

[image: Oracle Corporation]

Oracle® Mobile Application Framework

Developing Mobile Applications with Oracle Mobile Application Framework

2.1.0

E57292-01

January 2015

Documentation that describes how to use Oracle JDeveloper to create mobile applications that run natively on devices.

Oracle Mobile Application Framework Developing Mobile Applications with Oracle Mobile Application Framework 2.1.0

E57292-01

Copyright © 2014, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Liza Rekadze, Cindy Hall, Walter Egan

Contributing Author: Ralph Gordon

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in This Guide for Release 2.1.0

1 Introduction to Oracle Mobile Application Framework

	1.1 Introduction to Mobile Application Framework
	1.2 About the MAF Runtime Architecture
	1.3 About Developing Applications with MAF
	1.3.1 About Connected and Disconnected Applications

	1.4 Sample Applications

2 Getting Started with MAF Application Development

	2.1 Introduction to Declarative Development for MAF Applications
	2.2 Creating a MAF Application
	2.2.1 How to Create a MAF Application
	2.2.2 What Happens When You Create a MAF Application

	2.3 Defining Application Features for a MAF Application
	2.3.1 How to Define an Application Feature

	2.4 Adding Content to an Application Feature
	2.5 Adding Application Features to a MAF Application
	2.5.1 How to Add an Application Feature to a MAF Application
	2.5.2 What You May Need to Know About Feature Reference IDs and Feature IDs

	2.6 Creating MAF AMX Pages and MAF Task Flows
	2.6.1 How to Create a MAF AMX Page
	2.6.2 How to Create MAF Task Flows
	2.6.3 What Happens When You Create MAF AMX Pages and Task Flows

3 Configuring the Content of a MAF Application

	3.1 Introduction to Configuring MAF Application Display Information
	3.2 Setting Display Properties for a MAF Application
	3.3 Setting Display Properties for an Application Feature

4 Configuring the Application Navigation

	4.1 Introduction to the Display Behavior of MAF Applications
	4.2 Configuring Application Navigation
	4.3 What Happens When You Configure the Navigation Options
	4.4 What Happens When You Set the Animation for the Springboard
	4.5 What You May Need to Know About Custom Springboard Application Features with HTML Content
	4.6 What You May Need to Know About Custom Springboard Application Features with MAF AMX Content
	4.7 What You May Need to Know About the Runtime Springboard Behavior
	4.8 Creating a Sliding Window in a MAF Application

5 Defining the Content Type of MAF Application Features

	5.1 Introduction to Content Types for an Application Feature
	5.2 Defining the Application Feature Content as Remote URL or Local HTML
	5.3 Defining the Application Feature Content as a MAF AMX Page or Task Flow
	5.4 What You May Need to Know About Selecting External Resources

6 Localizing MAF Applications

	6.1 Introduction to MAF Application Localization
	6.2 Setting Resource Bundle Options
	6.3 What Happens When You Select Resource Bundle Options
	6.4 Entering a String in a Resource Bundle
	6.5 What Happens When You Add a Resource Bundle
	6.6 Localizing Strings in MAF AMX UI Components
	6.7 What Happens When You Create Project-Level Resource Bundles for MAF AMX UI Components
	6.8 What You May Need to Know About Localizing Image Files
	6.9 Editing a Resource Bundle File
	6.10 What You May Need to Know About XLIFF Files for iOS Applications
	6.11 What You May Need to Know About Internationalization for iOS Applications

7 Skinning MAF Applications

	7.1 Introduction to MAF Application Skins
	7.1.1 About the maf-config.xml File
	7.1.2 About the maf-skins.xml File

	7.2 Adding a Custom Skin to an Application
	7.3 Specifying a Skin for an Application to Use
	7.4 Registering a Custom Skin
	7.5 Versioning MAF Skins
	7.6 What Happens When You Version Skins
	7.7 Overriding the Default Skin Styles
	7.8 What Happens When You Apply a Skin to an Application Feature
	7.9 What You May Need to Know About Skinning
	7.10 Adding a New Style Sheet to a Skin
	7.11 Enabling End Users Change an Application's Skin at Runtime
	7.12 What Happens at Runtime: How End Users Change an Application's Skin

8 Reusing MAF Application Content

	8.1 Introduction to Feature Archive Files
	8.2 Using FAR Content in a MAF Application
	8.3 What Happens When You Add a FAR as a Library
	8.4 What Happens When You Add a FAR as a View Controller Project
	8.5 What You May Need to Know About Enabling the Reuse of Feature Archive Resources

9 Using Plugins in MAF Applications

	9.1 Introduction to Using Plugins in MAF Applications
	9.2 Enabling a Core Plugin in Your MAF Application
	9.2.1 How to Enable a Core Plugin in Your MAF Application
	9.2.2 What Happens When You Enable a Core Plugin in Your MAF Application

	9.3 Registering Additional Plugins in Your MAF Application
	9.3.1 How to Register an Additional Plugin
	9.3.2 What Happens When You Register an Additional Plugin for Your MAF Application

	9.4 Deploying Plugins with Your MAF Application
	9.5 Importing Plugins from a Feature Archive File

10 Customizing MAF Application Artifacts with MDS

	10.1 Introduction to Applying MDS Customizations to MAF Files
	10.2 Configuring Customization Layers
	10.2.1 How to Configure the Layer Values Globally
	10.2.2 How to Configure the Application-Level Layer Values
	10.2.2.1 Using the Studio Developer Role
	10.2.2.2 Using the Customization Developer Role

	10.3 Creating Customization Classes
	10.4 Consuming Customization Classes
	10.5 Understanding a Customization Developer Role
	10.5.1 How to Switch to the Customization Developer Role in JDeveloper
	10.5.2 What You May Need to Know About the Tip Layer

	10.6 What You May Need to Know About Web Service Data Controls and Customized Application Deployments
	10.7 Enabling Customizations in Resource Bundles
	10.8 Upgrading a MAF Application with Customizations
	10.8.1 What Happens in JDeveloper When You Upgrade Applications
	10.8.2 What You May Need to Know About Upgrading FARs

11 Using Lifecycle Listeners in MAF Applications

	11.1 Introduction to Lifecycle Listeners in MAF Applications
	11.2 Registering a Lifecycle Listener for a MAF Application or an Application Feature
	11.3 What Happens When You Register a Lifecycle Listener

12 Creating MAF AMX Pages

	12.1 Introduction to the MAF AMX Application Feature
	12.2 Creating Task Flows
	12.2.1 How to Create a Task Flow
	12.2.1.1 What You May Need to Know About Behavior of New Bounded Task Flows

	12.2.2 What You May Need to Know About Task Flow Activities and Control Flows
	12.2.3 What You May Need to Know About the ViewController-task-flow.xml File
	12.2.4 What You May Need to Know About the MAF Task Flow Diagrammer
	12.2.5 How to Add and Use Task Flow Activities
	12.2.5.1 Adding View Activities
	12.2.5.2 Adding Router Activities
	12.2.5.3 Adding Method Call Activities
	12.2.5.4 Adding Task Flow Call Activities
	12.2.5.5 Adding Task Flow Return Activities
	12.2.5.6 Using Task Flow Activities with Page Definition Files

	12.2.6 How to Define Control Flows
	12.2.6.1 Defining a Control Flow Case
	12.2.6.2 Adding a Wildcard Control Flow Rule
	12.2.6.3 What You May Need to Know About Control Flow Rule Metadata
	12.2.6.4 What You May Need to Know About Control Flow Rule Evaluation

	12.2.7 What You May Need to Know About MAF Support for Back Navigation
	12.2.8 How to Enable Page Navigation by Dragging
	12.2.9 How to Specify Action Outcomes Using UI Components
	12.2.10 How to Create and Reference Managed Beans
	12.2.11 How to Specify the Page Transition Style
	12.2.12 What You May Need to Know About Bounded and Unbounded Task Flows
	12.2.12.1 Unbounded Task Flows
	12.2.12.2 Bounded Task Flows
	12.2.12.3 Using Parameters in Task Flows

	12.3 Creating Views
	12.3.1 How to Work with MAF AMX Pages
	12.3.1.1 Interpreting the MAF AMX Page Structure
	12.3.1.2 Creating MAF AMX Pages
	12.3.1.3 What Happens When You Create a MAF AMX Page
	12.3.1.4 Using UI Editors
	12.3.1.5 Accessing the Page Definition File
	12.3.1.6 Sharing the Page Contents

	12.3.2 How to Add UI Components and Data Controls to a MAF AMX Page
	12.3.2.1 Adding UI Components
	12.3.2.2 Using the Preview
	12.3.2.3 Configuring UI Components
	12.3.2.4 Adding Data Controls to the View
	12.3.2.5 What You May Need to Know About Element Identifiers and Their Audit

	12.3.3 What You May Need to Know About the Server Communication

13 Creating the MAF AMX User Interface

	13.1 Introduction to Creating the User Interface for MAF AMX Pages
	13.2 Designing the Page Layout
	13.2.1 How to Use a View Component
	13.2.2 How to Use a Panel Page Component
	13.2.3 How to Use a Panel Group Layout Component
	13.2.3.1 Customizing the Scrolling Behavior

	13.2.4 How to Use a Panel Form Layout Component
	13.2.5 How to Use a Panel Stretch Layout Component
	13.2.6 How to Use a Panel Label And Message Component
	13.2.7 How to Use a Facet Component
	13.2.8 How to Use a Popup Component
	13.2.9 How to Use a Panel Splitter Component
	13.2.10 How to Use a Spacer Component
	13.2.11 How to Use a Table Layout Component
	13.2.12 How to Use a Deck Component
	13.2.13 How to Use the Fragment Component

	13.3 Creating and Using UI Components
	13.3.1 How to Use the Input Text Component
	13.3.1.1 Customizing the Input Text Component

	13.3.2 How to Use the Input Number Slider Component
	13.3.3 How to Use the Input Date Component
	13.3.4 How to Use the Output Text Component
	13.3.5 How to Use Buttons
	13.3.5.1 Displaying Default Style Buttons
	13.3.5.2 Displaying Back Style Buttons
	13.3.5.3 Displaying Highlight Style Buttons
	13.3.5.4 Displaying Alert Style Buttons
	13.3.5.5 Using Additional Button Styles
	13.3.5.6 Using Buttons Within the Application
	13.3.5.7 Enabling the Back Button Navigation
	13.3.5.8 What You May Need to Know About the Order of Processing Operations and Attributes

	13.3.6 How to Use Links
	13.3.7 How to Display Images
	13.3.8 How to Use the Checkbox Component
	13.3.8.1 Support for Checkbox Components on the iOS Platform
	13.3.8.2 Support for Checkbox Components on the Android Platform

	13.3.9 How to Use the Select Many Checkbox Component
	13.3.9.1 What You May Need to Know About the User Interaction with Select Many Checkbox Component

	13.3.10 How to Use the Choice Component
	13.3.10.1 What You May Need to Know About the User Interaction with Choice Component on iOS Platform
	13.3.10.2 What You May Need to Know About the User Interaction with Choice Component on the Android Platform
	13.3.10.3 What You May Need to Know About Differences Between Select Items and Select Item Components

	13.3.11 How to Use the Select Many Choice Component
	13.3.12 How to Use the Boolean Switch Component
	13.3.12.1 What You May Need to Know About Support for Boolean Switch Components on iOS Platform
	13.3.12.2 What You May Need to Know About Support for Boolean Switch Components on the Android Platform

	13.3.13 How to Use the Select Button Component
	13.3.14 How to Use the Radio Button Component
	13.3.15 How to Use List View and List Item Components
	13.3.15.1 Configuring Paging and Dynamic Scrolling
	13.3.15.2 What You May Need to Know About Memory Consumption by MAF AMX UI Components
	13.3.15.3 Rearranging List View Items
	13.3.15.4 Configuring the List View Layout
	13.3.15.5 What You May Need to Know About Using Static List View

	13.3.16 How to Use Carousel Component
	13.3.17 How to Use the Film Strip Component
	13.3.17.1 What You May Need to Know About the Film Strip Layout
	13.3.17.2 What You May Need to Know About the Film Strip Navigation

	13.3.18 How to Use Verbatim Component
	13.3.18.1 What You May Need to Know About Using JavaScript and AJAX with Verbatim Component

	13.3.19 How to Use Output HTML Component
	13.3.20 How to Enable Iteration
	13.3.21 How to Load a Resource Bundle
	13.3.22 How to Use the Action Listener
	13.3.22.1 What You May Need to Know About Differences Between the Action Listener Component and Attribute

	13.3.23 How to Use the Set Property Listener
	13.3.24 How to Use the Client Listener
	13.3.25 How to Convert Date and Time Values
	13.3.25.1 What You May Need to Know About Date and Time Patterns

	13.3.26 How to Convert Numerical Values
	13.3.27 How to Enable Drag Navigation
	13.3.27.1 What You May Need to Know About the disabled Attribute

	13.3.28 How to Use the Loading Indicator

	13.4 Enabling Gestures
	13.5 Providing Data Visualization
	13.5.1 How to Create an Area Chart
	13.5.2 How to Create a Bar Chart
	13.5.3 How to Create a Bubble Chart
	13.5.4 How to Create a Combo Chart
	13.5.5 How to Create a Line Chart
	13.5.6 How to Create a Pie Chart
	13.5.6.1 Configuring the Pie Chart as a Ring Chart
	13.5.6.2 Styling the Pie Chart

	13.5.7 How to Create a Scatter Chart
	13.5.8 How to Create a Spark Chart
	13.5.9 How to Create a Funnel Chart
	13.5.10 How to Style Chart Components
	13.5.11 How to Use Events with Chart Components
	13.5.12 How to Create a LED Gauge
	13.5.13 How to Create a Status Meter Gauge
	13.5.14 How to Create a Dial Gauge
	13.5.15 How to Create a Rating Gauge
	13.5.15.1 Applying Custom Styling to the Rating Gauge Component

	13.5.16 How to Define Child Elements for Chart and Gauge Components
	13.5.16.1 Defining Chart Data Item
	13.5.16.2 Defining and Configuring Legend
	13.5.16.3 Defining and Configuring X Axis, YAxis, and Y2Axis
	13.5.16.4 Defining Pie Data Item
	13.5.16.5 Defining Spark Data Item
	13.5.16.6 Defining Funnel Data Item
	13.5.16.7 Defining Threshold

	13.5.17 How to Create a Geographic Map Component
	13.5.17.1 Configuring Geographic Map Components With the Map Provider Information
	13.5.17.2 Displaying Route in Geographic Map Components

	13.5.18 How to Create a Thematic Map Component
	13.5.18.1 Defining Custom Markers
	13.5.18.2 Defining Isolated Area Layers
	13.5.18.3 Defining Isolated Areas
	13.5.18.4 Enabling Initial Zooming
	13.5.18.5 Defining a Custom Base Map
	13.5.18.6 What You May Need to Know About the Marker Support for Event Listeners
	13.5.18.7 Applying Custom Styling to the Thematic Map Component

	13.5.19 How to Use Events with Map Components
	13.5.20 How to Create a Treemap Component
	13.5.20.1 Applying Custom Styling to the Treemap Component

	13.5.21 How to Create a Sunburst Component
	13.5.21.1 Applying Custom Styling to the Sunburst Component

	13.5.22 How to Create a Timeline Component
	13.5.22.1 Applying Custom Styling to the Timeline Component

	13.5.23 How to Create an NBox Component
	13.5.24 How to Define Child Elements for Map Components, Sunburst, Treemap, Timeline, and NBox
	13.5.25 How to Create Databound Data Visualization Components
	13.5.25.1 What You May Need to Know About Setting Series Style for Databound Chart Components

	13.5.26 How to Create Data Visualization Components Based on Static Data
	13.5.27 How to Enable Interactivity in Chart Components
	13.5.28 How to Create Polar Charts

	13.6 Styling UI Components
	13.6.1 How to Use Component Attributes to Define Style
	13.6.2 What You May Need to Know About Skinning
	13.6.3 What You May Need to Know About Using CSS ID Selectors for Skinning
	13.6.4 How to Style Data Visualization Components

	13.7 Localizing UI Components
	13.8 Understanding MAF Support for Accessibility
	13.8.1 How to Configure UI and Data Visualization Components for Accessibility
	13.8.2 What You May Need to Know About the Basic WAI-ARIA Terms
	13.8.3 What You May Need to Know About the Oracle Global HTML Accessibility Guidelines

	13.9 Validating Input
	13.10 Using Event Listeners
	13.10.1 What You May Need to Know About Constrained Type Attributes for Event Listeners

14 Using Bindings and Creating Data Controls in MAF AMX

	14.1 Introduction to Bindings and Data Controls
	14.2 About Object Scope Lifecycles
	14.2.1 What You May Need to Know About Object Scopes and Task Flows

	14.3 Creating EL Expressions
	14.3.1 About Data Binding EL Expressions
	14.3.2 How to Create an EL Expression
	14.3.2.1 About the Method Expression Builder
	14.3.2.2 About Non EL-Properties

	14.3.3 What You May Need to Know About MAF Binding Properties
	14.3.4 How to Reference Binding Containers
	14.3.5 About the Categories in the Expression Builder
	14.3.5.1 About the Bindings Category
	14.3.5.2 About the Managed Beans Category
	14.3.5.3 About the Mobile Application Framework Objects Category

	14.3.6 About EL Events
	14.3.7 How to Use EL Expressions Within Managed Beans

	14.4 Creating and Using Managed Beans
	14.4.1 How to Create a Managed Bean in JDeveloper
	14.4.2 What Happens When You Use JDeveloper to Create a Managed Bean

	14.5 Exposing Business Services with Data Controls
	14.5.1 How to Create Data Controls
	14.5.2 What Happens in Your Project When You Create a Data Control
	14.5.2.1 DataControls.dcx Overview Editor
	14.5.2.2 Data Controls Panel

	14.5.3 Data Control Built-in Operations

	14.6 Creating Databound UI Components from the Data Controls Panel
	14.6.1 How to Use the Data Controls Panel
	14.6.2 What Happens When You Use the Data Controls Panel

	14.7 What Happens at Runtime: How the Binding Context Works
	14.8 Configuring Data Controls
	14.8.1 How to Edit a Data Control
	14.8.2 What Happens When You Edit a Data Control
	14.8.3 What You May Need to Know About MDS Customization of Data Controls

	14.9 Working with Attributes
	14.9.1 How to Designate an Attribute as Primary Key
	14.9.2 How to Define a Static Default Value for an Attribute
	14.9.3 How to Set UI Hints on Attributes
	14.9.4 What Happens When You Set UI Hints on Attributes
	14.9.5 How to Access UI Hints Using EL Expressions

	14.10 Creating and Using Bean Data Controls
	14.10.1 What You May Need to Know About Serialization of Bean Class Variables

	14.11 Using the DeviceFeatures Data Control
	14.11.1 How to Use the getPicture Method to Enable Taking Pictures
	14.11.2 How to Use the SendSMS Method to Enable Text Messaging
	14.11.3 How to Use the sendEmail Method to Enable Email
	14.11.4 How to Use the createContact Method to Enable Creating Contacts
	14.11.5 How to Use the findContacts Method to Enable Finding Contacts
	14.11.6 How to Use the updateContact Method to Enable Updating Contacts
	14.11.7 How to Use the removeContact Method to Enable Removing Contacts
	14.11.8 How to Use the startLocationMonitor Method to Enable Geolocation
	14.11.9 How to Use the displayFile Method to Enable Displaying Files
	14.11.10 What You May Need to Know About Device Properties

	14.12 Validating Attributes
	14.12.1 How to Add Validation Rules
	14.12.2 What You May Need to Know About the Validator Metadata

	14.13 About Data Change Events

15 Using Web Services in MAF AMX

	15.1 Introduction to Using Web Services in MAF Applications
	15.2 Creating a Web Service Data Control Using REST
	15.3 Creating a Web Service Data Control Using SOAP
	15.3.1 How to Customize SOAP Headers
	15.3.2 How to Access Objects Returned by SOAP Calls

	15.4 What You May Need to Know About Web Service Data Controls
	15.5 Creating a New Web Service Connection
	15.6 Adjusting the End Point for a Web Service Data Control
	15.7 Accessing Secure Web Services
	15.7.1 How to Enable Access to SOAP-Based Web Services
	15.7.2 How to Enable Access to REST-Based Web Services
	15.7.3 What You May Need to Know About Credential Injection
	15.7.4 Limitations of Secure WSDL File Usage

	15.8 Invoking Web Services From Java
	15.8.1 How to Add and Delete Rows on Web Services Objects
	15.8.2 How to Use REST Web Services Adapter
	15.8.2.1 Accessing Input and Output Streams
	15.8.2.2 Support for Non-Text Responses

	15.8.3 How to Enable Strict Validation of REST Responses
	15.8.4 How to Process JSON Responses
	15.8.5 What You May Need to Know About Invoking Data Control Operations

	15.9 Understanding Limitations Related to MAF Support for JavaScript
	15.10 Configuring the Browser Proxy Information

16 Configuring End Points Used in MAF Applications

	16.1 Introduction to Configuring End Points in MAF Applications
	16.2 Defining the Configuration Service End Point
	16.3 Creating the User Interface for the Configuration Service
	16.4 About the URL Construction
	16.5 Setting Up the Configuration Service on the Server
	16.6 Migrating the Configuration Service from ADF Mobile

17 Using the Local Database in MAF AMX

	17.1 Introduction to the Local SQLite Database Usage
	17.1.1 Differences Between SQLite and Other Relational Databases
	17.1.1.1 Concurrency
	17.1.1.2 SQL Support and Interpretation
	17.1.1.3 Data Types
	17.1.1.4 Foreign Keys
	17.1.1.5 Database Transactions
	17.1.1.6 Authentication

	17.2 Using the Local SQLite Database
	17.2.1 How to Connect to the Database
	17.2.2 How to Use SQL Script to Initialize the Database
	17.2.3 How to Initialize the Database on a Desktop
	17.2.4 What You May Need to Know About Commit Handling
	17.2.5 Limitations of the MAF's SQLite JDBC Driver
	17.2.6 How to Use the VACUUM Command
	17.2.7 How to Encrypt and Decrypt the Database
	17.2.8 What You May Need to Know About the StockTracker Sample Application

18 Customizing MAF AMX Application Feature Artifacts

	18.1 Introduction to Customizing MAF AMX Pages and Artifacts
	18.2 Customizing MAF AMX Pages and Artifacts

19 Creating Custom MAF AMX UI Components

	19.1 Introduction to Creating Custom UI Components
	19.2 Using MAF APIs to Create Custom Components
	19.2.1 How to Use Static APIs
	19.2.2 How to Use AmxEvent Classes
	19.2.3 How to Use the TypeHandler
	19.2.4 How to Use the AmxNode
	19.2.5 How to Use the AmxTag
	19.2.6 How to Use the VisitContext
	19.2.7 How to Use the AmxAttributeChange
	19.2.8 How to Use the AmxDescendentChanges
	19.2.9 How to Use the AmxCollectionChange
	19.2.10 How to Use the AmxNodeChangeResult
	19.2.11 How to Use the AmxNodeStates
	19.2.12 How to Use the AmxNodeUpdateArguments

	19.3 Creating Custom Components

20 Implementing Application Feature Content Using Remote URLs

	20.1 Overview of Remote URL Applications
	20.1.1 Enabling Remote Applications to Access Device Services through Whitelists
	20.1.2 Enabling Remote Applications to Access Container Services
	20.1.3 How Whitelisted Domains Access Device Capabilities
	20.1.4 How to Create a Whitelist (or Restrict a Domain)
	20.1.5 What Happens When You Add Domains to a Whitelist
	20.1.6 What You May Need to Know About Remote URLs

	20.2 Creating Whitelists for Application Components
	20.3 Enabling the Browser Navigation Bar on Remote URL Pages
	20.3.1 How to Add the Navigation Bar to a Remote URL Application Feature
	20.3.2 What Happens When You Enable the Browser Navigation Buttons for a Remote URL Application Feature

	20.4 Invoking MAF Applications Using a Custom URL Scheme
	20.5 About Authoring Remote Content

21 Enabling User Preferences

	21.1 Creating User Preference Pages for a Mobile Application
	21.1.1 How to Create Mobile Application-Level Preferences Pages
	21.1.1.1 How to Create a New User Preference Page
	21.1.1.2 What Happens When You Add a Preference Page
	21.1.1.3 How to Create User Preference Lists
	21.1.1.4 What Happens When You Create a Preference List
	21.1.1.5 How to Create a Boolean Preference List
	21.1.1.6 What Happens When You Add a Boolean Preference
	21.1.1.7 How to Add a Text Preference
	21.1.1.8 What Happens When You Define a Text Preference

	21.1.2 What Happens When You Create an Application-Level Preference Page

	21.2 Creating User Preference Pages for Application Features
	21.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages
	21.3.1 What You May Need to Know About preferenceScope
	21.3.2 Reading Preference Values in iOS Native Views

	21.4 Platform-Dependent Display Differences

22 Setting Constraints on Application Features

	22.1 Introduction to Constraints
	22.1.1 Using Constraints to Show or Hide an Application Feature
	22.1.2 Using Constraints to Deliver Specific Content Types

	22.2 Defining Constraints for Application Features
	22.2.1 How to Define the Constraints for an Application Feature
	22.2.2 What Happens When You Define a Constraint
	22.2.3 About the property Attribute
	22.2.4 About User Constraints and Access Control
	22.2.5 About Hardware-Related Constraints
	22.2.6 Creating Dynamic Constraints on Application Features and Content
	22.2.6.1 About Combining Static and EL-Defined Constraints
	22.2.6.2 How to Define a Dynamic Constraint

23 Accessing Data on Oracle Cloud

	23.1 Enabling MAF Applications to Access Data Hosted on Oracle Cloud
	23.1.1 How to Authenticate Against Oracle Cloud
	23.1.2 How to Create a Web Service Data Control to Access Oracle Java Cloud
	23.1.2.1 Configuring the Policy for SOAP-Based Web Services

	23.1.3 What Happens When You Deploy a MAF Application that Accesses Oracle Java Cloud Service

24 Enabling and Using Notifications

	24.1 Introduction to Push Notifications
	24.1.1 How MAF Applications Display Notifications Depending on Application State

	24.2 Enabling Push Notifications for a MAF Application
	24.3 What You May Need to Know About the Push Notification Payload

25 Synchronizing and Caching Data

	25.1 Introduction to Data Caching and Synchronization
	25.1.1 Implementing Data Caching with the sync-config.xml File
	25.1.2 What You May Need to Know About Using a FAR to Update the sync-config.xml File

26 Displaying Error Messages in MAF Applications

	26.1 Introduction to Error Handling in MAF Applications
	26.2 Displaying Error Messages and Stopping Background Threads
	26.2.1 How Applications Display Error Message for Background Thread Exceptions

	26.3 Localizing Error Messages

27 Deploying MAF Applications

	27.1 Introduction to Deployment of MAF Applications
	27.1.1 MAF Deployment Options
	27.1.1.1 Deployment of Project Libraries
	27.1.1.2 Deployment of the JVM Libraries

	27.2 Working with Deployment Profiles
	27.2.1 About Automatically Generated Deployment Profiles
	27.2.2 How to Create a Deployment Profile
	27.2.3 What Happens When You Create a Deployment Profile
	27.2.4 How to Create an Android Deployment Profile
	27.2.4.1 Setting the Options for the Application Details
	27.2.4.2 Setting Deployment Options
	27.2.4.3 Defining the Android Signing Options
	27.2.4.4 What You May Need to Know About Credential Storage
	27.2.4.5 How to Add a Custom Image to an Android Application
	27.2.4.6 What Happens When JDeveloper Deploys Images for Android Applications

	27.2.5 How to Create an iOS Deployment Profile
	27.2.5.1 Defining the iOS Build Options
	27.2.5.2 Setting the Device Signing Options
	27.2.5.3 Adding a Custom Image to an iOS Application
	27.2.5.4 What You May Need to Know About iTunes Artwork
	27.2.5.5 How to Restrict the Display to a Specific Device Orientation
	27.2.5.6 What Happens When You Deselect Device Orientations

	27.3 Deploying an Android Application
	27.3.1 How to Deploy an Android Application to an Android Emulator
	27.3.2 How to Deploy an Application to an Android-Powered Device
	27.3.3 How to Publish an Android Application
	27.3.4 What Happens in JDeveloper When You Create an .apk File
	27.3.5 Selecting the Most Recently Used Deployment Profiles
	27.3.6 What You May Need to Know About Using the Android Debug Bridge

	27.4 Deploying an iOS Application
	27.4.1 How to Deploy an iOS Application to an iOS Simulator
	27.4.2 How to Deploy an Application to an iOS-Powered Device
	27.4.3 What Happens When You Deploy an Application to an iOS Device
	27.4.4 What You May Need to Know About Deploying an Application to an iOS-Powered Device
	27.4.4.1 Creating iOS Development Certificates
	27.4.4.2 Registering an Apple Device for Testing and Debugging
	27.4.4.3 Registering an Application ID

	27.4.5 How to Distribute an iOS Application to the App Store

	27.5 Deploying Feature Archive Files (FARs)
	27.5.1 How to Create a Deployment Profile for a Feature Archive
	27.5.2 How to Deploy the Feature Archive Deployment Profile
	27.5.3 What Happens When You Deploy a Feature Archive File Deployment Profile

	27.6 Creating a Mobile Application Archive File
	27.6.1 How to Create a Mobile Application Archive File

	27.7 Creating Unsigned Deployment Packages
	27.7.1 How to Create an Unsigned Application
	27.7.2 What Happens When You Import a MAF Application Archive File

	27.8 Deploying MAF Applications from the Command Line
	27.8.1 Using OJDeploy to Deploy Mobile Applications

	27.9 Deploying with Oracle Mobile Security Suite

28 Understanding Secure Mobile Development Practices

	28.1 Weak Server-Side Controls
	28.2 Insecure Data Storage on the Device
	28.2.1 Encrypting the SQLite Database
	28.2.2 Securing the Device's Local Data Stores
	28.2.3 About Security and Application Logs

	28.3 Insufficient Transport Layer Protection
	28.4 Side-Channel Data Leakage
	28.5 Poor Authorization and Authentication
	28.6 Broken Cryptography
	28.7 Client-Side Injection From Cross-Site Scripting
	28.7.1 Protecting Applications Against XSS Through Whitelists
	28.7.2 Protecting MAF Applications from Injection Attacks Using Device Access Permissions
	28.7.3 About Injection Attack Risks from Custom HTML Components
	28.7.4 About SQL Injections and XML Injections

	28.8 Security Decisions From Untrusted Inputs
	28.9 Improper Session Handling
	28.10 Lack of Binary Protections Resulting in Sensitive Information Disclosure

29 Securing MAF Applications

	29.1 Introduction to MAF Security
	29.2 About the User Login Process
	29.3 Overview of the Authentication Process for MAF Applications
	29.4 Configuring MAF Connections
	29.4.1 How to Create a MAF Login Connection
	29.4.2 How to Configure Basic Authentication
	29.4.3 How to Configure Authentication Using Oracle Mobile and Social Identity Management
	29.4.4 How to Configure OAuth Authentication
	29.4.5 How to Configure Web SSO Authentication
	29.4.6 How to Configure a Placeholder Connection for MAF Application Login
	29.4.7 How to Update Connection Attributes of a Named Connection at Runtime
	29.4.8 How to Store Login Credentials
	29.4.9 What Happens When You Create a Connection for a MAF Application
	29.4.10 What You May Need to Know About the Login Connection Configuration
	29.4.11 What You May Need to Know About Multiple Identities for Local and Hybrid Login Connections
	29.4.12 What You May Need to Know About Migrating a MAF Application and Authentication Modes
	29.4.13 What Happens When You Enable Cookie Injection into REST Web Service Calls
	29.4.14 What You May Need to Know About Adding Cookies to REST Web Service Calls
	29.4.15 What Happens at Runtime: When MAF Calls a REST Web Service
	29.4.16 What You May Need to Know About Injecting Basic Authentication Headers
	29.4.17 What You May Need to Know About Web Service Security
	29.4.18 How to Configure Access Control
	29.4.19 What You May Need to Know About the Access Control Service
	29.4.20 How to Alter the Application Loading Sequence
	29.4.21 What Happens When You Define a Multi-Tenant Connection

	29.5 Configuring Security for MAF Applications
	29.5.1 How to Enable Application Features to Require Authentication
	29.5.2 How to Designate the Login Page
	29.5.3 How to Create a Custom Login HTML or Custom KBA Page
	29.5.4 What You May Need to Know About Login Pages
	29.5.4.1 The Default Login Page
	29.5.4.2 The Custom Login Page

	29.5.5 What You May Need to Know About Login Page Elements
	29.5.6 What Happens in JDeveloper When You Configure Security for Application Features

	29.6 Allowing Access to Device Capabilities
	29.7 Enabling Users to Log Out from Application Features
	29.8 Supporting SSL

30 Testing and Debugging MAF Applications

	30.1 Introduction to Testing and Debugging MAF Applications
	30.2 Testing MAF Applications
	30.2.1 How to Perform Accessibility Testing on iOS-Powered Devices

	30.3 Debugging MAF Applications
	30.3.1 What You May Need to Know About the Debugging Configuration
	30.3.2 How to Debug on the iOS Platform
	30.3.3 How to Debug on the Android Platform
	30.3.4 How to Debug the MAF AMX Content
	30.3.5 How to Enable Debugging of Java Code and JavaScript
	30.3.5.1 What You May Need to Know About Debugging of JavaScript Using an iOS-Powered Device Simulator on iOS 7 and iOS 8 Platforms

	30.4 Using and Configuring Logging
	30.4.1 How to Configure Logging Using the Properties File
	30.4.2 How to Use JavaScript Logging
	30.4.3 How to Use Embedded Logging
	30.4.4 How to Use Xcode for Debugging and Logging on the iOS Platform
	30.4.5 How to Access the Application Log

A Troubleshooting

	A.1 Problems with Input Components on iOS Simulators
	A.2 The Geographic Map Component Limits Number of Address Points
	A.3 Code Signing Issues Prevent Deployment
	A.4 The credentials Attribute Causes Deployment to Fail

B Local HTML and Application Container APIs

	B.1 Using MAF APIs to Create a Custom HTML Springboard Application Feature
	B.1.1 About Executing Code in Custom HTML Pages

	B.2 The MAF Container Utilities API
	B.2.1 Using the JavaScript Callbacks
	B.2.2 Using the Container Utilities API
	B.2.3 getApplicationInformation
	B.2.4 gotoDefaultFeature
	B.2.5 gotoFeature
	B.2.6 getFeatures
	B.2.7 getFeatureByName
	B.2.8 getFeatureById
	B.2.9 resetFeature
	B.2.10 resetApplication
	B.2.11 gotoSpringboard
	B.2.12 showSpringboard
	B.2.13 hideSpringboard
	B.2.14 showNavigationBar
	B.2.15 hideNavigationBar
	B.2.16 showPreferences
	B.2.17 invokeMethod
	B.2.18 invokeContainerMethod
	B.2.19 invokeContainerJavaScriptFunction
	B.2.20 sendEmail
	B.2.21 sendSMS
	B.2.22 Application Icon Badging

	B.3 Accessing Files Using the getDirectoryPathRoot Method
	B.3.1 Accessing Platform-Independent Download Locations

C MAF Application and Project Files

	C.1 Introduction to MAF Application and Project Files
	C.2 About the Application Controller Project-Level Resources
	C.3 About the View Controller Project Resources
	C.4 About the MAF Application Configuration File
	C.5 About the MAF Application Feature Configuration File

D Converting Preferences for Deployment

	D.1 Naming Patterns for Preferences
	D.2 Converting Preferences for Android
	D.2.1 maf_references.xml
	D.2.1.1 Preferences Element Mapping
	D.2.1.2 Preference Attribute Mapping
	D.2.1.3 Attribute Default Values
	D.2.1.4 Preferences Screen Root Element

	D.2.2 maf_arrays.xml
	D.2.3 maf_strings.xml

	D.3 Converting Preferences for iOS

E MAF Application Usage

	E.1 Introduction to MAF Application Usage
	E.2 Installing the MAF Application on a Mobile Device
	E.2.1 How to Install MAF Applications on iOS-Powered Devices
	E.2.2 How to Install MAF Applications on Android-Powered Devices
	E.2.3 How to Uninstall a MAF Application

	E.3 Navigating Between Application Features
	E.3.1 How to Navigate Between Application Features on iOS-Powered Devices
	E.3.1.1 Navigating Using the Springboard
	E.3.1.2 Using Single-Featured Applications

	E.3.2 How to Navigate on Android-Powered Devices

	E.4 Setting Preferences
	E.4.1 How to Set Preferences on iOS-Powered Devices
	E.4.2 How to Set Preferences on Android-Powered Devices

	E.5 Viewing Log Files
	E.6 Limitations to the Application Usage
	E.6.1 List View Component Limitations
	E.6.2 Data Visualization Components Limitations
	E.6.3 Device Back Button Limitations on the Android Platform
	E.6.4 Accessibility Support Limitations

F Parsing XML

	F.1 Parsing XML Using kXML Library

G MAF Sample Applications

	G.1 Overview of the MAF Sample Applications

Preface

Welcome to the Developing Mobile Applications with Oracle Mobile Application Framework.

Audience

This document is intended for developers tasked with creating cross-platform mobile applications that run as natively on the device.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents

For more information, see the following documents:

	
Installing Oracle Mobile Application Framework

	
Oracle Fusion Middleware Installation Guide for Oracle JDeveloper

	
Oracle Fusion Middleware User's Guide for Oracle JDeveloper

	
Oracle Fusion Middleware Developer's Guide for Oracle JDeveloper Extensions

	
Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces

	
Oracle Fusion Middleware Developing Oracle ADF Mobile Browser Applications

	
Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services

	
Oracle Fusion Middleware Understanding Oracle Web Services Manager

	
Oracle Fusion Middleware Administering Web Services

	
Oracle Fusion Middleware Securing Web Services and Managing Policies with Oracle Web Services Manager

	
Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
Oracle Fusion Middleware Java API Reference for Oracle Web Services Manager

	
Oracle JDeveloper 12c Online Help

	
Oracle JDeveloper 12c Release Notes (link included with your Oracle JDeveloper 12c installation and on Oracle Technology Network)

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in This Guide for Release 2.1.0

	Sections	Changes Made
	Chapter 7, "Skinning MAF Applications"
	Section revised to describe the new skin version (mobileAlta-1.3) that is the default for MAF applications created using this release.
	Chapter 9, "Using Plugins in MAF Applications"
	Section revised to describe changes in how you manage and enable plugins in your MAF application.
	Section 12.2.1.1, "What You May Need to Know About Behavior of New Bounded Task Flows"
	Section revised to describe new page flow scope behavior.
	Section 12.2.11, "How to Specify the Page Transition Style"
	Section revised to describe changes in RTL support on Android.
	Section 13.2, "Designing the Page Layout"
	Section revised to reflect changes in RTL support on Android.
	Section 13.3.1.1, "Customizing the Input Text Component"
	Section revised to reflect changes in the keyboard dismiss functionality.
	Section 13.3.15, "How to Use List View and List Item Components"
	Section revised to reflect various changes made to the List View component.
	Section 13.3.15.1, "Configuring Paging and Dynamic Scrolling"
	Section revised and restructured to describe changes in the paging and dynamic scrolling behavior of the List View component.
	Section 13.3.15.2, "What You May Need to Know About Memory Consumption by MAF AMX UI Components"
	Section added.
	Section 13.3.19, "How to Use Output HTML Component"
	Section revised to describe security-related issues arising from the use of the output HTML component.
	Section 13.5.1, "How to Create an Area Chart"
	Section revised to add information about shared Attribute Groups settings.
	Section 13.5.13, "How to Create a Status Meter Gauge"
	Section revised to add information about a new gauge orientation.
	Section 13.3.24, "How to Use the Client Listener"
	Section added.
	Section 13.10.1, "What You May Need to Know About Constrained Type Attributes for Event Listeners"
	Section revised to add information about the Client Listener component.
	Section 13.5.16.2, "Defining and Configuring Legend"
	Section revised to add information about new attributes.
	Section 13.5.16.3, "Defining and Configuring X Axis, YAxis, and Y2Axis"
	Section revised to add information about new child components and attributes.
	Section 13.5.17.2, "Displaying Route in Geographic Map Components"
	Section added.
	Section 13.5.6.1, "Configuring the Pie Chart as a Ring Chart"
	Section added.
	Section 14.11, "Using the DeviceFeatures Data Control"
	Section revised to describe how to enable plugins for a DeviceFeatures Data Control.
	Section 14.11.10, "What You May Need to Know About Device Properties"
	Section revised to describe how to declaratively bind a JavaScript function to the showpagecomplete event.
	Section 14.13, "About Data Change Events"
	Section revised to describe the fireProviderChange method.
	Section 15.1, "Introduction to Using Web Services in MAF Applications"
	Section revised.
	Section 15.3.2, "How to Access Objects Returned by SOAP Calls"
	Section added.
	Section 15.8.4, "How to Process JSON Responses"
	Section added.
	Section 15.9, "Understanding Limitations Related to MAF Support for JavaScript"
	Section added.
	Section 20.1.2, "Enabling Remote Applications to Access Container Services"
	Section added to describe how to access MAF or Cordova JavaScript APIs from within a server-rendered web application.
	Section 25, "Synchronizing and Caching Data"
	Chapter added to describe data synchronization and how to implement caching capabilities with the sync-config.xml file.
	Section 27.2.4, "How to Create an Android Deployment Profile"
	Section revised to reflect changes to configuring Android deployment.
	Section 27.2.5, "How to Create an iOS Deployment Profile"
	Section revised to reflect changes to configuring iOS deployment.
	Section 27.2.5.2, "Setting the Device Signing Options"
	Section revised to reflect changes to configuring device signing.
	Section 27.2.5.3, "Adding a Custom Image to an iOS Application"
	Section revised to reflect changes to adding custom images to iOS build applications.
	Section 27.4, "Deploying an iOS Application"
	Section revised to reflect changes resulting from the Xcode upgrade.
	Section 27.9, "Deploying with Oracle Mobile Security Suite"
	Section added.
	Section 29.4.10, "What You May Need to Know About the Login Connection Configuration"
	Section added.
	Section 29.6, "Allowing Access to Device Capabilities"
	Section revised to reflect changes to the way access to device capabilities is granted.
	Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript"
	Section revised to reflect changes in the properties file name debugging properties.
	Section 30.4.1, "How to Configure Logging Using the Properties File"
	Section revised to reflect changes in the logging utilities package structure.
	Section 30.4.3, "How to Use Embedded Logging"
	Section revised to reflect changes in the logging utilities package structure.
	Section B.1, "Using MAF APIs to Create a Custom HTML Springboard Application Feature"
	Section revised to reflect changes to how to include base.js in an HTML springboard page.
	Section B.2.16, "showPreferences"
	Section added.
	Appendix C, "MAF Application and Project Files"
	Section revised to reflect changes to the following XML documents: preferences.xml, strings.xml, and arrays.xml. Each filename is now prepended with maf_ to avoid resource conflicts.
	Section G.1, "Overview of the MAF Sample Applications"
	Section revised to reflect changes to the sample apps, including the addition of the PushDemo and PushServer sample apps and changes to the RESTDemo sample app. All weather-related apps have been removed.

1 Introduction to Oracle Mobile Application Framework

This chapter introduces Oracle Mobile Application Framework (MAF), a solution that enables you to create mobile applications that run natively on both iOS and Android phones and tablets.

This chapter includes the following sections:

	
Section 1.1, "Introduction to Mobile Application Framework"

	
Section 1.2, "About the MAF Runtime Architecture"

	
Section 1.3, "About Developing Applications with MAF"

	
Section 1.4, "Sample Applications"

1.1 Introduction to Mobile Application Framework

MAF is a hybrid mobile architecture, one that uses HTML5 and CSS to render the user interface, Java for the application business logic, and Apache Cordova to access device features such as GPS activities and e-mail. Because MAF uses these cross-platform technologies, you can build an application that runs on both Android and iOS devices without having to use any platform-specific tools. After deploying a MAF application to a device, the application behaves similarly to applications that are created using platform-specific tools, such as Objective C or Android SDK. Further, MAF enables you to build the same application for smartphones or for tablets, thereby allowing you to reuse the business logic in the same application and target various types of devices, screen sizes, and capabilities. For information on setting up, configuring, and migrating your development environment, see Installing Oracle Mobile Application Framework.

A MAF application is comprised of one or more application features, which are represented as icons within the application's springboard or navigation bar, as shown in Figure 1-1.

Figure 1-1 The MAF Application Springboard

[image: The surrounding text describes this image.]

An application feature is a reusable, self-contained module of application functionality. Each application feature performs a specific set of tasks, and application features can be grouped together to complement each other's functionality. For example, you can pair an application feature that provides customer contacts together with one for product inventory. Because each application feature has its own class loader and web view (essentially a native UI component that behaves as a browser), features are independent of one another; a single MAF application can be assembled from application features created by several different development teams. Application features can also be reused in other MAF applications. The MAF application itself can be reused as the base for another application, allowing ISVs (independent software vendors) to create applications that can be configured by specific customers.

In addition to hybrid mobile applications that run locally on the device, you can implement application features as any of the following mobile application types, depending on the requirements of a mobile application and available resources:

	
Mobile web applications—These applications are hosted on a server. Although the code can be portable between platforms, their access to device features and local storage can be limited, as these applications are governed by the device's browser.

	
Native applications—These applications are authored in either Xcode or through the Android SDK and are therefore limited in terms of serving both platforms. Reuse of code is likewise limited.

1.2 About the MAF Runtime Architecture

As illustrated in Figure 1-2, MAF is a thin native container that is deployed to a device. MAF follows the model-view-controller (MVC) development approach, which separates the presentation from the model layer and the controller logic. The thin native container allows the MAF application to function as a native application on both platforms (iOS, Android). It also enables push notifications.

Figure 1-2 The MAF Runtime Architecture

[image: This image is described in the surrounding text]

	
Web View—Uses a mobile device's web engine to display and process web-based content. In a MAF application, the web view delivers the user interface by rendering the application markup as HTML 5. You can create the user interface for a MAF application feature by implementing any of the following content types. Application features implemented from various content types can coexist within the same MAF application and can also interact with one another.

	
MAF AMX Views—Like an application authored in the language specific to the device's platform, applications whose contents are implemented as MAF Application Mobile XML (AMX) views reside on the device and provide the most authentic device-native user experience. MAF provides a set of code editors that enable you to declaratively create a user interface from components that are tailored to the form factors of mobile devices. You can use these components to create the page layout, such as List View, as well as input components, such as Input Text. When you develop MAF AMX views, you can leverage data controls. These components enable you to declaratively create data-bound user interface components, access a web service, and the services of a mobile device (such as camera, GPS, or e-mail). At runtime, the JavaScript engine in the web view renders MAF AMX view definitions into HTML5 and JavaScript. For more information, see the following:

	
Chapter 12, "Creating MAF AMX Pages"

	
Chapter 13, "Creating the MAF AMX User Interface"

	
Chapter 14, "Using Bindings and Creating Data Controls in MAF AMX"

	
Chapter 15, "Using Web Services in MAF AMX"

	
Chapter 16, "Configuring End Points Used in MAF Applications"

	
Chapter 17, "Using the Local Database in MAF AMX"

	
Chapter 18, "Customizing MAF AMX Application Feature Artifacts"

	
Chapter 19, "Creating Custom MAF AMX UI Components"

Task Flow—The Controller governs the flow between pages in the MAF application, enabling you to break your application's flow into smaller, reusable task flows and include non-visual components, such as method calls and decision points. For more information, see Section 12.2, "Creating Task Flows."

	
Server HTML— With this content type, the user interface is delivered from server-generated web pages that can open within the application feature's web view. Within the context of MAF, this content type is referred to as remote URL. The resources for these browser-based pages do not reside on the device. Instead, the user interface, page flow logic, and business logic are delivered from a remote server. When one of these remotely hosted web pages is allowed to open within the web view, it can use the Cordova JavaScript APIs to access any designated device-native feature or service, such as the camera or GPS capabilities. When implementing a feature using the remote URL content, you can leverage an existing browser-based application that has been optimized for mobile use, or use one that has been written specifically for a specific type of mobile device. For applications that can run within the browsers on either desktops or tablets, you can implement the remote URL content using applications created through Oracle ADF Faces rich client-based components. For applications specifically targeted to mobile phones, the remote URL content can be delivered from web pages created using ADF Mobile browser. Not only can applications authored with ADF Mobile browser render on a variety of smartphones, but they can gracefully degrade to the reduced capabilities available on feature phones through user interfaces constructed with Apache Trinidad JavaServer Faces (JSF) components and dynamically selected style sheets. For more information, see Chapter 20, "Implementing Application Feature Content Using Remote URLs."

	
Note:

Because the content is served remotely, a feature that uses a remote URL is available only as long as the server connection remains active.

	
Local HTML—HTML pages that run on the device as a part of the MAF application. Local HTML files can access device-native features services through the Cordova and JavaScript APIs.

	
Cordova—The Apache Cordova JavaScript APIs that integrate the device's native features and services into a MAF application. Although you can access these APIs programmatically from Java code (or using JavaScript when implementing a MAF application as local HTML), you can add device integration declaratively when you create MAF AMX pages because MAF packages these APIs as data controls.

	
Java Virtual Machine—Provides a Java runtime environment for a MAF application. This Java Virtual Machine (JVM) is implemented in device-native code, and is embedded (or compiled) into each instance of the MAF application as part of the native application binary. The JVM is based on the JavaME Connected Device Configuration (CDC) specification.

	
Business Logic—Business logic in MAF application may be written in Java. Managed Beans are Java classes that can be created to extend the capabilities of MAF, such as providing additional business logic for processing data returned from the server. Managed beans are executed by the embedded Java support, and conform to the JavaME CDC specifications. For more information, see Chapter 14, "Using Bindings and Creating Data Controls in MAF AMX."

	
Model—Contains the binding layer that connects the business logic components with the user interface. In addition, the binding layer provides the execution logic to invoke REST or SOAP-based web services. For more information, see Section 1.3.1, "About Connected and Disconnected Applications."

	
JDBC— The JDBC API enables access to the data in the encrypted SQLite database through CRUD (Create, Read, Update and Delete) operations.

	
Application Configuration refers to services that allow application configurations to be downloaded and refreshed, such as URL endpoints for a web service or a remote URL connection. Application configuration services download the configuration information from a WebDav-based server-side service. For more information, see Chapter 16, "Configuring End Points Used in MAF Applications."

	
Credential Management, Single Sign-on (SSO), and Access Control—MAF handles user authentication and credential management through the Oracle Access Management Mobile and Social (OAMMS) IDM SDKs. MAF applications perform offline authentication, meaning that when users log in to the application while connected, MAF maintains the username and password locally on the device, allowing users to continue access to the application even if the connection to the authentication server becomes unavailable. MAF encrypts the locally stored user information as well as the data stored in the local SQLite database. After authenticating against the login server, a user can access all of the application features secured by that connection. MAF also supports the concept of access control by restricting access to application features (or specific functions of application features) by applying user roles and privileges. For remotely served web content, MAF uses whitelists to ensure that only the intended URIs can open within the application feature's web view (and access the device features). For more information, see Chapter 29, "Securing MAF Applications."

	
Push Handler—Enables the MAF application to receive events from the iOS or Android notification servers. The Java layer handles the notification processing.

Resources that interact with the native container include:

	
Encrypted SQLite Database—The embedded SQLite database is a lightweight, cross-platform relational database that protects locally stored data and is called using JDBC. Because this database is encrypted, it secures data if the device is lost or stolen. Only users who enter the correct user name and password can access the data in the local database. For more information, see Chapter 17, "Using the Local Database in MAF AMX."

	
Device Services—The services and features that are native to the device and integrated into application features through the Cordova APIs.

The device native container enables access to the following server-side resources:

	
Configuration Server —A WebDav-based server that hosts configuration files used by the application configuration services. The configuration server is delivered as a reference implementation. Any common WebDav services hosted on a J2EE server can be used for this purpose. For more information, see Chapter 16, "Configuring End Points Used in MAF Applications."

	
Server-Generated HTML—Web content hosted on remote servers used for browser-based application features. For more information, see Chapter 20, "Implementing Application Feature Content Using Remote URLs."

	
APNs and GCM Push Services—Apple Push Notification Service (APNs) and Google Cloud Messaging (GCM) are the notification providers that send notification events to MAF applications.

	
SOAP and REST Services—Remotely hosted SOAP- or REST-based web services, which can be accessed through the Java layer or through data controls. For more information, see Chapter 15, "Using Web Services in MAF AMX."

1.3 About Developing Applications with MAF

Although the components of a MAF application may be created by a single developer, an application may typically be built from resources provided by different development roles. An application developer builds the application data and the user interface logic either as an application or as a reusable program that can be used in an application feature. An application assembler gathers different application features into a single application and puts them in a user-friendly, navigable order. An application deployer ensures a controlled application deployment. For example, deployment of MAF applications may require certificates and uploads to public vendor sites such as the Apple App Store or GooglePlay.

	
Note:

Depending on the application development team size and your organization, one person may fill many different roles.

Typically, you perform the following activities when building a MAF application:

	
Gathering requirements

	
Designing

	
Developing

	
Deploying

	
Testing and debugging

	
Securing

	
Enabling access to the server-side data

	
Redeploying

	
Retesting and debugging

	
Publishing

The steps you take to build a MAF application may be similar to the following:

	
Gathering requirements: Create a mobile use case (or user scenario) by gathering user data that describes who the users are, their essential tasks, and the location or context in which they perform them. Consider such factors as the type of information required to complete a task, the information that is available to the user, and how it is accessed or delivered.

	
Designing: After you construct a use case, create a wireframe that illustrates all of the steps (and associated user views) in the application's task flow. When creating a task flow, consider how, and when, different users may interact. Does viewing data (such as a push notification) suffice to complete a task? If not, how much data entry does the task require? To frame these tasks within a mobile context, compare completing tasks using a desktop application to a mobile application. A single desktop application may enable multiple functions that might be partitioned into several different mobile applications (or in the context of MAF, several different application features embedded in a MAF application). Because mobile applications are generally used in short bursts (about two minutes at a time), they must be easily navigable and accommodate the limited data entry of a mobile device.

During the design and development phases, keep in mind that mobile applications may require a set of mobile-specific server-side resources, because the applications may not be able to consume large amounts of data delivered through complex web services. In addition, a mobile application may require extensive client side logic to process data returned by services. It's usually best to shape the data coming into a mobile application on the server side to avoid forcing the client to process too much data.

	
Developing: Select the technology that is best suited for application. While the MAF web view supports remote content which may be authored using Apache Trinidad (ADF Mobile browser) or ADF Faces Rich Client components, these applications do not support offline use. Applications authored in MAF AMX, which runs on the client, however, integrate with device services, enabling end users to not only view files and utilize GPS services, but also collaborate with one another by tapping a phone number to call or text. The MAF AMX component set includes data visualization tools (DVTs) that enable you to add analytics that render appropriately on mobile screens. A MAF AMX application supports offline use by transferring data from remote source and storing it locally, enabling end users to view information when they are not connected.

MAF provides a set of wizards and editors that build not only the basic application itself, but also the application features that are implemented from MAF AMX and local HTML content. Using these tools provides such artifacts as descriptor files for configuring the MAF application and incorporating its application features, a set of default images for splash screens, springboards, navigation bar items that are appropriate to the form-factors of the supported platforms.

For more information, see the following:

	
Chapter 2, "Getting Started with MAF Application Development"

	
Chapter 3, "Configuring the Content of a MAF Application"

	
Chapter 12, "Creating MAF AMX Pages"

	
Chapter 13, "Creating the MAF AMX User Interface"

	
Deploying: You deploy the MAF application not only in the context of publishing it to end users, but also for testing and debugging, because MAF applications cannot run until they have been deployed to a device or simulator. Depending on the phase of development, you designate the credential signing options (debug or release). For testing, you deploy the application to a mobile device or simulator. For production, you package it for distribution to application markets such as the Apple App Store or Google Play.

To deploy an application you first create a deployment profile that describes the target platform and its devices and simulators. Creating a deployment profile includes selecting the splash screen and launch icons used for the application in different orientations (landscape or portrait) and on different devices (phone or tablets). For more information, see Chapter 27, "Deploying MAF Applications."

	
Testing and debugging: During the testing and debugging stage, you optimize the application by deploying it in debug mode to various simulators and devices and then review the debugging output provided through JDeveloper and platform-specific tools. For more information, see Chapter 30, "Testing and Debugging MAF Applications."

	
Securing: Evaluate security risks throughout the application development process. While mobile applications have unique security concerns, they share the same vulnerabilities as any application that accesses remotely served data. To ensure client-side security, MAF provides such features as:

	
Whitelists that prevent such injection attacks as Cross-Site Scripting (XSS) and Cross-Site Request Forgery (CSRF).

	
APIs that generate a strong password to secure access to the SQLite database and encrypt and decrypt its data.

	
A set of web service policies that support SSL.

	
A cacerts file of trusted Certificate Authorities to enforce deployment in SSL

MAF's security configuration includes selecting a login server, such as the Oracle Access Mobile and Social server, or any web page protected by the basic HTTP authentication mechanism, configuring the session management (session and idle timeouts) and also setting the endpoint to the access control service web service, which hosts the application's user roles. For more information, see Chapter 29, "Securing MAF Applications."

	
Enabling access to the server-side data: After ensuring that your application functions as expected at a basic level, you can implement the Java code or use data controls to access the server-side data. For more information, see Section 1.3.1, "About Connected and Disconnected Applications."

	
Redeploying: During subsequent rounds of deployment, ensure that after adding security to your application and enabling access to the server-side data, the application deployment runs as expected and the application is ready for the final testing and debugging.

	
Retesting and debugging: During the final round of testing and debugging, focus on the security and the server-side data access functionality, ensuring that their integration into the application did not result in errors and unexpected behavior.

	
Publishing: Deploying the application to the production environment typically involves publishing to an enterprise server, the Apple App Store, or Google Play. After you publish the MAF application, end users can download it to their mobile devices and access it by touching the designated icon (see Appendix E, "MAF Application Usage"). The application features bear the designated display icons and display as appropriate to the end user and the user's device.

1.3.1 About Connected and Disconnected Applications

A MAF application can run while connected to a network, but can also work in a disconnected mode, such as when there is no cellular signal. Examples include:

	
A basic connected application that includes a user interface backed directly by a web service data control that, in turn, invokes a web service hosted on a server.

	
A connected application that uses moderate (or complex) data services. For this type of application, Java classes (POJOs) exposed through data controls can dispatch data queries between the user interface and the service data source.

	
A disconnected application that manipulates data stored in the SQLite database, enabling application users to work offline. The application may need to get data from a web service, but if connectivity is lost, the data is stored locally and synchronized when connectivity is restored.

1.4 Sample Applications

After setting up your development environment (see Installing Oracle Mobile Application Framework), you can examine the MAF sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory.

The sample applications, such as the WorkBetter application shown in Figure 1-3, illustrate the span of MAF application capabilities, including how applications can interface with remote data using web services and interact with the SQLite database. The sample applications demonstrate the following:

	
How to create a basic Hello World application

	
How to enable the application to react to lifecycle events

	
How to use skinning

	
How to develop MAF AMX application features, including the user interface, navigation, managed beans, and data change events

For more information, see Appendix G, "MAF Sample Applications."

Figure 1-3 The WorkBetter Sample Application

[image: The surrounding text describes this image.]

2 Getting Started with MAF Application Development

This chapter describes how to create a MAF application in JDeveloper and introduces the files and other artifacts that JDeveloper generates when you create the application.

This chapter includes the following sections:

	
Section 2.1, "Introduction to Declarative Development for MAF Applications"

	
Section 2.2, "Creating a MAF Application"

	
Section 2.3, "Defining Application Features for a MAF Application"

	
Section 2.4, "Adding Content to an Application Feature"

	
Section 2.5, "Adding Application Features to a MAF Application"

	
Section 2.6, "Creating MAF AMX Pages and MAF Task Flows"

2.1 Introduction to Declarative Development for MAF Applications

The Oracle Mobile Application Framework (MAF) extension in JDeveloper provides a number of overview editors and other wizards to facilitate the development, testing, and deployment of MAF applications. Using these wizards, you can create a MAF application, define one or more application features, add content to an application feature, and deploy the MAF application to a test environment or device in a relatively short amount of time.

Figure 2-1 shows the WorkBetter sample application in JDeveloper's Applications window where a number of the items that you use to develop MAF applications are identified:

	
The overview editor for the maf-features.xml file opens by default when you create a new MAF application. Use this overview editor to define the application features that your MAF application contains.

	
Use the overview editor for the maf-application.xml file used to, among other things, specify the MAF application's name, the default navigation menus (navigation bar or springboard) that the application renders, security, and device access options for the application.

	
By default, JDeveloper creates a MAF application with two data controls (ApplicationFeatures and DeviceFeatures). These data controls expose operations that you can drag to a MAF AMX page where JDeveloper displays context menus to complete configuration of the operation when you drop it on the page. For example, dragging the hideNavigationBar() operation to a page prompts JDeveloper to display a context menu where you configure a control for end users to hide an application's navigation bar.

The WorkBetter sample application is one of a number of sample applications that MAF provides to demonstrate how to create mobile applications using MAF. For more information, see Appendix G, "MAF Sample Applications."

JDeveloper proposes default options in the wizards so that you can create a MAF application with one application feature displaying one MAF AMX page as follows:

	
Create a MAF application, as described in Section 2.2, "Creating a MAF Application."

	
Define an application feature for the MAF application, as described in Section 2.3, "Defining Application Features for a MAF Application."

	
Add content to the application feature, as described in Section 2.4, "Adding Content to an Application Feature."

Figure 2-1 Overview Editors for Application Features and Application

[image: Surrounding text describes Figure 2-1 .]

2.2 Creating a MAF Application

Before you can create a MAF application, download, install, and configure the MAF extension in JDeveloper. For more information, see Installing Oracle Mobile Application Framework. Once you have completed this task, create a MAF application using the creation wizards in JDeveloper.

2.2.1 How to Create a MAF Application

You create a MAF application in JDeveloper using the application creation wizard.

To create a MAF application:

	
In the main menu, choose File and then Application > New.

	
In the New Gallery, in the Items list, double-click Mobile Application Framework Application.

	
In the Create Mobile Application Framework Application wizard, enter application and project details like name, directory, and default packages. For help with the wizard, press F1 or click Help.

	
Click Finish.

2.2.2 What Happens When You Create a MAF Application

JDeveloper creates a MAF application with two projects (ApplicationController and ViewController) and two data controls (ApplicationFeatures and DeviceFeatures). It also creates files that you use to configure your MAF application and files that your MAF application needs when you deploy it to the Android and/or iOS platform(s).

By default, JDeveloper opens the overview editor for the maf-features.xml file in the ViewController project of the newly-created MAF application, as shown in Figure 2-2. Use this overview editor to add one or more application features to your MAF application. A MAF application must have at least one application feature. For more about adding application features to a MAF application, see Section 2.3, "Defining Application Features for a MAF Application."

For more information about the files and artifacts that JDeveloper generates when you create a MAF application, see Appendix C, "MAF Application and Project Files."

Figure 2-2 Overview Editor for Application Features in Newly-Created MAF Application

[image: Surrounding text describes Figure 2-2 .]

2.3 Defining Application Features for a MAF Application

A MAF application must have at least one application feature. The WorkBetter sample application, for example, includes four application features (Dashboard, People, Organizations, and Springboard). Figure 2-3 shows three of these application features displaying in that application's custom springboard.

Figure 2-3 Application Features in the WorkBetter Application's Springboard

[image: This image is described in the surrounding text]

2.3.1 How to Define an Application Feature

You define an application feature for a MAF application using the overview editor for the maf-features.xml file.

To define an application feature for a MAF application:

	
In the Applications window, expand the ViewController project and then Application Sources and META-INF.

	
Double-click the maf-feature.xml file.

	
In the Features page, click the Add icon.

	
Complete entries in the Create MAF Feature dialog as follows:

	
Feature Name: Enter the display name for the application feature.

	
Feature ID: Enter a unique ID for the application feature or accept the value that JDeveloper generates.

	
Directory: Specify the directory for the application feature or accept the value that JDeveloper generates.

	
Select the Add a corresponding feature reference to maf-application.xml checkbox to add the application feature to the MAF application. By default, JDeveloper selects this checkbox.

	
Click OK.

2.4 Adding Content to an Application Feature

One of the tasks to do after you define an application feature is to add content to the application feature. Choose among the following types to render content in your application feature:

	
MAF AMX Page: Choose this content type if you want the application feature to render MAF AMX pages.

	
MAF Task Flow: Choose this content type if you want the application feature to render a collection of activities that make up a task flow. Examples of activities that you can include in a task flow are views (to display MAF AMX pages), method calls (to invoke managed bean methods), and task flow calls (to call other task flows).

	
Local HTML: Choose if you want the application feature to render HTML page.

	
Remote URL: Choose if you want the application feature to render content from a remote URL.

The general steps to add a content type to an application feature are the same for all content types. That is, you choose the type of content to add to the application feature in the Content tab of the Features page of the maf-features.xml file's overview editor. For the specific steps for each content type, see Chapter 5, "Defining the Content Type of MAF Application Features."

2.5 Adding Application Features to a MAF Application

You can automatically add an application feature to a MAF application when you define it by selecting the Add a corresponding feature reference to maf-application.xml checkbox in the Create MAF Feature dialog, as described in Section 2.3.1, "How to Define an Application Feature."

Use the Feature References page of the maf-application.xml file's overview editor if you want to add an application feature that you did not add to the MAF application when you created it, you use the Feature References page of the maf-application.xml file's overview editor.

You can also add application features to your MAF application that you import from Feature Archive (FAR) files. You must import the application feature into your MAF application before you can add an application feature to the MAF application. For more information about importing from FAR files, see Chapter 8, "Reusing MAF Application Content."

Figure 2-4 shows the Feature References page where you add application features to a MAF application.

Figure 2-4 Adding Application Features Using the Feature References Page

[image: This image is described in the surrounding text]

2.5.1 How to Add an Application Feature to a MAF Application

You use the Feature References page in the overview editor of the maf-application.xml file to add application features to a MAF application.

To add an application feature to a MAF application:

	
In the Applications window, expand the Application Resources panel.

	
In the Application Resources panel, expand Descriptors and then ADF META-INF.

	
Double-click the maf-application.xml file and in the overview editor that appears, click the Feature References navigation tab.

	
In the Feature References page, click the Add icon.

	
In the Insert Feature Reference dialog, select the ID of the application feature from the dropdown list.

	
Click OK.

2.5.2 What You May Need to Know About Feature Reference IDs and Feature IDs

JDeveloper writes an entry in the maf-application.xml file to reference the application feature that you add to the MAF application.

In the maf-application.xml file, the refId attribute of an <adfmf:featureReference> element identifies the corresponding application feature in the maf-feature.xml file. For this reason, the value of the refId attribute for a <adfmf:featureReference> element in the maf-application.xml file must match the value of the id attribute defined for the <adfmf:feature> element in the maf-feature.xml file.

Use a naming convention consistently to make sure that application feature IDs are unique. Application feature IDs must be unique across a MAF application.

Example 2-1 shows the entries for the People application feature in the WorkBetter sample application's maf-application.xml and maf-feature.xml files.

Example 2-1 Feature Reference and Feature ID for an Application Feature in WorkBetter Application

<!-- Feature Reference ID in maf-application.xml File -->
<adfmf:featureReference id="fr2" refId="People"/>
...
<!-- Feature ID in maf-feature.xml File -->
<adfmf:feature id="People" name="People" icon="images/people.png" image="images/people.png">
...

2.6 Creating MAF AMX Pages and MAF Task Flows

As described in Chapter 12, "Creating MAF AMX Pages," the MAF AMX components enable you to build pages that run identically to those authored in a platform-specific language. MAF AMX pages enable you to declaratively create the user interface using a rich set of components. Figure 2-5 illustrates the declarative development of a MAF AMX page.

Figure 2-5 Creating a MAF AMX Page

[image: Surrounding text describes Figure 2-5 .]

These pages may be created by the application assembler, who creates the MAF application and embeds application features within it, or they can be constructed by another developer and then incorporated into the MAF application either as an application feature or as a resource to a MAF application.

The project in which you create the MAF AMX page determines if the page is used to deliver the user interface content for a single application feature, or be used as a resource to the entire MAF application. For example, a page created within the application controller project, as shown in Figure 2-9, would be used as an application-wide resource.

	
Tip:

To make pages easier to maintain, you can break it down in to reusable segments known as page fragments. A MAF AMX page may be comprised one or more page fragments.

MAF enables you to arrange MAF AMX view pages and other activities into an appropriate sequence through the MAF task flow. As described in Section 12.2, "Creating Task Flows," a MAF task flow is visual representation of the flow of the application. It can be comprised of MAF AMX-authored user interface pages (illustrated by such view activities, such as the WorkBetter sample application's default List page and the Detail page in Figure 2-6) and nonvisual activities that can call methods on managed beans. The non-visual elements of a task flow can be used to evaluate an EL expression or call another task flow. As illustrated by Figure 2-6, MAF enables you to declaratively create the task flow by dragging task flow components onto a diagrammer. MAF provides two types of task flows: a bounded task flow, which has a single point of entry, such as the List page in the WorkBetter sample application, and an unbounded task flow, which may have multiple points of entry into the application flow. The WorkBetter sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

Figure 2-6 MAF Task Flow

[image: The surrounding text describes this image.]

Figure 2-7 shows wizards that MAF provides to add MAF task flows, AMX pages, reusable portions of MAF AMX pages called MAF page fragments, and application features. To access these wizards, select a view controller or application controller project within the Applications window and choose File > New. Select one of the wizards after selecting Mobile Application Framework within the Client Tier.

Figure 2-7 Wizards for Creating Resources for Application Features

[image: This image is described in the surrounding text]

2.6.1 How to Create a MAF AMX Page

You can use the MAF AMX Page wizard to create AMX pages used for the user interface for an application feature, or as an application-level resource (such as a login page) that can be shared by the application features that comprise the MAF application. For more information about application feature content, see Chapter 5, "Defining the Content Type of MAF Application Features."

To create a MAF AMX page as content for an application feature:

	
In the Applications window, right-click the view controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery, choose MAF AMX Page and then click OK.

	
Complete the Create MAF AMX Page dialog, shown in Figure 2-8, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the view controller project.

Figure 2-8 Creating a MAF AMX Page in a View Controller Project

[image: This image is described in the surrounding text]

	
Select (or deselect) the Facets within the Panel Page that are used to create a header and footer. Click OK.

For more information, see Section 13.2.2, "How to Use a Panel Page Component."

	
Build the MAF AMX page. For more information about using the AMX components, see Section 12.3.1.2, "Creating MAF AMX Pages." See also Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow."

To create a MAF AMX page as a resource to a MAF application:

	
In the Applications window, select the application controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery, select MAF AMX Page, and then click OK.

	
Complete the Create MAF AMX Page dialog, shown in Figure 2-9, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the application controller project. Click OK.

Figure 2-9 Creating a MAF AMX Page in an Application Controller Project

[image: This image is described in the surrounding text]

	
Build the MAF AMX page. For more information, see Section 12.3.1.2, "Creating MAF AMX Pages."

2.6.2 How to Create MAF Task Flows

You can deliver the content for an application feature as a MAF task flow.

To create a MAF Task Flow as content for an application feature:

	
In the Applications window, select the view controller project.

	
Choose File and then New.

	
From the Client Tier node in the New Gallery select MAF Task Flow and then click OK.

	
Complete the Create MAF Task Flow dialog, shown in Figure 2-10, by entering a name in the File Name field. In the Directory field, enter the file location, which must be within the public_html folder of the view controller project. Click OK.

Figure 2-10 Creating a MAF Task Flow in a View Controller Project

[image: This image is described in the surrounding text]

	
Build the task flow. See also Section 12.2, "Creating Task Flows."

2.6.3 What Happens When You Create MAF AMX Pages and Task Flows

JDeveloper places the MAF AMX pages and task flows in the Web Content node of the view controller project, as shown by custom_springboard.amx and ViewController-task-flow.xml (the default name for a task flow created within this project) in Figure 2-11. These artifacts are referenced in the maf-feature.xml file. Other resources, such as the customized application splash screen (or launch) images and navigation bar images, are also housed in the Web Content node. To manage the unbounded task flows, JDeveloper generates the adfc-mobile-config.xml file. Using this file, you can declaratively create or update a task flow by adding the various task flow components, such as a view (a user interface page), the control rules that define the transitions between various activities, and the managed beans to manage the rendering logic of the task flow.

Figure 2-11 MAF AMX Pages and Task Flows within Application Controller and View Controller Projects

[image: This image is described in the surrounding text]

JDeveloper places the MAF AMX page and task flow as application resources to the MAF application in the Web Content node of the application controller project. As illustrated in Figure 2-11, the file for the MAF AMX page is called application_resource.amx and the task flow file is called ApplicationController-task-flow.xml (the default name).

3 Configuring the Content of a MAF Application

This chapter describes how you configure the maf-application.xml and maf-features.xml files to define information such as the application name and application features to include for your MAF application.

This chapter includes the following sections:

	
Section 3.1, "Introduction to Configuring MAF Application Display Information"

	
Section 3.2, "Setting Display Properties for a MAF Application"

	
Section 3.3, "Setting Display Properties for an Application Feature"

3.1 Introduction to Configuring MAF Application Display Information

You can configure the display information that appears to the end users of your MAF application by setting values in the overview editor of the maf-application.xml file. Examples of the type of information you enter for the application include the display name, a description of your application, and the application's version number. You can enter similar information for individual application features that you include in your MAF application or distribute for use in other MAF applications. Additionally, you can specify icons that an application feature displays when it renders in a MAF application's navigation bar or springboard.

