfileset>
</ zi p>
</target>

Use the taskdef Ant task to define the full classname of the j wsc Ant tasks. Update the
jwsc Ant task that compiles the client web service to include:

e <clientgen> child element of the <j ws> element to generate and compile the
Servi ce interface stubs for the deployed Cal | backServi ce web service. The jwsc Ant
task automatically packages them in the generated WAR file so that the client web

ORACLE 26-7



Chapter 26
Updating the build.xml File for the Target Web Service

service can immediately access the stubs. You do this because the Tart get | npl
JWS file imports and uses one of the generated classes.

e <zip> element to include the WSDL for the Cal | backSer vi ce service in the WAR file
so that other web services can access the WSDL from the following URL: http://$
{wW s. hostnane}: ${w s. port}/cal | back/ wsdl s/ Cal | back. wsdl .

For more information about j wsc, see Running the jwsc WebLogic Web Services Ant
Task in Oracle Fusion Middleware Developing JAX-RPC Web Services for Oracle
WebLogic Server.

ORACLE 26-8



Developing Dynamic Proxy Clients

This chapter highlights the differences between static and dynamic proxy clients, and
describes the steps to develop a dynamic proxy client for WebLogic web services
using Java API for XML Web Services (JAX-WS)

This chapter includes the following sections:

e Overview of Static Versus Dynamic Proxy Clients
e Steps to Develop a Dynamic Proxy Client

e Additional Considerations When Specifying WSDL Location

27.1 Overview of Static Versus Dynamic Proxy Clients

Table 27-1 highlights the differences between static and dynamic proxy clients.

Table 27-1 Static Versus Dynamic Proxy Clients

Proxy Client Type Description

Static proxy client Compile and bind the web service client at development time. This generates a static
stub for the web service client proxy. The source code for the generated static stub
client relies on a specific service implementation. As a result, this option offers the
least flexibility.

For examples of static proxy clients, see:

* Invoking Web Service Clients in Developing JAX-WS Web Services for Oracle
WebLogic Server

* Roadmap for Developing JAX-WS Web Service Clients

Dynamic proxy client Compile nothing at development time. At runtime, the application retrieves and
interprets the WSDL and dynamically constructs calls. A dynamic proxy client enables
a web service client to invoke a web service based on a service endpoint interface
(SEI) dynamically at run-time (without using cl i ent gen). This option does not rely
upon a specific service implementation, providing greater flexibility, but also a greater
performance hit.

The steps to develop a dynamic proxy client are described in Steps to Develop a
Dynamic Proxy Client.

27.2 Steps to Develop a Dynamic Proxy Client

The steps to create a dynamic proxy client are outlined in the following table. For more
information, see the j avax. xnl . ws. Servi ce Javadoc at http://docs. oracl e. com
javaeel/ 7/ api/j avax/ xm /ws/ Servi ce. htnl .

ORACLE 27-1


http://docs.oracle.com/javaee/7/api/javax/xml/ws/Service.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Service.html

Chapter 27
Additional Considerations When Specifying WSDL Location

Table 27-2 Steps to Create a Dynamic Proxy Client

# Step

Description

1 Create the

javax. xm . ws. Servi ce

instance.

Create the Servi ce instance using the Servi ce. cr eat e method.

You must pass the service name and optionally the location of the WSDL
document. The method details are as follows:

public static Service create (QName serviceNane) throws
javax. xm . ws. \WebSer vi ceException {}

public static Service create (URL wsdl Docunent Location, QNanme
servi ceNane) throws javax.xn .ws.\WbServi ceException {}

For example:

URL wsdl Location = new URL("http://exanple.org/my.wsdl");
MNane servi ceNane = new QName("http://exanpl e. org/ sanpl e",
"MService");

Service s = Service. create(wsdl Location, serviceNane);

See Additional Considerations When Specifying WSDL Location for additional
usage information.

2 Create the proxy stub.

Use the Servi ce. get Port method to create the proxy stub. You can use this
stub to invoke operations on the target service endpoint.

You must pass the service endpoint interface (SEI) and optionally the name of
the port in the WSDL service description. The method details are as follows:

public <T> T getPort(QNane portNanme, O ass<T>

servi ceEndpoi ntInterface) throws javax.xn .ws. \WbServiceException {}
public <T> T getPort(C ass<T> servi ceEndpoi ntInterface) throws

j avax. xnl . ws. WebSer vi ceException {}

For example:

MyPort port = s.getPort(MPort.class);

27.3 Additional Considerations When Specifying WSDL

Location

ORACLE

If you use HTTPS to get the web service from the WSDL, and the hostname definition
in the WebLogic Server SSL certificate does not equal the hostname of the peer
HTTPS server or is not one of the following, the action fails with a hostname

verification error:

* localhost

« 127.0.0.1

* hostname of localhost

* IP address of localhost

The hostname verification error is as follows:

EchoServi ce service = new EchoService(https-wsdl, webservice-gName);

27-2



Chapter 27
Additional Considerations When Specifying WSDL Location

javax. xnl . ws. \WehSer vi ceException: javax. net.ssl.SSLKeyExcepti on:

Security: 090504 Certificate chain received fromhost.conpany.com- 10.167.194. 63
failed hostname verification check. Certificate contained {....} but

check expected host.conpany.com

The recommended workaround is to use HTTP instead of HTTPS to get the web
service from a WSDL when creating the service, and your own hostname verifier code
to verify the hostname after the service is created:

EchoService service = Service.create(http_wsdl, gnane);

//get Port

EchoPort port = service.getPort(...);

I1set self-defined hostname verifier

((Bi ndingProvider) port).get Request Context (). put (
com sun. xm . ws. devel oper. JAXWSPr oper ti es. HOSTNAME_VERI Fl ER,
new MHost NaneVerifier());

*

)

Optionally, you can ignore hostname verification by setting the binding provider
property:

((Bi ndi ngProvider) port).getRequest Context (). put(
Bi ndi ngProvi der Properti es. HOSTNAME_VERI FI CATI ON_PROPERTY,
"true");

However, if you must use HTTPS to get the web service from the WSDL, there are
several possible workarounds:

*  Turn off hostname verification if you are using the WebLogic Server HTTPS
connection. To do this, set the global system property to ignore hostname
verification:

webl ogi c. security. SSL. i gnoreHost nameVeri fication=true

The system property does not work for service creation if the connection is a JDK
connection or other non-WebLogic Server connection.

»  Set your own hostname verifier for the connection before you get the web service
from the WSDL, then use HTTPS to get the web service from the WSDL.:

//set self-defined hostname verifier

URL url = new URL(https_wsdl);

Ht t psURLConnect i on connection = (HttpsURLConnection)url.openConnection();
connecti on. set Host naneVeri fier (new M/Host NameVerifier());

[/then initiate the service
EchoServi ce service = Service.create(https_wsdl, gnane);

/1get port and set self-defined hostnanme verifier to binding provider

For the workarounds in which you set your own hostname verifier, an example
hostname verifier might be as follows:

public class MyHostnameVerifier inplenents HostnaneVerifier {
public bool ean verify(String hostname, SSLSession session) {
i f (hostnane. equal s("the host you want"))
return true;
el se
return fal se;

ORACLE 27-3



Chapter 27
Additional Considerations When Specifying WSDL Location

ORACLE 27-4



Publishing a Web Service Endpoint

This chapter describes how to create a web service endpoint at runtime without
deploying the web service to a WebLogic Server instance using the

javax. xm . ws. Endpoi nt API.

For more information, see http://docs. oracl e. con j avaee/ 7/ api / j avax/ xm / ws/
Endpoi nt. htm .

The following table summarizes the steps to publish a web service endpoint.

Table 28-1 Steps to Publish a Web Service Endpoint

______________________________________________________________________|
# Step Description

1 Create a web service endpoint. Use the j avax. xm . ws. Endpoi nt create() method
to create the endpoint, specify the implementor (that
is, the web service implementation) to which the
endpoint is associated, and optionally specify the
binding type. If not specified, the binding type
defaults to SOAPL. 1/ HTTP. The endpoint is associated
with only one implementation object and one
j avax. xnl . ws. Bi ndi ng, as defined at runtime; these
values cannot be changed.

For example, the following example creates a web
service endpoint for the Cal | backW5()
implementation.

Endpoi nt cal | backl npl = Endpoi nt. creat e(new

Cal I backWs());
2 Publish the web service endpoint  Use the j avax. xm . ws. Endpoi nt publ i sh() method
to accept incoming requests. to specify the server context, or the address and
optionally the implementor of the web service
endpoint.

Note: If you wish to update the metadata documents
(WSDL or XML schema) associated with the
endpoint, you must do so before publishing the
endpoint.

For example, the following example publishes the
web service endpoint created in Step 1 using the
server context.

vj ect sc

cont ext . get MessageCont ext () . get (MessageCont ext .
SERVLET_CONTEXT) ;

cal I backl npl . publ i sh(sc);

ORACLE 28-1


http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html

Chapter 28

Table 28-1 (Cont.) Steps to Publish a Web Service Endpoint
|

# Step Description
Stop the web service endpointto  Use the j avax. xnl . ws. Endpoi nt st op() method to
shut it down and prevent shut down the endpoint and stop accepting incoming
additional requests after requests. Once stopped, an endpoint cannot be
processing is complete. republished.
For example:

cal | backl npl . st op()

For an example of publishing a web service endpoint within the context of a callback
example, see Programming Guidelines for the Callback Client Web Service.

In addition to the steps described in the previous table, you can defined the following
using the j avax. xm . ws. Endpoi nt APl methods:

»  Endpoint metadata documents (WSDL or XML schema) associated with the
endpoint. You must define metadata before publishing the web service endpoint.

*  Endpoint properties.

e java.util.concurrent.Executor that will be used to dispatch incoming requests to
the application (see http://docs. oracl e. conl j avase/ 8/ docs/ api / j ava/ uti |/
concurrent/ Executor. htn ).

For more information, see the j avax. xnl . ws. Endpoi nt Javadoc at http://
docs. oracl e. coni j avaee/ 7/ api / j avax/ xm / ws/ Endpoi nt. ht nl .

ORACLE 28-2


http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Endpoint.html

Using XML Catalogs

This chapter describes how to use XML catalogs with WebLogic web services using
Java API for XML Web Services (JAX-WS).
This chapter includes the following sections:

e Overview of XML Catalogs

e Defining and Referencing XML Catalogs

e Disabling XML Catalogs in the Client Runtime
e Getting a Local Copy of XML Resources

29.1 Overview of XML Catalogs

ORACLE

An XML catalog enables your application to reference imported XML resources, such
as WSDLs and XSDs, from a source that is different from that which is part of the
description of the web service. Redirecting the XML resources in this way may be
required to improve performance or to ensure your application runs properly in your
local environment.

For example, a WSDL may be accessible during client generation, but may no longer
be accessible when the client is run. You may need to reference a resource that is
local to or bundled with your application rather than a resource that is available over
the network. Using an XML catalog file, you can specify the location of the WSDL that
will be used by the web service at runtime.

The following table summarizes how XML catalogs are supported in the WebLogic
Server Ant tasks.

29-1



ORACLE

Chapter 29
Overview of XML Catalogs

Table 29-1 Support for XML Catalogs in WebLogic Server Ant Tasks
|

Ant Task

Description

clientgen

Define and reference XML catalogs in one of the following ways:

e Use the cat al og attribute to specify the name of the external XML catalog
file. For more information, see Defining an External XML Catalog.

e Use the <xm cat al og> child element to reference an embedded XML
catalog file. For more information, see Embedding an XML Catalog.
When you execute the cl i ent gen Ant task to build the client (or the j wsc Ant

task if the cl i ent gen task is embedded), the j ax- ws- cat al og. xm file is
generated and copied to the client runtime environment. The j ax- ws-

cat al og. xm file contains the XML catalog(s) that are defined in the external
XML catalog file(s) and/or embedded in the bui | d. xnl file. This file is copied,
along with the referenced XML targets, to the META- | NF or WEB- | NF folder for
Enterprise or Web applications, respectively.

Note: The contents of the XML resources are not impacted during this
process.

You can disable the j ax-ws- cat al og. xni file from being copied to the client

runtime environment, as described in Disabling XML Catalogs in the Client
Runtime.

wsdl ¢

Define and reference XML catalogs in one of the following ways:

e Use the cat al og attribute to specify the name of the external XML catalog
file. For more information, see Defining an External XML Catalog.

e Use the <xnl cat al og> child element to reference an embedded XML
catalog file. For more information, see Embedding an XML Catalog.

When you execute the wsdl ¢ Ant task, the XML resources are copied to the

compiled WSDL JAR file or exploded directory.

wsdl get

Define and reference XML catalogs in one of the following ways:
e Use the cat al og attribute to specify the name of the external XML catalog
file. For more information, see Defining an External XML Catalog.

e Use the <xm cat al og> child element to reference an embedded XML
catalog file. For more information, see Embedding an XML Catalog.
When you execute the wsdl get Ant task, the WSDL and imported resources

are downloaded to the specified directory.

Note: The contents of the XML resources are updated to reference the
resources defined in the XML catalog(s).

The following sections describe how to:

« Define and reference an XML catalog to specify the XML resources that you want
to redirect. See Defining and Referencing XML Catalogs.

e Disable XML catalogs in the client runtime. See Disabling XML Catalogs in the
Client Runtime.

e Get alocal copy of the WSDL and its imported XML resources using wsdl get .
These files can be packaged with your application and referenced from within an
XML catalog. See Getting a Local Copy of XML Resources.

For more information about XML catalogs, see the Oasis XML Catalogs specification
at http:// ww. oasi s- open. or g/ conmi t t ees/ downl oad. php/ 14809/ xm - cat al ogs. ht ni .

29-2


http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 29
Defining and Referencing XML Catalogs

29.2 Defining and Referencing XML Catalogs

You define an XML catalog and then reference it from the cl i ent gen or wsdl ¢ Ant task
in your bui I d. xm file in one of the following ways:

- Define an external XML catalog - Define an external XML catalog file and
reference that file from the cl i ent gen or wsdl ¢ Ant tasks in your bui | d. xni file using
the cat al ogs attribute. For more information, see Defining an External XML
Catalog.