3.2 Setting Display Properties for a MAF Application

Figure 3-1 shows the Application page of the maf-application.xml file's overview editor where you set the display name and application ID of your MAF application.

Figure 3-1 Setting the Basic Information for the MAF Application

[image: This image is described in the surrounding text]

To set the basic information for a MAF application:

	
Choose the Application page.

	
In the Applications window, expand the Application Resources panel.

	
In the Application Resources panel, expand Descriptors and then ADF META-INF.

	
Double-click the maf-application.xml file and in the overview editor that appears, click the Application navigation tab.

	
Enter a display name for the application in the Name field.

You can select a value from a resource bundle if you intend to localize your application. For more information, see Section 6.1, "Introduction to MAF Application Localization."

	
Note:

MAF uses the value entered in this field as the name for the iOS archive (.ipa or .app) file that it creates when you deploy the application to an iOS-powered device or simulator. For more information, see Section 27.2.5, "How to Create an iOS Deployment Profile."

	
Enter a unique ID in the Id field.

To avoid naming conflicts, Android and iOS use reverse package names, such as com.company.application. JDeveloper prefixes com.company as a reverse package to the application name, but you can overwrite this value with another as long as it is unique and adheres to the ID guidelines for both iOS- and Android-powered devices. For iOS application, see the "Creating and Configuring App IDs" section in iOS Team Administration Guide (available from the iOS Developer Library at http://developer.apple.com/library/ios). For Android, refer to the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html). You can overwrite this ID in the deployment profiles described in Section 27.2.4, "How to Create an Android Deployment Profile" and Section 27.2.5, "How to Create an iOS Deployment Profile."

	
Note:

To make sure that an application deploys successfully to an Android-powered device or emulator, the ID must begin with a letter, not with a number or a period. For example, an ID comprised of a wholly numeric value, such as 925090 (com.company.925090) fails to deploy. An ID that begins with letters, such as hello925090 (com.company.hello925090) deploys successfully.

	
In the Description field, enter text that describes the application.

	
Enter the version in the Version field.

	
Enter the name of the vendor who originated this application in the Vendor field.

	
In the Lifecycle Event Listener field, enter a class with code that executes in response to lifecycle events in your MAF application. A newly-created MAF application specifies application.LifeCycleListenerImpl by default.

For more information, see Chapter 11, "Using Lifecycle Listeners in MAF Applications."

3.3 Setting Display Properties for an Application Feature

Each MAF application must have at least one application feature. Application features can be developed independently of each other (and also from the MAF application itself). The overview editor for the maf-feature.xml file enables you to define the child elements of <adfmf:features> to differentiate the application features by assigning each application feature a name, an ID, and setting how their content can be implemented. Using the overview editor for application features, you can also control the runtime display of the application feature within MAF application and designate when an application feature requires user authentication.

Figure 3-2 shows the General tab of the overview editor for the People application feature in the WorkBetter sample application. Use this tab to specify information such as the name of the application feature and the icons that display in the springboard and navigation bar.

Figure 3-2 General Tab for Application Feature in maf-feature.xml File

[image: This image is described in the surrounding text]

Before you begin:

If an application feature uses custom images for the navigation bar and springboard rather than the default ones provided by MAF, you must create these images to the specifications described by the Android Developers website (http://developer.android.com/design/style/iconography.html) and in the "Custom Icon and Image Creation Guidelines" chapter in iOS Human Interface Guidelines, which is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

You place these images in the view controller project's public_html directory. See also Section 5.4, "What You May Need to Know About Selecting External Resources."

In addition, you must open the maf-feature.xml file and select the General tab.

To set the basic information for the application feature:

	
Choose the General tab.

	
Click the Add icon in the Features section.

	
Complete the Create MAF Feature dialog and click OK.

To complete the Create MAF Feature dialog:

	
Enter a display name for the application feature in the Feature Name field.

	
Enter a unique identifier for the application feature in the Feature ID field.

	
If needed, change the location for the application feature to any directory within the public_html directory (the default parent directory). Enter this location in the Directory field.

	
Select the Add a corresponding feature reference to maf-application.xml checkbox to include the newly defined application feature in the MAF application.

	
(Optional) In the General tab of the overview editor, enter the originator of the application feature in the Vendor field.

	
(Optional) Enter the version number of the application feature in the Version field.

	
(Optional) Enter a brief description of the application's purpose in the Description field.

	
(Optional) Enter the fully qualified class name (including the package, such as oracle.adfmf.feature) using the Class and Package Browser in the Lifecycle Event Listener field to enable runtime calls for start, stop, hibernate, and return to hibernate events. For more information, see Chapter 11, "Using Lifecycle Listeners in MAF Applications."

	
(Optional) In the Navigation Bar Icon and Springboard Image fields, browse to, and select, images from the project to use as the icon in the navigation bar and also an image used for the display icon in the springboard. You can also drag and drop the image files from the Applications window into the file location field.

4 Configuring the Application Navigation

This chapter describes how to configure application navigation using the MAF application's springboard and navigation bar.

This chapter includes the following sections:

	
Section 4.1, "Introduction to the Display Behavior of MAF Applications"

	
Section 4.2, "Configuring Application Navigation"

	
Section 4.3, "What Happens When You Configure the Navigation Options"

	
Section 4.4, "What Happens When You Set the Animation for the Springboard"

	
Section 4.5, "What You May Need to Know About Custom Springboard Application Features with HTML Content"

	
Section 4.6, "What You May Need to Know About Custom Springboard Application Features with MAF AMX Content"

	
Section 4.7, "What You May Need to Know About the Runtime Springboard Behavior"

	
Section 4.8, "Creating a Sliding Window in a MAF Application"

4.1 Introduction to the Display Behavior of MAF Applications

You can configure the MAF application to control the display behavior of the springboard and the navigation bar in the following ways:

	
Hide or show the springboard and navigation bar to enable the optimal usage of the mobile device's interface. These options override the default display behavior for the navigation bar, which is shown by default unless otherwise specified by the application feature.

	
Enable the springboard to slide from the right. By default, the springboard does not occupy the entire display, but instead slides from the left, pushing the active content (which includes the navigation bar's Home button and application features) to the right.

4.2 Configuring Application Navigation

The Navigation options of the Applications page, shown in Figure 4-1, enable you to hide or show the navigation bar, select the type of springboard used by the application, and define how the springboard reacts when users page through applications.

Figure 4-1 The Navigation Options of the Application Page

[image: This image is described in the surrounding text]

Before you begin:

You must select the Application page of the maf-application.xml file's overview editor.

To set the display behavior for the navigation bar:

	
Select Show Navigation Bar on Application Launch to enable the MAF application to display its navigation bar (instead of the springboard), by default, as shown in Figure 4-2.

Figure 4-2 The Navigation Bar, Shown By Default

[image: This image is described in the surrounding text]

If you clear this option, then you hide the navigation bar when the application starts, presenting the user with the springboard as the only means of navigation. Because the navigation bar serves the same purpose as the springboard, hiding it can, in some cases, remove redundant functionality.

	
Select Show Navigation Bar Toggle Button to hide the navigation bar when the content of a selected application feature is visible. Figure 4-3 illustrates this option, showing how the navigation bar illustrated in Figure 4-2 becomes hidden by the application feature content.

Figure 4-3 Hiding the Navigation Bar

[image: This image is described in the surrounding text]

This option is selected by default; the navigation bar is shown by default if the show or hide state is not specified by the application feature.

To set the display behavior for the springboard:

	
Select the type of springboard (if any):

	
None—Select this option if the springboard should not be displayed in the application.

	
Default—Select to display the default springboard provided by MAF. The default springboard is implemented as a MAF AMX page. For more information, see Section 4.6, "What You May Need to Know About Custom Springboard Application Features with MAF AMX Content."

	
Custom—Select to use a customized springboard. You may, for example, create a custom springboard that arranges the embedded application features in a grid layout pattern, or includes a search function, or data, such as a list of common tasks (My Reports, or My Leads, for example). This application, which can be implemented either as an HTML page or as a MAF Mobile AMX page, is declared as an application feature in the maf-feature.xml file (which is located within a view controller project). For more information, see Section 3.3, "Setting Display Properties for an Application Feature." For information on enabling navigation within a customized springboard written in HTML, see Chapter B, "Local HTML and Application Container APIs."

	
Feature—Select the application feature used as a springboard, as shown in Figure 4-5. See the APIDemo sample application for an example of a custom springboard. For more information, see Appendix G, "MAF Sample Applications."

	
Note:

MAF's design time prompts you to set the Show on Navigation Bar and Show on Springboard options to false when you designate an application feature as a custom springboard. This makes sure that the page behaves as a custom springboard rather than as an application feature that users launch from a navigation bar or from a springboard.

Figure 4-4 Selecting an Application Feature as a Custom Springboard

[image: This image is described in the surrounding text]

	
Select Show Springboard on Application Launch to enable the MAF application to display the springboard to the end user after the MAF application has been launched. (This option is only available for the Default or Custom options.)

	
Select Show Springboard Toggle Button to enable the display of the springboard button, shown in Figure 4-5, that displays within an application feature. Figure 4-2, "The Navigation Bar, Shown By Default" shows this button within the context of an application feature. This option is only available for the Default or Custom options.

Figure 4-5 The Springboard Toggle Button

[image: This image is described in the surrounding text]

To set the slideout behavior for the springboard:

	
Select Springboard Animation and then choose Slide Right. The springboard occupies an area determined by the number of pixels (or the percent) entered for the Slideout Width option. If you select None, then the springboard cannot slide from the right (that is, MAF does not provide the animation to enable this action). The springboard takes the entire display area.

	
Note:

The slideout option is only applicable when you select either the Custom or Default springboard options.

	
Set the width (in pixels). The default width of a springboard on an iOS-powered device is 320 pixels. On Android-powered devices, the springboard occupies the entire screen by default, thereby taking up all of the available width.

	
Note:

If the springboard does not occupy the entire area of the display, then an active application feature occupies the remainder of the display. For more information, see Section 4.4, "What Happens When You Set the Animation for the Springboard."

4.3 What Happens When You Configure the Navigation Options

Setting the springboard and navigation bar options updates or adds elements to the adfmf:application.xml file's <adfmf:navigation> element. For example, selecting None results in the code updated with <springboard enabled="false"> as illustrated in Example 4-1.

Example 4-1 Preventing the Display of the Springboard

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="false"/>
 </adfmf:navigation>
</adfmf:application>

	
Tip:

By default, the navigation bar is enabled, but the springboard is not. If you update the XML manually, you can enable the springboard as follows:

<adfmf:application>
 ...
<adfmf:navigation>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
 ...
</adfmf:application>

Example 4-2 illustrates how the enabled attribute is set to true when you select Default.

	
Note:

Because the springboard fills the entire screen of the device, the navigation bar and the springboard do not appear simultaneously.

Example 4-2 Enabling the Display of the Default Springboard

<adfmf:application>
 ...
 <adfmf:navigation>
 <adfmf:navigationBar enabled="true"/>
 <adfmf:springboard enabled="true"/>
 </adfmf:navigation>
</adfmf:application>

If you select Custom and then select the application feature used as the springboard, the editor populates the <adfmf:navigation> element as illustrated in Example 4-3. The id attribute refers to an application feature defined in the maf-feature.xml file that is used as a custom springboard.

Example 4-3 Configuring a Custom Springboard

<adfmf:navigation>
 <adfmf:springboard enabled="true">
 <adfmf:springboardFeatureReference id="springboard"/>
 </adfmf:springboard>
 </adfmf:navigation>

4.4 What Happens When You Set the Animation for the Springboard

Example 4-4 shows the navigation block of the maf-application.xml file, where the springboard is set to slide out and occupy a specified area of the display (213 pixels).

Example 4-4 Configuring Springboard Animation

<adfmf:navigation>
 <adfmf:navigationBar enabled="true"
 displayHideShowNavigationBarControl="true"/>
 <!-- default interpretation of width is pixels -->
 <adfmf:springboard enabled="true"
 animation="slideright"
 width="213"
 showSpringbaordAtStartup="true"/>
</adfmf:navigation>

The following line disables the animation:

<adfmf:springboard enabled="true" animation="none"/>

The following line sets the springboard to occupy 100 pixels from the left of the display area and also enables the active application feature to occupy the remaining portion of the display:

<adfmf:springboard enabled="true" animation="slideright" width="100px"/>

In addition to the animation, Example 4-4 demonstrates the following:

	
The use of the showSpringboardAtStartup attribute, which defines whether the springboard displays when the application starts. (By default, the springboard is displayed.)

	
The use of the navigationBar's displayHideShowNavigationBarControl attribute.

To prevent the springboard from displaying, set the enabled attribute to false.

4.5 What You May Need to Know About Custom Springboard Application Features with HTML Content

The default HTML springboard page provided by MAF uses the following technologies, which you may also want to include in a customized login page:

	
CSS—Defines the colors and layout.

	
JavaScript—The <script> tag embedded within the springboard page contains references to the methods described in Chapter B, "Local HTML and Application Container APIs" that call the Apache Cordova APIs. In addition, the HTML page uses JavaScript to respond to the callbacks and to detect page swipes. When swipe events are detected, JavaScript enables the dynamic modification of the style sheets to animate the page motions.

A springboard authored in HTML (or any custom HTML page) can leverage the Apache Cordova APIs by including a <script> tag that references the base.js library. You can determine the location of this library (or other JavaScript libraries) by first deploying a MAF application and then locating the www/js directory within platform-specific artifacts in the deploy directory. For an Android application, the www/js directory is located within the Android application package (.apk) file at:

application workspace directory/deploy/deployment profile name/deployment profile name.apk/assets/www/js

For iOS, this library is located at:

application workspace directory/deploy/deployment profile name/temporary_xcode_project/www/js

For more information, see Section B.1, "Using MAF APIs to Create a Custom HTML Springboard Application Feature."

	
WebKit—Provides smooth animation of the icons during transitions between layouts as well as between different springboard pages. For more information on the WebKit rendering engine, see http://www.webkit.org/.

Springboards written in HTML are application features declared in the maf-feature.xml file and referenced in the maf-application.xml file.

4.6 What You May Need to Know About Custom Springboard Application Features with MAF AMX Content

Like their HTML counterparts, springboards written using MAF AMX are application features that are referenced by the MAF application. Because a springboard is typically written as a single MAF AMX page rather than as a task flow, it uses the gotoFeature method, illustrated by the method expression in Example 4-5, to launch the embedded application features.

	
Note:

A custom springboard page (authored in either HTML or MAF AMX) must reside within a view controller project which also contains the maf-feature.xml file.

The default springboard (adfmf.default.springboard.jar, located in jdev_install\jdeveloper\jdev\extensions\oracle.maf\lib) is a MAF AMX page that is bundled in a Feature Archive (FAR) JAR file and deployed with other FARs that are included in the MAF application. This JAR file includes all of the artifacts associated with a springboard, such as the DataBindings.cpx and PageDef.xml files. This file is only available after you select Default as the springboard option in the maf-application.xml file. Selecting this option also adds this FAR to the application classpath. For more information, see Section 27.5, "Deploying Feature Archive Files (FARs)."

The default springboard (springboard.amx, illustrated in Example 4-5) is implemented as a MAF AMX application feature.

Example 4-5 The Default Springboard page, springboard.amx

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="#{bindings.name.inputValue}" id="ot3"/>
 </amx:facet>
 <amx:listView var="row"
 value="#{bindings.features.collectionModel}"
 fetchSize="#{bindings.features.rangeSize}"
 id="lv1"
 styleClass="amx-springboard">
 <amx:listItem showLinkIcon="false"
 id="li1"
 actionListener="#{bindings.gotoFeature.execute}">
 <amx:tableLayout id="tl1"
 width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11"
 width="46px"
 halign="center">
 <amx:image source="#{row.image}"
 id="i1"
 inlineStyle="width:36px;height:36px"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12"
 width="100%"
 height="43px">
 <amx:outputText value="#{row.name}"
 id="ot2"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 <amx:setPropertyListener from="#{row.id}"
 to="#{pageFlowScope.FeatureId}"/>
 </amx:listItem>
 </amx:listView>
 </amx:panelPage>
</amx:view>

As shown in Figure 4-6, a MAF AMX file defines the springboard using a List View whose List Items are the MAF application's embedded application features. These application features, once deployed, are displayed by their names and associated icons. The gotoFeature method of the AdfmfContainerUtilities API provides the page's navigation functions. For a description of using this method to display a specific application feature, see Section B.2.5, "gotoFeature." See also Section 13.3.15, "How to Use List View and List Item Components."

Figure 4-6 The Default Springboard

[image: This image is described in the surrounding text]

MAF provides the basic tools to create a custom springboard (or augment the default one) in the ApplicationFeatures data control. This data control, illustrated in Figure 4-7, enables you to declaratively build a springboard page using its data collections of attributes that describe both the MAF application and its application features. For an example of a custom springboard page, see the APIDemo sample application. For more information on this application (and other samples that ship with MAF), see Appendix G, "MAF Sample Applications."

Figure 4-7 ApplicationFeatures Data Control

[image: This image is described in the surrounding text]

The ApplicationFeatures data control exposes methods that the AdfmfContainerUtilities class from the following package provides to implement navigation in a MAF application:

oracle.adfmf.framework.api

Table 4-1 describes some of the methods that you can drag from the ApplicationFeatures data control and drop on a MAF AMX page to navigate in your MAF application.

For more information about using data controls, see Chapter 14, "Using Bindings and Creating Data Controls in MAF AMX." For more information about the AdfmfContainerUtilities class, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Table 4-1 Application Feature Methods

	Method	Description
	
gotoDefaultFeature

	
Navigates to default application feature.

	
gotoFeature

	
Navigates to a specific application as designated by the parameter that is passed to this method.

	
gotoPreferences

	
Navigates to the preferences page.

	
gotoSpringboard

	
Navigates to the springboard.

	
hideNavigationbar

	
Hides the navigation bar.

	
showNavigationbar

	
Displays the navigation bar (if it is hidden).

	
resetFeature

	
Resets the application feature that is designated by the parameter passed to this method.

	
hideSpringboard

	
Hides the springboard.

	
showSpringboard

	
Shows the springboard.

4.7 What You May Need to Know About the Runtime Springboard Behavior

If you chose the Show Springboard on Application Launch option and defined the slideout width to full size of the screen, then MAF loads the default application feature in the background at startup. When the MAF application hibernates, MAF hides the springboard.

4.8 Creating a Sliding Window in a MAF Application

You can render an application feature as a sliding window. This makes the application feature display concurrently with the other application features that display within the navigation bar or springboard. You might use a sliding window to display content that is always present within the application, such as a global tool bar, or for temporary (pop-up) content, such as a help window.

Figure 4-8 shows the SlidingDrawer application feature from the SlidingWindow sample application, described in Section G, "MAF Sample Applications." This application feature appears on the right of an application screen while overlaying other application features.

Figure 4-8 Sliding Window Overlaying Other Application Features

[image: The surrounding text describes this image.]

If you choose to render an application feature as a sliding window, you must set its Show on Navigation Bar and Show on Springboard properties to false.

You create a sliding window by invoking a combination of the oracle.adfmf.framework.api.AdfmfSlidingWindowOptions and AdfmfSlidingWindowUtilities classes, either from a managed bean or lifecycle listener within your application.

Example 4-6 demonstrates how the SlidingWindow sample application creates the sliding window shown in Figure 4-8 from the activate method of LifeCycleListenerImpl.java. After creating the sliding window, the SlidingWindow sample application uses SlidingDrawerBean.java to manage the display of the sliding window.

Example 4-6 Creating a Sliding Window

...
public void activate() {
 // The argument you pass to the create method is the refId of the
 // feature in the maf-application.xml. For example,
 // <adfmf:featureReference id="fr4" refId="SlidingDrawer" showOnNavigationBar="false"
 // showOnSpringboard="false"/>
 String slidingWindowDrawer = AdfmfSlidingWindowUtilities.create("SlidingDrawer");

 // Note also that both showOn... values must be set to false in the config
 // file for the sliding window to appear

 SlidingDrawerBean.slidingDrawerWindow=slidingWindowDrawer;
 AdfmfSlidingWindowOptions options = new AdfmfSlidingWindowOptions();
 options.setDirection(AdfmfSlidingWindowOptions.DIRECTION_RIGHT);
 options.setStyle(AdfmfSlidingWindowOptions.STYLE_OVERLAID);
 options.setSize("0");

 }

For information about how to access the complete SlidingWindow sample application discussed here, see Section G, "MAF Sample Applications."

For more information about AdfmfSlidingWindowUtilities and AdfmfSlidingWindowOptions, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework. For more information about using lifecycle listeners, see Chapter 11, "Using Lifecycle Listeners in MAF Applications."

5 Defining the Content Type of MAF Application Features

This chapter introduces the content types that you can use in the applications features of your MAF application and describes how to create each supported content type in an application feature.

This chapter includes the following sections:

	
Section 5.1, "Introduction to Content Types for an Application Feature"

	
Section 5.2, "Defining the Application Feature Content as Remote URL or Local HTML"

	
Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow"

	
Section 5.4, "What You May Need to Know About Selecting External Resources"

5.1 Introduction to Content Types for an Application Feature

The content type for an application feature describes the format of the user interface, which can be constructed using MAF AMX components or HTML(5) tags. An application feature can also derive its content from remotely hosted pages that contain content appropriate to a mobile context. These web pages might be a JavaServer page authored in Apache Trinidad for smartphones, or be comprised of ADF Faces components for applications that run on tablet devices. The application features embedded in a MAF application can each have different content types.

While a MAF application includes application features with different content types, applications features themselves may have different content types to respond to user- and device-specific requirements. For information on how the application feature delivers different content types, see Chapter 22, "Setting Constraints on Application Features." Adding a child element to the <adfmf:content> element, shown in Example 5-1, enables you to define how the application feature implements its user interface.

Example 5-1 The <adfmf:content> Element

<adfmf:content id="Feature1">
 <adfmf:amx file="FeatureContent.amx">
</adfmf:content>

The Content tab of the overview editor, shown in Figure 5-1, provides you with dropdown lists and fields for defining the target content-related elements and attributes shown in Example 5-1. The fields within this tab enable you to set constraints that can control the type of content delivered for an application feature as well as the navigation and springboard icon images that it uses.

Each content type has its own set of parameters. As shown in Figure 5-1, for example, you specify the location of the MAF AMX page or task flow for the application features that you implement as MAF AMX content. In addition, you can optionally select a CSS file to give the application feature a look and feel that is distinct from other application features (or the MAF application itself), or select a JavaScript file that controls the actions of the MAF AMX components.

Figure 5-1 Defining the Implementation of the Application Feature

[image: This image is described in the surrounding text]

5.2 Defining the Application Feature Content as Remote URL or Local HTML

The Content tab of the overview editor, shown in Figure 5-1, provides you with dropdown lists and fields for defining the target content-related elements and attributes shown in Example 5-1. The fields within this tab enable you to set constraints that can control the type of content delivered for an application feature as well as the navigation and springboard icon images that it uses.

Before you begin:

Each content type has its own prerequisites, as follows:

	
Remote URL—A reference to a web application. You can enhance an existing web application for mobile usage and extend device services. Remote content can complement both MAF AMX and local HTML content by providing a local data cache and a full set of server-side data and functionality. The remote URL implementation requires a valid web address. For more information, see Chapter 20, "Implementing Application Feature Content Using Remote URLs."

	
Local HTML—Reference a HTML page that is packaged within your MAF application. Such HTML pages can reference JavaScript, as demonstrated by the HelloWorld sample application described in Appendix G, "MAF Sample Applications." Consider using this content type to implement application functionality through usage of the Cordova JavaScript APIs if the MAF is not best suited to implementing your application's functionality. For more information about JavaScript APIs and the MAF, see Appendix B, "Local HTML and Application Container APIs."

To define the application content as Remote URL or Local HTML:

	
Select an application feature listed in the Features table in the maf-feature.xml file.

	
Click Content.

	
Click Add to create a new row in the Content table.

	
Select one of the following content types to correspond with the generated ID:

	
Remote URL

	
Local HTML

	
Define the content-specific parameters:

	
For remote URL content, select the connection, as shown in Figure 5-2, that represents address of the web pages on the server (and the location of the launch page).

Figure 5-2 Selecting the Connection for the Hosted Application

[image: This image is described in the surrounding text]

You can create this connection by first clicking Add and then completing the Create URL Connection dialog, shown in Figure 5-3. For more information on this dialog, see the online help for Oracle JDeveloper. This connection is stored in the connections.xml file.

	
Note:

This connection can only be created as an application resource.

Figure 5-3 Creating a URL Connection

[image: This image is described in the surrounding text]

	
For local HTML content, enter the location of the local bundle or create the HTML page by clicking Add in the URL field, completing the dialog as shown in Figure 5-4, and then building the page using JDeveloper's HTML editor. Because this is an application feature, this page is stored within the Web Content folder of the view controller project.

Figure 5-4 Creating the Local HTML Page as the Content for an Application Feature

[image: This image is described in the surrounding text]

	
If needed, do the following:

	
Enter constraints that describe the conditions under which this content is available to users. For more information, see Chapter 22, "Setting Constraints on Application Features."

	
Select navigation bar and springboard images.

5.3 Defining the Application Feature Content as a MAF AMX Page or Task Flow

The Content tab of the Overview editor, shown in Figure 5-1, provides you with dropdown lists and fields for defining the target content-related elements and attributes shown in Example 5-1. The fields within this tab enable you to set constraints that can control the type of content delivered for an application feature as well as the navigation and springboard icon images that it uses.

Before you begin:

Each content type has its own prerequisites, as follows:

	
MAF AMX—The default content type for application features. For more information about MAF AMX pages, see Chapter 12, "Creating MAF AMX Pages."

An application feature implemented as MAF AMX requires a view (that is, a single MAF AMX page) or a bounded or unbounded task flow. Including a JavaScript file provides rendering logic to the MAF AMX components or overrides the existing rendering logic. Including a style sheet (CSS) with selectors that specify a custom look and feel for the application feature, one that overrides the styles defined at the MAF application level that are used by default for application features. In other words, you ensure that the entire application feature has its own look and feel.

If you create the MAF AMX pages as well as the MAF application that contains them, you can create both using the wizards in the New Gallery. You access these wizards by first highlighting the view controller project in the Applications window and then by choosing New.

	
Note:

When manually editing references to task flows, MAF AMX pages, CSS and JavaScript files in the maf-feature.xml file, keep in mind that file systems used on devices may enforce case-sensitivity and may not allow special characters. To ensure that these files can be referenced, check the mobile device specification.

	
MAF Task Flow— Provides a modular approach to defining control flow in your application feature. Use a task flow to define a collection of activities that make up a task. Examples of activities that you can include in a task flow are views (use to display MAF AMX pages), method calls (use to invoke managed bean methods), and task flow calls (use to call other task flows). For more information about task flows, see Section 12.2, "Creating Task Flows."

To use a MAF AMX page or task flow as application feature content:

	
Select the application feature.

	
Click Content.

	
If needed, click Add to create a row in the Content table and choose MAF AMX Page or MAF Task Flow from the dropdown list in the Type column, as shown in the following figure.

Figure 5-5 Selecting MAF AMX Page or MAF Task Flow as the Content Type

[image: This image is described in the surrounding text]

	
In the File field, choose the appropriate option:

	
If you have already created a MAF AMX page or task flow, click the Browse icon and choose the location of the page or task.

	
If you want to create a new MAF AMX page, click the Add icon to invoke a dialog where you can create a new MAF AMX page or task flow.

	
If needed, do the following:

	
Enter the JavaScript files by clicking Add in the Includes table, choose JavaScript, and then browse to the location of the file. For more information, see Section 7.7, "Overriding the Default Skin Styles."

	
Override the default style sheet designated in maf-config.xml by first clicking Add and then by choosing Stylesheet. Browse to the location of the file. For more information, see Chapter 7, "Skinning MAF Applications."

	
Enter the constraints, as described in Chapter 22, "Setting Constraints on Application Features."

	
Select navigation bar and springboard images.

	
Note:

The images, style sheet, and JavaScript files must reside within the public_html folder to enable deployment. See Section 5.4, "What You May Need to Know About Selecting External Resources."

5.4 What You May Need to Know About Selecting External Resources

To enable deployment, all resources referenced by the following attributes must be located within the public_html directory of the view controller project.

	
The icon and image attributes for <adfmf:feature> (for example, <adfmf:feature id="PROD" name="Products" icon="feature_icon.png" image="springboard.png">). See also Section 3.3, "Setting Display Properties for an Application Feature."

	
The icon and image attributes for <adfmf:content> (for example, <adfmf:content id="PROD" icon="feature_icon.png" image="springboard_image.png">). See also Section 5.1, "Introduction to Content Types for an Application Feature."

	
The file attribute for <adfmf:amx> (for example, <adfmf:amx file="PRODUCT/home.amx" />). See also Section 5.1, "Introduction to Content Types for an Application Feature."

	
The url attribute for <adfmf: localHTML> (for example, <adfmf:localHTML url="oracle.hello/index.html"/>). See also Section 5.1, "Introduction to Content Types for an Application Feature" and Section 29.5.4.2, "The Custom Login Page."

	
The file attribute defined for type=stylesheet and type=JavaScript in <adfmf:includes> (for example, <adfmf:include type="JavaScript" file="myotherfile.js"/> or <adfmf:include type="StyleSheet" file="resources/css/stylesheet.css" id="i3"/>). See also Chapter 7, "Skinning MAF Applications."

MAF does not support resources referenced from another location, meaning that you cannot, for example, enter a value outside of the public_html directory using ../ as a prefix. To safeguard against referencing resources outside of public_html, MAF includes an audit rule called File not in public_html directory. You can access the MAF audit profiles, shown in Figure 5-6, from the Audit Profiles node in Preferences by choosing Tools > Preferences > Audit > Profiles.

Figure 5-6 MAF Audit Profiles

[image: This image is described in the surrounding text]

When this profile is selected, JDeveloper issues a warning if you change the location of a resource. As shown in Figure 5-7, JDeveloper displays such a warning when the default values are overridden. For information on auditing, see the "Auditing and Monitoring Java Projects" chapter in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 5-7 The External Resource Warning

[image: This image is described in the surrounding text]

6 Localizing MAF Applications

This chapter describes how to configure a MAF application for use in a variety of locales and international user environments. Features such as JDeveloper's ability to automatically generate resource bundles, how you manually define resource bundles and locales in addition to configuring localization properties for your application are also described.

This chapter includes the following sections:

	
Section 6.1, "Introduction to MAF Application Localization"

	
Section 6.2, "Setting Resource Bundle Options"

	
Section 6.3, "What Happens When You Select Resource Bundle Options"

	
Section 6.4, "Entering a String in a Resource Bundle"

	
Section 6.5, "What Happens When You Add a Resource Bundle"

	
Section 6.6, "Localizing Strings in MAF AMX UI Components"

	
Section 6.7, "What Happens When You Create Project-Level Resource Bundles for MAF AMX UI Components"

	
Section 6.8, "What You May Need to Know About Localizing Image Files"

	
Section 6.9, "Editing a Resource Bundle File"

	
Section 6.10, "What You May Need to Know About XLIFF Files for iOS Applications"

	
Section 6.11, "What You May Need to Know About Internationalization for iOS Applications"

6.1 Introduction to MAF Application Localization

Localization is the process of adapting an application for a specific local language or culture by translating text and adding locale-specific components. By configuring the MAF application and its user interface pages to use different locales, you enable a MAF application to appear as though it has been authored for the language set on the mobile device. For example, if you intend to broaden the use of a MAF application by enabling it to be viewed by French speakers, you can localize the application so that its text strings and images used in both the device's springboard and within the MAF web view display in French (that is, products is transformed into les produits, and so on).

JDeveloper provides automatic translation of these text resources into 28 languages.

After you define translatable strings (such as validator error messages, or attribute control hints), JDeveloper stores them in a project-level resource bundle file. MAF specifies English language text resources (although you can use any tool to generate resource bundle files in other languages). You can configure a MAF application to store translatable UI strings at both the application and view controller project level.

MAF uses only XLIFF (XML Localization Interchange File Format) files for localization, meaning that JDeveloper produces resource bundle .xlf files to store the strings. For information on XLFF, see

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html.

6.2 Setting Resource Bundle Options

You can create resource bundles for the view controller and application controller projects using Resource Bundle Settings page for projects, shown in Figure 6-1.

Figure 6-1 Project Properties Resource Bundle Page

[image: This image is described in the surrounding text]

To set the resource bundle options for a project:

	
In the Applications window, double-click the project.

	
In the Project Properties dialog, select Resource Bundle.

	
To automatically generate a default resource file, select Automatically Synchronize Bundle.

	
Select one of the following resource bundle file options:

	
One Bundle Per Project —Configured in a file named <ProjectName>.xlf. For more information, see Section 6.3, "What Happens When You Select Resource Bundle Options."

	
One Bundle Per File— Creates a new bundle each time you put a resource into file (maf-feature.xml, maf-application.xml or a MAF AMX page). As a result, each file has its own bundle. This option limits the number of resource bundles to one per file; if you select this option, JDeveloper prevents you from creating a second bundle.

	
Click OK.

	
Note:

Xliff Resource Bundle is the only resource bundle format used by MAF. For more information on this page, see the online help for Oracle JDeveloper.

6.3 What Happens When You Select Resource Bundle Options

JDeveloper generates one or more resource bundles of a particular type based on the selections that you make in the resource bundle options part of the Project Properties dialog, as illustrated in Figure 6-1. It generates a resource bundle the first time that you invoke the Select Text Resource dialog, as illustrated in Figure 6-3.

If you select One Bundle Per Project and the List Resource Bundle value from the Resource Bundle Type dropdown list. The first time that you invoke the Select Text Resource dialog, JDeveloper generates one resource bundle for the project.

By default, JDeveloper creates the generated resource bundle in the view subdirectory of the project's Application Sources directory.

6.4 Entering a String in a Resource Bundle

At the project-level, you create resource bundle files when you use the resource bundle dialog, accessed by clicking Select Text Resource in the Properties window. This dialog enables you to automatically create text resources in the base resource bundle for maf-application.xml and maf-feature.xml attributes listed in Table 6-1 and Table 6-2.

At the application level, you can localize strings for such attributes as application names or preference page labels, which are listed in Table 6-1.

Table 6-1 Localizable MAF Application Attributes

	Element	Attribute(s)
	
<adfmf:Application>

	
name

	
<adfmf:PreferenceGroup>

	
label

	
<adfmf:PreferencePage>

	
label

	
<adfmf:PreferenceBoolean>

	
label

	
<adfmf:PreferenceText>

	
label

	
<adfmf:PreferenceNumber>

	
label

	
<adfmf:PreferenceList>

	
label

	
<adfmf:PreferenceValue>

	
name

At the project (view controller) level, you can localize application feature-related attributes listed in Table 6-2.

Table 6-2 Localizable Application Feature Attributes

	Element	Attribute(s)
	
<adfmf:Feature>

	
name

	
<adfmf:Constraint>

	
value

	
<adfmf:Parameter>

	
value

	
<adfmf:PreferencePage>

	
label

	
<adfmf:PrefrenceGroup>

	
label

	
<adfmf:PreferenceBoolean>

	
label

	
<adfmf:PreferenceText>

	
label

	
<adfmf:PreferenceNumber>

	
label

	
<adfmf:PreferenceList>

	
label

	
<adfmf:PreferenceValue>

	
name

To create localized strings in a resource bundle:

	
Select an attribute in the Properties window, such as Name in Figure 6-2.

	
Choose Select Text Resource. Figure 6-2 shows the application name attribute selected in the Properties window.

Figure 6-2 Selecting the Text Resource Dialog

[image: This image is described in the surrounding text]

	
In the Select Text Resource dialog, shown in Figure 6-3, create a new string resource by entering a display name, key, and then click Save and Select.

Figure 6-3 Select Text Resource Dialog

[image: This image is described in the surrounding text]

6.5 What Happens When You Add a Resource Bundle

After you add a resource in the Select Text Resource dialog, JDeveloper creates a new entry in the .XLF file, as demonstrated in Example 6-1.

Example 6-1 Text Resource in a Resource Bundle

<?xml version="1.0" encoding="windows-1252" ?>
<xliff version="1.1" xmlns="urn:oasis:names:tc:xliff:document:1.1">
 <file source-language="en" original="mobile.ViewControllerBundle" datatype="x-oracle-adf">
 <body>
 <trans-unit id="ACME_SALES">
 <source>Acme Sales</source>
 <target/>
 </trans-unit>
 </body>
 </file>
</xliff>

If an attribute has been localized for the first time, JDeveloper adds an <adfmf:loadbundle> element whose basename attribute refers to the newly created resource bundle.

JDeveloper also changes the localized attribute string to an EL expression that refers to the key of the string defined in the resource bundle. For example, JDeveloper changes an application name attribute called Acme Sales to name="#{acmeBundle.Acme_Sales}" based on the ACME_SALES value entered for the Key in the Select Text Resource Dialog.

JDeveloper adds each additional string that you localize to the same resource bundle file because there is only one resource bundle file at the application level.

Each maf-application.xml and maf-feature.xml file contains only one adfmf:loadBundle element. When you deploy an application, the resource bundles are converted into the language format expected by the runtime.

6.6 Localizing Strings in MAF AMX UI Components

You can create resource bundles for attributes of such MAF AMX UI components as the text attribute of the Button component (<amx:commandButton>). Table 6-3 lists these MAF AMX UI components.

Table 6-3 Localizable Attributes of MAF AMX UI Components

	Component	Attribute
	
<amx:inputDate>

	
label

	
<amx:inputNumberSlider>

	
label

	
<amx:panelLabelAndMessage>

	
label

	
<amx:selectBooleanCheckBox>

	
label

	
<amx:selectBooleanSwitch>

	
label

	
<amx:selectItem>

	
label

	
<amx:selectManyCheckBox>

	
label

	
<amx:selectManyChoice>

	
label

	
<amx:selectOneButton>

	
label

	
<amx:selectOneChoice>

	
label

	
<amx:selectOneRadio>

	
label

	
<amx:commandButton>

	
text

	
<amx:commandLink>

	
text

	
<amx:goLink>

	
text

	
<amx:inputText>

	
label, value, hintText

	
<amx:outputText>

	
value

To use strings in MAF AMX UI components:

	
Select an attribute in the Properties window, such as the value attribute defined for th Output Text (outputText) component in Figure 6-4.

Figure 6-4 Selecting a Text Resource for a MAF AMX Component

[image: The surrounding text describes this image.]

	
Choose Select Text Resource.

	
In the Select Text Resource dialog, shown in Figure 6-5, create a new string resource by entering a display name, key, and then click Save and Select

Figure 6-5 Adding a String to a Resource Bundle

[image: The surrounding text describes this image.]

6.7 What Happens When You Create Project-Level Resource Bundles for MAF AMX UI Components

When you localize a component, such as the value attribute of an Output Text (outputText) component in Example 6-2, JDeveloper transforms the string into an EL expression (such as #{viewcontrollerBundle.LES_PRODUITS} in Example 6-2).

Example 6-2 Localizing a MAF AMX Component

<amx:facet name="header">
 <amx:outputText value="#{viewcontrollerBundle.LES_PRODUITS}"
 id="ot1"
 rendered="true"/>
</amx:facet>

In addition, JDeveloper creates the resource bundle under the project default package, similar to ViewControllerBundle.xlf in Example 6-3. In the generated MAF AMX Load Bundle (loadBundle) component, the basename represents this package, as illustrated in Example 6-3.

Example 6-3 The Load Bundle (loadBundle) Component

<amx:loadBundle basename="mycomp.mobile.ViewControllerBundle"
 var="viewcontrollerBundle"
 id="lb1"/>

6.8 What You May Need to Know About Localizing Image Files

If an image contains text or reflects a specific country or region (for example, a picture of a flag), you can specify an alternate image as part of the localization process. You cannot hard-code the image, such as icon="/feature1/test.png". Instead, you must edit the ViewControllerBundle.xlf file manually by adding a <trans-unit> element for the image path, as illustrated in Example 6-4.

Example 6-4 Defining the Resource for an <amx:image> Component

<trans-unit id="IMAGEPATH">
 <source>/feature1/test.jpg</source>
 <target/>
</trans-unit>

	
Note:

The image location defined in the <source> element in Example 6-4 is relative to the location of the application feature file in ViewController\public_html. Alternatively, you can enter the name of the image file, such as <source>test.png</source>. See also Section 5.4, "What You May Need to Know About Selecting External Resources."

After you update ViewControllerBundle.xlf, use the Expression Builder to define an EL expression for the source attribute for the icon attribute, as shown in Figure 6-6.

Figure 6-6 Creating the EL Expression for a Localized Icon Image

[image: This image is described in the surrounding text]

6.9 Editing a Resource Bundle File

After you have created the XLIFF file, you can edit it using the source editor.

To edit a resource bundle file:

	
From the main menu, choose Application > Edit Resource Bundles.

	
In the Edit Resource Bundles dialog, shown in Figure 6-7, select the resource bundle file you want to edit from the Resource Bundle dropdown list, or click the Search icon to launch the Select Resource Bundle dialog if the resource bundle file you want to edit does not appear in the Resource Bundle dropdown list.

Figure 6-7 Editing Resource Bundle Strings

[image: The surrounding text describes this image.]

	
In the Select Resource Bundle dialog, select the file type from the File type dropdown list. Navigate to the resource bundle you want to edit. Click OK.

	
In the Edit Resource Bundles dialog, click the Add icon to add a key-value pair, as shown in Figure 6-7. When you have finished, click OK.

6.10 What You May Need to Know About XLIFF Files for iOS Applications

One or more XLIFF files must exist at the location described by the <adfmf:loadBundle> element. A family of XLIFF files includes the following:

	
Base XLIFF File—The name of the base XLIFF file must match the last token in the path specified by the basename attribute. This file bears the .xlf extension, such as ViewControllerBundle.xlf. In the following definition, the file is called ViewControllerBundle:

<adfmf:loadBundle var="stringBundle" basename="view.ViewControllerBundle"/>

	
Zero, or more, localized XLIFF Files—There can be zero (or many) localized XLIFF files for each base XLIFF file. For each file:

	
The file extension must be .xlf.

	
Must be co-located in the same directory as the corresponding base XLIFF file.

	
The file name is in the following format:

<BASE_XLIFF_FILE_NAME>_<LANGUAGE_TOKEN>.xlf

Where:

	
<BASE_XLIFF_FILE_NAME> is the base XLIFF file name, without the .xlf extension.

	
<LANGUAGE_TOKEN> is in the following format:

<ISO-639-lowercase-language-code>

	
Note:

MAF does not support countries or regions.

For example, for Spain, the language token is es.

For example, localized file names for XLIFF files referencing a base XLIFF named stringBundle.xlf for language codes en, es, and fr would be:

	
stringBundle_en.xlf

	
stringBundle_es.xlf

	
stringBundle_fr.xlf

6.11 What You May Need to Know About Internationalization for iOS Applications

The localizable elements of the maf-application.xml and maf-feature.xml files reference internationalized strings through the use of EL-like strings in the attributes listed in Table 6-2 and Table 6-1. Because these configuration files are read early in the application lifecycle, these strings are not evaluated as EL statements at runtime. Instead, these strings are taken as the full key for the translated string in the native device translation infrastructure.

Although the Expression Language syntax is "${BUNDLE_NAME.STRING_KEY}", MAF uses the entire string enclosed by "#{}" as the key to look up the translated string. These strings are in the form of #{bundleName.['My.String.ID']}, where the XLIFF string is separated by periods and #{bundleName.['MyStringID']}, which is used only for string identifiers that are not separated by periods. Example 6-5 illustrates the latter, such as #{strings.CONTACTS}, that modify the name attribute. For the iOS native framework, the deployment ensures that the content of that statement matches the proper key in the *.string file used for translation.

Only the attributes that are displayed to the end user, or control the location of content displayed to the end user, support the use of internationalized strings. These include the following attributes:

	
The <adfmf:application> element's name attribute

	
The <adfmf:feature> element's name attribute

	
The <adfmf:feature> element's icon attribute

	
The <adfmf:feature> element's image attribute

	
The <adfmf:content> element's icon attribute

	
The <adfmf:content> element's image attribute

Example 6-5 shows an application feature with name, icon, and image attributes use internationalization strings.

Example 6-5 Internationalization Using Strings

<adfmf:feature id="CTCS" name="#{strings.CONTACTS}"
 icon="#{strings.CONTACTS_ICON}"
 image="#{strings.CONTACTS_IMAGE}">
 <adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="employee" />
 </adfmf:constraints>
 <adfmf:description>The HTML Device Contacts</adfmf:description>
 <adfmf:loadBundle basename="mobile.adfmf-stringsBundle"
 var="strings"/>
 <adfmf:content id="CTCS.Generic">
 <adfmf:constraints />
 <adfmf:localHTML url="contacts.html" />
 </adfmf:content>
 </adfmf:feature>

When you define the <adfmf:loadBundle> elements, as shown in Example 6-6, you create the mapping of bundle names to actual bundles. The bundle name is used when the expression is evaluated.

Example 6-6 Mapping Bundle Names Using <adfmf:loadBundle>

 <adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="employee" />
 </adfmf:constraints>
 <adfmf:description>The HTML Device Contacts</adfmf:description>
 <adfmf:loadBundle basename="mobile.adfmf-featureBundle"
 var="mobileBundle"/>
 <adfmf:loadBundle basename="mobile.adfmf-stringsBundle"
 var="strings"/>

MAF's runtime holds the <adfmf:loadBundle> elements until it first accesses the JVM. It sends a message to the JVM to initialize the mapping of the base names of the packages to EL names of the bundles. Example 6-7 illustrates the structure of the message sent to the JVM.

Example 6-7 The Message Initializing Mapping of Base Names to EL Names

{classname:"oracle.adfmf.framework.api.Model",method:"setBundles",
 params:[[{basename:"mobile.adfmf-featureBundle",elname:"mobileBundle"},
 {basename:"mobile.adfmf-stringsBundle",elname:"strings"}]]}

7 Skinning MAF Applications

This chapter describes how to customize the appearance of a MAF application by using skins.

This chapter includes the following sections:

	
Section 7.1, "Introduction to MAF Application Skins"

	
Section 7.2, "Adding a Custom Skin to an Application"

	
Section 7.3, "Specifying a Skin for an Application to Use"

	
Section 7.4, "Registering a Custom Skin"

	
Section 7.5, "Versioning MAF Skins"

	
Section 7.6, "What Happens When You Version Skins"

	
Section 7.7, "Overriding the Default Skin Styles"

	
Section 7.8, "What Happens When You Apply a Skin to an Application Feature"

	
Section 7.9, "What You May Need to Know About Skinning"

	
Section 7.10, "Adding a New Style Sheet to a Skin"

	
Section 7.11, "Enabling End Users Change an Application's Skin at Runtime"

	
Section 7.12, "What Happens at Runtime: How End Users Change an Application's Skin"

7.1 Introduction to MAF Application Skins

MAF uses cascading style sheet (CSS) language-based skins to make sure that all application components within a MAF application (including those used in its constituent application features) share a consistent look and feel. Rather than changing how a MAF application looks by re-configuring MAF AMX or HTML components, you can create, or extend, a skin that changes how components display.

The following are the supported skin families and versions that MAF uses to define the selectors that determine the appearance of MAF AMX pages:

amx
 mobileAlta-1.0
 mobileAlta-1.1
 mobileAlta-1.2
 mobileAlta-1.3
 mobileFusionFx-1.0
 mobileFusionFx-1.1

By default, a new MAF application that you create uses the latest version of the mobileAlta skin family. An application that you migrate from a previous release to the current release continues to use the skin that it was configured to use prior to migration. If you want the migrated application to use another skin (for example, the latest version of mobileAlta), you need to edit the maf-config.xml file, as described in Section 7.3, "Specifying a Skin for an Application to Use."

Figure 7-1 demonstrates the difference in look and feel between the mobileAlta and mobileFusionFx skin families by showing the same application screen rendering using the different skins.

Figure 7-1 Comparison of Look and Feel Provided by mobileAlta and mobileFusionFx

[image: The surrounding text describes this image.]

Figure 7-3 illustrates the inheritance relationship between these skin families and versions.

Figure 7-2 Inheritance Relationship of Skin Families Provided by MAF

[image: The surrounding text describes this image.]

The www\css directory, which is created after you first deploy a MAF application, stores these CSS files. To access this directory, you deploy a MAF application to a simulator or device and then navigate to the deploy directory (for example, C:\JDeveloper\mywork\app_name\deploy). The www\css directory resides within the platform-specific artifacts generated by the deployment. For iOS deployments, the directory is located within the temporary_xcode_project directory. For Android deployments, this directory is located in the assets directory of the Android application package (.apk) file.

	
Caution:

Do not write styles that rely on the MAF DOM structures. Further, some of the selectors defined in these files may not be supported.

You use the maf-config.xml file, described in Section 7.1.1, "About the maf-config.xml File," and the maf-skins.xml file, described in Section 7.1.2, "About the maf-skins.xml File," to control the skinning of the MAF application. The maf-config.xml file designates the default skin family used to render application components and the maf-skins.xml file enables you to customize the default skin family or to define a new skin family.

7.1.1 About the maf-config.xml File

After you create a MAF application, JDeveloper populates the maf-config.xml file to the MAF application's META-INF node. The file itself is populated with the base MAF skin family, mobileAlta, illustrated in Example 7-1.

Example 7-1 The Default Skin, mobileAlta, in the maf-config.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>mobileAlta</skin-family>
 <skin-version>v1.3</skin-version>

</adfmf-config>

	
Note:

You can determine the skin value at runtime using EL expressions. For more information, see Section 7.11, "Enabling End Users Change an Application's Skin at Runtime."

MAF applies skins as a hierarchy, with device-specific skins being applied first, followed by platform-specific skins, and then the base skin, mobileAlta. In terms of MAF's mobileAlta skin family, this hierarchy is expressed as follows:

	
mobileAlta.<DeviceModel> (for example, mobileAlta.iPhone5,3)

	
mobileAlta.iOS or mobileAlta.Android

	
mobileAlta

Figure 7-3 provides a visual illustration of how MAF applies this hierarchy of skins at runtime. Note also that the SkinningDemo sample application, described in Appendix G, "MAF Sample Applications," demonstrates this implementation.

MAF gives precedence to selectors defined at the device-specific level of this hierarchy. In other words, MAF overwrites a selector defined in mobileAlta.iOS with the mobileAlta.iPhone definition for the same selector. The <extends> element, described in Section 7.1.2, "About the maf-skins.xml File," defines this hierarchy for the MAF runtime. For more information on how skins are applied at various levels, see Section 7.9, "What You May Need to Know About Skinning."

Figure 7-3 MAF Skin Hierarchy Application at Runtime

[image: The surrounding text describes this image.]

7.1.2 About the maf-skins.xml File

The maf-skins.xml file located in the META-INF node of the application controller project allows you to either define a new skin by extending an existing skin, or, add a new style sheet to an existing skin.

By default, this file is empty, but the elements listed in Table 7-1 describe the child elements that you can use to populate this file to extend mobileAlta or to define the CSS files that are available to the application. You use the <skin> element to create new skins or to extend an existing skin.

Table 7-1 Child Elements of the <skin> Element

	Elements	Description
	
<id>

	
A required element that identifies the skin in the maf-skins.xml file. The value you specify must adhere to one of the following formats:

	
skinFamily-version

	
skinFamily-version.platform

For example, specify mySkin-v1.iOS if you want to register a skin for your application that defines the appearance of your application when deployed to an Apple iPad or iPhone. Substitute iOS by iPad or iPhone if the skin that you register defines the appearance of your application on one or other of the latter devices. Specify .android if you want to register a skin that defines the appearance of your application when deployed to the Android platform.

	
<family>

	
A required element that identifies the skin family.

	
<extends>

	
Use this element to extend an existing skin by specifying the skin id of the skin you want to extend.

<skin>
 <id>mySkin-v1</id>
 <family>mySkin</family>
 <extends>mobileAlta-v1.3</extends>
 <style-sheet-name>styles/myskin.css</style-sheet-name>
 <version>
 <name>v1</name>
 </version>
</skin>

	
<style-sheet-name>

	
Use a relative URL to specify the location of the CSS file within your MAF application's project. For example, the maf-skins.xml file in the SkinningDemo sample application contains the following reference to the v1.css style sheet in the css directory of the application controller project:

<style-sheet-name>css/v1.css</style-sheet-name>

	
<version>

	
Specify different versions of a skin. For more information, see Section 7.5, "Versioning MAF Skins."

Table 7-2 lists elements that you can use to define the <skin-addition> element in a MAF CSS when you integrate a style sheet into an existing skin.

Table 7-2 The <skin-addition> Child Elements

	Element	Description
	
<skin-id>

	
Specify the ID of the skin that you need to add an additional style sheet to. Possible values include the skins provided by MAF (for example, mobileAlta-v1.3.iOS) or a custom skin that you create.

	
<style-sheet-name>

	
Use a relative URL to specify the location of the CSS file within your MAF application's project. For example, the maf-skins.xml file in the SkinningDemo sample application contains the following reference to the v1.css style sheet in the css directory of the application controller project:

<style-sheet-name>css/v1.css</style-sheet-name>

Example 7-2 illustrates designating the location of the CSS file in the <style-sheet-name> element and the target skin family in <skin-id>.

Example 7-2 Using the <skin-addition> Element

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-addition>
 <skin-id>mobileAlta-v1.3.iOS</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

You can use the <skin-id> and <style-sheet-name> elements to render to a particular iOS or Android device, or alternatively, you can define these elements to handle the styling for all of the devices of a platform. Table 7-3 provides examples of using these elements to target all of the devices belonging to the iOS platform, as well as specific iOS device types (tablets, phones, and simulators).

	
Tip:

Consider using the DeviceDemo sample application, described in Appendix G, "MAF Sample Applications," to retrieve information about the device model.

Table 7-3 Platform- and Device-Specific Styling

	Device	Example
	
iPhone

	

<skin-addition>
 <skin-id>mobileAlta-v1.3.iPhone5,1</skin-id>
 <style-sheet-name>iPhoneStylesheet.css</style-sheet-name>
</skin-addition>

	
iPad

	

<skin-addition>
 <skin-id>mobileAlta-v1.3.iPad4,2</skin-id>
 <style-sheet-name>iPadStylesheet.css</style-sheet-name>
</skin-addition>

	
iPhone Simulator

	

<skin-addition>
 <skin-id>mobileAlta-v1.3.iPhone Simulator x86_64</skin-id>
 <style-sheet-name>iPhoneSimStylesheet.css</style-sheet-name>
</skin-addition>

	
All iOS Devices

	

<skin-addition>
 <skin-id>mobileAlta-v1.3.iOS</skin-id>
 <style-sheet-name>iOSSimStylesheet.css</style-sheet-name>
</skin-addition>

7.2 Adding a Custom Skin to an Application

To add a custom skin to your application, create a CSS file within JDeveloper, which places the CSS in a project's source file for deployment with the application.

To add a custom skin to an application:

	
In the Applications window, right-click the ApplicationController project and choose New > CSS File.

	
In the Create Cascading Style Sheet dialog, specify a name and directory for the CSS file.

	
Click OK.

You can now open the CSS in the CSS editor and define styles for your application.

7.3 Specifying a Skin for an Application to Use

You configure values in the maf-config.xml file that determine what skin the application uses.

To specify a skin for an application to use:

	
In the Applications window, double-click the maf-config.xml file. By default, this is in the Application Resources pane under the Descriptors and ADF META-INF node.

	
In the maf-config.xml file, specify the value of the <skin-family> element for the skin you want to use and, optionally, the <skin-version> element.

Example 7-3 shows the configuration required to make a MAF application use the mobileAlta-v1.3 skin.

Example 7-3 Configuration to Specify a Skin for an Application

<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 <skin-family>mobileAlta</skin-family>
 <skin-version>v1.3</skin-version>
</adfmf-config>

	
Note:

Set an EL expression as the value for the <skin-family> element if you want to dynamically select the skin the application uses at runtime. For more information, see Section 7.11, "Enabling End Users Change an Application's Skin at Runtime."

7.4 Registering a Custom Skin

You register a custom skin by adding the property values to the maf-skins.xml file that identify the custom skin to your application.

To register a custom skin:

	
In the Applications window, expand ApplicationController > Application Sources > META-INF and double-click maf-skins.xml.

	
In the Structure window, right-click the adfmf-skins node and choose Insert Inside adfmf-skins > skin.

	
In the Insert skin dialog, complete the fields as follows:

	
family—Enter a value for the family name of your skin.

You can enter a new name or specify an existing family name. If you specify an existing family name, you need to version skins, as described in Section 7.5, "Versioning MAF Skins," to distinguish between skins that have the same value for family.

The value you enter is set as the value for a <family> element in the maf-skins.xml where you register the skin that you create. At runtime, the <skin-family> element in the application's maf-config.xml uses this value to identify the skin that an application uses.

	
id—Enter an ID for the skin that uses one of the following naming formats: skinFamily-version or skinFamily-version.platform. For example, mySkinFamily-v1.1.32.android.

	
extends—Enter the name of the parent skin that you want to extend. For example, if you want your custom skin to extend the mobileAlta-v1.3 skin, enter mobileAlta-v1.3.

	
style-sheet-name—Enter or select the name of the style sheet.

	
Click OK.

7.5 Versioning MAF Skins

You can specify version numbers for your skins in the maf-skins.xml file using the <version> element. Use this optional capability if you want to distinguish between skins that have the same value for the <family> element in the maf-skins.xml file. This capability is useful in scenarios where you want to create a new version of an existing skin in order to change some existing behavior. Note that when you configure an application to use a particular skin, you do so by specifying values in the maf-config.xml file, as described in section Section 7.3, "Specifying a Skin for an Application to Use."

You specify a version for your skin by entering a value for the <version> element in the maf-skins.xml file.

	
Best Practice:

Specify version information for each skin that you register in the application's maf-skins.xml file.

To version a MAF skin:

	
In the Applications window, double-click the maf-skins.xml file. By default, this is in the META-INF node of the application controller project.

	
In the Structure window, right-click the skin node for the skin that you want to version and choose Insert inside skin > version.

	
In the Insert version dialog, select true from the default list if you want your application to use this version of the skin when no value is specified in the <skin-version> element of the maf-config.xml file, as described in Section 7.3, "Specifying a Skin for an Application to Use."

	
Enter a value in the name field. For example, enter v1 if this is the first version of the skin.

	
Click OK.

7.6 What Happens When You Version Skins

The version information that you configure for skins takes precedence over platform and device values when an application applies a skin at runtime. At runtime, a MAF application applies a device-specific skin before it applies a platform-specific skin. If skin version information is specified, the application first searches for a skin that matches the specified skin version value. If the application finds a skin that matches the skin version and device values, it applies this skin. If the application cannot find a skin with the specified skin version in the device-specific skins, it searches for a skin with the specified version in the platform-specific skins. If it does not find a skin that matches the specified version in the available platform-specific skins, it searches the base skins.

Example 7-4 shows an example maf-skins.xml that references three skins (customFamily-v1.iphone5,3, customFamily-v2.iPhone and customFamily-v3.iPhone). Each of these skins have the same value for the <family> element (customFamily). The values for the child elements of the <version> elements distinguish between each of these skins.

At runtime, an application that specifies customFamily as the value for the <skin-family> element in the application's maf-config.xml file uses customFamily-v1.iphone5,3 because this skin is configured as the default skin in the maf-skins.xml file (<default>true</default>). You can override this behavior by specifying a value for the <skin-version> element in the maf-config.xml file, as described in Section 7.3, "Specifying a Skin for an Application to Use." For example, if you specify v2 as a value for the <skin-version> element in the maf-config.xml file, the application uses customFamily-v2.iPhone instead of customFamily-v1.iphone5,3 that is defined as the default in the maf-skins.xml file.

If you do not specify the skin version to pick (using the <skin-version> element in the maf-config.xml file), then the application uses the skin that is defined as the default using the <default>true</default> element in the maf-skins.xml file. If you do not specify a default skin, the application uses the last skin defined in the maf-skins.xml file. In Example 7-4, the last skin to be defined is customFamily-v3.iPhone.

Example 7-4 maf-skins.xml File with Versioned Skin Files

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skin">
 <skin id="s1">
 <family>customFamily</family>
 <id>customFamily-v1.iphone5,3</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone.css</style-sheet-name>
 <version>
 <default>true</default>
 <name>v1</name>
 </version>
 </skin>
 <skin id="s2">
 <family>customFamily</family>
 <id>customFamily-v2.iPhone</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone-v2.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 <skin id="s3">
 <family>customFamily</family>
 <id>customFamily-v3.iPhone</id>
 <extends>customFamily-v1.iOS</extends>
 <style-sheet-name>iphone-v3.css</style-sheet-name>
 <version>
 <name>v3</name>
 </version>
 </skin>
</adfmf-skins>

7.7 Overriding the Default Skin Styles

For a MAF AMX application, you can designate a specific style for the application feature implemented as MAF AMX, thereby overriding the default skin styles set at the application-level within the maf-config.xml and maf-skins.xml files. You add individual styles to the application feature using a CSS file as the Includes file.

The Includes table in the overview editor for the maf-feature.xml file enables you to add a CSS to a MAF AMX application feature.

Figure 7-4 The Includes Table

[image: This image is described in the surrounding text]

Before you begin:

Create a MAF task flow as described in Section 12.2, "Creating Task Flows." Create or add a CSS file for the skin. You can create the CSS file by selecting the view controller project and then choosing New > CSS File. Alternatively, you can package the CSS file in a JAR file as follows:

	
From the main menu, choose Application > Project Properties.

	
In the Project Properties dialog, select the Libraries and Classpath page and click Add JAR/Directory.

	
In the Add Archive or Directory dialog, navigate to the JAR file that contains the ADF skin you want to import and click Select.

The JAR file appears in the Classpath Entries list.

	
Click OK.

How to add a style sheet to an application feature:

	
Click Add to create a new row in the Includes table.

	
In the Insert Include dialog, complete the following fields:

	
File: Browse to select the CSS style sheet to add.

	
Type: Select StyleSheet from the dropdown list.

	
Click OK.

	
Note:

The .CSS file for the style sheet that you select must reside within the view controller project.

7.8 What Happens When You Apply a Skin to an Application Feature

After you add a CSS (or JavaScript file) to the Includes table, the CSS pages added to the application feature can be applied to a MAF AMX page by selecting the application feature from the Feature Content dropdown menu in the preview pane of the MAF AMX editor, as shown in Figure 7-5.

Figure 7-5 The Feature Content Dropdown Menu

[image: This image is described in the surrounding text]

7.9 What You May Need to Know About Skinning

The CSS files defined in the maf-skins.xml file, illustrated in Example 7-5, show how to extend a skin to accommodate the different display requirements of the Apple iPhone and iPad. These styles are applied in a descending fashion. The SkinningDemo sample application provides a demonstration of how customized styles can be applied when the application is deployed to different devices. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

For example, at the iOS level, the stylesheet (mobileAlta in Example 7-5) is applied to both an iPhone or an iPad. For device-specific styling, define the <skin-id> elements for the iPhone and iPad skins. The skinning demo application illustrates the use of custom skins defined through this element.

Example 7-5 Skinning Levels Defined in the maf-skins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-skins xmlns="http://xmlns.oracle.com/adf/mf/skins">
 <skin>
 <id>mobileAlta-v1.3.iPhone</id>
 <family>mobileAlta</family>
 <extends>mobileAlta-v1.3.iOS</extends>
 <style-sheet-name>skins/mobileAlta-v1.3.iphone.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobileAlta-v1.3.iPad</id>
 <family>mobileAlta</family>
 <extends>mobileAlta-v1.3.iOS</extends>
 <style-sheet-name>skins/mobileAlta-v1.3.ipad.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobileAlta-v1.3.iPod</id>
 <family>mobileAlta</family>
 <extends>mobileAlta-v1.3.iOS</extends>
 <style-sheet-name>skins/mobileAlta-v1.3.ipod.css</style-sheet-name>
 </skin>
 <!-- Skin Additions -->
 <skin-addition>
 <skin-id>mobileAlta-v1.3.iPhone</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition1.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileAlta-v1.3.iPhone</skin-id>
 <style-sheet-name>skins/mystyles.iphone.addition2.css</style-sheet-name>
 </skin-addition>
 <skin-addition>
 <skin-id>mobileAlta-v1.3.iOS</skin-id>
 <style-sheet-name>skins/mystyles.ios.addition2.css</style-sheet-name>
 </skin-addition>
</adfmf-skins>

7.10 Adding a New Style Sheet to a Skin

You can add a CSS file to an existing skin instead of extending a skin.

To add a new style sheet to a skin

	
Drag and drop a <skin-addition> element from the Components window to the Structure window.

	
Populate the <skin-addition> element with the elements described in Table 7-2 by completing the Insert skin-addition dialog, shown in Figure 7-6.

	
Enter the identifier of the skin to which you want to add a new style.

	
Retrieve the location of the CSS file.

Figure 7-6 The Insert skin-addition Dialog

[image: This image is described in the surrounding text]

	
Click OK.

	
Caution:

Creating custom styles that use DOM-altering structures can cause MAF applications to hang. Specifically, the display property causes rendering problems in the HTML that is converted from MAF AMX. This property, which uses such values as table, table-row, and table-cell to convert components into a table, may result in table-related structures that are not contained within the appropriate parent table objects. Although this problem may not be visible within the application user interface itself, the logging console reports it through a Signal 10 exception.

7.11 Enabling End Users Change an Application's Skin at Runtime

You can configure your application to enable end users select an alternative skin at runtime. You might configure this functionality when you want end users to render the application using a skin that is more suitable for their needs.

Figure 7-7 shows how you might implement this functionality by displaying buttons to allow end users to change the skin the application uses at runtime. Configure the buttons on the page to set a scope value that can later be evaluated by the skin-family property in the application's maf-config.xml file.

Figure 7-7 Changing an Application's Skin at Runtime (on iOS)

[image: The surrounding text describes this image.]

You enable end users change an application's skin by exposing a component that allows them to update the value of the skin-family property in the application's maf-config.xml file.

To enable end users change an application's skin at runtime:

	
Open the page where you want to configure the component(s) that you use to set the skin family property in the maf-config.xml file.

	
Configure a number of components (for example, button components) that allow end users to choose one of a number of available skins at runtime, as shown in Figure 7-7.

Example 7-6 shows how you configure amx:commandButton components that allow end users to choose available skins at runtime, as shown in Figure 7-7. Each amx:commandButton component specifies a value for the actionListener attribute. This attribute passes an actionEvent to a method (skinMenuAction) on a managed bean named skins if an end user clicks the button.

Example 7-6 Using a Component to Set the Skin Family

...
<amx:commandButton text="Switch to Alta"
 actionListener="#{applicationScope.SkinBean.switchToMobileAlta}" id="cb1"/>
<amx:commandButton text="Switch to Fusion Fx"
 actionListener="#{applicationScope.SkinBean.switchToMobileFusionFx}" id="cb2"/>
...

	
Write a managed bean in the application's view controller project to store the value of the skin selected by the end user. Example 7-7 shows a method that takes the value the end user selected and uses it to set the value of skinFamily in the managed bean. Example 7-7 also shows a method that resets all features in the application to use the new skin.

Example 7-7 Managed Bean to Change an Application's Skin

package application;

import javax.el.ValueExpression;
import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.FeatureInformation;
import oracle.adfmf.framework.api.AdfmfContainerUtilities;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

public class SkinBean {

 private String skinFamily = "mobileAlta";
 private PropertyChangeSupport propertyChangeSupport = new PropertyChangeSupport(this);

 public void setSkinFamily(String skinFamily) {
 String oldSkinFamily = this.skinFamily;
 this.skinFamily = skinFamily;
 propertyChangeSupport.firePropertyChange("skinFamily", oldSkinFamily, skinFamily);
 }

 public String getSkinFamily() {
 return skinFamily;
 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void switchToMobileAlta(ActionEvent ev){
 this.switchSkinFamily("mobileAlta");
 }

 public void switchToMobileFusionFx(ActionEvent ev) {
 this.switchSkinFamily("mobileFusionFx");
 }

 public void switchSkinFamily(String family) {
 this.setSkinFamily(family);
 // reset all the features individually as follows to load the new skin
 FeatureInformation[] features = AdfmfContainerUtilities.getFeatures();
 for (int i = 0; i < features.length; i++) {
 AdfmfContainerUtilities.resetFeature(features[i].getId());
 }
 }
}

	
In the Applications window, expand the Application Resources panel, expand Descriptors > ADF Meta-INF node and double-click the maf.config.xml file.

	
In the maf-config.xml file, write an EL expression to dynamically evaluate the skin family:

<skin-family>#{applicationScope.SkinBean.skinFamily}</skin-family>

7.12 What Happens at Runtime: How End Users Change an Application's Skin

At runtime, the end user uses the component that you exposed to select another skin. In Example 7-6, this is one of a number of amx:commandButton components. This component submits the value that the end user selected to a managed bean that, in turn, sets the value of a managed bean property (skinFamily). At runtime, the <skin-family> property in the maf-config.xml file reads the value from the managed bean using an EL expression. The managed bean in Example 7-7 also reloads the features in the application to use the newly-specified skin.

	
Tip:

Similar to the <skin-family> property, you can use an EL expression to set the value of the <skin-version> property in the maf-config.xml file at runtime.

As an alternative to resetting the application's features individually to load the new skin, as demonstrated in Example 7-7, you can invoke the resetApplication method from the following class:

oracle.adfmf.framework.api.AdfmfContainerUtilities

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

8 Reusing MAF Application Content

This chapter introduces Feature Archive (FAR) files and describes how you can package application feature content into these files for reuse in one or more MAF applications.

This chapter includes the following sections:

	
Section 8.1, "Introduction to Feature Archive Files"

	
Section 8.2, "Using FAR Content in a MAF Application"

	
Section 8.3, "What Happens When You Add a FAR as a Library"

	
Section 8.4, "What Happens When You Add a FAR as a View Controller Project"

	
Section 8.5, "What You May Need to Know About Enabling the Reuse of Feature Archive Resources"

8.1 Introduction to Feature Archive Files

Application features, when packaged into a JAR file known as a Feature Archive file (FAR), provide reusable content that can be consumed by other MAF applications. A MAF application can consume one or more FAR files. A FAR file contains everything that an application feature requires, such as icon images, resource bundles, HTML files, JavaScript files, and other implementation-specific files.

A FAR also contains one maf-feature.xml file, which identifies each of the packaged application features by a unique ID. You can edit this file to update application feature properties, such as content implementation (MAF AMX, Local HTML, Remote URL), display properties based on such factors as user roles and privileges, or device properties.

You can add a FAR as either an application library or as a view controller project. You cannot customize the FAR's contents when you add it as project library, nor can you reuse its individual artifacts. A MAF application consumes the FAR in its entirety when it is added as a library file. For example, a FAR's task flow cannot be the target of a task flow call activity. Adding a FAR as a view controller project, however, enables you to customize its artifacts, as described in Chapter 10, "Customizing MAF Application Artifacts with MDS."

8.2 Using FAR Content in a MAF Application

You make an application feature available to a MAF application by adding it to the consuming application's class path.

	
Note:

You can only add the FAR to the application controller project; you cannot add a FAR to the view controller project.

Before you begin:

Deploy the application feature as a Feature Archive file, as described in Section 27.5.2, "How to Deploy the Feature Archive Deployment Profile."

How to add application feature content to a MAF application as a library:

	
Open the Resources window, choose New, then IDE Connections, and then choose File System.

	
Complete the File Systems Connection dialog to create a file connection to the directory that contains the Feature Archive JAR file. For more information, refer to the Oracle JDeveloper Online help.

	
Right-click the Feature Archive file (which is noted as a JAR file) in the Resources window.

	
Choose Add to Application As and then choose Library to add the consuming application's classpath, as shown in Figure 8-1.

Figure 8-1 Adding a FAR to a MAF Application as a Library

[image: This image is described in the surrounding text]

	
Tip:

Choose Remove Library from Application to remove the feature archive JAR from the consuming application's classpath.

How to add a FAR as a view controller project:

	
Open the Resources window, choose New, then IDE Connections, and then choose File System.

	
Complete the File Systems Connection dialog to create a file connection to the directory that contains the Feature Archive JAR file. For more information, refer to the Oracle JDeveloper Online help.

	
Right-click the Feature Archive file (which is noted as a JAR file) in the Resources window.

	
Choose Add to Application As and then choose ViewController Project, as shown in Figure 8-2.

Figure 8-2 Adding a FAR to a MAF Application as a View Controller Project

[image: This image is described in the surrounding text]

8.3 What Happens When You Add a FAR as a Library

After you add a FAR as a library (or manually to the application's classpath):

	
The contents of the FAR display in the Application Resources under the Libraries node, as shown in Figure 8-3.

Figure 8-3 The FAR JAR File in the Application Resources of the Consuming Application

[image: This image is described in the surrounding text]

	
Every application feature declared in the maf-feature.xml files included in the JARs becomes available to the consuming application, as illustrated by Figure 8-4 where the dropdown lists IDs of the available application features in the JAR in addition to one that has already been defined in the application.

Figure 8-4 Referencing the Application Features Defined in Various maf-feature.xml Files

[image: This image is described in the surrounding text]

	
Tip:

Manually adding the Feature Archive JAR to the application classpath also results in the application features displaying in the Insert Feature Reference dialog.

Alternatively, you can add or remove an application feature from the Resources window as follows:

	
Expand the feature archive JAR in the Resources window.

	
From the MAF Features folder, right-click an application feature.

	
Choose Add Feature Reference to maf-application.xml, as shown in Figure 8-5, or Remove Feature Reference from maf-application.xml, shown in Figure 8-6. Figure 8-5 illustrates adding an application feature called People from MAF_DevGuideExample.jar.

Figure 8-5 Adding a Feature Reference

[image: This image is described in the surrounding text]

Figure 8-6 illustrates removing an application feature reference from the maf-application.xml file.

Figure 8-6 Removing a Feature Reference

[image: This image is described in the surrounding text]

	
The information in the connections.xml file located in the Feature Archive JAR is merged into the consuming application's connections.xml file. The Log window, shown in Figure 8-7, displays naming conflicts.

	
Note:

You must verify that the connections are valid in the consuming application.

Figure 8-7 The Messages Log Window Showing Name Conflicts for Connections

[image: This image is described in the surrounding text]

8.4 What Happens When You Add a FAR as a View Controller Project

When you add a FAR as a view controller project:

	
MAF generates a view controller project that bears the same name as the imported FAR. Figure 8-8 illustrates how MAF creates a view controller project (a .jpr file) for an imported FAR file called StockTracker (which is illustrated as StockTrackerFAR.jar in Figure 8-2). This view controller project contains the default structure and metadata files of a MAF view controller project, as described in Section 2.2.2.2, "About the View Controller Project Resources." In particular, the FAR view controller project includes the maf-feature.xml file. If the MAF application contains other view controller projects, you must ensure that none of these projects include application features with the same ID. See also Section 8.5, "What You May Need to Know About Enabling the Reuse of Feature Archive Resources."

Figure 8-8 The Imported FAR as a View Controller Project within a MAF Application

[image: This image is described in the surrounding text]

	
As with a FAR imported as a library, the information in the connections.xml file located in the Feature Archive JAR is merged into the consuming application's connections.xml file. MAF will create a connections.xml file if one does not already exist in the target application.

	
MAF makes any .class and JAR files included in the FAR available as a library to the view controller project by copying them into its lib directory (such as C:\jdeveloper\mywork\application\FAR view controller project\lib). MAF compiles these files into a file called classesFromFar.jar.

	
Unlike a FAR imported as a library, you can customize the files of a view controller project.

	
Note:

Because the original resource bundles included in FAR might not be usable in the generated view controller project, you must create new resources bundles within the project as described in Section 10.7, "Enabling Customizations in Resource Bundles."

	
Like a FAR imported as a library, every application feature declared in the FAR's maf-feature.xml file becomes available to the consuming application.

8.5 What You May Need to Know About Enabling the Reuse of Feature Archive Resources

To ensure that the resources of a FAR can be used by an application, both the name of the FAR and its feature reference IDs must be globally unique; ensure there are no duplicate feature reference IDs in the maf-application.xml file. Within the FAR itself, the DataControl.dcx file must be in a unique package directory. Rather than accepting the default names for these package directories, you should instead create a unique package hierarchy for the project. You should likewise use a similar package naming system for the feature reference IDs.

9 Using Plugins in MAF Applications

This chapter describes how to enable the core plugins that MAF provides for use in MAF applications, how to register additional plugins, how to import a plugin from a FAR, and how to package plugins in your MAF application for deployment.

This chapter includes the following sections:

	
Section 9.1, "Introduction to Using Plugins in MAF Applications"

	
Section 9.2, "Enabling a Core Plugin in Your MAF Application"

	
Section 9.3, "Registering Additional Plugins in Your MAF Application"

	
Section 9.4, "Deploying Plugins with Your MAF Application"

	
Section 9.5, "Importing Plugins from a Feature Archive File"

9.1 Introduction to Using Plugins in MAF Applications

MAF packages a number of Cordova plugins that enable your MAF application to interact with the device on which you deploy the application. We refer to the plugins that MAF provides by default as core plugins. You can view these plugins in the maf-application.xml file's overview editor. Examples include the Email and Contacts plugins that MAF applications use to access email and contact functionality from a device.

MAF includes the following versions of Apache Cordova for MAF applications that use plugins:

	
Apache Cordova 3.6.3 for MAF applications on the Android platform

	
Apache Cordova 3.7.0 for MAF applications on the iOS platform

Select a plugin in the Core Plugins list, as shown in Figure 9-1, to view a description of the individual plugins. By default, a newly-created MAF application enables only one core plugin (Network Information plugin). You enable or disable these core plugins, as described in Section 9.2, "Enabling a Core Plugin in Your MAF Application."

	
Note:

All applications on iOS devices have network access by default. You cannot change this behavior. For applications that you intend to deploy on Android devices, disable the Network Information plugin if you do not want the application to have network access on the Android device.

You can register additional plugin that you or others develop if the core plugins that MAF provides by default do not meet your MAF application's requirements. For more information, see Section 9.3, "Registering Additional Plugins in Your MAF Application."

If your MAF application fails to deploy after you register additional plugins, it may be due to filename conflicts between plugins that your MAF application uses. Alternatively, it may be due to the absence of dependent plugin that additional plugins you registered require in order to function correctly. For more information, see Section 9.4, "Deploying Plugins with Your MAF Application."

If you want to migrate a MAF application created with an earlier release of MAF, you need to register any plugins your application uses in the maf-plugins.xml file. For more information, see the "Migrating Cordova Plugins from Earlier Releases to MAF 2.1.0" section in Installing Oracle Mobile Application Framework.

	
Note:

Although you edit the maf-application.xml file to manage plugins in your application, any changes you make result in revisions to the maf-plugins.xml file. You access both files from the ADF-META-INF node of the Application Resources pane, as shown in Figure 9-1.

Figure 9-1 Plugins in maf-application.xml File's Overview Editor

[image: This image is described in the surrounding text]

9.2 Enabling a Core Plugin in Your MAF Application

By default, newly-created MAF applications enables only one core plugin (Network Information plugin). Enable or disable additional core plugins so that your MAF application can access the associated device functionality.

9.2.1 How to Enable a Core Plugin in Your MAF Application

You enable a core plugin using the overview editor for your MAF application's maf-application.xml file.

To enable a core plugin in your MAF application:

	
In the Applications window, expand the Application Resources panel.

	
In the Application Resources panel, expand Descriptors and then ADF META-INF.

	
Double-click the maf-application.xml file and in the overview editor that appears, click the Plugins navigation tab

	
Expand the Core Plugins section and select the plugin that allows your application access features.

For example, if you want your MAF application to be able to send an SMS message, select the checkbox for the SMS plugin.

9.2.2 What Happens When You Enable a Core Plugin in Your MAF Application

Once you enable a plugin in the overview editor, JDeveloper edits the application's maf-plugins.xml file with entries that identify the enabled plugins in your MAF application. Example 9-1 shows the entries for a MAF application where the Email, PushPlugin, and Network Information plugins have been enabled. Enabling these plugins is a prerequisite to your MAF application using the device's email client, accessing the internet and receiving push notifications from the device.

Example 9-1 Enabled Core Plugins in maf-plugins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://xmlns.oracle.com/adf/mf">
 <cordova-plugins>
 <core-cordova-plugin id="c1" pluginId="org.apache.cordova.network-information"/>
 <core-cordova-plugin id="c2" pluginId="com.oracle.maf.email"/>
 <core-cordova-plugin id="c3" pluginId="com.phonegap.plugins.PushPlugin"/>
 </cordova-plugins>
</maf-plugins>

9.3 Registering Additional Plugins in Your MAF Application

Register additional plugins in your MAF application when you require functionality in your MAF application not provided by the core plugins that MAF delivers.

9.3.1 How to Register an Additional Plugin

You use the overview editor for your MAF application's maf-application.xml file to register the additional plugin you want your MAF application to use.

Before you begin, make sure to store the plugin that you want to register with your application on the same drive as the application with which you want to register it. If, for example, you store your application in the C: drive on a Windows environment, you must also store the plugin that you want to register with the application on the C: drive. This makes sure that JDeveloper successfully registers the plugin with your application using a relative path.

To register an additional plugin for your MAF application:

	
In the Applications window, expand the Application Resources panel.

	
In the Application Resources panel, expand Descriptors and then ADF META-INF.

	
Double-click the maf-application.xml file and in the overview editor that appears, click the Plugins navigation tab.

	
Expand the Additional Plugins section and click the Add icon to display a dialog where you browse to and select the directory that stores the plugin that you want to register with your application.

9.3.2 What Happens When You Register an Additional Plugin for Your MAF Application

Once you select the source files for the plugin you want your MAF application to use, JDeveloper edits the application's maf-plugins.xml file with entries that identify the enabled plugins in your MAF application. Example 9-2 shows the entries in a maf-plugins.xml file where the Calendar plugin shown in Figure 9-2 has been registered with the MAF application.

Figure 9-2 Additional Plugin in maf-application.xml File's Overview Editor

[image: This image is described in the surrounding text]

Example 9-2 Additional Plugin in maf-plugins.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/adf/mf">
 <cordova-plugins>
 <core-cordova-plugin id="c1" pluginId="org.apache.cordova.network-information"/>
 <cordova-plugin id="c2" pluginId="nl.x-services.plugins.calendar"
 path="../../../../../z_plugins/Calendar-PhoneGap-Plugin-master/">
 <platform id="p1" name="android" enabled="true"/>
 <platform id="p2" name="ios" enabled="true"/>
 </cordova-plugin>
 </cordova-plugins>
</maf-plugins>

9.4 Deploying Plugins with Your MAF Application

The deployment of a plugin with your MAF application depends on the deployment method you choose.

Deployment to a FAR

A deployment to a FAR includes a copy of the application's maf-plugins.xml file named jar-maf-plugins.xml. It is identical to the application's maf-plugins.xml file with the exception that the path attribute value of each plugin is an empty string. A FAR deployment does not include the source files for the plugin.

Deployment to a Mobile Application Archive File

A deployment to a Mobile Application Archive File includes a copy of the application's maf-plugins.xml file with all path attributes set to an empty string.

Deployment Using an Android or iOS Deployment Profile

When deploying using an Android or iOS deployment profile, JDeveloper invokes the maf-helper command-line tool to deploy the configured plugins. The maf-helper command-line tool deploys the plugin artifacts from their source location to the Android or iOS deployment folder. Once the command-line tool deploys the plugins, deployment incorporates the plugin(s) into the platform-specific application.

Resolving Naming Conflicts Between Plugins

Deployment can fail due to naming conflicts if more than one plugin used by your MAF application contains resource files with the same name. For example, deployment fails if a MAF application uses two plugins that both have a resource file name arrays.xml.

To resolve these naming conflicts, rename the resource file name in one plugin that conflicts with the resource file name in the second plugin. Update the reference to the resource file in the first plugin's plugin.xml file. In our example, this requires you to rename the first plugin's array.xml resource file name to pluginone_arrays.xml and edit the plugin's plugin.xml file as follows:

<source-file src="src/android/LibraryProject/res/values/pluginone_arrays.xml"
 target-dir="res/values"/>

Adding Missing Dependent Plugins

Deployment can fail if an additional plugin that your MAF application uses does not locate plugins that it requires (dependent plugins). This scenario can arise if you work behind a firewall because, at deployment time, JDeveloper invokes Apache Cordova's tools to manage plugins dependencies. These latter tools may fail to download dependent plugins if their proxy settings are not configured to allow the download of dependent plugins. To workaround this scenario, download the missing dependent plugin and add it to your MAF application. You add the missing dependent plugin the same way as other plugins that you want to add to your MAF application. For more information, see Section 9.3, "Registering Additional Plugins in Your MAF Application." After you add the dependent plugin, make sure that it appears before the plugin that requires it in the maf-plugins.xml file, as demonstrated in Example 9-3.

Example 9-3 Adding Dependent Plugins to the MAF Application

<maf-plugins xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://xmlns.oracle.com/adf/mf">
 <cordova-plugins>

 <cordova-plugin id="c2" pluginId="com.example.dependent.dependentPlugin"
 path="../../../../../plugins/Dependent-Plugin-Required-By-PluginWithID_c3/">
 ...
 <cordova-plugin id="c3" pluginId="com.example.plugin"
 path="../../../../../plugins/AdditionalPlugin/">
 ...
 </cordova-plugins>
</maf-plugins>

9.5 Importing Plugins from a Feature Archive File

When you import a FAR that contains a jar-maf-plugins.xml file to your application, the content in the jar-maf-plugins.xml file merges with the consuming application's maf-plugins.xml file. JDeveloper logs information about the merge to its Messages window. If the plugin to import from the FAR exists already in the consumer application's maf-plugins.xml file, JDeveloper logs a message that the plugin exists in the application and will not be merged. If the plugin to import from the FAR does not exist in the consumer application's maf-plugins.xml file, JDeveloper adds the plugin to the application's maf-plugins.xml file. In this scenario, you need to set the path to the newly-imported plugin, as described Section 9.3, "Registering Additional Plugins in Your MAF Application."

10 Customizing MAF Application Artifacts with MDS

This chapter describes how to use Oracle Metadata Services (MDS) to preform customization of MAF application-level artifacts.

This chapter includes the following sections:

	
Section 10.1, "Introduction to Applying MDS Customizations to MAF Files"

	
Section 10.2, "Configuring Customization Layers"

	
Section 10.3, "Creating Customization Classes"

	
Section 10.4, "Consuming Customization Classes"

	
Section 10.5, "Understanding a Customization Developer Role"

	
Section 10.6, "What You May Need to Know About Web Service Data Controls and Customized Application Deployments"

	
Section 10.7, "Enabling Customizations in Resource Bundles"

	
Section 10.8, "Upgrading a MAF Application with Customizations"

10.1 Introduction to Applying MDS Customizations to MAF Files

Oracle Metadata Services (MDS) enables applications to be rebranded, customized, and personalized at runtime. MDS enables a single application to adapt to different industries, locations, or user groups. In the latter case, for example, you can use MDS to tailor the look and feel to a user group, or user responsibility.

A customized application contains a base application along with one or more layers of customizations. An application can have multiple customization layers and each layer can have multiple layer values. You can apply these layer values in a specified order in terms of precedence on top of the base metadata. MDS stores these customizations in a MDS Repository and retrieves them at runtime. Because MDS saves the customizations made in a separate MDS Repository, the base application remains unchanged. For more information about configuring Metadata Services Repositories, see the "Managing the Metadata Repository" chapter in Oracle Fusion Middleware Administrator's Guide.

MDS enables two customization patterns:

	
Seeded Customization—For seeded customization, you adapt a general application to a particular group, such as a specific industry or a site by defining layers of customization that are applied at runtime. These seeded customizations exist as part of the deployed application and endure for the life of a given deployment.

	
User Customization (change persistence)—Enables an end user to personalize the content of an application at runtime to suit individual preferences (for example, a user can select which columns display on a table). These changes persist across user sessions; they display consistently each time the user accesses the application.

You can customize the following artifacts of a MAF application using MDS:

	
The maf-feature.xml file

	
The maf-skins.xml file

	
The maf-application.xml file

	
The maf-config.xml file

	
MAF AMX files and metadata files (see Chapter 18, "Customizing MAF AMX Application Feature Artifacts").

You customize a MAF application using MDS by performing the following:

	
Defining one or more global or application-specific customization layers. For more information, see Section 10.2, "Configuring Customization Layers."

	
Creating a customization class that MDS uses to determine which customization to apply to the base application. Each customization class defines a base customization layer. For more information, see Section 10.3, "Creating Customization Classes."

	
Enabling the JDeveloper design time to access the customization by packaging the customization class (a .java file) as a JAR file and then adding this JAR file to one of the projects of the MAF application. For more information, see Section 10.4, "Consuming Customization Classes."

	
Adding the customization class to the cust-config section of the adf-config.xml file to register the customization classes in the order of precedence.

	
Launching JDeveloper in the Customization Developer role (or switching to that role). For more information, see Section 10.5, "Understanding a Customization Developer Role."

	
Performing the required modifications to the files. The changes are recorded by MDS in the mdssys directory of the ViewController project:

[image: This image is described in the surrounding text]

	
Select the customization layer from the Customization Context window, as shown in Figure 10-1.

Figure 10-1 Selecting the Customization Layer (Tip Layer)

[image: This image is described in the surrounding text]

	
Note:

When you work in the Customization Developer role, the layer and layer value that you select in the Customization Context window is called the tip layer. The changes you make while in the Customization Developer role are applied only to this layer.

	
Deploying the application to a device, emulator, or as a platform-specific application package. The Customization Developer role must be used to deploy a customized application, as follows:

	
Launch the application in the Customization Developer role.

	
In the Customization Context window, shown in Figure 10-1, select the layer and value for which you want to implement customizations.

	
Select from among the deployment options (accessed by choosing Application, then Deploy, and then by selecting the deployment profile). For more information, see Chapter 27, "Deploying MAF Applications."

	
Perform a separate deployment for each customization context.

During deployment, the base file and the delta files are merged to create the customized version of the application at runtime. The deployed application has no MDS dependencies.

	
Tip:

You can deploy the customized application as a MAF Application Archive (.maa) file and then import it into an application to perform additional customization and upgrades. The delta files included in the .maa file are merged with the base files after deployment. For more information, see Section 10.8, "Upgrading a MAF Application with Customizations."

When the customization process is completed, JDeveloper creates a metadata file for these customizations and a subpackage for storing them. The metadata file contains the customizations for the customized object, which are applied over the base metadata at runtime. JDeveloper gives the new metadata file the same name as the base file for the object, but includes an additional .xml extension, as illustrated by maf-feature.xml.xml in Figure 10-2.

Figure 10-2 maf-feature.xml Metadata File

[image: This image is described in the surrounding text]

10.2 Configuring Customization Layers

To customize an application, you must specify the customization layers and their values in the CustomizationLayerValues.xml file so that they are recognized by JDeveloper.

When you open a customizable application in the Customization Developer role, JDeveloper reads the adf-config.xml file to determine the customization classes to use and their order of precedence. JDeveloper also reads the CustomizationLayerValues.xml file to determine the layer values to make available in the Customization Context window. If there are layer values defined in the CustomizationLayerValues.xml file that are not defined in the customization classes listed in the adf-config.xml file, they are not displayed in the Customization Context window.

Therefore, you can have a comprehensive list of layer values for all of your customization projects in the CustomizationLayerValues.xml file, and only those appropriate for the current application are available in the Customization Context window. Conversely, you could have a comprehensive list of customization classes for a MAF application in the adf-config.xml file, and only the subset of layer values on which you would work in your CustomizationLayerValues.xml file.

	
Note:

At design time, JDeveloper retrieves customization layer values from the CustomizationLayerValues.xml file. However, at runtime the layer values are retrieved from the customization class.

The names of the layers and layer values that you enter in the CustomizationLayerValues.xml file must be consistent with those specified in your customization classes. Example 10-1 shows the contents of a sample CustomizationLayerValues.xml file.

Example 10-1 Layers and Layer Values Defined in CustomizationLayerValues.xml

<cust-layers xmlns="http://xmlns.oracle.com/mds/dt">
 <cust-layer name="industry" id-prefix="i">
 <cust-layer-value value="financial"
 display-name="Financial"
 id-prefix="f"/>
 <cust-layer-value value="healthcare"
 display-name="Healthcare"
 id-prefix="h"/>
 </cust-layer>
 <cust-layer name="site" id-prefix="s">
 <cust-layer-value value="headquarters"
 display-name="HQ"
 id-prefix="hq"/>
 <cust-layer-value value="remoteoffices"
 display-name="Remote"
 id-prefix="rm"/>
 </cust-layer>
</cust-layers>

For each layer and layer value, you can add an id-prefix token. This helps to ensure the uniqueness of the id, so that customizations are applied accurately: when you add a new element during customization, JDeveloper adds the id-prefix of the layer and layer value (determined by the selected tip layer) to the autogenerated identifier for the element to create an id for the newly added element in the customization metadata file. In the preceding example, the site layer has an id-prefix of s and the headquarters layer value has an id-prefix of hq . Therefore, when you select site/headquarters as the tip layer and add an element, that element's id will be set to shqel in the metadata customization file.

For each layer value, you can also add a display-name token to provide a human-readable name for the layer value. When you are working in the Customization Developer role, the value of the display-name token is shown in the Customization Context window for that layer value.

For each layer, you can optionally provide a value-set-size token that defines the size of the value set for the customization layer. This can be useful, for example, when using a design-time, application-specific CustomizationLayerValues.xml file. By setting value-set-size to no_values you can exclude runtime-only layers at design time.

<cust-layer name="runtime_only_layer" value-set-size="no_values"/>

You can define the customization layer values either globally for JDeveloper or in an application-specific file. If you use an application-specific file, it takes precedence over the global file. For more information on configuring layer values globally for JDeveloper, see Section 10.2.1, "How to Configure the Layer Values Globally." For more information on configuring application-specific layer values, see Section 10.2.2.1, "Using the Studio Developer Role."

10.2.1 How to Configure the Layer Values Globally

Before you begin:

	
Create your customization classes, as described in Section 10.3, "Creating Customization Classes"

	
Make your classes available to JDeveloper, as described in Section 10.4, "Consuming Customization Classes"

To configure design time customization layer values globally for JDeveloper:

	
Open the CustomizationLayerValues.xml file located in the jdev subdirectory of your JDeveloper installation directory (jdev_install\jdev\CustomizationLayerValues.xml).

	
For each layer, enter a cust-layer element, as shown in Example 10-1, "Layers and Layer Values Defined in CustomizationLayerValues.xml".

	
For each layer value, enter a cust-layer-value element, as shown in Example 10-1, "Layers and Layer Values Defined in CustomizationLayerValues.xml".

	
Save and close the CustomizationLayerValues.xmlfile.

	
After you have made changes to the global CustomizationLayerValues.xml file, restart JDeveloper.

10.2.2 How to Configure the Application-Level Layer Values

When configuring layer values for an application, you can use either the Studio Developer role (see Section 10.2.2.1, "Using the Studio Developer Role") or the Customization Developer role (see Section 10.2.2.2, "Using the Customization Developer Role"). Note that when you configure an application-specific CustomizationLayerValues.xml file, you can create and modify layer values, but you cannot create additional customization layers. It is not necessary to restart JDeveloper to pick up changes made to the application-specific layer values.

When you create an application-specific CustomizationLayerValues.xml file, JDeveloper stores it in an application-level directory (for example, workspace-directory\.mds\dt\customizationLayerValues\CustomizationLayerValues.xml). You can access this file in the Application Resources window of the Applications window, under the MDS DT node.

10.2.2.1 Using the Studio Developer Role

The following procedure describes how to configure the CustomizationLayerValues.xml file for a specific application from the Studio Developer role.

Before you begin:

	
Create your customization classes, as described in Section 10.3, "Creating Customization Classes"

	
Make your classes available to JDeveloper, as described in Section 10.4, "Consuming Customization Classes"

To configure design-time customization layer values at the workspace level from the Studio Developer role:

	
In the Application Resources window, expand the Descriptors > ADF META-INF node, and then double-click adf-config.xml.

	
In the Overview editor, click the MDS Configuration navigation tab.

	
On the MDS Configuration page, below the table of customization classes, click Configure Design Time Customization Layer Values to open the workspace-level CustomizationLayerValues.xml file in the Source editor.

	
Note:

If the override file does not exist, JDeveloper displays a confirmation dialog. Click Yes to create and open a copy of the global file.

	
In the file, specify layer values as necessary, as described in Section 10.2, "Configuring Customization Layers."

	
Save your changes.

10.2.2.2 Using the Customization Developer Role

The following procedure describes how to configure the CustomizationLayerValues.xml file for a specific application from the Customization Developer role.

Before you begin:

	
Create your customization classes, as described in Section 10.3, "Creating Customization Classes"

	
Make your classes available to JDeveloper, as described in Section 10.4, "Consuming Customization Classes"

To configure design-time customization layer values at the workspace level from the Customization Developer role:

	
In the Customization Context window, click Configure application layer values to open the CustomizationLayerValues.xml file in the Source editor.

	
Note:

If the override file does not exist, JDeveloper displays a confirmation dialog. Click Yes to create and open a copy of the global file.

	
In the file, specify layer values as necessary, as described in Section 10.2, "Configuring Customization Layers."

	
Save your changes.

After you make changes to the application-specific CustomizationLayerValues.xml file while you are in the Customization Developer role, any tip layer you have selected in the Customization Context window is deselected. You can then select the desired tip layer.

10.3 Creating Customization Classes

A customization class is a POJO class that extends oracle.mds.cust.CustomizationClass. It evaluates the current context and returns a String result. This String result is used to locate the customization layer.

The customization class provides the following information:

	
A name that represents the name of the layer.

	
An IDPrefix, for objects created in the layer. When new objects are created in a customization layer, they need a unique ID. The IDPrefix is added to the autogenerated identifier for the object to create an ID for the newly added object. Each layer needs a unique IDPrefix so that objects created at different customization layers have unique IDs.

	
A cache hint (CacheHint), for the layer defined by the customization class. In MAF, the cache hint defines a static customization layer and the getCacheHint method always returns ALL_USERS which means the customization is applied globally (unconditionally) for a given deployment.

	
Note:

Since customization classes are likely to be executed frequently, once for each document being accessed to get the layer name and layer value, you should ensure their efficiency.

Customizations can be used to tailor a MAF application to suit a specific industry domain (verticalization). Each such domain denotes a customization layer and is depicted using a customization class.

Static customizations have only one layer value in effect for all executions of the application. A static customization has the same value for all users executing the application.

In the customization class used in a MAF application, the getCacheHint method always returns ALL_USERS meaning that the customization layer is always static.

All objects could have a static customization layer, depending on how the customization classes are implemented.

Do not create the customization file in the MAF application that you plan to customize. Instead, create a separate Java application for the customization class. After you complete the Java class, you import it into the MAF application that you plan to customize.

To create a customization class:

	
Create a Java application.

	
Click File, New, and then Project.

	
In the New Gallery, choose Java Application Project, and then complete the wizard.

	
In the Applications window, right-click the Java application project, and then choose Project Properties.

	
In the Project Properties dialog, select Libraries and Classpath, and then click Add Library.

	
In the Add Library dialog, select MDS Runtime and then click OK. Click OK to close the Project Properties dialog.

	
In the Applications window, right-click the Java application project and then choose New and then Java Class.

	
In the Create Java Class dialog, enter the class' name and package.

	
In the Extends field, browse the class hierarchy and retrieve oracle.mds.cust.CustomizationClass, as shown in Figure 10-3, and then click OK.

	
Note:

Implement Abstract Methods (the default setting) must be selected in the Create Java Class dialog.

Figure 10-3 Creating the Customization Class

[image: The surrounding text describes this image.]

	
Update the stub file. Example 10-2 illustrates a customization class.

Example 10-2 Customization Class

package mobile;
import java.io.IOException;
import java.io.InputStream;
import java.util.Properties;
import oracle.mds.core.MetadataObject;
import oracle.mds.core.RestrictedSession;
import oracle.mds.cust.CacheHint;
import oracle.mds.cust.CustomizationClass;

public class SiteCC extends CustomizationClass {
 private static final String DEFAULT_LAYER_NAME = "site";
 private String mLayerName = DEFAULT_LAYER_NAME;

 public SiteCC() {}

 public SiteCC (String layerName) {
 mLayerName = layerName;
 }

 public CacheHint getCacheHint() {
 return CacheHint.ALL_USERS;
 }

 public String getName() {
 return mLayerName;
 }

 public String[] getValue(RestrictedSession restrictedSession, MetadataObject metadataObject) {
 // This needs to return te site value at runtime.
 // For now, it's always null
 Properties properties = new Properties();
 String configuredValue = null;
 Class clazz = SiteCC.class;
 InputStream is = clazz.getResourceAsStream("/customization.properties");

 if (is != null){
 try {
 properties.load(is);
 String propValue = properties.getProperty(mLayerName);
 if (propValue != null){
 configuredValue = propValue;
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 return new String[] {configuredValue};
 }
}

	
Rebuild the Java application project.

10.4 Consuming Customization Classes

After you have created your customization classes, you can use them at design time in the Customization Developer role, as well as at runtime in the application. To be consumed in an application or in JDeveloper, the classes must be packaged appropriately.

Because the customization classes are reusable components, you can create a separate project to contain them and package them into their own JAR file. You can then import the JAR into the consuming application, which makes the customization classes available to JDeveloper.

You must first package the customization class as a JAR file and then register the class with the MAF application. To package the customization class and any related artifacts into a JAR file, you must create a deployment profile using the Create Deployment Profile wizard. For more information, see Section 27.2.1, "About Automatically Generated Deployment Profiles."

To add customization classes to a JAR:

	
In the Applications window, right-click the Java application project and choose New > From Gallery.

	
In the New Gallery, expand General, select Deployment Profiles and then JAR File, and click OK.

	
Tip:

Click the All Features tab if the Deployment Profiles node does not appear in the Categories tree.

	
In the Create Deployment Profile -- JAR File dialog, enter a name for the project deployment profile (for example, SiteCC in Figure 10-4) and then click OK.

Figure 10-4 Creating the Deployment Profile for the Customization Class

[image: The surrounding text describes this image.]

	
In the Edit JAR Deployment Profile Properties dialog, select JAR Options.

	
If needed, enter a location for the JAR file. Otherwise, accept the default location.

	
Expand Files Groups > Project Output > Filters to list the files that can be selected to be included in the JAR.

	
In Filters page, in the Files tab, select the customization classes you want to add to the JAR file, as illustrated in Figure 10-5.

Figure 10-5 Including the Customization Class in the JAR File

[image: The surrounding text describes this image.]

	
Click OK to exit the Edit JAR Deployment Profile Properties dialog.

	
Click OK again to exit the Project Properties dialog.

	
In the Applications window, right-click the Java application project and then choose the deployment profile. In the Deployment Action page, illustrated in Figure 10-6, Deploy to JAR is selected by default. Click Next.

Figure 10-6 Deploying the Customization Class to a JAR File

[image: The surrounding text describes this image.]

	
Review the confirmation for the output location of the JAR file. Click OK.

Figure 10-7 Summary Page (Showing the Output Location for the JAR File)

[image: The surrounding text describes this image.]

The log file window, shown in Figure 10-8, displays the status of the deployment.

Figure 10-8 Deployment Log

[image: The surrounding text describes this image.]

Use the following procedure to make the customization classes visible to the application, and then add the customization classes to the cust-config section of the adf-config.xml file.

	
Note:

The following procedure is not required if you created your customization classes in the data model project of the consuming application.

Before you begin:

	
Create your customization classes in an external project.

	
Create a JAR file that includes the customization classes.

	
Launch JDeveloper using the Studio Developer role, and open the application that you want to customize.

To register the customization class with the MAF application:

	
In the Applications window, click the Application Menu icon and select Application Properties.

	
In the Application Properties dialog, select Libraries and Classpath, and click Add JAR/Directory.

	
In the Add Archive or Directory dialog, select the JAR file you created that contains the customization classes, and click Open.

	
Click OK.

The next step is to add the customization class to the adf-config.xml file. The application's adf-config.xml file must have an appropriate cust-config element in the mds-config section. The cust-config element allows clients to define an ordered and named list of customization classes. You use the Overview editor for the adf-config.xml file to add customization classes (see Figure 10-9).

To identify customization classes in the adf-config.xml file:

	
In the Application Resources window, expand the Descriptors > ADF META-INF nodes, and then double-click adf-config.xml.

	
In the Overview editor, select MDS navigation tab and then click the Add (+).

	
In the Edit Customization Class dialog, search for or navigate to the customization classes you have already created.

	
Select the appropriate classes and click OK.

	
After you have added all of the customization classes, you can use the arrow icons to arrange them in the appropriate order.

Figure 10-9 shows the Overview editor for the adf-config.xml file with two customization classes added.

Figure 10-9 adf-config.xml Overview Editor

[image: This image is described in the surrounding text]

The order of the customization-class elements defines the precedence of customization layers. For example, in the code shown in Example 10-3, the IndustryCC class is listed before the SiteCC class. This means that customizations at the industry layer are applied to the base application, and then customizations at the site layer are applied.

Example 10-3 Customization Class Order in the adf-config.xml File

<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <cust-config>
 <match path="/">
 <customization-class name="com.mycompany.IndustryCC"/>
 <customization-class name="com.mycompany.SiteCC"/>
 </match>
 </cust-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

Upon completion, the customization classes are available to JDeveloper for customization and for running your project locally in JDeveloper. They will also be packaged to the EAR class path when you package the application.

10.5 Understanding a Customization Developer Role

In JDeveloper, the Customization Developer role is used to customize the metadata in a project. Customization features are available only in this role. When working in a Customization Developer role, you can do the following:

	
Create and update customizations.

	
Select and edit the tip layer of a customized application.

	
Remove existing customizations.

When you use JDeveloper in the Customization Developer role, the Source editor is read-only and the following JDeveloper features are disabled:

	
Workspace migration.

	
Creation, deletion, and modification of application and IDE connections. You must configure connections in Default role before opening an application in Customization Developer role.

When working with an application in the Customization Developer role, new objects and files cannot be created, and noncustomizable objects cannot be modified. In addition, you cannot edit noncustomizable files, such as Java classes, resource bundles, security policies, deployment descriptors, and configuration files.

	
Note:

Noncustomizable files are indicated by a lock icon when you are working in the Customization Developer role.

You are also restricted from modifying project settings, and you cannot refactor or make changes to customizable files that would, in turn, necessitate changes in noncustomizable files.

For more information, see the "Working with JDeveloper Roles" section in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

10.5.1 How to Switch to the Customization Developer Role in JDeveloper

The customization features of JDeveloper are available to you in the Customization Developer role. To work in this role, you can either choose it when you start JDeveloper or, if JDeveloper is already running, you can use the Switch Roles menu to switch to the Customization Developer role.

To switch to the Customization Developer role in JDeveloper:

From the main menu in JDeveloper, choose Tools > Switch Roles > Customization Developer.

Optionally, you can toggle the Tools > Switch Roles > Always Prompt for Role Selection at Startup menu to specify whether or not you want to choose the role when JDeveloper is launched. If deselected, JDeveloper launches in the role in which it was when you last closed it.

10.5.2 What You May Need to Know About the Tip Layer

When working in the Customization Developer role, the layer and layer value combination that is selected in the Customization Context window is called the tip layer. The changes you make while in the Customization Developer role are applied to this layer.

	
Note:

When working in the Customization Developer role, if the Customization Context window is not displayed, you can access it from JDeveloper's Window menu.

The metadata displayed in the JDeveloper editors is a combination of the base metadata and the customization layers up to and including the tip layer, according to the precedence set in adf-config.xml, with the values specified in the Customization Context window for each layer.

When working in the Customization Developer role, you can also see the noncustomized state of the application. When you select View without Customizations in the Customization Context window, there is no current tip layer. Therefore, what you see is the noncustomized state. While you are in this view, all customizable files show the lock icon (in the Applications window), indicating that these files are read-only.

When you make customizations in a tip layer, these customizations are indicated by an orange icon in the Properties window. A green icon indicates non-tip layer customizations. When you see an orange icon beside a property, you have the option of deleting that customization by choosing Remove Customization from the dropdown menu for that property.

10.6 What You May Need to Know About Web Service Data Controls and Customized Application Deployments

Because web service Java Bean Definition (JBD) files cannot be created by a customization deployment, you must perform a non-customization deployment to create these files before performing a customization deployment, as follows:

	
Launch the application in the Studio Developer role.

	
Choose Build and then Clean All to remove any web service JDB files that may have become obsolete since the previous deployment.

	
Select from among the deployment options (accessed by choosing Application, then Deploy, and then by selecting the deployment profile). For more information, see Chapter 27, "Deploying MAF Applications."

	
Launch the application in the Customization Developer role.

	
Select the same deployment profile chosen in Step 3 to enable the customization deployment to access the JBD files created by the non-customization deployment.

10.7 Enabling Customizations in Resource Bundles

To implement customization for resource keys, you must create additional resource bundle files; you cannot use the base resource bundle file.

In the Studio Developer role, create an application or project resource bundle. Edit the bundle that you create to define string values for resource keys.

Before you begin:

Familiarize yourself with the "How to Use Multiple Resource Bundles" section in Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application Development Framework.

To create an application resource bundle:

	
In the Studio Developer role, click Application > Application Properties > Resource Bundles.

	
In the Resource Bundle page, click Application Bundle Search, then click the dropdown menu icon to the right of the Add bundle icon and choose Create Application Bundle, as shown in Figure 10-10.

Figure 10-10 Creating an Application Resource Bundle

[image: This image is described in the surrounding text.]

	
In the Create Xliff File dialog that appears, enter a name for the resource bundle and click OK.

	
Edit the resource bundle, as described in Section 6.9, "Editing a Resource Bundle File."

	
Note:

MAF does not support the Overridden property in the application-level Resource Bundle page.

	
In the Customization Developer role, open the Select Text Resource dialog and choose from among the resource bundles that contain the appropriate string. Because you cannot change strings or create new ones in the Customization Developer role, you can only choose from the strings in the selected bundle.

	
Note:

Do not select strings from the base resource bundle in the Customization Developer role, as doing so may cause problems when upgrading the application.

To create a project resource bundle:

	
In the Studio Developer role, right-click the project where you want to create the resource bundle and choose New > From Gallery > General > XML > XML Localization File (XLIFF).

	
In the Create Xliff File dialog that appears, enter a name for the resource bundle and click OK.

	
Edit the resource bundle, as described in Section 6.9, "Editing a Resource Bundle File."

	
In the Bundle Search tab of the Resource Bundle page, register the resource bundle by selecting a project (.jpr) file, as shown in Figure 10-11.

Figure 10-11 Selecting a Resource Bundle

[image: This image is described in the surrounding text]

Registering a resource bundle includes it in the Select Text Resource dialog, shown in Figure 10-12.

Figure 10-12 Selecting a Resource Bundle for a Text Resource

[image: This image is described in the surrounding text]

	
Use the Select Text Resource Dialog to define the key as follows:

	
Select the bundle from the Resource Bundle dropdown list.

The dialog displays the strings that are currently defined in the selected resource bundle.

	
Enter a new string and then click Save and Select.

JDeveloper writes the string to the selected resource bundle.

	
In the Customization Developer role, open the Select Text Resource dialog and choose from among the resource bundles that contain the appropriate string. Because you cannot change strings or create new ones in the Customization Developer role, you can only choose from the strings in the selected bundle.

	
Note:

Do not select strings from the base resource bundle in the Customization Developer role, as doing so may cause problems when upgrading the application.

10.8 Upgrading a MAF Application with Customizations

Customizations are upgrade-safe because they are saved separately from the base applications. Because customizations retain changes, they enable you to upgrade an application by applying these changes to newer versions of the application. The MAF Application Archive (.maa) file provides the mechanism for upgrading MAF applications. When you create an application from an .maa file, you can upgrade the application using an updated version of the .maa file.

Using the Upgrade Mobile Application from Archive wizard, you can upgrade an application to a higher version while retaining the customizations made prior to the upgrade.

Before you begin:

You may want to familiarize yourself with the MAF Application Archive (.maa) file. For more information, see Section 27.6, "Creating a Mobile Application Archive File" and Section 27.7, "Creating Unsigned Deployment Packages."

Ensure that the application that is packaged into the .maa file and used for the upgrade has the same application ID as the application to which it will be applied. It must also have a higher version number than the application targeted for the upgrade.

To upgrade a MAF application:

	
Create a MAF application from an .maa file.

	
Apply customization to the MAF application, as described in Section 10.7, "Enabling Customizations in Resource Bundles."

	
Click Application, and then choose Select Mobile Application from Archive.

	
Browse to and select the .maa file. The wizard discontinues the upgrade if the application packaged in the .maa has the same (or lower) version number than the current application, or a different application ID.

Figure 10-13 Selecting the .maa File

[image: This image is described by the surrounding text]

	
Review the Summary page for files that require a manual merge. As noted in Figure 10-14, MAF saves the initial version (Version 1) of the application in the Temp directory. The Summary page also notes the temporary location of the log files.

Figure 10-14 Application Upgrade Information

[image: The surrounding text describes this image]

	
If the upgrade completes successfully, restart JDeveloper. JDeveloper notifies you if different versions of a configuration file require reconciliation, as illustrated by Figure 10-15.

Figure 10-15 Manual Merge Notification

[image: This image is described by the surrounding text]

During the upgrade, MAF copies a set of files that cannot be customized for both Version 1 of the application and Version 2 (the upgraded version of the application). These files include the connections.xml and adf-config.xml files. If MAF detects differences between Version 1 and Version 2 connections.xml and adf-config.xml files, it retains both copies of these files and writes an entry to the merge log file. MAF differentiates Version 1 by appending a version number if version numbers exist to the file name. If version numbers do not exist, MAF adds _old to the file name, as illustrated by connections_old.xml in Figure 10-15. If needed, you can manually merge the differences into the new version. As illustrated in Figure 10-16, MAF places the merge file log in the temporary location noted in the Summary page. MAF names the files as workspace name_timestamp.

Figure 10-16 The Merge Log File

[image: The surrounding text describes this image]

10.8.1 What Happens in JDeveloper When You Upgrade Applications

In addition to copying Version 1 to the Temp directory and creating Version 1 and Version 2 copies of the non-upgradable configuration files, MAF also performs the following when you upgrade an application using the Upgrade Mobile Application from Archive wizard:

	
Saves the libraries and resource bundles settings for each project in a map keyed with the project file name.

	
Saves the resource bundle settings for the workspace.

	
Saves the registered customization class in the adf-config.xml file.

	
Imports the Version 2 .maa file to the temporary directory.

	
Copies the application from the .maa file used for the upgrade to Version 1.

	
Updates each Version 2 project (.jpr) file with the registered resource bundle and library dependency map. The new version of the library overrides the previous version. However, the Version 1 library remains unchanged if it shares the same name as the library used in Version 1.

	
Updates the Version 2 workspace (.jws) file with the registered resource bundle settings.

	
Updates the Version 2 adf-config.xml file to register the customization class.

10.8.2 What You May Need to Know About Upgrading FARs

If the application includes a FAR file that was not packaged in the original .maa file that was used to create the application (or included in the .maa file that is used to upgrade the application), then you must upgrade the FAR file separately. For example, you can create an application from an .maa file, add a FAR file, and then perform customization. You can upgrade the application to use a newer version of the FAR by adding the updated FAR from the Resources window as described in Section 8.2, "Using FAR Content in a MAF Application."

11 Using Lifecycle Listeners in MAF Applications

This chapter describes the lifecycle listeners that MAF provides for you to write code that can execute in response to events in your MAF application or application features.

This chapter includes the following sections:

	
Section 11.1, "Introduction to Lifecycle Listeners in MAF Applications"

	
Section 11.2, "Registering a Lifecycle Listener for a MAF Application or an Application Feature"

	
Section 11.3, "What Happens When You Register a Lifecycle Listener"

11.1 Introduction to Lifecycle Listeners in MAF Applications

Lifecycle listeners are useful locations to write code that executes in response to specific events in your application. MAF provides lifecycle listeners where you can write code in response to application or application feature events. A typical implementation of an application lifecycle listener method may be to write code that initializes your application's database when the application starts, as described in Section 17.2, "Using the Local SQLite Database," or to update a security configuration from URL parameters, as described in Section 29.4.7, "How to Update Connection Attributes of a Named Connection at Runtime."

MAF provides the following two interfaces that you can implement to communicate with event notifications:

	
oracle.adfmf.application.LifeCycleListener

This interface specifies the following methods that an application lifecycle listener must implement:

	
activate()

	
deactivate()

	
start()

	
stop()

	
oracle.adfmf.feature.LifeCycleListener

This interface specifies the following methods that a feature lifecycle listener must implement:

	
activate()

	
deactivate()

You create a lifecycle listener by creating a Java class that implements the appropriate interface and registering the implementation in your MAF application, as described in Section 11.2, "Registering a Lifecycle Listener for a MAF Application or an Application Feature."

A new MAF application that you create implements the oracle.adfmf.application.LifeCycleListener interface through the default creation of the application.LifeCycleListenerImpl.java class in your application's ApplicationController project, as shown in Figure 11-1.

Figure 11-1 Implementation of Application Lifecycle Listener

[image: The surrounding text describes this image.]

Note that the application lifecycle listener is executed with an anonymous user (that is, there is no user associated with any of its methods and no secure web service is called).

Table 11-1 describes the specific times that MAF invokes application lifecycle methods during an application's startup, shutdown, and hibernation.

Table 11-1 Timing of MAF's Invocation of Application Lifecycle Methods

	Method	Timing	When Called	Usage
	
start

	
Called after the MAF application has completely loaded the application features and immediately before presenting the user with the initial application feature or the springboard. This is a blocking call.

	
When the application process starts.

	
Uses include:

	
Determining if there are updates to the MAF application.

	
Requesting a remote server to download data to the local database.

	
stop

	
Called as the MAF application begins its shutdown.

	
When the application process terminates.

	
Uses include:

	
Logging off from any remote services.

	
Uploading any data change to the server before the application is closed.

	
activate

	
Called as the MAF application activates from being situated in the background (hibernating). This is a blocking call.

	
After the start method is called.

	
Uses include:

	
Reading and re-populating cache stores.

	
Processing web service requests.

	
Obtaining required resources.

	
deactivate

	
Called as the MAF application deactivates and moves into the background (hibernating). This is a blocking call.

	
Before the stop method is called.

	
Uses include:

	
Writing the restorable state.

	
Closing the database cursor and the database connection.

Table 11-2 describes the specific times that MAF invokes feature lifecycle methods during a feature's activation and deactivation.

Table 11-2 Timing of MAF's Invocation of Feature Lifecycle Methods

	Method	Timing	When Called	Usage
	
activate

	
Called before the current application feature is activated.

	
Called when a user selects the application feature for the first time after launching a MAF application, or when the application has been re-selected (that is, brought back to the foreground).

	
Uses include:

	
Reading the applicationScope variable.

	
Setting the current row on the first MAF AMX view.

	
deactivate

	
Called before the next application feature is activated, or before the application feature exits.

	
Called when the user selects another application feature.

	
You can, for example, use the deactivate event to write the applicationScope variable, or any other state information, for the next application feature to consume.

For more information about the oracle.adfmf.application.LifeCycleListener and oracle.adfmf.feature.LifeCycleListener interfaces, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

The LifecycleEvents sample application demonstrates declaring listener classes that implement both the application and feature interfaces and registers them in the MAF application's maf-application.xml and maf-feature.xml files. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install\jdeveloper\jdev\extensions\oracle.maf\Samples

For more information about the sample applications, see Appendix G, "MAF Sample Applications."

11.2 Registering a Lifecycle Listener for a MAF Application or an Application Feature

You register an application lifecycle listener using the overview editor for the maf-application.xml file and a feature lifecycle listener using the overview editor for the maf-features.xml file.

To register an application lifecycle listener:

	
In the Applications window, expand the Application Resources panel.

	
In the Application Resources panel, expand Descriptors and then ADF META-INF.

	
Double-click maf-application.xml.

	
In the Application navigation tab, specify the Java class that implements the oracle.adfmf.application.LifeCycleListener interface in the Lifecycle Event Listener field. By default, this is set to application.LifeCycleListenerImpl.

A scenario where you might use a custom class different to the default implementation provided by MAF is if you want to package the application lifecycle listener in a JAR library that will be distributed for use elsewhere.

To register an application feature lifecycle listener:

	
In the Applications window, expand the ViewController project and then Application Sources and META-INF.

	
Double-click the maf-feature.xml file.

	
Select the feature in the Features list for which you want to register a feature lifecycle listener.

	
In the Lifecycle Event Listener field, specify the Java class that implements the oracle.adfmf.feature.LifeCycleListener interface.

11.3 What Happens When You Register a Lifecycle Listener

By default, a MAF application that you create implements an application lifecycle listener through the creation of the application.LifeCycleListenerImpl.java class in your application's ApplicationController project. The listener-class attribute in the maf-application.xml file registers this class, as shown in Example 11-1.

Example 11-1 Registration of an Application Lifecycle Listener in maf-application.xml

<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 version="1.0" name="NewMAFapp" id="com.company.NewMAFapp"
 appControllerFolder="ApplicationController" listener-class="application.LifeCycleListenerImpl">
...
</adfmf:application>

JDeveloper writes an entry to the maf-feature.xml file for the listener-class attribute when you register a feature lifecycle listener. Example 11-2 shows an entry in the LifecycleEvents sample application described in Appendix G, "MAF Sample Applications."

Example 11-2 Registration of an Application Feature Lifecycle Listener in maf-feature.xml

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="Feature1" name="Feature1" listener-class="mobile.Feature1Handler">
 <adfmf:description>This is a sample feature to show the feature lifecycle handlers.
 </adfmf:description>
 <adfmf:content id="Feature1.1">
 <adfmf:amx file="Feature1/feature1.amx"/>
 </adfmf:content>
 </adfmf:feature>
...
</adfmf:features>

12 Creating MAF AMX Pages

This chapter describes how to create the MAF AMX application feature.

This chapter includes the following sections:

	
Section 12.1, "Introduction to the MAF AMX Application Feature"

	
Section 12.2, "Creating Task Flows"

	
Section 12.3, "Creating Views"

12.1 Introduction to the MAF AMX Application Feature

MAF AMX is a subframework within Mobile Application Framework (MAF) that provides a set of UI components that enable you to create an application feature whose behavior is identical on all supported platforms. MAF AMX allows you to use UI components declaratively by dragging them onto a page editor. A typical MAF AMX application feature includes several interconnected pages that can be navigated through various paths.

	
Note:

When developing interfaces for mobile devices, always be aware of the fact that the screen space is very limited. In addition, touchscreen support is not available on some mobile devices.

For more information, see the following:

	
Chapter 2, "Getting Started with MAF Application Development"

	
Chapter 13, "Creating the MAF AMX User Interface"

	
Chapter 14, "Using Bindings and Creating Data Controls in MAF AMX"

12.2 Creating Task Flows

Task flows allow you to define the navigation between MAF AMX pages. Using your application workspace in JDeveloper (see Section 2.2, "Creating a MAF Application"), you can start creating the user interface for your MAF AMX application feature by designing task flows. MAF AMX uses navigation cases and rules to define the task flow. These definitions are stored in a file with the default name of ViewController-task-flow.xml (see Section 12.2.3, "What You May Need to Know About the ViewController-task-flow.xml File").

A MAF sample application called Navigation (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer) demonstrates how to use various navigation techniques, such as circular navigation, routers, and so on.

MAF enables you to create MAF AMX application features that have both bounded and unbounded task flows. As described in Section 12.2.12, "What You May Need to Know About Bounded and Unbounded Task Flows," a bounded task flow is also known as a task flow definition and represents the reusable portion of an application. In MAF, bounded task flows have a single entry point and no exit points. They have their own collections of activities and control-flow rules, as well as their own memory scope and managed-bean life span. Other characteristics of bounded task flows include accepting input parameters (see Section 12.2.12.3.1, "Passing Parameters to a Bounded Task Flow") and generating return values (see Section 12.2.12.3.2, "Configuring a Return Value from a Bounded Task Flow").

You use the MAF AMX Task Flow Designer to create bounded task flows for your application feature. Like the overview editor for task flows, this tool includes a diagrammer (see Section 12.2.4, "What You May Need to Know About the MAF Task Flow Diagrammer") in which you build the task flow by dragging and dropping activities and control flows (see Section 12.2.2, "What You May Need to Know About Task Flow Activities and Control Flows") from the Components window. You then define these activities and the transitions between them using the Properties window.

Unless a task flow has already been created, MAF automatically generates a default unbounded task flow (adfc-mobile-config.xml file) when a new MAF AMX page is created.

You can add each task flow as an application feature to your MAF application. For more information, see Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow."

12.2.1 How to Create a Task Flow

A task flow is composed of the task flow itself and a number of activities with control flow rules between those activities (see Section 12.2.2, "What You May Need to Know About Task Flow Activities and Control Flows"). Typically, the majority of the activities are view activities which represent different pages in the flow. When a method or operation needs to be called (for example, before a page is rendered), you use a method call activity with a control flow case from that activity to the appropriate next activity. When you want to call another task flow, you use a task flow call activity. If the flow requires branching, you use a router activity. At the end of a bounded task flow, you use a return activity which allows the flow to exit and control is sent back to the flow that called this bounded task flow.

You use the navigation diagrammer to declaratively create a bounded task flow for your MAF AMX application feature. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your MAF AMX application feature in the ViewController-task-flow.xml file (default).

Before you begin:

To design a task flow, the MAF application must include a View Controller project file (see Chapter 2, "Getting Started with MAF Application Development").

There are two ways to create a task flow in MAF:

	
You can create a bounded task flow from the maf-feature.xml file. For more information, see Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow."

	
You can use the New Gallery in JDeveloper. For more information, see "To create a task flow from the New Gallery:"

To create a task flow from the New Gallery:

	
From the top-level menu in JDeveloper, click File, and then select New > From Gallery.

	
In the New Gallery, expand the Client Tier node, select Mobile Application Framework, and then MAF Task Flow (see Figure 12-1). Click OK.

Figure 12-1 Creating New MAF Task Flow

[image: This image is described in the surrounding text]

	
In the Create MAF Task Flow dialog (see Figure 12-2), specify the file name and location for your new task flow, and then click OK to open the new <Name>-flow.xml file in the navigation diagrammer that Figure 12-3 shows.

	
Note:

Task flows should be created within the HTML root of the View Controller project of your MAF application.

	
Note:

JDeveloper increments the number of the task flow according to the number of bounded task flows that already exist in the same pattern.

Figure 12-2 Create MAF Task Flow Dialog

[image: This image is described in the surrounding text]

Figure 12-3 New Blank Task Flow

[image: This image is described in the surrounding text]

	
In the Components window, select MAF Task Flow.

	
Tip:

If the Components window is not displayed, choose Window > Components from the main menu. By default, the Components window is displayed in the upper right-hand corner of JDeveloper.

	
From MAF Task Flow > Components, select the component you wish to use and drag it onto the diagram. JDeveloper redraws the diagram with the newly added component, as Figure 12-4 shows.

Figure 12-4 Adding Components to Task Flow

[image: This image is described in the surrounding text]

For information on how to add activities to a task flow, see Section 12.2.5, "How to Add and Use Task Flow Activities."

For information on how to add control flows, see Section 12.2.6, "How to Define Control Flows."

For information on how to define behavior of the new task flow, see Section 12.2.1.1, "What You May Need to Know About Behavior of New Bounded Task Flows."

You can also open the Overview tab and use the overview editor to create navigation rules and navigation cases. Press F1 for details on using the overview editor to create navigation.

[image: This image is described in the surrounding text]

Additionally, you can manually add elements to the task flow file by directly editing the page in the Source editor. To open the file in the Source editor, click the Source tab.

	
Note:

When manually editing the task flow file, keep in mind that all the document file names referring to MAF AMX pages, JavaScript files, and CSS files are case-sensitive.
If special characters (such as an underscore, for example) are used in a file name, you should consult the mobile device specification to verify whether or not the usage of this character is supported.

Once the navigation for your MAF AMX application feature is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Section 12.2.6, "How to Define Control Flows."

After you define the task flow for the MAF AMX application feature, you can double-click a view file to access the MAF AMX view. For more information, see Section 12.3, "Creating Views."

12.2.1.1 What You May Need to Know About Behavior of New Bounded Task Flows

When a new bounded task flow is created, MAF automatically adds a page-flow-scope-behavior element to the <Name>-flow.xml file. This element is added as a child of the top-level task-flow-definition element.

	
Note:

The page-flow-scope-behavior element is appended to all newly created task flows, even if they are created in projects built using previous versions of MAF.

The value of the page-flow-scope-behavior element is set to push-new by default and is displayed in the Overview and Source editors for the new task flow, as well as the Properties window for the task-flow-definition element, as Figure 12-5 shows.

Figure 12-5 Page Flow Scope Behavior for Task Flows

[image: This image is described in the surrounding text]

If the Page Flow Scope Behavior is set to push-new, a new page flow scope is created and the old pageFlowScope variables are saved and pushed on to a stack. This allows for the previous page flow scope to be restored upon the execution of a task flow return. If the Page Flow Scope Behavior is set to preserve, the pageFlowScope variables are not cleared when the task flow is entered upon execution of a task flow call resulting in the new task flow variables containing old values.

In existing task flows, if the page-flow-scope-behavior element is not present, then you should define it as either push-new or preserve.

For more information about the pageFlowScope, see Section 14.3.5.2, "About the Managed Beans Category."

12.2.2 What You May Need to Know About Task Flow Activities and Control Flows

A task flow consists of activities and control flow cases that define the transitions between activities.

The MAF Task Flow designer supports activities listed in Table 12-1.

Table 12-1 Task Flow Activities

	Activity	Description
	
View

	
Displays a MAF AMX page. For more information, see Section 12.2.5.1, "Adding View Activities."

	
Method Call

	
Invokes a method (typically a method on a managed bean). You can place a method call activity anywhere in the control flow of a MAF AMX application feature to invoke logic based on control flow rules. For additional information, see Section 12.2.5.3, "Adding Method Call Activities."

You can also specify parameters that you pass into a method call that is included in a task flow. These include standard parameters for a method call action in a MAF AMX task flow. When you use the designer to generate a method, it adds the required arguments and type.

At runtime, you can define parameters for a method call in a task flow and pass parameters into the method call itself for its usage. For more information, see Part , "How to Add and Use Task Flow Activities."

	
Router

	
Evaluates an Expression Language (EL) expression and returns an outcome based on the value of the expression. These outcomes can then be used to route control to other activities in the task flow. For more information, see Section 12.2.5.2, "Adding Router Activities."

	
Task Flow Call

	
Calls a bounded task flow from either an unbounded or bounded task flow. While a task flow call activity allows you to call a bounded task flow located within the same MAF AMX application feature, you can also call a bounded task flow from a different MAF AMX application feature or from a Feature Archive file (FAR) that has been added to a library (see Chapter 8, "Reusing MAF Application Content.").

The task flow call activity supports task flow input parameters and return values.

For more information, see Section 12.2.5.4, "Adding Task Flow Call Activities."

	
Task Flow Return

	
Identifies the point in an application's control flow where a bounded task flow completes and sends control flow back to the caller. You can use a task flow return only within a bounded task flow. For more information, see Section 12.2.5.5, "Adding Task Flow Return Activities."

The MAF Task Flow designer supports control flows listed in Table 12-2.

Table 12-2 Control Flows

	Control Flow	Description
	
Control Flow Case

	
Identifies how control passes from one activity to the next in the MAF AMX application feature. For more information, see Section 12.2.6.1, "Defining a Control Flow Case."

	
Wildcard Control Flow Rule

	
Represents a control flow case that can originate from any activities whose IDs match a wildcard expression.For more information, see Section 12.2.6.2, "Adding a Wildcard Control Flow Rule."

12.2.3 What You May Need to Know About the ViewController-task-flow.xml File

The ViewController-task-flow.xml file enables you to design the interactions between views (MAF AMX pages) by dragging and dropping MAF AMX task flow components from the Components window onto the diagrammer.

Figure 12-6 shows a sample task flow file called Products-flow.xml. In this file, the control flow is directed from the products page to the productdetails page. To return to the products page from the productdetails page, the built-in __back navigation is used (see Section 12.2.7, "What You May Need to Know About MAF Support for Back Navigation").

Figure 12-6 Task Flow File

[image: This image is described in the surrounding text]

12.2.4 What You May Need to Know About the MAF Task Flow Diagrammer

As illustrated in Figure 12-6, the task flow diagram and Components window display automatically after you create a task flow using the MAF Task Flow Creation utility. The task flow diagram is a visual editor onto which you can drag and drop activities and task flows from the Components window or from the Applications window. For more information, see Section 12.2.5, "How to Add and Use Task Flow Activities."

12.2.5 How to Add and Use Task Flow Activities

You use the task flow diagrammer to drag and drop activities, views, and control flows.

Before you begin:

You must select MAF Task Flow from the Components window, as Figure 12-7 shows.

To add an activity to a MAF task flow:

	
In the Applications window, double-click a task flow source file (such as ViewController-task-flow.xml) to display the task flow diagram and the Components window, as Figure 12-7 shows. The diagrammer displays the task flow editor. The Components window automatically displays the components available for a MAF task flow.

	
Drag an activity from the Components window onto the diagram. If you drag a view activity onto the diagram and double-click on it, you can invoke the Create MAF AMX Page wizard (see Section 12.2.5.1, "Adding View Activities").

Figure 12-7 The Diagrammer for the Task Flow Editor

[image: This image is described in the surrounding text]

	
Note:

There is a default activity that is associated with each bounded task flow.

12.2.5.1 Adding View Activities

One of the primary types of task flow activity is the view activity which displays a MAF AMX page.

XML metadata in the source file of the task flow associates a view activity with a physical MAF AMX page. An id attribute identifies the view activity.

You can configure view activities in your task flow to pass control to each other at runtime. For example, to pass control from one view activity (view activity A) to a second view activity (view activity B), you could configure a command component, such as a Button or a Link on the page associated with view activity A. To do so, you set the command component's Action attribute to the control flow case from-outcome that corresponds to the task flow activity that you want to invoke (for example, view activity B). At runtime, the end user initiates the control flow case by invoking the command component. It is possible to navigate from a view activity to another activity using either a constant or dynamic value on the Action attribute of the UI component:

	
A constant value of the component's Action attribute is an action outcome that always triggers the same control flow case. When an end user clicks the component, the activity specified in the control flow case is performed. There are no alternative control flows.

	
A dynamic value of the component's Action attribute is bound to a managed bean or a method. The value returned by the method binding determines the next control flow case to invoke. For example, a method might verify user input on a page and return one value if the input is valid and another value if the input is invalid. Each of these different action values trigger different navigation cases, causing the application to navigate to one of two possible target pages.

For more information, see Section 12.2.9, "How to Specify Action Outcomes Using UI Components."

You can also write an EL expression that must evaluate to true before control passes to the target view activity. You write the EL expression as a value for the <if> child element of the control flow case in the task flow.

Example 12-1 and Example 12-2 demonstrate what happens when you pass control between View activities:

Example 12-1 shows a control flow case defined in the XML source file for a bounded or unbounded task flow.

Example 12-1 Control Flow Case Defined in XML Source File

<control-flow-rule>
 <from-activity-id>Start</from-activity-id>
 <control-flow-case>
 <from-outcome>toOffices</from-outcome>
 <to-activity-id>WesternOffices</to-activity-id>
 </control-flow-case>
</control-flow-rule>

As Example 12-2 shows, a Button on a MAF AMX page associated with the Start view activity specifies toOffices as the action attribute. When the end user clicks the button, control flow passes to the WesternOffices activity specified as the to-activity-id in the control flow metadata.

Example 12-2 Static Navigation Button Defined in a View Activity

<amx:commandButton text="Go" id="b1" action="toOffices">

For more information, see the following:

	
Section 12.2.5.1, "Adding View Activities"

	
Section 12.3.1.2, "Creating MAF AMX Pages"

As previously stated, the view activity is associated in metadata with an actual MAF AMX page which it displays when added to a task flow. You add a view activity by dragging and dropping it from the Components window. You can create an actual MAF AMX page by double-clicking the View activity in the Diagram window and then define characteristics for the page through the displayed dialog (see Figure 12-30, "Create MAF AMX Page Dialog"). You can also create a View activity by dragging and dropping a MAF AMX file in the Applications window onto the Overview editor's Diagram tab.

If you are creating a bounded task flow, you may want to designate a specific activity as the default activity (see Section 12.2.12, "What You May Need to Know About Bounded and Unbounded Task Flows"). This allows the specific activity to execute first whenever the bounded task flow runs. By default, JDeveloper makes the first activity you add to the task flow the default. To change to a different activity, right-click the appropriate activity in the Diagram window and choose Mark Activity > Default Activity (see Figure 12-8).

Figure 12-8 Defining Default Activity

[image: This image is described in the surrounding text]

12.2.5.2 Adding Router Activities

Use a router activity to route control to activities based on the runtime evaluation of EL expressions.

Each control flow corresponds to a different router case. Each router case uses the following elements to choose the activity to which control is next routed:

	
expression: an EL expression that evaluates to true or false at runtime.

The router activity returns the outcome that corresponds to the EL expression that returns true.

	
outcome: a value returned by the router activity if the EL expression evaluates to true.

If the router case outcome matches a from-outcome on a control flow case, control passes to the activity that the control flow case points to. If none of the cases for the router activity evaluate to true, or if no router activity cases are specified, the outcome specified in the router Default Outcome field (if any) is used.

Consider using a router activity if your routing condition can be expressed in an EL expression: the router activity allows you to show more information about the condition on the task flow.

When you drag a Router activity onto the diagram, you can use the Properties window to create an expression whose evaluation determines which control flow rule to follow. Using the Properties window, you configure the Activity ID and Default Outcome properties of the router activity and add router cases to the router activity.

When defining the Activity ID attribute, write a value that identifies the router activity in the task flow's source file.

When defining the Default Outcome attribute, specify an activity that the router activity passes control to if no control flow cases evaluate to true or if no control flow case is specified.

For each router case that you add, specify values by clicking Add (+) in the Cases section that Figure 12-49 shows.

Figure 12-9 Configuring Router Activity

[image: This image is described in the surrounding text]

	
Expression: An EL expression that evaluates to true or false at runtime.

For example, to reference the value in an input text field of a view activity, write an EL expression similar to the following:

#{pageFlowScope.value=='view2'}

If this EL expression returns true, the router activity invokes the outcome that you specify in the Outcome field.

	
Outcome: The outcome the router activity invokes if the EL expression specified by Expression returns true.

Create a control flow case or a wildcard control flow rule for each outcome in the diagram of your task flow. For example, for each outcome in a control flow case, ensure that there is a corresponding from-outcome.

When you configure the control flow using a router activity, JDeveloper writes values to the source file of the task flow based on the values that you specify for the properties of the router activity.

12.2.5.3 Adding Method Call Activities

When you drag a Method Call activity onto the diagram, you can use the Properties window to configure the method to call.

Use a method call activity to call a custom or built-in method that invokes the MAF AMX application feature logic from anywhere within the application feature's control flow. You can specify methods to perform tasks such as initialization before displaying a page, cleanup after exiting a page, exception handling, and so on.

You can set an outcome for the method that specifies a control flow case to pass control to after the method finishes. You can specify the outcome as one of the following:

	
fixed-outcome: upon successful completion, the method always returns this single outcome, for example, success. If the method does not complete successfully, an outcome is not returned. If the method type is void, you must specify a fixed-outcome and cannot specify to-string.

You define this outcome by setting the Fixed Outcome field in the Properties window (see Figure 12-10).

	
to-string: if specified as true, the outcome is based on calling the toString method on the Java object returned by the method. For example, if the toString method returns editBasicInfo, navigation goes to a control flow case named editBasicInfo.

You define this outcome by setting the toString() field in the Properties window (see Figure 12-10).

You can associate the method call activity with an existing method by dropping a data control operation from the Data Controls window directly onto the method call activity in the task flow diagram. You can also drag methods and operations directly to the task flow diagram: a new method call activity is created automatically when you do so. You can specify an EL expression and other options for the method.

You configure the method call by modifying its activity identifier in the Activity ID field if you want to change the default value. If you enter a new value, the new value appears under the method call activity in the diagram.

In the Method field, enter an EL expression that identifies the method to call. Note that the bindings variable in the EL expression references a binding from the current binding container. In order to specify the bindings variable, you must specify a binding container definition or page definition. For more information, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts."

Figure 12-10 Configuring Method Call Activity

[image: This image is described in the surrounding text]

You can also use the Expression Builder to build the EL expression for the method:

	
Choose Method Expression Builder from the Property Editor for the Method field.

	
In the Expression Builder dialog, navigate to the method that you want to invoke and select it.

If the method call activity is to invoke a managed bean method, double-click the method call activity in the diagram. This invokes a dialog where you can specify the managed bean method you want to invoke.

You can specify parameters and return values for a method by using the Parameters section of the Properties window (see Figure 12-10). If parameters have not already been created by associating the method call activity to an existing method, add the parameters by clicking Add (+) and setting the following:

	
Class: enter the parameter class. For example, java.lang.Double.

	
Value: enter an EL expression that retrieves the value of the parameter. For example:

#{pageFlowScope.shoppingCart.totalPurchasePrice}

	
Return Value: enter an EL expression that identifies where to store the method return value. For example:

#{pageFlowScope.Return}

12.2.5.4 Adding Task Flow Call Activities

You can use a task flow call activity to call a bounded task flow from either the unbounded task flow (see Section 12.2.12.1, "Unbounded Task Flows") or a bounded task flow (see Section 12.2.12.2, "Bounded Task Flows"). This activity allows you to call a bounded task flow located within the same or a different MAF AMX application feature.

The called bounded task flow executes its default activity first. There is no limit to the number of bounded task flows that can be called. For example, a called bounded task flow can call another bounded task flow, which can call another, and so on resulting in the creation of chained task flows where each task flow is a link in a chain of tasks.

To pass parameters into a bounded task flow, you must specify input parameter values on the task flow call activity. These values must correspond to the input parameter definitions on the called bounded task flow. For more information, see Section 12.2.5.4.2, "Specifying Input Parameters on a Task Flow Call Activity."

	
Note:

The value on the task flow call activity input parameter specifies the location within the calling task flow from which the value is to be retrieved.
The value on the input parameter definition for the called task flow specifies where the value is to be stored within the called bounded task flow once it is passed.

	
Note:

When a bounded task flow is associated with a task flow call activity, input parameters are automatically inserted on the task flow call activity based on the input parameter definitions set on the bounded task flow. Therefore, you only need to assign values to the task flow call activity input parameters.

By default, all objects are passed by reference. Primitive types (for example, int, long, or boolean) are always passed by value.

The technique for passing return values out of the bounded task flow to the caller is similar to the way that input parameters are passed. For more information, see Section 12.2.12.3.2, "Configuring a Return Value from a Bounded Task Flow."

To use a task flow call activity:

	
Call a bounded task flow using a task flow call activity (see Section 12.2.5.4.1, "Calling a Bounded Task Flow Using a Task Flow Call Activity")

	
Specify input parameters on a task flow call activity if you want to pass parameters into the bounded task flow (see Section 12.2.5.4.2, "Specifying Input Parameters on a Task Flow Call Activity").

12.2.5.4.1 Calling a Bounded Task Flow Using a Task Flow Call Activity

Add a task flow call activity to the calling bounded or unbounded task flow to call a bounded task flow.

To call a bounded task flow:

	
Open a bounded task flow file in the Diagram view.

	
From the Components window, select Components > Activities.

	
Drag and drop a Task Flow Call activity onto the diagram.

	
Choose one of the following options to identify the called task flow:

	
Double-click the newly-dropped task flow call activity to open the Create MAF Task Flow dialog (see Figure 12-2, "Create MAF Task Flow Dialog") where you define settings for a new bounded task flow.

	
Drag an existing bounded task flow from the Applications window and drop it on the task flow call activity.

	
If you know the name of the bounded task flow that you want to invoke, perform the following steps:

	
In the Diagram view, select the Task Flow Call activity.

	
In the Properties window, expand the General section, and select Static from the Task Flow Reference list.

	
In the Document field, enter the name of the source file for the bounded task flow to call.

	
In the ID field, enter the bounded task flow ID contained in the XML source file for the called bounded task flow (see Figure 12-11).

Figure 12-11 Task Flow Call Activity That Invokes a Bounded Task Flow

[image: This image is described in the surrounding text]

	
If you do not know the name of the bounded task flow to invoke and it is dependent on an end user selection at runtime, perform the following steps:

	
In the Diagram view, select the Task Flow Call activity.

	
In the Properties window, expand the General section, and select Dynamic from the Task Flow Reference list.

	
Use the Expression Builder to set the value of the Dynamic Task Flow Reference property field: write an EL expression that identifies the ID of the bounded task flow to invoke at runtime.

12.2.5.4.2 Specifying Input Parameters on a Task Flow Call Activity

The suggested method for mapping parameters between a task flow call activity and its called bounded task flow is to first specify input parameter definitions for the called bounded task flow. Then you can drag the bounded task flow from the Applications window and drop it on the task flow call activity. The task flow call activity input parameters are created automatically based on the bounded task flow's input parameter definition. For more information, see Section 12.2.12.3.1, "Passing Parameters to a Bounded Task Flow."

You can, of course, first specify input parameters on the task flow call activity. Even if you have defined them first, they will automatically be replaced based on the input parameter definitions of the called bounded task flow, once it is associated with the task flow call activity.

If you have not yet created the called bounded task flow, you may still find it useful to specify input parameters on the task flow call activity. Doing so at this point allows you to identify any input parameters you expect the task flow call activity to eventually map when calling a bounded task flow.

To specify input parameters:

	
Open a task flow file in the Diagram view and select a Task Flow Call activity.

	
In the Properties window, expand the Parameters section, and click Add (+) to specify a new input parameter in the Input Parameters list as follows:

	
Name: enter a name to identify the input parameter.

	
Value: enter an EL expression that identifies the parameter value. The EL expression identifies the location within the calling task flow from which the parameter value is to be retrieved. For example, enter an EL expression similar to the following:

#{pageFlowScope.callingTaskflowParm}

By default, all objects are passed by reference. Primitive types (for example, int, long, or boolean) are always passed by value.

	
After you have specified an input parameter, you can specify a corresponding input parameter definition for the called bounded task flow. For more information, see Section 12.2.12.3.1, "Passing Parameters to a Bounded Task Flow."

12.2.5.5 Adding Task Flow Return Activities

A task flow return activity identifies the point in a MAF AMX application feature's control flow where a bounded task flow completes and sends control flow back to the caller. You can use a task flow return activity only within a bounded task flow.