# Note:

If you use the catalog option, you cannot define the catalog element in
the catalog file using a relative path that starts with "../". If you do so, the
element file cannot be copied to the client class directory and it may
cause an unexpected exception in the client runtime.

 Embed an XML catalog - Embed the XML catalog directly in the bui I d. xni file
using the <xnl cat al og> element and reference it from the cl i ent gen or wsdl ¢ Ant
tasks in your bui I d. xm file using the <xnl cat al og> child element. For more
information, see Embedding an XML Catalog.

In the event of a conflict, entries defined in an embedded XML catalog take
precedence over those defined in an external XML catalog.

# Note:

You can use the wsdl get Ant task to get a local copy of the XML resources,
as described in Disabling XML Catalogs in the Client Runtime.

29.2.1 Defining an External XML Catalog

To define an external XML catalog:

1. Create an external XML catalog file that defines the XML resources that you want
to be redirected. See Creating an External XML Catalog File.

2. Reference the XML catalog file from the cli ent gen or wsdl ¢ Ant task in your
bui I d. xnl file using the cat al ogs attribute. See Referencing the External XML
Catalog File.

Each step is described in more detail in the following sections.

29.2.1.1 Creating an External XML Catalog File

The <cat al og> element is the root element of the XML catalog file and serves as the
container for the XML catalog entities. To specify XML catalog entities, you can use
the systemor publ i ¢ elements, for example.

The following provides a sample XML catalog file:

ORACLE 29-3



Chapter 29
Defining and Referencing XML Catalogs

<catal og xm n="urn: oasi s: names:tc:entity:xmns:xn:catal og"
prefer="systent>
<system systenml d="http://foo0.org/ hel | 0?wsdl "
uri ="Hel I oService.wsdl" />
<public publicld="1SO 8879:1986//ENTI TI ES Added Latin 1//EN'

uri="wsdl / nyApp/ nyApp. wsdl "/ >
</ catal og>

In the above example:

* The <cat al og> root element defines the XML catalog namespace and sets the
prefer attribute to syst emto specify that system matches are preferred.

*  The <syst en» element associates a URI reference with a system identifier.
*  The <public> element associates a URI reference with a public identifier.

For a complete description of the XML catalog file syntax, see the Oasis XML Catalogs
specification at htt p: / / ww. oasi s- open. or g/ conni t t ees/ downl oad. php/ 14809/ xm -
catal ogs. htm .

29.2.1.2 Referencing the External XML Catalog File

To reference the XML catalog file from the cl i ent gen or wsdl ¢ Ant task in your
bui I d. xm file, use the cat al ogs attribute.

The following example shows how to reference an XML catalog file using cl i ent gen.
Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
type="JAXW\E'
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al 0og. j axws. clientgen.client"
catalog="wsdlcatalog.xml"/>
</ clientgen>
</target>

29.2.2 Embedding an XML Catalog

To embed an XML catalog:

1. Create an embedded XML catalog in the bui | d. xm file. See Creating an
Embedded XML Catalog.

2. Reference the embedded XML catalog from the cl i ent gen or wsdl ¢ Ant task using
the xm cat al og child element. See Referencing an Embedded XML Catalog.

Each step is described in more detail in the following sections.

# Note:

In the event of a conflict, entries defined in an embedded XML catalog take
precedence over those defined in an external XML catalog.

ORACLE 29-4


http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 29
Disabling XML Catalogs in the Client Runtime

29.2.2.1 Creating an Embedded XML Catalog

The <xni cat al og> element enables you to embed an XML catalog directly in the
bui I d. xni file. The following shows a sample of an embedded XML catalog in the
bui I d. xnl file.

<xn cat al og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"
| ocati on="${basedir}/Hel |l oTypes. xsd"/ >
</ xm cat al og>

For a complete description of the embedded XML catalog syntax, see the Oasis XML
Catalogs specification at ht t p: / / vww. oasi s- open. or g/ conmi t t ees/ downl oad. php/ 14809/
xm - catal ogs. htni .

29.2.2.2 Referencing an Embedded XML Catalog

The <xm cat al og> child element of the cl i ent gen or wsdl ¢ Ant tasks enables you to
reference an embedded XML catalog. To specify the <xm cat al og> element, use the
following syntax:

<xm catal og refid="id"/>

The i d referenced by the <xni cat al og> child element must match the ID of the
embedded XML catalog.

The following example shows how to reference an embedded XML catalog using
cli ent gen. Relevant code lines are shown in bold.

<target name="clientgen">
<clientgen
type="JAXWS"
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al og. j axws. clientgen.client"
cat al og="wsdl cat al og. xn "/ >
<xmlcatalog refid="wsimportcatalog"/>
</clientgen>
</target>
<xn catal og i d="wsi nportcatal og">
<entity publicid="http://helloservice.org/types/HelloTypes. xsd"
| ocation="${basedir}/Hel | oTypes. xsd"/ >
</ xm cat al og>

29.3 Disabling XML Catalogs in the Client Runtime

ORACLE

By default, when you define and reference XML catalogs in your bui | d. xnl file, as
described in Defining and Referencing XML Catalogs, when you execute the cl i ent gen
Ant task to build the client, the j ax-ws- cat al og. xm file is generated and copied to the
client runtime environment. The j ax- ws- cat al og. xnl file contains the XML catalog(s)
that are defined in the external XML catalog file(s) and/or embedded in the bui | d. xn
file. This file is copied, along with the referenced XML targets, to the META- | NF or WEB-

I NF folder for Enterprise or Web applications, respectively.

29-5


http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html
http://www.oasis-open.org/committees/download.php/14809/xml-catalogs.html

Chapter 29
Getting a Local Copy of XML Resources

You can disable the generation of the XML catalog artifacts in the client runtime
environment by setting the genRunt i meCat al og attribute of the cl i ent gen to fal se. For
example:

<clientgen
type="JAXW\S'
wsdl =" ${wsdl }"
destDir="${clientclasses.dir}"
packageName="xnl cat al og. j axws. clientgen.client"
cat al og="wsdl cat al og. xm "
genRuntimeCatalog="false"/ >

In this case, the j ax- ws- cat al og. xn1 file will not be copied to the runtime environment.

If you generated your client with the genRunt i neCat al og attribute set to f al se, to
subsequently enable the XML catalogs in the client runtime, you will need to create the
j ax-ws-cat al og. xnl file manually and copy it to the META- | NF or VEB- | NF folder for
Enterprise or Web applications, respectively. Ensure that the j ax- ws- cat al og. xnl file
contains all of the entries defined in the external XML catalog file(s) and/or embedded
in the bui | d. xm file.

29.4 Getting a Local Copy of XML Resources

ORACLE

The wsdl get Ant task enables you to get a local copy of XML resources, such as
WSDL and XSD files. Then, you can refer to the local version of the XML resources
using an XML catalog, as described in Defining and Referencing XML Catalogs.

The following excerpt from an Ant bui | d. xni file shows how to use the wsdl get Ant task
to download a WSDL and its XML resources. The XML resources will be saved to the
wsdl folder in the directory from which the Ant task is run.

<target name="wsdl get"
<wsdl get
wsdl ="http://host/service?wsdl "
destDir="./wsdl /"
/>
</target>

29-6



Programming Web Services Using XML
Over HTTP

This chapter describes how to program web services using XML over HTTP.
This chapter includes the following sections:

e About Programming Web Services Using XML Over HTTP

e Programming Guidelines for the Web Service Using XML Over HTTP
e Accessing the Web Service from a Client

e Securing Web Services that Use XML Over HTTP

30.1 About Programming Web Services Using XML Over
HTTP

In addition to standard "SOAP over HTTP" use cases, WebLogic JAX-WS can also be
used for some "XML over HTTP" web services. Use of the XML over HTTP style
allows you to build simple RESTful web services while still leveraging the convenience
of the JAX-WS programming model.

# Note:

As a best practice, it is recommended that you develop RESTful web
services using the Jersey JAX-RS RI, as described in Developing and
Securing RESTful Web Services for Oracle WebLogic Server. The Jersey
JAX-RS RI provides an open source, production quality RI for building
RESTful web services and supports all of the HTTP methods.

When using the HTTP protocol to access web service resources, the resource
identifier is the URL of the resource and the standard operation to be performed on
that resource is one of the HTTP methods: GET, PUT, DELETE, POST, or HEAD.

ORACLE 30-1



ORACLE

Chapter 30
About Programming Web Services Using XML Over HTTP

# Note:

In this JAX-WS implementation, the set of supported HTTP methods is
limited to GET and POST. DELETE, PUT, and HEAD are not supported. Any
HTTP requests containing these methods will be rejected with a 405 Met hod
Not Al | oved error.

If the functionality of PUT and DELETE are required, the desired action can
be accomplished by tunneling the actual method to be executed on the
POST method. This is a workaround referred to as overloaded POST. (A
Web search on "REST overloaded POST" will return a number of ways to
accomplish this.)

You build RESTful-like endpoints using the i nvoke() method of the

javax. xm . ws. Provi der <T> interface (see http://docs. oracl e. con j avaee/ 7/ api /

javax/ xm /ws/ Provider. htm ). The Provi der interface provides a dynamic alternative to
building an service endpoint interface (SEI).

The procedure in this section describes how to program and compile the JWS file
required to implement web services using XML over HTTP. The procedure shows how
to create the JWS file from scratch; if you want to update an existing JWS file, you can
also use this procedure as a guide.

It is assumed that you have set up an Ant-based development environment and that
you have a working bui I d. xni file to which you can add targets for running the j wsc Ant
task and deploying the web services. For more information, see Developing JAX-WS
Web Services.

Table 30-1 Steps to Program RESTful Web Services

]
#  Step Description

Create a new JWS file, or Use your favorite IDE or text editor. See Programming
update an existing one, that  Guidelines for the Web Service Using XML Over HTTP.
implements the web service

using XML over HTTP.

2 Update your bui | d. xn file to For example:
include a call to the j wsc Ant

: " <jwsc srcdir="." destdir="output/restEar">
task to compile the JWS file ) ) ) .
into a web sF:elrvice ! <jws file="NearbyCity.java" type="JAXWS"/>
' </jwsc>

For more information, see Running the jwsc WebLogic
Web Services Ant Task.

3 Run the Ant target to build the For example:

web service. )
pronpt> ant build-rest

4 Deploy the web service as See Deploying and Undeploying WebLogic Web
usual. Services.

5 Access the web service from  See Accessing the Web Service from a Client.
your web service client.

30-2


http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/Provider.html

30.2 Programmin
XML Over HTTP

Chapter 30
Programming Guidelines for the Web Service Using XML Over HTTP

g Guidelines for the Web Service Using

The following example shows a simple JWS file that implements a web service using
XML over HTTP; see the explanation after the example for coding guidelines that
correspond to the Java code in bold.

package exanpl es.webservi ces. jaxws. rest;

i mport javax.
i mport javax.
import javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
i mport javax.
import javax

inmport java.
inmport java.

xnl . ws. VebSer vi cePr ovi der;

xm . ws. Bi ndi ngType;
xml.ws.Provider;

xn . ws. ebSer vi ceCont ext ;

xm . ws. handl er. MessageCont ext ;
xm . ws. http. HTTPBi ndi ng;

xm . ws. http. HTTPExcepti on;

xnl . transform Sour ce;

xnl . transform stream StreanSour ce;
.annot ati on. Resour ce;

i 0. Byt eArrayl nput Stream
util.StringTokenizer;

@ebSer vi ceProvi der (
target Namespace="http://exanpl e. org",

servi ceNal
@BindingType

public class

@resour ce(

protected

public Sou

try {
Mess

me = "NearbyGityService")
(value = HTTPBinding.-HTTP_BINDING)

NearbyCity implements Provider<Source> {
type=Cbj ect . cl ass)
WebSer vi ceCont ext wsCont ext ;

rce invoke(Source source) {

ageCont ext messageCont ext = wsCont ext . get MessageCont ext () ;

/1 Qotain the HTTP mehtod of the input request.
javax.servlet.http. HtpServl et Request servl et Request =

(]

avax. servlet. http. H t pServl et Request ) messageCont ext . get (

MessageCont ext . SERVLET_REQUEST) ;

Stri
if (
{

}
} el

ng httpMethod = servl et Request. get Met hod();
ht t pMet hod. equal sl gnor eCase( " GET"));

String query =
(String)messageContext.get(MessageContext.QUERY_STRING);
if (query !'=null && query.contains("lat=") &&
query.contains("long=")) {
return createSource(query);
} else {
Systemerr.println("Query String = "+query);
t hrow new HTTPExcepti on(404);
}
} catch(Exception e) {
e.printStackTrace();
t hrow new HTTPExcepti on(500);

}

se {

/1 This operation only supports "CET"

ORACLE

30-3



Chapter 30
Programming Guidelines for the Web Service Using XML Over HTTP

t hrow new HTTPExcepti on405);
}

private Source createSource(String str) throws Exception {
StringTokeni zer st = new StringTokenizer(str, "=&");
String latLong = st.nextToken();
doubl e latitude = Doubl e. parseDoubl e(st. next Token());
| at Long = st. next Token();
doubl e | ongi tude = Doubl e. par seDoubl e(st. next Token());
City nearby = Cty.findNearBy(latitude, |ongitude);
String body = nearby.toXM.();
return new StreanBSource(new Byt eArrayl nput St ream(body. get Bytes()));

}

static class City {

String city;

String state;

doubl e latitude;

doubl e I ongitude;

City(String city, double lati, double longi, String st) {
this.city = city;
this.state = st;
this.latitude = lati;
this.longitude = longi;

}

doubl e di stance(double lati, double Iongi) {
return Math.sqrt((lati-this.latitude)*(lati-this.latitude) +
(longi-this.longitude)*(longi-this.longitude)) ;
}

static final Cty[] cities = {
new City("San Francisco", 37. 7749295, - 122. 4194155, " CA"),
new Gity(" Col unbus", 39. 9611755, - 82. 9987942, "COH") ,
new City("Indianapolis", 39. 7683765, - 86. 1580423, "I N'),
new City("Jacksonville", 30.3321838, - 81. 655651, "FL"),
new City("San Jose", 37.3393857, - 121. 8949555, "CA"),
new City("Detroit", 42.331427,-83.0457538,"M "),
new City("Dall as", 32. 7830556, - 96. 8066667, " TX"),
new City("San Diego", 32.7153292, -117. 1572551, "CA"),
new City("San Antonio", 29.4241219, - 98. 4936282, " TX"),
new Ci ty("Phoenix", 33. 4483771, -112. 0740373, "AZ"),
new Gi ty("Phil adel phia", 39. 952335, - 75. 163789, " PA") ,
new G ty("Houston", 29. 7632836, - 95. 3632715, " TX") ,
new Gity(" Chicago", 41. 850033, - 87. 6500523, "I L"),
new City("Los Angel es", 34.0522342, - 118. 2436849, "CA"),
new City("New York", 40. 7142691, - 74. 0059729, "NY") };
static City findNearBy(double lati, double Iongi) {
int n=0;
for (int i =1, i <cities.length; i++) {
if (cities[i].distance(lati, longi) <
cities[n].distance(lati, longi)) {
n=i;
}
}

return cities[n];

}

public String toXM.() {
return "<ns:NearbyCity xmns:ns=\"http://exanmple.org\"><Cty>"
+this.city+'</City><State>"+ this.state+"</State><Lat>"
+this.latitude +

ORACLE 30-4



Chapter 30
Accessing the Web Service from a Client

"</ Lat ><Lng>"+t hi s. | ongi t ude+"</ Lng></ ns: Near byC ty>";

}

Follow these guidelines when programming the JWS file that implements the web
service using XML over HTTP. Code snippets of the guidelines are shown in bold in
the preceding example.