A gray circle around a task flow return activity icon indicates that the activity is an exit point for a bounded task flow. A bounded task flow can have zero or more task flow return activities.

Each task flow return activity specifies an outcome that it returns to the calling task flow.

The outcome returned to an invoking task flow depends on the end user action. You can configure control flow cases in the invoking task flow to determine the next action by the invoking task flow. Set the From Outcome property of a control flow case to the value returned by the task flow return activity's outcome to invoke an action based on that outcome. This determines control flow upon return from the called task flow.

To add a task flow return activity:

	
Open a bounded task flow file in the Diagram view.

	
From the Components window, select Components > Activities.

	
Drag and drop a Task Flow Return activity onto the diagram.

	
In the Properties window (see Figure 12-12), expand the General section and enter an outcome in the Name field.

The task flow return activity returns this outcome to the calling task flow when the current bounded task flow exits. You can specify only one outcome per task flow return activity. The calling task flow should define control flow rules to handle control flow upon return. For more information, see Section 12.2.6, "How to Define Control Flows."

	
Expand the Behavior section and choose one of the options in the Reentry list.

If you specify reentry-not-allowed on a bounded task flow, an end user can still click the back button on the mobile device and return to a page within the bounded task flow. However, if the end user does anything on the page such as activating a button, an exception (for example, InvalidTaskFlowReentry) is thrown indicating the bounded task flow was reentered improperly.

	
From the End Transaction dropdown list, choose one of the following options:

	
commit: select to commit the existing transaction to the database.

	
rollback: select to roll back the transaction to what it was on entry of the called task flow. This has the same effect as canceling the transaction, since it rolls back a new transaction to its initial state when it was started on entry of the bounded task flow.

If you do not specify commit or rollback, the transaction is left open to be closed by the calling bounded task flow.

Figure 12-12 Configuring Task Flow Return Activity

[image: This image is described in the surrounding text]

12.2.5.6 Using Task Flow Activities with Page Definition Files

Page definition files define the binding objects that populate data at runtime. They are typically used in a MAF AMX application feature to bind page UI components to data controls. The following task flow activities can also use page definition files to bind to data controls:

	
Method call: You can drag and drop a data control operation from the Data Controls window onto a task flow to create a method call activity or onto an existing method call activity. In both cases, the method call activity binds to the data control operation.

	
Router: associating a page definition file with a router activity creates a binding container. At runtime, this binding container makes sure that the router activity references the correct binding values when it evaluates the router activity cases' EL expressions. Each router activity case specifies an outcome to return if its EL expression evaluates to true. For this reason, only add data control operations to the page definition file that evaluate to true or false.

	
Task flow call: associating a page definition file with a task flow call activity creates a binding container. At runtime, the binding container is in context when the task flow call activity passes input parameters. The binding container makes sure that the task flow call activity references the correct values if it references binding values when passing input parameters from a calling task flow to a called task flow.

	
View: you cannot directly associate a view activity with a page definition file. Instead, you associate the page that the view activity references.

If you right-click any of the preceding task flow activities, except view activity, in the Diagram window for a task flow, JDeveloper displays an option on the context menu that enables you to create a page definition file if one does not yet exist. If a page definition file does exist, JDeveloper displays a context menu option for all task flow activities to go to the page definition file (see Section 12.3.1.5, "Accessing the Page Definition File"). JDeveloper also displays the Edit Binding context menu option when you right-click a method call activity that is associated with a page definition file.

A task flow activity that is associated with a page definition file displays an icon in the lower-right section of the task flow activity icon.

To associate a page definition file with a task flow activity:

	
In the Diagram view, right-click the task flow activity for which you want to create a page definition file and select Create Page Definition from the context menu.

	
In the resulting page definition file, add the bindings that you want your task flow activity to reference at runtime.

For more information about page definition files, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts."

When the preceding steps are completed, JDeveloper generates a page definition file for the task flow activity at design time. The file name of the page definition file comprises the originating task flow and either the name of the task flow activity or the data control operation to invoke. JDeveloper also generates an EL expression from the task flow activity to the binding in the created page definition file. At runtime, a binding container ensures that a task flow activity's EL expressions reference the correct value.

12.2.6 How to Define Control Flows

You use the following task flow components to define the control flow in your MAF AMX application feature:

	
Control Flow Case (see Section 12.2.6.1, "Defining a Control Flow Case")

	
Wildcard Control Flow Rule (see Section 12.2.6.2, "Adding a Wildcard Control Flow Rule")

12.2.6.1 Defining a Control Flow Case

You can create navigation using the Control Flow Case component, which identifies how control passes from one activity to the next. To create a control flow, select Control Flow Case from the Components window. Next, connect the Control Flow Case to the source activity, and then to the destination activity. JDeveloper creates the following after you connect a source and target activity:

	
control-flow-rule: Identifies the source activity using a from-activity-id.

	
control-flow-case: Identifies the destination activity using a to-activity-id.

To define a control flow case directly in the MAF task flow diagram:

	
Open the task flow source file in the Diagram view.

	
Select Control Flow Case from the Components window.

	
On the diagram, click a source activity and then a destination activity. JDeveloper adds the control flow case to the diagram. Each line that JDeveloper adds between an activity represents a control flow case. The from-outcome contains a value that can be matched against values specified in the action attribute of the MAF AMX UI components.

	
To change the from-outcome, select the text next to the control flow in the diagram. By default, this is a wildcard character.

	
To change the from-activity-id (the identifier of the source activity), or the to-activity-id (the identifier for the destination activity), drag either end of the arrow in the diagram to a new activity.

12.2.6.2 Adding a Wildcard Control Flow Rule

MAF task flows support the wildcard control flow rule, which represents a control flow from-activity-id that contains a trailing wildcard (foo*) or a single wildcard character. You can add a wildcard control flow rule to an unbounded or bounded task flow by dragging and dropping it from the Components window. To configure your wildcard control flow rule, use the Properties window.

To add a wildcard control flow rule:

	
Open the task flow source file in the Diagram view.

	
Select Wildcard Control Flow Rule in the Components window and drop it onto the diagram.

	
Select Control Flow Case in the Components window.

	
In the task flow diagram, drag the control flow case from the wildcard control flow rule to the target activity, which can be any activity type.

	
By default, the label below the wildcard control flow rule is *. This is the value for the From Activity ID element. To change this value, select the wildcard control flow rule in the diagram. In the Properties window for the wildcard control flow rule, enter a new value in the From Activity ID field. A useful convention is to cast the wildcard control flow rule in a form that describes its purpose. For example, enter project*. The wildcard must be a trailing character in the new label.

	
Tip:

You can also change the From Activity ID value in the Overview editor for the task flow diagram.

	
Optionally, in the Properties window expand the Behavior section and write an EL expression in the If field that must evaluate to true before control can pass to the activity identified by To Activity ID.

12.2.6.3 What You May Need to Know About Control Flow Rule Metadata

Example 12-3 shows the general syntax of a control flow rule element in the task flow source file.

Example 12-3 Control Flow Rule Definition

<control-flow-rule>
 <from-activity-id>from-view-activity</from-activity-id>
 <control-flow-case>
 <from-action>actionmethod</from-action>
 <from-outcome>outcome</from-outcome>
 <to-activity-id>destinationActivity</to-activity-id>
 <if>#{myBean.someCondition}</if>
 </control-flow-case>
 <control-flow-case>
 ...
 </control_flow-case>
</control-flow-rule>

Control flow rules can consist of the following metadata:

	
control-flow-rule: a mandatory wrapper element for control flow case elements.

	
from-activity-id: the identifier of the activity where the control flow rule originates (for example, source).

A trailing wildcard (*) character in from-activity-id is supported. The rule applies to all activities that match the wildcard pattern. For example, login* matches any logical activity ID name beginning with the literal login. If you specify a single wildcard character in the metadata (not a trailing wildcard), the control flow automatically converts to a wildcard control flow rule activity in the diagram. For more information, see Section 12.2.6.2, "Adding a Wildcard Control Flow Rule."

	
control-flow-case: a mandatory wrapper element for each case in the control flow rule. Each case defines a different control flow for the same source activity. A control flow rule must have at least one control flow case.

	
from-action: an optional element that limits the application of the rule to outcomes from the specified action method. The action method is specified as an EL binding expression, such as, for example, #{backing_bean.cancelButton_action}.

In Example 12-3, control passes to destinationActivity only if outcome is returned from actionmethod.

The value in from-action applies only to a control flow originating from a view activity, not from any other activity types. Wildcards are not supported in from-action.

	
from-outcome: identifies a control flow case that will be followed based on a specific originating activity outcome. All possible originating activity outcomes should be accommodated with control flow cases.

If you leave both the from-action and the from-outcome elements empty, the case applies to all outcomes not identified in any other control flow cases defined for the activity, thus creating a default case for the activity. Wildcards are not supported in from-outcome.

	
to-activity-id: a mandatory element that contains the complete identifier of the activity to which the navigation is routed if the control flow case is performed. Each control flow case can specify a different to-activity-id.

	
if: an optional element that accepts an EL expression as a value. If the EL expression evaluates to true at runtime, control flow passes to the activity identified by the to-activity-id element.

12.2.6.4 What You May Need to Know About Control Flow Rule Evaluation

At runtime, task flows evaluate control flow rules from the most specific to the least specific match to determine the next transition between activities. Evaluation is based on the following priority:

	
from-activity-id, from-action, from-outcome: first, searches for a match in all three elements is performed.

	
from-activity-id, from-outcome: the search is performed in these elements if no match in all three elements is found.

	
from-activity-id: if search in the preceding combinations did not result in a match, search is performed in this element only.

12.2.7 What You May Need to Know About MAF Support for Back Navigation

In the task flow example that Figure 12-13 shows, it is possible to take two separate paths to reach viewD based on the action outcome value (see Section 12.2.9, "How to Specify Action Outcomes Using UI Components"): either from viewA to viewB to viewD, or from viewA to viewC to viewD.

Figure 12-13 Task Flow with Back Navigation

[image: This image is described in the surrounding text]

While you could theoretically keep track of which navigation paths had been followed and then directly implement the __back navigation flow, it would be tedious and error-prone, especially considering the fact that due to the limited screen space on mobile devices transitions out of the navigation sequences occur very frequently. MAF provides support for a built-in __back navigation that enables moving back through optional paths across a task flow: by applying its "knowledge" of the path taken, MAF performs the navigation back through the same path. For example, if the initial navigation occurred from viewA to viewC to viewD, on exercising the __back option on ViewD MAF would automatically take the end user back to ViewA through ViewC rather than through ViewB.

For additional information, see the following:

	
Section 12.2.3, "What You May Need to Know About the ViewController-task-flow.xml File"

	
Section 12.2.10, "How to Create and Reference Managed Beans"

	
Section 13.3.5.7, "Enabling the Back Button Navigation"

12.2.8 How to Enable Page Navigation by Dragging

You can enable navigation from one MAF AMX page to another through the use of the Navigation Drag Behavior operation. For more information, see Section 13.3.27, "How to Enable Drag Navigation."

12.2.9 How to Specify Action Outcomes Using UI Components

Using the Properties window, you can specify an action outcome by setting the action attribute of one of the following UI components to the corresponding control flow case from-outcome leading to the next task flow activity:

	
Command Button (see Section 13.3.5, "How to Use Buttons")

	
Command Link (see Section 13.3.6, "How to Use Links")

	
List Item

You use the UI component's Action field (see Figure 12-14) to make a selection from a list of possible action outcomes defined in one or more task flow for a specific MAF AMX page.

Figure 12-14 Setting Actions

[image: This image is described in the surrounding text]

A Back action (__back) is automatically added to every list to enable navigation to the previously visited page.

	
Note:

A MAF AMX page can be referenced in both bounded and unbounded task flows, in which case actions outcomes from both task flows are included in the Action selection list.

12.2.10 How to Create and Reference Managed Beans

You can create and use managed beans in your MAF application to store additional data or execute custom code. You can use JDeveloper's usual editing mechanism to reference managed beans and create references to them for applicable fields. For more information, see Section 14.4, "Creating and Using Managed Beans."

Figure 12-15 shows the Edit option for an action property in the Properties window. You click this option to invoke the Edit Property dialog that Figure 12-16 shows.

Figure 12-15 Edit Dialog

[image: This image is described in the surrounding text]

Figure 12-16 Edit Property Dialog for Action

[image: This image is described in the surrounding text]

Table 12-7 lists MAF AMX attributes for which the Edit option in the Properties window is available.

Table 12-3 Editable Attributes

	Property	Element
	
action

	
amx:commandButton

	
action

	
amx:commandLink

	
action

	
amx:listItem

	
action

	
amx:navigationDragBehavior

	
action

	
dvtm:chartDataItem

	
action

	
dvtm:ieDataItem

	
action

	
dvtm:timelineItem

	
action

	
dvtm:area

	
action

	
dvtm:marker

	
actionListener

	
amx:listItem

	
actionListener

	
amx:commandButton

	
actionListener

	
amx:commandLink

	
binding

	
amx:actionListener

	
mapBoundsChangeListener

	
dvtm:geographicMap

	
mapInputListener

	
dvtm:geographicMap

	
moveListener

	
amx:listView

	
rangeChangeListener

	
amx:listView

	
selectionListener

	
amx:listView

	
selectionListener

	
amx:filmStrip

	
selectionListener

	
dvtm:areaDataLayer

	
selectionListener

	
dvtm:pointDataLayer

	
selectionListener

	
dvtm:treemap

	
selectionListener

	
dvtm:sunburst

	
selectionListener

	
dvtm:timelineSeries

	
selectionListener

	
dvtm:nBox

	
selectionListener

	
dvtm:areaChart

	
selectionListener

	
dvtm:barChart

	
selectionListener

	
dvtm:bubbleChart

	
selectionListener

	
dvtm:comboChart

	
selectionListener

	
dvtm:lineChart

	
selectionListener

	
dvtm:funnelChart

	
selectionListener

	
dvtm:pieChart

	
selectionListener

	
dvtm:scatterChart

	
valueChangeListener

	
amx:inputDate

	
valueChangeListener

	
amx:inputNumberSlider

	
valueChangeListener

	
amx:inputText

	
valueChangeListener

	
amx:selectBooleanCheckbox

	
valueChangeListener

	
amx:selectBooleanSwitch

	
valueChangeListener

	
amx:selectManyCheckbox

	
valueChangeListener

	
amx:selectManyChoice

	
valueChangeListener

	
amx:selectOneButton

	
valueChangeListener

	
amx:selectOneChoice

	
valueChangeListener

	
amx:selectOneRadio

	
valueChangeListener

	
dvtm:statusMeterGauge

	
valueChangeListener

	
dvtm:dialGauge

	
valueChangeListener

	
dvtm:ratingGauge

	
viewportChangeListener

	
dvtm:areaChart

	
viewportChangeListener

	
dvtm:barChart

	
viewportChangeListener

	
dvtm:comboChart

	
viewportChangeListener

	
dvtm:lineChart

Clicking Edit for all other properties invokes a similar dialog, but without the Action Outcome option, as Figure 12-17 shows.

Figure 12-17 Edit Property Dialog for Action Listener

[image: This image is described in the surrounding text]

The preceding dialogs demonstrate that you can either create a managed bean, or select an available action outcome for the action property.

The Action Outcome list shown in Figure 12-16 contains the action outcomes from all task flows to which a specific MAF AMX page belongs. In addition, this list contains a __back navigation outcome to go back to the previously visited page (see Section 12.2.9, "How to Specify Action Outcomes Using UI Components" for more information). If a page is not part of any task flow, the only available outcome in the Action Outcome list is __back. When you select one of the available action outcomes and click OK, the action property value is updated with the appropriate EL expression, such as the following for a commandButton:

<amx:commandButton action="goHome"/>

The Method Binding option (see Figure 12-16) allows you to either create a new managed bean class or select an existing one.

To create a new managed bean class:

	
Click New next to the Managed Bean field to open the Create Managed Bean dialog that Figure 12-18 shows.

Figure 12-18 Create Managed Bean Dialog

[image: This image is described in the surrounding text]

MAF supports the following scopes:

	
application

	
view

	
pageFlow

When you declare a managed bean to a MAF application or the MAF AMX application feature, the managed bean is instantiated and identified in the proper scope, and the bean's properties are resolved and its methods are called through EL. For more information, see Section 14.3, "Creating EL Expressions."

	
Provide the managed bean and class names (see Figure 12-19), and then click OK.

Figure 12-19 Setting Managed Bean Name and Class

[image: This image is described in the surrounding text]

Example 12-4 shows the newly created managed bean class. The task flow that this MAF AMX page is part of is updated to reference the bean.

Example 12-4 New Managed Bean Class

<managed-bean id="__3">
 <managed-bean-name>MyBean</managed-bean-name>
 <managed-bean-class>mobile.MyBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

	
Note:

If a given MAF AMX page is part of bounded as well as unbounded task flows, both of these task flows are updated with the managed bean entry.

	
Click New next to the Method field (see Figure 12-16 and Figure 12-17) to open the Create Method dialog that Figure 12-20 shows.

Figure 12-20 Create Method Dialog

[image: This image is described in the surrounding text]

Use this dialog to provide the managed bean method name (see Figure 12-21).

Figure 12-21 Naming Managed Bean Method

[image: This image is described in the surrounding text]

Upon completion, the selected property value is updated with the appropriate EL expression, such as the following for a commandButton:

<amx:commandButton action="#{MyBean.getMeHome}"/>

The managed bean class is also updated to contain the newly created method, as Example 12-5 shows.

Example 12-5 New Method in Managed Bean Class

package mobile;

public class MyBean {
 public MyBean() {
 }

 public String getMeHome() {
 // Add event code here...
 return null;
 }
}

To select an existing managed bean:

	
Make a selection from the Managed Bean list that Figure 12-22 shows.

Figure 12-22 Selecting Managed Bean

[image: This image is described in the surrounding text]

Similar to the action outcomes, the Managed Bean list is populated with managed beans from all task flows that this MAF AMX page is part of.

	
Note:

If the MAF AMX page is not part of any task flow, you can still create a managed bean.

For more information, see the following:

	
Section 14.3.5.2, "About the Managed Beans Category"

	
APIDemo, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

12.2.11 How to Specify the Page Transition Style

By defining the page transition style on the task flow, you can specify how MAF AMX pages transition from one view to another. The behavior of your MAF AMX page at transition can be as follows:

	
fading in

	
sliding in from left

	
sliding in from right

	
sliding up from bottom

	
sliding down from top

	
sliding in from start

	
sliding in from end

	
flipping up from bottom

	
flipping down from top

	
flipping from left

	
flipping from right

	
flipping from start

	
flipping from end

	
none

Sliding in from start and end, as well as flipping from start and end are used on the iOS platform and Android 4.2 or later platform to accommodate the right-to-left (RTL) text direction. It is generally recommended to use the start and end transition style as opposed to left and right.

You set the transition style by modifying the transition attribute of the control-flow-case (Control Flow Case component), as Example 12-6 shows.

Example 12-6 Setting Transition Style

<control-flow-rule id="__1">
 <from-activity-id>products</from-activity-id>
 <control-flow-case id="__2">
 <from-outcome>details</from-outcome>
 <to-activity-id>productdetails</to-activity-id>
 <transition>fade</transition>
 </control-flow-case>
</control-flow-rule>

In the Properties window, the transition attribute is located under Behavior, as Figure 12-23 shows. The default transition style is slideLeft.

Figure 12-23 Setting Transition Style in Properties Window

[image: This image is described in the surrounding text]

	
Tip:

When defining the task flow, you should specify the control-flow-case's transition value such that it is logical. For example, if the transition occurs from left to right with the purpose of navigating back, then the transition should return to the previous page by sliding right.

12.2.12 What You May Need to Know About Bounded and Unbounded Task Flows

Task flows provide a modular approach for defining control flow in a MAF AMX application feature. Instead of representing an application feature as a single large page flow, you can divide it into a collection of reusable task flows. Each task flow contains a portion of the application feature's navigational graph. The nodes in the task flows represent activities. An activity node represents a simple logical operation such as displaying a page, executing application logic, or calling another task flow. The transitions between the activities are called control flow cases.

There are two types of task flows in MAF AMX:

	
Unbounded Task Flows: a set of activities, control flow rules, and managed beans that interact to allow the end user to complete a task. The unbounded task flow consists of all activities and control flows in a MAF AMX application feature that are not included within a bounded task flow.

	
Bounded Task Flows: a specialized form of task flow that, in contrast to the unbounded task flow, has a single entry point and no exit points. It contains its own collections of activities and control-flow rules, as well as their own memory scope and managed-bean life span.

For a description of the activity types that you can add to unbounded or bounded task flows, see Section 12.2.2, "What You May Need to Know About Task Flow Activities and Control Flows."

A typical MAF AMX application feature contains a combination of one unbounded task flow created at the time when the application feature is created and one or more bounded task flows. At runtime, the MAF application can call bounded task flows from activities that you added to the unbounded task flow.

12.2.12.1 Unbounded Task Flows

A MAF AMX application feature always contains one unbounded task flow, which provides one or more entry points to that application feature. An entry point is represented by a view activity. By default, the source file for the unbounded task flow is the adfc-mobile-config.xml file.

Figure 12-24 displays the diagram for an unbounded task flow from a MAF AMX application feature. This task flow contains a number of view activities that are all entry points to the application feature.

Figure 12-24 Unbounded Task Flow Diagram

[image: This image is described in the surrounding text]

Consider using an unbounded task flow if the following applies:

	
There is no need for the task flow to be called by another task flow.

	
The MAF AMX application feature has multiple points of entry.

	
There is no need for a specifically designated activity to run first in the task flow (default activity).

An unbounded task flow can call a bounded task flow, but cannot be called by another task flow.

12.2.12.2 Bounded Task Flows

By default, the IDE proposes a file name for the source file of a bounded task flow (see Section 12.2.1, "How to Create a Task Flow"). You can modify this file name to reflect the purpose of the task to be performed.

A bounded task flow can call another bounded task flow, which can call another, and so on. There is no limit to the depth of the calls.

Figure 12-25 displays the diagram for a bounded task flow from a MAF AMX application feature.

Figure 12-25 Bounded Task Flow Diagram

[image: This image is described in the surrounding text]

The following are reasons for creating a bounded task flow:

	
The bounded task flow always specifies a default activity, which is a single point of entry that must execute immediately upon entry of the bounded task flow.

	
It is reusable within the same or other MAF AMX application features.

	
Any managed beans you use within a bounded task flow can be specified in a page flow scope, making them isolated from the rest of the MAF AMX application feature. These managed beans (with page flow scope) are automatically released when the task flow completes.

The following is a summary of the main characteristics of a bounded task flow:

	
Well-defined boundary: a bounded task flow consists of its own set of private control flow rules, activities, and managed beans. A caller requires no internal knowledge of page names, method calls, child bounded task flows, managed beans, and control flow rules within the bounded task flow boundary. Data controls can be shared between task flows.

	
Single point of entry: a bounded task flow has a single point of entry—a default activity that executes before all other activities in the task flow.

	
Page flow memory scope: you can specify page flow scope as the memory scope for passing data between activities within the bounded task flow. Page flow scope defines a unique storage area for each instance of a bounded task flow. Its lifespan is the bounded task flow, which is longer than request scope and shorter than session scope.

	
Addressable: you can access a bounded task flow by specifying its unique identifier within the XML source file for the bounded task flow and the file name of the XML source file.

	
Reusable: you can identify an entire group of activities as a single entity, a bounded task flow, and reuse the bounded task flow in another MAF AMX application feature within a MAF application.

You can also reuse an existing bounded task flow by calling it.

In addition, you can use task flow templates to capture common behaviors for reuse across different bounded task flows.

	
Parameters and return values: a caller can pass input parameters to a bounded task flow and accept return values from it (see Section 12.2.12.3.1, "Passing Parameters to a Bounded Task Flow" and Section 12.2.12.3.2, "Configuring a Return Value from a Bounded Task Flow").

In addition, you can share data controls between bounded task flows.

	
On-demand loading of metadata: bounded task flow metadata is loaded on demand when entering a bounded task flow.

12.2.12.3 Using Parameters in Task Flows

A task flow´s ability to accept input parameters and return parameter values allows you to manipulate data in task flows and share data between task flows. Using these abilities, you can optimize the reuse of task flows in your MAF AMX application feature.

Figure 12-26 shows a task flow that specifies an input parameter definition to hold information about a user in a pageFlow scope.

Figure 12-26 Input Parameters in Task Flow

[image: This image is described in the surrounding text]

You can specify parameter values using standard EL expressions if you call a bounded task flow using a task flow call activity. For example, you can specify parameters using the following syntax for EL expressions:

	

#{bindings.bindingId.inputValue}

	

#{CustomerBean.zipCode}

Appending inputValue to the EL expression ensures that you assign to the parameter the value of the binding rather than the actual binding object.

12.2.12.3.1 Passing Parameters to a Bounded Task Flow

A called bounded task flow can accept input parameters from the task flow that calls it or from a task flow binding.

To pass an input parameter to a bounded task flow, you specify one or more of the following:

	
Input parameters on the task flow call activity in the calling task flow: input parameters specify where the calling task flow stores parameter values.

	
Input parameter definitions on the called bounded task flow: input parameter definitions specify where the called bounded task flow can retrieve parameter values at runtime.

Specify the same name for the input parameter that you define on the task flow call activity in the calling task flow and the input parameter definition on the called bounded task flow. Do this so you can map input parameter values to the called bounded task flow.

If you do not specify an EL expression to reference the value of the input parameter, the EL expression for value defaults to the following at runtime:

#{pageFlowScope.parmName}

where parmName is the value you entered for the input parameter name.

In an input parameter definition for a called bounded task flow, you can specify an input parameter as required. If the input parameter does not receive a value at runtime or design time, the task flow raises a warning in a log file of the MAF application that contains the task flow. An input parameter that you do not specify as required can be ignored during task flow call activity creation.

Task flow call activity input parameters can be passed by reference or passed by value when calling a task flow using a task flow call activity (see Section 12.2.5.4.2, "Specifying Input Parameters on a Task Flow Call Activity"). By default, primitive types (for example, int, long, or boolean) are passed by value (pass-by-value).

A called task flow can return values to the task flow that called it when it exits. For more information, see Section 12.2.12.3.2, "Configuring a Return Value from a Bounded Task Flow."

When passing an input parameter to a bounded task flow, you define values on both the calling task flow and the called task flow.

Before you begin:

	
Create a calling and called task flow: the calling task flow can be bounded or unbounded. The called task flow must be bounded. For more information about creating task flows, see Section 12.2.1, "How to Create a Task Flow."

	
Add a task flow call activity to the calling task flow.

Figure 12-27 shows an example where the view activity passes control to the task flow call activity.

Figure 12-27 Calling Task Flow

[image: This image is described in the surrounding text]

To pass an input parameter to a bounded task flow:

	
Open a MAF AMX page that contains an input component where the end user enters a value that is passed to a bounded task flow as a parameter at runtime. Note that the MAF AMX page that you open should be referenced by a view activity in the calling task flow.

	
Select an input text component on the MAF AMX page where the end user enters a value at runtime.

	
In the Properties window, expand the Common section and enter a value for the input text component in the Value field.

You can specify the value as an EL expression (for example, #{pageFlowScope.inputValue}), either manually or using the Expression Builder.

	
Open the task flow that is to be called by double-clicking it in the Applications window, then switch the view to the Overview tab and select the Parameters navigation tab.

	
In the Input Parameter Definition section, click Add (+) to specify a new entry (see Figure 12-26):

	
In the Name field, enter a name for the parameter (for example, inputParm1).

	
In the Value field, enter an EL expression where the parameter value is stored and referenced (for example, #{pageFlowScope.inputValue}), either manually or using the Expression Builder.

	
In the Applications window, double-click the calling task flow that contains the task flow call activity to invoke the called bounded task flow.

	
In the Applications window, drag the called bounded task flow and drop it on top of the task flow call activity that is located in the diagram of the calling task flow. This automatically creates a task flow reference to the bounded task flow. As shown in Figure 12-28, the task flow reference contains the following:

	
The bounded task flow ID (id): an attribute of the bounded task flow's task-flow-definition element.

	
The document name that points to the source file for the task flow that contains the ID.

Figure 12-28 Task Flow Reference

[image: This image is described in the surrounding text]

	
In the Properties window for the task flow call activity, expand the Parameters section to view the Input Parameters section.

	
Enter a name that identifies the input parameter: since you dropped the bounded task flow on a task flow call activity having defined input parameters, the name should already be specified. You must keep the same input parameter name.

	
Enter a parameter value (for example, #{pageFlowScope.param1}): the value on the task flow call activity input parameter specifies where the calling task flow stores parameter values. The value on the input parameter definition for the called task flow specifies the location from which the value is to be retrieved for use within the called bounded task flow once it is passed.

At runtime, the called task flow can to use the input parameter. If you specified pageFlowScope as the value in the input parameter definition for the called task flow, you can use the parameter value anywhere in the called bounded task flow. For example, you can pass it to a view activity on the called bounded task flow.

Upon completion, JDeveloper writes entries to the source files for the calling task flow and called task flow based on the values that you select.

Example 12-7 shows an input parameter definition specified on a a bounded task flow.

Example 12-7 Input Parameter Definition

<task-flow-definition id="sourceTaskflow">
...
 <input-parameter-definition>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.parmValue1}</value>
 <class>java.lang.String</class>
 </input-parameter-definition>
...
</task-flow-definition>

Example 12-8 shows the input parameter metadata for the task flow call activity that calls the bounded task flow shown in Example 12-7. At runtime, the task flow call activity calls the bounded task flow and passes it the value specified by its value element.

Example 12-8 Input Parameter on Task Flow Call Activity

<task-flow-call id="taskFlowCall1">
...
 <input-parameter>
 <name>inputParameter1</name>
 <value>#{pageFlowScope.newCustomer}</value>
 <pass-by-value/>
 </input-parameter>
...
</task-flow-call>

12.2.12.3.2 Configuring a Return Value from a Bounded Task Flow

You configure a return value definition on the called task flow and add a parameter to the task flow call activity in the calling task flow that retrieves the return value at runtime.

Before you begin:

Create a bounded or unbounded task flow (calling task flow) and a bounded task flow (called task flow). For more information, see Section 12.2.1, "How to Create a Task Flow."

To configure a return value from a called bounded task flow:

	
Open the task flow that is to be called by double-clicking it in the Applications window, then switch the view to the Overview tab and select the Parameters navigation tab.

	
In the Return Value Definitions section, click Add (+) to define a return value (see Figure 12-26):

	
In the Name field, enter a name to identify the return value (for example, returnValue1).

	
In the Class field, enter a Java class that defines the data type of the return value. The default value is java.lang.String.

	
In the Value field, enter an EL expression that specifies from where to read the return value (for example, #{pageFlowScope.ReturnValueDefinition}), either manually or using the Expression Builder.

	
In the Applications window, double-click the calling task flow.

	
With the task flow page open in the Diagram view, select Components > Activities from the Components window, and then drag and drop a task flow call activity onto the diagram.

	
In the Properties window for the task flow call activity, expand the Parameters section, click Add (+) for the Return Values entry, and then add values as follows to define a return value:

	
A name to identify the return value (for example, returnValue1). It must match the value you entered for the Name field when you defined the return value definition in step 2.

	
A value as an EL expression that specifies where to store the return value (for example, #{pageFlowScope.ReturnValueDefinition}).

Upon completion, JDeveloper writes entries to the source files for the calling task flows that you configured.

Example 12-9 shows an example entry that JDeveloper writes to the source file for the calling task flow.

Example 12-9 Metadata in the Calling Task Flow to Configure a Return Value

<task-flow-call id="taskFlowCall1">
 <return-value id="__3">
 <name id="__4">returnValue1</name>
 <value id="__2">#{pageFlowScope.ReturnValueDefinition}</value>
 </return-value>
</task-flow-call>

Example 12-10 shows an example entry that JDeveloper writes to the source file for the called task flow.

Example 12-10 Metadata in the Called Task Flow to Configure a Return Value

<return-value-definition id="__2">
 <name id="__3">returnValue1</name>
 <value>#{pageFlowScope.ReturnValueDefinition}/</value>
 <class>java.lang.String</class>
</return-value-definition>

At runtime, the called task flow returns a value. If configured to do so, the task flow call activity in the calling task flow retrieves this value.

12.3 Creating Views

You can start creating a MAF AMX view by doing the following:

	
Getting familiar with the MAF AMX page structure (see Section 12.3.1.1, "Interpreting the MAF AMX Page Structure")

	
Editing and previewing a MAF AMX page (see Section 12.3.1.4, "Using UI Editors")

	
Dragging and dropping components onto a MAF AMX page (see Section 12.3.2.1, "Adding UI Components")

	
Adding data controls to a view (see Section 12.3.2.4, "Adding Data Controls to the View")

12.3.1 How to Work with MAF AMX Pages

A MAF AMX page is represented by an XML file.

12.3.1.1 Interpreting the MAF AMX Page Structure

The following is a basic structure of the MAF AMX file:

<amx:view>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 …
 </amx:facet>
 </amx:panelPage>
</amx:view>

With the exception of data visualization components (see Section 13.5, "Providing Data Visualization"), UI elements are declared under the <amx> namespace.

For more information, see Section 12.3.1.3, "What Happens When You Create a MAF AMX Page."

12.3.1.2 Creating MAF AMX Pages

MAF AMX files are contained in the View Controller project of the MAF application. You create these files using the Create MAF AMX Page dialog.

MAF offers two alternative ways of creating a MAF AMX page:

	
From the New Gallery

	
From an existing task flow

Before you begin:

To create a MAF AMX page, the MAF application must include a View Controller project file (see Chapter 2, "Getting Started with MAF Application Development").

To create a MAF AMX page from the New Gallery:

	
From the top-level menu in JDeveloper, click File, and then select New > From Gallery.

	
In the New Gallery, expand the Client Tier node, select Mobile Application Framework, and then MAF AMX Page (see Figure 12-29). Click OK.

Figure 12-29 Creating MAF AMX Page

[image: This image is described in the surrounding text]

	
In the Create MAF AMX Page dialog, enter a name and, if needed, a location for your new file, as Figure 12-30 shows.

	
Optionally, you may select which facets your new MAF AMX page will include as a part of the page layout:

	
Header

	
Primary

	
Secondary

	
Footer

For more information, see Section 12.3.1.3, "What Happens When You Create a MAF AMX Page" and Section 13.2.7, "How to Use a Facet Component."

Note that when you select or deselect a facet, the image representing the page changes dynamically to reflect the changing appearance of the page.

Figure 12-30 Create MAF AMX Page Dialog

[image: This image is described in the surrounding text]

	
Note:

MAF persists your facet selection and applies it to each subsequent invocation of the Create MAF AMX Page dialog.

	
Click OK on the Create MAF AMX Page dialog.

To create a MAF AMX page from a View component of the task flow:

	
Open a task flow file in the diagrammer (see Figure 12-7, "The Diagrammer for the Task Flow Editor", Section 12.2.1, "How to Create a Task Flow" and Section 12.2.4, "What You May Need to Know About the MAF Task Flow Diagrammer")

	
Double-click a View component of the task flow to open the Create MAF AMX Page dialog that Figure 12-30 shows, and then enter a name and, if needed, a location for your new file. Click OK.

12.3.1.3 What Happens When You Create a MAF AMX Page

When you use the Create MAF AMX Page dialog to create a MAF AMX page, JDeveloper creates the physical file and adds it to the Web Content directory of the View Controller project.

In the Applications window that Figure 12-31 shows, the Web Content node contains a newly created MAF AMX file called department.amx.

Figure 12-31 MAF AMX File in Applications Window

[image: This image is described in the surrounding text]

JDeveloper also adds the code necessary to import the component libraries and display a page. This code is illustrated in the Source editor shown in Figure 12-31.

Figure 12-33 shows how the Preview pane and the generated MAF AMX code would look like if you selected all facet types listed in the Page Facet section of the Create MAF AMX Page dialog when creating the page (see Figure 12-32).

Figure 12-32 Creating MAF AMX Page with All Facets

[image: This image is described in the surrounding text]

Figure 12-33 MAF AMX Page With All Facets

[image: This image is described in the surrounding text]

In the page created with all the facets selected (see Figure 12-32 and Figure 12-33), note the following:

	
The header is created with an Output Text component because this component is typically used for the page title.

	
The primary and secondary actions are created with Button components because it is a typical pattern.

	
Since there is no single dominant pattern for the footer, it is created with an Output Text component by default because that component is used in some patterns and it prevents JDeveloper from generating the initial code with audit violation.

	
Adding either the primary or secondary action without adding the header facet still causes the header section to appear in the Page Facets section of Create MAF AMX Page dialog.

Figure 12-34 shows the Page Facet section of the Create MAF AMX Page dialog without any facets selected and Figure 12-35 shows the Preview pane with the generated MAF AMX code.

Figure 12-34 Creating MAF AMX Page Without Selected Facets

[image: This image is described in the surrounding text]

Figure 12-35 MAF AMX Page Without Facets

[image: This image is described in the surrounding text]

12.3.1.4 Using UI Editors

When the page is first displayed in JDeveloper, it is displayed in the Source editor. To view the page in a WYSIWYG environment, use the Preview pane (accessed by clicking the Preview tab).

Figure 12-36 shows the Preview tab selected for a newly created MAF AMX page called department.amx. This page is blank because it has not yet been populated with MAF AMX UI components or data controls.

Figure 12-36 The Preview Pane for Newly Created Page

[image: This image is described in the surrounding text]

Using the Preview pane's tool bar that Figure 12-36 shows, you can do the following:

	
Refresh the display of the MAF AMX page by clicking Refresh Page.

	
Stop loading of the page by clicking Stop Loading Page.

	
Modify the form factor for the page by selecting a different form factor from the dropdown list. For more information on form factors, see the "Configuring the Development Environment for Form Factors" section in Installing Oracle Mobile Application Framework.

	
Modify the scaling of the display by selecting a different percentage value from the dropdown list. Since mobile device displays can be of various sizes and densities, the Preview pane allows you to see the effect of scaling on your MAF AMX pages.

	
Note:

Scaling is available for both Portrait and Landscape mode.

	
Change orientation for the display to portrait and landscape by selecting Show Portrait Orientation or Show Landscape Orientation respectively.

	
Select the feature content for your MAF AMX page form the dropdown list of available application features. By default, <No Feature Content Selected> is displayed.

To view the source for the page in the Source editor, click the Source tab that Figure 12-31, "MAF AMX File in Applications Window" shows. The Structure window, located in the lower left-hand corner of JDeveloper (shown in Figure 12-31 and Figure 12-36), provides a hierarchical view of the page. For more information, see Section 12.3.2.2, "Using the Preview."

12.3.1.5 Accessing the Page Definition File

MAF AMX supports JDeveloper's Go to Page Definition functionality that enables you to navigate to the MAF AMX page definition (see Figure 12-37 and Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts") by using a context menu that allows you to locate and edit the binding information quickly.

Figure 12-37 Page Definition File Accessed Through Go To Page Definition

[image: This image is described in the surrounding text]

You can invoke the context menu that contains the Go to Page Definition option from the following:

	
Source editor, as Figure 12-38 shows.

Figure 12-38 Go to Page Definition from Source Editor

[image: This image is described in the surrounding text]

	
Applications window, as Figure 12-39 shows.

Figure 12-39 Go to Page Definition from Applications Window

[image: This image is described in the surrounding text]

	
Structure window, as Figure 12-40 shows.

Figure 12-40 Go to Page Definition from Structure Pane

[image: This image is described in the surrounding text]

In addition, you can open the Page Definition file using the Go to Page Definition shortcut key defined under Tools > Preferences on the main menu, as Figure 12-41 shows.

Figure 12-41 Opening Page Definition from Preferences

[image: This image is described in the surrounding text]

12.3.1.6 Sharing the Page Contents

You can enable sharing of contents of MAF AMX pages. Fragment (fragment) is a dynamic declarative component that allows for reusable parts of a MAF AMX page elements, including attributes and facets, to be inserted into the content represented by a template. This enables you to standardize the look and feel of your application by reusing the Fragment template across various pages within the application.

You can drag and drop a MAF AMX fragment file (.amxf) onto a MAF AMX page or another fragment file to create a reference to the fragment and to define its attributes (see Section 12.3.1.6.1, "Configuring the Fragment Content"). The fragment file resides inside your project and you can drop it from the Applications window.

Before you begin:

Ensure that the MAF application includes a View Controller project.

If the View Controller project does not contain a MAF AMX page or MAF AMX page task flow from which to create a page, you can invoke the Create MAF AMX Page dialog by double-clicking a view icon in a task flow diagram or by selecting Client Tier > Mobile Application Framework > MAF AMX Page from the New Gallery (see Section 12.3.1.2, "Creating MAF AMX Pages").

To create a Fragment from the New Gallery:

	
From the top-level menu in JDeveloper, click File, and then select New > From Gallery.

	
In the New Gallery, expand the Client Tier node, select Mobile Application Framework, and then MAF AMX Page Fragment (see Figure 12-42). Click OK.

Figure 12-42 Creating New Fragment

[image: This image is described in the surrounding text]

	
Complete the Create MAF AMX Page Fragment dialog by entering the file name and location of the new fragment, as Figure 12-43 shows. Click OK.

Figure 12-43 Create MAF AMX Page Fragment Dialog

[image: This image is described in the surrounding text]

Upon completion of the dialog, a newly created file opens in the Source editor of JDeveloper (see Figure 12-44).

Figure 12-44 Fragment File

[image: This image is described in the surrounding text]

	
Right-click Fragment in the Structure window and select Insert Inside Fragment. Choose elements with which to populate the new fragment (see Figure 12-45): Attribute, Attribute List, Description, Facet, or Popup.

Figure 12-45 Populating Fragment

[image: This image is described in the surrounding text]

	
Proceed by defining the Fragment's Attribute and other children by right-clicking that child in the Structure view and selecting appropriate values (see Figure 12-46).

Figure 12-46 Defining Fragment's Attribute

[image: This image is described in the surrounding text]

You can also define the Fragment by dragging and dropping its elements onto the MAF AMX fragment file by selecting MAF AMX Fragment in the Components window (see Figure 12-47).

Figure 12-47 Dragging and Dropping Fragment Elements

[image: This image is described in the surrounding text]

Example 12-11 shows a MAF AMX fragment file called fragment1.amxf.

Example 12-11 Fragment Definition

<amx:fragmentDef
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment" id="f1">
 <description id="d1">Description of the fragment</description>
 <facet id="f2">
 <description id="d4">Description of the facet</description>
 <facet-name id="f3">facet1</facet-name>
 </facet>
 <attribute id="a1">
 <description id="d2">Description of an attribute</description>
 <attribute-name id="a2">text</attribute-name>
 <attribute-type id="at1">String</attribute-type>
 <default-value id="d3">defaultValue</default-value>
 </attribute>
 </fragment>
 <amx:panelGroupLayout id="pgl1">
 <amx:facetRef facetName="facet1" id="fr1"/>
 <amx:outputText value="#{text}" id="ot1"/>
 </amx:panelGroupLayout>
</amx:fragmentDef>

To include the contents of the fragment in the MAF AMX page, you create a Fragment component (see Section 13.2.13, "How to Use the Fragment Component") and set its src attribute to the fragment file of your choice. Example 12-12 shows a fragment element added to a MAF AMX page. This element points to the fragment1.amxf as its page contents. At the same time, the facetRef element, which corresponds to the Facet Definition MAF AMX component, points to facet1 as its facet (MAF AMX Facet component). The facetRef element can only be specified in the .amxf file within the fragmetDef. You can pass attributes to the facetRef by specifying the MAF AMX attribute element as its child, which allows you to pass an EL variable from the Fragment to a Facet through the attribute's value.

Example 12-12 Fragment in MAF AMX Page

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:panelGroupLayout layout="vertical"
 id="itemPgl"
 styleClass="amx-style-groupbox">
 <amx:fragment id="f1"
 src="/simpleFragment.amxf"
 <amx:attribute id="a1"
 name="text"
 value="defaultValue" />
 <amx:facet name="facet">
 <amx:outputText id="ot5" value="Fragment"/>
 </amx:facet>
 </amx:fragment>
 </amx:panelGroupLayout>
 </amx:panelPage>
</amx:view>

The Fragment receives all the information through its attributes. In addition to defining individual attributes, you can define a set of attributes to be passed to the Fragment as a list which could be iterated through in the Fragment definition. For more information, see Section 12.3.1.6.2, "Passing List of Attributes with Metadata to a Fragment."

	
Note:

EL expressions used within the Fragment file (.amxf) are not validated.

The Fragment supports the following:

	
Embedded popups (see Section 13.2.8, "How to Use a Popup Component").

	
Reusable user interface that can be placed on one or more other parent pages or fragments. This allows you to create a component that is composed of other components without bindings.

	
Definition of its own facets. This allows you to create a component such as a layout component that defines a header facet, summary facet, and detail facet, with each facet having its own style class as well as look and feel.

	
Data model with both attributes and collections.

MAF sample applications called FragmentDemo and CompGallery demonstrate how to create and use the fragment. These sample applications are located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

12.3.1.6.1 Configuring the Fragment Content

When you drag and drop a MAF AMX fragment file (.amxf) onto a MAF AMX page or another fragment file, the Configure Fragment Content dialog (see Figure 12-48) appears. This dialog displays and allows you to specify all Fragment attributes that are defined as direct children of the Fragment.

	
Note:

Facets, Popup components, Attribute Lists and their artifacts are not available through the Configure Fragment Content dialog.

Figure 12-48 Configure Fragment Content Dialog

[image: This image is described in the surrounding text]

Figure 12-49 demonstrates the Configure Fragment Content dialog that appears when you drag and drop the MAF AMX fragment file whose contents is shown in Example 12-11 onto a MAF AMX file.

Figure 12-49 Configure Fragment Content Dialog with Values

[image: This image is described in the surrounding text]

When completing the dialog, consider the following:

	
If you are configuring an attribute defined as required in the Fragment, an asterisks (*) is displayed at the end of the attribute name.

	
The OK button of the dialog is disabled until all of the required attribute values have been defined.

	
If the Fragment attribute's default value is specified and at the same time the required property is defined and set to true, this attribute is not treated as required (the default value takes precedence). In this case, the following occurs:

	
An audit warning is displayed in the Fragment.

	
The Configure Fragment Content dialog does not add the asterisk to the attribute's name and does not treat this attribute as required.

	
The Type column displays the value of the attribute-type element from the Fragment. It is used as a description of the attribute type (as opposed to the Java class).

	
Note:

Even though the attribute-type is a required element in the Fragment, it might appear unspecified in the Fragment being dropped if you failed to define its value. In this case the dialog displays String as a default value.

	
The Value column allows you to specify the value to pass to the Fragment's attribute. You can enter the value by typing it or clicking on the ellipsis (…) to invoke the EL Builder and specify an EL expression. If the default element is present for the given attribute in the Fragment, this default value is specified in the Value column for the attribute. You can override the default value.

	
If the description element is present in the Fragment for this attribute, the bottom portion of the dialog displays the Attribute Description field when you switch between rows of different attributes. If the description element is not defined, the Attribute Description field is blank.

	
You cannot add, remove, or reorder attributes using the Configure Fragment Content dialog.

12.3.1.6.2 Passing List of Attributes with Metadata to a Fragment

When defining the Fragment attributes, MAF allows you to do the following:

	
Pass in dynamic attributes.

	
Have metadata associated with each attribute (see Section 12.3.1.6.2, "Passing List of Attributes with Metadata to a Fragment").

	
Loop over attributes in the Fragment definition.

	
Nest dynamic attributes in an attribute.

	
Pass dynamic attributes from one Fragment to an embedded Fragment.

Table 12-4 lists direct and indirect child elements of the MAF AMX fragment that enable you to pass lists of attributes.

Table 12-4 Attribute-Related Child Elements of the Fragment

	Child Attribute Name	Description
	
attributeList

	
Defines an attribute list to pass to a Fragment. Can be a direct child of the MAF AMX fragment or attributeSet element.

There can be any number of the child attributeList elements defined for a parent element.

The attributeList element may be referenced by another attributeList through its ref attribute.

An attribute list may be passed from one Fragment to another by reference, in which case both attribute lists must have the same metadata.

	
attributeSet

	
Can be specified as a child of the MAF AMX attributeList.

Defines one set of attributes to be used during an iteration of the MAF AMX attributeListIterator. May be thought of as one item in an array.

There can be any number of the child attributeSet elements defined for a parent attributeList element.

	
attributeListIterator

	
Consumes a MAF AMX attributeList. Behaves similarly to the MAF AMX Iterator in terms of stamping, but exposes attributes differently, with its name attribute tying the iterator to the attributeList.

When one attributeListIterator is nested inside another, the name must point to the attributeList which is a child of the attributeSet currently being processed by the attributeListIterator.

During the iteration, the defined attribute names are exposed as EL variables. For attributes that are not provided by the caller and in cases when the attribute has no default value, the value adf.mf.api.OptionalFragmentArgument is used as an EL variable. You may test for this condition by using the empty EL keyword (for example, rendered="#{not (empty myAttribute)}").

For information on attributes and their values, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 12-13 demonstrates the basic case of passing an Attribute List to a MAF AMX Fragment.

Example 12-13 Passing Basic Attribute List

<amx:fragment src="something.amxf">
 <amx:attributeList name="attributeToPass" ref="nameOfAnOuterAttributeList" />
</amx:fragment>

Example 12-14 shows the fragment element with the child attributeList defined in the MAF AMX file.

Example 12-14 Attribute List Definition

<amx:fragment src="summaryView.amxf">
 <amx:attributeList name="attrs">
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.firstName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.lastName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.homePhone}"/>
 <amx:attribute name="displayType" value="phone" />
 </amx:attributeSet>
 </amx:attributeList>
</amx:fragment>

Example 12-15 shows nested attributeList elements defined within the fragment element in the MAF AMX file.

Example 12-15 Nested Attribute List Definition

<amx:fragment src="summaryView.amxf">
 <amx:attributeList name="attrs">
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.firstName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.lastName}"/>
 <amx:attribute name="displayType" value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute" value="#{bindings.homePhone}"/>
 <amx:attribute name="displayType" value="phone" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attributeList name="subAttributes">
 <amx:attributeSet>
 <amx:attribute name="attribute"
 value="#{bindings.spouseFirstName}"/>
 <amx:attribute name="displayType"
 value="string" />
 </amx:attributeSet>
 <amx:attributeSet>
 <amx:attribute name="attribute"
 value="#{bindings.spouseLastName}"/>
 <amx:attribute name="displayType"
 value="string" />
 </amx:attributeSet>
 </amx:attributeList>
 <amx:attribute name="label" value="Spouse"/>
 </amx:attributeSet>
 </amx:attributeList>
</amx:fragment>

Example 12-16 shows how a Fragment with defined Attribute List components is used within the Fragment Definition. The amxf:attribute-list tag defines the metadata for an Attribute List. This tag must be declared as a child of the amxf:fragment or another amxf:attribute-list tag and its valid child tags are amxf:name, amxf:description, amxf:attribute-list, and amxf:attribute. The name child is required and must be unique within the current XML node. Even though the name could be identical to the amxf:attribute that is declared on the same level, such naming practice is not recommended.

Example 12-16 Attribute List Usage in Fragment Definition

<amx:fragmentDef
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <fragment xmlns="http://xmlns.oracle.com/adf/mf/amx/fragment">
 <attribute-list>
 <name>attributes</name>
 <attribute>
 <attribute-name>attribute</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>displayType</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>label</attribute-name>
 </attribute>
 <attribute-list>
 <name>subAttributes</name>
 <attribute>
 <attribute-name>attribute</attribute-name>
 </attribute>
 <attribute>
 <attribute-name>displayType</attribute-name>
 </attribute>
 </attribute-list>
 </attribute-list>
 </fragment>
 ...
 <amx:attributeListIterator name="attributes">
 <amx:panelLabelAndMessage label="#{attribute.hints.label}"
 id="plam1"
 rendered="#{not (empty attribute)}">
 <amx:outputText value="#{attribute.inputValue}" id="ot1"/>
 </amx:panelLabelAndMessage>
 <amx:outputText value="#{label}"
 id="ot2"
 rendered="#{not (empty label)}"/>
 <amx:attributeListIterator name="subAttributes"
 rendered="#{not (empty subAttributes)}">
 <amx:panelLabelAndMessage label="#{attribute.hints.label}"
 id="plam2"
 rendered="#{not (empty attribute)}">
 <amx:outputText value="#{attribute.inputValue}" id="ot3"/>
 </amx:panelLabelAndMessage>
 </amx:attributeListIterator>
 </amx:attributeListIterator>
 ...
</amx:fragmentDef>

The attribute-list, attribute-set, and attribute tags could be used in the fragment node to define the following:

	
Attribute List components that are allowed.

	
The information necessary to validate the page that is calling the Fragment.

12.3.2 How to Add UI Components and Data Controls to a MAF AMX Page

After you create a MAF AMX page, you can start adding MAF AMX UI components and data controls to your page.

12.3.2.1 Adding UI Components

You can use the Components window to drag and drop MAF AMX components and MAF AMX data visualization components onto the page. JDeveloper then adds the necessary declarative page code and sets certain values for component attributes.

The Components window displays MAF AMX components by categories (see Figure 12-50):

	
General Controls

	
Text and Selection

	
Data Views

	
Layout, with the following subcategories:

	
Interactive Containers and Headers

	
Secondary Windows

	
Core Structure

	
Operations, with the following subcategories:

	
Behavior

	
Listeners

	
Validators and Converters

For information on adding and using specific components, see Section 13.3, "Creating and Using UI Components."

The Components window also displays MAF AMX data visualization components by categories (see Figure 12-50):

	
Common, with the following subcategories:

	
Chart

	
Gauge

	
Map

	
Miscellaneous

	
Shared Child Tags

	
Other Type-Specific Child Tags, with the following subcategories:

	
Chart

	
Gauge

	
NBox

	
Thematic Map

	
Timeline

	
Sunburst and Treemap

Before you begin:

The MAF application must include a View Controller project, which may or may not contain a MAF AMX page or MAF AMX page task flow from which to create a page.

As described in Section 12.3.1.2, "Creating MAF AMX Pages," you can invoke the Create MAF AMX Page dialog by double-clicking a view icon in a task flow diagram or by selecting Client Tier > Mobile Application Framework > MAF AMX Page from the New Gallery.

To add UI components to a page:

	
Open a MAF AMX page in the Source editor (default).

	
In the Components window, use the menu to choose MAF AMX, as Figure 12-50 shows.

	
Tip:

If the Components window is not displayed, choose Window > Components from the main JDeveloper menu. By default, the Components is displayed in the upper right-hand corner of JDeveloper.

Figure 12-50 MAF AMX Components Window

[image: This image is described in the surrounding text]

	
Select the component you wish to use, and then drag and drop it onto the Source editor or Structure window. You cannot drop components onto the Preview pane.

	
Note:

When building a MAF AMX page, you can only drop UI components into UI containers such as, for example, a Panel Group Layout.

JDeveloper redraws the page in the Preview pane with the newly added component.

Alternatively, you can add UI components and data visualization components from the Structure window as follows:

	
On the Structure window, select an existing component that you want to use as a starting point for inserting another component.

	
Right-click the selected component and choose one of the options: Insert Before <component>, Insert Inside <component>, or Insert After <component>, as Figure 12-51 shows.

Figure 12-51 Inserting Components from Structure Window

[image: This image is described in the surrounding text]

	
From the context menu, select either MAF AMX or MAF AMX Data Visualizations:

	
If you select MAF AMX, the Insert MAF AMX Item dialog opens allowing you to choose the UI component to add to the page, as Figure 12-52 shows.

Figure 12-52 Inserting MAF AMX Component

[image: This image is described in the surrounding text]

	
If you select MAF AMX Data Visualizations, the Insert MAF AMX Data Visualizations Item dialog opens allowing you to choose the data visualization component to add to the page, as Figure 12-53 shows.

Figure 12-53 Inserting MAF AMX Data Visualization Component

[image: This image is described in the surrounding text]

JDeveloper redraws the page in the Preview pane with the newly added component.

12.3.2.2 Using the Preview

JDeveloper's Preview provides WYSIWYG support for both the iOS and Android platforms when you build the user interface using MAF AMX files. As illustrated in Figure 12-54, splitting a view while adding the MAF AMX components to the MAF AMX file enables you to see both the code view through the Source editor and a UI view through the Preview pane. As a result, you can modify the source and get instant feedback in terms of the look and feel of that application on both the iOS and Android platforms.

Figure 12-54 Splitting Design and Source Views

[image: This image is described in the surrounding text]

In addition to being able to see the design and source views simultaneously, you can also open and work with multiple design views at the same time, as well as set each one to a different platform and screen size. By opening a combination of design views for different devices, you can develop applications simultaneously for different platforms and form factors using different orientation. Figure 12-55 shows a split screen with iPhone on the top and iPad with 75% scaling on the bottom. You can split the Preview pane using the default split functionality of JDeveloper.

Figure 12-55 Multiple Design Views

[image: This image is described in the surrounding text]

	
Note:

A MAF AMX page is rendered even for an invalid MAF AMX file. Errors are indicated by the error icon on a component. By moving the mouse over the error icon, you can view the error details.

12.3.2.3 Configuring UI Components

Once you drop UI components onto a page, you can use the Properties window (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.

	
Tip:

If the Properties window is not displayed, choose Window > Properties from JDeveloper's main menu.

Figure 12-56 shows the Properties window displaying the attributes for an Output Text component.

Figure 12-56 The Properties Window

[image: This image is described in the surrounding text]

To set component attributes:

	
Select the component for which you want to set attributes. You can select the component in the Structure window or you can select its tag directly in the Source editor.

	
In the Properties window, expand the section that contains the attribute you wish to set.

	
Tip:

Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the Properties window.

	
In the Properties window, either enter values directly into the fields, or if the field contains a list, use that list to select a value. You can also use the list to the right of the field, which launches a popup containing tools you can use to set the value. These tools are either specific property editors (opened by choosing Edit) or the Expression Builder, which you can use to create EL expressions for the value (opened by choosing Expression Builder or Method Expression Builder where applicable). For more information about using the Expression Builder, see Section 14.3.2, "How to Create an EL Expression."

When you use the Properties window to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.

	
Tip:

You can always change attribute values by directly editing the page in the Source editor. To view the page in the Source editor, click the Source tab at the bottom of the page.

12.3.2.4 Adding Data Controls to the View

You can create databound UI components in a MAF AMX view by dragging data control elements from the Data Controls window and dropping them into either the Structure window or the Source editor. When you drag an item from the Data Controls window to either of these places, JDeveloper invokes a context menu of default UI components available for the item that you dropped. When you select the desired UI component, JDeveloper inserts it into a MAF AMX page. In addition, JDeveloper creates the binding information in the associated page definition file. If such file does not exist, then JDeveloper creates one. MAF provides a visual indicator for dropping data controls to inform you of the location of the new data control

	
Note:

A data control can only be dropped at a location allowed by the underlying XML schema.

Depending on the approach you take, you can insert different types of data controls into the Structure window of a MAF AMX page.

Dropping an attribute of a collection lets you create various input and output components. You can also create Button and Link components by dropping a data control operation on a page.

The respective action listener is added in the MAF AMX Button for each of these operations.

The data control attributes and operations can be dropped as one or more of the following MAF AMX UI components (see Section 13.3, "Creating and Using UI Components"):

	
Button

	
Link

	
Input Date

	
Input Date with Label

	
Input Text

	
Input Text with Label

	
Output Text

	
Output Text with Label

	
Iterator

	
List Item

	
List View

	
Select Boolean Checkbox

	
Select Boolean Switch

	
Select One Button

	
Select One Choice

	
Select One Radio

	
Select Many Checkbox

	
Select Many Choice

	
Convert Date Time

	
Convert Number

	
Form

	
Read Only Form

	
Parameter Form

The following Date and Number types are supported:

	
java.util.Date

	
java.sql.Timestamp

	
java.sql.Date

	
java.sql.Time

	
java.lang.Number

	
java.lang.Integer

	
java.lang.Long

	
java.lang.Float

	
java.lang.Double

For information on how to use the Data Controls window in JDeveloper, see Section 14.6, "Creating Databound UI Components from the Data Controls Panel."

12.3.2.4.1 Dragging and Dropping Attributes

If your MAF AMX page already contains a Panel Form Layout component or does not require to have all the fields added, you can drop individual attributes from a data control. Depending on the attributes types, different data binding menu options are provided as follows:

Date

This category provides options for creating MAF Input Date and MAF Input Date with Label controls. Figure 12-57 shows the context menu for adding date controls that appears when you drag an attribute from the Data Controls window onto the Source editor or Structure window of a MAF AMX page.

Figure 12-57 Context Menu for Date Controls

[image: This image is described in the surrounding text]

Single Selection

This category provides options for creating the following controls:

	
MAF Select One Button

	
MAF Select One Choice

	
MAF Select One Radio

	
MAF Select Boolean Checkbox

	
MAF Select Boolean Switch

Figure 12-58 shows the context menu for adding selection controls that appears when you drag an attribute from the Data Controls window onto the Source editor or Structure window of a MAF AMX page.

Figure 12-58 Context Menu for Selection Controls

[image: This image is described in the surrounding text]

If you are working with an existing MAF AMX page and you select MAF Select One Button or MAF Select One Choice option, an appropriate version of the Edit List Binding dialog is displayed (see Figure 12-59). If you drop a control onto a completely new MAF AMX page, the Edit Action Binding dialog opens instead. After you click OK, the Edit List Binding dialog opens.

	
Note:

The Edit List Binding or Edit Boolean Binding dialog appears every time you drop any data control attributes as any of the single selection or boolean selection components, respectively.

Figure 12-59 Edit List Binding Dialog for Select One Button and Choice Controls

[image: This image is described in the surrounding text]

If you select MAF Select One Radio option, another version of the Edit List Binding dialog is displayed, as shown in Figure 12-60.

Figure 12-60 Edit List Binding Dialog for Select One Radio Control

[image: This image is described in the surrounding text]

If you select MAF Select Boolean Checkbox or MAF Select Boolean Switch option, another version of the Edit List Binding dialog is displayed, as shown in Figure 12-61.

Figure 12-61 Edit List Binding Dialog for Select Boolean Checkbox and Switch Controls

[image: This image is described in the surrounding text]

Text

This category provides options for creating the following controls:

	
MAF Input Text

	
MAF Input Text with Label

	
MAF Output Text

	
MAF Output Text with Label

Figure 12-62 shows the context menu for adding text controls that appears when you drag an attribute from the Data Controls window onto the Source editor or Structure window of a MAF AMX page.

Figure 12-62 Context Menu for Text Controls

[image: This image is described in the surrounding text]

12.3.2.4.2 Dragging and Dropping Operations

In addition to attributes, you can drag and drop operations and custom methods. Depending on the type of operation or method, different data binding menu options are provided, as follows:

Operation

This category is for data control operations. It provides the following options (see Figure 12-63):

	
MAF Button

	
MAF Link

	
MAF Parameter Form

Figure 12-63 Context Menu for Operations

[image: This image is described in the surrounding text]

	
Note:

If you drop an operation or a method as a child of the List View control, the context menu does not appear and the List Item is created automatically because no other valid control can be dropped as a direct child of the List View control. JDeveloper creates a binding similar to the following for the generated List Item:

<amx:listItem actionListener="#{bindings.getLocation.execute}"/>

Method

This category is for custom methods. It provides the following options (see Figure 12-64):

	
MAF Button

	
MAF Link

	
MAF Parameter Form

Figure 12-64 Context Menu for Methods

[image: This image is described in the surrounding text]

The MAF Parameter Form option allows you to choose the method or operation arguments to be inserted in the form, as well as the respective controls for each of the arguments (see Figure 12-65).

Figure 12-65 Edit Form Fields Dialog

[image: This image is described in the surrounding text]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:inputText id="it1"
 value="#{bindings.empId.inputValue}"
 label="#{bindings.empId.hints.label}" />
</amx:panelFormLayout>
<amx:commandButton id="cb1"
 actionListener="#{bindings.ExecuteWithParams1.execute}"
 text="ExecuteWithParams1"
 disabled="#{!bindings.ExecuteWithParams1.enabled}"/>

For more information about generated bindings, see Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported control types for the MAF Parameter Form:

	
MAF Input Date

	
MAF Input Date with Label

	
MAF Input Text

	
MAF Input Text with Label

	
MAF Output Text with Label

12.3.2.4.3 Dragging and Dropping Collections

You can drag and drop collections. Depending on the type of collection, different data binding menu options are provided, as follows:

Multiple Selection

This category provides options for creating multiple selection controls. The following controls can be created under this category (see Figure 12-66):

	
MAF Select Many Checkbox

	
MAF Select Many Choice

Figure 12-66 Context Menu for Multiple Selection Controls

[image: This image is described in the surrounding text]

If you select either MAF Select Many Choice or MAF Select Many Checkbox as the type of the control you want to create, the Edit List Binding dialog is displayed (see Figure 12-67).

Figure 12-67 Edit List Binding Dialog for Multiple Selection Controls

[image: This image is described in the surrounding text]

Form

This category is used to create the MAF AMX Panel Form controls. The following controls can be created under this category (see Figure 12-68):

	
MAF Form

	
MAF Read-only Form

Figure 12-68 Context Menu for Form Controls

[image: This image is described in the surrounding text]

If you select MAF Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 12-69).

Figure 12-69 Edit Form Fields Dialog for MAF Form

[image: This image is described in the surrounding text]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:panelLabelAndMessage id="plam1" label="#{bindings.jobId.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.jobId.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:inputText id="it4"
 value="#{bindings.title.inputValue}"
 label="#{bindings.title.hints.label}" />
 <amx:inputText id="it5"
 value="#{bindings.minSalary.inputValue}"
 simple="true" />
 <amx:inputText id="it3"
 value="#{bindings.maxSalary.inputValue}"
 simple="true" />
</amx:panelFormLayout>

For more information about generated bindings, see Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for MAF Form:

	
MAF Input Date

	
MAF Input Date with Label

	
MAF Input Text

	
MAF Input Text with Label

	
MAF Output Text with Label

	
Note:

Since MAF Output Text is not a valid Panel Form Layout child element as defined by the MAF schema, it is not supported.

If you select MAF Read-only Form as the type of the form you want to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the form, as well as the respective controls for each of the fields (see Figure 12-70).

Figure 12-70 Edit Form Fields Dialog for MAF Read-only Form

[image: This image is described in the surrounding text]

The following data bindings are generated after you select the appropriate options in the Edit Form Fields dialog:

<amx:panelFormLayout id="pfl1">
 <amx:panelLabelAndMessage id="plam4"
 label="#{bindings.jobId.hints.label}">
 <amx:outputText id="ot4" value="#{bindings.jobId.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam1"
 label="#{bindings.title.hints.label}">
 <amx:outputText id="ot1" value="#{bindings.title.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam3"
 label="#{bindings.minSalary.hints.label}">
 <amx:outputText id="ot3" value="#{bindings.minSalary.inputValue}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam2" label="#{bindings.maxSalary.hints.label}">
 <amx:outputText id="ot2" value="#{bindings.maxSalary.inputValue}" />
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

For more information about generated bindings, see Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings."

The MAF Read-only Form only supports the MAF Output Text with Label control.

Iterator

This provides an option for creating the MAF AMX Iterator with child components (see Figure 12-71).

Figure 12-71 Context Menu for Iterator Control

[image: This image is described in the surrounding text]

If you select MAF Iterator as the type of the control to create, a JDeveloper wizard is invoked that lets you choose the fields to be inserted in the iterator, as well as the respective controls for each of the fields, with MAF Output Text w/Label being a default selection (see Figure 12-72).

Figure 12-72 Edit Dialog for MAF Iterator

[image: This image is described in the surrounding text]

The following data bindings are generated after you select the appropriate options in the Edit Iterator dialog:

<amx:iterator id="i1"
 var="row"
 value="#{bindings.jobs.collectionModel}">
 <amx:panelLabelAndMessage id="plam6"
 label="#{bindings.jobs.hints.jobId.label}">
 <amx:outputText id="ot6" value="#{row.jobId}" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="plam5"
 label="#{bindings.jobs.hints.title.label}">
 <amx:outputText id="ot5" value="#{row.title}" />
 </amx:panelLabelAndMessage>
 <amx:inputText id="it1"
 value="#{row.bindings.minSalary.inputValue}"
 label="#{bindings.jobs.hints.minSalary.label}" />
 <amx:inputText id="it2"
 value="#{row.bindings.maxSalary.inputValue}"
 label="#{bindings.jobs.hints.maxSalary.label}" />
</amx:iterator>

For more information about generated bindings, see Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for MAF Iterator:

	
MAF Input Text

	
MAF Input Text with Label

	
MAF Output Text

	
MAF Output Text with Label

List View

This provides an option for creating the MAF AMX List View with child components (see Figure 12-73).

Figure 12-73 Context Menu for List View Control

[image: This image is described in the surrounding text]

If you select MAF List View as the type of the control to create, the ListView Gallery opens that allows you to choose a specific layout for the List View, as Figure 12-74 shows.

Figure 12-74 ListView Gallery

[image: Surrounding text describes Figure 12-74 .]

Table 12-5 lists the supported List Formats that are displayed in the ListView Gallery.

Table 12-5 List Formats

	Format	Element Row Values
	
Simple

	
	
Text

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
Start-End

	
	
Start Text

	
End Text

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

The Variations presented in the ListView Gallery (see Figure 12-74) for a selected list format consist of options to add either dividers, a leading image, or both:

	
Selecting a variation with a leading image adds an Image row to the List Item Content table (see Figure 12-75).

	
Selecting a variation with a divider defaults the Divider Attribute field to the first attribute in its list rather than the default No Divider value, and populates the Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 12-74) allow you to suppress chevrons, use an inset style list, or both:

	
The selections do not modify any state in the Edit List View dialog (see Figure 12-75). They only affect the generated MAF AMX markup.

	
Selecting a style with the inset list sets the adfmf-listView-insetList style class on the listView element in the generated MAF AMX markup.

The following is an example of the Simple format with the inset list:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 id="listView2">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected Variation. The format will include a brief description of the main style, followed by the details of the selected variation. Four list formats with four variations on each provide sixteen unique descriptions detailed in Table 12-6.

Table 12-6 List View Formats and Variations

	List Format	Variation	Description
	
Simple

	
Basic

	
A text field appears at the start side of the list item."

	
Simple

	
Dividers

	
A text field appears at the start side of the list item, with items grouped by dividers."

	
Simple

	
Images

	
A text field appears at the start side of the list item, following a leading image.

	
Simple

	
Dividers and Images

	
A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers.

	
Main-Sub Text

	
Basic

	
A prominent main text field appears at the start side of the list item with subordinate text below.

	
Main-Sub Text

	
Dividers

	
A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers.

	
Main-Sub Text

	
Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image.

	
Main-Sub Text

	
Dividers and Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers.

	
Start-End

	
Basic

	
Text fields appear on each side of the list item

	
Start-End

	
Dividers

	
Text fields appear on each side of the list item, with the items grouped by dividers.

	
Start-End

	
Images

	
Text fields appear on each side of the list item, following a leading image.

	
Start-End

	
Dividers and Images

	
Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers.

	
Quadrant

	
Basic

	
Text fields appear in the four corners of the list item.

	
Quadrant

	
Dividers

	
Text fields appear in the four corners of the list item, with items grouped by dividers.

	
Quadrant

	
Images

	
Text fields appear in the four corners of the list item, following a leading image.

	
Quadrant

	
Dividers and Images

	
Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create the contents of a List Item by mapping binding attributes to the elements of the selected List View format, as Figure 12-75 shows.

Figure 12-75 Edit Dialog for MAF AMX List View

[image: This image is described in the surrounding text]

When completing the dialog that Figure 12-75 shows, consider the following:

	
The image at the start reflects the main content elements from the selected List View format and provides a mapping from the schematic representation to the named elements in the underlying table.

	
The read-only cells in the Element column derive from the selected List View format.

	
The editable cells in the Value Binding column are based on the data control node that was dropped.

	
The List Item is generated as either an Output Text or Image component, depending on whichever is appropriate for the particular element.

	
Since the number of elements (rows) is predetermined by the selected List View format, rows cannot be added or removed.

	
The order of elements cannot be modified.

	
The List Item Selection indicates the selection mode, which can be either a single item selection (default) or no selection. The showLinkIcon attribute of the List View is updated based on the selection mode: if the selection mode is set to None, showLinkIcon attribute is set to false; otherwise showLinkIcon attribute is not modified (for example, defaulted to true).

The following attributes of the listView enable the functioning of the selection mode:

	
selectionListener: defines a method reference to a selection listener.

	
selectedRowKeys: indicates the selection state for this component.

If the Single Item option is chosen, the Edit List View dialog automatically sets these attributes as follows:

	
selectionListener is set to "bindings.treebinding.collectionModel.makeCurrent"

	
selectedRowKeys is set to "bindings.treebinding.collectionModel.selectedRow"

The selectionListener attribute has the Edit option available from the Properties window which allows you to create a managed bean class, as well as an appropriate managed bean method, similar to any other listener attributes (see Figure 12-76 and Figure 12-77).

Figure 12-76 Editing Selection Listener Attribute

[image: This image is described in the surrounding text]

Figure 12-77 Edit Selection Listener Dialog

[image: This image is described in the surrounding text]

Example 12-17 shows the selection-related attributes of the listView element in the MAF AMX file. This declaration is generated when Single Item is chosen in the Edit List View dialog (see Figure 12-75.