* Import the packages required to implement the Provider web service.

i mport javax.xnl .ws. WebServi ceProvi der;
i mport javax.xnl.ws. Bi ndi ngType;
i mport javax.xnl .ws. Provider;

» Annotate the Provi der implementation class and set the binding type to HTTP.

@\ebSer vi ceProvi der (
target Nanespace="http://exanpl e. org",
serviceName = "NearbyGityService")

@i ndi ngType(val ue = HTTPBI ndi ng. HTTP_BI NDI NG

* Implement the i nvoke() method of the Provi der interface.

public class NearbyGity inplenments Provider<Source> {
@resour ce(type=hj ect . cl ass)
protected WebServi ceCont ext wsCont ext;

public Source invoke(Source source) {

»  Get the request string using the QUERY_STRI NG field in the
javax. xm . ws. handl er. MessageCont ext for processing (see message URL http://
docs. oracl e. conl j avaee/ 7/ api / j avax/ xm / ws/ handl er / MessageCont ext . htm ). The
query string is then passed to the creat eSource() method that returns the city,
state, longitude, and latitude that is closest to the specified values.

String query =
(String)messageCont ext . get (MessageCont ext . QUERY_STRING) ;

return createSource(query);

30.3 Accessing the Web Service from a Client

ORACLE

To access the web service from a web service client, use the resource URI. For
example:

URL url = new URL (http://1ocal host: 7001/ NearbyCity/ NearbyGityService?
| at =35&! ong=-120) ;

Ht t pURLConnection conn = (Htt pURLConnection)url. openConnection();
connect i on. set Request Met hod( " PCST") ;

Il Get result

InputStreamis = connection. getlnputStream);

In this example, you set the latitude (I at ) and longitude (I ong) values, as required, to
access the required resource.

30-5


http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html
http://docs.oracle.com/javaee/7/api/javax/xml/ws/handler/MessageContext.html

Chapter 30
Securing Web Services that Use XML Over HTTP

30.4 Securing Web Services that Use XML Over HTTP

You can secure web services that use XML over HTTP using the same methods that
you use to secure Web applications. For more information, see Options for Securing
Web Application and EJB Resources in Securing Resources Using Roles and Policies
for Oracle WebLogic Server.

ORACLE 30-6



Programming Stateful JAX-WS Web
Services Using HTTP Session

This chapter describes how you can develop WebLogic web services using Java API
for XML Web Services (JAX-WS) that interact with an Oracle database.
This chapter includes the following sections:

*  Overview of Stateful Web Services

e Accessing HTTP Session on the Server

e Enabling HTTP Session on the Client

« Developing Stateful Services in a Cluster Using Session State Replication
* A Note About the JAX-WS RI @Stateful Extension

31.1 Overview of Stateful Web Services

Normally, a JAX-WS web service is stateless: that is, none of the local variables and
object values that you set in the web service object are saved from one invocation to
the next. Even sequential requests from a single client are treated each as
independent, stateless method invocations.

There are web service use cases where a client may want to save data on the service
during one invocation and then use that data during a subsequent invocation. For
example, a shopping cart object may be added to by repeated calls to the addToCar t
web method and then fetched by the get Cart web method. In a stateless web service,
the shopping cart object would always be empty, no matter how many addToCar t
methods were called. But by using HTTP Sessions to maintain state across web
service invocations, the cart may be built up incrementally, and then returned to the
client.

Enabling stateful support in a JAX-WS web service requires a minimal amount of
coding on both the client and server.

31.2 Accessing HTTP Session on the Server

ORACLE

On the server, every web service invocation is tied to an HttpSession object. This
object may be accessed from the web service Context that, in turn, may be bound to
the web service object using resource injection. Once you have access to your
HttpSession object, you can "hang" off of it any stateful objects you want. The next
time your client calls the web service, it will find that same HttpSession object and be
able to lookup the objects previously stored there. Your web service is stateful!

The steps required on the server:

1. Add the @Resource (defined by Common Annotations for the Java Platform, JSR
250) to the top of your web service.

31-1



Chapter 31
Enabling HTTP Session on the Client

2. Add a variable of type WebServiceContext that will have the context injected into
it.

3. Using the web service context, get the HttpSession object.

4. Save objects in the HttpSession using the setAttribute method and retrieve saved
object using getAttribute. Objects are identified by a string value you assign.

Example 31-1 Accessing HTTP Session on the Server
The following snippet shows its usage:

@\ebService
public class ShoppingCart {
@Resource /] Step 1
private WebServiceContext wsContext; /] Step 2
public int addToCart(ltemiten {
Il Find the HtpSession
MessageContext mc = wsContext.getMessageContext(); Il Step 3
HttpSession session =
((Javax.servlet._http_HttpServletRequest)mc.get(MessageContext.SERVLET_REQUEST)) .getSe
ssion();
if (session == null)
t hrow new WebSer vi ceException("No HTTP Session found");
Il Get the cart object fromthe HtpSession (or create a new one)
List<ltem> cart = (List<ltem>)session.getAttribute("myCart™); // Step 4
if (cart == null)
cart = new ArraylList<litens();
/] Add the itemto the cart (note that Itemis a class defined
/1 in the WSDL)
cart.add(iten;
/| Save the updated cart in the HTTPSession (since we use the sane
Il "nyCart" name, the old cart object will be replaced)
session.setAttribute("myCart™, cart);
Il return the nunber of itenms in the stateful cart
return cart.size();
}
}

31.3 Enabling HTTP Session on the Client

ORACLE

The client-side code is quite simple. All you need to do is set the
SESSION_MAINTAIN_PROPERTY on the request context. This tells the client to pass
back the HTTP Cookies that it receives from the web service. The cookie contains a
session ID that allows the server to match the web service invocation with the correct
HttpSession, providing access to any saved stateful objects.

Example 31-2 Enabling HTTP Session on the Client

Shoppi ngCart proxy = new Cart Service().getCartPort();

((BindingProvider)proxy) .getRequestContext() .put(BindingProvider.SESSION_MAINTAIN_PRO
PERTY, true);

Il Create a new Itemobject with a part nunber of '123456' and an item

/1 count of 4.

Itemitem= new |ten(' 123456, 4);

[l After first call, we'll print "1' (the return value is the nunber of objects
[l in the Cart object)

System out. print!|n(proxy.addToCart(iten));

/| After the second call, we'll print '2', since we've added anot her

Il Itemto the stateful, saved Cart object.

System out. print!|n(proxy.addToCart(iten));

31-2



Chapter 31
Developing Stateful Services in a Cluster Using Session State Replication

31.4 Developing Stateful Services in a Cluster Using
Session State Replication

In a high-availability environment, a JAX-WS web service may be replicated across
multiple server instances in a cluster. A stateful JAX-WS web service is supported in
this environment through the use of the WebLogic Server HTTP Session State
Replication feature. For more information, see HTTP Session State Replication in
Administering Clusters for Oracle WebLogic Server.

There are a variety of techniques and configuration requirements for setting up a
clustered environment using session state replication (for example, supported servers
and load balancers, and so on). From the JAX-WS programming perspective, the only
new consideration is that the objects you store in the HttpSession using the
HttpSession.setAttribute method (as in Example 31-1) must be Serializable. If they are
Serializable, then these stateful objects become available to the web service on all
replicated web service instances in the cluster, providing both load balancing and
failover capabilities for JAX-WS stateful web services.

31.5 A Note About the JAX-WS RI @Stateful Extension

ORACLE

The JAX-WS 2.1 Reference Implementation (RI) contains a vendor extension that
supports a different model for stateful JAX-WS web services using the @ Stateful
annotation. It's implementation "pins" the state to a particular instance and is not
designed to be scalable or fault-tolerant. This feature is not supported for WebLogic
Server JAX-WS web services.

31-3



Testing and Monitoring Web Services

This chapter introduces you to the tools available for developing and administering
WebLogic web services.
This chapter includes the following sections:

e Testing Web Services
e Monitoring Web Services and Clients

« Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute
Threads

32.1 Testing Web Services

You can test basic and advanced features of your web service, such as security,
quality of service (QoS), HTTP headers, and so on. You can also perform stress
testing of the security features. For information about testing web services using the
Web Services Test Client or Fusion Middleware Control Test Web Service page, see
Testing Web Services in Administering Web Services.

32.2 Monitoring Web Services and Clients

You can monitor runtime information for web services and clients, such as number of
invocations, errors, faults, and so on, using the WebLogic Server Administration
Console or WLST.

The following naming convention is used to identify the web service or client in the
monitoring pages:

<appl i cati on_nanme>#<appl i cation_version>! <servi ce_nane><cont ext pat h><ur| _pattern>

Where:

e application_name—Name of the application that contains the web service or client.

e application_versi on—Version of the application that contains the web service or
client.

e servi ce_name—Name of the web service or client.

* context_pat h—Context path defined for the web service. For more information, see
Defining the Context Path of a WebLogic Web Service.

e url_pattern—System default or user-defined web service URL pattern. For more
information, see Specifying the Transport Used to Invoke the Web Service.

32.2.1 Monitoring Web Services

To monitor a web service using the WebLogic Server Administration Console, click on
the Deployments node in the left pane and in the Deployments table that appears in
the right pane, locate the Enterprise application in which the web service is packaged.

ORACLE 32-1



Chapter 32
Monitoring Web Services and Clients

Expand the application by clicking the + node; the web services in the application are
listed under the Web Services category. Click on the name of the web service and
click the Monitoring tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service tab. Click on the name of the
web service for which you want to view monitoring statistics.

The following table lists the tabs that you can select to monitor web service
information. The pages aggregate the statistics of all the servers on which the web
service is running.

# Note:

For JAX-WS web services, the built-in W- Prot ocol operation displays
statistics that are relevant to the underlying WS-* protocols. This information
is helpful in evaluating the application performance.

Table 32-1 Monitoring Web Services

Click this tab . ..

To view. ..

Monitoring> General

General statistics about the web services, including total error and invocations counts.

Monitoring> Invocations Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy  Poalicies that are attached to the web service, organized into the following categories:

authentication, authorization, confidentiality, and integrity.

Monitoring> Ports

Table listing the web service endpoints (ports). The table provides a summary of
information for each port. Click a port name to view more details.

Monitoring> Ports >
General

General statistics about the web service endpoint. The page displays information such
as the web service endpoint name, its URI, and its associated web service, Enterprise
application, and application module. Error and invocations counts are aggregated for
all web service endpoint operations.

Monitoring> Ports >
Invocations

Invocation statistics for the web service endpoint, such as success, fault, and violation
counts.

Monitoring> Ports >
Cluster Routing

Cluster routing statistics for the web service endpoint, such as request and response,
and routing failures.

Monitoring> Ports >
Make Connection

MakeConnection anonymous endpoints for a web service. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Ports >
Reliable Message

Reliable messaging sequences for a web service. For each reliable messaging
sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information that
is shown in the table by clicking Customize this table.

Click the sequence ID to view more details.

Monitoring> Ports >
Reliable Message >
Requests

Reliable messaging requests for a web service. For each reliable messaging request,
runtime monitoring information is displayed. You can customize the information that is
shown in the table by clicking Customize this table.

Click the reliable message ID to view more details.

ORACLE

32-2



Chapter 32
Monitoring Web Services and Clients

Table 32-1 (Cont.) Monitoring Web Services

|
Click thistab . .. To view. ..

Monitoring> Ports > WS- Statistics related to the policies that are attached to the web service endpoint,
Policy organized into the following categories: authentication, authorization, confidentiality,
and integrity.

Monitoring> Ports > List of operations for the web service endpoint.

Operations For each operation, runtime monitoring information is displayed, such as the number

of times the operation has been invoked since the WebLogic Server instance started,
the average time it took to invoke the web service, the average time it took to
respond, and so on. You can customize the information that is shown in the table by
clicking Customize this table.

Note: For JAX-WS web services, the built-in Ws-Protocol operation displays statistics
that are relevant to the underlying WS-* protocols. For example, for web services
reliable messaging, this operation captures message statistics for Cr eat eSequence
and AckRequest ed messages received or sent by the reliable messaging subsystem
on behalf of the web service or client. This information is helpful in evaluating the
application performance.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

32.2.2 Monitoring Web Service Clients

To monitor a web service client using the WebLogic Server Administration Console,
click on the Deployments node in the left pane and, in the Deployments table that
appeatrs in the right pane, locate the Enterprise application in which the web service
client is packaged. Expand the application by clicking the + node and click on the
application module within which the web service client is located. Click the Monitoring
tab, then click the Web Service Clients tab.

Alternatively, click the Deployments node in the left pane, the Monitoring tab that
appears in the right pane, and then the Web Service Clients tab. Click on the name of
the web service client for which you want to view monitoring statistics.

The table provides a summary of runtime information for each web service client. Click
the client name in the table to view more information.

# Note:

For JAX-WS web services, the web services runtime creates system-defined
client instances within a web service endpoint that are used to send protocol-
specific messages as required by that endpoint. These client instances are
named after the web service endpoint that they serve with the following
suffix: - Syst end i ent . Monitoring information relevant to the system-defined
client instances is provided to assist in evaluating the application.

ORACLE 32-3



Chapter 32
Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

Table 32-2 Monitoring Web Service Clients

Click thistab . ..

To view. ..

Monitoring> General

General statistics about the web service clients, including total error and invocations
counts. The page displays the web service client name, its associated Enterprise
application and application module, and context root. Error and invocations statistics
are aggregated for all servers on which the web service is running.

Monitoring> Invocations

Invocation statistics, such as dispatch and execution times and averages.

Monitoring> WS-Policy

Policies that are attached to the web service client, organized into the following
categories: authentication, authorization, confidentiality, and integrity.

Monitoring> Servers

Table listing the server on which the client is currently running. Click the client name
and then use the tabs in the following steps to view more information about the web
service client on that server.

Monitoring> Servers >
General

General statistics about the web service client. The page displays information such as
the web service client port, its associated Enterprise application, and application
module, context root, and so on. Error and invocations counts are aggregated for all
web service client operations.

Monitoring> Servers >
Invocations

Invocation statistics for the web service client, such as success, fault, and violation
counts.

Monitoring> Servers >
Cluster Routing

Cluster routing statistics for the web service client, such as request and response, and
routing failures. For more information, see Monitoring Cluster Routing Performance.

Monitoring> Servers >
Make Connection

MakeConnection anonymous endpoints for a web service client. For each anonymous
endpoint, runtime monitoring information is displayed, such as the number of
messages received, the number of messages pending, and so on. You can customize
the information that is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
Reliable Message

Reliable messaging sequences for a web service client. For each reliable messaging
sequence, runtime monitoring information is displayed, such as the sequence state,
the source and destination servers, and so on. You can customize the information that
is shown in the table by clicking Customize this table.

Click the name of an anonymous endpoint to view more details.

Monitoring> Servers >
WS-Policy

Statistics related to the policies that are attached to the web service client, organized
into the following categories: authentication, authorization, confidentiality, and
integrity.

Monitoring> Servers >
Operations

List of operations for the web service client. For each operation, runtime monitoring
information is displayed, such as average response, execution, and dispatch times,
response, invocation and error counts, and so on. You can customize the information
that is shown in the table by clicking Customize this table.

Click the name of an operation to view more information. Click the General or
Invocations tab to display general statistics or invocation statistics, respectively, for
the selected operation.

32.3 Using Work Managers to Prioritize Web Services Work
and Reduce Stuck Execute Threads

After a connection has been established between a client application and a web
service, the interactions between the two are ideally smooth and quick, whereby the
client makes requests and the service responds in a prompt and timely manner.
Sometimes, however, a client application might take a long time to make a new

ORACLE

32-4



ORACLE

Chapter 32
Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads

request, during which the web service waits to respond, possibly for the life of the
WebLogic Server instance; this is often referred to as a stuck execute thread. If, at any
given moment, WebLogic Server has a lot of stuck execute threads, the overall
performance of the server might degrade.

If a particular web service gets into this state fairly often, you can specify how the
service prioritizes the execution of its work by configuring a Work Manager and
applying it to the service. For example, you can configure a response time request
class (a specific type of Work Manager component) that specifies a response time
goal for the web service.

The following shows an example of how to define a response time request class in a
deployment descriptor:

<wor k- manager >
<name>r esponset i me_wor knmanager </ name>
<response-ti me-request-class>
<name>ny_response_t i me</ nane>
<goal - m5>2000</ goal - s>
</response-tine-request-class>
</ wor k- manager >

You can configure the response time request class using the WebLogic Server
Administration Console, as described in Work Manager: Response Time:
Configuration in Oracle WebLogic Server Administration Console Online Help.

For more information about Work Managers in general and how to configure them for
your web service, see Using Work Managers to Optimize Scheduled Work in
Administering Server Environments for Oracle WebLogic Server.

32-5



Reference

Part V contains the following chapters:

»  Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make
Connection

» Example Client Wrapper Class for Batching Reliable Messages
e Migrating JAX-RPC Web Services and Clients to JAX-WS

ORACLE



Pre-packaged WS-Policy Files for Web
Services Reliable Messaging and Make
Connection

This appendix summarizes the pre-packaged WS-Policy files that support reliable
messaging, Make Connection, or both features together, for WebLogic web services
using Java API for XML Web Services (JAX-WS).

You cannot change these pre-packaged files. If their values do not suit your needs,
you must create your own WS-Policy file. For details, see:

* Creating the Web Service Reliable Messaging WS-Policy File
*  Creating the Web Service Make Connection WS-Policy File (Optional)

For reference information about the reliable messaging and Make Connection policy
assertions, see:

*  Web Service Reliable Messaging Policy Assertion Reference in WebLogic Web
Services Reference for Oracle WebLogic Server

*  Web Service Make Connection Policy Assertion Reference in WebLogic Web
Services Reference for Oracle WebLogic Server

The following table summarizes the pre-packaged WS-Policy files. This table also
specifies whether the WS-Policy file can be attached at the method level; if the value
in this column is no, then the WS-Policy file can be attached at the class level only.

Table A-1 Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?

Specifies policy assertions related to delivery assurance. Yes
The web service reliable messaging assertions are based

on WS Reliable Messaging Policy Assertion 1.2 at http: //

docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702. See
DefaultReliability1.2.xml (WS-Policy File).

Defaul t Rel i abil'ityl. 2. xm

Specifies policy assertions related to quality of service. The Yes
web service reliable messaging assertions are based on

WS Reliable Messaging Policy Assertion 1.1 athttp://

docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1-
spec-0s-01. ht m . See DefaultReliabilityl.1.xml (WS-Policy
File).

Defaul tReliabilityl. 1. xm

ORACLE A-1


http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Appendix A

Table A-1 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Pre-packaged WS-Policy File Description Method Level
Attachment?
Deprecated. The web service reliable messaging Yes

Defaul tRelibility. xn

assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 at ht t p: // schemas. xni soap. or g/ ws/
2005/ 02/ r i W5- RMPol i cy. pdf. In this release, many of the
reliable messaging policy assertions are managed through
JWS annotations or configuration.

Specifies typical values for the reliable messaging policy
assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base
retransmission interval of 3 seconds. See
DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated].

LongRunni ngRel i abi i ty. xm

Deprecated. The web service reliable messaging Yes
assertions are based on WS Reliable Messaging Policy
Assertion Version 1.0 for long running processes. In this

release, many of the reliable messaging policy assertions

are managed through JWS annotations or configuration.

Similar to the preceding default reliable messaging WS-
Policy file, except that it specifies a much longer activity
timeout interval (24 hours.) See LongRunningReliability.xml
WS-Policy File (WS-Policy) [Deprecated].

Ml 1. xm Enables Make Connection support on the web service and No
specifies usage as optional on the web service client. The
WS-Policy 1.5 protocol is used. See Mc1.1.xml (WS-Policy
File).

M. xm Enables Make Connection support on the web service and No

specifies usage as optional on the web service client. The
WS-Policy 1.2 protocol is used. See Mc.xml (WS-Policy
File).

Reliabilityl.2_ExactlyOnce_Wth
MCL. 1. xmi

Specifies policy assertions related to quality of service. It No
enables Make Connection support on the web service and
specifies usage as optional on the web service client. See
Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy

File).

Reliabilityl.2_SequenceSTRSecuri
ty

Specifies that in order to secure messages in a reliable No
sequence, the runtime will use the

wsse: Securit yTokenRef er ence that is referenced in the

Cr eat eSequence message. It enables Make Connection
support on the web service and specifies usage as optional
on the web service client. The web service reliable
messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.2 at http: // docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702. See
Reliabilityl.2_SequenceTransportSecurity.xml (WS-Policy
File).

ORACLE

A-2


http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://schemas.xmlsoap.org/ws/2005/02/rm/WS-RMPolicy.pdf
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702

Table A-1 (Cont.) Pre-packaged WS-Policy Files That Support Reliable Messaging

Appendix A

DefaultReliabilityl.2.xml (WS-Policy File)

Pre-packaged WS-Policy File

Description

Method Level
Attachment?

Reliabilityl.1 SequenceSTRSecuri
ty

The web service reliable messaging assertions are based
on WS Reliable Messaging Policy Assertion 1.1 athttp://
docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1-
spec-0s-01. htnl . See
Reliabilityl.1_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Rel i abi l'ityl.2_SequenceTransport
Security

Specifies policy assertions related to transport-level
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.2 at htt p: // docs. oasi s-
open. or g/ ws-r x/ wsr np/ 200702. See
Reliabilityl.2_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Reliabilityl.1 SequenceTransport
Security

Specifies policy assertions related to transport-level
security and quality of service. The web service reliable
messaging assertions are based on WS Reliable
Messaging Policy Assertion 1.1 at htt p: // docs. oasi s-
open. or g/ ws- r x/ wsr np/ 200702/ wsr np- 1. 1- spec-

0s-01. htni. See
Reliabilityl.1_SequenceTransportSecurity.xml (WS-Policy
File).

Yes

Rel i abilityl.0_1.2. xni

Combines 1.2 and 1.0 WS-Reliable Messaging policy
assertions. The policy assertions for the 1.2 version Make
Connection support on the web service and specifies
usage as optional on the web service client. This sample
relies on smart policy selection to determine the policy
assertion that is applied at runtime. See
Reliability1.0_1.2.xml (WS-Policy File).

No

Rel i abilityl.0_1. 1. xni

Combines 1.1 and 1.0 WS Reliable Messaging policy

assertions. See Reliability1.0_1.1.xml (WS-Policy.xml File).

Yes

A.1 DefaultReliabilityl.2.xml (WS-Policy File)

The Def aul t Real i abi lityl. 2. xmM WS-Policy file specifies policy assertions related to
delivery assurance. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.2 at htt p: // docs. oasi s- open. or g/ ws-r x/ wsr nl
200702/ wsrm 1. 2- spec-o0s. htni .

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. org/ ns/ ws-policy">

<wspl5: Al l >

<wsrnp: RMAsserti on

xm ns:wsrnp="http://docs. oasi s-open. or g/ ws- r x/ wsr np/ 200702" >

<wsr mp: Del i ver yAssur ance>
<wspl5: Policy>

<wsr np: Exact | yOnce/ >
<wsrmp: I nOrder/ >

</wspl5; Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsr np: RMAssertion>

ORACLE

A-3


http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html

Appendix A
DefaultReliabilityl.1.xml (WS-Policy File)

</wspl5: Al >
</wspl5: Pol i cy>

A.2 DefaultReliabilityl.1.xml (WS-Policy File)

The Def aul t Real i abi lityl. 1. xmM WS-Policy file specifies policy assertions related to
quality of service. The web service reliable messaging assertions are based on WS
Reliable Messaging Policy Assertion 1.1 at htt p: // docs. oasi s- open. or g/ ws-r x/ wsr np/
200702/ wsr np- 1. 1- spec-o0s-01. htnl .

<?xm version="1.0"?>

<wsp: Pol i cy
xm ns:wsp="http://schemas. xm soap. or g/ ws/ 2004/ 09/ pol i cy"
>
<wsrnp: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702"
>
<wsrnp: Del i veryAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce />
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Pol i cy>

A.3 DefaultReliability.xml WS-Policy File (WS-Policy)
[Deprecated]

This WS-Policy file is deprecated. The web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion Version 1.0 at http://

schemas. xnl soap. or g/ ws/ 2005/ 02/ rm pol i cy/ . In the current release, many of the reliable
messaging policy assertions are managed through JWS annotations or configuration.

The Defaul tRel i ability.xnl WS-Policy file specifies typical values for the reliable
messaging policy assertions, such as inactivity timeout of 10 minutes,
acknowledgement interval of 200 milliseconds, and base retransmission interval of 3
seconds.

<?xnl version="1.0"?>

<wsp: Pol i cy
xm ns:wsrme"htt p: // schemas. xnl soap. or g/ ws/ 2005/ 02/ r i pol i cy"
xm ns: wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="htt p://wwmn. bea. conf wsrn pol i cy"
>

<wsrm RVAssertion >
<wsrm I nactivityTinmeout MIIiseconds="600000" />
<wsrm BaseRetransm ssionlnterval MIIiseconds="3000" />
<wsrm Exponent i al Backof f />
<wsr m Acknow edgenentInterval MIIiseconds="200" />
<beapol i cy: Expires Expires="P1D' optional ="true"/>

</ wsrm RMAsserti on>

</wsp: Pol i cy>

ORACLE A-d


http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/

Appendix A
LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]

A.4 LongRunningReliability.xml WS-Policy File (WS-Policy)
[Deprecated]

This WS-Policy file is deprecated. The web service reliable messaging assertions
are based on WS Reliable Messaging Policy Assertion Version 1.0 at http://

schemas. xnl soap. or g/ ws/ 2005/ 02/ rm pol i cy/ . In the current release, many of the reliable
messaging policy assertions are managed through JWS annotations or configuration.

The LongRunni ngRel i bi lity. xmM WS-Policy files specifies values that are similar to the
Def aul t Rel i abi lity. xmi WS-Policy file, except that it specifies a much longer activity
timeout interval (24 hours). See LongRunningReliability.xml WS-Policy File (WS-
Policy) [Deprecated].

<?xm version="1.0"?>

<wsp: Pol i cy
xm ns:wsrne"http://schemas. xm soap. or g/ ws/ 2005/ 02/ r ml pol i cy"
xm ns: wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xm ns: beapol i cy="http:// wwmv. bea. comf wsrni pol i cy"
>
<wsrm RMAssertion >
<wsrm I nactivityTinmeout MIIiseconds="86400000" />
<wsrm BaseRetransmi ssionlnterval MIIiseconds="3000" />
<wsrm Exponenti al Backof f />
<wsrm Acknow edgement I nterval M Iliseconds="200" />
<beapol i cy: Expires Expires="P1IM optional ="true"/>
</wsrm RVAsserti on>
</wsp: Pol i cy>

A.5 Mcl1.1.xml (WS-Policy File)

The 1. 1. xnl WS-Policy file enables Make Connection support on the web service
and sets usage as optional on the web service client. In this case, the WS-Policy 1.5
protocol is used. The assertions are based on the Make Connection policy assertion
defined at http: // docs. oasi s- open. or g/ ws-r x/ wsme/ 200702/ wsne- 1. 1- spec-0s. ht ni .