Example 12-17 Selection Attributes of List View

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 selectionListener=
 "#{bindings.employees.collectionModel.makeCurrent}"
 selectedRowKeys=
 "#{bindings.employees.collectionModel.selectedRow}">
 <amx:listItem id="listItem1">
 ...
 </amx:listItem>
</amx:listView>

If None was chosen as the List Item Selection option in the Edit List View dialog, then the selectionListener and selectedRowKeys attributes are not set as they do not have default values and do not appear in the MAF AMX file. At the same time, the List Item's showLinkIcon attribute is set to false (see Example 12-18).

Example 12-18 Omitting Selection Attributes in List View

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1" showLinkIcon="false">
 ...
 </amx:listItem>
</amx:listView>

The List View selection state is preserved when navigation occurs to or from a MAF AMX page.

	
Note:

The selected row is respected if there is the same iterator ID across MAF AMX pages. For example, if you drag an Employees collection onto a page as a List View with employeesIterator as its iterator and then add a Details page, the selected row will only be respected if the Details page's employees iterator has its ID set to employeesIterator.

	
The default value of the Divider Attribute field is No Divider, in which case the Divider Mode field is disabled. If you select value other than the default, then you need to specify Divider Mode parameters, as Figure 12-78 and Figure 12-79 show.

Figure 12-78 Specifying Divider Attribute

[image: This image is described in the surrounding text]

Figure 12-79 Specifying Divider Mode

[image: This image is described in the surrounding text]

For more information on List View dividers, see Section 13.3.15, "How to Use List View and List Item Components."

The following MAF AMX markup and data bindings are generated after you select the appropriate options in the Edit List View dialog:

<amx:listView id="listView1"
 var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 dividerAttribute="key"
 dividerMode="firstLetter"
 selectionListener=
 "#{bindings.employees.collectionModel.makeCurrent}"
 selectedRowKeys=
 "#{bindings.employees.collectionModel.selectedRow}">
 <amx:listItem id="listItem1" >
 <amx:outputText value="#{row.key}"
 styleClass="adfmf-listItem-subtext"
 id="outputText1"/>
 </amx:listItem>
</amx:listView>

For more information about generated bindings, see Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings."

The following are supported controls for MAF List View:

	
MAF Output Text

	
MAF Image

12.3.2.4.4 What You May Need to Know About Generated Bindings

Table 12-7 shows sample bindings that are added to a MAF AMX page when components are dropped.

Table 12-7 Sample Data Bindings

	Component	Data Bindings
	
Button

	

<amx:commandButton id="commandButton1"
 actionListener="#{bindings.FindContacts.execute}"
 text="FindContacts"
 disabled="#{!bindings.FindContacts.enabled}">
</amx:commandButton>

	
Link

	

<amx:commandLink id="commandLink1"
 actionListener="#{bindings.FindContacts.execute}"
 text="FindContacts"
 disabled="#{!bindings.FindContacts.enabled}">
</amx:commandLink>

	
Input Date with Label

	

<amx:inputDate id="inputDate1"
 value="#{bindings.timeStamp.inputValue}"
 label="#{bindings.timeStamp.hints.label}">
</amx:inputDate>

	
Input Date

	

<amx:inputDate id="inputDate1"
 value="#{bindings.timeStamp.inputValue}">
</amx:inputDate>

	
Input Text with Label

	

<amx:inputText id="inputText1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.hints.label}">
</amx:inputText>

	
Input Text

	

<amx:inputText id="inputText1"
 value="#{bindings.contactData.inputValue}"
 simple="true">
</amx:inputText>

	
Output Text

	

<amx:outputText id="outputText1"
 value="#{bindings.contactData.inputValue}">
</amx:outputText>

	
Output Text with Label

	

<amx:panelLabelAndMessage id="panelLabelAndMessage1"
 label="#{bindings.contactData.hints.label}">
 <amx:outputText id="outputText1"
 value="#{bindings.contactData.inputValue}"/>
</amx:panelLabelAndMessage>

	
Select Boolean Checkbox

	

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
</amx:selectBooleanCheckbox>

	
Select Boolean Switch

	

<amx:selectBooleanSwitch id="selectBooleanSwitch"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
</amx:selectBooleanSwitch>

	
Select One Button

	

<amx:selectOneButton id="selectOneButton1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 required="#{bindings.contactData.hints.mandatory}">
 <amx:selectItems value="#{bindings.contactData.items}"/>
</amx:selectOneButton>

	
Select One Choice

	

<amx:selectOneChoice id="selectOneChoice1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.contactData.items}"/>
</amx:selectOneChoice>

	
Select Many Checkbox

	

<amx:selectManyCheckbox id="selectManyCheckbox1"
 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.AssetView.items}"/>
</amx:selectManyCheckbox>

	
Select One Radio

	

<amx:selectOneRadio id="selectOneRadio1"
 value="#{bindings.contactData.inputValue}"
 label="#{bindings.contactData.label}"
 <amx:selectItems id="selectItems1"
 value="#{bindings.contactData.items}"/>
</amx:selectOneRadio>

	
Select Many Choice

	

<amx:selectManyChoice id="selectManyChoice1"
 value="#{bindings.AssetView.inputValue}"
 label="#{bindings.AssetView.label}">
 <amx:selectItems id="selectItems1"
 value="#{bindings.AssetView.items}"/>
</amx:selectManyChoice>

12.3.2.4.5 What You May Need to Know About Generated Drag and Drop Artifacts

The first drag and drop event generates the following directories and files:

[image: This image is described in the surrounding text]

Figure 12-80 shows a sample DataBindings.cpx file generated upon drag and drop.

Figure 12-80 DataBindings.cpx File in Source View

[image: This image is described in the surrounding text]

The DataBindings.cpx files define the binding context for the entire MAF AMX application feature and provide the metadata from which the binding objects are created at runtime. A MAF AMX application feature may have more than one DataBindings.cpx file if a component was created outside of the project and then imported. These files map individual MAF AMX pages to page definition files and declare which data controls are being used by the MAF AMX application feature. At runtime, only the data controls listed in the DataBindings.cpx files are available to the current MAF AMX application feature.

JDeveloper automatically creates a DataBindings.cpx file in the default package of the ViewController project when you for the first time use the Data Controls window to add a component to a page or an operation to an activity. Once the DataBindings.cpx file is created, JDeveloper adds an entry for the first page or task flow activity. Each subsequent time you use the Data Controls window, JDeveloper adds an entry to the DataBindings.cpx for that page or activity, if one does not already exist.

Once JDeveloper creates a DataBindings.cpx file, you can open it in the Source view (see Figure 12-80) or the Overview editor.

The Page Mappings (pageMap) section of the file maps each MAF AMX page or task flow activity to its corresponding page definition file using an ID. The Page Definition Usages (pageDefinitionUsages) section maps the page definition ID to the absolute path for page definition file in the MAF AMX application feature. The Data Control Usages (dataControlUsages) section identifies the data controls being used by the binding objects defined in the page definition files. These mappings allow the binding container to be initialized when the page is invoked.

You can use the Overview editor to change the ID name for page definition files or data controls by double-clicking the current ID name and editing inline. Doing so will update all references in the MAF AMX application feature. Note, however, that JDeveloper updates only the ID name and not the file name. Ensure that you do not change a data control name to a reserved word.

You can also click the DataBindings.cpx file's element in the Structure window and then use the Properties window to change property values.

Figure 12-81 shows a sample PageDef file generated upon drag and drop.

Figure 12-81 PageDef File

[image: This image is described in the surrounding text]

Page definition files define the binding objects that populate the data in MAF AMX UI components at runtime. For every MAF AMX page that has bindings, there must be a corresponding page definition file that defines the binding objects used by that page. Page definition files provide design-time access to all the bindings. At runtime, the binding objects defined by a page definition file are instantiated in a binding container, which is the runtime instance of the page definition file.

The first time you use the Data Controls window to add a component to a page, JDeveloper automatically creates a page definition file for that page and adds definitions for each binding object referenced by the component. For each subsequent databound component you add to the page, JDeveloper automatically adds the necessary binding object definitions to the page definition file.

By default, the page definition files are located in the mobile.PageDefs package in the Application Sources node of the ViewController project. If the corresponding MAF AMX page is saved to a directory other than the default, or to a subdirectory of the default, then the page definition is also be saved to a package of the same name.

For information on how to open a page definition file, see Section 12.3.1.5, "Accessing the Page Definition File." When you open a page definition file in the Overview editor, you can view and configure bindings, contextual events, and parameters for a MAF AMX page using the following tabs:

	
Bindings and Executables: this tab shows three different types of objects: bindings, executables, and the associated data controls. Note that data controls do not display unless you select a binding or executable.

By default, the model binding objects are named after the data control object that was used to create them. If a data control object is used more than once on a page, JDeveloper adds a number to the default binding object names to keep them unique.

	
Contextual Events: you can create contextual events to which artifacts in a MAF AMX application feature can subscribe.

	
Parameters: parameter binding objects declare the parameters that the page evaluates at the beginning of a request. You can define the value of a parameter in the page definition file using static values or EL expressions that assign a static value.

When you click an item in the Overview editor (or the associated node in the Structure window), you can use the Properties window to view and edit the attribute values for the item, or you can edit the XML source directly by clicking the Source tab.

12.3.2.4.6 Using the MAF AMX Editor Bindings Tab

JDeveloper's Bindings tab (see Figure 12-82) is available in the MAF AMX Editor. It displays the data bindings defined for a specific MAF AMX page. If you select a binding, its relationship to the underlying Data Control are shown and the link to the PageDef file is provided.

Figure 12-82 Bindings Tab

[image: This image is described in the surrounding text]

12.3.2.4.7 What You May Need to Know About Removal of Unused Bindings

When you delete or cut a MAF AMX component from the Structure window, unused bindings are automatically removed from your page.

	
Note:

Deleting a component from the Source editor does not trigger the removal of bindings.

Figure 12-83 demonstrates the deletion of a List View component that references bindings. Upon deletion, the related binding entry is automatically removed from the corresponding PageDef.xml file.

Figure 12-83 Deleting Bound Components from Page

[image: This image is described in the surrounding text]

Figure 12-84 demonstrates the removal of the List View component by cutting it from the page.

Figure 12-84 Cutting Bound Components from Page

[image: This image is described in the surrounding text]

After clicking Cut, you are presented with the Confirm Removal of Bindings dialog that prompts you to choose whether or not to delete the corresponding bindings, as shown in Figure 12-85.

Figure 12-85 Confirm Removal of Bindings Dialog

[image: This image is described in the surrounding text]

12.3.2.5 What You May Need to Know About Element Identifiers and Their Audit

MAF generates a unique element identifier (id) and automatically inserts it into the MAF AMX page when an element is added by dropping a component from the Components window, or by dragging and dropping a data control. This results in a valid identifier in the MAF AMX page that differentiates each component from others, possibly similar components within the same page.

MAF provides an identifier audit utility that does the following:

	
Checks the presence and uniqueness of identifiers in a MAF AMX page.

	
If the identifier is not present or not unique, an error is reported for each required id attribute of an element.

	
Provides an automatic fix to generate a unique id for the element when a problem with the identifier is reported.

Figure 12-86 and Figure 12-87 show the identifier error reporting in the Source editor and Structure pane respectively.

Figure 12-86 Element Identifier Audit in Source Editor

[image: This image is described in the surrounding text]

Figure 12-87 Element Identifier Audit in Structure Pane

[image: This image is described in the surrounding text]

In addition to the id, the audit utility checks the popupId and alignId attributes of the Show Popup Behavior operation (see Section 13.2.8, "How to Use a Popup Component").

Figure 12-88 and Figure 12-89 show the Show Popup Behavior's Popup Id and Align Id attributes error reporting in the Source Editor respectively.

Figure 12-88 Popup Id Attribute Audit in Source Editor

[image: This image is described in the surrounding text]

Figure 12-89 Align Id Attribute Audit in Source Editor

[image: This image is described in the surrounding text]

For more information, see "Auditing and Monitoring Java Projects " in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

12.3.3 What You May Need to Know About the Server Communication

The security architecture used by MAF guarantees that the browser hosting a MAF AMX page does not have access to the security information needed to make connections to a secure server to obtain its resources. This has a direct impact on AJAX calls made from MAF AMX pages: these calls are not supported, which poses limitations on the use of JavaScript from within MAF AMX UI components. Communication with the server must occur from the embedded Java code layer.

13 Creating the MAF AMX User Interface

This chapter describes how to create the user interface for MAF AMX pages.

This chapter includes the following sections:

	
Section 13.1, "Introduction to Creating the User Interface for MAF AMX Pages"

	
Section 13.2, "Designing the Page Layout"

	
Section 13.3, "Creating and Using UI Components"

	
Section 13.4, "Enabling Gestures"

	
Section 13.5, "Providing Data Visualization"

	
Section 13.6, "Styling UI Components"

	
Section 13.7, "Localizing UI Components"

	
Section 13.8, "Understanding MAF Support for Accessibility"

	
Section 13.9, "Validating Input"

	
Section 13.10, "Using Event Listeners"

13.1 Introduction to Creating the User Interface for MAF AMX Pages

MAF provides a set of UI components and operations that enable you to create MAF AMX pages which behave appropriately for both the iOS and Android user experience.

MAF AMX adheres to the typical JDeveloper development experience by allowing you to drag UI components and operations onto a Source editor or Structure window from either the Components window or the Data Controls window. In essence, MAF AMX UI components render HTML equivalents of the native components on the iOS and Android platforms, with their design-time behavior in JDeveloper being similar to components used by other technologies. In addition, the UI components are integrated with MAF's controller and model for declarative navigation and data binding.

	
Note:

When developing interfaces for mobile devices, always be aware of the fact that screen space is very limited. In addition, touchscreen support is not available on some mobile devices.

For more information, see the following:

	
Chapter 12, "Creating MAF AMX Pages"

	
Chapter 14, "Using Bindings and Creating Data Controls in MAF AMX"

	
Chapter 19, "Creating Custom MAF AMX UI Components"

13.2 Designing the Page Layout

MAF AMX provides layout components (listed in Table 13-1) that let you arrange UI components in a page. Usually, you begin building pages with these components, and then add other components that provide other functionality either inside these containers, or as child components to the layout components. Some of these components provide geometry management functionality, such as the capability to stretch when placed inside a component that stretches.

Table 13-1 MAF AMX Page Management, Layout, and Spacing Components

	Component	Type	Description
	
View

	
Core Page Structure Component

	
Creates a view element in a MAF AMX file. Automatically inserted into the file when the file is created. For more information, see Section 13.2.1, "How to Use a View Component."

	
Panel Page

	
Core Page Structure Component

	
Creates a panelPage element in a MAF AMX file. Defines the central area in a page that scrolls vertically between the header and footer areas. For more information, see Section 13.2.2, "How to Use a Panel Page Component."

For more information about MAF AMX files, see Section 12.3.1.2, "Creating MAF AMX Pages."

	
Facet

	
Core Page Structure Component

	
Creates a facet element in a MAF AMX file. Defines an arbitrarily named facet on the parent component. For more information, see Section 13.2.7, "How to Use a Facet Component."

	
Fragment

	
Core Page Structure Component

	
Creates a fragment element in a MAF AMX file. Enables sharing of the page contents. For more information, see Section 13.2.13, "How to Use the Fragment Component."

	
Facet Definition

	
Core Page Structure Component

	
Creates a facetRef element in a MAF AMX Fragment file. Used inside a page fragment definition (fragmentDef) to reference a facet defined in the page fragment usage. For more information, see Section 13.2.7, "How to Use a Facet Component."

	
Panel Group Layout

	
Page Layout Container

	
Creates a panelGroupLayout element in a MAF AMX file. Groups child components either vertically or horizontally. For more information, see Section 13.2.3, "How to Use a Panel Group Layout Component."

	
Panel Form Layout

	
Page Layout Container

	
Creates a panelFormLayout element in a MAF AMX file. Positions components, such as Input Text, so that their labels and fields line up horizontally or above each component. For more information, see Section 13.2.4, "How to Use a Panel Form Layout Component."

	
Panel Label And Message

	
Page Layout Container

	
Creates a panelLabelAndMessage element in a MAF AMX file. Lays out a label and its children. For more information, see Section 13.2.6, "How to Use a Panel Label And Message Component."

	
Panel Stretch Layout

	
Page Layout Container

	
Creates a panelStretchLayout element in a MAF AMX file. Allows placement of a panel on each side of another panel. For more information, see Section 13.2.5, "How to Use a Panel Stretch Layout Component."

	
	
	
Popup

	
Secondary Window

	
Creates a popup element in a MAF AMX file. Displays a popup window. For more information, see Section 13.2.8, "How to Use a Popup Component."

	
Panel Splitter

	
Interactive Page Layout Container

	
Creates a panelSplitter element in a MAF AMX file. Allows to display multiple content areas that may be controlled by a left-side navigation pane. For more information, see Section 13.2.9, "How to Use a Panel Splitter Component."

	
Panel Item

	
Interactive Page Layout Component

	
Creates a panelItem element in a MAF AMX file. Represents the content area of a Panel Splitter. For more information, see Section 13.2.9, "How to Use a Panel Splitter Component."

	
Deck

	
Page Layout Container

	
Creates a deck element in a MAF AMX file. Shows one of its child components at a time. For more information, see Section 13.2.12, "How to Use a Deck Component."

	
Spacer

	
Spacing Component

	
Creates a spacer element in a MAF AMX file. Creates an area of blank space represented by a spacer element in a MAF AMX file. For more information, see Section 13.2.10, "How to Use a Spacer Component."

	
Table Layout

	
Page Layout Container

	
Creates a tableLayout element in a MAF AMX file. Represents a table consisting of rows. For more information, see Section 13.2.11, "How to Use a Table Layout Component."

	
Row Layout

	
Page Layout Container

	
Creates a rowLayout element in a MAF AMX file. Represents a row consisting of cells in a Table Layout component. For more information, see Section 13.2.11, "How to Use a Table Layout Component."

	
Cell Format

	
Page Layout Component

	
Creates a cellFormat element in a MAF AMX file. Represents a cell in a Row Layout component. For more information, see Section 13.2.11, "How to Use a Table Layout Component."

You add a layout component by dragging and dropping it onto a MAF AMX page from the Components window (see Section 12.3.2.1, "Adding UI Components"). Then you use the Properties window to set the component's attributes (see Section 12.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-1 demonstrates several page layout elements defined in a MAF AMX file.

	
Note:

You declare the page layout elements under the <amx> namespace.

Example 13-1 Page Layout Components Definition

<amx:panelPage id="pp1">
 <amx:outputText id="outputText1"
 value="Sub-Section Title 1"
 styleClass="adfmf-text-sectiontitle"/>
 <amx:panelFormLayout id="panelFormLayout1" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="Name">
 <amx:commandLink id="commandLink1" text="Jane Don" action="editname" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage2" label="Street Address">
 <amx:commandLink id="commandLink2"
 text="123 Main Street"
 action="editaddr" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage id="panelLabelAndMessage3" label="Phone">
 <amx:outputText id="outputText2" value="212-555-0123" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:outputText id="outputText3"
 value="Sub-Section Title 2"
 styleClass="adfmf-text-sectiontitle" />
 <amx:panelFormLayout id="panelFormLayout2" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage4" label="Type">
 <amx:commandLink id="commandLink3" text="Personal" action="edittype" />
 </amx:panelLabelAndMessage>
 <amx:panelLabelAndMessage label="Anniversary">
 <amx:outputText id="outputText4" value="November 22, 2005" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
 <amx:panelFormLayout id="panelFormLayout3" labelPosition="start">
 <amx:panelLabelAndMessage id="panelLabelAndMessage5" label="Date Created">
 <amx:outputText id="outputText5" value="June 20, 2011" />
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
</amx:panelPage>

Figure 13-1 Page Layout Components at Design Time

[image: This image is described in the surrounding text]

You use the standard Cascading Style Sheets (CSS) to manage visual presentation of your layout components. CSS are located in the Web Content/css directory of your ViewController project, with default CSS provided by MAF. For more information, see Section 13.6.1, "How to Use Component Attributes to Define Style."

The user interface created using MAF AMX displays correctly in both the left-to-right (LTR) and right-to-left (RTL) language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side. Some of the MAF AMX layout components, such as the Popup (see Section 13.2.8, "How to Use a Popup Component"), Panel Item, and Panel Splitter (see Section 13.2.9, "How to Use a Panel Splitter Component") can be configured to enable specific RTL behavior. For more information about the RTL configuration of MAF AMX pages, see Section 13.4, "Enabling Gestures" and Section 12.2.11, "How to Specify the Page Transition Style."

	
Note:

The right-to-left text direction is not supported on Android prior to version 4.2.

A MAF sample application called UIDemo demonstrates how to use layout components in conjunction with such MAF AMX UI components as a Button, to achieve some of the typical layouts that follow common patterns. In addition, this sample application shows how to work with styles to adjust the page layout to a specific pattern. The UIDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

13.2.1 How to Use a View Component

A View (view element in a MAF AMX file) is a core page structure component that is automatically inserted into a MAF AMX file when the file is created. This component provides a hierarchical representation of the page and its structure and represents a single MAF AMX page.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.2 How to Use a Panel Page Component

A Panel Page (panelPage element in a MAF AMX file) is a component that allows you to define a scrollable area of the screen for laying out other components.

By default, when you create a MAF AMX page, JDeveloper automatically creates and inserts a Panel Page component into the page. When you add components to the page, they will be inserted inside the Panel Page component.

To prevent scrolling of certain areas (such as a header and footer of the page) and enable stretching when orientation changes, you can specify a Facet component for your Panel Page. The Panel Page's header Facet includes the title placed in the Navigation Bar of each page. For information about other types of Facet components that the Panel Page can contain, see Section 13.2.7, "How to Use a Facet Component."

Example 13-2 shows the panelPage element defined in a MAF AMX file. This Panel Page contains a header Facet.

Example 13-2 Panel Page Definition

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="ot1" value="Welcome"/>
 </amx:facet>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.3 How to Use a Panel Group Layout Component

The Panel Group Layout component is a basic layout component that lays out its children horizontally or vertically. In addition, there is a wrapping layout option that enables child components to flow across and down the page.

To create the Panel Group Layout component, use the Components window.

To add the Panel Group Layout component:

	
In the Components window, drag and drop a Panel Group Layout to the MAF AMX page.

	
Insert the desired child components into the Panel Group Layout component.

	
To add spacing between adjacent child components, insert the Spacer (spacer) component.

	
Use the Properties window to set the component attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-3 shows the panelGroupLayout element defined in a MAF AMX file.

Example 13-3 Panel Group Layout Definition

<amx:panelGroupLayout styleClass="prod" id="pgl1">
 <amx:outputText styleClass="prod-label" value="Screen Size:" id="ot1"/>
</amx:panelGroupLayout>

13.2.3.1 Customizing the Scrolling Behavior

Scrolling behavior of the Panel Group Layout component is defined by its scrollPolicy attribute which can be set to auto (default), none, or scroll. By default, this behavior matches the one defined in the active skin.

To disable scrolling regardless of the behavior defined in the active skin, you set the scrollPolicy attribute to none. When the Panel Group Layout component is not scrollable, its content is not constrained.

To enable scrolling regardless of the behavior defined in the active skin, you set the scrollPolicy attribute to scroll. If the Panel Group Layout component is scrollable, the scrolling is provided when the component's dimensions are constrained.

Since scrolling consumes a lot of memory and may lead to the application crashing, you should minimize its use. In the mobileAlta skin (see Section 13.6.2, "What You May Need to Know About Skinning"), scrolling of the Panel Group Layout, Panel Form Layout (see Section 13.2.4, "How to Use a Panel Form Layout Component"), and Table Layout (see Section 13.2.11, "How to Use a Table Layout Component") is disabled. It is recommended that you use the mobileAlta skin for your application and limit instances of setting the scrollPolicy to scroll to when it is necessary. To simulate the scrolling behavior for the Panel Form Layout and Table Layout, you can enclose them within a scrollable Panel Group Layout component when scrolling is required.

For more information, see Section 13.3.15.2, "What You May Need to Know About Memory Consumption by MAF AMX UI Components."

13.2.4 How to Use a Panel Form Layout Component

The Panel Form Layout (panelFormLayout) component positions components so that their labels and fields align horizontally. In general, the main content of the Panel Form Layout component is comprised of input components (such as Input Text) and selection components (such as Choice). If a child component with a label attribute defined is placed inside the Panel Form Layout component, the child component's label and field are aligned and sized based on the Panel Form Layout definitions. Within the Panel Form Layout, the label area can either be displayed on the start side of the field area or on a separate line above the field area. Separate lines are used if the labelPosition attribute of the Panel Form Layout is set to topStart, topCenter, or topEnd. Otherwise the label area appears on the start side of the field area. Within the label area, the labelPosition attribute controls where the label text can be aligned:

	
to the start side (labelPosition="start" or labelPosition="topStart")

	
to the center (labelPosition="center" or labelPosition="topCenter")

	
to the end side (labelPosition="end" or labelPosition="topEnd")

Within the field area, the fieldHalign attribute controls where the field content can be aligned:

	
to the start side (fieldHalign="start")

	
to the center (fieldHalign="center")

	
to the end side (fieldHalign="end")

Within the Panel Form Layout, the child components can be placed in one or more columns using maxColumns and rows attributes. These attributes should be used in conjunction with labelWidth, fieldWidth, labelPosition, and showHorizontalDividers attributes to obtain the optimal multi-column layout.

	
Note:

To switch from a single-column to multi-column layout, the value of the rows attribute must be greater than 1, regardless of the value to which the maxColumns attribute is set. When the rows attribute is specified, the maxColumns attribute restricts the layout to that number of columns as a maximum; however, there are as many rows as are required to lay out the child components.

To add the Panel Form Layout component:

	
In the Components window, drag and drop a Panel Form Layout component to the MAF AMX page.

	
In the Properties window, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-4 shows the panelFormLayout element defined in a MAF AMX file.

Example 13-4 Panel Form Layout Definition

<amx:panelFormLayout styleClass="prod" id="pfl1">
 <amx:panelLabelAndMessage label="Type" id="plm1">
 <amx:commandLink text="Personal" action="edittype" id="cl1"/>
 </amx:panelLabelAndMessage>
</amx:panelFormLayout>

13.2.5 How to Use a Panel Stretch Layout Component

The Panel Stretch Layout (panelStretchLayout) component manages three child Facet components: top, bottom, and center (see Example 13-5). You can use any number and combination of these facets.

Example 13-5 Basic Panel Stretch Layout Definition

<amx:panelStretchLayout id="psl1">
 <amx:facet name="top">
 </amx:facet>
 <amx:facet name="center">
 </amx:facet>
 <amx:facet name="bottom">
 </amx:facet>
</amx:panelStretchLayout>

If an attempt is made to represent the Panel Stretch Layout component as a set of three rectangles stacked one on top of another, the following would apply:

	
The height of the top rectangle is defined by the natural height of the top facet.

	
The height of the bottom rectangle is defined by the natural height of the bottom facet.

	
The rest of the vertical space is distributed to the rectangle in the middle. If the height of this rectangle is smaller than the value defined for Center.height and the scrollPolicy attribute of the panelStretchLayout is set to either scroll or auto, then scroll bars are added.

To add the Panel Stretch Layout component:

	
In the Components window, drag and drop a Panel Stretch Layout onto the MAF AMX page.

	
Review the created child Facet components and, if necessary, remove some of them.

	
Use the Properties window to set the component attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.6 How to Use a Panel Label And Message Component

Use the Panel Label And Message (panelLabelAndMessage) component to place a component which does not have a label attribute. These components usually include an Output Text, Button, or Link.

To add the Panel Label And Message component:

	
In the Components window, drag and drop a Panel Label And Message component into a Panel Group Layout component.

	
In the Properties window, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-4 shows the panelLabelAndMessage element defined in a MAF AMX file. The label attribute is used for the child component.

Example 13-6 Panel Label and Message Definition

<amx:panelLabelAndMessage label="Phone" id="plm1">
 <amx:outputText value="212-555-0123" id="ot1"/>
</amx:panelLabelAndMessage>

13.2.7 How to Use a Facet Component

You use the Facet (facet) component to define an arbitrarily named facet, such as a header or footer, on the parent layout component. The position and rendering of the Facet are determined by the parent component.

The MAF AMX page header is typically represented by the Panel Page component (see Section 13.2.2, "How to Use a Panel Page Component") in combination with the Header, Primary, and Secondary facets:

	
Header facet: contains the page title.

	
Primary Action facet: represents an area that appears in the left corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Secondary Action facet: represents an area that appears in the right corner of the header bar and typically hosts Button or Link components, but can contain any component type.

The MAF AMX page footer is represented by the Panel Page component (see Section 13.2.2, "How to Use a Panel Page Component") in combination with the footer facet:

	
Footer facet: represents an area that appears below the content area and typically hosts Button or Link components, but can contain any component type.

Example 13-7 shows the facet element declared inside the Panel Page container. The type of the facet is always defined by its name attribute (see Table 13-2).

Example 13-7 Facet Definition

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2" icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action"move"/>
 </amx:facet>
</amx:panelPage>

Table 13-2 lists predefined Facet types that you can use with specific parent components.

Table 13-2 Facet Types and Parent Components

	Parent Component	Facet Type (name)
	
Panel Page (panelPage)

	
header, footer, primary, secondary

	
List View (listView)

	
header, footer

	
Carousel (carousel)

	
nodeStamp

	
Panel Splitter (panelSplitter)

	
navigator

	
Panel Stretch Layout (panelStretchLayout)

	
top, center, bottom

	
Data Visualization Components.

For more information, see Section 13.5, "Providing Data Visualization."

	
dataStamp, seriesStamp, overview, rows (applicable to NBox), columns (applicable to NBox), cells (applicable to NBox), icon (applicable to NBox Node), indicator (applicable to NBox Node)

To add the Facet component:

You can use the context menu displayed on the Structure window or Source editor to add a Facet component as a child of another component. The context menu displays only facets that are valid for your selected parent component. To add a Facet, first select and then right-click the parent component in the Structure window or Source editor, and then select one of the following:

	
If the parent component is a Panel Page, select Facets - Panel Page, and then choose the type of Facet from the list, as Figure 13-2 shows.

Figure 13-2 Using Context Menu to Add Facet to Panel Page

[image: This image is described in the surrounding text]

	
If the parent component is a List View, select Facets - List View, and then choose the type of Facet from the list, as Figure 13-3 shows.

Figure 13-3 Using Context Menu to Add Facet to List View

[image: This image is described in the surrounding text]

	
If the parent component is a Carousel, select Facets - Carousel > Node Stamp, as Figure 13-4 shows.

Figure 13-4 Using Context Menu to Add Facet to Carousel

[image: This image is described in the surrounding text]

	
If the parent component is a Panel Splitter, select Facets - Panel Splitter > Navigator, as Figure 13-5 shows.

Figure 13-5 Using Context Menu to Add Facet to Panel Splitter

[image: This image is described in the surrounding text]

	
If the parent component is a Panel Stretch Layout, select Facets - Panel Stretch Layout, and then choose the type of Facet from the list, as Figure 13-6 shows.

Figure 13-6 Using Context Menu to Add Facet to Panel Stretch Layout

[image: This image is described in the surrounding text]

	
If the parent component is one of the data visualization components, select Facets > <MAF AMX Data Visualizations Component Name>, and then choose the type of Facet from the list, as Figure 13-7 shows.

Figure 13-7 Using Context Menu to Add Facet to Data Visualization Component

[image: This image is described in the surrounding text]

For more information about data visualization components and their attributes, see Section 13.5, "Providing Data Visualization."

Alternatively:

	
In the Components window, drag and drop a Facet component into another component listed in Table 13-2.

	
In the Properties window, set the component's attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.8 How to Use a Popup Component

Use the Popup (popup) component to display a popup window. You can declare this component as a child of the View component.

You can use the following operations in conjunction with the Popup component:

	
Close Popup Behavior (closePopupBehavior) operation represents a declarative way to close the Popup in response to a client-triggered event specified using the type attribute of the Close Popup Behavior.

For more information about the Close Popup Behavior component's attributes and their values, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

	
Show Popup Behavior (showPopupBehavior) operation represents a declarative way to show the Popup in response to a client-triggered event specified using the type attribute of the Show Popup Behavior.

The popupId attribute of the Show Popup Behavior specifies the unique identifier of the Popup component relative to its parent component. The alignId attribute of the Show Popup Behavior specifies the unique identifier of the UI component relative to which the Popup is to be aligned. Since setting identifiers manually is tedious and can lead to invalid references, you set values for these two attributes using an editor that is integrated with the standard Properties window (see Figure 13-9). There is an Audit rule that is specifically defined to validate these identifiers (see Section 12.3.2.5, "What You May Need to Know About Element Identifiers and Their Audit").

The decoration attribute of the Show Popup Behavior allows you to configure the Popup to have an anchor pointing to the component that matches the specified alignId. You do so by setting the decoration attribute to anchor (the default value is simple).

	
Note:

There is no need to define decoration="anchor" to use the alignId attribute. When using decoration="anchor", if the alignId attribute is not specified or a match is not found for the alignId, the decoration defaults to simple resulting in minimal ornamentation of the Popup component.

Values you set for the align attribute of the Show Popup Behavior indicate where the alignment of the Popup component is to be positioned if there is enough space to satisfy that positioning. When there is not enough space, alternate positioning is chosen by MAF.

	
Tip:

To center a Popup on the screen, you should set the alignId attribute of the Panel Page component, and then use the align="center".

For more information on the Show Popup Behavior component's attributes and their values, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-8 shows popup and its showPopupBehavior and closePopupBehavior elements defined in a MAF AMX file.

Example 13-8 Popup, Show Popup Behavior, and Close Popup Behavior Definition

<amx:view>
 <amx:panelPage id="panelPage1">
 <amx:commandButton id="commandButton1" text="Show Popup">
 <amx:showPopupBehavior popupId="popup1" type="action"
 align="topStart" alignId="panelPage1"
 decoration="anchor"/>
 </amx:commandButton>
 </amx:panelPage>
 <amx:popup id="popup1"
 animation="slideUp"
 autoDismiss="true"
 backgroundDimming="off">
 <amx:panelGroupLayout id="pgl2" layout="vertical">
 <amx:commandButton id="commandButton3" text="Close Popup">
 <amx:closePopupBehavior type="action" popupId="popup1"/>
 </amx:commandButton>
 </amx:panelGroupLayout>
 </amx:popup>
</amx:view>

Popup components can display validation messages when the user input errors occur. For more information, see Section 13.9, "Validating Input."

To set a Popup Id attribute:

	
Select either the showPopupBehavior or closeopupBehavior element in the Source editor or Structure window.

	
Click the down arrow to the right of the Popup Id field to make a selection from a list of available Popup components (see Figure 13-8), or click on the Property Menu icon to the right of the Popup Id field to open the Popup Id property editor (see Figure 13-9).

Figure 13-8 Selecting Popup Id from List

[image: This image is described in the surrounding text]

Figure 13-9 Setting Popup Id Attribute

[image: This image is described in the surrounding text]

	
If you use the property editor, select Edit on the Popup Id property editor to open the Edit Property: Popup Id dialog that Figure 13-10 shows.

Figure 13-10 Edit Property for Popup Id Dialog

[image: This image is described in the surrounding text]

	
Select the Popup component to be displayed or the Popup component to be closed when this Show Popup Behavior or Close Popup Behavior is invoked.

To set an Align Id attribute:

	
Select the showPopupBehavior element in the Source editor or Structure window.

	
Click on the Property Menu icon to the right of the Align Id field to open the Align Id property editor, as Figure 13-11 shows.

Figure 13-11 Setting Align Id Attribute

[image: This image is described in the surrounding text]

	
Select Edit on the Align Id property editor to open the Edit Property: Align Id dialog that Figure 13-12 shows.

Figure 13-12 Edit Property for Align Id Dialog

[image: This image is described in the surrounding text]

	
Select the parent component of the Show Popup Behavior operation.

When developing for both iOS platform and Android 4.2 or later platform, you can configure the Popup to accommodate the right-to-left (RTL) language environment by setting its animation attribute to either slideStart or slideEnd.

A MAF sample application called UIDemo demonstrates how to use the Popup component and how to apply styles to adjust the page layout to a specific pattern. The UIDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

13.2.9 How to Use a Panel Splitter Component

Use the Panel Splitter (panelSplitter) component to display multiple content areas that may be controlled by a left-side navigation pane. Panel Splitter components are commonly used on tablet devices that have larger display size. These components are typically used with a list on the left and the content on the right side of the display area.

A Panel Splitter can contain a navigator Facet (see Section 13.2.7, "How to Use a Facet Component") which is generated automatically when you drag and drop the Panel Splitter onto a MAF AMX page, and a Panel Item component. The Panel Item (panelItem) component represents the content area of a Panel Splitter. Since each Panel Splitter component must have a least one Panel Item, the Panel Item is automatically added to the Panel Splitter when the Panel Splitter is created. Each Panel Item component can contain any component that a Panel Group Layout can contain (see Section 13.2.3, "How to Use a Panel Group Layout Component").

The left side of the Panel Splitter is represented by a navigator facet (navigator), which is optional in cases where only multiple content with animations is desired (for example, drawing a multicontent area with a Select Button that requires animation when selecting different buttons to switch content). When in landscape mode, this facet is rendered; in portrait mode, a button is placed above the content area and when clicked, the content of the facet is launched in a popup.

When developing for both iOS platform and Android 4.2 or later platform, you can configure the Panel Splitter and Panel Item to accommodate the right-to-left (RTL) language environment by setting their animation attribute to either slideStart, slideEnd, flipStart, or flipEnd. The animation attribute of the Panel Item components overrides the Panel Splitter's animation attribute. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-9 shows the panelSplitter element defined in a MAF AMX file, with the navigator facet used as a child component.

Example 13-9 Panel Splitter with Navigator Definition

<amx:panelSplitter id="ps1"
 selectedItem="#{bindings.display.inputValue}"
 animation="flipEnd">
 <amx:facet name="navigator">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport>
 ...
 </listView>
 </facet>
 <amx:panelItem id="x">
 <amx:panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
 <amx:panelItem id="y">
 <amx:panelGroupLayout>
 ...
 </panelGroupLayout>
 </panelItem>
</panelSplitter>

For more examples, see the UIDemo application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.10 How to Use a Spacer Component

Use the Spacer (spacer) component to create an area of blank space with a purpose to separate components on a MAF AMX page. You can include vertical and horizontal spaces in a page using the height (for vertical spacing) and width (for horizontal spacing) attributes of the spacer:

To add the Spacer component:

	
In the Components window, drag and drop a Spacer onto the MAF AMX page.

	
Use the Properties window to set the attributes of the component. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-10 shows the spacer element and its children defined in a MAF AMX file.

Example 13-10 Defining Spacer

<amx:outputText id="ot1" value="This is a long piece of text for this page..."/>
<amx:spacer id="s1" height="10"/>
<amx:outputText id="ot2" value="This is some more lengthy text..."/>

13.2.11 How to Use a Table Layout Component

Use the Table Layout (tableLayout) component to display data in a typical table format that consists of rows containing cells.

The Row Layout (rowLayout) component represents a single row in the Table Layout. The Table Layout component must contain either one or more Row Layout components or Iterator components that can produce Row Layout components.

The CellFormat (cellFormat) component represents a cell in the Row Layout. The Row Layout component must contain either one or more CellFormat components, Iterator components, Attribute List Iterator components, or Facet Definition components that can produce CellFormat components.

The Table Layout structure does not allow cell contents to use percentage heights nor can a height be assigned to the overall table structure as a whole. For details, see the description of the following attributes in the Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework:

	
layout and width attributes of the Table Layout component

	
width and height attributes of the Row Layout component

To add the Table Layout component:

	
In the Components window, drag and drop a Table Layout onto the MAF AMX page.

	
Insert the desired number of Row Layout, Iterator, Attribute List Iterator, or Facet Definition child components into the Table Layout component.

	
Insert Cell Format, Iterator, Attribute List Iterator, or Facet Definition child components into each Row Layout component.

	
Use the Properties window to set the attributes of all added components. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-11 shows the tableLayout element and its children defined in a MAF AMX file.

Example 13-11 Defining Table Layout

<amx:tableLayout id="tableLayout1"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="#{pageFlowScope.pInlineStyle}"
 borderWidth="#{pageFlowScope.pBorderWidth}"
 cellPadding="#{pageFlowScope.pCellPadding}"
 cellSpacing="#{pageFlowScope.pCellSpacing}"
 halign="#{pageFlowScope.pHalign}"
 layout="#{pageFlowScope.pLayoutTL}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 summary="#{pageFlowScope.pSummary}"
 width="#{pageFlowScope.pWidth}">
 <amx:rowLayout id="rowLayout1">
 <amx:cellFormat id="cellFormatA" rowSpan="2" halign="center">
 <amx:outputText id="otA" value="Cell A"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatB" rowSpan="2" halign="center">
 <amx:outputText id="otB" value="Cell B (wide content)"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatC" rowSpan="2" halign="center">
 <amx:outputText id="otC" value="Cell C"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rowLayout2">
 <amx:cellFormat id="cellFormatD" halign="end">
 <amx:outputText id="otD" value="Cell D"/>
 </amx:cellFormat>
 <amx:cellFormat id="cellFormatE">
 <amx:outputText id="otE" value="Cell E"/>
 </amx:cellFormat>
 </amx:rowLayout>
</amx:tableLayout>

13.2.12 How to Use a Deck Component

The Deck (deck) component represents a container that shows one of its child components at a time. The transition from one displayed child component (defined by the displayedChild attribute) to another is enabled by the Transition (transition) operation. The transition can take a form of animation. For more information about the transition, see Section 12.2.11, "How to Specify the Page Transition Style."

The Deck can be navigated forward and backwards.

To add the Deck component:

	
In the Components window, drag and drop a Deck onto the MAF AMX page.

	
Insert the desired number of Transition operations and child UI components into the Deck component.

	
Use the Properties window to set the attributes of all added components. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-12 shows the deck element and its children defined in a MAF AMX file. The Deck component's displayedChild attribute to define which child component ID should be displayed. Typically, this is controlled by a component such as a Select One Button or other selection component.

Example 13-12 Deck Definition

<amx:deck id="deck1"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="width:95px;height:137px;overflow:hidden;
 #{pageFlowScope.pInlineStyle}"
 landmark="#{pageFlowScope.pLandmark}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 displayedChild="#{pageFlowScope.pDisplayedChild}">

 <amx:transition triggerType="#{pageFlowScope.pTriggerType}"
 transition="#{pageFlowScope.pTransition}"/>
 <amx:transition triggerType="#{pageFlowScope.pTriggerType2}"
 transition="#{pageFlowScope.pTransition2}"/>
 <amx:commandLink id="linkCardBack1" text="Card Back">>
 <amx:setPropertyListener from="linkCardA"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardA1" text="Card Front A">
 <amx:setPropertyListener id="setPL1"
 from="linkCardB"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardB1" text="Card Front B">
 <amx:setPropertyListener id="setPL2"
 from="linkCardC"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardC1" text="Card Front C">
 <amx:setPropertyListener id="setPL3"
 from="linkCardD"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardD1" text="Card Front D">
 <amx:setPropertyListener id="setPL4"
 from="linkCardE"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
 <amx:commandLink id="linkCardE1" text="Card Front E">
 <amx:setPropertyListener id="setPL5"
 from="linkCardBack"
 to="#{pageFlowScope.pDisplayedChild}"/>
 </amx:commandLink>
</amx:deck>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.2.13 How to Use the Fragment Component

The Fragment (fragment) component enables sharing of MAF AMX page contents. This component is used in conjunction with a MAF AMX fragment file. For more information, see Section 12.3.1.6, "Sharing the Page Contents."

To add the Fragment component:

	
In the Components window, drag and drop a Fragment to the MAF AMX page.

	
Use the Insert Fragment dialog to set the Src attribute of the Fragment to a fragment file (.amxf).

	
Optionally, use the Structure view to add child components, such as an Attribute, Attribute List, or Facet.

Figure 13-13 Populating Fragment

[image: This image is described in the surrounding text]

	
Use the Properties window to set the attributes of all added components. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

	
Add the Facet Definition (facetRef) to the MAF AMX fragment file whose contents is to be included in the Fragment and set the facetRef's facetName attribute to the name of a facet.

Example 12-12, "Fragment in MAF AMX Page" shows a fragment element added to a MAF AMX page. Example 12-11, "Fragment Definition" shows the corresponding MAF AMX fragment file.

A MAF sample application called FragmentDemo demonstrates how to create and use the Fragment. This sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

13.3 Creating and Using UI Components

You can use the following UI components when developing your MAF AMX application feature:

	
Input Text (see Section 13.3.1, "How to Use the Input Text Component")

	
Input Number Slider (see Section 13.3.2, "How to Use the Input Number Slider Component")

	
Input Date (see Section 13.3.3, "How to Use the Input Date Component")

	
Output Text (see Section 13.3.4, "How to Use the Output Text Component")

	
Button (see Section 13.3.5, "How to Use Buttons")

	
Link (see Section 13.3.6, "How to Use Links")

	
Image (see Section 13.3.7, "How to Display Images")

	
Checkbox (see Section 13.3.8, "How to Use the Checkbox Component")

	
Select Many Checkbox (see Section 13.3.9, "How to Use the Select Many Checkbox Component")

	
Select Many Choice (see Section 13.3.11, "How to Use the Select Many Choice Component")

	
Boolean Switch (see Section 13.3.12, "How to Use the Boolean Switch Component")

	
Choice (see Section 13.3.10, "How to Use the Choice Component")

	
Select Button (see Section 13.3.13, "How to Use the Select Button Component")

	
Radio Button (see Section 13.3.14, "How to Use the Radio Button Component")

	
List View (see Section 13.3.15, "How to Use List View and List Item Components")

	
Carousel (see Section 13.3.16, "How to Use Carousel Component")

	
Film Strip (see Section 13.3.17, "How to Use the Film Strip Component")

	
Verbatim (see Section 13.3.18, "How to Use Verbatim Component")

	
Output HTML (see Section 13.3.19, "How to Use Output HTML Component")

	
Iterator (see Section 13.3.20, "How to Enable Iteration")

You can also use the following miscellaneous components that include operations, listener-type components, and converters as children of the UI components when developing your MAF AMX application feature:

	
Load Bundle (see Section 13.3.21, "How to Load a Resource Bundle")

	
Action Listener (see Section 13.3.22, "How to Use the Action Listener")

	
Set Property Listener (see Section 13.3.23, "How to Use the Set Property Listener")

	
Client Listener (see Section 13.3.24, "How to Use the Client Listener")

	
Convert Date Time (see Section 13.3.25, "How to Convert Date and Time Values")

	
Convert Number (see Section 13.3.26, "How to Convert Numerical Values")

	
Navigation Drag Behavior (see Section 13.3.27, "How to Enable Drag Navigation")

	
Loading Indicator Behavior (see Section 13.3.28, "How to Use the Loading Indicator")

You add a UI component by dragging and dropping it onto a MAF AMX page from the Components window (see Section 12.3.2.1, "Adding UI Components"). Then you use the Properties window to set the component's attributes (see Section 12.3.2.3, "Configuring UI Components"). For information on attributes of each particular component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

	
Note:

On a MAF AMX page, you place UI components within layout components (see Section 13.2, "Designing the Page Layout"). UI elements are declared under the <amx> namespace, except data visualization components that are declared under the <dvtm> namespace.

You can add event listeners to some UI components. For more information, see Section 13.10, "Using Event Listeners." Event listeners are applicable to components for the MAF AMX runtime description on both iOS and Android-powered devices, but the listeners do not have any effect at design time.

For information on the UI components' support for accessibility, see Section 13.8, "Understanding MAF Support for Accessibility."

	
Note:

MAF does not evaluate EL expressions at design time. If the value of a component's attribute is set to an expression, this value appears as such in JDeveloper's Preview and the component may look different at runtime.

The user interface created for both iOS platform and Android 4.2 or later platform using MAF AMX displays correctly in both the left-to-right (LTR) and right-to-left (RTL) language environments. In the latter case, the components originate on the right-hand side of the screen instead of on the left-hand side.

A MAF sample application called CompGallery demonstrates how to create and configure MAF AMX UI components. Another sample application called UIDemo shows how to lay out components on a MAF AMX page. The sample applications are located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

13.3.1 How to Use the Input Text Component

The Input Text (inputText) component represents an editable text field. The following types of Input Text components are available:

	
Standard single-line Input Text, which is declared as an inputText element in a MAF AMX file:

<amx:inputText id="text1"
 label="Text Input:"
 value="#{myBean.text}" />

	
Password Input Text:

<amx:inputText id="text1"
 label="Password Input:"
 value="#{myBean.text}"
 secret="true" />

	
Multiline Input Text (also known as text area):

<amx:inputText id="text1"
 label="Textarea:"
 value="#{myBean.text}"
 simple="true"
 rows="4" />

Figure 13-14 shows the Input Text component displayed in the Preview pane. This component has its parameters set as follows:

<amx:inputText id="inputText1"
 label="Input Text"
 value="text"/>

Figure 13-14 Input Text at Design Time

[image: This image is described in the surrounding text]

The inputType attribute lets you define how the component interprets the user input: as a text (default), email address, number, telephone number, or URL. These input types are based on the values allowed by HTML5.

To enable conversion of numbers, as well as date and time values that are entered in the Input Text component, you use the Convert Number (see Section 13.3.26, "How to Convert Numerical Values") and Convert Date Time (see Section 13.3.25, "How to Convert Date and Time Values") components.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

On some mobile devices, when the end user taps an Input Text field, the keyboard is displayed (slides up). If an Input Text is the only component on a MAF AMX page, the input focus is on this field and the keyboard is displayed by default when the page loads.

A multiline Input Text may be displayed on a secondary page where it is the only component, in which case the multiline Input Text receives focus when the page loads and the keyboard becomes visible.

Input Text components render and behave differently on iOS and Android-powered devices: on iPhone and iPad, Input Text components may be displayed with or without a border.

When creating an Input Text component, consider the following:

	
To input or edit content, the end user has to tap in the field, which triggers a blinking insertion cursor to be displayed at the point of the tap, allowing the end user to edit the content. If the field does not contain content, the insertion cursor is positioned at the start of the field.

	
Fields represented by Input Text components may contain default text, typically used as a prompt. When the end user taps a key on the keyboard in such a field, the default text clears when Edit mode is entered. This behavior is enabled and configured through the Input Text's hintText attribute.

	
Fields represented by Input Text components do not have a selected appearance. Selection is indicated by the blinking insertion cursor within the field.

	
If the end user enters more text than fits in the field, the text content shifts left one character at a time as the typing continues.

	
A multiline Input Text component is rendered as a rectangle of any height. This component supports scrolling when the content is too large to fit within the boundaries of the field: rows of text scroll up as the text area fills and new rows of text are added. The end user may flick up or down to scroll rows of text if there are more rows than can be displayed in the given display space. A scroll bar is displayed within the component to indicate the area is being scrolled.

	
Password field briefly echoes each typed character, and then reverts the character to a dot to protect the password.

	
The appearance and behavior of the Input Text component on iOS can be customized (see Section 13.3.1.1, "Customizing the Input Text Component").

13.3.1.1 Customizing the Input Text Component

MAF AMX provides support for the input capitalization and correction on iOS-powered devices. It also allows you to indicate whether the field is to be used for navigating or for searching. Depending on the version of the operating system and keyboard used, the return button located at the bottom right of the mobile devices's soft keypad (see Figure 13-15) might visually change to a Go or Search button (see Figure 13-16). In addition, upon activation the button triggers a DataChangeEvent for a single-line Input Text component.

Figure 13-15 Return Button on iOS-Powered Device at Runtime

[image: This image is described in the surrounding text]

Figure 13-16 Go and Search Buttons on iOS 7 at Runtime

[image: This image is described in the surrounding text]

Table 13-3 lists attributes of the Input Text component that allow you to customize the appearance and behavior of that component and the soft keypad that is used to enter values into fields represented by the Input Text.

Table 13-3 Input-Customizing Attributes of the Input Text Component

	Attribute	Values	Description
	
keyboardDismiss

	
	
normal: use the operating system's default.

	
go: request the field to act like a trigger for behavior.

	
search: request the field to act like a search field that triggers a lookup.

	
Indicates how the text field is to be used.

If go or search is specified, dismissing the keyboard will cause the input to blur.

Some operating systems or keyboards might give special treatment to the keyboard, whereas others show no visual distinction. For example, instead of displaying a Return button on a single-line input text field, that button is replaced with a Go or a Search button. Depending on the skin, this may also alter the appearance of the input field.

	
autoCapitalize

	
	
auto: use the operating system's default.

	
sentences: request that sentences comprising the input start with a capital letter.

	
none: request that no capitalization be applied automatically to the input.

	
words: request that words comprising the input start with capital letters.

	
characters: request that each character typed as an input become capitalized.

	
Requests special treatment by iOS for capitalization of values while the field represented by the Input Text is being edited.

[image: Autocap on iOS at Runtime]
Note that setting this property has no impact on Android.

	
autoCorrect

	
	
auto: use the operating system's default.

	
on: request auto-correct support for the input.

	
off: request auto-correct of the input be disabled.

	
Requests special treatment by iOS for correcting values while the field represented by the Input Text is being edited.

[image: Autocorrect on iOS at Runtime]
Note that setting this property has no impact on Android.

Since iOS provides limited support for auto-capitalization and auto-correction on its device simulator, you must test this functionality on an iOS device.

13.3.2 How to Use the Input Number Slider Component

The Input Number Slider (inputNumberSlider) component enables selection of numeric values from a range of values by using a slider instead of entering the value by using keys. The filled portion of the trough or track of the slider visually represents the current value.

The Input Number Slider may be used in conjunction with the Output or Input Text component to numerically show the value of the slider. The Input Text component also allows direct entry of a slider value: when the end user taps the Input Text field, the keyboard in numeric mode slides up; the keyboard can be dismissed by either using the slide-down button or by tapping away from the slider component.

The Input Number Slider component always shows the minimum and maximum values within the defined range of the component.

	
Note:

The Input Number Slider component should not be used in cases where a precise numeric entry is required or where there is a wide range of values (for example, 0 to 1000).

Example 13-13 demonstrates the inputNumberSlider element defined in a MAF AMX file.

Example 13-13 Input Number Slider Definition

<amx:inputNumberSlider id="slider1" value="#{myBean.count}"/>

Figure 13-17 shows the Input Number Slider component displayed in the Preview pane. This component has its parameters set as follows:

<amx:inputNumberSlider id="inputNumberSlider1"
 label="Input Number"
 minimum="0"
 maximum="20"
 stepSize="1"
 value="10"/>

Figure 13-17 Input Number Slider at Design Time

[image: This image is described in the surrounding text]

To enable conversion of numbers that are entered in the Input Number Slider component, you use the Convert Number component (see Section 13.3.26, "How to Convert Numerical Values").

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

Similar to other MAF AMX UI components, the Input Number Slider component has a normal and selected state. The component is in its selected state at any time it is touched. To change the slider value, the end user touches, and then interacts with the slider button.

The Input Number Slider component has optional imageLeft and imageRight attributes which point to images that can be displayed on either side of the slider to provide the end user with additional information.

13.3.3 How to Use the Input Date Component

The Input Date (inputDate) component presents a popup input field for entering dates. The default date format is the short date format appropriate for the current locale. For example, the default format in American English (ENU) is mm/dd/yy. The inputType attribute defines if the component accepts date, time, or date and time as an input. The time zone depends on the time zone configured for the mobile device, and, therefore, it is relative to the device. At runtime, the Input Date component has the device's native look and feel.

Example 13-14 demonstrates the inputDate element defined in a MAF AMX file. The inputType attribute of this component is set to the default value of date. If the value attribute is read-only, it can be set to either an EL expression or any other type of value; if value is not a read-only attribute, it can be specified only as an EL expression.

Example 13-14 Input Date Definition

<amx:inputDate id="inputDate1" label="Input Date" value="#{myBean.date}"/>

For more information, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
HTML5 global dates and times defined by W3C

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.4 How to Use the Output Text Component

MAF AMX provides the Output Text (outputText) component for you to use as a label to display text.

Example 13-15 demonstrates the outputText element defined in a MAF AMX file.

Example 13-15 Output Text Definition

<amx:outputText id="ot1"
 value="output"
 styleClass="#{pageFlowScope.pStyleClass}"/>

Figure 13-18 shows the Output Text component displayed in the Preview pane.

Figure 13-18 Output Text at Design Time

[image: This image is described in the surrounding text]

You use the Convert Number (see Section 13.3.26, "How to Convert Numerical Values") and Convert Date Time (see Section 13.3.25, "How to Convert Date and Time Values") converters to facilitate the conversion of numerical and date-and-time-related data for the Output Text components.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery and UIDemo, MAF sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5 How to Use Buttons

The Button (commandButton) component is used to trigger actions (for example, Save, Cancel, Send) and to enable navigation to other pages within the application (for example, Back: see Section 13.3.5.7, "Enabling the Back Button Navigation" for more information).

You may use the Button in one of the following ways:

	
Button with a text label.

	
Button with a text label and an image icon.

	
Note:

You may define the icon image and placement as left or right of the text label.

	
Button with an image icon only (for example, the " + " and " - " buttons for adding or deleting records).

MAF supports one default Button type for the following three display areas:

	
Buttons that appear in the top header bar: in MAF AMX pages, the header is represented by the Panel Page component (see Section 13.2.2, "How to Use a Panel Page Component") in combination with the header, primary, and secondary facets, which is typical on iPhones:

	
Header Facet contains the page title.

	
Primary Action Facet represents an area that appears in the left corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Secondary Action Facet represents an area that appears in the right corner of the header bar and typically hosts Button or Link components, but can contain any component type.

	
Buttons that appear in the content area of a page.

	
Buttons that appear in the footer bar of a page. In MAF AMX pages, the footer is represented by the Panel Page component (see Section 13.2.2, "How to Use a Panel Page Component") in combination with the footer facet:

	
Footer Facet represents an area that appears below the content area and typically hosts Button or Link components, but can contain any component type.

All Button components of any type have three states:

	
Normal.

	
Activated: represents appearance when the Button is tapped or touched by the end user. When a button is tapped (touch and release), the button action is performed. Upon touch, the activated appearance is displayed; upon release, the action is performed. If the end user touches the button and then drags their finger away from the button, the action is not performed. However, for the period of time the button is touched, the activated appearance is displayed.

	
Disabled.

The appearance of a Button component is defined by its styleClass attribute that you set to an adfmf-commandButton-<style>. You can apply any of the styles detailed in Table 13-4 to a Button placed in any valid location within the MAF AMX page.

Table 13-4 Main Button Styles

	Button Style Name	Description
	
Default

	
The default style of a Button placed:

	
In any of the Panel Page facets (Primary, Secondary, Header, Footer). For more information, see Section 13.3.5.1, "Displaying Default Style Buttons."

	
Anywhere in the content area of a MAF AMX page. This style is used for buttons that are to perform specific actions within a page, typically based on their location or context within the page.

	
Back

	
The back style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer). This style may be applied to the default Button to give the "back to page" appearance. This button style is typical for "Back to Springboard" or any "Back to Page" buttons.

For more information, see Section 13.3.5.2, "Displaying Back Style Buttons."

	
Highlight

	
The highlight style of a Button placed in any of the Panel Page facets (Primary, Secondary, Header, Footer) or the content area of a MAF AMX page. This style may be added to a Button to provide the iPhone button appearance typical of Save (or Done) buttons.

For more information, see Section 13.3.5.3, "Displaying Highlight Style Buttons."

	
Alert

	
The Alert style adds the delete appearance to a button. For more information, see Section 13.3.5.4, "Displaying Alert Style Buttons."

There is a Rounded style (adfmf-commandButton-rounded) that you can apply to a Button to decorate it with a thick rounded border (see Figure 13-19). You can define this style in combination with any other style.

Figure 13-19 Rounded Button at Design Time

[image: This image is described in the surrounding text]

MAF AMX provides a number of additional decorative styles (see Section 13.3.5.5, "Using Additional Button Styles").

There is a particular order in which MAF AMX processes the Button component's child operations and attributes. For more information, see Section 13.3.5.8, "What You May Need to Know About the Order of Processing Operations and Attributes."

13.3.5.1 Displaying Default Style Buttons

The following are various types of default style buttons that can be placed within Panel Page facets or content area:

	
Normal, activated, or disabled Button with a text label only.

	
Normal, activated, or disabled Button with an image icon only.

Example 13-16 and Example 13-17 demonstrate the commandButton element declared in a MAF AMX file.

Example 13-16 Definition of Default Button with Text Label

<amx:panelPage id="pp1">
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Cancel"
 action="cancel"
 actionListener="#{myBean.rollback}"/>
 </amx:facet>
</amx:panelPage>

Example 13-17 Definition of Default Button with Image Icon

<amx:panelPage id="pp1">
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 icon="plus.png"
 action="add"
 actionListener="#{myBean.AddItem}"/>
 </amx:facet>
</amx:panelPage>

Example 13-18 shows the commandButton element declared inside the Panel Page's footer facet.

Example 13-18 Definition of Default Button with Text Label and Image in Footer Facet

<amx:panelPage id="pp1">
 <amx:facet name="footer">
 <amx:commandButton id="cb2"
 icon="folder.png"
 text="Move (#{myBean.mailcount})"
 action="move"/>
 </amx:facet>
</amx:panelPage>

Example 13-19 demonstrates the commandButton element declared as a part of the Panel Page content area.

Example 13-19 Definition of Default Button with Text Label in the Page Content Area

<amx:panelPage id="pp1">
 <amx:commandButton id="cb1"
 text="Reply"
 actionListener="#{myBean.share}"/>
</amx:panelPage>

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5.2 Displaying Back Style Buttons

The following are various types of back style buttons that are placed within Panel Page facets or content area:

	
Normal, activated, or disabled Button with a text label only.

	
Normal, activated, or disabled Button with an image icon only:

Example 13-20 demonstrates the commandButton element declared in a MAF AMX file.

Example 13-20 Definition of Back Button with Text Label

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="Details" id="ot1"/>
 </amx:facet>
 <amx:facet name="primary">
 <amx:commandButton id="cb1"
 text="Back"
 action="__back"/>
 </amx:facet>
 ...
</amx:panelPage>

Every time you place a Button component within the primary facet and set its action attribute to __back, MAF AMX automatically applies the back arrow styling to it, as Figure 13-20

Figure 13-20 Back Button an Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5.3 Displaying Highlight Style Buttons

Similar to other types of Buttons, highlight style buttons that are placed within Panel Page facets or content area can have their state as normal, activated, or disabled.

Example 13-21 demonstrates the commandButton element declared in a MAF AMX file.

Example 13-21 Definition of Highlight Button with Text Label

<amx:panelPage id="pp1">
 <amx:facet name="secondary">
 <amx:commandButton id="cb2"
 text="Save"
 action="save"
 styleClass="adfmf-commandButton-highlight"/>
 </amx:facet>
</amx:panelPage>

Figure 13-21 Highlight Button at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5.4 Displaying Alert Style Buttons

Alert style buttons placed within the Panel Page can have normal, activated, or disabled state.

Example 13-22 demonstrates the commandButton element declared in a MAF AMX file.

Example 13-22 Definition of Alert Button with Text Label

<amx:commandButton id="cb1"
 text="Delete"
 actionListener="#{myBean.delete}"
 styleClass="adfmf-commandButton-alert" />

Figure 13-22 Alert Button at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5.5 Using Additional Button Styles

MAF AMX provides the following additional Button styles:

	
Dark style

	
Bright style

	
Small style

	
Large style

	
Highlight style

	
Confirm style

	
Two varieties of the Alternate style

Figure 13-23 Additional Button Styles

[image: This image is described in the surrounding text]

13.3.5.6 Using Buttons Within the Application

In your MAF application, you can use the Button component within the following contexts:

	
Navigation Bar

	
The Content Area to perform specific actions

	
Action Sheets

	
Popup-style Alert Messages

Navigation Bar

MAF lets you create standard buttons for use on a navigation bar:

	
Edit button allows the end user to enter an editing or content-manipulation mode.

	
Cancel button allows the end user to exit the editing or content-manipulation mode without saving changes.

	
Save button allows the end user to exit the editing or content-manipulation mode by saving changes.

	
Done button allows the end user to exit the current mode and save changes, if any.

	
Undo button allows the end user to undo the most recent action.

	
Redo button allows the end user to redo the most recent undone action.

	
Back button allows the end user to navigate back to the springboard.

	
Back to Page button allows the end user to navigate back to the page identified by the button text label.

	
Add button allows the end user to add or create a new object.

Content Area

Buttons that are positioned within the content area of a page perform a specific action given the location and context of the button within the page. These buttons may have a different visual appearance than buttons positioned with the navigation bar:

Action Sheets

An example of buttons placed within an action sheet is a group of Delete Note and Cancel buttons.

An action sheet button expands to the width of the display.

Alert Messages

An OK button can be placed within a validation message, such as a login validation after a failed password input.

13.3.5.7 Enabling the Back Button Navigation

MAF AMX supports navigation using the back button, with the default behavior of going back to the previously visited page. For more information, see Section 12.2.9, "How to Specify Action Outcomes Using UI Components."

If any Button component is added to the primary facet of a Panel Page that is equipped with the __back navigation, this Button is automatically given the back arrow visual styling (see Section 13.3.5.2, "Displaying Back Style Buttons"). To disable this, set the styleClass attribute to amx-commandButton-normal.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.5.8 What You May Need to Know About the Order of Processing Operations and Attributes

The following is the order in which MAF AMX processes operations and attributes when such components as a Button, Link, and List Item are activated:

	
The following child operations are processed in the order they appear in the XML file:

	
Set Property Listener

	
Action Listener

	
Show Popup Behavior

	
Close Popup Behavior

	
The Action Listener (actionListener) attribute is processed and the associated Java method is invoked.

	
The Action (action) attribute is processed and any navigation case is followed.

13.3.6 How to Use Links

You use the Link (commandLink) component to trigger actions and enable navigation to other views.

The Link component can have any type of component defined as its child. By using such components as Set Property Listener (see Section 13.3.23, "How to Use the Set Property Listener"), Action Listener (see Section 13.3.22, "How to Use the Action Listener"), Show Popup Behavior, Close Popup Behavior see Section 13.2.8, "How to Use a Popup Component"), and Validation Behavior (see Section 13.9, "Validating Input") as children of the Link component, you can create an actionable area within which clicks and gestures can be performed.

By placing an Image component (see Section 13.3.7, "How to Display Images") inside a Link you can create a clickable image.

Example 13-23 demonstrates the commandLink element declared in a MAF AMX file.

Example 13-23 Basic Link Definition

<amx:commandLink id="cl1"
 text="linked"
 action="gotolink"
 actionListener="#{myBean.doSomething}"/>

Figure 13-24 shows the basic Link component displayed in the Preview pane.

Figure 13-24 Link at Design Time

[image: This image is described in the surrounding text]

Example 13-24 demonstrates the commandLink element declared in a MAF AMX file. This component is placed within the panelFormLayout and panelLabelAndMessage components.

Example 13-24 Definition of Link Within Form

<amx:panelPage id="pp1">
 <amx:panelFormLayout id="form">
 <amx:panelLabelAndMessage id="panelLabelAndMessage1" label="Label">
 <amx:commandLink id="cl1"
 text="linked"
 action="gotolink"
 actionListener="#{myBean.doSomething}"/>
 </amx:panelLabelAndMessage>
 </amx:panelFormLayout>
</amx:panelPage>

Figure 13-25 shows the Link component placed within a form and displayed in the Preview pane.

Figure 13-25 Link Within Form at Design Time

[image: This image is described in the surrounding text]

There is a particular order in which MAF AMX processes the Link component's child operations and attributes. For more information, see Section 13.3.5.8, "What You May Need to Know About the Order of Processing Operations and Attributes."

MAF AMX provides another component which is similar to the Link, but which does not allow for navigation between pages: Link Go (goLink) component. You use this component to enable linking to external pages. Figure 13-26 shows the Link Go component displayed in the Preview pane. This component has its parameters set as follows:

<amx:goLink id="goLink1"
 text="Go Link"
 url="http://example.com"/>

Figure 13-26 Link Go at Design Time

[image: This image is described in the surrounding text]

Image is the only component that you can specify as a child of the Link Go component.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.7 How to Display Images

MAF AMX enables the display of images on iOS and Android-powered devices using the Image (image) component represented by a bitmap.

In addition to placing an Image in a Button and List View, you can place it inside a Link component (see Section 13.3.6, "How to Use Links") to create a clickable image.

Example 13-25 demonstrates the image element definition in a MAF AMX file.

Example 13-25 Image Definition

<amx:image id="i1"
 styleClass="prod-thumb"
 source="images/img-big-#{pageFlowScope.product.uid}.png" />

The following are supported formats on the Android platform:

	
GIF

	
JPEG

	
PNG

	
BMP

The following are supported formats on iOS platform:

	
PNG

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery and UIDemo, MAF sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.8 How to Use the Checkbox Component

The Checkbox (selectBooleanCheckbox) component represents a check box that you create to enable single selection of true or false values, which allows toggling between selected and deselected states.

You can use the label attribute of the Checkbox component to place text to the left of the checkbox, and the text attribute places text on the right.

Example 13-26 demonstrates the selectBooleanCheckbox element declared in a MAF AMX file.

Example 13-26 Unchecked Checkbox Definition

<amx:selectBooleanCheckbox id="check1"
 label="Agree to the terms:"
 value="#{myBean.bool1}"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 13-27 shows the unchecked Checkbox component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 label="Checkbox"
 value="false"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 13-27 Unchecked Checkbox at Design Time

[image: This image is described in the surrounding text]

shows the checked Checkbox component displayed in the Preview pane. This component has its parameters set as follows:

Example 13-27 Checked Checkbox at Design Time

<amx:selectBooleanCheckbox id="selectBooleanCheckbox1"
 label="Checkbox"
 value="true"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 13-28 Checked Checkbox Definition

[image: Surrounding text describes Figure 13-28 .]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.8.1 Support for Checkbox Components on the iOS Platform

iOS does not support a native Checkbox component. The Boolean Switch is usually used in Properties pages to enable a boolean selection (see Section 13.3.12, "How to Use the Boolean Switch Component").

13.3.8.2 Support for Checkbox Components on the Android Platform

Android provides support for a native Checkbox component. This component is used extensively on Settings pages to turn on or off individual setting values.

13.3.9 How to Use the Select Many Checkbox Component

The Select Many Checkbox (selectManyCheckbox) component represents a group of check boxes that you use to enable multiple selection of true or false values, which allows toggling between selected and deselected states of each check box in the group. The selection mechanism is provided by the Select Items or Select Item component (see Section 13.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.

	
Note:

The Select Many Checkbox component can contain more than one Select Item or Select Items components.

Example 13-28 demonstrates the selectManyCheckbox element declared in a MAF AMX file.

Example 13-28 Select Many Checkbox Definition

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select shipping options"
 value="#{myBean.shipping}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1"
 label="Air"
 value="#{myBean.shipping.air}"/>
 <amx:selectItem id="selectItem2"
 label="Rail"
 value="#{myBean.shipping.rail}"/>
 <amx:selectItem id="selectItem3"
 label="Water"
 value="#{myBean.shipping.water}"/>
</amx:selectManyCheckbox>

Figure 13-29 shows the Select Many Checkbox component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectManyCheckbox id="selectManyCheckbox1"
 label="Select Many Checkbox"
 value="value2"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Selection 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Selection 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Selection 3" value="value3"/>
</amx:selectManyCheckbox>

Figure 13-29 Select Many Checkbox at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.9.1 What You May Need to Know About the User Interaction with Select Many Checkbox Component

MAF AMX provides two alternative ways for displaying the Select Many Checkbox component: pop-up style (default) and list style that is used when the number of available choices exceeds the device screen size.

The end user interaction with a pop-up style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed in a popup. To make a choice, the end user taps one or more choices. To save the selections, the end user either taps outside the popup or closes the popup using the close (" x ") button.

Upon closing of the popup, the value displayed in the component is updated with the selected value.

When the number of choices exceed the dimensions of the device, a full-page popup containing a scrollable List View (see Section 13.3.15, "How to Use List View and List Item Components") is generated.

The end user interaction with a list-style Select Many Checkbox component on both iPhone and iPad occurs as follows: when the end user taps the component, the list of choices is displayed. To make a choice, the end user scrolls up or down to browse available choices, and then taps one or more choices. To save the selections, the end user taps the close (" x ") button.

Upon closing of the list, the value displayed in the component is updated with the selected value.

	
Note:

In both cases, there is no mechanism provided to cancel the selection.

13.3.10 How to Use the Choice Component

The Choice (selectOneChoice) component represents a combo box that is used to enable selection of a single value from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 13.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Choice component.

	
Note:

The Choice component can contain more than one Select Items or Select Item components.

Example 13-29 demonstrates the selectOneChoice element definition with the selectItems subelement in a MAF AMX file.

Example 13-29 Choice Definition Using Select Item Component

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Alaska" value="AK"/>
 <amx:selectItem id="selectItem2" label="Alabama" value="AL"/>
 <amx:selectItem id="selectItem3" label="California" value="CA"/>
 <amx:selectItem id="selectItem4" label="Connecticut" value="CT"/>
</amx:selectOneChoice>

Example 13-30 Choice Definition Using Select Items Component

<amx:selectOneChoice id="choice1"
 label="Your state:"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItems id="selectItems1" value="myBean.allStates"/>
</amx:selectOneChoice>

Figure 13-30 shows the Choice component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneChoice id="selectOneChoice1"
 label="Choice"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneChoice>

Figure 13-30 Choice at Design Time

[image: This image is described in the surrounding text]

The initial value of the selectOneChoice element cannot be null. Instead, it must be set to the value displayed in the Select One Choice component. To accomplish this, you have to ensure that the value in the model (in the bean or binding) is identical to the default value displayed in JDeveloper at design time.

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.10.1 What You May Need to Know About the User Interaction with Choice Component on iOS Platform

MAF AMX provides two alternative ways for displaying the Choice component: pop-up style and drop-down style.

On an iPhone, the end user interaction with a native Choice component occurs as follows: when the end user taps the components list of choices is displayed, with the first option selected by default. To make a choice, the end user scrolls up or down to browse available choices. To save the selection, the end user taps Done in the tool bar.

On an iPad, the user interaction is similar to the interaction on an iPhone, except the following:

	
The list of choices is displayed in a popup dialog.

	
iPad styling is implemented around the list of choices, with a notch used to indicate the source of the list.

To close the list of choices without selecting an item, the end user must tap outside the popup dialog.

	
Note:

The UI to display the list of choices and the tool bar are native to the browser and cannot be styled using CSS.

List values within the Choice component may be displayed as disabled.

When the number of choices exceeds the dimensions of the device display, a list page is generated that may be scrolled in a native way.

13.3.10.2 What You May Need to Know About the User Interaction with Choice Component on the Android Platform

The end user interaction with a native Choice component on an Android-powered device occurs as follows: when the end user taps the component, the list of choices in the form of a popup dialog is displayed. A simple popup is displayed if the number of choices fits within the dimensions of the device, in which case:

	
A single tap on an item from the selection list selects that item and closes the popup; the selection is reflected in the Choice component label.

	
A single tap outside the popup or a click on the Back key closes the popup with no changes applied.

If the number of choices to be displayed does not fit within the device dimensions, the popup contains a scrollable list, in which case:

	
A single tap on an item from the selection list selects that item and closes the popup; the selection is reflected in the Choice component label.

	
A click on the Back key closes the popup with no changes applied.

13.3.10.3 What You May Need to Know About Differences Between Select Items and Select Item Components

The Select Items (selectItems) component provides a list of objects that can be selected in both multiple-selection and single-selection components.

The Select Item (selectItem) component represents a single selectable item of selection components.

13.3.11 How to Use the Select Many Choice Component

The Select Many Choice (selectManyChoice) component allows selection of multiple values from a list. The selection mechanism is provided by the Select Items or Select Item component (see Section 13.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Many Checkbox component.

	
Note:

The Select Many Checkbox component can contain more than one Select Items or Select Item components.

Example 13-31 demonstrates the selectManyChoice element declared in a MAF AMX file.

Example 13-31 Select Many Choice Definition Using Select Item Component

<amx:selectManyChoice id="check1"
 label="Select Option:"
 value="#{myBean.shipping}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1"
 label="Signature Required"
 value="signature" />
 <amx:selectItem id="selectItem2"
 label="Insurance"
 value="insurance" />
 <amx:selectItem id="selectItem3"
 label="Delivery Confirmation"
 value="deliveryconfirm"/>
</amx:selectManyChoice>

Figure 13-31 Select Many Choice at Design Time

[image: Surrounding text describes Figure 13-31 .]

Example 13-32 Select Many Choice Definition Using Select Items Component

<amx:selectManyChoice id="check1"
 label="Select Shipping Options:"
 value="#{myBean.shipping}">
 <amx:selectItems id="selectItems1" value="#{myBean.shippingOptions}"/>
</amx:selectManyChoice>

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

The look and behavior of the Select Many Choice component on all supported devices is almost identical to the Select Many Checkbox component (see Section 13.3.9, "How to Use the Select Many Checkbox Component" for more information).

13.3.12 How to Use the Boolean Switch Component

The Boolean Switch (selectBooleanSwitch) component allows editing of boolean values as a switch metaphor instead of a checkbox.

Similar to other MAF AMX UI components, this component has a normal and selected state. To toggle the value, the end user taps (touches and releases) the switch once. Each tap toggles the switch.

Example 13-33 demonstrates the selectBooleanSwitch element defined in a MAF AMX file.

Example 13-33 Boolean Switch Definition

<amx:selectBooleanSwitch id="switch1"
 label="Flip switch:"
 onLabel="On"
 offLabel="Off"
 value="#{myBean.bool1}"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 13-32 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectBooleanSwitch id="selectBooleanSwitch1"
 label="Switch"
 value="value1"
 valueChangeListener=
 "#{PropertyBean.ValueChangeHandler}"/>

Figure 13-32 Boolean Switch at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.12.1 What You May Need to Know About Support for Boolean Switch Components on iOS Platform

On iOS, Boolean Switch components are often used on Settings pages to enable or disable an attribute value.

13.3.12.2 What You May Need to Know About Support for Boolean Switch Components on the Android Platform

The Android platform does not directly support a Boolean Switch component. Instead, Android provides a toggle button that allows tapping to switch between selected and deselected states.

13.3.13 How to Use the Select Button Component

The Select Button (selectOneButton) component represents a button group that lists actions, with a single button active at any given time. The selection mechanism is provided by the Select Items or Select Item component (see Section 13.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Select Button component.

	
Note:

The Select Button component can contain more than one Select Items or Select Item components.

Example 13-34 demonstrates the selectOneButton element defined in a MAF AMX file.

Example 13-34 Select Button Definition

<amx:selectOneButton id="bg1"
 value="#{myBean.myState}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Yes" value="yes"/>
 <amx:selectItem id="selectItem2" label="No" value="no"/>
 <amx:selectItem id="selectItem3" label="Maybe" value="maybe"/>
</amx:selectOneButton>

Figure 13-33 shows the Select Button component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneButton id="selectOneButton1"
 label="Select Button"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneButton>

Figure 13-33 Select Button at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.14 How to Use the Radio Button Component

The Radio Button (selectOneRadio) component represents a group of radio buttons that lists available choices. The selection mechanism is provided by the Select Items or Select Item component (see Section 13.3.10.3, "What You May Need to Know About Differences Between Select Items and Select Item Components") contained by the Radio Button component.

	
Note:

The Radio Button component can contain more than one Select Items or Select Item components.

Example 13-35 and Example 13-36 demonstrate the selectOneRadio element definition in a MAF AMX file.

Example 13-35 Radio Button Definition Using Select Item Component

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Cat" value="cat"/>
 <amx:selectItem id="selectItem2" label="Dog" value="dog"/>
 <amx:selectItem id="selectItem3" label="Hamster" value="hamster"/>
 <amx:selectItem id="selectItem4" label="Lizard" value="lizard"/>
</amx:selectOneRadio>

Example 13-36 Radio Button Definition Using Select Items Component

<amx:selectOneRadio id="radio1"
 label="Choose a pet:"
 value="#{myBean.myPet}"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItems id="selectItems1" value="myBean.allPets"/>
</amx:selectOneRadio>

Figure 13-34 shows the Boolean Switch component displayed in the Preview pane. This component has its parameters set as follows:

<amx:selectOneRadio id="selectOneRadio1"
 label="Radio Button"
 value="value1"
 valueChangeListener="#{PropertyBean.ValueChangeHandler}">
 <amx:selectItem id="selectItem1" label="Value 1" value="value1"/>
 <amx:selectItem id="selectItem2" label="Value 2" value="value2"/>
 <amx:selectItem id="selectItem3" label="Value 3" value="value3"/>
</amx:selectOneRadio>

Figure 13-34 Radio Button at Design Time

[image: This image is described in the surrounding text]

For more information, illustrations, and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.15 How to Use List View and List Item Components

Use the List View (listView) component to display data as a list of choices where the end user can select one option.

Typically, the List Item (listItem) component represents a single item in the List View component, where you place a List Item component inside the List View to lay out and style a list of data items. Each item can contain more than one List Item component, in which case List Item components fill the item (line) and excess List Item components wrap onto the subsequent lines. You configure this by setting the List View's layout attribute to cards (the default layout is rows and displays one List Item component per item within the list). For more information, see Section 13.3.15.4, "Configuring the List View Layout."

The List View allows you to define one of the following:

	
A selectable item that is replicated based on the number of items in the list (collection).

	
A static item that is produced by adding a child List Item component without specifying the List View's var and value attributes. You can add as many of these static items as necessary, which is useful when you know the contents of the list at design time. In this case, the list is not editable and behaves like a set of menu items.

At runtime, List Item components respond to swipe gestures (see Section 13.4, "Enabling Gestures").

You can create the following types of List View components:

	
Basic List

Example 13-37 shows the listView element defined in a MAF AMX file. This definition corresponds to the basic component.

Example 13-37 Basic List View Definition

<amx:listView id="listView1"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 13-35 demonstrates a basic List View component at design time.

Figure 13-35 Basic List View at Design Time

[image: This image is described in the surrounding text]

Example 13-38 shows another definition of the listView element in a MAF AMX file. This definition also corresponds to the basic component; however, the value of this List View is provided by a collection.

Example 13-38 Basic List View Definition

<amx:listView id="list1"
 value="#{myBean.listCollection}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem actionListener="#{myBean.selectRow}"
 showLinkIcon="false"
 id="listItem1">
 <amx:outputText value="#{row.name}" id="outputText1"/>
 </amx:listItem>
</amx:listView>

	
Note:

Currently, when a text string in an Output Text inside a List Item is too long to fit on one line, the text does not wrap at the end of the line. You can prevent this by adding "white-space: normal;" to the inlineStyle attribute of the subject Output Text child component.

	
List with icons

Example 13-39 shows the listView element defined in a MAF AMX file. This definition corresponds to the component with icons.

Example 13-39 List View with Icons Definition

<amx:listView id="list1"
 value="#{myBean.listCollection}"
 var="row"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf11" width="40px" halign="center">
 <amx:image id="image1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf12" width="100%" height="43px">
 <amx:outputText id="outputText1" value="#{row.desc}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-36 demonstrates a List View component with icons and text at design time.

Figure 13-36 List View with Icons at Design Time

[image: This image is described in the surrounding text]

	
List with search

	
List with dividers. This type of list allows you to group data and show order. Attributes of the List View component define characteristics of each divider. For information about attributes, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

MAF AMX provides a list divider that can do the following:

	
Collapse its contents independently.

	
Show a count of items in each divider.

	
Collapse at the same time.

Example 13-40 shows the listView element defined in a MAF AMX file. This definition corresponds to the component with collapsible dividers and item counts.

Example 13-40 List View with Dividers Definition

<amx:listView id="list1"
 value="#{bindings.data.collectionModel}"
 var="row"
 collapsibleDividers="true"
 collapsedDividers="#{pageFlowScope.mylistDisclosedDividers}"
 dividerMode="all"
 dividerAttribute="type"
 showDividerCount="true"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 fetchSize="10">
 <amx:listItem>
 <amx:outputText id="ot1" value="#{row.name}">
 </amx:listItem>
</amx:listView>

	
Note:

Data in the list with dividers must be sorted by the dividerAttribute because this type of list does not sort the data; instead, it expects the data it receives to be already sorted.

	
Note:

Dividers are not displayed when a List View component is in edit mode (that is, its editMode attribute is specified).

When dividers are visible, the end user can quickly navigate to a specific divider using the List View's localized alphabetical index utility, which is available for List View components whose dividerMode attribute is set to firstLetter. You can disable this utility by setting the sectionIndex attribute to off.

The index utility (indexer) consists of an index bar and index item and has the following characteristics:

	
If the list contains unsorted data or duplicate dividers, the index item points to the first occurrence in the list.

	
Only available letters are highlighted in the index, and only those highlighted become active. This is triggered by the change in the data model (for example, when the end user taps on More row item).

	
The index is not case-sensitive.

	
Unknown characters are hidden under the hash (#) sign.

The indexer letters can only be activated (tapped) on rows that have been loaded into the list. For example, if the List View, using its fetchSize attribute, has loaded rows up to the letter C, the indexer enables letters from A to C. Other letters appear on the indexer when more rows are loaded into it.

Table 13-5 describes styles that you can define for the index utility.

Table 13-5 The List View Index Styles

	styleClass name	Description
	
adfmf-listView-index

	
Defines style of the index bar.

	
adfmf-listView-indexItem

	
Defines style of one item in the index bar.

	
adfmf-listView-indexItem-active

	
Defines style of the item in the index bar which has link to a related divider.

	
adfmf-listView-indexCharacter

	
Defines style of a character in the index bar.

	
adfmf-listView-indexBullet

	
Defines style of a bullet between two characters in index bar.

	
adfmf-listView-indexOther

	
Defines style of a character that represents all unknown characters in the index bar.

When the List View component with visible dividers functions as a container that provides scrolling and it becomes a subject to scrolling, the dividers are pinned at the top of the view. If this is the case, you have to explicitly set the height of the List View component. In all other cases, when the List View does not perform any scrolling itself but instead uses the scrolling of its parent container (such as the Panel Page), the List View does not have any height constraint set and its height is determined by its child components. This absence of the defined height constraint effectively disables the animated transition and pinning of dividers.

	
Inset List

Example 13-41 shows the listView element defined in a MAF AMX file. This definition corresponds to the inset component.

Example 13-41 Inset List View Definition

<amx:listView id="listView1"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="listItem1">
 <amx:outputText id="outputText1" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem2">
 <amx:outputText id="outputText3" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem3">
 <amx:outputText id="outputText5" value="ListItem Text"/>
 </amx:listItem>
 <amx:listItem id="listItem4">
 <amx:outputText id="outputText7"
 value="This is really long text to test how it is handled"/>
 </amx:listItem>
</amx:listView>

Figure 13-37 demonstrates an inset List View component at design time.

Figure 13-37 Inset List View at Design Time

[image: This image is described in the surrounding text]

Example 13-42 shows another definition of the listView element in a MAF AMX file. This definition also corresponds to the inset component, however, the value of this List View is provided by a collection.

Example 13-42 Inset List Definition

<amx:listView id="list1"
 value="#{CarBean.carCollection}"
 var="row"
 styleClass="adfmf-listView-insetList"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport"
 fetchSize="10">
 <amx:listItem id="li1" action="go">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:listItem>
</amx:listView>

There is a particular order in which MAF AMX processes the List Item component's child operations and attributes. For more information, see Section 13.3.5.8, "What You May Need to Know About the Order of Processing Operations and Attributes."

Unlike other MAF AMX components, when you drag and drop a List View onto a MAF AMX page, a dialog called ListView Gallery appears (see Figure 13-38). This dialog allows you to choose a specific layout for the List View.

Figure 13-38 ListView Gallery Dialog

[image: Surrounding text describes Figure 13-38 .]

Table 13-6 lists the supported List Formats that are displayed in the ListView Gallery.

Table 13-6 List Formats

	Format	Element Row Values
	
Simple

	
	
Text

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
Start-End

	
	
Start Text

	
End Text

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

The Variations presented in the ListView Gallery (see Figure 13-38) for a selected list format consist of options to add either dividers, a leading image, or both:

	
Selecting a variation with a leading image adds an Image row to the List Item Content table (see Figure 13-39).

	
Selecting a variation with a divider defaults the Divider Attribute field to the first attribute in its list rather than the default No Divider value, and populates the Divider Mode field with its default value of All.

The Styles options presented in the ListView Gallery (see Figure 13-38) allow you to suppress chevrons, use an inset style list, or both:

	
The selections do not modify any state in the Edit List View dialog (see Figure 13-39). They only affect the generated MAF AMX markup.

	
Selecting a style with the inset list sets the adfmf-listView-insetList style class on the listView element in the generated MAF AMX markup.

The following is an example of the Simple format with the inset list:

<amx:listView var="row"
 value="#{bindings.employees.collectionModel}"
 fetchSize="#{bindings.employees.rangeSize}"
 styleClass="adfmf-listView-insetList"
 id="listView2"
 showMoreStrategy="autoScroll"
 bufferStrategy="viewport">
 <amx:listItem id="li2">
 <amx:outputText value="#{row.employeename}" id="ot3"/>
 </amx:listItem>
</amx:listView>

The ListView Gallery's Description pane is updated based on the currently selected Variation. The format includes a brief description of the main style, followed by the details of the selected variation. Four main styles with four variations on each provide sixteen unique descriptions detailed in Table 13-7.

Table 13-7 List View Variations and Styles

	List Format	Variation	Description
	
Simple

	
Basic

	
A text field appears at the start side of the list item.

	
Simple

	
Dividers

	
A text field appears at the start side of the list item, with items grouped by dividers.

	
Simple

	
Images

	
A text field appears at the start side of the list item, following a leading image.

	
Simple

	
Dividers and Images

	
A text field appears at the start side of the list item, following a leading image. The list items are grouped by dividers.

	
Main-Sub Text

	
Basic

	
A prominent main text field appears at the start side of the list item with subordinate text below.

	
Main-Sub Text

	
Dividers

	
A prominent main text field appears at the start side of the list item with subordinate text below. The list items are grouped by dividers.

	
Main-Sub Text

	
Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image.

	
Main-Sub Text

	
Dividers and Images

	
A prominent main text field appears at the start side of the list item with subordinate text below, following a leading image. The list items are grouped by dividers.

	
Start-End

	
Basic

	
Text fields appear on each side of the list item.

	
Start-End

	
Dividers

	
Text fields appear on each side of the list item, with the items grouped by dividers.

	
Start-End

	
Images

	
Text fields appear on each side of the list item, following a leading image.

	
Start-End

	
Dividers and Images

	
Text fields appear on each side of the list item, following a leading image. The list items are grouped by dividers.

	
Quadrant

	
Basic

	
Text fields appear in the four corners of the list item.

	
Quadrant

	
Dividers

	
Text fields appear in the four corners of the list item, with items grouped by dividers.

	
Quadrant

	
Images

	
Text fields appear in the four corners of the list item, following a leading image.

	
Quadrant

	
Dividers and Images

	
Text fields appear in the four corners of the list item, following a leading image. The list items are grouped by dividers.

After you make your selection from the ListView Gallery and click OK, the Edit List View wizard is invoked that lets you create either an unbound List View component that displays static text in the List Item child components (see Figure 13-39), or choose a data source for the dynamic binding (see Figure 13-40).

Figure 13-39 Creating Unbound List View

[image: This image is described in the surrounding text]

When completing the dialog that Figure 13-39 shows, consider the following:

	
The List Data Collection and Element Type fields are disabled when the Bind Data checkbox is in the deselected state.

	
The image on the left reflects the main content elements from the selected List View format

	
The editable cells of the Value column are populated with static text strings (see Table 13-8).

	
If the List Item Content cell contains an Image, the Value cell is defaulted to the <add path to your image> string. If this is the case, you have to replace it with the path to the image.

	
The List Item Selection indicates the selection mode. For details, see the description of this option following Figure 12-75, "Edit Dialog for MAF AMX List View".

	
Since you cannot set the divider attribute when the List View contains List Item child components, rather than being data bound, both the Divider Attribute and the Divider Mode fields are disabled.

Table 13-8 Static Text Strings for List View

	List Format	Element Row Values	Values for the Output Text
	
Simple

	
	
Text

	
	
'ListItem Text'

	
Main-Sub Text

	
	
Main Text

	
Subordinate Text

	
	
'Main Text'

	
'This is the subordinate text.'

	
Start-End

	
	
Start Text

	
End Text

	
	
'Start Text'

	
'End Text'

	
Quadrant

	
	
Upper Start Text

	
Upper End Text

	
Lower Start Text

	
Lower End Text

	
	
'Upper Start Text'

	
'Upper End Text'

	
'Lower Start Text'

	
'Lower End Text'

Figure 13-40 shows the Create List View dialog when you choose to bind the List View component to data.

Figure 13-40 Creating Bound List View

[image: This image is described in the surrounding text]

When completing the dialog that Figure 13-40 shows, consider the following:

	
When you select the Bind Data checkbox, the List Data Collection field becomes enabled. The Element Type field becomes enabled if you set the List Data Collection field to an EL expression by using the Expression Builder. If you choose a data control from the Data Control Definitions tab, the Element Type field will continue to be disabled.

	
To select a data source, click Browse. This opens the Select List View Data Collection dialog that enables you to either choose a data control definition (see Figure 13-41) or to use the EL Builder to select an appropriate EL expression (see Figure 13-42).

Figure 13-41 Selecting Data Control Definition

[image: This image is described in the surrounding text]

Figure 13-42 Selecting EL Expression

[image: This image is described in the surrounding text]

	
You may declare the type of the data collection using the Element Type field (see Figure 13-40).

	
After you have selected a valid data collection, the Value column in the List Item Content table changes to Value Bindings whose editable cells are populated with lists of attributes from the data collection. For a description of a special case setting, refer to Figure 13-43.

	
The image on the left reflects the main content elements from the selected List View format and provides a mapping from the schematic representation to the named elements in the underlying table.

	
The List Item is generated as either an Output Text or Image component, depending on whichever is appropriate for the particular element.

	
Since the number of elements (rows) is predetermined by the selected List View format, rows cannot be added or removed.

	
The order of elements cannot be modified.

	
The default value of the Divider Attribute field is No Divider, in which case the Divider Mode field is disabled. If you select value other than the default, then you need to specify Divider Mode parameters. In addition, if you chose a Variation in the ListView Gallery that includes dividers, the default value will be set to the first attribute in the list.

The following are special cases to consider when creating a bound List View:

	
If a Java bean method returns a list without generics, you should use the Element Type field to create the List Item content, as Figure 13-40 shows.

	
If the list data collection value provided is not collection-based, a Value column replaces the Value Bindings column with blank values, as Figure 13-43 shows.

Figure 13-43 Providing Non-Collection-Based Values

[image: This image is described in the surrounding text]

For more information, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
Section 13.3.15.4, "Configuring the List View Layout"

	
Section 12.3.2.4.3, "Dragging and Dropping Collections"

	
UIDemo, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer. This sample demonstrates how to use various types of the List View component and how to apply styles to adjust the page layout to a specific pattern.

	
Appendix E, "Limitations to the Application Usage"

13.3.15.1 Configuring Paging and Dynamic Scrolling

You can configure the List View component to display data in a list that is arbitrarily long by appending data to the bottom of the list as requested by a user gesture.

The fetchSize attribute determines how many rows the List View component should initially load. If there are more rows available than defined by the fetchSize, the List View waits for a specific user gesture before loading and displaying more rows (see Section 13.3.15.1.1, "List View Scrolling Strategies"). The fetchSize attribute is then used to determine how many rows will be loaded and displayed each time the user gestures for more rows to be displayed.

If the fetchSize attribute is set to -1, all records are retrieved and displayed, in which case neither paging nor dynamic scrolling behavior occurs.

When the List View component is created by dragging a collection from the Data Controls window onto a MAF AMX page, the fetchSize attribute is by default set to use an EL expression that points to the rangeSize of the PageDef iterator and should not be modified. For information on the PageDef file, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts" and Figure 12-81, "PageDef File".

Example 13-43 shows the listView element that was created from a collection called testResults of a data control (see Section 12.3.2.4, "Adding Data Controls to the View").

Example 13-43 Setting fetchSize Attribute

<amx:listView var="row"
 value="#{bindings.testResults.collectionModel}"
 fetchSize="#{bindings.testResults.rangeSize}">

In the preceding example, the fetchSize attribute points to the rangeSize on bindings.testResults. Example 13-44 shows a line from the PageDef file for this MAF AMX page. This PageDef file contains an accessorIterator element called testResultsIterator to which the testResults is bound.

Example 13-44 accessorIterator in PageDef File

<accessorIterator MasterBinding="Class1Iterator"
 Binds="testResults"
 RangeSize="25"
 DataControl="Class1"
 BeanClass="mobile.Test"
 id="testResultsIterator"/>

13.3.15.1.1 List View Scrolling Strategies

The following attributes of the List View component enable its scrolling behavior:

	
showMoreStrategy: defines the List View component's strategy for loading more rows when required.

When a List View component provides its own scrolling (see Section 13.3.15.1.2, "List View's Own Scrolling") and that List View is scrolled to the end, it automatically invokes the showMoreStrategy based on the attribute's value, as follows:

	
autoLink: If more rows are available from the model, the List View displays a Load More Rows link at the bottom of the displayed list, as Figure 13-44 shows.

Figure 13-44 Loading More Rows in List View

[image: This image is described in the surrounding text]

The end user must tap on this link to cause the List View to load and display more rows.

	
autoScroll: If more rows are available from the model, the List View displays a load indicator while it loads more rows for display.

	
forceLink: A Load More Rows link is displayed (see Figure 13-44). When the end user taps on the link, the List View attempts to load and display more rows.

	
off: The List View does not perform any actions. Only the initially loaded rows are displayed.

	
bufferStrategy: defines the List View component's strategy for buffering displayed rows.

When the List View's height is constrained allowing it to provide its own scrolling (see Section 13.3.15.1.2, "List View's Own Scrolling"), it retains rows in the rendering engine's buffer based on the bufferStrategy attribute's value, as follows:

	
additive: New rows are added to the rendering engine's buffer and all rows are retained in the buffer. This option is useful for short lists where you are not concerned about memory consumption.

	
viewport: Rows are added to the rendering engine's buffer only when they become visible within the List View's viewport. Rows are removed from the buffer when they are no longer visible, based on the List View's bufferSize attribute. This option is useful for reducing the amount of memory consumption when displaying long lists.

	
bufferSize: when the bufferStrategy attribute is set to viewport, the bufferSize attribute defines the distance (in pixels) at which the row must be located from the viewport to become hidden.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.3.15.1.2 List View's Own Scrolling

By default, the scrolling behavior of the List View component is controlled by its parent container (which, in turn, may default to its parent container, and so forth).

To force the List View component to provide its own scrolling, you can do one of the following

	
Make the List View the only non-Facet child of a Panel Page.

	
Set a fixed height for the List View. For example:

inlineStyle="height: 200px;"

13.3.15.1.3 Server-Side Paging

The List View component supports server-side paging through events such as the oracle.adfmf.amx.event.RangeChangeEvent.

When the List View component is created by dragging a collection from the Data Controls window onto a MAF AMX page, the List View component retrieves the rows from the binding iterator (see Section 13.3.15.1, "Configuring Paging and Dynamic Scrolling"). The binding iterator retrieves rows from the data control's collection in batches defined by the AttributeIterator's RangeSize attribute. When all the available data has been exhausted, a RangeChangeEvent is fired. To catch this event, the data control's provider code must implement the oracle.adfmf.amx.event.RangeChangeListener and provide a rangeChange method. Within this method, you can load more data from the server and append it to the collection. You must call the addDataControlProviders method of the AdfmfJavaUtilities class to inform the data control framework of the newly added rows so these rows can be displayed by the List View component.

Example 13-45 Implementing RangeChangeListener

public class Departments implements RangeChangeListener {
 public void rangeChange(RangeChangeEvent rce) {
 List newRows = null;
 if (rangeChangeEvent.isDataExhausted()) {
 newRows = loadMoreData(rangeChangeEvent.getFetchSize());
 AdfmfJavaUtilities.addDataControlProviders("Departments",
 rangeChangeEvent.getProviderKey(),
 rangeChangeEvent.getKeyAttribute(),
 newRows,
 newRows.size() > 0);
 }
 }
...
}

	
Note:

When instantiating the data control's provider class, the initial load of data from the server should request the same number of rows as defined by the binding iterator's RangeSize attribute.

When using a managed bean to provide the model for a List View, the rangeChangeListener attribute (see Section 13.10, "Using Event Listeners") of the List View component allows you to bind a Java handler method that is called when the end user gestures for more rows to be loaded. This method uses the oracle.adfmf.amx.event.RangeChangeEvent object as its parameter and is created when you invoke the Edit Property: Range Change Listener dialog from the Properties window, as Figure 13-45 and Figure 13-46 show.

Figure 13-45 Editing Range Change Listener Attribute

[image: This image is described in the surrounding text]

Figure 13-46 Edit Property Dialog

[image: This image is described in the surrounding text]

When you click OK on the dialog, the following setting is added to the listView element in the MAF AMX page and the Java method that Example 13-46 shows is added to a sample HRBean class:

<amx:listView id="listView1" rangeChangeListener="#{pageFlowScope.HRBean.goGet}" >

Example 13-46 Java Method for Triggering RangeChangeEvent

public void goGet(RangeChangeEvent rangeChangeEvent) {
 // Add event code here
 ...
}

	
Note:

When using the RangeChangeEvent to support server-side paging, you should not set the ListView's fetchSize attribute to -1.

13.3.15.2 What You May Need to Know About Memory Consumption by MAF AMX UI Components

All scrollable MAF AMX UI components, including the List View, are optimized to conserve resources when a mobile device is running low on memory. These components lose their flickability (that is, the end user cannot flick the component with their finger in order for that component to continue to scroll after the end user has stopped touching the screen) and scrolling is powered by inertia.

13.3.15.3 Rearranging List View Items

Items in a List View can be rearranged. This functionality is similar on iOS and Android platforms: both show a Rearrange icon aligned along the right margin for each list item. The Rearrange operation is initiated when the end user touches and drags a list item using the Rearrange affordance as a handle. The operation is completed when the end user lifts their finger from the display screen.

	
Note:

If the end user touches and drags anywhere else on the list item, the list scrolls up or down.

The Rearrange Drag operation "undocks" the list item and allows the end user to move the list item up or down in the list.

For its items to be rearrangeable, the List View must not be static, must be in an edit mode, and must be able to listen to moves.

Example 13-47 shows the listView element defined in a MAF AMX file. This definition presents a list with an Edit and Stop Editing buttons at the top that allow switching between editable and read-only list mode.

Example 13-47 Rearrangeable List View Definition

<amx:panelPage id="pp1">
 <amx:commandButton id="edit"
 text="Edit"
 rendered="#{!bindings.inEditMode.inputValue}">
 <amx:setPropertyListener id="spl1"
 from="true"
 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:commandButton id="stop"
 text="Stop Editing"
 rendered="#{bindings.inEditMode.inputValue}">
 <amx:setPropertyListener id="spl2"
 from="false"
 to="#{bindings.inEditMode.inputValue}"
 type="action"/>
 </amx:commandButton>
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row"
 editMode="#{bindings.inEditMode.inputValue}"
 moveListener="#{MyBean.Reorder}">
 <amx:listItem id="li1">
 <amx:outputText id= "ot1" value="#{row.description}">
 </amx:listItem>
 </amx:listView>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.3.15.4 Configuring the List View Layout

The List View component can be laid out as either a set of rows, with each row containing one List Item component (default), or s set of cards, with each card containing one or more List Item components.

To define the layout, you use the List View's layout attribute and set it to either rows or cards. When using the cards layout, consider the following:

	
Each List Item component is presented as a card in a group of horizontally arranged cards.

	
If all available space is consumed, the next card wraps onto a new line.

	
To control horizontal alignment of List Item components (cards) within the List View, set the halign attribute of the List View to either start, center, or end.

	
To generally customize the appearance of the List View:

	
To override the card size defined by default in the skin, specify a new width using the List Item's inlineStyle attribute. For more information, see Section 13.6.1, "How to Use Component Attributes to Define Style."

	
Note:

You cannot set the value to auto or use percent units.

Alternatively, you can use skinning to override the width from the .amx-listView-cards .amx-listItem selector (see Section 13.6.2, "What You May Need to Know About Skinning").

	
To override spacing around the cards defined by default in the skin, you can specify new margin-top and margin-left using the List Item's inlineStyle attribute (see Section 13.6.1, "How to Use Component Attributes to Define Style"), as well as new padding-bottom and padding-right using the List View's contentStyle attribute.

Alternatively, you can use skinning to override the margin-top and margin-left from the .amx-listView-cards .amx-listItem selector, as well as padding-bottom and padding-right from the .amx-listView-cards .amx-listView-content selector (see Section 13.6.2, "What You May Need to Know About Skinning").

For the rows layout, you can use the halign attribute to change the alignment of trivial List Item content. However, the use of this attribute might not have a visual effect.

When the List View component with cards layout is in edit mode, its layout switches to rows mode.

To adjust the MAF AMX page layout to a specific pattern, you can combine the use of the various types of List View components and styles that are defined through the styleClass attribute (see Section 13.6, "Styling UI Components") that uses a set of predefined styles.

A MAF sample application called UIDemo demonstrates all the optional styles for each component and their associated rendering. The UIDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

Example 13-48 shows the listView element and its child elements defined in a MAF AMX file. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-startText places the Output Text component to the start (left side) of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText places the Output Text component to the end (right side) of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon attribute of the listItem element. Since the default value of this attribute is true, the example does not contain this setting.

Example 13-48 Definition of List View with Start and End Text

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-47 shows a List View component with differently styled text added to the start (left side) and end (right side) of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.

Figure 13-47 List View with Start and End Text at Design Time

[image: This image is described in the surrounding text]

Example 13-49 shows the listView element and its child elements defined in a MAF AMX file. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-startText places the Output Text component to the start of the row and applies a black font to its text; setting this attribute to adfmf-listItem-endText places the Output Text component to the end of the row and applies a blue font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon attribute of the listItem element. Since in this example this attribute is set to false for every listItem element, arrows pointing to the right are not displayed.

Example 13-49 Definition of List View with Start and End Text Without Expansion Links

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1" showLinkIcon="false">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1s1" width="10px"/>
 <amx:cellFormat id="cf11" width="60%" height="43px">
 <amx:outputText id="outputText11" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputText12"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-48 shows a List View component with differently styled text added to the start and end of each row. The rows do not contain right-pointing arrows representing links.

Figure 13-48 List View with Start and End Text Without Expansion Links at Design Time

[image: This image is described in the surrounding text]

Example 13-50 shows the listView element and its child elements defined in a MAF AMX file. In addition to the text displayed at the start and end of each row, this List View contains subtext placed under the end text. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component to the left side of the row and applies a black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component to the right side of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-upperStartText and applies a smaller grey font to its text.

Example 13-50 Defining List View with Start and End Text and Subtext

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl11">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf11" width="60%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf1s2" width="10px"/>
 <amx:cellFormat id="cf12" halign="end" width="40%">
 <amx:outputText id="outputTexta2"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl12">
 <amx:cellFormat id="cf13" columnSpan="3" width="100%" height="12px">
 <amx:outputText id="outputTexta3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-49 shows a List View component with differently styled text added to the start and end of each row, and with a subtext added below the end text on the left.

Figure 13-49 List View with Start and End Text and Subtext at Design Time

[image: This image is described in the surrounding text]

Example 13-51 shows the listView element and its child elements defined in a MAF AMX file. This List View is populated with rows containing a main text and subtext. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-mainText places the Output Text component to the start of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-mainText and applies a smaller grey font to its text.

Example 13-51 Defining List View with Main Text and Subtext

<amx:listView id="listView1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="listItem1">
 <amx:tableLayout id="tla1" width="100%">
 <amx:rowLayout id="rla1">
 <amx:cellFormat id="cf1s1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cfa1" width="100%" height="28px">
 <amx:outputText id="outputTexta1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cfa2" width="100%" height="12px" >
 <amx:outputText id="outputTexta2"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-50 shows a List View component with differently styled text added as a main text and subtext to each row.

Figure 13-50 List View with Main Text and Subtext at Design Time

[image: This image is described in the surrounding text]

Example 13-52 shows the listView element and its child elements defined in a MAF AMX file. This List View is populated with cells containing an icon, main text, and subtext. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-mainText places the Output Text component to the left side of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-captionText places the Output Text component under the Output Text component whose styleClass attribute is set to adfmf-listItem-mainText and applies a smaller grey font to its text. The position of the image element is defined by its enclosing cellFormat.

Example 13-52 Defining List View with Icons, Main Text and Subtext

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" rowSpan="2" width="40px" halign="center">
 <amx:image id="i1" source="#{row.image}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf2" width="100%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl2">
 <amx:cellFormat id="cf3" width="100%" height="12px">
 <amx:outputText id="ot2"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-51 shows a List View component with icons and differently styled text added as a main text and subtext to each row.

Figure 13-51 List View with Icons, Main Text and Subtext at Design Time

[image: This image is described in the surrounding text]

Example 13-53 shows the listView element and its child elements defined in a MAF AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartText places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndText places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible is configured by the showLinkIcon attribute of the listItem element. Since the default value of this attribute is true, the example does not contain this setting.

Example 13-53 Defining List View with Four Types of Text

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf2" width="60%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf3" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf4" width="40%" halign="end">
 <amx:outputText id="ot2"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rla2">
 <amx:cellFormat id="cf5" width="60%" height="12px">
 <amx:outputText id="ot3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf6" width="40%" halign="end">
 <amx:outputText id="ot4"
 value="#{row.priority}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-52 shows a List View component with two types of differently styled text added to the start and end of each row. Besides the text, rows are equipped with a right-pointing arrow representing a link that expands each list item.

Figure 13-52 List View with Four Types of Text at Design Time

[image: This image is described in the surrounding text]

Example 13-54 shows the listView element and its child elements defined in a MAF AMX file. In addition to the text displayed at the start and end of each row, this List View contains two different types of text placed on each side of each row. The way each outputText child element is laid out in the list is specified by the tableLayout child element of the listItem. Alternatively, you may use the styleClass attribute to lay out and style outputText elements: setting this attribute to adfmf-listItem-upperStartText places the Output Text component at the top left corner of the row and applies a large black font to its text; setting this attribute to adfmf-listItem-upperEndText places the Output Text component at the top right corner of the row and applies a large grey font to its text; setting this attribute to adfmf-listItem-lowerStartTextNoChevron places the Output Text component at the bottom left corner of the row and applies a smaller grey font to its text; setting this attribute to adfmf-listItem-lowerEndTextNoChevron places the Output Text component at the bottom right corner of the row and applies a smaller grey font to its text. Whether or not the arrow pointing to the right is visible on each particular row is configured by the showLinkIcon attribute of the listItem element. Since in this example this attribute is set to false for every listItem element, arrows pointing to the right are not displayed.

Example 13-54 Defining List View with Four Types of Text and Without Expansion Links

<amx:listView id="lv1" value="#{myBean.listCollection}" var="row">
 <amx:listItem id="li1" showLinkIcon="false">
 <amx:tableLayout id="tl1" width="100%">
 <amx:rowLayout id="rl1">
 <amx:cellFormat id="cf1" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf2" width="60%" height="28px">
 <amx:outputText id="ot1" value="#{row.name}"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf3" width="10px" rowSpan="2"/>
 <amx:cellFormat id="cf4" width="40%" halign="end">
 <amx:outputText id="ot2"
 value="#{row.status}"
 styleClass="adfmf-listItem-highlightText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="rl2">
 <amx:cellFormat id="cf5" width="60%" height="12px">
 <amx:outputText id="ot3"
 value="#{row.desc}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 <amx:cellFormat id="cf6" width="40%" halign="end">
 <amx:outputText id="ot4"
 value="#{row.priority}"
 styleClass="adfmf-listItem-captionText"/>
 </amx:cellFormat>
 </amx:rowLayout>
 </amx:tableLayout>
 </amx:listItem>
</amx:listView>

Figure 13-53 shows a List View component with two types of differently styled text added to the start and end of each row.

Figure 13-53 List View with Four Types of Text and Without Expansion Links at Design Time

[image: This image is described in the surrounding text]

13.3.15.5 What You May Need to Know About Using Static List View

If you create a List View component that is not populated from the model but by hard-coded values, this List View becomes static resulting in some of its properties that you set at design time (for example, dividerAttribute, dividerMode, fetchSize, moveListener) ignored at run time.

MAF AMX treats a List View component as static if its value attribute is not set. Such lists cannot be editable (that is, you cannot specify its editMode attribute).

13.3.16 How to Use Carousel Component

You use the Carousel (carousel) component to display other components, such as images, in a revolving carousel. The end user can change the active item by using either the slider or by dragging another image to the front.

The Carousel component contains a Carousel Item (carouselItem) component, whose text represented by the text attribute is displayed when it is the active item of the Carousel. Although typically the Carousel Item contains an Image component, other components may be used. For example, you can use a Link as a child that surrounds an image. Instead of creating a Carousel Item component for each object to be displayed and then binding these components to the individual object, you bind the Carousel component to a complete collection. The component then repeatedly renders one Carousel Item component by stamping the value for each item. As each item is stamped, the data for the current item is copied into a property that can be addressed using an EL expression using the Carousel component's var attribute. Once the Carousel has completed rendering, this property is removed or reverted back to its previous value. Carousel components contain a Facet named nodeStamp, which is both a holder for the Carousel Item used to display the text and short description for each item, and also the parent component to the Image displayed for each item.

The Carousel Item stretches its sole child component. If you place a single Image component inside of the Carousel Item, the Image stretches to fit within the square allocated for the item (as the end user spins the carousel, these dimensions shrink or grow).

	
Tip:

To minimize any negative effect on performance of your application, you should avoid using heavy-weight components as children: a complex structure creates a multiplied effect because several Carousel Items stamps are displayed simultaneously.

By default, the Carousel displays horizontally. The objects within the horizontal orientation of the Carousel are vertically-aligned to the middle and the Carousel itself is horizontally-aligned to the center of its container. You can configure the Carousel so that it can be displayed vertically, as you might want for a reference rolodex. By default, the objects within the vertical orientation of the Carousel are horizontally-aligned to the center and the Carousel itself is vertically aligned middle. You can change the alignments using the Carousel's orientation attribute.

Instead of partially displaying the previous and next images, you can configure your Carousel to display images in a filmstrip or circular design using the displayItems attribute.

By default, if the Carousel is configured to display in the circular mode, when the end user hovers over an auxiliary item (that is, an item that is not the current item at the center), the item is outlined to show that it can be selected. Using the auxiliaryPopOut attribute, you can configure the Carousel so that instead the item pops out and displays at full size.

In JDeveloper, the Carousel is located under Data Views in the Components window (see Figure 13-54).

Figure 13-54 Carousel in Components Window

[image: This image is described in the surrounding text]

To create a Carousel component, you must first create the data model that contains images to display, then bind the Carousel to that model and insert a Carousel Item component into the nodeStamp facet of the Carousel. Lastly, you insert an Image component (or other components that contain an Image component) as a child to the Carousel Item component.

Example 13-55 demonstrates the carousel element definition in a MAF AMX file. When defining the carousel element, you must place the carouselItem element inside of a carousel elements's nodeStamp facet.

Example 13-55 Carousel Definition

<amx:carousel id="carousel1"
 value="#{bindings.products.collectionModel}"
 var="item"
 auxiliaryOffset="0.9"
 auxiliaryPopOut="hover"
 auxiliaryScale="0.8"
 controlArea="full"
 displayItems="circular"
 halign="center"
 valign="middle"
 disabled="false"
 shortDesc="spin"
 orientation="horizontal"
 styleClass="AMXStretchWidth"
 inlineStyle="height:250px;background-color:#EFEFEF;">
 <amx:facet name="nodeStamp">
 <amx:carouselItem id="item1" text="#{item.name}"
 shortDesc="Product: #{item.name}">
 <amx:commandLink id="link1" action="goto-productDetails"
 actionListener="#{someMethod()}">
 <amx:image id="image1" styleClass="prod-thumb"
 source="images/img-big-#{item.uid}.png"/>
 <amx:setPropertyListener id="spl1"
 from="#{item}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:commandLink>
 </amx:carouselItem>
 </amx:facet>
</amx:carousel>

The Carousel component uses the CollectionModel class to access the data in the underlying collection. You may also use other model classes, such as java.util.List or array, in which case the Carousel automatically converts the instance into a CollectionModel class, but without any additional functionality.

A slider allows the end user to navigate through the Carousel collection. Typically, the thumb on the slider displays the current object number out of the total number of objects. When the total number of objects is too great to calculate, the thumb on the slider shows only the current object number.

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.17 How to Use the Film Strip Component

A Film Strip (filmStrip) is a container component that visualizes data distributed among a set of groups (pages) in a form of a vertical or horizontal strip. The UI components that represent display items (filmStripItem) included in a group must be of the same size and type, and only one group visible at a time. The end user can navigate pages of the Film Strip, select an item and generate actions by tapping it.

In JDeveloper, the Film Strip is located under Data Views in the Components window (see Figure 13-55).

Figure 13-55 Film Strip in Components Window

[image: This image is described in the surrounding text]

Example 13-56 demonstrates the filmStrip element definition in a MAF AMX file.

Example 13-56 Film Strip Definition

<amx:filmStrip id="fs1"
 var="item"
 value="#{bindings.contacts.collectionModel}"
 rendered="#{pageFlowScope.pRendered}"
 styleClass="#{pageFlowScope.pStyleClass}"
 inlineStyle="#{pageFlowScope.pInlineStyle}"
 shortDesc="#{pageFlowScope.pShortDesc}"
 halign="#{pageFlowScope.pFsHalign}"
 valign="#{pageFlowScope.pFsValign}"
 itemsPerPage="#{pageFlowScope.pMaxItems}"
 orientation="#{pageFlowScope.pOrientation}">
 <amx:filmStripItem id="fsi1"
 inlineStyle="text-align:center; width:200px;">
 <amx:commandLink id="ciLink"
 action="details"
 shortDesc="Navigate to details">
 <amx:image id="ciImage" source="images/people/#{item.first}.png"/>
 <amx:setPropertyListener id="spl1"
 from="#{item.rowKey}"
 to="#{pageFlowScope.currentContact}"
 type="action"/>
 <amx:setPropertyListener id="spl2"
 from="#{item.first}"
 to="#{pageFlowScope.currentContactFirst}"
 type="action"/>
 <amx:setPropertyListener id="spl3"
 from="#{item.last}"
 to="#{pageFlowScope.currentContactLast}"
 type="action"/>
 </amx:commandLink>
 </amx:filmStripItem>
</amx:filmStrip>

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.17.1 What You May Need to Know About the Film Strip Layout

In a vertically laid out Film Strip, the display items are placed in a top-down manner. Depending on the text direction, the page control is located as follows:

	
For the left-to-right text direction, the page control is on the right side;

	
For the right-to-left text direction, the page control is on the left side.

In a horizontally laid out Film Strip should reflect the text direction mode: in the left-to-ride mode, the first item is located on the left; in the right-to-left mode, the first item is located on the right. In both cases, the page status component is at the bottom.

13.3.17.2 What You May Need to Know About the Film Strip Navigation

The navigation of the Film Strip component is similar to the Deck (see Section 13.2.12, "How to Use a Deck Component") and Panel Splitter component (see Section 13.2.9, "How to Use a Panel Splitter Component"): one page at the time is displayed and the page change is triggered by selection of the page ID or number.

Since the child Film Strip Item component is not meant to be used for navigation to other MAF AMX pages, it does not support the action attribute. When required, you can enable navigation through the nested Command Link component.

13.3.18 How to Use Verbatim Component

You use the Verbatim (verbatim) operation to insert your own HTML into a page in cases where such a component does not exist or you prefer laying it out yourself using HTML.

In JDeveloper, Verbatim is located under General Controls in the Components window (see Figure 13-58).

Figure 13-56 Verbatim in Components Window

[image: This image is described in the surrounding text]

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.18.1 What You May Need to Know About Using JavaScript and AJAX with Verbatim Component

Inserting JavaScript directly into the verbatim content (within the amx:verbatim element) is not a recommended practice as it may not execute properly on future versions of the currently supported platforms or on other platforms that MAF might support in the future. Instead, JavaScript and CSS inclusions should be done through the existing adfmf:include elements in the maf-feature.xml file, which ensures injection of the script into the page at the startup of the MAF AMX application feature.

In addition, the use of JavaScript with the Verbatim component is affected by the fact that AJAX calls from an AMX page to a server are not supported. This is due to the security architecture that guarantees that the browser hosting the MAF AMX page does not have access to the security information needed to make connections to a secure server to obtain its resources. Instead, communication with the server must occur from the embedded Java code layer.

13.3.19 How to Use Output HTML Component

The Output HTML (outputHtml) component allows you to dynamically and securely obtain HTML content from an EL-bound property or method with the purpose of displaying it on a MAF AMX page. The Output HTML component behaves similarly to the Verbatim component (see Section 13.3.18, "How to Use Verbatim Component") and the same restrictions with regards to JavaScript and AJAX usage apply to it (see Section 13.3.18.1, "What You May Need to Know About Using JavaScript and AJAX with Verbatim Component").

In JDeveloper, Output HTML is located under General Controls in the Components window (see Figure 13-57).

Figure 13-57 Output HTML in Components Window

[image: This image is described in the surrounding text]

Example 13-57 demonstrates the outputHtml element definition in a MAF AMX file. The value attribute provides an EL binding to a String property that is used to obtain the HTML content to be displayed as the outputHTML in the final rendering of the MAF AMX page.

Example 13-57 Output HTML Definition

<amx:tableLayout id="t1" width="100%">
 <amx:rowLayout id="r1">
 <amx:cellFormat id="cf1" width="100%">
 <amx:outputHtml id="ReceiptView"
 value="#{pageFlowScope.purchaseBean.htmlReceiptView}"/>
 </amx:cellFormat>
 </amx:rowLayout>
 <amx:rowLayout id="r2">
 <amx:cellFormat id="cf2" width="100%">
 <amx:outputHtml id="CheckView"
 value="#{pageFlowScope.purchaseBean.htmlCheckView}"/>
 </amx:cellFormat>
 </amx:rowLayout>
</amx:tableLayout>

Example 13-58 shows the code from the Java bean called MyPurchaseBean that provides HTML for the Output HTML component shown in Example 13-57.

Example 13-58 Retrieving HTML

// The property accessor that gets the receipt view HTML
public String getHtmlReceiptView() {
 // Perform some URL remote call to get the HTML to be
 // inserted as a view of the Receipt and return that value
 return obtainReceiptHTMLFromServer();
}
// The property accessor that gets the check view HTML
public String getHtmlCheckView() {
 // Perform some URL remote call to get the HTML to be
 // inserted as a view of the Check and return that value
 return obtainCheckHTMLFromServer();
}

Since the Output HTML component obtains its HTML content from a Java bean property as opposed to downloading it directly from a remote source, consider using the existing MAF security features when coding the retrieval or generation of the dynamically provided HTML. For more information, see Chapter 29, "Securing MAF Applications" and Section 28.7.3, "About Injection Attack Risks from Custom HTML Components." In addition, ensure that the HTML being provided comes from a trusted source and is free of threats.

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.20 How to Enable Iteration

You use the Iterator (iterator) operation to stamp an arbitrary number of items with the same kind of data, which allows you to iterate through the data and produce UI for each element.

In JDeveloper, the Iterator is located under Data Views in the Components window (see Figure 13-58).

Figure 13-58 Iterator in Components Window

[image: This image is described in the surrounding text]

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.3.21 How to Load a Resource Bundle

The Load Bundle (loadBundle) operation allows you to specify the resource bundle that provides localized text for the MAF AMX UI components on a page. For more information, see Section 13.7, "Localizing UI Components."

In JDeveloper, the Load Bundle is located under Operations in the Components window (see Figure 13-59).

Figure 13-59 Load Bundle in Components Window

[image: This image is described in the surrounding text]

In your MAF AMX file, you declare the loadBundle element as a child of the view element.

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.3.22 How to Use the Action Listener

The Action Listener (actionListener) component allows you to declaratively invoke commands through EL based on the type of the parent component's usage.

The predominate reason for using the Action Listener component is to add gesture-supported actions to its parent components, as well as ability to perform multiple operations for a single gesture, including tap. For more information, see Section 13.3.22.1, "What You May Need to Know About Differences Between the Action Listener Component and Attribute."

In JDeveloper, the Action Listener component is located under Operations -> Listeners in the Components window (see Figure 13-60).

Figure 13-60 Action Listener in Components Window

[image: This image is described in the surrounding text]

You can add zero or more Action Listener components as children of any command component (Button, Link, List Item, Film Strip Item). The type attribute of the Action Listener component defines which gesture, such as swipeLeft, swipeRight, tapHold, and so on, causes the ActionEvent to fire.

For more information, see the following:

	
Section 13.10, "Using Event Listeners"

	
Section 13.3.23, "How to Use the Set Property Listener"

	
Section 13.4, "Enabling Gestures"

	
Section 13.3.22.1, "What You May Need to Know About Differences Between the Action Listener Component and Attribute"

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

13.3.22.1 What You May Need to Know About Differences Between the Action Listener Component and Attribute

Components such as the Button, Link, and List Item have an actionListener attribute, which by inference seems to make the Action Listener component redundant. However, unlike the Action Listener component, these components do not have the type attribute that supports gestures, which is the reason MAF provides the Action Listener component in addition to the actionListener attribute of the parent components.

13.3.23 How to Use the Set Property Listener

The Set Property Listener (setPropertyListener) component allows you to declaratively copy values from one location (defined by the component's from attribute) to another (defined by the component's to attribute) as a result of an end-user action on a component, thus freeing you from the need to write Java code to achieve the same result.

In JDeveloper, the Set Property Listener component is located under Operations -> Listeners in the Components window (see Figure 13-61).

Figure 13-61 Set Property Listener in Components Window

[image: This image is described in the surrounding text]

Example 13-59 demonstrates the setPropertyListener element definition in a MAF AMX file.

Example 13-59 Set Property Listener Definition

<amx:listView value="#{bindings.products.collectionModel}" var="row" id="lv1">
 <amx:listItem id="li1" action="details">
 <amx:outputText value="#{row.name}" id="ot1" />
 <amx:setPropertyListener id="spl1"
 from="#{row}"
 to="#{pageFlowScope.product}"
 type="action"/>
 </amx:listItem>
</amx:listView>

You can add zero or more Set Property Listener components as children of any command component (Button, Link, List Item, Film Strip Item, as well as a subset of data visualization components and their child components). The type attribute of the Set Property Listener component defines which gesture, such as swipeLeft, swipeRight, tapHold, and so on, causes the ActionEvent to fire.

For more information, see the following:

	
Section 13.10, "Using Event Listeners"

	
Section 13.3.22, "How to Use the Action Listener"

	
Section 13.4, "Enabling Gestures"

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

13.3.24 How to Use the Client Listener

The Client Listener (clientListener) component allows you to declaratively register a JavaScript listener script that is to be executed when a specific event type is fired.

Before using the Client Listener component, you should check whether or not the MAF AMX page contains any existing behavior components, such as the Navigation Drag Behavior or Show Popup Behavior, because these components might eliminate the need for scripts.

In JDeveloper, the Client Listener component is located under Operations -> Listeners in the Components window (see Figure 13-62).

Figure 13-62 Client Listener in Components Window

[image: This image is described in the surrounding text]

Example 13-60 demonstrates the clientListener element definition in a MAF AMX file. Both attributes are required and should be specified as follows:

	
method: defines the client-side JavaScript method name to invoke when triggered by an event of the specified type.

	
type: defines the type of the client-side component event for which to listen. Note that not all events exist for all components and not all events behave consistently across platforms or versions of the same platform. Examples of events include action if the parent component is a Button; valueChange if the parent component is an Input Text. Depending on the parent component, there might be some DOM events that you can use, such as touchstart, touchend, tap, taphold, and so on. In addition, some components might have special DOM events, such as the View component's showpagecomplete, mafviewvisible, mafviewhidden, amxnavigatestart, and amxnavigateend (see Section 14.11.10, "What You May Need to Know About Device Properties" for more information on these events).

The type attribute supports EL for its initial declaration, but it does not support updates to that EL value—the value associated with the expression must not change unless actions are taken that cause the parent component to rerender.

Example 13-60 Client Listener Definition

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:clientListener type="showpagecomplete" method="handleClientListenerBlue"/>
 <amx:clientListener type="mafviewvisible" method="handleClientListenerBlue"/>
 <amx:clientListener type="mafviewhidden" method="handleClientListenerBlue"/>
 <amx:clientListener type="amxnavigatestart" method="handleClientListenerBlue"/>
 <amx:clientListener type="amxnavigateend" method="handleClientListenerBlue"/>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="header" value="clientListener"/>
 </amx:facet>
 <amx:facet name="primary">
 <amx:commandButton id="back" action="__back" text="Back"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="props" text="Properties" action="properties"/>
 </amx:facet>
 <amx:commandButton id="button1" text="Click Me">
 <amx:clientListener type="#{bindings.pType}"
 method="#{bindings.pMethod}"/>
 </amx:commandButton>
 <amx:verbatim id="v1"><![CDATA[
 <script type="text/javascript">
 function handleClientListenerGray(clientEvent) {
 _handleClientListener(clientEvent, "gray");
 }
 function handleClientListenerBlue(clientEvent) {
 _handleClientListener(clientEvent, "blue");
 }
 function handleClientListenerOrange(clientEvent) {
 _handleClientListener(clientEvent, "orange");
 }
 function clearRecentEvents(clientEvent) {
 for (var i=9; i>=0; --i) {
 var row = document.getElementsByClassName("recent"+i)[0];
 row.textContent = "n/a";
 row.style.color = "";
 }
 }
 function _handleClientListener(clientEvent, color) {
 try {
 for (var i=9; i>0; --i) {
 var currentRow = document.getElementsByClassName("recent"+i)[0];
 var olderRow = document.getElementsByClassName
 ("recent"+(i-1))[0];
 currentRow.textContent = olderRow.textContent;
 currentRow.style.color = olderRow.style.color;
 }
 document.getElementsByClassName("recent0")[0].
 textContent = clientEvent;
 document.getElementsByClassName("recent0")[0].style.color = color;
 console.log("Handled clientListener: " + clientEvent, clientEvent);
 }
 catch (problem) {
 console.log("Error in verbatim code: " +
 clientEvent, clientEvent, problem);
 alert("Error in verbatim code: " + clientEvent + "\n\n" + problem);
 }
 }
 </script>
 <style type="text/css">
 .recentLine {
 white-space: normal;
 word-wrap: break-word;
 font-size: 12px;
 color: gray;
 }
 </style>
 <fieldset style="min-width: 50px;">
 <legend style="color: gray;">Recent Events</legend>
 <div id="recent0" class="recent0 recentLine">n/a</div>
 <div id="recent1" class="recent1 recentLine">n/a</div>
 <div id="recent2" class="recent2 recentLine">n/a</div>
 <div id="recent3" class="recent3 recentLine">n/a</div>
 <div id="recent4" class="recent4 recentLine">n/a</div>
 <div id="recent5" class="recent5 recentLine">n/a</div>
 <div id="recent6" class="recent6 recentLine">n/a</div>
 <div id="recent7" class="recent7 recentLine">n/a</div>
 <div id="recent8" class="recent8 recentLine">n/a</div>
 <div id="recent9" class="recent9 recentLine">n/a</div>
 </fieldset>
]]></amx:verbatim>
 </amx:panelPage>
</amx:view>

For more information, see the following:

	
Section 13.10, "Using Event Listeners"

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

13.3.25 How to Convert Date and Time Values

The Convert Date Time (convertDateTime) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text and Input Text component to display converted date, time, or a combination of date and time in a variety of formats following the specified pattern.

In JDeveloper, the Convert Date Time is located under Validators and Converters in the Components window (see Figure 13-63).

Figure 13-63 Convert Date Time in Components Window

[image: This image is described in the surrounding text]

Example 13-61 demonstrates the convertDateTime element declared in a MAF AMX file.

Example 13-61 Using Convert Date Time

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Order Date" id="it1" >
 <amx:convertDateTime id="cdt1" type="both"/>
 </amx:inputText>
</amx:panelPage>

To convert date and time values:

	
From the Components window, drag a Convert Date Time component and insert it within an Output Text or Input Text component, making it a child element of that component.

	
Open the Properties window for the Convert Date Time component and define its attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

	
Note:

The Convert Date Time component does not produce any effect at design time.

The Convert Date Time component allows a level of leniency while converting an input value string to date:

	
A converter with associated pattern MMM for month, when attached to any value holder, accepts values with month specified in the form MM or M as valid.

	
Allows use of such separators as dash (-) or period (.) or slash (/), irrespective of the separator specified in the associated pattern.

	
Leniency in pattern definition set by the pattern attribute.

For example, when a pattern on the converter is set to "MMM/d/yyyy", the following inputs are accepted as valid by the converter:

Jan/4/2004
Jan-4-2004
Jan.4.2004
01/4/2004
01-4-2004
01.4.2004
1/4/2004
1-4-2004
1.4.2004

The converter supports the same parsing and formatting conventions as the java.text.SimpleDateFormat (specified using the dateStyle, timeStyle, and pattern attributes), except the case when the time zone is specified to have a long display, such as timeStyle=full or a pattern set with zzzz. Instead of a long descriptive string, such as "Pacific Standard Time", the time zone is displayed in the General Time zone format (GMT +/- offset) or RFC-822 time zones.

The exact result of the conversion depends on the locale, but typically the following rules apply:

	
SHORT is completely numeric, such as 12.13.52 or 3:30pm

	
MEDIUM is longer, such as Jan 12, 1952

	
LONG is longer, such as January 12, 1952 or 3:30:32pm

	
FULL is completely specified, such as Tuesday, April 12, 1952 AD or 3:30:42pm PST

13.3.25.1 What You May Need to Know About Date and Time Patterns

As per java.text.SimpleDateFormat definition, date and time formats are specified by date and time pattern strings. Within date and time pattern strings, unquoted letters from A to Z and from a to z are interpreted as pattern letters representing the components of a date or time string. Text can be quoted using single quotes (') to avoid interpretation. " ' ' " represents a single quote. All other characters are not interpreted; instead, they are simply copied into the output string during formatting, or matched against the input string during parsing.

Table 13-9 lists the defined pattern letters (all other characters from A to Z and from a to z are reserved).

Table 13-9 Date and Time Pattern Letters

	Letter	Date or Time Component	Presentation	Examples
	
G

	
Era designator

	
Text

	
	
AD

	
y

	
Year

	
Year

	
	
1996

	
96

	
M

	
Month in year

	
Month

	
	
July

	
Jul

	
07

	
w

	
Week in year

	
Number

	
	
27

	
W

	
Week in month

	
Number

	
	
2

	
D

	
Day in year

	
Number

	
	
189

	
d

	
Day in month

	
Number

	
	
10

	
F

	
Day of week in month

	
Number

	
	
2

	
E

	
Day in week

	
Text

	
	
Tuesday

	
Tue

	
a

	
Am/pm marker

	
Text

	
	
PM

	
H

	
Hour in day (0-23)

	
Number

	
	
0

	
k

	
Hour in day (1-24)

	
Number

	
	
24

	
K

	
Hour in am/pm (0-11)

	
Number

	
	
0

	
h

	
Hour in am/pm (1-12)

	
Number

	
	
12

	
m

	
Minute in hour

	
Number

	
	
30

	
s

	
Second in minute

	
Number

	
	
55

	
S

	
Millisecond

	
Number

	
	
978

	
z

	
Time zone

	
General time zone

	
	
Pacific Standard Time

	
PST

	
GMT-08:00

	
Z

	
Time zone

	
RFC 822 time zone

	
	
-0800

Pattern letters are usually repeated, as their number determines the exact presentation.

13.3.26 How to Convert Numerical Values

The Convert Number (convertNumber) is not an independent UI component: it is a converter operation that you use in conjunction with an Output Text, Input Text, and Input Number Slider components to display converted number or currency figures in a variety of formats following a specified pattern.

The Convert Number component provides the following types of conversion:

	
From value to string, for display purposes.

	
From formatted string to value, when formatted input value is parsed into its underlying value.

When the Convert Number is specified as a child of an Input Text component, the numeric keyboard is displayed on a mobile device by default.

In JDeveloper, the Convert Number is located under Validators and Converters in the Components window (see Figure 13-64).

Figure 13-64 Convert Number in Components Window

[image: This image is described in the surrounding text]

Example 13-62 demonstrates the convertNumber element defined in a MAF AMX file.

Example 13-62 Using Convert Number

<amx:panelPage id="pp1">
 <amx:inputText styleClass="ui-text" value="Product Price" id="it1" >
 <amx:convertNumber id="cn1"
 type="percent"
 groupingUsed="false"
 integerOnly="true"/>
 </amx:inputText>
</amx:panelPage>

To convert numerical values:

	
From the Components window, drag a Convert Number component and insert it within an Output Text, Input Text, or Input Number Slider component, making it a child element of that component.

	
Open the Properties window for the Convert Number component and define its attributes. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

	
Note:

The Convert Number component does not produce any effect at design time.

13.3.27 How to Enable Drag Navigation

The Navigation Drag Behavior (navigationDragBehavior) operation allows you to invoke the action of navigating to the next or previous MAF AMX page by dragging a portion of the mobile device screen in a specified direction (left or right). As the drag in the specified direction occurs, an indicator is displayed on the appropriate side of the screen to hint that an action will be performed if the dragging continues and then stops as soon as the indicator is fully revealed. If the drag is released before the indicator is fully revealed, the indicator slides away and no action is invoked.

	
Note:

This behavior does not occur if another, closer container consumes the drag gesture.

A MAF AMX page cannot contain more than two instances of the navigationDragBehavior element: one with its direction attribute set to back and one set to forward.

In JDeveloper, the Navigation Drag Behavior is located under Operations in the Components window (see Figure 13-65).

Figure 13-65 Navigation Drag Behavior in Components Window

[image: This image is described in the surrounding text]

Example 13-63 demonstrates the navigationDragBehavior element defined in a MAF AMX file. Note that this element can only be a child of the view element.

Example 13-63 Using Navigation Drag Behavior

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:navigationDragBehavior id="ndb1"
 direction="forward"
 action="gotoDetail"/> Foot 1
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 ...
 </amx:panelPage>
</amx:view>

Figure 13-66 shows the Navigation Drag Behavior at runtime (displayed using the mobileFusionFx skin).

Figure 13-66 Navigation Drag Behavior Operation at Runtime

[image: This image is described in the surrounding text]

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.3.27.1 What You May Need to Know About the disabled Attribute

The value of the disabled attribute (see Example 13-64 and Example 13-65) is calculated when one of the following occurs:

	
A MAF AMX page is rendered

	
A PropertyChangeListener updates the component: If you wish to dynamically enable or disable the end user's ability to invoke the Navigation Drag Behavior, you use the PropertyChangeListener (similarly to how it is used with other components that require updates from a bean).

Example 13-64 shows a MAF AMX page containing the navigationDragBehavior element with a defined disabled attribute. The functionality is driven by the Button (commandButton) that, when activated, changes the backing bean boolean value (navDisabled in Example 13-65) from which the disabled attribute reads its value. The backing bean, in turn, uses the PropertyChangeListener.

Example 13-64 Navigation Drag Behavior with disabled Attribute in MAF AMX Page

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText value="Header1" id="ot1"/>
 </amx:facet>
 <amx:commandButton id="cb1"
 text="commandButton1"
 actionListener="#{pageFlowScope.myBean.doSomething}"/>
 </amx:panelPage>
 <amx:navigationDragBehavior id="ndb1"
 direction="forward"
 action="goView2"
 disabled="#{pageFlowScope.myBean.navDisabled}"/>
</amx:view>

Example 13-65 shows the backing bean (myBean in Example 13-64) that provides value for the navigationDragBehavior's disabled attribute.

Example 13-65 Backing Bean for Navigation Drag Behavior Disabled Functionality

public class MyBean {
 boolean navDisabled = true;
 private PropertyChangeSupport propertyChangeSupport =
 new PropertyChangeSupport(this);

 public void setNavDisabled(boolean navDisabled) {
 boolean oldNavDisabled = this.navDisabled;
 this.navDisabled = navDisabled;
 propertyChangeSupport.firePropertyChange("navDisabled",
 oldNavDisabled,
 navDisabled);
 }

 public boolean isNavDisabled() {
 return navDisabled;
 }

 public void doSomething(ActionEvent actionEvent) {
 setNavDisabled(!navDisabled);
 }

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }
}

13.3.28 How to Use the Loading Indicator

The Loading Indicator Behavior (loadingIndicatorBehavior) operation allows you to define the behavior of the loading indicator by overriding the following:

	
The duration of the fail-safe timer (in milliseconds).

	
An optional JavaScript function name that can be invoked to decide on the course of action when the fail-safe threshold is reached.

For additional information, see the adf.mf.api.amx.showLoadingIndicator in Table 19-1, "Static APIs".

In JDeveloper, the Loading Indicator Behavior is located under Operations in the Components window (see Figure 13-67).

Figure 13-67 Loading Indicator Behavior in the Components Window

[image: This image is described in the surrounding text]

Example 13-66 demonstrates the loadingIndicatorBehavior element defined in a MAF AMX file. Note that this element can only be a child of the view element.

Example 13-66 Using Loading Indicator Behavior

<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:loadingIndicatorBehavior id="lib1"
 failSafeDuration="3000"
 failSafeClientHandler="window.customFailSafeHandler"/>
 <amx:panelPage id="pp1">
 <amx:facet name="header">
 <!-- The loading indicator custom fail safe handler will appear
 if the long running operation runs longer than 3 seconds -->
 <amx:commandButton id="cb1"
 text="longRunningOperation"
 actionListener=
 "#{pageFlowScope.myBean.longRunningOperation} />
 </amx:panelPage>
</amx:view>

In the preceding example, the commandButton is bound to a long-running method to illustrate that the loading indicator applies to long running operations once the page is loaded (not when the page itself takes a long time to load).

Example 13-67 demonstrates the custom.js file included with the application feature. It defines the client handler for the failSafeClientHandler in the loadingIndicatorBehavior page. As per the API requirement, this function returns a String of either hide, repeat, or freeze. For more information, see the adf.mf.api.amx.showLoadingIndicator in Table 19-1, "Static APIs".

Example 13-67 Sample custom.js File

window.customFailSafeHandler = function() {
 var answer =
 prompt(
 "This is taking a long time.\n\n" +
 "Use \"a\" to hide the indicator.\n" +
 "Use \"z\" to wait for it.\n" +
 "Otherwise, give it more time.");

 if (answer == "a")
 return "hide"; // don't ask again; hide the indicator
 else if (answer == "z")
 return "freeze" // don't ask again; wait for it to finish
 else
 return "repeat"; // ask again after another duration
};

For more information and examples, see the following:

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
CompGallery, a MAF sample application located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer

13.4 Enabling Gestures

You can configure Button, Link, List Item, as well as a number of data visualization components to react to the following gestures:

	
Swipe to the right

	
Swipe to the left

	
Swipe up

	
Swipe down

	
Tap-and-hold

	
Action: as a gesture, Action represents a basic tap.

	
Swipe to the start: this gesture is used for accommodating the right-to-left (RTL) text direction. This gesture resolves as follows:

	
Swipe to the left for the left-to-right text direction.

	
Swipe to the right for the right-to-left text direction.

	
Swipe to the end: this gesture is used for accommodating the right-to-left (RTL) text direction. This gesture resolves as follows:

	
Swipe to the right for the left-to-right text direction.

	
Swipe to the left for the right-to-left text direction.

You can define swipeRight, swipeLeft, swipeUp, swipeDown, swipeStart, swipeEnd, action, and tapHold values for the type attribute of the following operations:

	
Set Property Listener (see Section 13.3.23, "How to Use the Set Property Listener")

	
Action Listener (see Section 13.3.22, "How to Use the Action Listener")

	
Show Popup Behavior (see Section 13.2.8, "How to Use a Popup Component")

	
Close Popup Behavior (see Section 13.2.8, "How to Use a Popup Component")

The values of the type attribute are restricted based on the parent component and are supported only for Link (commandLink) and List Item (listItem) components.

	
Note:

There is no gesture support for the Link Go (linkGo) component.

Swiping from start and end is used for accommodating the right-to-left (RTL) text direction. It is generally recommended to set the start and end swipe style as opposed to left and right.

Example 13-68 demonstrates use of the tapHold value of the type attribute in a MAF AMX file. In this example, the tap-and-hold gesture triggers the display of a Popup component.

Example 13-68 Using Tap-and-Hold Gesture

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem id="li1" action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener id="spl1"
 from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="tapHold"/>
 <amx:showPopupBehavior id="spb1"
 type="tapHold"
 alignid="pp1"
 popupid="pop1"
 align="startAfter"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>
<amx:popup id="pop1">
 <amx:panelGroupLayout id="pgl1" layout="horizontal">
 <amx:commandLink id="cm1" actionListener="#{mybean.doX}">
 <amx:image id="i1" source="images/x.png"/>
 <amx:closePopupBehavior id="cpb1" type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm2" actionListener="#{mybean.doY}">
 <amx:image id="i2" source="images/y.png"/>
 <amx:closePopupBehavior id="cpb2" type="action" popupid="pop1"/>
 </amx:commandLink>
 <amx:commandLink id="cm3" actionListener="#{mybean.doZ}">
 <amx:image id="i3" source="images/y.png"/>
 <amx:closePopupBehavior id="cpb3" type="action" popupid="pop1"/>
 </amx:commandLink>
 </amx:panelGroupLayout>
</amx:popup>

Example 13-69 demonstrates use of the swipeRight gesture in a MAF AMX file.