<?xm version="1.0"?>

<wspl5: Policy
xn ns: wsp15="htt p: // waw. w3. or g/ ns/ ws- pol i cy"
xnl ns: wsne="http://docs. oasi s- open. or g/ ws- r x/ wsnt/ 200702" >
<wsnt: MCSupport ed wspl5: Optional ="true" />

</wspl5: Pol i cy>

A.6 Mc.xml (WS-Policy File)

ORACLE

The M. xm WS-Policy file enables Make Connection support on the web service and
sets usage as optional on the web service client. The assertions are based on the
Make Connection policy assertion defined at htt p: // docs. oasi s- open. or g/ ws- r x/ wsnc/
200702/ wsnt- 1. 1- spec-o0s. htni .

<?xml version="1.0"?>

<wsp: Pol i cy
xml ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy"
xnl ns:wsnt="http://docs. oasi s- open. or g/ ws-r x/ wsnt/ 200702" >

A-5


http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://schemas.xmlsoap.org/ws/2005/02/rm/policy/
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html

Appendix A
Reliability1.2_ExactlyOnce WithMC1.1.xml (WS-Policy File)

<wsnec: MCSupported wsp: Optional ="true" />
</wsp: Pol i cy>

A.7 Reliabilityl.2_ExactlyOnce_ WithMC1.1.xml (WS-Policy

File)

The Rel i abilityl.2_Exact!yOnce_WthML. 1. xni WS-Policy file specifies policy
assertions related to quality of service. It enables Make Connection support on the
web service and specifies usage as optional on the web service client.

The assertions are based on the following specifications:

*  Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at http:// docs. oasi s- open. or g/ ws-r x/ wsr nf 200702/ wsr m 1. 2-
spec-o0s. htni.

* Make Connection assertions are based on the Make Connection policy assertion
defined at htt p: // docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702/ wsne- 1. 1- spec-0s. ht i .

<?xm version="1.0" encodi ng="UTF-8" ?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. org/ ns/ ws-policy">
<wspl5: Al l >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: Del i veryAssur ance>
<wspl5: Pol i cy>
<wsrnp: Exact | yOnce />
</wspl5: Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsrnp: RMAssertion>
<wsnc: MCSupport ed
xm ns:wsne="http://docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702"
wspl5: Optional ="true" />
</wspl5: Al >
</wspl5: Pol i cy>

A.8 Reliabilityl.2_SequenceSTR.xml (WS-Policy File)

ORACLE

The Rel i abilityl.2_SequenceSTR xnl file specifies that in order to secure messages in a
reliable sequence, the runtime will use the wsse: Securi t yTokenRef er ence that is
referenced in the Cr eat eSequence message. It enables Make Connection support on the
web service and specifies usage as optional on the web service client.

The assertions are based on the following specifications:

*  Web service reliable messaging assertions are based on WS Reliable Messaging
Policy Assertion 1.2 at http:// docs. oasi s- open. or g/ ws-rx/ wsr nf 200702/ wsr m 1. 2-
spec-o0s. htnl .

* Make Connection assertions are based on the Make Connection policy assertion
defined at htt p: // docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702/ wsne- 1. 1- spec- os. ht i .

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://wwmv. w3. org/ ns/ws-policy">
<wspls: Al | >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr mp: SequenceSTR/ >

A-6


http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html
http://docs.oasis-open.org/ws-rx/wsmc/200702/wsmc-1.1-spec-os.html

Appendix A
Reliabilityl.1_SequenceSTR.xml (WS-Policy File)

<wsr np: Del i ver yAssur ance>
<wsplb: Pol i cy>
<wsrnp: Exact | yOnce/ >
</wspl5: Pol i cy>
</ wsrnp: Del i ver yAssurance>
</ wsrnp: RMAssertion>
<wsnc: MCSupport ed
xm ns:wsne="http://docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702"
wspl5: Optional ="true"/>
</wspl5: Al >
</wspl5: Pol i cy>

A.9 Reliabilityl.1 SequenceSTR.xml (WS-Policy File)

The Reliabilityl.1_SequenceSTR xnl file specifies that in order to secure messages in a
reliable sequence, the runtime will use the wsse: Securi t yTokenRef er ence that is
referenced in the Creat eSequence message. The web service reliable messaging
assertions are based on WS Reliable Messaging Policy Assertion 1.1 at http://

docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec- 0s-01. ht ni .

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsrnp: RMAssertion
xm ns: wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: SequenceSTR/ >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</ wsp: Policy>

A.10 Reliabilityl.2_SequenceTransportSecurity.xml (WS-
Policy File)

The Reliabilityl.2_SequenceTransport Security.xnl file specifies policy assertions
related to transport-level security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging Policy Assertion 1.2 at
http://docs. oasi s-open. or g/ ws-r x/ wsrm 200702/ wsr m 1. 2- spec-0s. htni .

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://ww. w3. or g/ ns/ ws-policy">
<wspl5: Al l >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws-r x/ wsr np/ 200702" >
<wsrmp: SequenceTransport Security/>
<wsr np: Del i ver yAssur ance>
<wspl5: Pol i cy>
<wsrnmp: Exact | yOnce/ >
</wsp15: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wspl5: Al l >
</wspl5: Pol i cy>

ORACLE A7


http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html
http://docs.oasis-open.org/ws-rx/wsrm/200702/wsrm-1.2-spec-os.html

Appendix A
Reliabilityl.1 SequenceTransportSecurity.xml (WS-Policy File)

A.11 Reliabilityl.1 SequenceTransportSecurity.xml (WS-
Policy File)

The Reliabilityl.1_SequenceTransport Security.xnl file specifies policy assertions
related to transport-level security and quality of service. The web service reliable
messaging assertions are based on WS Reliable Messaging Policy Assertion 1.1 at
http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702/ wsr np- 1. 1- spec- 0s-01. htmi .

<wsp: Policy xm ns:wsp="http://schemas. xn soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsr np: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws- r x/ wsr np/ 200702" >
<wsr np: SequenceTransport Security/>
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsrnp: Exact | yOnce/ >
</ wsp: Pol i cy>
</wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</ wsp: Pol i cy>

A.12 Reliability1.0_1.2.xml (WS-Policy File)

The Reliabilityl.0_1.2.xm WS-Policy file combines 1.2 and 1.0 WS-Reliable
Messaging policy assertions.

This sample relies on smart policy selection to determine the policy assertion that is
applied at runtime. For more information about smart policy selection, see Using
Multiple Policy Alternatives.

<?xm version="1.0" encodi ng="UTF-8"?>
<wspl5: Policy xm ns:wspl5="http://www w3. or g/ ns/ ws-pol icy">
<wsplb5: Exact | yOne>
<wspl5: All >
<wsrmp: RMAssertion
xm ns:wsrnp="http://docs. oasi s- open. or g/ ws- r x/ wsr np/ 200702" >
<wsr np: Del i ver yAssur ance>
<wspl5: Pol i cy>
<wsrnp: Exact | yOnce/ >
</wspl5: Pol i cy>
</wsrnp: Del i ver yAssur ance>
</wsrnp: RMAssertion>
<wsnc: MCSuppor t ed
xm ns:wsne="http://docs. oasi s- open. or g/ ws-r x/ wsnc/ 200702"
wspl5: Optional ="true"/>
</wspl5: Al l >
<wspl5: All >
<wsr mpl0: RVAssertion
xm ns:wsrnpl0="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r mf pol i cy" >
<wsr mpl0: I nactivityTi meout MIIiseconds="600000"/>
<wsr np10: BaseRet ransmi ssionl nterval MI1iseconds="3000"/>
<wsr np10: Exponent i al Backof f/ >
<wsr np10: Acknowl edgenent I nterval M 11iseconds="200"/>
</ wsrnpl0: RMAssertion>
</wspl5: Al l >
</wsp15: Exact | yOne>
</ wspl5: Pol i cy>

ORACLE A-8


http://docs.oasis-open.org/ws-rx/wsrmp/200702/wsrmp-1.1-spec-os-01.html

Appendix A
Reliability1.0_1.1.xml (WS-Policy.xml File)

A.13 Reliability1.0_1.1.xml (WS-Policy.xml File)

The Reliabilityl.0_1.1. xm WS-Policy file combines 1.1 and 1.0 WS-Reliable
Messaging policy assertions. This sample relies on smart policy selection to determine
the policy assertion that is applied at runtime. For more information about smart policy
selection, see Using Multiple Policy Alternatives.

< Note:

The 1.0 web service reliable messaging assertions are prefixed by wsrnp10.

<wsp: Policy xm ns:wsp="http://schemas. xnl soap. or g/ ws/ 2004/ 09/ pol i cy" >
<wsp: Exact | yOne>
<wsp: Al l >
<wsrnp: RMAssertion
xm ns:wsrnp="http://docs. oasi s-open. or g/ ws-r x/ wsr np/ 200702" >
<wsr np: Del i ver yAssur ance>
<wsp: Pol i cy>
<wsr np: Exact | yOnce/ >
</ wsp: Pol i cy>
</ wsrnp: Del i ver yAssur ance>
</ wsrnp: RMAssertion>
</wsp: Al l >
<wsp: Al | >
<wsrmpl0: RVAssertion
xm ns: wsrnpl0="http://schemas. xn soap. or g/ ws/ 2005/ 02/ r ml pol i cy" >
<wsr npl0: I nactivityTi meout MIIiseconds="600000"/>
<wsr np10: BaseRet ransmi ssionlnterval MI1iseconds="3000"/>
<wsr np10: Exponent i al Backof f/>
<wsr np10: Acknowl edgenent I nterval M11iseconds="200"/>
</ wsrnp10: RMAsserti on>
</wsp: Al l >
</ wsp: Exact | yOne>
</ wsp: Policy>

ORACLE' A9



Example Client Wrapper Class for Batching
Reliable Messages

This appendix provides an example client wrapper class that can be used for batching
reliable messaging for WebLogic web services using Java API for XML Web Services
(JAX-WS).

For more information about batching reliable messages, see Grouping Messages into
Business Units of Work (Batching).

" Note:

This client wrapper class is example code only; it is not an officially
supported production class.

Example B-1 Example Client Wrapper Class for Batching Reliable Messages

package exanpl e.servlet;

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

i mport
i mport
i mport

i mport
i mport
i mport
i mport
i mport
i mport
i mport

*

/

* %k % k% % % ko

java.io.PrintStream
java.io.PrintWiter;

java. | ang.
java.l ang.
java. | ang.
java.lang.
java. util.
java. util.
java. util.
java. util.

javax. xn .
javax. xn .
javax. xn .

ref . WeakRef er ence;
reflect.|nvocationHandl er;
reflect. Method;

reflect. Proxy;

Dat e;

Sort edSet ;

Ti mer;

Ti mer Task;

dat at ype. Dat at ypeFact ory;
dat at ype. Dur ati on;
ws. Bi ndi ngPr ovi der;

webl ogi c. wsee. j axws. JAXWEPr operti es;

webl ogi c. wsee. j axws. spi . O i entlnstance;

webl ogi c. wsee. reliability. MessageRange;

webl ogi c. wsee. reliability2. api.WrnCient;

webl ogi c. wsee. reliability2.api.WrnCOientFactory;

webl ogi c. wsee. reliability2.property.\Wrm nvocationPropertyBag;
webl ogi c. wsee. reliability2.tube. WrnClientlnpl;

Exanpl e wrapper class to batch reliable requests into fixed size 'batches'
that can be sent using a single RMsequence. This class allows a client to
send requests that have no natural common grouping or

"business unit of work' and not pay the costs associated with creating and
termnating an RM sequence for every message.

NOTE: This class is an *exanpl e* of how batching m ght be performed. To do

batching correctly, you should consider error recovery and how to
report sequence errors (reported via ReliabilityErrorlListener) back

ORACLE

B-1



*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Appendix B

to the clients that made the original requests.
<p>
If your web service client code knows of sonme natural business-oriented
grouping of requests (called a 'business unit of work'), it should make the
RM subsystem aware of this unit of work by using the
VérnQ i ent. set Fi nal Message() method to demarcate the end of a unit (just
before sending the actual final request via an invocation on
the client instance). In sone cases, notably when the client code represents
an intermediary in the processing of nessages, the client code may not be
avare of any natural unit of work. In the past, if no business unit of work
coul d be determned, clients often just created the client instance, sent the
single current message they had, and then allowed the sequence to termnate.
This is functionally workable, but very inefficient. These clients pay the
cost of an RM sequence handshake and termination for every nessage they send.
The Bat chi ngRn i ent W apper class can be used to introduce an artificial
unit of work (a batch) when no natural business unit of work is available.
<p>
Each instance of BatchingRrClientWapper is a wapper instance around a
client instance (port or Dispatch instance). This wapper can be used to
obtain a Proxy instance that can be used in place of the original client
instance. This allows this class to perform batching operations conpletely
invisibly fromthe perspective of the client code.
<p>
This class is used for batching reliable requests into
bat ches of a given max size that will survive for a given maxinmm
duration. If a batch fills up or tinmes out, it is ended, causing the
RM sequence it represents to be ended/terninated. The timeout ensures that
if the flow of incoming requests stops the batch/sequence will still
end in atinely manner.
/

public class Batchi ngRrd i ent Wapper <T>

i npl ements | nvocationHandl er {

private O ass<T> _clazz;
private int _batchSize;
private long _maxBatchLifetimeMIlis;
private T _clientlnstance;
private PrintWiter _out;
private WrnClient _rnCient;
private int _num nCurrentBatch;
private int _batchNum

private Timer _tiner;

private bool ean _cl osed,;
private bool ean _proxyCreated;

/**

* Create a wapper instance for batching reliable requests into

* batches of the given max size that will survive for the given maxi mum

* duration. If a batch fills up or times out, it is ended, causing the

* RM sequence it represents to be ended/term nated.