Example 13-69 Using Swipe Right Gesture

<amx:panelPage id="pp1">
 <amx:listView id="lv1"
 value="#{bindings.data.collectionModel}"
 var="row">
 <amx:listItem id="li1" action="gosomewhere">
 <amx:outputText id="ot1" value="#{row.description}"/>
 <amx:setPropertyListener id="spl1"
 from="#{row.rowKey}"
 to="#{mybean.currentRow}"
 type="swipeRight"/>
 <actionListener id="al1" binding="#{mybean.DoX}" type="swipeRight"/>
 </amx:listItem>
 </amx:listView>>
</amx:panelPage>

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

A MAF sample application called GestureDemo demonstrates how to use gestures with a variety of MAF AMX UI components. This sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

13.5 Providing Data Visualization

MAF employs a set of data visualization components that you can use to create various charts, gauges, and maps to represent data in your MAF AMX application feature. You can declare the following elements under the <dvtm> namespace in a MAF AMX file:

	
areaChart (see Section 13.5.1, "How to Create an Area Chart")

	
barChart (see Section 13.5.2, "How to Create a Bar Chart")

	
bubbleChart (see Section 13.5.3, "How to Create a Bubble Chart")

	
comboChart (see Section 13.5.4, "How to Create a Combo Chart")

	
lineChart (see Section 13.5.5, "How to Create a Line Chart")

	
pieChart (see Section 13.5.6, "How to Create a Pie Chart")

	
scatterChart (see Section 13.5.7, "How to Create a Scatter Chart")

	
sparkChart (see Section 13.5.8, "How to Create a Spark Chart")

	
funnelChart (see Section 13.5.9, "How to Create a Funnel Chart")

	
ledGauge (see Section 13.5.12, "How to Create a LED Gauge")

	
statusMeterGauge (see Section 13.5.13, "How to Create a Status Meter Gauge")

	
dialGauge (see Section 13.5.14, "How to Create a Dial Gauge")

	
ratingGauge (see Section 13.5.15, "How to Create a Rating Gauge")

	
geographicMap (see Section 13.5.17, "How to Create a Geographic Map Component")

	
thematicMap (see Section 13.5.18, "How to Create a Thematic Map Component")

	
treemap (see Section 13.5.20, "How to Create a Treemap Component")

	
sunburst (see Section 13.5.21, "How to Create a Sunburst Component")

	
timeline (see Section 13.5.22, "How to Create a Timeline Component")

	
nBox (see Section 13.5.23, "How to Create an NBox Component")

Chart, gauge, map, and advanced components' elements have a number of attributes that are common to all or most of them. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

In JDeveloper, data visualization components are located as follows in the Components window:

	
Chart components are located under MAF AMX Data Visualizations > Common > Chart

	
Gauge components are located under MAF AMX Data Visualizations > Common > Gauge

	
Map components are located under MAF AMX Data Visualizations > Common > Map

	
Treemap, Sunburst, Timeline, and NBox are located under MAF AMX Data Visualizations > Common > Miscellaneous

Figure 13-68 Data Visualization Components in the Components Window

[image: This image is described in the surrounding text]

When you drag and drop a data visualization component, a dialog similar to one of the following opens to display the information about the type of component you are creating:

	
Create Mobile Chart (see Figure 13-69)

Figure 13-69 Creating Chart Components

[image: This image is described in the surrounding text]

	
Create Mobile Gauge (see Figure 13-70)

Figure 13-70 Creating Gauge Components

[image: This image is described in the surrounding text]

	
Component Gallery (see Figure 13-71)

Figure 13-71 Creating Map Components

[image: This image is described in the surrounding text]

	
Create Sunburst or Treemap (see Figure 13-70)

Figure 13-72 Creating Sunburst

[image: This image is described in the surrounding text]

	
Note:

After you created the component, you can relaunch the creation dialog by selecting the component in the Source editor or Structure view, and then clicking Edit Component Definition in the Properties window.
You can use the same editing functionality available from the Properties window to edit child components (for example, the Data Point Layer) of some data visualization components.

A MAF sample application called CompGallery demonstrates how to use various data visualization components in your MAF AMX application feature. This sample application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

For more information on MAF AMX data visualization components, see the following:

	
For information on how to add event listeners to data visualization components, see Section 13.10, "Using Event Listeners." Event listeners are applicable to components for the MAF AMX run-time description on both iOS and Android-powered devices, but the listeners do not have any effect at design time.

	
For information on databound data visualization components that are created from the Data Controls window, see Section 13.5.25, "How to Create Databound Data Visualization Components."

	
For information on providing static data for charts and other data visualization components, see Section 13.5.26, "How to Create Data Visualization Components Based on Static Data."

	
For information on chart components' interactivity, see Section 13.5.27, "How to Enable Interactivity in Chart Components."

	
For information on creating polar charts, see Section 13.5.28, "How to Create Polar Charts."

	
For information on data visualization components' support for accessibility, see Section 13.8, "Understanding MAF Support for Accessibility."

	
For information on limitations to the usage of MAF AMX data visualization components, see Section E.6.2, "Data Visualization Components Limitations."

13.5.1 How to Create an Area Chart

You use the Area Chart (areaChart) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, an area color or pattern). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles. For information about defining custom series styles, see Section 13.5.5, "How to Create a Line Chart."

The Area Chart can be zoomed and scrolled along its X Axis. This is enabled through the use of the zoomAndScroll attribute.

Example 13-70 shows the areaChart element defined in a MAF AMX file. To create a basic area chart with default series style, you pass it a collection and specify the dataStamp facet with a nested chartDataItem element.

Example 13-70 Area Chart Definition with Default Series Styles

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="areaChartItem1" series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

Figure 13-73 Area Chart at Design Time

[image: This image is described in the surrounding text]

Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row must include the following properties:

	
series: name of the series to which this data item belongs;

	
group: name of the group to which this data item belongs;

	
value: the data item value.

The collection row might also include other properties, such as color or markerShape, applicable to individual data items.

You can use Attribute Groups (attributeGroups element) to set style properties for a group of data items based on some grouping criteria, as Example 13-71 shows. In this case, the chartDataItem's color and markerShape attributes are set based on the additional grouping expression.

The attributeGroups settings can be shared between data visualization components and attribute values can be automatically applied across these components. You enable this functionality by setting the discriminant attribute of the attributeGroups: components with the same discriminant value share their settings, including value of the attributeMatchRule child element of their attributeGroups.

The attributeGroups can have the following child elements:

	
attributeExceptionRule from the dvtm namespace: replaces an attribute value with another when a particular boolean condition is met.

	
attributeMatchRule from the dvtm namespace: replaces an attribute when the data matches a certain value.

	
attribute from the amx namespace.

Example 13-71 Area Chart Definition with Default Series Styles and Grouping

<dvtm:areaChart id="areaChart1"
 value="#{bindings.lineData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 title="Chart Title"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.brand}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend id="l1" position="end" />
</dvtm:areaChart>

	
Note:

In Example 13-70 and Figure 13-73, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp.

The orientation attribute allows you to define the Area Chart as either horizontal or vertical.

For information on attributes of the areaChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Area Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-areaChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.2 How to Create a Bar Chart

You use a Bar Chart (barChart) to visually display data as vertical bars, where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties that you have to apply at the series level instead of per each individual data item.

The Bar Chart can be zoomed and scrolled along its X Axis. This is enabled through the use of the zoomAndScroll attribute.

Example 13-72 shows the barChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested chartDataItem element.

Example 13-72 Bar Chart Definition

<dvtm:barChart id="barChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend id="l1" position="start" />
</dvtm:barChart>

Figure 13-74 Bar Chart at Design Time

[image: This image is described in the surrounding text]

The data model for a bar chart is represented by a collection of items (rows) that describe individual bars. Typically, properties of each bar include the following:

	
series: name of the series to which this bar belongs;

	
group: name of the group to which this bar belongs;

	
value: the data item value (required).

Data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null.

The orientation attribute allows you to define the Bar Chart as either horizontal or vertical.

For information on attributes of the barChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Bar Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-barChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.3 How to Create a Bubble Chart

A Bubble Chart (bubbleChart) displays a set of data items where each data item has x, y coordinates and size (bubble). In addition, each data item can have various style attributes, such as color and markerShape. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the relationships of the data items. However, unlike line charts (see Section 13.5.5, "How to Create a Line Chart") or area charts (see Section 13.5.1, "How to Create an Area Chart"), bubble charts do not have a strict notion of the series and groups.

The Bubble Chart can be zoomed and scrolled along its X and Y Axis. This is enabled through the use of the zoomAndScroll attribute.

Example 13-73 shows the bubbleChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested chartDataItem element. The color and markerShape attributes of each data item are set individually based on the values supplied in the data model. In addition, the underlying data control must support the respective variable references of row.label, row.size, and row.shape.

Example 13-73 Bubble Chart Definition with Custom Data Item Properties

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 inlineStyle="width: 400px; height: 300px;"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.group}"
 x="#{row.x}"
 y="#{row.y}"
 markerSize="#{row.size}"
 color="#{row.color}"
 markerShape="#{row.shape}" />
 </amx:facet>
</dvtm:bubbleChart>

Figure 13-75 Bubble Chart at Design Time

[image: This image is described in the surrounding text]

In Example 13-74, the attributeGroups element is used to set common style attributes for a related group of data items.

Example 13-74 Bubble Chart Definition with Attribute Groups

<dvtm:bubbleChart id="bubbleChart1"
 value="#{bindings.bubbleData.collectionModel}"
 dataSelection="multiple"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Bubble Chart"
 var="row">
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.label}"
 x="#{row.x}"
 y="#{row.y}" >
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.category}" />
 <dvtm:attributeGroups id="ag2" type="shape" value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:bubbleChart>

The data model for a bubble chart is represented by a collection of items (rows) that describe individual data items. Typically, properties of each bar include the following:

	
label: data item label (optional);

	
x, y: value coordinates (required);

	
z: the size of data item (required).

The data must include the same number of groups per series. If any of the series or data pairs are missing, it is passed to the API as null.

For information on attributes of the bubbleChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Bubble Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-bubbleChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.4 How to Create a Combo Chart

A Combo Chart (comboChart) represents an overlay of two or more different charts, such as a line and bar chart.

Example 13-75 shows the comboChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested chartDataItem element. The seriesStamp facet overrides the default style properties for the series and sets custom series styles using the seriesStyle elements.

Example 13-75 Combo Chart Definition

<dvtm:comboChart id="comboChart1"
 value="#{bindings.barData.collectionModel}"
 var="row"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="auto"
 animationDuration="1500" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle id="seriesStyle1"
 series="#{row.series}"
 type="bar"
 rendered="#{(row.series eq 'Series 1') or
 (row.series eq 'Series 2') or
 (row.series eq 'Series 3')}" />
 <dvtm:seriesStyle id="seriesStyle2"
 series="#{row.series}"
 type="line"
 lineWidth="5"
 rendered="#{(row.series eq 'Series 4') or
 (row.series eq 'Series 5')}" />
 </amx:facet>
 <dvtm:yAxis id="yAxis1"
 axisMaxValue="80.0"
 majorIncrement="20.0"
 title="yAxis Title" />
 <dvtm:legend position="start" id="l1" />
</dvtm:comboChart>

Figure 13-76 Combo Chart at Design Time

[image: This image is described in the surrounding text]

The orientation attribute allows you to define the Combo Chart as either horizontal or vertical.

For information on attributes of the comboChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Combo Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-comboChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.5 How to Create a Line Chart

You use the Line Chart (lineChart) to visually represent data where sets of data items are related and categorized into groups and series. The series are visualized using graphical elements with some common style properties (such as, for example, a line color, width, or style). Those properties have to be applied at the series level instead of per each individual data item. You have an option to use the default or custom series styles.

The Line Chart can be zoomed and scrolled along its X Axis. This is enabled through the use of the zoomAndScroll attribute.

Example 13-76 shows the lineChart element defined in a MAF AMX file. To create a basic line chart with default series style, you pass it a collection and specify the dataStamp facet with a nested chartDataItem element.

Example 13-76 Line Chart Definition with Default Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
</dvtm:lineChart>

Figure 13-77 Line Chart at Design Time

[image: This image is described in the surrounding text]

Data items are initialized in the collection model and equipped with the stamping mechanism. At a minimum, each collection row must include the following properties:

	
series: name of the series to which this line belongs;

	
group: name of the group to which this line belongs;

	
value: the data item value.

The collection row might also include other properties, such as color or markerShape, applicable to individual data items.

You can use attribute groups (attributeGroups element) to set style properties for a group of data items based on some grouping criteria, as Example 13-77 shows. In this case, the data item color and shape attributes are set based on the additional grouping expression. The attributeGroups can have the following child elements:

	
attributeExceptionRule from the dvtm namespace: replaces an attribute value with another when a particular boolean condition is met.

	
attributeMatchRule from the dvtm namespace: replaces an attribute when the data matches a certain value.

	
attribute from the amx namespace.

Example 13-77 Line Chart Definition with Default Series Styles and Grouping

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.brand}" />
 </dvtm:chartDataItem>
 </amx:facet>
</dvtm:lineChart>

	
Note:

In Example 13-76 and Example 13-77, since custom styles are not set at the series level, series are displayed with the colors based on the default color ramp.

To override the default style properties for the series, you can define an optional seriesStamp facet and set custom series styles using the seriesStyle elements, as Example 13-78 shows.

Example 13-78 Line Chart Definition with Custom Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 lineStyle="#{row.lineStyle}"
 lineWidth="#{row.lineWidth}" />
 </amx:facet>
</dvtm:lineChart>

In the preceding example, the seriesStyle elements are grouped based on the value of the series attribute. Series with the same name are supposed to share the same set of properties defined by other attributes of the seriesStyle, such as color, lineStyle, lineWidth, and so on. When MAF AMX encounters different attribute values for the same series name, it applies the value which was processed last.

Alternatively, you can control the series styles in a MAF AMX charts using the rendered attribute of the seriesStyle element, as Example 13-79 shows.

Example 13-79 Line Chart Definition with Filtered Series Styles

<dvtm:lineChart id="lineChart1"
 inlineStyle="width: 400px; height: 300px;"
 rolloverBehavior="dim"
 animationOnDisplay="auto"
 title="Line Chart"
 value="#{bindings.lineData1.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 series="#{row.series}"
 group="#{row.group}"
 value="#{row.value}"
 color="#{row.color}" />
 </amx:facet>
 <amx:facet name="seriesStamp">
 <dvtm:seriesStyle series="#{row.series}"
 color="red"
 lineWidth="3"
 lineStyle="solid"
 rendered="#{row.series == 'Coke'}" />
 <dvtm:seriesStyle series="#{row.series}"
 color="blue"
 lineWidth="2"
 lineStyle="dotted"
 rendered="#{row.series == 'Pepsi'}" />
 </amx:facet>
</dvtm:lineChart>

The orientation attribute allows you to define the Line Chart as either horizontal or vertical.

For information on attributes of the lineChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Line Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-lineChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.6 How to Create a Pie Chart

You use a Pie Chart (pieChart) to illustrate proportional division of data, with each data item represented by a pie segment (slice). Slices can be sorted by size (from largest to smallest), and small slices can be aggregated into a single "other" slice.

Example 13-80 shows the pieChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested pieDataItem element.

Example 13-80 Pie Chart Definition

<dvtm:pieChart id="pieChart1"
 inlineStyle="width: 400px; height: 300px;"
 value="#{bindings.pieData.collectionModel}"
 var="row"
 animationOnDisplay="zoom"
 animationDuration="3000" >
 <amx:facet name="dataStamp">
 <dvtm:pieDataItem id="pieDataItem1"
 label="#{row.name}"
 value="#{row.data}" />
 </amx:facet>
 <dvtm:legend position="bottom" id="l1" />
</dvtm:pieChart>

Figure 13-78 Pie Chart at Design Time

[image: This image is described in the surrounding text]

You can configure the positioning of the pie slice labels using the sliceLabelPosition attribute. By default (auto), labels are placed inside of a slice if the slice is big enough to accommodate the label; otherwise the labels are placed outside the slice.

You can also define the explosion (slice separation) effect for a Pie Chart component by setting the selectionEffect attribute.

The data model for a pie chart is represented by a collection of items that define individual pie data items. Typically, properties of each data item include the following:

	
label: slice label;

	
value: slice value.

The model might also define other properties of the data item, such as the following:

	
borderColor: slice border color;

	
color: slice color;

	
explode: slice explosion offset.

For information on attributes of the pieChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a pieDataItem as its child (see Section 13.5.16.4, "Defining Pie Data Item").

13.5.6.1 Configuring the Pie Chart as a Ring Chart

You can create a Pie Chart component with an empty center so it looks like a ring. The size of the empty space (and, subsequently, the width of the ring) is configured using the innerRadius attribute of the pieChart. You may also specify text for the center of the ring by setting the centerLabel attribute.

Figure 13-79 Ring Chart at Design Time

[image: This image is described in the surrounding text]

13.5.6.2 Styling the Pie Chart

You can style the Pie Chart component by overwriting the default CSS settings defined in dvtm-pieChart, dvtm-chartPieLabel, dvtm-chartPieCenterLabel, and dvtm-chartSliceLabel classes:

	
The top-level element can be styled using

.dvtm-pieChart
 - supported properties: all

	
The pie labels can be styled using

.dvtm-chartPieLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

	
The pie slice labels can be styled using

.dvtm-chartSliceLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

	
The ring center label can be styled using

.dvtm-chartPieCenterLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For more information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.7 How to Create a Scatter Chart

A Scatter Chart (scatterChart) displays data as unconnected dots that represent data items, where each item has x, y coordinates and size. In addition, each data item can have various style attributes, such as color and markerShape. You can either set properties of each data item individually, or categorize the data items into groups based on various criteria. You may use multiple grouping criteria at the same time, and may also use different style attributes to visualize the data items relationships. However, unlike line charts (see Section 13.5.5, "How to Create a Line Chart") or area charts (see Section 13.5.1, "How to Create an Area Chart"), scatter charts do not have a strict notion of the series and groups.

The Scatter Chart can be zoomed and scrolled along its X and Y Axis. This is enabled through the use of the zoomAndScroll attribute.

Example 13-81 shows the scatterChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested chartDataItem element. The color and markerShape attributes of each data item are set individually based on the values supplied in the data model.

Example 13-81 Scatter Chart Definition

<dvtm:scatterChart id="scatterChart1"
 inlineStyle="width: 400px; height: 300px;"
 animationOnDisplay="zoom"
 animationDuration="3000"
 value="#{bindings.scatterData.collectionModel}"
 var="row" >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem id="chartDataItem1"
 group="#{row.group}"
 color="#{row.color}"
 markerShape="auto"
 x="#{row.data.x}"
 y="#{row.data.y}">
 <dvtm:attributeGroups type="color"
 value="#{row.series}"
 id="ag1" />
 </dvtm:chartDataItem>
 </amx:facet>
 <dvtm:xAxis id="xAxis1" title="X Axis Title" />
 <dvtm:yAxis id="xAxis2" title="Y Axis Title" />
 <dvtm:legend position="bottom" id="l1" />
</dvtm:scatterChart>

Figure 13-80 Scatter Chart at Design Time

[image: This image is described in the surrounding text]

The data model for a scatter chart is represented by a collection of items (rows) that describe individual data items. Attributes of each data item are defined by stamping (dataStamp) and usually include the following:

	
x, y: value coordinates (required);

	
markerSize: the size of the marker (optional).

The model might also define other properties of the data item, such as the following:

	
borderColor: data item border color;

	
color: data item color.

For information on attributes of the scatterChart and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a chartDataItem as its child (see Section 13.5.16.1, "Defining Chart Data Item").

You can style the Scatter Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-scatterChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.8 How to Create a Spark Chart

A Spark Chart (sparkChart) is a simple, condensed chart that displays trends or variations, often in the column of a table. The charts are often used in a dashboard to provide additional context to a data-dense display.

Example 13-82 shows the sparkChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested sparkDataItem element.

Example 13-82 Spark Chart Definition

<dvtm:sparkChart id="sparkChart1"
 value="#{bindings.sparkData.collectionModel}"
 var="row"
 type="line"
 inlineStyle="width:400px; height:300px; float:left;">
 <amx:facet name="dataStamp">
 <dvtm:sparkDataItem id="sparkDataItem1" value="#{row.value}" />
 </amx:facet>
</dvtm:sparkChart>

Figure 13-81 Spark Chart at Design Time

[image: This image is described in the surrounding text]

The data model for a spark chart is represented by a collection of items (rows) that describe individual spark data items. Typically, properties of each data item include the following:

	
value: spark value.

For information on attributes and dvtm child elements of the sparkChart, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a sparkDataItem as its child (see Section 13.5.16.5, "Defining Spark Data Item").

You can style the Spark Chart component's top-level element by overwriting the default CSS settings defined in the following class:

.dvtm-sparkChart
 - supported properties: all

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.9 How to Create a Funnel Chart

A Funnel Chart (funnelChart) component provides a visual representation of data related to steps in a process. The steps appear as vertical slices across a horizontal cylinder. As the actual value for a given step or slice approaches the quota for that slice, the slice fills. Typically, a Funnel Chart requires actual values and target values against a stage value, which might be time.

Example 13-83 shows the funnelChart element defined in a MAF AMX file. The dataStamp facet is specified with a nested funnelDataItem element.

Example 13-83 Funnel Chart Definition

<dvtm:funnelChart id="funnelChart1"
 var="row"
 value="#{bindings.funnelData.collectionModel}"
 styleClass="dvtm-gallery-component"
 sliceGaps="on"
 threeDEffect="#{pageFlowScope.threeD ? 'on' : 'off'}"
 orientation="#{pageFlowScope.orientation}"
 dataSelection="#{pageFlowScope.dataSelection}"
 footnote="#{pageFlowScope.footnote}"
 footnoteHalign="#{pageFlowScope.footnoteHalign}"
 hideAndShowBehavior="#{pageFlowScope.hideAndShowBehavior}"
 rolloverBehavior="#{pageFlowScope.rolloverBehavior}"
 seriesEffect="#{pageFlowScope.seriesEffect}"
 subtitle="#{pageFlowScope.titleDisplay ?
 pageFlowScope.subtitle : ''}"
 title="#{pageFlowScope.titleDisplay ? pageFlowScope.title : ''}"
 titleHalign="#{pageFlowScope.titleHalign}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 shortDesc="#{pageFlowScope.shortDesc}">
 <amx:facet name="dataStamp">
 <dvtm:funnelDataItem id="funnelDataItem1"
 label="#{row.label}"
 value="#{row.value}"
 targetValue="#{row.targetValue}"
 color="#{row.color}"
 shortDesc="This is a tooltip">
 </dvtm:funnelDataItem>
 </amx:facet>
 <dvtm:legend id="l1"
 position="#{pageFlowScope.legendPosition}"
 rendered="#{pageFlowScope.legendDisplay}"/>
</dvtm:funnelChart>

Figure 13-82 Funnel Chart at Design Time

[image: This image is described in the surrounding text]

The data model for a funnel chart is represented by a collection of items (rows) that describe individual funnel data items. Typically, properties of each data item include the following:

	
value: funnel value

	
label: funnel slice label

For information on attributes and dvtm child elements of the funnelChart, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define a facet child element from the amx namespace. The facet can have a funnelDataItem as its child (see Section 13.5.16.6, "Defining Funnel Data Item").

You can style the Funnel Chart component by overwriting the default CSS settings defined in dvtm-funnelChart and dvtm-funnelDataItem classes:

	
The top-level element can be styled using

.dvtm-funnelChart
 - supported properties: all

	
The Funnel Chart data items cal be styled using

.dvtm-funnelDataItem
 - supported properties: border-color, background-color

For more information on chart styling, see Section 13.5.10, "How to Style Chart Components."

For more information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

13.5.10 How to Style Chart Components

With the exception of the Spark Chart, you can style chart components by overwriting the default CSS settings defined in the following classes:

	
A chart component's legend can be styled using

.dvtm-legend
 - supported properties used for text styling:
 font-family, font-size, font-weight, color, font-style
 - supported properties used for background styling: background-color
 - supported properties used for border styling:
 border-color (used when border width > 0)

.dvtm-legendTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-legendSectionTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

	
A chart component's title, subtitle, and so on, can be styled using

.dvtm-chartTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartSubtitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartFootnote
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartTitleSeparator
 - supported properties:
 visibility (is title separator rendered),
 border-top-color, border-bottom-color

	
A chart component's axes can be styled using

.dvtm-chartXAxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartYAxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartY2AxisTitle
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartXAxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartYAxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

.dvtm-chartY2AxisTickLabel
 - supported properties:
 font-family, font-size, font-weight, color, font-style

In addition to styling the chart component's top-level element, you can style specific child elements of some charts.

13.5.11 How to Use Events with Chart Components

You can use the ViewportChangeEvent to handle zooming and scrolling of chart components. When either zooming or scrolling occurs, the component fires an event loaded with information that defines the new viewport.

You can specify the viewportChangeListener as an attribute of Area Chart, Bar Chart, Combo Chart, and Line Chart components.

For more information, see the following:

	
Section 13.10, "Using Event Listeners"

	
Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

13.5.12 How to Create a LED Gauge

Unlike charts, gauges focus on a single data point and examine that point relative to minimum, maximum, and threshold indicators to identify problem areas. A LED (lighted electronic display) gauge (ledGauge) graphically depicts a measurement, such as key performance indicator (KPI). There are several styles of LED gauges. The ones with arrows are used to indicate good (up arrow), fair (left- or right-pointing arrow), or poor (down arrow). You can specify any number of thresholds for a gauge. However, some LED gauges (such as those with arrow or triangle indicators) support a limited number of thresholds because there is a limited number of meaningful directions for them to point. For arrow or triangle indicators, the threshold limit is three.

Example 13-84 shows the ledGauge element defined in a MAF AMX file.

Example 13-84 LED Gauge Definition

<dvtm:ledGauge id="ledGauge1"
 value="65"
 type="circle"
 inlineStyle="width: 100px; height: 80px; float: left;
 border-color: navy; background-color: lightyellow;">
 <dvtm:threshold id="threshold1" text="Low" maxValue="40" />
 <dvtm:threshold id="threshold2" text="Medium" maxValue="60" />
 <dvtm:threshold id="threshold3" text="High" maxValue="80" />
</dvtm:ledGauge>

Figure 13-83 LED Gauge at Design Time

[image: This image is described in the surrounding text]

The data model for a LED gauge is represented by a single metric value which is specified by the value attribute.

For information on attributes of the ledGauge and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define the following amx child elements:

	
showPopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 13.9, "Validating Input")

13.5.13 How to Create a Status Meter Gauge

A Status Meter Gauge (statusMeterGauge) indicates the progress of a task or the level of some measurement along a horizontal rectangular bar or a circle. One part of the component shows the current level of a measurement against the ranges marked on another part. In addition, thresholds can be displayed behind the indicator whose size can be changed.

MAF AMX data visualization provides support for the reference line (referenceLine) on its status meter gauge component. You can use this line to produce a bullet graph.

Example 13-85 shows the statusMeterGauge element defined in a MAF AMX file.

Example 13-85 Status Meter Gauge Definition

<dvtm:statusMeterGauge id="meterGauge1"
 value="65"
 animationOnDisplay="auto"
 animationDuration="1000"
 inlineStyle="width: 300px;
 height: 30px;
 float: left;
 border-color: black;
 background-color: lightyellow;"
 minValue="0"
 maxValue="100">
 <dvtm:metricLabel/>
 <dvtm:threshold id="threshold1" text="Low" maxValue="40" />
 <dvtm:threshold id="threshold2" text="Medium" maxValue="60" />
 <dvtm:threshold id="threshold3" text="High" maxValue="80" />
</dvtm:statusMeterGauge>

Figure 13-84 Rectangular Status Meter Gauge at Design Time

[image: This image is described in the surrounding text]

To create a Status Meter Gauge represented by a vertical rectangle, you set its orientation attribute to vertical. By default, this attribute is set to horizontal resulting in a horizontal rectangle.

To create a Status Meter Gauge represented by a circle (see Figure 13-85), you set its orientation attribute to circular.

Figure 13-85 Circular Status Meter Gauge at Design Time

[image: This image is described in the surrounding text]

The data model for a status meter gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can also be specified by the minValue and maxValue attributes.

For information on attributes of the statusMeterGauge and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define the following amx child elements:

	
showPopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 13.9, "Validating Input")

13.5.14 How to Create a Dial Gauge

A Dial Gauge (dialGauge) specifies ranges of values (thresholds) that vary from poor to excellent. The gauge indicator specifies the current value of the metric while the graphic allows for evaluation of the status of that value.

Example 13-85 shows the dialGauge element defined in a MAF AMX file.

Example 13-86 Dial Gauge Definition

<dvtm:dialGauge id="dialGauge1"
 background="#{pageFlowScope.background}"
 indicator="#{pageFlowScope.indicator}"
 value="#{pageFlowScope.value}"
 minValue="#{pageFlowScope.minValue}"
 maxValue="#{pageFlowScope.maxValue}"
 animationDuration="1000"
 animationOnDataChange="auto"
 animationOnDisplay="auto"
 shortDesc="#{pageFlowScope.shortDesc}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 styleClass="#{pageFlowScope.styleClass}"
 readOnly="true">
</dvtm:dialGauge>

Figure 13-86 Dial Gauge at Design Time

[image: This image is described in the surrounding text]

The data model for a dial gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can be specified by the minValue and maxValue attributes.

For information on attributes of the dialGauge and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

Example 13-87 shows the definition of dialGauge element with the dark background theme and custom tick labels setting a range from -5000 to 5000.

Example 13-87 Defining Metric and Tick Labels

<dvtm:dialGauge id="dialGauge1"
 background="circleDark"
 indicator="needleDark"
 value="#{pageFlowScope.value}"
 minValue="-5000"
 maxValue="5000"
 readOnly="false">
 <dvtm:metricLabel id="metricLabel1"
 scaling="thousand"
 labelStyle="font-family: Arial, Helvetica;
 font-size: 20; color: white;"/>
 <dvtm:tickLabel id="tickLabel1"
 scaling="thousand"
 labelStyle="font-family: Arial, Helvetica;
 font-size: 18; color: white;"/>
</dvtm:dialGauge>

Figure 13-87 Dial Gauge with Metric and Tick Labels at Design Time

[image: This image is described in the surrounding text]

You can define the following amx child elements for the dialGauge:

	
showPopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 13.9, "Validating Input")

13.5.15 How to Create a Rating Gauge

A Rating Gauge (ratingGauge) provides means to view and modify ratings on a predefined visual scale. By default, a rating unit is represented by a star. You can configure it as a circle, rectangle, star, or diamond by setting the shape attribute of the ratingGauge.

Example 13-88 shows the ratingGauge element defined in a MAF AMX file.

Example 13-88 Rating Gauge Definition

<dvtm:ratingGauge id="ratingGauge1"
 value="#{pageFlowScope.value}"
 minValue="0"
 maxValue="5"
 inputIncrement="full"
 shortDesc="#{pageFlowScope.shortDesc}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 readOnly="true"
 shape="circle"
 unselectedShape="circle">
</dvtm:ratingGauge>

Figure 13-88 Rating Gauge at Design Time

[image: This image is described in the surrounding text]

The data model for a rating gauge is a single metric value which is specified by the value attribute. In addition, the minimum and maximum values can be specified by the minValue and maxValue attributes.

For information on attributes of the ratingGauge and dvtm child elements that you can define for this component, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

You can define the following amx child elements for the ratingGauge:

	
showPopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
closePopupBehavior (see Section 13.2.8, "How to Use a Popup Component")

	
validationBehavior (see Section 13.9, "Validating Input")

13.5.15.1 Applying Custom Styling to the Rating Gauge Component

Depending on the action performed by the user on a rating gauge component, its units (images) can acquire one of the following states:

	
selected: the unit is selected.

	
unselected: the unit is not selected.

	
hover: the unit is being hovered over.

	
Note:

On mobile devices with touch interface, the hover state is invoked through the tap-and-hold gesture.

	
changed: the unit has been changed.

Each state can be represented by two attributes: color and borderColor. By default, the shape attribute of the ratingGauge determines the selection of the hover and changed states. The unselected state can be set separately using the unselectedShape attribute of the ratingGauge.

You can style the Rating Gauge component by overwriting the default CSS settings. For more information on how to extend CSS files, see Section 13.6.4, "How to Style Data Visualization Components."

Example 13-89 shows the default CSS style definitions for the color and borderColor of each state of the rating gauge unit.

Example 13-89 CSS Styling

.dvtm-ratingGauge {
}

.dvtm-ratingGauge .dvtm-ratingGaugeSelected {
 border-width: 1px;
 border-style: solid;
 border-color: #FFC61A;
 color: #FFBB00;
}

.dvtm-ratingGauge .dvtm-ratingGaugeUnselected {
 border-width: 1px;
 border-style: solid;
 border-color: #D3D3D3;
 color: #F4F4F4;
}

.dvtm-ratingGauge .dvtm-ratingGaugeHover {
 border-width: 1px;
 border-style: solid;
 border-color: #6F97CF;
 color: #7097CF;
}

.dvtm-ratingGauge .dvtm-ratingGaugeChanged {
 border-width: 1px;
 border-style: solid;
 border-color: #A8A8A8;
 color: #FFBB00;
}

13.5.16 How to Define Child Elements for Chart and Gauge Components

You can define a variety of child elements for charts and gauges. The following are some of these child elements:

	
chartDataItem (see Section 13.5.16.1, "Defining Chart Data Item")

	
xAxis, yAxis, and y2Axis (see Section 13.5.16.3, "Defining and Configuring X Axis, YAxis, and Y2Axis")

	
legend (see Section 13.5.16.2, "Defining and Configuring Legend")

	
pieDataItem (see Section 13.5.16.4, "Defining Pie Data Item")

	
sparkDataItem (see Section 13.5.16.5, "Defining Spark Data Item")

	
threshold (see Section 13.5.16.7, "Defining Threshold")

	
funnelDataItem

For more information on these and other child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

In JDeveloper, child components of data visualization components are located under MAF AMX Data Visualization > Shared Child Tags and MAF AMX Data Visualization > Other Type-Specific Child Tags in the Components window (see Figure 13-68).

Figure 13-89 Creating Chart and Gauge Child Components

[image: This image is described in the surrounding text]

13.5.16.1 Defining Chart Data Item

The Chart Data Item (chartDataItem) element specifies the parameters that chart data items use in all supported charts, except the pie chart.

You can enable the text display on Chart Data Items and control its label, the label position, and the label style by setting relevant attributes of the chartDataItem element, as well as the dataLabelPosition attribute of the chart itself to specify the position of all data labels in a given chart.

	
Note:

The Spark Chart, Pie Chart, and Funnel Chart components do not support the dataLabelPosition attribute.

For information on attributes of the chartDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.2 Defining and Configuring Legend

The Legend (legend) element specifies the legend parameters.

You can customize sizes of chart areas dedicated to legend using the Legend component's size and maxSize attributes.

For more information on attributes of the legend element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.3 Defining and Configuring X Axis, YAxis, and Y2Axis

X Axis (xAxis) and Y Axis (yAxis) elements define the X and Y axis for a chart. Y2Axis (y2Axis) defines an optional Y2 axis. These elements are declared as follows in a MAF AMX file:

<dvtm:xAxis id="xAxis1" scrolling="on" axisMinValue="0.0" axisMaxValue="50.0" />

You can customize sizes of chart areas dedicated to axis using the size and maxSize attributes of the X Axis, Y Axis, and Y2Axis components. In addition, you can customize color, width, and style of the axis baseline by configuring its Major Tick child element.

For more information on attributes and child elements of xAxis, yAxis, and y2Axis elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.4 Defining Pie Data Item

The Pie Data Item (pieDataItem) element specifies the parameters of the pie chart slices (see Section 13.5.6, "How to Create a Pie Chart").

For information on attributes of the pieDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.5 Defining Spark Data Item

The Spark Data Item (sparkDataItem) element specifies the parameters of the spark chart items (see Section 13.5.8, "How to Create a Spark Chart").

For information on attributes of the sparkDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.6 Defining Funnel Data Item

The Funnel Data Item (funnelDataItem) element specifies the parameters of the funnel chart items (see Section 13.5.9, "How to Create a Funnel Chart").

For information on attributes of the funnelDataItem element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.16.7 Defining Threshold

The Threshold (threshold) element specifies the threshold ranges of a gauge (see Section 13.5.12, "How to Create a LED Gauge" and Section 13.5.13, "How to Create a Status Meter Gauge").

For information on attributes of the threshold element, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.17 How to Create a Geographic Map Component

A Geographic Map (geographicMap) represents business data in one or more interactive layers of information superimposed on a single map. You can configure this component to use either Google or Oracle maps as the underlying map provider (see Section 13.5.17.1, "Configuring Geographic Map Components With the Map Provider Information").

Example 13-90 shows the geographicMap element defined in a MAF AMX file.

Example 13-90 Geographic Map Definition

<dvtm:geographicMap id="g1" mapType="ROADMAP"
 centerX="-98.57" centerY="39.82"
 zoomLevel="2" initialZooming="auto">
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="#{bindings.locationData.collectionModel}"
 dataSelection="multiple"
 selectionListener="#{myBean.doSomeGood}">
 <dvtm:pointLocation id="pl1" type="address" address="#{row.address}">
 <dvtm:marker shortDesc="#{row.shortDesc}" id="m1" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:geographicMap>

Figure 13-90 Geographic Map at Design Time

[image: This image is described in the surrounding text]

You can define a pointDataLayer child element for the geographicMap. The pointDataLayer allows you to display data associated with a point on the map.The pointDataLayer can have a pointLocation as a child element. The pointLocation specifies the columns in the data layer's model that determine the location of the data points. These locations can be represented either by address or by X and Y coordinates.

The pointLocation can have a marker as a child element. The marker is used to stamp out predefined or custom shapes associated with data points on the map. The marker supports a set of properties for specifying a URI to an image that is to be rendered as a marker. The marker can have a convertNumber as its child element (see Section 13.3.26, "How to Convert Numerical Values"). In addition, you can enable a Popup (see Section 13.2.8, "How to Use a Popup Component") to be displayed on a geographicMap's marker. To do so, you declare the showPopupBehavior element as a child of the marker element, and then set the showPopupBehavior's alignId attribute to the value of the marker's id attribute, as Example 13-91 shows.

Example 13-91 Displaying Popup on a Marker

<dvtm:geographicMap id="geographicMap_1" shortDesc="#{pageFlowScope.shortDesc}">
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value=
 "#{bindings.geographicMapPointData.collectionModel}">

 <dvtm:pointLocation id="pl1"
 pointX="#{row.pointX}"
 pointY="#{row.pointY}">
 <dvtm:marker id="marker1"
 shortDesc="#{row.shortDesc}"
 rendered="true">
 <amx:showPopupBehavior id="spb1"
 popupId="popup1"
 alignId="marker1"
 align="topCenter"
 decoration="anchor"/>
 <amx:setPropertyListener from="#{row.shortDesc}"
 to="#{pageFlowScope.currentCity}"
 type="action"/>
 </dvtm:marker>
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:geographicMap>
...
<amx:popup id="popup1" backgroundDimming="off" autoDismiss="true">
 <amx:outputText id="otTest" value="City: #{pageFlowScope.currentCity}"/>
 ...
</amx:popup>

For information on attributes of the geographicMap element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

The Geographic Map component allows for insertion of a pin (creation of a point on the map) using a touch gesture. You can configure this functionality by using the mapInputListener. For more information, see Section 13.5.19, "How to Use Events with Map Components."

13.5.17.1 Configuring Geographic Map Components With the Map Provider Information

To configure a Geographic Map component to use a specific provider for the underlying map (Google or Oracle), you can set the following properties as name-value pairs in the application's adf-config.xml file:

	
mapProvider: specify either oraclemaps or googlemaps.

	
geoMapKey: specify the license key if the mapProvider is set to googlemaps.

	
geoMapClientId: if the mapProvider is set to googlemaps, specify the client ID for Google maps business license.

	
mapViewerUrl: if the mapProvider is set to oraclemaps, specify the map viewer URL for Oracle maps.

	
baseMap: if the mapProvider is set to oraclemaps, specify the base map to use with Oracle maps.

	
Note:

To configure the Geographic Map component to use Google maps, you must obtain an appropriate license from Google.

Example 13-92 shows the configuration for Google maps.

Example 13-92 Google Maps Configuration

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="googlemaps"/>
 <adf-property name="geoMapKey" value="your key"/>
</adf-properties-child>

Example 13-93 shows the configuration for Oracle maps.

Example 13-93 Oracle Maps Configuration

<adf-properties-child xmlns="http://xmlns.oracle.com/adf/config/properties">
 <adf-property name="mapProvider" value="oraclemaps"/>
 <adf-property name="mapViewerUrl"
 value="http://elocation.oracle.com/mapviewer"/>
 <adf-property name="baseMap" value="ELOCATION_MERCATOR.WORLD_MAP"/>
</adf-properties-child>

If you do not specify the map provider information, the MAF AMX Geographic Map component uses Google maps for its map, but without the license key.

For information on issues related to using Google maps as the map provider, see Section A.2, "The Geographic Map Component Limits Number of Address Points."

For information on the adf-config.xml file, see Section C.2, "About the Application Controller Project-Level Resources."

13.5.17.2 Displaying Route in Geographic Map Components

When using Google maps as a provider for the Geographic Map component, you can specify route between two points with possible waypoints by adding a Route (route) child component.

Each Geographic Map component can have multiple Route child components, with each specifying a single route. Route origin, destination and optional waypoints can be specified using the Geographic Map's Point Location child component. By convention, the first Point Location in the set defines the origin and the last defines the destination. All points between these two Point Locations represent route waypoints.

You can define the color, width, and opacity of the line used for visualizing the route in the map. In addition, you can specify a hint indicating whether the route should preferably follow driving routes, bicycling tracks, or walking paths.

Example 13-94 shows how to define a route element in a MAF AMX page.

Example 13-94 Defining Route

<dvtm:geographicMap id="gm1">

 <!-- route defined using a collection model -->
 <dvtm:route travelMode="driving" id="d1">
 <amx:iterator value="#{el.collectionModel}" var="row">
 <dvtm:pointLocation address="#{row.address}" type="address"/>
 </amx:iterator>
 </dvtm:route>

 <!-- route with explicitly defined start and destination -->
 <dvtm:route travelMode="driving|walking|bicycling" id="d2">
 <!-- route origin -->
 <dvtm:pointLocation address="#{pageFlowScope.origin}" type="address">
 <!-- route destination -->
 <dvtm:pointLocation address="#{pageFlowScope.destination}" type="address"/>
 </dvtm:route/>

 <dvtm:pointDataLayer id="pdl1">
 ...
 </dvtm:pointDataLayer>

 <dvtm:pointDataLayer id="pdl2">
 ...
 </dvtm:pointDataLayer>

</dvtm:geographicMap>

When the end user clicks or taps on the line representing the route, an ActionEvent is fired. The event can be used to either drive navigation via the action attribute or to invoke a handler in the Java layer using the actionListener attribute. The action can also be used to trigger event listeners and behaviors specified in child setPropertyListener, actionListener, showPopupBehavior, and showPopupBehavior elements. For more information, see Section 13.10, "Using Event Listeners."

13.5.18 How to Create a Thematic Map Component

A Thematic Map (thematicMap) represents business data as patterns in stylized areas or associated markers. Thematic maps focus on data without the geographic details.

Example 13-95 shows the thematicMap element and its children defined in a MAF AMX file.

Example 13-95 Defining Thematic Map

<dvtm:thematicMap id="tm1"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 animationOnMapChange="#{pageFlowScope.animationOnMapChange}"
 animationDuration="#{pageFlowScope.animationDuration}"
 basemap="#{pageFlowScope.basemap}"
 tooltipDisplay="#{pageFlowScope.tooltipDisplay}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 zooming="#{pageFlowScope.zooming}"
 panning="#{pageFlowScope.panning}"
 initialZooming="#{pageFlowScope.initialZooming}">
 <dvtm:areaLayer id="areaLayer1"
 layer="#{pageFlowScope.layer}"
 animationOnLayerChange=
 "#{pageFlowScope.animationOnLayerChange}"
 areaLabelDisplay="#{pageFlowScope.areaLabelDisplay}"
 labelType="#{pageFlowScope.labelType}"
 areaStyle="background-color"
 rendered="#{pageFlowScope.rendered}">
 <dvtm:areaDataLayer id="areaDataLayer1"
 animationOnDataChange=
 "#{pageFlowScope.dataAnimationOnDataChange}"
 animationDuration=
 "#{pageFlowScope.dataAnimationDuration}"
 dataSelection="#{pageFlowScope.dataSelection}"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}">
 <dvtm:areaLocation id="areaLoc1" name="#{row.name}">
 <dvtm:area action="sales" id="area1" shortDesc="#{row.name}">
 <amx:setPropertyListener id="spl1"
 to=
 "#{DvtProperties.areaChartProperties.dataSelection}"
 from="#{row.name}"
 type="action"/>
 <dvtm:attributeGroups id="ag1" type="color" value="#{row.cat1}" />
 </dvtm:area>
 </dvtm:areaLocation>
 </dvtm:areaDataLayer>
 </dvtm:areaLayer>
 <dvtm:legend id="l1" position="end">
 <dvtm:legendSection id="ls1" source="ag1"/>
 </dvtm:legend>
</dvtm:thematicMap>

Figure 13-91 Thematic Map at Design Time

[image: This image is described in the surrounding text]

Using the markerZoomBehavior attribute, you can enable scaling of the Thematic Map's markers when the map experiences zooming. You can enable the Marker rotation by setting its rotation attribute, whose value represents the angle at which the marker rotates in clockwise degrees around the center of the image.

MAF AMX Thematic Map supports the following advanced functionality:

	
Custom markers (see Section 13.5.18.1, "Defining Custom Markers")

	
Area isolation (see Section 13.5.18.3, "Defining Isolated Areas")

	
Initial zooming (see Section 13.5.18.4, "Enabling Initial Zooming"

	
Custom base maps (see Section 13.5.18.5, "Defining a Custom Base Map"

For information on attributes of the thematicMap element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.18.1 Defining Custom Markers

MAF AMX Thematic Map does not support MAF AMX Image component. To use an image in the map's pointLocation, you can specify an image within the pointLocation's marker child element by using its source attribute. If the source attribute is set on the Marker, its shape attribute is ignored by MAF AMX.

The sourceHover, sourceSelected, and sourceHoverSelected attributes allow you to specify images for hover and selection effects. If one of these is not specified, the image specified by the source attribute is used for that particular marker state. If sourceSelected is specified, then its value is used if sourceHoverSelected is not specified. The image can be of any format supported by the mobile device's browser, including PNG, JPG, SVG, and so on.

13.5.18.2 Defining Isolated Area Layers

A region outline is not always needed to convey the geographic location of data. Instead, since the Thematic Map component has the option of centering an image or marker within an area, you have the option of defining invisible area layers where region outlines are not drawn.

To define an invisible area layer, you use the areaStyle attribute of the areaLayer which accepts the CSS values of background-color and border-color as follows:

<dvtm:areaLayer id="areaLayer1"
 ...
 areaStyle="background-color:transparent;border-color:transparent">

This attribute allows you to override the default area layer color and border treatments without using the dvtm-area skinning key.

13.5.18.3 Defining Isolated Areas

You can configure the MAF AMX Thematic Map component to render and zoom to fit on a single isolated area of the map by using the isolatedRowKey attribute of the areaDataLayer, in which case the rest of the areas in the area or area data layers is not rendered.

	
Note:

You can isolate only one area on a map.

13.5.18.4 Enabling Initial Zooming

The initial zooming allows the map component to be rendered as usual, and then zoom to fit on the data objects which includes both markers and areas. To enable this functionality, you use the initialZooming attribute of the Thematic Map.

13.5.18.5 Defining a Custom Base Map

As part of the custom base map support, MAF AMX allows you to specify the following for the Thematic Map component:

	
Layers with images for different resolutions.

	
Point layers with named points that can be referenced from the Point Location (pointLocation).

	
The Thematic Map's source attribute that points to the custom base map metadata XML file.

	
Note:

MAF AMX does not support the following for custom base maps:
	
Stylized areas: since area layers cannot be defined for custom base maps, use point layers.

	
Resource bundles: if you want to add locale-specific tool tips, you can use EL in the shortDesc attribute of the Marker (marker).

To create a custom base map, you specify an area layer which points to a definition in the metadata file (see Example 13-96). To define a basic custom base map, you specify a background layer and a pointer data layer. In the metadata file, you can specify different images for different screen resolutions and display directions, similar to MAF AMX gauge components. Just like a gauge-type component, the Thematic Map chooses the correct image for the layer based on the screen resolution and direction. The display direction is left-to-right.

You can define any number of layers. All named points are accessible in all the layers. The X and Y positions of the named points are mapped to the image dimensions of the first image. The Thematic Map component calculates the position of the points when one of the following occurs:

	
Zooming in is performed.

	
A different image is displayed in a different resolution.

Example 13-96 Metadata File With List of Images

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 </layer>
</basemap>

Example 13-97 shows a MAF AMX file that declares a custom area layer with points. The MAF AMX file points to the metadata file shown in Example 13-96 containing a list of possible images, which are, in fact, scaled versions of the same image.

Example 13-97 Declaring Custom Area Layer With Points

<dvtm:thematicMap id="tm1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" >
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
 </dvtm:areaLayer>
</dvtm:thematicMap>

In the preceding example, the base map ID is matched with the basemap attribute of the thematicMap, and the layer ID is matched with the layer attribute of the areaLayer. The points are defined through the X and Y coordinates (just like for a predefined base map) to accommodate dynamic points that can change at the time the data are updated.

Example 13-98 shows an alternative way to declare a custom area layer with points. In this example, the pointDataLayer is a direct child of the thematicMap. Despite this variation, Example 13-98 renders the same result as the declaration demonstrated in Example 13-97.

Example 13-98 Declaring Custom Area Layer With Points Using Direct Child Element

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1"
 type="pointXY"
 pointX="#{row.x}"
 pointY="#{row.y}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

To create a custom base map with static points, you specify the points by name in the metadata file shown in Example 13-99. This process is similar to adding city markers for a predefined base map.

Example 13-99 Metadata File With List of Named Points

<basemap id="car" >
 <layer id="exterior" >
 <image source="/maps/car-800x800.png"
 width="2560"
 height="1920" />
 <image source="/maps/car-800x800-rtl.png"
 width="2560"
 height="1920"
 dir="rtl" />
 <image source="/maps/car-200x200.png"
 width="640"
 height="480" />
 <image source="/maps/car-200x200-rtl.png"
 width="640"
 height="480"
 dir="rtl" />
 </layer>
 <points >
 <point name="hood" x="219.911" y="329.663" />
 <point name="frontLeftTire" x="32.975" y="32.456" />
 <point name="frontRightTire" x="10.334" y="97.982" />
 </points>
</basemap>

The X and Y positions of the named points are assumed to be mapped to the image dimensions of the first image element in the layer.

	
Note:

Since the points are global in scope within the base map and apply to all layers, you cannot define points for a specific layer and its images.

Example 13-100 shows a MAF AMX file that declares a custom area layer with named points. The MAF AMX file refers to the metadata file shown in Example 13-96 containing a list of points and their names.

Example 13-100 Declaring Custom Area Layer With Named Points

<dvtm:thematicMap id="demo1" basemap="car" source="customBasemaps/map1.xml" >
 <dvtm:areaLayer id="al1" layer="exterior" />
 <dvtm:pointDataLayer id="pdl1"
 var="row"
 value="#{bindings.thematicMapData.collectionModel}" >
 <dvtm:pointLocation id="pl1" type="pointName" pointName="#{row.name}" >
 <dvtm:marker id="m1" fillColor="#FFFFFF" shape="circle" />
 </dvtm:pointLocation>
 </dvtm:pointDataLayer>
</dvtm:thematicMap>

13.5.18.6 What You May Need to Know About the Marker Support for Event Listeners

MAF AMX data visualization does not support the actionListener attribute for the marker. Instead, the same functionality can be achieved by using the action attribute.

13.5.18.7 Applying Custom Styling to the Thematic Map Component

You can style the Thematic Map component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 13.6.4, "How to Style Data Visualization Components."

Example 13-101 shows the default CSS styles for the Thematic Map component.

Example 13-101 CSS Styling

.dvtm-thematicMap {
 background-color: #FFFFFF;
 -webkit-user-select: none;
 -webkit-touch-callout: none;
 -webkit-tap-highlight-color: rgba(0,0,0,0);
}

.dvtm-areaLayer {
 background-color: #B8CDEC;
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;
 color: #000000;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
}

.dvtm-area {
 border-color: #FFFFFF;
 border-width: 0.5px;
 /* border style and color must be set when setting border width */
 border-style: solid;
}

.dvtm-marker {
 background-color: #61719F;
 opacity: 0.7;
 color: #FFFFFF;
 font-family: tahoma, sans-serif;
 font-size: 13px;
 font-weight: bold;
 font-style: normal;
 border-style: solid
 border-color: #FFCC33
 border-width: 12px
}

Some of the style settings cannot be specified using CSS. Instead, you must define them using a custom JavaScript file. Example 13-102 shows how to apply custom styling to the Thematic Map component without using CSS.

Example 13-102 Non-CSS Custom Styling

my-custom.js:

 CustomThematicMapStyle = {
 // selected area properties
 'areaSelected': {
 // selected area border color
 'borderColor': "#000000",
 // selected area border width
 'borderWidth': '1.5px'
 },

 // area properties on mouse hover
 'areaHover': {
 // area border color on hover
 'borderColor': "#FFFFFF",
 // area border width on hover
 'borderWidth': '2.0px'
 },

 // marker properties
 'marker': {
 // separator upper color
 'scaleX': 1.0,
 // separator lower color
 'scaleY': 1.0,
 // should display title separator
 'type': 'circle'
 },

 // thematic map legend properties
 'legend': {
 // legend position, such as none, auto, start, end, top, bottom
 'position': "auto"
 }
 };

})();

Note that you cannot change the name and the property names of the CustomThematicMapStyle object. Instead, you can modify specific property values to suit the needs of your application. For information on how to add custom CSS and JavaScript files to your application, see Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow."

When the attributeGroups attribute is defined for the Thematic Map component, you can use the CustomThematicMapStyle to define a default set of shapes and colors for that component. In this case, the CustomThematicMapStyle object must have the structure that Example 13-103 shows, where styleDefaults is a nested object containing the following fields:

	
colors: represents a set of colors to be used for areas and markers.

	
shapes: represents a set of shapes to be used for markers.

Example 13-103 Defining Default Custom Shapes and Colors for Thematic Map

window['CustomThematicMapStyle'] =
{
 // custom style values
 'styleDefaults': {
 // custom color palette
 'colors': ["#000000", "#ffffff"],
 // custom marker shapes
 'shapes' : ['circle', 'square']
 }
};

13.5.19 How to Use Events with Map Components

You can use the MapBoundsChangeEvent to handle the following map view property changes in the Geographic Map component:

	
Changes to the zoom level.

	
Changes to the map bounds.

	
Changes to the map center.

When these changes occur, the component fires an event loaded with new map view property values.

You can define the mapBoundsChangeListener as an attribute of the Geographic Map.

You can use the MapInputEvent to handle the end user actions, such as taps and mouse clicks, in the Geographic Map component. When these actions occur, the component fires an event loaded with the information on the latitude and longitude for the map, as well as the type of the action (for example, mouse down, mouse up, click, and so on).

You can define the mapInputListener as an attribute of the Geographic Map component.

For more information, see the following:

	
Section 13.10, "Using Event Listeners"

	
Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

13.5.20 How to Create a Treemap Component

A Treemap (treemap) displays hierarchical data across two dimensions represented by the size and color of its nodes (treemapNode).

In the Components window, the Treemap is located under MAF AMX Data Visualizations > Common > Miscellaneous, and its child components are located under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Sunburst and Treemap and MAF AMX Data Visualizations > Shared Child Tags (see Figure 13-92).

Figure 13-92 Treemap and Other Advanced Components in Components Window

[image: This image is described in the surrounding text]

Example 13-104 shows the treemap element and its children defined in a MAF AMX file.

Example 13-104 Defining Treemap

<dvtm:treemap id="treemap1"
 value="#{bindings.treemapData.collectionModel}"
 var="row"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 layout="#{pageFlowScope.layout}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rendered="#{pageFlowScope.rendered}"
 emptyText="#{pageFlowScope.emptyText}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 sizeLabel="#{pageFlowScope.sizeLabel}"
 styleClass="dvtm-gallery-component"
 colorLabel="#{pageFlowScope.colorLabel}"
 sorting="#{pageFlowScope.sorting}"
 selectedRowKeys="#{pageFlowScope.selectedRowKeys}"
 isolatedRowKey="#{pageFlowScope.isolatedRowKey}"
 legendSource="ag1">
 <dvtm:treemapNode id="node1"
 fillPattern="#{pageFlowScope.fillPattern}"
 label="#{row.label}"
 labelDisplay="#{pageFlowScope.labelDisplay}"
 value="#{row.marketShare}"
 labelHalign="#{pageFlowScope.labelHalign}"
 labelValign="#{pageFlowScope.labelValign}">
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.deltaInPosition}"
 attributeType="continuous"
 minLabel="-1.5%"
 maxLabel="+1.5%"
 minValue="-1.5"
 maxValue="1.5" >
 <amx:attribute id="a1" name="color1" value="#ed6647" />
 <amx:attribute id="a2" name="color2" value="#f7f37b" />
 <amx:attribute id="a3" name="color3" value="#68c182" />
 </dvtm:attributeGroups>
 </dvtm:treemapNode>
</dvtm:treemap>

Figure 13-93 Treemap at Design Time

[image: This image is described in the surrounding text]

By setting the attributeType attribute of the attributeGroups element to continuous, you can enable visualization of a value associated with the Treemap item using a gradient color where the color intensity represents the relative value within a specified range.

For information on attributes of the treemap element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.20.1 Applying Custom Styling to the Treemap Component

You can style the Treemap component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 13.6.4, "How to Style Data Visualization Components."

Example 13-105 shows the Treemap component's default CSS styles that you can override.

Example 13-105 Treemap Default CSS Styling

.dvtm-treemap {
 border-style: solid;
 border-color: #E2E8EE;
 border-radius: 3px;
 background-color: #EDF2F7;
 ...
}

Example 13-106 shows the Treemap Node's default CSS styles that you can override.

Example 13-106 Treemap Node Default CSS Styling

.dvtm-treemapNodeSelected {
 // Selected node outer border color
 border-top-color: #E2E8EE;
 // Selected node inner border color
 border-bottom-color: #EDF2F7;
}

Example 13-107 shows the Treemap Node's label text CSS properties that you can style using custom CSS.

Example 13-107 Label CSS Styling

.dvtm-treemapNodeLabel {
 font-family: Helvetica, sans-serif;
 font-size: 14px;
 font-style: normal;
 font-weight: normal;
 color: #7097CF;
 ...
}

Some of the style settings cannot be specified using CSS. Instead, you must define them using a custom JavaScript file. Example 13-108 shows how to apply custom styling to the Treemap component without using CSS.

Example 13-108 Non-CSS Custom Styling

my-custom.js:

 window["CustomTreemapStyle"] = {

 // treemap properties
 "treemap" : {
 // Specifies the animation effect when the data changes - none, auto
 "animationOnDataChange": "auto",

 // Specifies the animation that is shown on initial display - none, auto
 "animationOnDisplay": "auto",

 // Specifies the animation duration in milliseconds
 "animationDuration": "500",

 // The text of the component when empty
 "emptyText": "No data to display",

 // Specifies the layout of the treemap -
 // squarified, sliceAndDiceHorizontal, sliceAndDiceVertical
 "layout": "squarified",

 // Specifies the selection mode - none, single, multiple
 "nodeSelection": "multiple",

 // Specifies whether or not the nodes are sorted by size - on, off
 "sorting": "on"
 },

 // treemap node properties
 "node" : {
 // Specifies the label display behavior for nodes - node, off
 "labelDisplay": "off",

 // Specifies the horizontal alignment for labels displayed
 // within the node - center, start, end
 "labelHalign": "end",

 // Specifies the vertical alignment for labels displayed
 // within the node - center, top, bottom
 "labelValign": "center"
 },
 }

13.5.21 How to Create a Sunburst Component

A Sunburst (sunburst) displays hierarchical data across two dimensions represented by the size and color of its nodes (sunburstNode).

In the Components window, the Sunburst is located under MAF AMX Data Visualizations > Common > Miscellaneous, and its child components are located under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Sunburst and Treemap and MAF AMX Data Visualizations > Shared Child Tags (see Figure 13-92, "Treemap and Other Advanced Components in Components Window").

Example 13-109 shows the sunburst element and its children defined in a MAF AMX file.

Example 13-109 Defining Sunburst

<dvtm:sunburst id="sunburst1"
 value="#{bindings.sunburstData.collectionModel}"
 var="row"
 animationDuration="#{pageFlowScope.animationDuration}"
 animationOnDataChange="#{pageFlowScope.animationOnDataChange}"
 animationOnDisplay="#{pageFlowScope.animationOnDisplay}"
 colorLabel="#{pageFlowScope.colorLabel}"
 emptyText="#{pageFlowScope.emptyText}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rendered="#{pageFlowScope.rendered}"
 rotation="#{pageFlowScope.rotation}"
 shortDesc="#{pageFlowScope.shortDesc}"
 sizeLabel="#{pageFlowScope.sizeLabel}"
 sorting="#{pageFlowScope.sorting}"
 rotationAngle="#{pageFlowScope.startAngle}"
 styleClass="#{pageFlowScope.styleClass}"
 legendSource="ag1">
 <dvtm:sunburstNode id="node1"
 fillPattern="#{pageFlowScope.fillPattern}"
 label="#{row.label}"
 labelDisplay="#{pageFlowScope.labelDisplay}"
 value="#{pageFlowScope.showRadius ? 1 : row.marketShare}"
 labelHalign="#{pageFlowScope.labelHalign}"
 radius="#{pageFlowScope.showRadius ? row.booksCount : 1}">
 <dvtm:attributeGroups id="ag1"
 type="color"
 value="#{row.deltaInPosition}"
 attributeType="continuous"
 minLabel="-1.5%"
 maxLabel="+1.5%"
 minValue="-1.5"
 maxValue="1.5">
 <amx:attribute id="a1" name="color1" value="#ed6647" />
 <amx:attribute id="a2" name="color2" value="#f7f37b" />
 <amx:attribute id="a3" name="color3" value="#68c182" />
 </dvtm:attributeGroups>
 </dvtm:sunburstNode>
</dvtm:sunburst>

Figure 13-94 Sunburst at Design Time

[image: This image is described in the surrounding text]

By setting the attributeType attribute of the attributeGroups element to continuous, you can enable visualization of a value associated with the Sunburst item using a gradient color where the color intensity represents the relative value within a specified range.

For information on attributes of the sunburst element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.21.1 Applying Custom Styling to the Sunburst Component

You can style the Sunburst component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 13.6.4, "How to Style Data Visualization Components."

Example 13-110 shows the Sunburst component's default CSS styles that you can override.

Example 13-110 Sunburst Default CSS Styling

.dvtm-sunburst {
 border-style: solid;
 border-color: #E2E8EE;
 border-radius: 3px;
 background-color: #EDF2F7;
 ...
}

Example 13-111 shows the Sunburst Node's default CSS styles that you can override.

Example 13-111 Sunburst Node Default CSS Styling

.dvtm-sunburstNode {
 // Node border color
 border-color: "#000000";
}

.dvtm-sunburstNodeSelected {
 // Selected node border color
 border-color: "#000000";
}

Example 13-112 shows the Sunburst Node's label text CSS properties that you can style using custom CSS.

Example 13-112 Label CSS Styling

.dvtm-sunburstNodeLabel {
 font-family: Helvetica, sans-serif;
 font-size: 14px;
 font-style: normal;
 font-style: normal;
 color: #7097CF;
 ...
}

Some of the style settings cannot be specified using CSS. Instead, you must define them using a custom JavaScript file. Example 13-113 shows how to apply custom styling to the Sunburst component without using CSS.

Example 13-113 Non-CSS Custom Styling

my-custom.js:

window["CustomSunburstStyle"] = {
 // sunburst properties
 "sunburst" : {
 // Specifies whether or not the client side rotation is enabled - on, off
 "rotation": "off",

 // The text of the component when empty
 "emptyText": "No data to display",

 // Specifies the selection mode - none, single, multiple
 "nodeSelection": "multiple",

 // Animation effect when the data changes - none, auto
 "animationOnDataChange": "auto",

 // Specifies the animation that is shown on initial display - none, auto
 "animationOnDisplay": "auto",

 // Specifies the animation duration in milliseconds
 "animationDuration": "500",

 // Specifies the starting angle of the sunburst
 "startAngle": "90",

 // Specifies whether or not the nodes are sorted by size - on, off
 "sorting": "on"
 },

 // sunburst node properties
 "node" : {
 // Specifies whether or not the label is displayed - on, off
 "labelDisplay": "off"
 }
}

13.5.22 How to Create a Timeline Component

A Timeline (timeline) is an interactive component that allows viewing of events in chronological order, as well as navigating forward and backwards within a defined yet adjustable time range that can be used for zooming.

Events are represented by Timeline Item components (timelineItem) that include the title, description, and duration fill color. You can configure a dual timeline to display two series of events for a side-by-side comparison of related information.

	
Note:

MAF AMX does not support the following functionality, child elements, and properties that are often available in components similar to the Timeline:
	
Nested UI components

	
Animation

	
Attribute and time range change awareness

	
Time fetching

	
Custom time scales

	
Time currency

	
Partial triggers

	
Data sorting

	
Formatted time ranges

	
Time zone

	
Visibility

In the Components window, the Timeline is located under MAF AMX Data Visualizations > Common > Miscellaneous, and its child components are located under MAF AMX Data Visualizations > Other Type-Specific Child Tags > Timeline and MAF AMX Data Visualizations > Shared Child Tags (see Figure 13-92, "Treemap and Other Advanced Components in Components Window").

Example 13-114 shows the timeline element and its children defined in a MAF AMX file.

Example 13-114 Timeline Definition

<dvtm:timeline id="tl"
 itemSelection="#{pageFlowScope.itemSelection}"
 startTime="#{pageFlowScope.startTime}"
 endTime="#{pageFlowScope.endTime}">
 <dvtm:timelineSeries id="ts1"
 label="#{pageFlowScope.s1Label}"
 value="#{bindings.series1Data.collectionModel}"
 var="row"
 selectionListener=
 "#{PropertyBean.timelineSeries1SelectionHandler}">
 <dvtm:timelineItem id="ti1"
 startTime="#{row.startDate}"
 endTime="#{row.endDate}"
 title="#{row.title}"
 description="#{row.description}"
 durationFillColor="#AAAAAA"/>
 </dvtm:timelineSeries>
 <dvtm:timeAxis id="ta1" scale="#{pageFlowScope.scale}"/>
</dvtm:timeline>

Figure 13-95 Timeline at Design Time

[image: Surrounding text describes Figure 13-95 .]

You can control the fill color of a specific Timeline Item's duration bar using its durationFillColor attribute.

To display two time scales at the same time on the Timeline, use the Time Axis' scale attribute that determines the scale of the second axis.

The Timeline can be scrolled horizontally as well as vertically. When the component is scrollable (that is, contains data outside of the visible display area), it is indicated by arrows pointing in the direction of the scroll.

	
Tip:

If the Timeline start time is set to the same value as the start time of the first Timeline Item, the bubbles of corresponding Timeline Item components might appear truncated. In addition, if the Timeline end time is set to the same value as the end time of the last Timeline Item, the bubbles of corresponding Timeline Item components might appear truncated. You should set the start and end time of the Timeline component such that it ensures full visibility of all Timeline Item bubbles.

For information on attributes of the timeline element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.22.1 Applying Custom Styling to the Timeline Component

You can style the Timeline component by overwriting the default CSS settings or using a custom JavaScript file. For more information on how to extend these files, see Section 13.6.4, "How to Style Data Visualization Components."

The following CSS style classes that you can override are defined for the Timeline and its child components:

	
.dvtm-timeline

supported properties: all

	
.timelineSeries-backgroundColor

supported properties: color

.timelineSeries-labelStyle

supported properties: font-family, font-size, font-weight, color, font-style

.timelineSeries-emptyTextStyle

supported properties: font-family, font-size, font-weight, color, font-style

	
.timelineItem-backgroundColor

supported properties: color

.timelineItem-selectedBackgroundColor

supported properties: color

.timelineItem-borderColor

supported properties: color

.timelineItem-selectedBorderColor

supported properties: color

.timelineItem-borderWidth

supported properties: width

.timelineItem-selectedBorderWidth

supported properties: width

.timelineItem-feelerColor

supported properties: color

.timelineItem-selectedFeelerColor

supported properties: color

.timelineItem-feelerWidth

supported properties: width

.timelineItem-selectedFeelerWidth

supported properties: width

.timelineItem-descriptionStyle

- supported properties: font-family, font-size, font-weight, color, font-style

.timelineItem-titleStyle

- supported properties: font-family, font-size, font-weight, color, font-style

	
.timeAxis-separatorColor

supported properties: color

.timeAxis-backgroundColor

supported properties: color

.timeAxis-borderColor

supported properties: color

.timeAxis-borderWidth

supported properties: width

.timeAxis-labelStyle

- supported properties: font-family, font-size, font-weight, color, font-style

Example 13-115 shows a custom JavaScript file that you could use to override the default styles of the Timeline component.

Example 13-115 Custom JavaScript File

// Custom timeline style definition with listing
// of all properties that can be overriden
window["CustomTimelineStyle"] = {
 // Determines if items in the timeline are selectable
 "itemSelection": none

 // Timeline properties
 "timelineSeries" : {
 // Duration bars color palette
 "colors" : [comma separated list of hex colors]
 }
}

13.5.23 How to Create an NBox Component

An NBox (nBox) component presents data across two dimensions, with each dimension split into a number of ranges whose intersections form distinct cells into which each data item is placed.

In the Components window, the NBox is located under MAF AMX Data Visualizations > Common > Miscellaneous, and its child components are located under MAF AMX Data Visualizations > Other Type-Specific Child Tags > NBox and MAF AMX Data Visualizations > Shared Child Tags (see Figure 13-92, "Treemap and Other Advanced Components in Components Window").

Example 13-114 shows the nBox element and its children defined in a MAF AMX file.

Example 13-116 NBox Definition

<dvtm:nBox id="nBox1"
 var="item"
 value="#{bindings.NBoxNodesDataList.collectionModel}"
 columnsTitle="#{pageFlowScope.columnsTitle}"
 emptyText="#{pageFlowScope.emptyText}"
 groupBy="#{pageFlowScope.groupBy}"
 groupBehavior="#{pageFlowScope.groupBehavior}"
 highlightedRowKeys="#{pageFlowScope.showHighlightedNodes ?
 pageFlowScope.highlightedRowKeys : ''}"
 inlineStyle="#{pageFlowScope.inlineStyle}"
 legendDisplay="#{pageFlowScope.legendDisplay}"
 maximizedColumn="#{pageFlowScope.maximizedColumn}"
 maximizedRow="#{pageFlowScope.maximizedRow}"
 nodeSelection="#{pageFlowScope.nodeSelection}"
 rowsTitle="#{pageFlowScope.rowsTitle}"
 selectedRowKeys="#{pageFlowScope.selectedRowKeys}"
 shortDesc="#{pageFlowScope.shortDesc}">
 <amx:facet name="rows">
 <dvtm:nBoxRow value="low" label="Low" id="nbr1"/>
 <dvtm:nBoxRow value="medium" label="Med" id="nbr2"/>
 <dvtm:nBoxRow value="high" label="High" id="nbr3"/>
 </amx:facet>
 <amx:facet name="columns">
 <dvtm:nBoxColumn value="low" label="Low" id="nbc2"/>
 <dvtm:nBoxColumn value="medium" label="Med" id="nbc1"/>
 <dvtm:nBoxColumn value="high" label="High" id="nbc3"/>
 </amx:facet>
 <amx:facet name="cells">
 <dvtm:nBoxCell row="low"
 column="low"
 label=""
 background="rgb(234,153,153)"
 id="nbc4"/>
 <dvtm:nBoxCell row="medium"
 column="low"
 label=""
 background="rgb(234,153,153)"
 id="nbc5"/>
 <dvtm:nBoxCell row="high"
 column="low"
 label=""
 background="rgb(159,197,248)"
 id="nbc6"/>
 <dvtm:nBoxCell row="low"
 column="medium"
 label=""
 background="rgb(255,229,153)"
 id="nbc7"/>
 <dvtm:nBoxCell row="medium"
 column="medium"
 label=""
 background="rgb(255,229,153)"
 id="nbc8"/>
 <dvtm:nBoxCell row="high"
 column="medium"
 label=""
 background="rgb(147,196,125)"
 id="nbc9"/>
 <dvtm:nBoxCell row="low"
 column="high"
 label=""
 background="rgb(255,229,153)"
 id="nbc10"/>
 <dvtm:nBoxCell row="medium"
 column="high"
 label=""
 background="rgb(147,196,125)"
 id="nbc11"/>
 <dvtm:nBoxCell row="high"
 column="high"
 label=""
 background="rgb(147,196,125)"
 id="nbc12"/>
 </amx:facet>
 <dvtm:nBoxNode id="nbn1"
 row="#{item.row}"
 column="#{item.column}"
 label="#{item.name}"
 labelStyle="font-style:italic"
 secondaryLabel="#{item.job}"
 secondaryLabelStyle="font-style:italic"
 shortDesc="#{item.name + ': ' + item.job}">
 <dvtm:attributeGroups id="ag1"
 type="indicatorShape"
 value="#{item.indicator1}"
 rendered="#{pageFlowScope.showIndicator}"/>
 <dvtm:attributeGroups id="ag2"
 type="indicatorColor"
 value="#{item.indicator2}"
 rendered="#{pageFlowScope.showIndicator}"/>
 <dvtm:attributeGroups id="ag3"
 type="color"
 value="#{item.group}"
 rendered="#{pageFlowScope.showColors}"/>
 </dvtm:nBoxNode>
</dvtm:nBox>

Figure 13-96 NBox at Design Time

[image: Surrounding text describes Figure 13-96 .]

For information on attributes of the nBox element and its child elements, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.24 How to Define Child Elements for Map Components, Sunburst, Treemap, Timeline, and NBox

You can define a variety of child elements for map components, Sunburst, Treemap, Timeline, and NBox. For information on available child elements and their attributes, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

In JDeveloper, the Map, Sunburst, Treemap, Timeline, and NBox child components are located under MAF AMX Data Visualizations > Other Type-Specific Child Tags and MAF AMX Data Visualizations > Shared Child Tags in the Components window (see Figure 13-97).