* @aramclientinstance The client instance that acts as the source object

* for the batching proxy created by the createProxy() nethod. This

* is the port/Dispatch instance returned fromthe call to

* get Port/createDi spatch. The Batchi ngRrCl i ent Wapper will take over

* responsibility for managing the interaction with and cl eanup of

* the client instance via the proxy created from createProxy.

* @aramclazz of the proxy instance we'll be creating in createProxy.

* This should be the class of the port/Dispatch instance you woul d

* use to invoke operations on the service. BatchingRrCientWapper will
* create (via createProxy) a proxy of the given type that can be

* used in place of the original client instance.

ORACLE B-2



Appendix B

* (@aram bat chSi ze Max nunber of requests to put into a batch. If the

* max nunber of requests are sent for a given batch, that batch is
* ended (ending/termnating the sequence it represents) and a new

* batch is started.

* @aram naxBat chLifetinme A duration value (in the Iexical form supported
* by java.util.Duration, e.g. PT30S for 30 seconds) representing

* the maxi numtime a batch should exist. If the batch exists |onger
* than this tine, it is ended and a new batch is begun.

* @aramout A print streamthat can be used to print diagnostic and

* status messages.

*|

publ i ¢ BatchingRMC i ent Wapper (T clientlnstance, O ass<T> clazz,
int batchSize, String maxBatchLifetine,
PrintStreamout) {
_clazz = clazz;
_batchSi ze = batchSi ze;
try {
if (maxBatchLifetime == null) {
maxBat chLi fetime = "PT5M';
1
Duration duration =
Dat at ypeFact ory. newl nst ance() . newDur ati on( nmaxBat chLi feti ne);
_maxBatchLifetimeMIlis = duration.getTimelnMIlis(new Date());
} catch (Exception e) {
throw new Runti meException(e.toString(), e);
}
_clientlnstance = clientlnstance;
_out = new PrintWiter(out, true);
_rnClient = WérnCientFactory.get\VrnCientFronPort(_clientlnstance);
_closed = fal se;
_proxyCreated = fal se;
_timer = new Tiner(true);
_tiner.schedul e(new Ti mer Task() {
@verride
public void run() {
term nat eOr EndBat ch() ;
1

}, _maxBatchLifetinmeMIlis);

}

/**
* Creates the dynamic proxy that should be used in place of the client
* instance used to create this BatchingRC ientWapper instance. This nethod
* shoul d be called only once per BatchingRrC ient W apper.
*|
public T createProxy() {
if (_proxyCreated) {
throw new I |1 egal StateException("A ready created the proxy for this Batchi ngRnC ient W apper
instance which waps the client instance: " + _clientlnstance);
}
_proxyCreated = true;
return (T) Proxy.newProxylnstance(get Cl ass().getd assLoader(),
new O ass[] {
_clazz,
Bi ndi ngProvi der. cl ass,
java.io.d oseable.class
}, this);
1

private void termnateO EndBatch() {
synchroni zed( _cl i entlnstance) {

ORACLE B-3



Appendix B

if (_rnCient.getSequenceld() !'= null) {
if (termnateBatchAl lowed()) {
_out.printIn("Termnating batch " + _batchNum + " sequence (" + _
rnClient.getSequenceld() + ") for " + _clientlnstance);

try {
_rnCient.term nat eSequence();

} catch (Exception e) {
e.printStackTrace(_out);

} else {

_out.printIn("Batch " + _batchNum+ " sequence (" + _rnCient.getSequenceld() + ")
for " + _clientlnstance + " tinmed out but has outstanding requests to send and
cannot be terninated now');

}
1
endBat ch() ;
}
1

/**
* Check to see if we have acks for all requests sent. If so,
* we can termnate.
*/
private bool ean term nateBat chAl | owed() {
try {
synchroni zed(_clientlnstance) {
if (_rnCient.getSequenceld() '=null) {
long maxMsgNum = _rnC i ent. get Mbst Recent MessageNunber () ;
if (maxMsgNum < 1) {
/1 No messages sent, go ahead and terninate.
return true;
1
Sort edSet <MessageRange> ranges = _rnCient. get AckRanges();
ong maxAck = -1;
bool ean hasGaps = fal se;
| ong | ast RangeUpper = -1;
for (MessageRange range: ranges) {
if (lastRangeUpper > 0) {
if (range.lowerBounds != | astRangeUpper + 1) {
hasGaps = true;

1
} else {

| ast RangeUpper = range. upper Bounds;
}
maxAck = range. upper Bounds;

1
return ! (hasGaps || maxAck < maxMsgNunm);

}

} catch (Exception e) {
e.printStackTrace(_out);

}

return true,;

}

private void endBatch() {
synchroni zed( _cl i entInstance) {
if (_numnCurrentBatch > 0) {
_out.println("Ending batch " + _batchNum + " sequence (" + _rnClient.getSequenceld() + ")
for " + _clientInstance + "...");

ORACLE B-4



Appendix B

/**
* rnClient.reset() resets a rnClient instance (and the client instance it represents)
* so it can track a new Ws-RM sequence for the next invoke on the client
* instance. This nethod effectively *di sconnects* the RM sequence fromthe
* client instance and lets them continue/conplete separately.
*|
_rnClient.reset();
_num nCurrentBatch = 0;
if (!_closed) {
_tiner.schedul e(new Ti mer Task() {
@verride
public void run() {
term nat eOr EndBat ch() ;
1
}, _maxBatchLifetineMIlis);
1
}
1

public Object invoke(Chject proxy, Method nethod, Object[] args)
throws Throwabl e {
bool ean operationl nvoke = nethod. get Decl aringC ass() == _cl azz;
bool ean cl oseabl el nvoke = met hod. get Decl ari ngQ ass() ==
java.io.Cd oseabl e.cl ass;
bool ean endOfBatch = fal se;
if (operationlnvoke) {
synchroni zed(_clientlnstance) {
/1 Check our batch size
if (_numnCurrentBatch == 0) {
_bat chNumt+;

endOf Batch = _num nCurrentBatch >= _batchSize - 1,

if (endOf Batch) {
_rnClient.setFinal Message();

}

_out.printIn("Mking " + (endOfBatch ? "final " : "") + "invoke " +
(_num nCurrentBatch+1) + " of batch " + _batchNum+ " sequence (" + _
rnCient.get Sequenceld() + ") with operation: " + method. get Nane());

} else if (closeablelnvoke & nethod. get Nane(). equal s("close")) {
synchroni zed(_clientlnstance) {
/1 Make sure we don't try to schedule the tinmer anynore
_closed = true;
_timer.cancel ();
1
}

oj ect ret = nethod.invoke(_clientlnstance, args);
i f (operationlnvoke) {
synchroni zed(_clientlnstance) {
_num nCurrent Bat ch++;
if (endOfBatch) {
endBat ch() ;
}
}
}

return ret,

ORACLE B-5



Migrating JAX-RPC Web Services and
Clients to JAX-WS

This appendix describes how to migrate Java API for XML-based RPC (JAX-RPC)
web services and clients to Java API for XML-based Web Services (JAX-WS).

When migrating your JAX-RPC web services, to preserve the original WSDL file, use
the top-down approach, starting from a WSDL file, to generate the JAX-WS web
service. For more information, see Developing WebLogic Web Services Starting From
a WSDL File: Main Steps.

" Note:

In some cases, a JAX-RPC feature may not be supported currently by JAX-
WS. In this case, the application cannot be migrated unless it is re-
architected.

The following table summarizes the topics that are covered.

Table C-1 Tips for Migrating JAX-RPC Web Services and Clients to JAX-WS

____________________________________________________________________________________________|]
Topic Description

Setting the Final Context Describes the methods that can be used to set the final context root of a WebLogic web
Root of a WebLogic Web service. The use of @WLXXXTransport JWS annotations is not supported for JAX-WS;
Service these annotations are supported by JAX-RPC only.

Using WebLogic-specific Describes the WebLogic-specific annotations that are supported by JAX-WS.
Annotations

Generating a WSDL File Describes how to generate a WSDL file when you are generating a JAX-WS web
service using the jwsc Ant task.

Using JAXB Custom Describes the use of Java Architecture for XML Binding (JAXB) for managing all of the
Types data binding tasks.
Using EJB 3.0 Describes changes in EJB 3.0 from EJB 2.1. JAX-WS supports EJB 3.0. JAX-RPC

supports EJB 2.1 only.

Migrating from RPC Style Provides guidelines for setting the SOAP binding. RPC style is supported, but not
SOAP Binding recommended for JAX-WS.

Updating SOAP Message Explains how you must re-write your JAX-RPC SOAP message handlers when
Handlers migrating to JAX-WS.

Invoking JAX-WS Clients Explains how you must re-write your JAX-RPC client to invoke JAX-WS clients.

ORACLE C-1



Appendix C
Setting the Final Context Root of a WebLogic Web Service

C.1 Setting the Final Context Root of a WebLogic Web

Service

You can set the final context root of a WebLogic web service using a variety of
methods, as described in Specifying the Transport Used to Invoke the Web Service in
Oracle Fusion Middleware Developing JAX-RPC Web Services for Oracle WebLogic
Server.

As described in this section, when defining a JAX-RPC web service, you can use the
@WLXXXTransport JWS annotations to specify the context root. For JAX-WS web
services, the @WLXXXTransport JWS annotations are not valid. If used in the JAX-
RPC web service, the JWS file needs to be updated to remove the annotations in favor
of one of the other methods.

C.2 Using WebLogic-specific Annotations

JAX-WS supports the following WebLogic-specific annotations:
e @Policy

«  @Policies

e @SecurityPolicy

e @SecurityPolicies

e @WssConfiguration

All other WebLogic-specific annotations must be removed from your JAX-RPC
applications when migrating to JAX-WS. For more information, see WebLogic-specific
Annotations in WebLogic Web Services Reference for Oracle WebLogic Server.

C.3 Generating a WSDL File

When you run the jwsc file on a JAX-RPC web service, a WSDL file is generated in the
specified output directory. For JAX-WS web services, the WSDL file is generated
when the service endpoint is deployed. In order to generate a WSDL file in the output
directory, you must specify the wsdlOnly attribute of the <jws> child element of the
jwsc Ant task. For more information, see jwsc in the WebLogic Web Services
Reference for Oracle WebLogic Server.

C.4 Using JAXB Custom Types

JAX-WS uses Java Architecture for XML Binding (JAXB), described at http://
jcp.org/en/jsr/detail ?i d=222, to manage all of the data binding tasks. If your
application supports custom types using XMLBeans or Tylar, you will need to modify
them to use JAXB. For more information about using JAXB, see Using JAXB Data
Binding.

C.5 Using EJB 3.0

ORACLE

JAX-WS supports EJB 3.0. JAX-RPC supports EJB 2.1 only.

C-2


http://jcp.org/en/jsr/detail?id=222
http://jcp.org/en/jsr/detail?id=222

Appendix C
Migrating from RPC Style SOAP Binding

EJB 3.0 introduced metadata annotations that enable you to automatically generate,
rather than manually create, the EJB Remote and Home interface classes and
deployment descriptor files needed when implementing an EJB.

For more information about EJB 3.0 bean class requirements and changes from 2.x,
see Programming the Bean File: Requirements and Changes from 2.X in Developing
Enterprise JavaBeans for Oracle WebLogic Server.

C.6 Migrating from RPC Style SOAP Binding

Use of the SOAPBInding.Style.RPC style, although supported, is not recommended
with JAX-WS. It is recommended that you change the style to
SOAPBInding.Style. DOCUMENT.

C.7 Updating SOAP Message Handlers

Although the SOAP APIs are similar, JAX-RPC SOAP handlers will need to be
modified to run with JAX-WS. For more information, see Sending and Receiving SOAP
Headers.

C.8 Invoking JAX-WS Clients

JAX-RPC clients will need to be re-written as the JAX-RPC and JAX-WS client APIs
are completely different. For more information about writing JAX-WS clients, see
Developing Web Service Clients in Developing JAX-WS Web Services for Oracle
WebLogic Server.

ORACLE' C-3



	Contents
	Preface
	Documentation Accessibility
	Conventions

	What's New in This Guide
	New and Changed Features for 12c (12.2.1.x)
	New and Changed Features for 12c (12.2.1)

	Part I Introduction
	1 Introduction to JAX-WS Web Services
	1.1 Overview of JAX-WS Web Service Development
	1.1.1 The Programming Model—Metadata Annotations
	1.1.2 The Development Model—Bottom-up and Top-down
	1.1.2.1 Bottom-up Approach: Starting from Java
	1.1.2.2 Top-down Approach: Starting from WSDL


	1.2 Roadmap for Implementing JAX-WS Web Services

	2 Examples for JAX-WS Web Service Developers

	Part II Developing Basic JAX-WS Web Services
	3 Developing JAX-WS Web Services
	3.1 Overview of the WebLogic Web Service Programming Model
	3.2 Configuring Your Domain For Advanced Web Services Features
	3.2.1 Resources Required by Advanced Web Service Features
	3.2.2 Configuring a Domain for Advanced Web Service Features Using the Configuration Wizard
	3.2.2.1 Creating a Domain With the Web Services Extension Template
	3.2.2.2 Extending a Domain With the Web Services Extension Template

	3.2.3 Using WLST to Extend a Domain With the Web Services Extension Template
	3.2.4 Updating Resources Added After Extending Your Domain

	3.3 Developing WebLogic Web Services Starting From Java: Main Steps
	3.4 Developing WebLogic Web Services Starting From a WSDL File: Main Steps
	3.5 Creating the Basic Ant build.xml File
	3.6 Running the jwsc WebLogic Web Services Ant Task
	3.6.1 Specifying the Transport Used to Invoke the Web Service
	3.6.2 Defining the Context Path of a WebLogic Web Service
	3.6.3 Examples of Using jwsc

	3.7 Running the wsdlc WebLogic Web Services Ant Task
	3.8 Updating the Stubbed-out JWS Implementation Class File Generated By wsdlc
	3.9 Deploying and Undeploying WebLogic Web Services
	3.9.1 Using the wldeploy Ant Task to Deploy Web Services
	3.9.2 Using the Administration Console to Deploy Web Services

	3.10 Browsing to the WSDL of the Web Service
	3.11 Configuring the Server Address Specified in the Dynamic WSDL
	3.11.1 Web service is not a callback service and can be invoked using HTTP/S
	3.11.2 Web service is a callback service
	3.11.3 Web service is invoked using a proxy server

	3.12 Testing the Web Service
	3.13 Integrating Web Services Into the WebLogic Split Development Directory Environment

	4 Programming the JWS File
	4.1 Overview of JWS Files and JWS Annotations
	4.2 Java Requirements for a JWS File
	4.3 Programming the JWS File: Typical Steps
	4.3.1 Example of a JWS File
	4.3.2 Specifying that the JWS File Implements a Web Service (@WebService Annotation)
	4.3.3 Specifying the Mapping of the Web Service to the SOAP Message Protocol (@SOAPBinding Annotation)
	4.3.4 Specifying That a JWS Method Be Exposed as a Public Operation (@WebMethod and @OneWay Annotations)
	4.3.5 Customizing the Mapping Between Operation Parameters and WSDL Elements (@WebParam Annotation)
	4.3.6 Customizing the Mapping Between the Operation Return Value and a WSDL Element (@WebResult Annotation)
	4.3.7 Specifying the Binding to Use for an Endpoint (@BindingType Annotation)

	4.4 Accessing Runtime Information About a Web Service
	4.4.1 Accessing the Protocol Binding Context
	4.4.2 Accessing the Web Service Context
	4.4.3 Using the MessageContext Property Values

	4.5 Should You Implement a Stateless or Singleton Session EJB?
	4.6 Programming the User-Defined Java Data Type
	4.7 Invoking Another Web Service from the JWS File
	4.8 Using SOAP 1.2
	4.9 Validating the XML Schema
	4.9.1 Enabling Schema Validation on the Server
	4.9.2 Enabling Schema Validation on the Client

	4.10 JWS Programming Best Practices

	5 Using JAXB Data Binding
	5.1 Overview of Data Binding Using JAXB
	5.2 Developing the JAXB Data Binding Artifacts
	5.3 Standard Data Type Mapping
	5.3.1 Supported Built-In Data Types
	5.3.1.1 XML-to-Java Mapping for Built-in Data Types
	5.3.1.1.1 XML Schema
	5.3.1.1.2 Default Java Binding

	5.3.1.2 Java-to-XML Mapping for Built-In Data Types

	5.3.2 Supported User-Defined Data Types
	5.3.2.1 Supported XML User-Defined Data Types
	5.3.2.2 Supported Java User-Defined Data Types


	5.4 Customizing Java-to-XML Schema Mapping Using JAXB Annotations
	5.4.1 Example of JAXB Annotations
	5.4.2 Specifying Default Serialization of Fields and Properties (@XmlAccessorType Annotation)
	5.4.3 Mapping Properties to Local Elements (@XmlElement)
	5.4.4 Specifying the MIME Type (@XmlMimeType Annotation)
	5.4.5 Mapping a Top-level Class to a Global Element (@XmlRootElement)
	5.4.6 Binding a Set of Classes (@XmlSeeAlso)
	5.4.7 Mapping a Value Class to a Schema Type (@XmlType)

	5.5 Customizing XML Schema-to-Java Mapping Using Binding Declarations
	5.5.1 Creating an External Binding Declarations File
	5.5.1.1 Creating an External Binding Declarations File Using JAX-WS Binding Declarations
	5.5.1.1.1 Specifying the Root Element
	5.5.1.1.2 Specifying Child Elements

	5.5.1.2 Creating an External Binding Declarations File Using JAXB Binding Declarations
	5.5.1.2.1 Specifying the Root Element
	5.5.1.2.2 Specifying Child Elements


	5.5.2 Embedding Binding Declarations
	5.5.2.1 Embedding JAX-WS or JAXB Binding Declarations in the WSDL File
	5.5.2.2 Embedding JAXB Binding Declarations in the XML Schema

	5.5.3 JAX-WS Custom Binding Declarations
	5.5.4 JAXB Custom Binding Declarations

	5.6 Using the Glassfish RI JAXB Data Binding and JAXB Providers
	5.6.1 Configuring Global Server-Level Data Binding and JAXB Providers
	5.6.2 Configuring Application-Level Data Binding and JAXB Providers
	5.6.3 Configuring Java System Properties for JAXB


	6 Examples of Developing JAX-WS Web Services
	6.1 Creating a Simple HelloWorld Web Service
	6.1.1 Sample HelloWorldImpl.java JWS File
	6.1.2 Sample Ant Build File for HelloWorldImpl.java

	6.2 Creating a Web Service With User-Defined Data Types
	6.2.1 Sample BasicStruct JavaBean
	6.2.2 Sample ComplexImpl.java JWS File
	6.2.3 Sample Ant Build File for ComplexImpl.java JWS File

	6.3 Creating a Web Service from a WSDL File
	6.3.1 Sample WSDL File
	6.3.2 Sample TemperatureService_TemperaturePortImpl Java Implementation File
	6.3.3 Sample Ant Build File for TemperatureService



	Part III Developing Basic JAX-WS Web Service Clients
	7 Roadmap for Developing JAX-WS Web Service Clients
	8 Developing Web Service Clients
	8.1 Overview of WebLogic Web Services Client Development
	8.2 Invoking a Web Service from a Java SE Client
	8.2.1 Using the clientgen Ant Task To Generate Client Artifacts
	8.2.2 Getting Information About a Web Service
	8.2.3 Writing the Java Client Application Code to Invoke a Web Service
	8.2.4 Compiling and Running the Client Application
	8.2.5 Sample Ant Build File for a Java Client

	8.3 Invoking a Web Service from a Standalone Java SE Client
	8.4 Invoking a Web Service from Another WebLogic Web Service
	8.4.1 Sample build.xml File for a Web Service Client
	8.4.2 Sample JWS File That Invokes a Web Service

	8.5 Configuring Web Service Clients
	8.6 Defining a Web Service Reference Using the @WebServiceRef Annotation
	8.7 Managing Client Identity
	8.7.1 Defining the Client ID During Port Initialization
	8.7.2 Accessing the Server-generated Client ID
	8.7.3 Client Identity Lifecycle

	8.8 Using a Proxy Server When Invoking a Web Service
	8.8.1 Using the ClientProxyFeature API to Specify the Proxy Server
	8.8.2 Using System Properties to Specify the Proxy Server

	8.9 Client Considerations When Redeploying a Web Service
	8.10 Client Considerations When Web Service and Client Are Deployed to the Same Managed Server

	9 Examples of Developing JAX-WS Web Service Clients
	9.1 Developing a JAX-WS Java SE Client
	9.1.1 Sample Java Client Application
	9.1.2 Sample Ant Build File For Building Java Client Application

	9.2 Invoking a Web Service from a WebLogic Web Service
	9.2.1 Sample ClientServiceImpl.java JWS File
	9.2.2 Sample Ant Build File For Building ClientService



	Part IV  Developing Advanced Features of JAX-WS Web Services
	10 Using Web Services Addressing
	10.1 Overview of WS-Addressing
	10.2 Enabling WS-Addressing on the Web Service
	10.2.1 Enabling WS-Addressing on the Web Service (Starting From Java)
	10.2.2 Enabling WS-Addressing on the Web Service (Starting from WSDL)

	10.3 Enabling WS-Addressing on the Web Service Client
	10.3.1 Explicitly Enabling WS-Addressing on the Web Service Client
	10.3.2 Implicitly Enabling WS-Addressing on the Web Service Client
	10.3.3 Disabling WS-Addressing on the Web Service Client

	10.4 Associating WS-Addressing Action Properties
	10.4.1 Explicitly Associating WS-Addressing Action Properties (Starting from Java)
	10.4.2 Explicitly Associating WS-Addressing Action Properties (Starting from WSDL)
	10.4.3 Implicitly Associating WS-Addressing Action Properties

	10.5 Configuring Anonymous WS-Addressing

	11 Roadmap for Developing Asynchronous Web Service Clients
	12 Developing Asynchronous Clients
	12.1 Overview of Asynchronous Web Service Invocation
	12.2 Steps to Invoke Web Services Asynchronously
	12.3 Configuring Your Servers for Asynchronous Web Service Invocation
	12.4 Building the Client Artifacts for Asynchronous Web Service Invocation
	12.5 Developing Scalable Asynchronous JAX-WS Clients (Asynchronous Client Transport)
	12.5.1 Enabling and Configuring the Asynchronous Client Transport Feature
	12.5.1.1 Configuring the Address of the Asynchronous Response Endpoint
	12.5.1.2 Configuring the ReplyTo and FaultTo Headers of the Asynchronous Response Endpoint
	12.5.1.3 Configuring the Context Path of the Asynchronous Response Endpoint
	12.5.1.4 Publishing the Asynchronous Response Endpoint
	12.5.1.5 Configuring Asynchronous Client Transport for Synchronous Operations

	12.5.2 Developing the Asynchronous Handler Interface
	12.5.3 Propagating User-defined Request Context to the Response

	12.6 Using Asynchronous Web Service Clients From Behind a Firewall (Make Connection)
	12.6.1 Enabling and Configuring Make Connection on a Web Service
	12.6.1.1 Creating the Web Service Make Connection WS-Policy File (Optional)
	12.6.1.2 Programming the JWS File to Enable Make Connection

	12.6.2 Enabling and Configuring Make Connection on a Web Service Client
	12.6.2.1 Configuring the Expiration Time for Sending Make Connection Messages
	12.6.2.2 Configuring the Polling Interval
	12.6.2.3 Configuring the Exponential Backoff
	12.6.2.4 Configuring Make Connection as the Transport for Synchronous Methods


	12.7 Using the JAX-WS Reference Implementation
	12.8 Propagating Request Context to the Response
	12.9 Monitoring Asynchronous Web Service Invocation
	12.10 Clustering Considerations for Asynchronous Web Service Messaging

	13 Roadmap for Developing Reliable Web Services and Clients
	13.1 Roadmap for Developing Reliable Web Service Clients
	13.2 Roadmap for Developing Reliable Web Services
	13.3 Roadmap for Accessing Reliable Web Services from Behind a Firewall (Make Connection)
	13.4 Roadmap for Securing Reliable Web Services

	14 Using Web Services Reliable Messaging
	14.1 Overview of Web Services Reliable Messaging
	14.1.1 Using WS-Policy to Specify Reliable Messaging Policy Assertions
	14.1.2 Supported Transport Types for Reliable Messaging
	14.1.3 The Life Cycle of the Reliable Message Sequence
	14.1.4 Reliable Messaging Failure Recovery Scenarios
	14.1.4.1 RM Destination Down Before Request Arrives
	14.1.4.2 RM Source Down After Request is Made
	14.1.4.3 RM Destination Down After Request Arrives
	14.1.4.4 Failure Scenarios with Non-buffered Reliable Web Services


	14.2 Steps to Create and Invoke a Reliable Web Service
	14.3 Configuring the Source and Destination WebLogic Server Instances
	14.4 Creating the Web Service Reliable Messaging WS-Policy File
	14.4.1 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Versions 1.2 and 1.1
	14.4.2 Creating a Custom WS-Policy File Using WS-ReliableMessaging Policy Assertions Version 1.0 (Deprecated)
	14.4.3 Using Multiple Policy Alternatives

	14.5 Programming Guidelines for the Reliable JWS File
	14.6 Invoking a Reliable Web Service from a Web Service Client
	14.7 Configuring Reliable Messaging
	14.7.1 Configuring Reliable Messaging on WebLogic Server
	14.7.1.1 Using the Administration Console
	14.7.1.2 Using WLST

	14.7.2 Configuring Reliable Messaging on the Web Service Endpoint
	14.7.3 Configuring Reliable Messaging on Web Service Clients
	14.7.4 Configuring the Base Retransmission Interval
	14.7.4.1 Configuring the Base Retransmission Interval on WebLogic Server or the Web Service Endpoint
	14.7.4.2 Configuring the Base Retransmission Interval on the Web Service Client

	14.7.5 Configuring the Retransmission Exponential Backoff
	14.7.5.1 Configuring the Retransmission Exponential Backoff on WebLogic Server or Web Service Endpoint
	14.7.5.2 Configuring the Retransmission Exponential Backoff on the Web Service Client

	14.7.6 Configuring the Sequence Expiration
	14.7.6.1 Configuring the Sequence Expiration on WebLogic Server or Web Service Endpoint
	14.7.6.2 Configuring the Sequence Expiration on the Web Service Client

	14.7.7 Configuring Inactivity Timeout
	14.7.7.1 Configuring the Inactivity Timeout on WebLogic Server or Web Service Endpoint
	14.7.7.2 Configuring the Inactivity Timeout on the Web Service Client

	14.7.8 Configuring a Non-buffered Destination for a Web Service
	14.7.9 Configuring the Acknowledgement Interval

	14.8 Implementing the Reliability Error Listener
	14.9 Managing the Life Cycle of a Reliable Message Sequence
	14.9.1 Managing the Reliable Sequence
	14.9.1.1 Getting and Setting the Reliable Sequence ID
	14.9.1.2 Accessing the State of the Reliable Sequence

	14.9.2 Managing the Client ID
	14.9.3 Managing the Acknowledged Requests
	14.9.4 Accessing Information About a Message
	14.9.5 Identifying the Final Message in a Reliable Sequence
	14.9.6 Closing the Reliable Sequence
	14.9.7 Terminating the Reliable Sequence
	14.9.8 Resetting a Client to Start a New Message Sequence

	14.10 Monitoring Web Services Reliable Messaging
	14.11 Grouping Messages into Business Units of Work (Batching)
	14.12 Client Considerations When Redeploying a Reliable Web Service
	14.13 Interoperability with WebLogic Web Service Reliable Messaging

	15 Using Web Services Atomic Transactions
	15.1 Overview of Web Services Atomic Transactions
	15.2 Configuring the Domain Resources Required for Web Service Advanced Features
	15.3 Enabling the Web Services Atomic Transactions Feature
	15.4 Enabling Web Services Atomic Transactions on Web Services
	15.4.1 Using the @Transactional Annotation in Your JWS File
	15.4.1.1 Example: Using @Transactional Annotation on a Web Service Class
	15.4.1.2 Example: Using @Transactional Annotation on a Web Service Method
	15.4.1.3 Example: Using the @Transactional and the EJB @TransactionAttribute Annotations Together

	15.4.2 Enabling Web Services Atomic Transactions Starting From WSDL

	15.5 Enabling Web Services Atomic Transactions on Web Service Clients
	15.5.1 Using @Transactional Annotation with the @WebServiceRef Annotation
	15.5.2 Passing the TransactionalFeature to the Client

	15.6 Configuring Web Services Atomic Transactions Using the Administration Console
	15.6.1 Securing Messages Exchanged Between the Coordinator and Participant
	15.6.2 Enabling and Configuring Web Services Atomic Transactions

	15.7 Using Web Services Atomic Transactions in a Clustered Environment
	15.8 More Examples of Using Web Services Atomic Transactions

	16 Optimizing XML Transmission Using Fast Infoset
	16.1 Overview of Fast Infoset
	16.2 Enabling Fast Infoset on Web Services
	16.3 Enabling and Configuring Fast Infoset on Web Services Clients
	16.3.1 Configuring the Content Negotiation Strategy
	16.3.2 Example Using @FastInfosetClient Annotation at Design Time
	16.3.3 Example Using FastInfosetClientFeature Feature Class at Design Time

	16.4 Disabling Fast Infoset on Web Services and Clients

	17 Using SOAP Over JMS Transport
	17.1 Overview of SOAP Over JMS Transport
	17.2 Configuring the WebLogic Server Domain for JMS Transport
	17.3 Developing Web Services Using JMS Transport—Starting From Java
	17.3.1 Using the @JMSTransportService Annotation
	17.3.2 Using the <jmstransportservice> Child Element in the Ant build.xml File

	17.4 Developing Web Services Using JMS Transport—Starting From WSDL
	17.4.1 Updating the WSDL to Use JMS Transport
	17.4.1.1 Enabling JMS Transport at the WSDL Binding Level
	17.4.1.2 Configuring JMS Transport Properties in the WSDL
	17.4.1.3 Example of Enabling JMS Transport in WSDL


	17.5 Invoking a WebLogic Web Service Using JMS Transport
	17.5.1 Using the <jmstransportclient> Element in the Ant build.xml File
	17.5.2 Using the @JMSTransportClient Annotation
	17.5.3 Using the JMSTransportClientFeature Client API
	17.5.4 Configuring the JMS URI as the Target Endpoint Address
	17.5.5 Using AsyncClientTransportFeature to Configure Asynchronous Clients

	17.6 Configuring JMS Transport Properties
	17.6.1 Summary of JMS Transport Configuration Properties
	17.6.2 Configuration Methods and Order of Precedence
	17.6.3 Configuring JMS Transport Using the Administration Console
	17.6.4 Configuring JMS Transport Using WLST
	17.6.5 Configuring the JMS URI
	17.6.6 Configuring the JMS Request URI
	17.6.7 Configuring the WS-Addressing Headers
	17.6.8 Configuring the JMS Response Queue
	17.6.9 Configuring the JMS Message Type
	17.6.10 Configuring HTTP Access to the WSDL File

	17.7 Monitoring SOAP Over JMS Transport

	18 Creating and Using SOAP Message Handlers
	18.1 Overview of SOAP Message Handlers
	18.2 Adding Server-side SOAP Message Handlers: Main Steps
	18.3 Adding Client-side SOAP Message Handlers: Main Steps
	18.4 Designing the SOAP Message Handlers and Handler Chains
	18.4.1 Server-side Handler Execution
	18.4.2 Client-side Handler Execution

	18.5 Creating the SOAP Message Handler
	18.5.1 Example of a SOAP Handler
	18.5.2 Example of a Logical Handler
	18.5.3 Implementing the Handler.handleMessage() Method
	18.5.4 Implementing the Handler.handleFault() Method
	18.5.5 Implementing the Handler.close() Method
	18.5.6 Using the Message Context Property Values and Methods
	18.5.7 Directly Manipulating the SOAP Request and Response Message Using SAAJ
	18.5.7.1 The SOAPPart Object
	18.5.7.2 The AttachmentPart Object
	18.5.7.3 Manipulating Image Attachments in a SOAP Message Handler


	18.6 Configuring Handler Chains in the JWS File
	18.7 Creating the Handler Chain Configuration File
	18.8 Compiling and Rebuilding the Web Service
	18.9 Configuring the Client-side SOAP Message Handlers

	19 Handling Exceptions Using SOAP Faults
	19.1 Overview of Exception Handling Using SOAP Faults
	19.2 Contents of the SOAP Fault Element
	19.2.1 SOAP 1.2 <Fault> Element Contents
	19.2.2 SOAP 1.1 <Fault> Element Contents

	19.3 Using Modeled Faults
	19.3.1 Creating and Using a Custom Exception
	19.3.2 How Modeled Faults are Mapped in the WSDL File
	19.3.3 How the Fault is Communicated in the SOAP Message
	19.3.4 Creating the Web Service Client
	19.3.4.1 Reviewing the Generated Java Exception Class
	19.3.4.2 Reviewing the Generated Java Fault Bean Class
	19.3.4.3 Reviewing the Client-side Service Implementation
	19.3.4.4 Creating the Client Implementation Class


	19.4 Using Unmodeled Faults
	19.5 Customizing the Exception Handling Process
	19.6 Disabling the Stack Trace from the SOAP Fault
	19.7 Other Exceptions

	20 Optimizing Binary Data Transmission
	20.1 Optimizing Binary Data Transmission Optimization Using MTOM/XOP
	20.1.1 Annotating the Data Types
	20.1.1.1 Annotating the Data Types: Start From Java
	20.1.1.2 Annotating the Data Types: Start From WSDL

	20.1.2 Enabling MTOM on the Web Service
	20.1.2.1 Enabling MTOM on the Web Service Using Annotation
	20.1.2.2 Enabling MTOM on the Web Services by Attaching a WS-Policy File

	20.1.3 Enabling MTOM on the Client
	20.1.4 Setting the Attachment Threshold
	20.1.5 Enabling HTTP Chunking

	20.2 Streaming SOAP Attachments
	20.2.1 Client Side Example
	20.2.2 Server Side Example
	20.2.3 Configuring Streaming SOAP Attachments
	20.2.3.1 Configuring Streaming SOAP Attachments on the Server
	20.2.3.2 Configuring Streaming SOAP Attachments on the Client


	20.3 Sending SOAP Messages With Attachments Using swaRef

	21 Managing Web Service Persistence
	21.1 Overview of Web Service Persistence
	21.2 Roadmap for Configuring Web Service Persistence
	21.3 Configuring Web Service Persistence
	21.3.1 Configuring the Logical Store
	21.3.2 Configuring Web Service Persistence for a Web Service Endpoint
	21.3.3 Configuring Web Service Persistence for Web Service Clients

	21.4 Using Web Service Persistence in a Cluster
	21.5 Cleaning Up Web Service Persistence

	22 Configuring Message Buffering for Web Services
	22.1 Overview of Message Buffering
	22.2 Configuring Messaging Buffering
	22.2.1 Configuring the Request Queue
	22.2.2 Configuring the Response Queue
	22.2.3 Configuring Message Retry Count and Delay


	23 Managing Web Services in a Cluster
	23.1 Overview of Web Services Cluster Routing
	23.2 Cluster Routing Scenarios
	23.2.1 Scenario 1: Routing a Web Service Response to a Single Server
	23.2.2 Scenario 2: Routing Web Service Requests to a Single Server Using Routing Information
	23.2.3 Scenario 3: Routing Web Service Requests to a Single Server Using an ID

	23.3 How Web Service Cluster Routing Works
	23.3.1 Adding Routing Information to Outgoing Requests
	23.3.2 Detecting Routing Information in Incoming Requests
	23.3.3 Routing Requests Within the Cluster
	23.3.4 Maintaining the Routing Map on the Front-end SOAP Router
	23.3.4.1 X-weblogic-wsee-storetoserver-list HTTP Response Header
	23.3.4.2 X-weblogic-wsee-storetoserver-hash HTTP Response Header


	23.4 Configuring Web Services in a Cluster
	23.4.1 Setting Up the WebLogic Cluster
	23.4.2 Configuring the Domain Resources Required for Web Service Advanced Features in a Clustered Environment
	23.4.3 Extending the Front-end SOAP Router to Support Web Services
	23.4.4 Enabling Routing of Web Services Atomic Transaction Messages
	23.4.5 Enabling Routing of Web Services Make Connection Messages
	23.4.6 Configuring the Identity of the Front-end SOAP Router
	23.4.7 Configuring the Identity of the Front-end SOAP Router Using Network Channels

	23.5 Monitoring Cluster Routing Performance

	24 Using Provider-based Endpoints and Dispatch Clients to Operate on SOAP Messages
	24.1 Overview of Web Service Provider-based Endpoints and Dispatch Clients
	24.2 Usage Modes and Message Formats for Operating at the XML Level
	24.3 Developing a Web Service Provider-based Endpoint (Starting from Java)
	24.3.1 Developing a Synchronous Provider-based Endpoint
	24.3.2 Developing an Asynchronous Provider-based Endpoint
	24.3.3 Specifying the Message Format
	24.3.4 Specifying that the JWS File Implements a Web Service Provider (@WebServiceProvider Annotation)
	24.3.5 Specifying the Usage Mode (@ServiceMode Annotation)
	24.3.6 Defining the invoke() Method for a Synchronous Provider-based Endpoints
	24.3.7 Defining the invoke() Method for an Asynchronous Provider-based Endpoints
	24.3.8 Defining the Callback Handler for the Asynchronous Provider-based Endpoint

	24.4 Developing a Web Service Provider-based Endpoint (Starting from WSDL)
	24.5 Using SOAP Handlers with Provider-based Endpoints
	24.6 Developing a Web Service Dispatch Client
	24.6.1 Example of a Web Service Dispatch Client
	24.6.2 Creating a Dispatch Instance
	24.6.3 Invoking a Web Service Operation


	25 Sending and Receiving SOAP Headers
	25.1 Overview of Sending and Receiving SOAP Headers
	25.2 Sending SOAP Headers Using WSBindingProvider
	25.3 Receiving SOAP Headers Using WSBindingProvider

	26 Using Callbacks
	26.1 Overview of Callbacks
	26.2 Example Callback Implementation
	26.3 Steps to Program Callbacks
	26.4 Programming Guidelines for Target Web Service
	26.5 Programming Guidelines for the Callback Client Web Service
	26.6 Programming Guidelines for the Callback Web Service
	26.7 Updating the build.xml File for the Target Web Service

	27 Developing Dynamic Proxy Clients
	27.1 Overview of Static Versus Dynamic Proxy Clients
	27.2 Steps to Develop a Dynamic Proxy Client
	27.3 Additional Considerations When Specifying WSDL Location

	28 Publishing a Web Service Endpoint
	29 Using XML Catalogs
	29.1 Overview of XML Catalogs
	29.2 Defining and Referencing XML Catalogs
	29.2.1 Defining an External XML Catalog
	29.2.1.1 Creating an External XML Catalog File
	29.2.1.2 Referencing the External XML Catalog File

	29.2.2 Embedding an XML Catalog
	29.2.2.1 Creating an Embedded XML Catalog
	29.2.2.2 Referencing an Embedded XML Catalog


	29.3 Disabling XML Catalogs in the Client Runtime
	29.4 Getting a Local Copy of XML Resources

	30 Programming Web Services Using XML Over HTTP
	30.1 About Programming Web Services Using XML Over HTTP
	30.2 Programming Guidelines for the Web Service Using XML Over HTTP
	30.3 Accessing the Web Service from a Client
	30.4 Securing Web Services that Use XML Over HTTP

	31 Programming Stateful JAX-WS Web Services Using HTTP Session
	31.1 Overview of Stateful Web Services
	31.2 Accessing HTTP Session on the Server
	31.3 Enabling HTTP Session on the Client
	31.4 Developing Stateful Services in a Cluster Using Session State Replication
	31.5 A Note About the JAX-WS RI @Stateful Extension

	32 Testing and Monitoring Web Services
	32.1 Testing Web Services
	32.2 Monitoring Web Services and Clients
	32.2.1 Monitoring Web Services
	32.2.2 Monitoring Web Service Clients

	32.3 Using Work Managers to Prioritize Web Services Work and Reduce Stuck Execute Threads


	Part V Reference
	A Pre-packaged WS-Policy Files for Web Services Reliable Messaging and Make Connection
	A.1 DefaultReliability1.2.xml (WS-Policy File)
	A.2 DefaultReliability1.1.xml (WS-Policy File)
	A.3 DefaultReliability.xml WS-Policy File (WS-Policy) [Deprecated]
	A.4 LongRunningReliability.xml WS-Policy File (WS-Policy) [Deprecated]
	A.5 Mc1.1.xml (WS-Policy File)
	A.6 Mc.xml (WS-Policy File)
	A.7 Reliability1.2_ExactlyOnce_WithMC1.1.xml (WS-Policy File)
	A.8 Reliability1.2_SequenceSTR.xml (WS-Policy File)
	A.9 Reliability1.1_SequenceSTR.xml (WS-Policy File)
	A.10 Reliability1.2_SequenceTransportSecurity.xml (WS-Policy File)
	A.11 Reliability1.1_SequenceTransportSecurity.xml (WS-Policy File)
	A.12 Reliability1.0_1.2.xml (WS-Policy File)
	A.13 Reliability1.0_1.1.xml (WS-Policy.xml File)

	B Example Client Wrapper Class for Batching Reliable Messages
	C Migrating JAX-RPC Web Services and Clients to JAX-WS
	C.1 Setting the Final Context Root of a WebLogic Web Service
	C.2 Using WebLogic-specific Annotations
	C.3 Generating a WSDL File
	C.4 Using JAXB Custom Types
	C.5 Using EJB 3.0
	C.6 Migrating from RPC Style SOAP Binding
	C.7 Updating SOAP Message Handlers
	C.8 Invoking JAX-WS Clients