Figure 13-97 Creating Map, Sunburst, Treemap, Timeline, and NBox Child Components

[image: This image is described in the surrounding text]

13.5.25 How to Create Databound Data Visualization Components

You can declaratively create a databound data visualization component using a data collection inserted from the Data Controls window (see Section 12.3.2.4, "Adding Data Controls to the View"). The Component Gallery dialog that Figure 13-111 shows allows you to choose from a number of data visualization component categories, types, and layout options.

Figure 13-98 Component Gallery to Create Chart Components

[image: This image is described in the surrounding text]

Figure 13-99 Component Gallery to Create Gauge Components

[image: This image is described in the surrounding text]

Figure 13-100 Component Gallery to Create Thematic Map Component

[image: This image is described in the surrounding text]

	
Note:

Some data visualization component types require very specific kinds of data. If you bind a component to a data collection that does not contain sufficient data to display the component type requested, then the component is not displayed and a message about insufficient data appears.

To trigger the display of the Component Gallery, you drag and drop a collection from the Data Controls window onto a MAF AMX page, and then select either MAF Chart, MAF Gauge, or MAF Thematic Map from the context menu that appears (see Figure 13-101).

Figure 13-101 Creating Databound Data Visualization Components

[image: This image is described in the surrounding text]

After you select the category, type, and layout for your new databound component from the Component Gallery and click OK, you can start binding the data collection attributes in the data visualization component using data binding dialogs. The name of the dialog and the input field labels depend on the category and type of the data visualization component that you selected. For example, if you select Bar as the category and Bar as the type, then the name of the dialog that appears is Create Mobile Bar Chart, and the input field is labeled Bars, as Figure 13-102 shows.

Figure 13-102 Specifying Data Values for Databound Chart

[image: This image is described in the surrounding text]

The attributes in a data collection can be data values or categories of data values. Data values are numbers represented by markers, like bar height, or points in a scatter chart. Categories of data values are members represented as axis labels. The role that an attribute plays in the bindings (either data values or identifiers) is determined by both its data type (chart requires numeric data values) and where it is mapped (for example, Bars or X Axis).

If you use the Component Gallery to create a databound gauge component, and then you select LED as the category and Star LED as the type, then the name of the dialog that appears is Create Mobile Star LED Gauge, as Figure 13-103 shows.

Figure 13-103 Specifying Data Values for Databound Gauge

[image: This image is described in the surrounding text]

If you use the Component Gallery to create a databound thematic map component, then regardless of your selection, the name of the dialog that appears is Create Data Layer, but the fields that are displayed depend on the selection you made in the Component Gallery. For example, if you select World as the base map and World continents as the area layer, the dialog show in Figure 13-103 opens.

Figure 13-104 Create Data Layer Dialog

[image: This image is described in the surrounding text]

After completing one or more data binding dialogs, you can use the Properties window to specify settings for the component attributes. You can also use the child elements associated with the component to further customize it (see Section 13.5.16, "How to Define Child Elements for Chart and Gauge Components").

When you select MAF Geographic Map, MAF Sunburst, MAF NBox, MAF Timeline, or MAF Treemap from the context menu upon dropping a collection onto a MAF AMX page, one of the following dialogs appear:

Figure 13-105 Creating Databound Geographic Map

[image: This image is described in the surrounding text]

Figure 13-106 Creating Databound Sunburst

[image: This image is described in the surrounding text]

Figure 13-107 Creating Databound Timeline

[image: This image is described in the surrounding text]

Figure 13-108 Creating Databound Treemap

[image: This image is described in the surrounding text]

Figure 13-109 Creating Databound NBox

[image: This image is described in the surrounding text]

To complete the Create NBox dialog, you start by defining the number of rows and columns. Then you can select a cell on the box and specify values for the whole row or column in the bottom portion of the dialog, as Figure 13-110 shows.

Figure 13-110 Setting Row and Column Values for Databound NBox

[image: This image is described in the surrounding text]

The NBox component is created when you complete all pages of the series of dialogs by clicking Next.

For details on values for each field of each dialog, consult the online help by clicking Help or pressing F1.

13.5.25.1 What You May Need to Know About Setting Series Style for Databound Chart Components

When creating databound chart components from the Data Controls window, you can declaratively specify styling information for the chart series data by adding seriesStyle elements, and then using the Properties window to open a list for the series attribute of the seriesStyle element. This list is already populated with the values of the series attribute based on the values of the chartDataItem elements within the dataStamp facet.

13.5.26 How to Create Data Visualization Components Based on Static Data

For charts, as well as Treemap, Sunburst, and Timeline, you may choose not to specify their var and value attributes. Instead, you can define the component structure statically by enumerating elements that correspond to data items (for example, charDataItem elements for charts, or timelineItems for Timeline Series). You can add as many of these static items as necessary, which is useful when you know the data at design time.

Example 13-117 shows a Pie Chart component that uses static data defined through its pieDataItem child components.

Example 13-117 Defining Hardcoded Static Value

<dvtm:pieChart id="pieChart1" >
 <amx:facet name="dataStamp">
 <dvtm:pieDataItem id="di1" value="80000" label="Salary"/>
 <dvtm:pieDataItem id="di2" value="7500" label="Bonus"/>
 <dvtm:pieDataItem id="di3" value="12000" label="Commision"/>
 </amx:facet>
 <dvtm:legend position="none" id="l1"/>
</dvtm:pieChart>

Example 13-118 shows the pieDataItem child component whose value is specified based on an attribute binding instead of a collection.

Example 13-118 Providing Static Value as Attribute Binding

<dvtm:pieDataItem id="di1" value="#{bindings.Salary.inputValue}" label="Salary"/>

13.5.27 How to Enable Interactivity in Chart Components

You can enable the end user interaction through tap with some chart components by defining event-driven triggers for the following child components of charts:

	
Chart Data Item

	
Pie Data Item

	
Series Style

In addition to using the supported operations, such as Set Property Listener and Show Popup Behavior (see Table 13-16, "Supported Event Listeners and Event Types" for complete list), you can set the action attribute to define the type of action to be fired.

Example 13-119 Defining Events for Charts' Child Components

<amx:panelPage id="pp1" styleClass="dvtm-gallery-panelPage">
...
 <dvtm:lineChart id="lineChart1"
 var="row"
 value="#{bindings.lineData1.collectionModel}"
 ... >
 <amx:facet name="dataStamp">
 <dvtm:chartDataItem group="#{row.group}"
 value="#{row.value}"
 series=" #{row.series}"
 label="#{pageFlowScope.labelDisplay ?
 row.value : ''}" >
 <amx:showPopupBehavior popupId="pAdvancedOptions"
 type="action"
 align="overlapTopCenter"
 alignId="pflOptionsForm"
 decoration="anchor"/>
 </dvtm:chartDataItem>
 </amx:facet>
 ...
 </dvtm:lineChart>
 ...
</amx:panelPage>
<amx:popup id="pAdvancedOptions" styleClass="dvtm-gallery-options-dialog">
...

For information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.5.28 How to Create Polar Charts

You can enable the polar view for the following chart components by setting their coordinateSystem attribute to polar:

	
Area Chart

	
Bar Chart

	
Combo Chart

	
Bubble Chart

	
Line Chart

	
Scatter Chart

When the polar setting is applied to any of the preceding charts except the Bar Chart, you can define its polar grid as either circular or polygonal by using the polarGridShape attribute.

The polar chart's radial axis can be customized through its Y Axis child component, and the tangential axis are customized through the X Axis child component.

For information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.6 Styling UI Components

MAF enables you to employ CSS to apply style to UI components.

13.6.1 How to Use Component Attributes to Define Style

You style your UI components by setting the following attributes:

	
styleClass attribute defines a CSS style class to use for your layout component:

<amx:panelPage styleClass="#{pageFlowScope.pStyleClass}">

You can define the style class for layout, command, and input components in a MAF AMX page or in a skinning CSS file, in which case a certain style is applied to all components within the MAF AMX application feature (see Section 13.6.2, "What You May Need to Know About Skinning"). Alternatively, you can use the public style classes provided by MAF.

	
Note:

The CSS file is not accessible from JDeveloper. Instead, MAF injects this file into the package at build or deploy time, upon which the CSS file appears in the css directory under the Web Content root directory.

	
inlineStyle attribute defines a CSS style to use for any UI component and represents a set of CSS styles that are applied to the root DOM element of the component:

<amx:outputText inlineStyle="color:red;">

You should use this attribute when basic style changes are required.

	
Note:

Some UI components are rendered with such subelements as HTML div elements and more complex markup. As a result, setting the inlineStyle attribute on the parent component may not produce the desired effect. In such cases, you should examine the generated markup and, instead of defining the inlineStyle attribute, apply a CSS class that would propagate the style to the subelement.
For information on how to configure JavaScript debugging, see Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript."

These attributes are displayed in the Style section in the Properties window, as Figure 13-111 shows.

Figure 13-111 Style Section of the Properties Window

[image: This image is described in the surrounding text]

Within the Properties window MAF AMX provides a drop-down editor that you can use to set various properties of the inlineStyle attribute (see Figure 13-112).

Figure 13-112 Inline Style Editor

[image: This image is described in the surrounding text]

For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

13.6.2 What You May Need to Know About Skinning

Skinning allows you to define and apply a uniform style to all UI components within a MAF AMX application feature to create a theme for the entire feature.

The default skin family for MAF is called mobileAlta and the default version is the latest version of that skin. For more information, see Chapter 7, "Skinning MAF Applications."

13.6.3 What You May Need to Know About Using CSS ID Selectors for Skinning

MAF AMX does not support the use of CSS ID selectors in skinning elements. As a result, a markup such as the following would cause rough AMX page transitions:

#tb1 {
 position:absolute;
 overflow:hidden;
 width: 300px;
 background-color: rgb(90,148,0);
}

The reason for this condition is that when a transition between AMX pages occurs, two pages are rendered on the screen at the same time, and therefore, to prevent ID collisions, the page from which the transition occurs is stripped of all its IDs just before the transition.

Instead of using CSS ID selectors, you must use class names. Example 13-120 shows a MAF AMX UI component defined in a MAF AMX page, with its styleClass attribute set to a specific custom class. Example 13-121 show how to use the custom class for skinning.

Example 13-120 Setting styleClass Attribute to Custom Class

<amx:panelPage styleClass="MySpecialClassName"/>

Example 13-121 Using Custom Class in CSS

.MySpecialClassName {
 height: 420px;
}

13.6.4 How to Style Data Visualization Components

Most of the style properties of MAF AMX data visualization components are defined in the dvtm.css file located in the css directory. You can override the default values by adding a custom CSS file with custom style definitions at the application feature level (see Section 7.7, "Overriding the Default Skin Styles").

Some of the style properties cannot be mapped to CSS and have to be defined in custom JavaScript files. These properties include the following:

	
Background and needle images for the Dial Gauge component (see Section 13.5.14, "How to Create a Dial Gauge").

	
Duration bars color palette for the Timeline component (see Section 13.5.22, "How to Create a Timeline Component").

	
Base maps for the Thematic Map component (see Section 13.5.18.5, "Defining a Custom Base Map").

	
Style properties of the Geographic Map component (see Section 13.5.17, "How to Create a Geographic Map Component").

	
Style properties of the Thematic Map component (see Section 13.5.18.7, "Applying Custom Styling to the Thematic Map Component").

	
Selected and unselected states of the Rating Gauge component (see Section 13.5.15.1, "Applying Custom Styling to the Rating Gauge Component").

You should specify these custom JavaScript files in the Includes section at the application feature level (see Section 5.3, "Defining the Application Feature Content as a MAF AMX Page or Task Flow"). By doing so, you override the default style values defined in the XML style template. Example 13-122 shows a JavaScript file similar to the one you would add to your MAF project that includes the MAF AMX application feature with data visualization components which require custom styling of properties that cannot be styled using CSS.

Example 13-122 Defining Custom Style Properties

my-custom.js:

 CustomChartStyle = {

 // common chart properties
 'chart': {
 // text to be displayed, if no data is provided
 'emptyText': null,
 // animation effect when the data changes
 'animationOnDataChange': "none",
 // animation effect when the chart is displayed
 'animationOnDisplay': "none",
 // time axis type - disabled, enabled, mixedFrequency
 'timeAxisType': "disabled"
 },

 // chart title separator properties
 'titleSeparator': {
 // separator upper color
 'upperColor': "#74779A",
 // separator lower color
 'lowerColor': "#FFFFFF",
 // should display title separator
 'rendered': false
 },

 // chart legend properties
 'legend': {
 // legend position - none, auto, start, end, top, bottom
 'position': "auto"
 },

 // default style values
 'styleDefaults': {
 // default color palette
 'colors': ["#003366", "#CC3300", "#666699", "#006666", "#FF9900",
 "#993366", "#99CC33", "#624390", "#669933", "#FFCC33",
 "#006699", "#EBEA79"],
 // default shapes palette
 'shapes': ["circle", "square", "plus", "diamond",
 "triangleUp", "triangleDown", "human"],
 // series effect
 'seriesEffect': "gradient",
 // animation duration in ms
 'animationDuration': 1000,
 // animation indicators - all, none
 'animationIndicators': "all",
 // animation up color
 'animationUpColor': "#0099FF",
 // animation down color
 'animationDownColor': "#FF3300",
 // default line width for line chart
 'lineWidth': 3,
 // default line style for line chart - solid, dotted, dashed
 'lineStyle': "solid",
 // should markers be displayed for line and area charts
 'markerDisplayed': false,
 // default marker color
 'markerColor': null,
 // default marker shape
 'markerShape': "auto",
 // default marker size
 'markerSize': 8,
 // pie feeler color for pie chart
 'pieFeelerColor': "#BAC5D6",
 // slice label position and text type for pie chart
 'sliceLabel': {
 'position': "outside",
 'textType': "percent" }
 }
 };

 CustomGaugeStyle = {
 // default animation duration in milliseconds
 'animationDuration': 1000,
 // default animation effect on data change
 'animationOnDataChange': "none",
 // default animation effect on gauge display
 'animationOnDisplay': "none",
 // default visual effect
 'visualEffects': "auto"
 };

 CustomTimelineStyle = {
 'timelineSeries' : {
 // duration bars color palette
 'colors' : ["#267db3", "#68c182", "#fad55c", "#ed6647"]
 };
...
}

After the JavaScript file has been defined, you can uncomment and modify any values. You add this file as an included feature in the maf-feature.xml file, as Example 13-123 shows.

Example 13-123 Including Custom Style File in the Application Feature

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="feature1" name="feature1">
 <adfmf:content id="feature1.1">
 <adfmf:amx file="feature1/untitled1.amx">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/custom.css"/>
 <adfmf:include type="JavaScript" file="feature1/js/my-custom.js"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

13.7 Localizing UI Components

In your MAF AMX page, you can localize the text that UI components display by using the standard resource bundle provided by JDeveloper. You do so by selecting a component and one of its text-presenting properties whose value you intend to localize, and then choosing Select Text Resource in the appropriate box in the Properties window (see Figure 13-113).

Figure 13-113 Selecting Text Resource

[image: This image is described in the surrounding text]

This displays the standard Select Text Resource dialog that Figure 13-114 shows. You use this dialog to enter or find a string reference for the property you are modifying.

Figure 13-114 Select Text Resource Dialog

[image: This image is described in the surrounding text]

After you have defined a localized string resource, the EL for that reference is automatically placed in the property from which the Select Text Resource dialog was launched. An XLIFF (XML Localization Interchange File Format) file is created, if it is not already present. If it is present, the new entry is added to the existing XLIFF file. In addition, a corresponding Load Bundle (loadBundle) component is created as a child of the View component that points to the ViewControllerBundle.xlf file (default name, but basically it would match the name of the project).

	
Note:

The ViewControllerBundle.xlf is a default file name. This name matches the name of the project.

Figure 13-115 shows the changes in the MAF AMX file.

Figure 13-115 Localized String in MAF AMX File

[image: This image is described in the surrounding text]

For more information, see Chapter 6, "Localizing MAF Applications."

13.8 Understanding MAF Support for Accessibility

When developing MAF applications, you may need to accommodate visually and physically impaired users by addressing accessibility issues. User agents, such as web browsers rendering to nonvisual media (for example, a screen reader) can read text descriptions of UI components to provide useful information to impaired users. MAF AMX UI and data visualization components are designed to be compliant with the following accessibility standards:

	
The Accessible Rich Internet Applications (WAI-ARIA) 1.0 specification.

For more information, see the following:

	
"Introduction" to WAI-ARIA 1.0 specification at http://www.w3.org/TR/wai-aria/introduction

	
"Using WAI-ARIA" at http://www.w3.org/TR/wai-aria/usage

	
Section 13.8.2, "What You May Need to Know About the Basic WAI-ARIA Terms"

	
The Oracle Global HTML Accessibility Guidelines (OGHAG).

For more information, see Section 13.8.3, "What You May Need to Know About the Oracle Global HTML Accessibility Guidelines."

	
iOS Accessibility guidelines.

For more information, see the Accessibility Programming Guide for iOS.

Accessible components do not change their appearance nor is the application logic affected by the introduction of such components.

To enable the proper functioning of the accessibility in your MAF AMX application feature, follow these guidelines:

	
The navigation must not be more than three levels deep and it must be easy for the user to traverse back to the home screen.

	
Keep scripting to a minimum.

	
Do not provide direct interaction with the DOM.

	
Do not use JavaScript time-outs.

	
Avoid unnecessary focus changes

	
Provide explicit popup triggers

	
If needed, utilize the WAI-ARIA live region (see Section 13.8.2, "What You May Need to Know About the Basic WAI-ARIA Terms").

	
Keep CSS use to a minimum.

	
Try not to override the default component appearance.

	
Choose scalable size units.

	
Do not use CSS positioning.

For more information, see the following:

	
"Mobile Accessibility" at http://www.w3.org/WAI/mobile

	
"Web Content Accessibility and Mobile Web: Making a Web Site Accessible Both for People with Disabilities and for Mobile Devices" at http://www.w3.org/WAI/mobile/overlap.html

13.8.1 How to Configure UI and Data Visualization Components for Accessibility

MAF AMX UI and data visualization components have a built-in accessibility support, with most components being subject to the accessibility audit (see Figure 13-118).

Table 13-10 lists components and their attributes that you can set through the Accessibility section of the Properties window.

Table 13-10 UI Components with Configurable Accessibility Attributes

	Component	Accessibility Attribute	Accessibility Audit Message
	
Button (commandButton)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Select Button (selectOneButton)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Link (commandLink)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Link Go (goLink)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Carousel (carousel)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
CarouselItem (carouselItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
List Item (listItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Popup (popup)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Image (image)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be specified. If the image is used for decorative purposes, it can be empty.

	
Input Text (inputText)

	
Hint Text (hintText)

	
The hintText attribute should be present and describe what the field should contain.

	
Panel Group Layout (panelGroupLayout)

	
Landmark (landmark)

	
NA Foot 1

	
Deck (deck)

	
Landmark (landmark)

	
NA (see footnote 1)

	
Table Layout (tableLayout)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Cell Format (cellFormat)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Film Strip (filmStrip)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Film Strip Item (filmStripItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Area Chart (areaChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Bar Chart (barChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Bubble Chart (bubbleChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Combo Chart (comboChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Line Chart (lineChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Scatter Chart (scatterChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Spark Chart (sparkChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Pie Chart (pieChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
NBox Node (nBoxNode)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Reference Object (referenceObject)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Reference Area (referenceArea)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Reference Line (referenceLine)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Chart Data Item (chartDataItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Pie Data Item (pieDataItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Funnel Data Item (funnelDataItem)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Area (area)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Marker (marker)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Treemap Node (treemapNode)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Sunburst Node (sunburstNode)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Led Gauge (ledGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Status Meter Gauge (statusMeterGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Dial Gauge (dialGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Rating Gauge (ratingGauge)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Geographic Map (geographicMap)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Thematic Map (thematicMap)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Funnel Chart (funnelChart)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
NBox (nBox)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Sunburst (sunburst)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Timeline (timeline)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

	
Treemap (treemap)

	
Short Desc (shortDesc)

	
The shortDesc attribute should be present and describe the action that will take place.

Footnote 1 The landmark attribute has a default value (none) and is not subject to the accessibility audit.

You use the shortDesc attribute for different purposes for different components. For example, if you set the shortDesc attribute for the Image component, in the MAF AMX file it will appear as a value of the alt attribute of the image element.

The value of the shortDesc attribute can be localized.

For the Panel Group Layout and Deck components, you define the landmark role type (see Table 13-15, "Landmark Roles") that is applicable as per the context of the page. You can set one of the following values for the landmark attribute:

	
default (none)

	
application

	
banner

	
complementary

	
contentinfo

	
form

	
main

	
navigation

	
search

Table 13-11 lists UI components whose accessible attributes defined by WAI-ARIA specification are automatically applied at run time and that you cannot modify.

Table 13-11 UI Components with Static Accessibility Attributes

	Component	Accessibility Attribute	Accessibility Audit Message
	
Input Date (inputDate)

	
Label (label)

	
inputDate is not labeled. The label attribute of inputDate should be specified.

	
Input Number Slider (inputNumberSlider)

	
Label (label)

	
inputNumberSlider is not labeled. The label attribute of inputNumberSlider should be specified.

	
Panel Label and Message (panelLabelAndMessage)

	
Label (label)

	
panelLabelAndMessage is not labeled. The label attribute of panelLabelAndMessage should be specified.

	
Select Item (selectItem)

	
Label (label)

	
selectItem is not labeled. The label attribute of selectItem should be specified.

	
Checkbox (selectBooleanCheckbox)

	
Label (label)

	
selectBooleanCheckbox is not labeled. The label attribute of selectBooleanCheckbox should be specified.

	
Boolean Switch (selectBooleanSwitch)

	
Label (label)

	
selectBooleanSwitch is not labeled. The label attribute of selectBooleanSwitch should be specified.

	
Radio Button (selectOneRadio)

	
Label (label)

	
selectOneRadio is not labeled. The label attribute of selectOneRadio should be specified.

	
Select Many Checkbox (selectManyCheckbox)

	
Label (label)

	
selectManyCheckbox is not labeled. The label attribute of selectManyCheckbox should be specified.

	
Select Many Choice (selectManyChoice)

	
Label (label)

	
selectManyChoice is not labeled. The label attribute of selectManyChoice should be specified.

	
Choice (selectOneChoice)

	
Label (label)

	
selectOneChoice is not labeled. The label attribute of selectOneChoice should be specified.

	
Output Text (outputText)

	
Value (value)

	
NA Foot 1

Footnote 1 The value attribute is not subject to the accessibility audit.

You can configure the accessibility audit rules using JDeveloper's Preferences dialog as follows:

	
In JDeveloper, select Tools > Preferences from the main menu (on a Windows computer).

	
From the list of preferences, select Audit (see Figure 13-116).

	
On the Audit pane that Figure 13-116 shows, click Manage Profiles to open the Audit Profile dialog.

Figure 13-116 Setting Accessibility Audit Rules

[image: This image is described in the surrounding text]

	
In the Audit Profile dialog that Figure 13-117 shows, expand the Mobile Application Framework node from the tree of rules, and then expand Accessibility.

Figure 13-117 Audit Profile Dialog

[image: This image is described in the surrounding text]

	
Select the accessibility audit rules to apply to your application, as Figure 13-117 shows.

Figure 13-118 shows the accessibility audit warning displayed in JDeveloper.

Figure 13-118 Accessibility Audit Warning

[image: This image is described in the surrounding text]

For information on how to test your accessible MAF AMX application feature, see Section 30.2.1, "How to Perform Accessibility Testing on iOS-Powered Devices."

	
Note:

WAI-ARIA accessibility functionality is not supported on Android for data visualization components.
Other MAF AMX UI components might not perform as expected when the application is run in the Android screen reader mode.

13.8.2 What You May Need to Know About the Basic WAI-ARIA Terms

As stated in the WAI-ARIA 1.0 specification, complex web applications become inaccessible when assistive technologies cannot determine the semantics behind portions of a document or when the user is unable to effectively navigate to all parts of it in a usable way. WAI-ARIA divides the semantics into roles (the type defining a user interface element), and states and properties supported by the roles. The following semantic associations form the base for the WAI-ARIA terms:

	
Role

	
Landmark

	
Live region

For more information, see "Important Terms" at http://www.w3.org/TR/wai-aria/terms.

The following tables list role categories (as defined in the WAI-ARIA 1.0 specification) that are applicable to MAF.

Table 13-12 lists abstract roles that are used to support the WAI-ARIA role taxonomy for the purpose of defining general role concepts.

Table 13-12 Abstract Roles

	Abstract Role	Description
	
input

	
A generic type of widget that allows the user input.

	
landmark

	
A region of the page intended as a navigational landmark.

	
select

	
A form widget that allows the user to make selections from a set of choices.

	
widget

	
An interactive component of a graphical user interface.

Table 13-13 lists widget roles that act as standalone user interface widgets or as part of larger, composite widgets.

Table 13-13 Widget Roles

	Widget Role	Description	Widget Required States
	
alertdialog

	
A type of dialog that contains an alert message, where initial focus moves to an element within the dialog.

	
aria-labelledby, aria-describedby

	
button

	
An input that allows for user-triggered actions when clicked or pressed.

	
aria-expanded (state), aria-pressed (state)

	
checkbox

	
A checkable input that has three possible values: true, false, or mixed.

	
aria-checked (state)

	
dialog

	
A dialog represented by an application window that is designed to interrupt the current processing of an application in order to prompt the user to enter information or require a response.

	
aria-labelledby, aria-describedby

	
link

	
An interactive reference to an internal or external resource that, when activated, causes the user agent to navigate to that resource.

	
aria-disabled (state), aria-describedby

	
option

	
A selectable item in a select list.

	
aria-labelledby, aria-checked (state), aria-selected (state)

	
radio

	
A checkable input in a group of radio roles, only one of which can be checked at a time.

	
aria-checked (state), aria-disabled (state)

	
slider

	
A user input where the user selects a value from within a given range.

	
aria-valuemax, aria-valuemin, aria-valuenow, aria-disabled (state)

	
listbox

	
A widget that allows the user to select one or more items from a list of choices.

	
aria-live

	
radiogroup

	
A group of radio buttons.

	
aria-disabled (state)

	
listitem

	
A single item in a list or directory.

	
aria-describedby

	
textbox

	
Input that allows free-form text as its value.

	
aria-labelledby, aria-readonly, aria-required, aria-multiline, aria-disabled (state)

Table 13-14 lists document structure roles that describe structures that organize content in a page. Typically, document structures are not interactive.

Table 13-14 Document Structure Roles

	Document Structure Role	Description
	
img

	
A container for a collection of elements that form an image.

	
list

	
A group of non-interactive list items.

	
listitem

	
A single item in a list or directory.

Table 13-15 lists landmark roles that represent regions of the page intended as navigational landmarks.

Table 13-15 Landmark Roles

	Landmark Role	Description
	
application

	
A region declared as a web application (as opposed to a web document).

	
banner

	
A region that contains mostly site-oriented content (rather than page-specific content).

	
complementary

	
A supporting section of a document designed to be complementary to the main content at a similar level in the DOM hierarchy, but that remains meaningful when separated from the main content.

	
contentinfo

	
A large perceivable region that contains information about the parent document.

	
form

	
A region that contains a collection of items and objects that, as a whole, combine to create a form.

	
main

	
The main content of a document.

	
navigation

	
A collection of navigational elements (usually links) for navigating the document or related documents.

	
search

	
A region that contains a collection of items and objects that, as a whole, combine to create a search facility.

For the majority of MAF UI components, you cannot modify accessible WAI-ARIA attributes. For some components, you can set special accessible attributes at design time, and for the Panel Group Layout and Deck, you can use the WAI-ARIA landmark role type. For more information, see Section 13.8.1, "How to Configure UI and Data Visualization Components for Accessibility."

13.8.3 What You May Need to Know About the Oracle Global HTML Accessibility Guidelines

The Oracle Global HTML Accessibility Guidelines (OGHAG) is a set of scripting standards for HTML that Oracle follows. These standards represent a combination of Section 508 (see http://www.section508.gov) and Web Content Accessibility Guidelines (WCAG) 1.0 level AA (see http://www.w3.org/TR/WCAG10), with improved wording and checkpoint measurements.

For more information, see Oracle's Accessibility Philosophy and Policies at http://www.oracle.com/us/corporate/accessibility/policies/index.html.

13.9 Validating Input

MAF allows you to inform the end user about data input errors and other conditions that occur during data input. Depending on their type (error or warning), validation messages have a different look and feel.

The user input validation is triggered when an input is submitted: Input Text components are automatically validated when the end user leaves the field; for selection components, such as a Checkbox or Choice, the validation occurs when the end user makes a selection. For validation purposes, UI components on a MAF AMX page are grouped together within a Validation Group operation (validationGroup) to define components whose input is to be validated when the submit operation takes place. A Validation Behavior (validationBehavior) component defines which Validation Group is to be validated before a command component's action is taken. A command component can have multiple child Validation Behavior components. Validation does not occur if a component does not have a Validation Behavior defined for it.

	
Note:

You cannot define nested Validation Group operations.
The following is an invalid definition of a Validation Group:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 <amx:panelGroupLayout>
 <amx:validationGroup/>
 <amx:panelGroupLayout/>
 </amx:validationGroup>
 </amx:panelPage>
</amx:view>

The following is a valid definition:

<amx:view>
 <amx:panelPage>
 <amx:validationGroup>
 </amx:panelPage>
 <amx:popup>
 <amx:validationGroup>
 </amx:popup>
</amx:view>

If a MAF AMX page contains any validation error messages, you can use command components, such as List Item, Link, and Button, to prevent the end user from navigating off the page. Messages containing warnings do not halt the navigation.

Example 13-124 shows how to define validation elements, including multiple Validation Group and Validation Behavior operations, in a MAF AMX file.

Example 13-124 Defining Input Validation

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Validate"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="commandButton2" action="go" text="Save">
 <amx:validationBehavior id="vb1"
 disabled="#{pageFlowScope.myPanel ne 'panel1'}"
 group="group1"/>
 <amx:validationBehavior id="vb2"
 disabled="#{pageFlowScope.myPanel ne 'panel2'}"
 group="group2"/>
 <!-- invalid, should be caught by audit rule but for any reason
 if group not found at run time, this validate is ignored -->
 <amx:validationBehavior id="vb3" disabled="false" group="groupxxx"/>
 <!-- group is not found at run time, this validate is ignored -->
 <amx:validationBehavior id="vb4" disabled="false" group="group3"/>
 </amx:commandButton>
 </amx:facet>
 <amx:panelSplitter id="ps1" selectedItem="#{pageFlowScope.myPanel}">
 <amx:panelItem id="pi1">
 <amx:validationGroup id="group1">
 <amx:panelFormLayout id="pfl1">
 <amx:inputText value="#{bindings.first.inputValue}"
 required="true"
 label="#{bindings.first.hints.label}"
 id="inputText1"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText2"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelItem>
 <amx:panelItem id="pi2">
 <amx:validationGroup id="group2">
 <amx:panelFormLayout id="pfl2">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText3"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText4"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelItem>
 </amx:panelSplitter>
 <amx:panelGroupLayout id="pgl1" rendered="false">
 <amx:validationGroup id="group3">
 <amx:panelFormLayout id="pfl4">
 <amx:inputText value="#{bindings.salary.inputValue}"
 label="#{bindings.first.hints.label}"
 id="inputText5"/>
 <amx:inputText value="#{bindings.last.inputValue}"
 label="#{bindings.last.hints.label}"
 id="inputText6"/>
 </amx:panelFormLayout>
 </amx:validationGroup>
 </amx:panelGroupLayout>
</amx:panelPage>

Example 13-125 shows how to define a validation message displayed in a popup in a MAF AMX file.

Example 13-125 Defining Input Validation with Popup Message

<amx:panelPage id="pp1">
 <amx:facet name="header">
 <amx:outputText id="outputText1" value="Login Demo"/>
 </amx:facet>
 <amx:facet name="secondary">
 <amx:commandButton id="btnBack" action="__back" text="Back"/>
 </amx:facet>
 <amx:panelGroupLayout id="panelGroupLayout1">
 <amx:validationGroup id="group1">
 <amx:panelGroupLayout id="panelGroupLayout2">
 <amx:inputText value="#{bindings.userName.inputValue}"
 label="#{bindings.userName.hints.label}"
 id="inputText1"
 showRequired="true"
 required="true"/>
 <amx:inputText value="#{bindings.password.inputValue}"
 label="#{bindings.password.hints.label}"
 id="inputText2"
 required="true"
 showRequired="true"
 secret="true"/>
 <amx:outputText id="outputText2"
 value="#{bindings.timeToStayLoggedIn.hints.label}:
 #{bindings.timeToStayLoggedIn.inputValue} minutes"/>
 </amx:panelGroupLayout>
 </amx:validationGroup>
 <amx:commandButton id="commandButton2"
 text="Login"
 action="navigationSuccess">
 <amx:validationBehavior id="validationBehavior2" group="group1"/>
 </amx:commandButton>
 </amx:panelGroupLayout>
</amx:panelPage>

Validation messages are displayed in a Popup component (see Section 13.2.8, "How to Use a Popup Component"). You cannot configure the title of a validation popup, which is automatically determined by the relative message severity: the most severe of all of the current messages becomes the title of the validation popup. That is, if all validation messages are of type WARNING, then the title is "Warning"; if some of the messages are of type WARNING and others are of type ERROR, then the title is set to "Error".

Figure 13-119 shows a popup validation message produced at runtime.

Figure 13-119 Validation Message on iPhone

[image: This image is described in the surrounding text]

13.10 Using Event Listeners

To invoke Java code from your MAF AMX pages and perform the application logic, you define listeners as attributes of UI components in one of the following ways:

	
Manually in the source of your MAF AMX file.

	
From the Properties window for the selected component. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

You may use the following listeners to add awareness of the UI-triggered events to your MAF AMX page:

	
valueChangeListener: listens to ValueChangeEvent that is constructed with the following parameters:

	
java.lang.Object representing an old value

	
java.lang.Object representing a new changed value

	
actionListener: listens to ActionEvent that is constructed without parameters;

	
selectionListener: listens to SelectionEvent that is constructed with the following parameters:

	
java.lang.Object representing an old row key

	
java.lang.String[] representing selected row keys

	
moveListener: listens to MoveEvent that is constructed with the following parameters: of the RowKey type representing an old row key;

	
java.lang.Object representing the moved row key

	
java.lang.String[] representing the row key before which the moved row key was inserted

	
rangeChangeListener: listens to RangeChangeEvent that is constructed without parameters.

	
mapBoundsChangeListener: listens to MapBoundsChangeEvent that is constructed with the following parameters:

	
java.lang.Object representing the X coordinate (longitude) of minimum map bounds

	
java.lang.Object representing the Y coordinate (latitude) of minimum map bounds

	
java.lang.Object representing the X coordinate (longitude) of maximum map bounds

	
java.lang.Object representing the Y coordinate (latitude) of maximum map bounds

	
java.lang.Object representing the X coordinate (longitude) of the map center

	
java.lang.Object representing the Y coordinate (latitude) of the map center

	
int representing the current zoom level

	
mapInputListener: listens to MapInputEvent that is constructed with the following parameters:

	
java.lang.String representing the event type

	
java.lang.Object representing the X coordinate of the event point

	
java.lang.Object representing the Y coordinate of the event point

	
viewportChangeListener: listens to ViewportChangeEvent that is constructed with the following parameters:

	
java.lang.Object representing the minimum X coordinate

	
java.lang.Object representing the maximum X coordinate

	
java.lang.Object representing the minimum Y coordinate

	
java.lang.Object representing the maximum Y coordinate

	
java.lang.Object representing the first visible group

	
java.lang.Object representing the last visible group

The value for your listener must match the pattern #{*} and conform to the following requirements:

	
Type name: EL Expression

	
Base type: string

	
Primitive type: string

For information on EL events, see Section 14.3.6, "About EL Events."

Most MAF AMX event classes extend the oracle.adfmf.amx.event.AMXEvent class. When defining event listeners in your Java code, you need to pass the oracle.adfmf.amx.event.AMXEvent class.

For more information, see the following:

	
Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework

	
Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework

	
Section 19.2.2, "How to Use AmxEvent Classes"

MAF allows you to create managed bean methods for listeners so that your managed bean methods use MAF AMX-specific event classes. Example 13-126, Example 13-127, and Example 13-128 demonstrate a Button and a Link component calling the same managed bean method. The source value of the AMXEvent determines which object invoked the event by showing a message box with the component's ID.

Example 13-126 Calling a Bean Method from MAF AMX File

<amx:commandButton text="commandButton1"
 id="commandButton1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandButton>
<amx:commandLink text="commandLink1"
 id="commandLink1"
 actionListener="#{applicationScope.Bean.actionListenerMethod}">
</amx:commandLink>

Example 13-127 Using AMXEvent

private void actionListenerMethod(AMXEvent amxEvent) {
 // Some Java handling
}

Example 13-128 Invoking the Event Method

public Object invokeMethod(String methodName, Object[] params) {
 if (methodName.equals("actionListenerMethod")) {
 actionListenerMethod((AMXEvent) params[0]);
 }
 return null;
}

For additional examples, see a MAF sample application called APIDemo located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer. This sample demonstrates how to call listeners from Java beans.

13.10.1 What You May Need to Know About Constrained Type Attributes for Event Listeners

You can define event listeners as children of some MAF AMX UI components. The listeners' type attribute identifies which event they are to be registered to handle. Since each parent UI component supports only a subset of the events (suitable for that particular component), these supported events are presented in a constrained list of types that you can select for a listener.

Table 13-16 lists parent UI components, event listeners they can have as children, and event types they support.

Table 13-16 Supported Event Listeners and Event Types

	UI Component (parent)	Action Listener (child component)	Set Property Listener (child component)	Client Listener (child component)	Show Popup Behavior (child component)	Close Popup Behavior (child component)	Validation Behavior (child component)	actionListener (attribute)	valueChangeListener (attribute)	moveListener (attribute)	selectionListener (attribute)	mapBoundsChangeListener (attribute)	mapInputListener (attribute)	viewportChangeListener (attribute)	rangeChangeListener (attribute)
	
Button

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Link

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
List Item

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Input Date

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Input Number Slider

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Input Text

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Output Text

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
List View

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Checkbox

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Switch

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Checkbox (Select Many)

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Choice (Select Many)

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Choice

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Select Button

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Radio Button

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Link (Go)

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Carousel

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Carousel Item

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Image

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
View

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Film Strip

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Film Strip Item

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Area Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Bar Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Bubble Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Combo Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Line Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Pie Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Pie Data Item

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Scatter Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Spark Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Funnel Chart

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Funnel Data Item

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Chart Data Item

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Series Style

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Led Gauge

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Dial Gauge

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Rating Gauge

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Status Meter Gauge

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Geographic Map

	
Not supported

	
SupportedFoot 1

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
SupportedFoot 2

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Thematic Map

	
Not supported

	
SupportedFoot 3

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
SupportedFoot 4

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Area

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Route

	
Supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Marker

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Area Data Layer

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Point Data Layer

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Sunburst

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Treemap

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Timeline

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Timeline Series

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Timeline Item

	
Not supported

	
Supported

	
Not supported

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
NBox

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

Footnote 1 The Set Property Listener can be specified as a child of the Geographic Map's Marker of Area.

Footnote 2 The selectionListener attribute can be set on the Geographic Map's Area Data Layer or Point Data Layer.

Footnote 3 The Set Property Listener can be specified as a child of the Thematic Map's Marker of Area.

Footnote 4 The selectionListener attribute can be set on the Thematic Map's Area Data Layer or Point Data Layer.

The type attribute (see Figure 13-120) of each of the child event listeners has a base set of values that match the listener events. These values are filtered based on the information presented in Table 13-16 such that when the child event listener is within the context of the identified parent UI component, only the events that the parent supports are shown. For example, under a Button component, the Action Listener or Set Property Listener child would show only the action Type value, as well as gestures.

Figure 13-120 shows values available in the constrained Type list of the Set Property Listener for a parent List Item component.

Figure 13-120 Selecting Event Type

[image: This image is described in the surrounding text]

Footnote Legend

Footnote 1: See Section 13.3.27.1, "What You May Need to Know About the disabled Attribute" for details.

14 Using Bindings and Creating Data Controls in MAF AMX

This chapter describes how to use data bindings, data controls, and the data binding expression language (EL) within a MAF AMX application feature. In addition, object scope lifecycles, managed beans, UI hints, validation, and data change events are also discussed.

This chapter includes the following sections:

	
Section 14.1, "Introduction to Bindings and Data Controls"

	
Section 14.2, "About Object Scope Lifecycles"

	
Section 14.3, "Creating EL Expressions"

	
Section 14.4, "Creating and Using Managed Beans"

	
Section 14.5, "Exposing Business Services with Data Controls"

	
Section 14.6, "Creating Databound UI Components from the Data Controls Panel"

	
Section 14.7, "What Happens at Runtime: How the Binding Context Works"

	
Section 14.8, "Configuring Data Controls"

	
Section 14.9, "Working with Attributes"

	
Section 14.10, "Creating and Using Bean Data Controls"

	
Section 14.11, "Using the DeviceFeatures Data Control"

	
Section 14.12, "Validating Attributes"

	
Section 14.13, "About Data Change Events"

14.1 Introduction to Bindings and Data Controls

Mobile Application Framework implements two concepts that enable the decoupling of the user interface (UI) technology from the business service implementation: data controls and declarative bindings. Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. Using JDeveloper, you can view that information as icons that you can drag and drop onto a page. Declarative bindings abstract the details of accessing data from data collections in a data control and invoking its operations. At runtime, the model layer reads the information describing the data controls and bindings from the appropriate XML files and then implements the two-way connection between the user interface and the business service.

The group of bindings supporting the user interface components on a page are described in a page-specific XML file called the page definition file. The model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container, accessible during each page request using the EL expression #{bindings}. This expression always evaluates to the binding container for the current page. You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the code and objects needed to bind the component to the data control you selected.

The Mobile Application Framework comes with two out-of-the box data controls: the DeviceFeatures data control and the ApplicationFeatures data control. The DeviceFeatures data control appears within the Data Controls panel in JDeveloper, enabling you to drag and drop the primary data attributes of data controls to your application as (text) fields, and the operations of data controls as command objects (buttons). These drag and drop actions will generate EL bindings in your application and the appropriate properties for the controls that are created. The bindings are represented in a DataControls.dcx file, which points at the data control source, and the page bindings link the specific page's reference to the data control. For information about the ApplicationFeatures data control, see Section 4.6, "What You May Need to Know About Custom Springboard Application Features with MAF AMX Content."

For more information about data controls and bindings, see the following:

	
Section 14.5, "Exposing Business Services with Data Controls"

	
Section 14.6, "Creating Databound UI Components from the Data Controls Panel"

	
Section 14.7, "What Happens at Runtime: How the Binding Context Works"

	
Section 14.8, "Configuring Data Controls"

	
Section 14.9, "Working with Attributes"

	
Section 14.10, "Creating and Using Bean Data Controls"

	
Section 14.11, "Using the DeviceFeatures Data Control"

14.2 About Object Scope Lifecycles

At runtime, you pass data to pages by storing the needed data in an object scope where the page can access it. The scope determines the lifespan of an object. Once you place an object in a scope, it can be accessed from the scope using an EL expression. For example, you might create a managed bean named foo, and define the bean to live in the view scope. To access that bean, you would use the expression #{viewScope.foo}.

Mobile Application Framework variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. MAF supports the following scopes, listed in order of decreasing visibility:

	
Application scope—The object is available for the duration of the application (across features).

	
Page flow scope—The object is available for the duration of a feature (single feature boundary).

	
View scope—The object is available for the duration of the view (single page of a feature).

Object scopes are analogous to global and local variable scopes in programming languages. The wider the scope, the higher the availability of an object. During their lifespan, these objects may expose certain interfaces, hold information, or pass variables and parameters to other objects. For example, a managed bean defined in application scope will be available for use during multiple page requests for the duration of the application. However, a managed bean defined in view scope will be available only for the duration of one page request within a feature.

EL expressions defined in the application scope namespace are available for the life of the application, across feature boundaries. You can define an application scope in one view of an application, and then reference it in another. EL expressions defined in the page flow scope namespace are available for the duration of a feature, within the bounds of a single feature. EL expressions defined in the view scope namespace are available for the duration of the view, within the bounds of a single page of a feature. In addition to these variable-containing scopes, MAF defines scopes that can expose information about device properties and application preferences. These scopes have application-level lifetime and visibility. For more information, see Section 14.3.5.2, "About the Managed Beans Category" and Section 14.3.5.3, "About the Mobile Application Framework Objects Category."

When determining what scope to register a managed bean with or to store a value in, always try to use the narrowest scope possible. Use the application scope only for information that is relevant to the whole application, such as user or context information. Avoid using the application scope to pass values from one page to another.

	
Note:

Every object you put in a memory scope is serialized to a JSON DataChangeEvent, and objects returned by any getter method inside this object are also serialized. This can lead to deeply nested object trees that are serialized, which will decrease performance. To avoid serialization of a chain of nested objects, you should define them as transient. See Section 14.10.1, "What You May Need to Know About Serialization of Bean Class Variables" for more information.

14.2.1 What You May Need to Know About Object Scopes and Task Flows

When determining what scope to use for variables within a task flow, you should use only view or page flow scopes. The application scope will persist objects in memory beyond the life of the task flow and therefore compromise the encapsulation and reusable aspects of a task flow. In addition, application scope may keep objects in memory longer than needed, causing unneeded overhead.

When you need to pass data values between activities within a task flow, you should use page flow scope. View scope should be used for variables that are needed only within the current view activity, not across view activities.

14.3 Creating EL Expressions

You use EL expressions in MAF applications to bind attributes to object values determined at runtime. For example, #{UserList.selectedUsers} might reference a set of selected users, #{user.name} might reference a particular user's name, while #{user.role == 'manager'} would evaluate whether a user is a manager or not. At runtime, a generic expression evaluator returns the List, String, and boolean values of these respective expressions, automating access to the individual objects and their properties without requiring code.

Expressions are not evaluated until they are needed for rendering a value. Because MAF AMX supports only deferred evaluation, an expression using the immediate construction expression ("${}") still parses, but behaves the same as a deferred expression ("#{}"). At runtime, the value of certain UI components (such as an inputText component or an outputText component) is determined by its value attribute. While a component can have static text as its value, typically the value attribute will contain an EL expression that the runtime infrastructure evaluates to determine what data to display. For example, an outputText component that displays the name of the currently logged-in user might have its value attribute set to the expression #{UserInfo.name}. Since any attribute of a component (and not just the value attribute) can be assigned a value using an EL expression, it's easy to build dynamic, data-driven user interfaces. For example, you could hide a component when a set of objects you need to display is empty by using a boolean-valued expression like #{not empty UserList.selectedUsers} in the UI component's rendered attribute. If the list of selected users in the object named UserList is empty, the rendered attribute evaluates to false and the component disappears from the page.

In a typical application, you would create objects like UserList as a managed bean. The runtime manages instantiating these beans on demand when any EL expression references them for the first time. When displaying a value, the runtime evaluates the EL expression and pulls the value from the managed bean to populate the component with data when the page is displayed. If the user updates data in the UI component, the runtime pushes the value back into the corresponding managed bean based on the same EL expression. For more information about creating and using managed beans, see Section 14.4, "Creating and Using Managed Beans." For more information about EL expressions, see the Java EE tutorial at http://www.oracle.com/technetwork/java/index.html.

	
Note:

When using an EL expression for the value attribute of an editable component, you must have a corresponding set method for that component, or else the EL expression will evaluate to read-only, and no updates to the value will be allowed.
For example, say you have an inputText component (whose ID is it1) on a page, and you have its value set to #{myBean.inputValue}. The myBean managed bean would have to have get and set methods as follows, in order for the inputText value to be updated:

 public void setIt1(RichInputText it1) {
 this.it1 = it1;
 }

 public RichInputText getIt1() {
 return it1;
 }

14.3.1 About Data Binding EL Expressions

When you use the Data Controls panel to create a component, the MAF data binding expressions are created for you. The expressions are added to every component attribute that will either display data from or reference properties of a binding object. Each prebuilt expression references the appropriate binding objects defined in the page definition file. You can edit these binding expressions or create your own, as long as you adhere to the basic MAF binding expression syntax. MAF data binding expressions can be added to any component attribute that you want to populate with data from a binding object, if the attribute supports EL.

A typical MAF data binding EL expression uses the following syntax to reference any of the different types of binding objects in the binding container:

#{bindings.BindingObject.propertyName}

where:

	
bindings is a variable that identifies that the binding object being referenced by the expression is located in the binding container of the current page. All MAF data binding EL expressions must start with the bindings variable.

	
BindingObject is the ID, or for attributes the name, of the binding object as it is defined in the page definition file. The binding objectID or name is unique to that page definition file. An EL expression can reference any binding object in the page definition file, including parameters, executables, or value bindings.

	
propertyName is a variable that determines the default display characteristics of each databound UI component and sets properties for the binding object at runtime. There are different binding properties for each type of binding object. For more information about binding properties, see Section 14.3.3, "What You May Need to Know About MAF Binding Properties."

For example, in the following expression:

#{bindings.ProductName.inputValue}

the bindings variable references a bound value in the current page's binding container. The binding object being referenced is ProductName, which is an attribute binding object. The binding property is inputValue, which returns the value of the first ProductName attribute.

	
Tip:

While the binding expressions in the page definition file can use either a dollar sign ($) or hash sign (#) prefix, the EL expressions in MAF pages can only use the hash sign (#) prefix.

As stated previously, when you use the Data Controls panel to create UI components, these expressions are built for you. However, you can also manually create them if you need to. The JDeveloper Expression Builder is a dialog that helps you build EL expressions by providing lists of binding objects defined in the page definition files, as well as other valid objects to which a UI component may be bound. It is particularly useful when creating or editing MAF databound expressions because it provides a hierarchical list of MAF binding objects and their most commonly used properties. For information about binding properties, see Section 14.3.3, "What You May Need to Know About MAF Binding Properties."

14.3.2 How to Create an EL Expression

You can create EL expressions declaratively using the JDeveloper Expression Builder. You can access the Expression Builder from the Properties window.

Before you begin

It may be helpful to have an understanding of EL expressions. For more information, see Section 14.3, "Creating EL Expressions."

To use the Expression Builder:

	
In the Properties window, locate the attribute you wish to modify and use the rightmost dropdown menu to choose Expression Builder.

	
Create expressions using the following features:

	
Use the Variables dropdown to select items that you want to include in the expression. These items are displayed in a tree that is a hierarchical representation of the binding objects. Each icon in the tree represents various types of binding objects that you can use in an expression.

To narrow down the tree, you can either use the dropdown filter or enter search criteria in the search field. The EL accessible objects exposed by MAF are located under the Mobile Application Framework Objects node, which is under the ADF Managed Beans node.

	
Tip:

For more information about these objects, see the MAF Javadoc. See also Section 14.3.5, "About the Categories in the Expression Builder."

Selecting an item in the tree causes it to be moved to the Expression box within an EL expression. You can also type the expression directly in the Expression box.

	
Use the operator buttons to add logical or mathematical operators to the expression.

Figure 14-1 shows an example of how to create an EL expression from the ADF Managed Beans category. However, you can create EL expressions from any of the categories described in Section 14.3.5, "About the Categories in the Expression Builder."

Figure 14-1 The Expression Builder Dialog

[image: This image is described in the surrounding text]

	
Tip:

For information about using proper syntax to create EL expressions, see the Java EE tutorial at http://download.oracle.com/javaee/index.html">>http://download.oracle.com/javaee/index.html.

Table 14-1 Icons Under the Bindings Node of the Expression Builder

	Icon	Description
	
[image: This image is described in the surrounding text]

	
Represents the bindings container variable, which references the binding container of the current page. Opening the bindings node exposes all the binding objects for the current page.

	
[image: This image is described in the surrounding text]

	
Represents the data binding variable, which references the entire binding context (created from all the.cpx files in the application). Opening the data node exposes all the page definition files in the application.

	
[image: This image is described in the surrounding text]

	
Represents an action binding object. Opening a node that uses this icon exposes a list of valid action binding properties.

	
[image: This image is described in the surrounding text]

	
Represents an iterator binding object. Opening a node that uses this icon exposes a list of valid iterator binding properties.

	
[image: This image is described in the surrounding text]

	
Represents an attribute binding object. Opening a node that uses this icon exposes a list of valid attribute binding properties.

	
[image: This image is described in the surrounding text]

	
Represents a list binding object. Opening a node that uses this icon exposes a list of valid list binding properties.

	
[image: This image is described in the surrounding text]

	
Represents a table or tree binding object. Opening a node that uses this icon exposes a list of valid table and tree binding properties.

	
[image: This image is described in the surrounding text]

	
Represents a MAF binding object property. For more information about MAF properties, see Section 14.3.3, "What You May Need to Know About MAF Binding Properties."

	
[image: This image is described in the surrounding text]

	
Represents a parameter binding object.

	
[image: This image is described in the surrounding text]

	
Represents a bean class.

	
[image: This image is described in the surrounding text]

	
Represents a method.

14.3.2.1 About the Method Expression Builder

Table 14-2 shows properties that have the Method Expression Builder option available in the Properties window instead of the Expression Builder option. The only difference between them is that the Method Expression Builder filters out the managed beans depending on the selected property.

Table 14-2 Properties for the Method Expression Builder

	Property	Element
	
action

	
amx:commandButton

	
action

	
amx:commandLink

	
action

	
amx:listItem

	
action

	
amx:navigationDragBehavior

	
action

	
dvtm:chartDataItem

	
action

	
dvtm:ieDataItem

	
action

	
dvtm:timelineItem

	
action

	
dvtm:area

	
action

	
dvtm:marker

	
actionListener

	
amx:listItem

	
actionListener

	
amx:commandButton

	
actionListener

	
amx:commandLink

	
binding

	
amx:actionListener

	
mapBoundsChangeListener

	
dvtm:geographicMap

	
mapInputListener

	
dvtm:geographicMap

	
moveListener

	
amx:listView

	
rangeChangeListener

	
amx:listView

	
selectionListener

	
amx:listView

	
selectionListener

	
amx:filmStrip

	
selectionListener

	
dvtm:areaDataLayer

	
selectionListener

	
dvtm:pointDataLayer

	
selectionListener

	
dvtm:treemap

	
selectionListener

	
dvtm:sunburst

	
selectionListener

	
dvtm:timelineSeries

	
selectionListener

	
dvtm:nBox

	
selectionListener

	
dvtm:areaChart

	
selectionListener

	
dvtm:barChart

	
selectionListener

	
dvtm:bubbleChart

	
selectionListener

	
dvtm:comboChart

	
selectionListener

	
dvtm:horizontalBarChart

	
selectionListener

	
dvtm:lineChart

	
selectionListener

	
dvtm:funnelChart

	
selectionListener

	
dvtm:pieChart

	
selectionListener

	
dvtm:scatterChart

	
valueChangeListener

	
amx:inputDate

	
valueChangeListener

	
amx:inputNumberSlider

	
valueChangeListener

	
amx:inputText

	
valueChangeListener

	
amx:selectBooleanCheckbox

	
valueChangeListener

	
amx:selectBooleanSwitch

	
valueChangeListener

	
amx:selectManyCheckbox

	
valueChangeListener

	
amx:selectManyChoice

	
valueChangeListener

	
amx:selectOneButton

	
valueChangeListener

	
amx:selectOneChoice

	
valueChangeListener

	
amx:selectOneRadio

	
valueChangeListener

	
dvtm:statusMeterGauge

	
valueChangeListener

	
dvtm:dialGauge

	
valueChangeListener

	
dvtm:ratingGauge

	
viewportChangeListener

	
dvtm:areaChart

	
viewportChangeListener

	
dvtm:barChart

	
viewportChangeListener

	
dvtm:comboChart

	
viewportChangeListener

	
dvtm:horizontalBarChart

	
viewportChangeListener

	
dvtm:lineChart

14.3.2.2 About Non EL-Properties

Table 14-3 shows the properties that do not have the EL Expression Builder option available in the Properties window, because they are not EL-enabled.

Table 14-3 Non EL-Properties

	Property	Element
	
id

	
all elements

	
facetName

	
amx:facetRef

	
failSafeClientHandler

	
amx:loadingIndicatorBehavior

	
failSafeDuration

	
amx:loadingIndicatorBehavior

	
group

	
amx:validationBehavior

	
name

	
amx:attribute

	
name

	
amx:attributeList

	
name

	
amx:attributeListIterator

	
name

	
amx:facet

	
ref

	
amx:attributeList

	
type

	
dvtm:attributeGroups

	
var

	
amx:carousel

	
var

	
amx:filmStrip

	
var

	
amx:iterator

	
var

	
amx:listView

	
var

	
amx:loadBundle

	
var

	
dvtm:areaChart

	
var

	
dvtm:barChart

	
var

	
dvtm:bubbleChart

	
var

	
dvtm:comboChart

	
var

	
dvtm:funnelChart

	
var

	
dvtm:horizontalBarChart

	
var

	
dvtm:lineChart

	
var

	
dvtm:pieChart

	
var

	
dvtm:scatterChart

	
var

	
dvtm:sparkChart

	
var

	
dvtm:geographicMap

	
varStatus

	
amx:attributeListIterator

14.3.3 What You May Need to Know About MAF Binding Properties

When you create a databound component using the Expression Builder, the EL expression might reference specific MAF binding properties. At runtime, these binding properties can define such things as the default display characteristics of a databound UI component or specific parameters for iterator bindings. The ADF binding properties are defined by Oracle APIs. For a full list of the available properties for each binding type, see Table 14-4, "Runtime EL Properties of MAF Bindings"

Values assigned to certain properties are defined in the page definition file. For example, iterator bindings have a property called RangeSize, which specifies the number of rows the iterator should display at one time. The value assigned to RangeSize is specified in the page definition file, as shown in Example 14-1.

Example 14-1 Iterator Binding Object with the RangeSize Property

<iterator Binds="ItemsForOrder" RangeSize="25"
 DataControl="BackOfficeAppModuleDataControl"
 id="ItemsForOrderIterator" ChangeEventPolicy="ppr"/>

14.3.4 How to Reference Binding Containers

You can reference the active screen's binding container by the root EL expression "#{bindings}" and you can reference another screen's binding container through the expression "#{data.PageDefName}". The Mobile Application Framework AMX binding objects are referenced by name from the binding container "#{bindings.Name}".

Table 14-4 shows a partial list of the properties that you can use in EL expressions to access values of the Mobile Application Framework AMX binding objects at runtime. The properties appear in alphabetical order.

Table 14-4 Runtime EL Properties of MAF Bindings

	Runtime Property	Description	Iterator	Action	attributeValues	Tree
	
class

	
Returns the Java class object for the runtime binding.

	
Yes

	
Yes

	
Yes

	
Yes

	
collectionModel

	
Exposes a collection of data. EL expressions used within a component that is bound to a collectionModel can be referenced with a row variable Foot 1 , which will resolve the expression for each element in the collection.

	
No

	
No

	
No

	
Yes

	
collectionModel.makeCurrent

	
Causes the selected row to become the current row in the iterator for this binding.

	
No

	
No

	
No

	
Yes

	
collectionModel.selectedRow

	
Returns a reference to the selected row.

	
No

	
No

	
No

	
Yes

	
currentRow

	
Returns a reference to the current row or data object pointed to by the iterator (for example, built-in navigation actions).

	
Yes

	
No

	
No

	
No

	
currentRow.dataprovider

	
Returns a reference to the current row or data object pointed to by the iterator. (This is the same object returned by currentRow, just with a different syntax).

	
Yes

	
No

	
No

	
No

	
enabled

	
Returns true or false, depending on the state of the action binding. For example, the action binding may be enabled (true) or disabled (false) based on the currency (as determined, for example, when the user clicks the First, Next, Previous, or Last navigation buttons).

	
No

	
Yes

	
No

	
No

	
execute

	
Invokes the named action or methodAction binding when resolved.

	
No

	
Yes

	
No

	
No

	
format

	
This is a shortcut for hints.format.

	
No

	
No

	
Yes

	
Yes

	
hints

	
Returns a list of name-value pairs for UI hints for all display attributes to which the binding is associated.

	
No

	
No

	
Yes

	
Yes

	
inputValue

	
Returns the value of the first attribute to which the binding is associated.

	
No

	
No

	
Yes

	
No

	
items

	
Returns the list of values associated with the current list-enabled attribute.

	
No

	
No

	
Yes

	
No

	
label

	
Available as a child of hints or direct child of an attribute. Returns the label (if supplied by control hints) for the first attribute of the binding.

	
No

	
No

	
Yes

	
Yes

	
name

	
Returns the id of the binding as declared in the PageDef.xml file.

	
Yes

	
Yes

	
Yes

	
Yes

	
rangeSize

	
Returns the range size of the iterator binding's row set. This allows you to determine the number of data objects to bind from the data source.

	
Yes

	
No

	
No

	
Yes

	
result

	
Returns the result of a method that is bound and invoked by a method action binding.

	
No

	
Yes

	
No

	
No

	
updateable

	
Available as a child of hints or direct child of an attribute. Returns true if the first attribute to which the binding is associated is updateable. Otherwise, returns false.

	
No

	
No

	
Yes

	
Yes

	
viewable

	
Available as a child of Tree. Resolves at runtime whether this binding and the associated component should be rendered or not.

	
No

	
No

	
No

	
Yes

Footnote 1 The EL term row is used within the context of a collection component; row simply acts as an iteration variable over each element in the collection whose attributes can be accessed by a MAF AMX binding object when the collection is rendered. Attribute and list bindings can be accessed through the row variable. The syntax for such expressions will be the same as those used for accessing binding objects outside of a collection, with the row variable prepended as the first term: #{row.bindings.Name.property}.

14.3.5 About the Categories in the Expression Builder

The following categories are available in the Expression Builder for MAF AMX pages:

	
About the Bindings Category

	
About the Managed Beans Category

	
About the Mobile Application Framework Objects Category

14.3.5.1 About the Bindings Category

This section lists the options available under the Bindings category. The bindings and data nodes display the same set of supported bindings and properties. Table 14-5 lists available binding types along with the properties that are supported for each binding type. The securityContext node supports the following properties:

	
authenticated

	
userGrantedPrivilege

	
userInRole

	
userName

For example:

#{securityContext.authenticated}
#{securityContext.userGrantedPrivilege['submit_privilege']}
#{securityContext.userInRole[’manager_role']}
#{securityContext.userName}

Table 14-5 Supported Binding Types

	Binding Type	Properties
	
accessorIterator

	
class

currentRow: dataProvider

name

rangeSize

	
action

	
class

enabled

execute

name

	
attributeValues

	
autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: allows.read, allows.update, autoSubmit, category, controlType, displayHeight, displayHint, displayWidth, filedorder, format, label, mandatory, precision, tooltip, updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

	
button

	
autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: allows.read, allows.update, autoSubmit, category, controlType, displayHeight, displayHint, displayWidth, filedorder, format, label, mandatory, precision, tooltip, updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

	
invokeAction

	
always

deferred

	
iterator

	
class

currentRow: dataProvider

name

rangeSize

	
list

	
autoSubmit

category

class

controlType

displayHeight

displayHint

displayWidth

filedorder

format

hints: format, allows.read, allows.update, autoSubmit, category, controlType, displayHeight, displayHint, displayWidth, filedorder, format, label, mandatory, precision, tooltip, updateable

inputValue

items

iteratorBinding

label

mandatory

name

precision

tooltip

updateable

	
methodAction

	
class

enabled

execute

name

operationEnabled

operationInfo

paramsMap

result

	
methodIterator

	
class

currentRow: dataProvider

name

rangeSize

	
searchAction

	
class

enabled

execute

name

operationEnabled

operationInfo

paramsMap

result

	
tree

	
category

class

collectionModel: bindings, makeCurrent, selectedRow, <AttrName>

displayHeight

displayHint

displayWidth

filedorder

format

hints: category, displayHeight, displayHint, displayWidth, filedorder, format, label, mandatory, precision, tooltip, updateable, <AttrName>

iteratorBinding

label

mandatory

name

precision

rangeSize

tooltip

updateable

viewable

	
variable

	
class

currentRow: dataProvider

name

	
variableIterator

	
class

currentRow: dataProvider

name

14.3.5.2 About the Managed Beans Category

This section lists the options available under the Managed Beans category.

	
applicationScope: Managed Beans > applicationScope node contains everything that is defined at the application level (for example, application-scoped managed beans).

	
pageFlowScope: Managed Beans > pageFlowScope node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans).

	
viewScope: Managed Beans > viewScope node contains everything that is defined at the view level (for example, view-scoped managed beans).

The MAF runtime will register itself as a listener on managed bean property change notifications so that EL expressions bound to UI components that reference bean properties will update automatically if the value of the property changes. Sourcing these notifications requires some additional code in the beans' property accessors. To automatically generate the necessary code to source notifications from your beans' property accessors, select the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Figure 14-2).

Figure 14-2 Notify Listeners When Property Changes

[image: This image is described in the surrounding text]

It is not necessary to add this code to simply reference bean methods or properties through EL, but it is necessary to keep the rendering of any EL expressions in the active form that depend on values stored in the bean current if those values change, especially if the change is indirect, such as a side effect of executing a bean method that changes one or more property values. For information about property changes and the PropertyChangeSupport class, see Section 14.13, "About Data Change Events."

Example 14-2 illustrates how to retrieve a value bound to another managed bean attribute programmatically.

Example 14-2 Object Value Retrieved Programmatically from a Managed Bean

public void someMethod() {
 Object value = AdfmfJavaUtilities.evaluateELExpression(
 "#{applicationScope.MyManagedBean.someProperty}");
 ...
}

Example 14-3 illustrates how to execute bindings programmatically from a managed bean.

Example 14-3 Bindings Executed Programmatically from a Managed Bean

public void someMethod() {
 Object value = AdfmfJavaUtilities.evaluateELExpression(
 "#{bindings.someDataControlMethod.execute}");
 ...
}

	
Note:

If you declare a managed bean within the applicationScope of a feature but then try to reference that bean through EL in another feature at design time, you will see a warning in the design time about invalid EL. This warning is due to the fact that the design time cannot find a reference in the current project for that bean. You can reference that bean at runtime only if you first visit the initial feature where you declared the bean and the bean is instantiated before you access it through EL in another feature. This is not the case for the PreferenceValue element as it uses the Name attribute value as the node label.

14.3.5.3 About the Mobile Application Framework Objects Category

The Mobile Application Framework Objects category lists various objects defined in MAF that can be referenced using EL, such as object scopes.

MAF variables and managed bean references are defined within different object scopes that determine the variable's lifetime and visibility. In order of decreasing visibility, they are application scope, page flow scope, and view scope. For more information about the different object scopes, see Section 14.2, "About Object Scope Lifecycles.".

In addition to these variable-containing scopes, MAF defines scopes that can expose information about device properties and application preferences. These scopes have application-level lifetime and visibility.

The following are available under the Mobile Application Framework Objects category:

	
applicationScope: The applicationScope node contains everything that is defined at the application level (for example, application-scoped managed beans). EL variables defined in the application scope are available for the life of the application, across feature boundaries.

	
pageFlowScope: The pageFlowScope node contains everything that is defined at the page flow level (for example, page flow-scoped managed beans). EL variables defined in the page flow scope namespace are available for the duration of a feature, within the bounds of a single feature.

	
preferenceScope: The preferenceScope node contains all the application and feature preferences.

Preference elements use the Id attribute value as the node label in the Expression Builder, except for the PreferenceValue element. The PreferenceValue element uses the Name attribute value as the node label in the Expression Builder.

	
Note:

Where string tokens in EL expressions contain a dot (".") or any special character, or a reserved word like default, the Expression Builder surrounds such string tokens with a single quote and bracket. When the feature ID or preference component ID contains a dot, the Expression Builder displays each part of the ID that is separated by a dot as a separate property in the preferenceScope hierarchy. The expression generated also takes each part of the ID separated by a dot as a separate property.

Following are some sample preferenceScope EL expressions:

Example 14-4 Feature ID Containing "."

"#{preferenceScope.feature.oracle.hello.SampleGroup1.label}"

Example 14-5 Attribute Name Is a Reserved Word

"#{preferenceScope.application.OracleMobileApp.Edition['default']}"

	
viewScope: This node contains everything that is defined at the view level (for example, view-scoped managed beans). EL variables defined in the view scope namespace are available for the duration of the view, within the bounds of a single page of a feature.

	
row: The row object is an intermediate variable that is a shortcut to a single provider in the collectionModel. Its name is the value of the var attribute of the parent component (such as List View or Carousel).

	
Note:

It is not possible to evaluate #{row} or properties of row using AdfmfJavaUtilities.evaluateELExpression. These expressions will return a null value.

	
viewControllerBundle

This is the name of the resource bundle variable that points to a resource bundle defined at the project level. This node is shown only after the amx:loadBundle element has been dropped and a resource bundle has been created. The name of this node will vary as it depends on the variable name of amx:loadBundle. This node will display all strings declared in the bundle.

Example 14-6 shows an example of AMX code for viewControllerBundle.

Example 14-6 AMX Code Sample of the loadBundle Element

<amx:loadBundle basename="mobile.ViewControllerBundle" var="viewcontrollerBundle"/>

14.3.6 About EL Events

EL events play a significant role in the functioning of the MAF AMX UI, enabling expressions with common terms to update in sync with each other.

EL expressions can refer to values in various contexts. Example 14-7 shows the creation of two Input Number Slider components, with each component tied to an applicationScope value. The output text then uses EL to display a simple addition equation along with the calculated results. When the framework parses the EL expression in the output text labels, it determines that the expression contains references to two values and creates event listeners (see Section 13.10, "Using Event Listeners") for the output text on those two values. When the value of the underlying expression changes, an event is generated to all listeners for that value.

	
Note:

If you are referencing properties on a managed bean (as opposed to scope objects) you have to add the listeners. For more information, see Section 14.3.5.2, "About the Managed Beans Category."

Example 14-7 Generating EL Events with Two Components

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>

In Example 14-7 two components are updating one value each, and one component is consuming both values. Example 14-8 shows that the behavior would be identical if a third Input Number Slider component is added that references one of the existing values.

Example 14-8 Generating EL Events with Three Components

<amx:inputNumberSlider id="slider1" label="X" value="#{applicationScope.X}"/>
<amx:inputNumberSlider id="slider2" label="Y" value="#{applicationScope.Y}"/>
<amx:outputText id="ot1" value="#{applicationScope.X} +
 #{applicationScope.Y} = #{applicationScope.X + applicationScope.Y}"/>
<amx:inputNumberSlider id="slider3" label="X" value="#{applicationScope.X}"/>

In Example 14-8, when either Input Number Slider component updates #{applicationScope.X}, the other is automatically updated along with the Output Text.

14.3.7 How to Use EL Expressions Within Managed Beans

While JDeveloper creates many needed EL expressions for you, and you can use the Expression Builder to create those not built for you, there may be times when you need to access, set, or invoke EL expressions within a managed bean.

Example 14-9 shows how you can get a reference to an EL expression and return (or create) the matching object.

Example 14-9 Resolving an EL Expression from a Managed Bean

public static Object resolveExpression(String expression) {
 return AdfmfJavaUtilities.evaluateELExpression(expression);
}

Example 14-10 shows how you can resolve a method expression.

Example 14-10 Resolving a Method Expression from a Managed Bean

public static Object resloveMethodExpression(String expression,
 Class returnType,
 Class[] argTypes,
 Object[] argValues) {
 MethodExpression methodExpression = AdfmfJavaUtilities.getMethodExpression(expression,
 returnType,
 argTypes);
 return methodExpression.invoke(AdfmfJavaUtilities.getAdfELContext(), argValues);
}

Example 14-11 shows how you can set a new object on a managed bean.

Example 14-11 Setting a New Object on a Managed Bean

public static void setObject(String expression, Object newValue) {
 AdfmfJavaUtilities.setELValue(expression, newValue);
}

14.4 Creating and Using Managed Beans

Managed beans are Java classes that you register with the application using various configuration files. When the MAF application starts up, it parses these configuration files and the beans are made available and can be referenced in an EL expression, allowing access to the beans' properties and methods. Whenever a managed bean is referenced for the first time and it does not already exist, the Managed Bean Creation Facility instantiates the bean by calling the default constructor method on the bean. If any properties are also declared, they are populated with the declared default values.

Often, managed beans handle events or some manipulation of data that is best handled at the front end. For a more complete description of how to use managed beans, see the Java EE tutorial at http://www.oracle.com/technetwork/java/index.html.

	
Best Practice:

Use managed beans to store only bookkeeping information, for example the current user. All application data and processing should be handled by logic in the business layer of the application.

	
Note:

EL expressions must explicitly include the scope to reference the bean. For example, to reference the MyBean managed bean from the pageFlowScope scope, your expression would be #{pageFlowScope.MyBean}.

14.4.1 How to Create a Managed Bean in JDeveloper

You can create a managed bean and register it with the MAF application at the same time using the overview editor for the adfc-mobile-config.xml file.

Before you begin

It may be helpful to have an understanding of managed beans. For more information, see Section 14.4, "Creating and Using Managed Beans."

To create and register a managed bean:

	
In the Applications window, double-click adfc-mobile-config.xml.

	
In the editor window, click the Overview tab.

	
In the overview editor, click the Managed Beans navigation tab.

Figure 14-3 shows the editor for the adfc-mobile-config.xml file.

Figure 14-3 Managed Beans in the adfc-mobile-config.xml File

[image: This image is described in the surrounding text]

	
Click the Add icon to add a row to the Managed Bean table.

	
In the Create Managed Bean dialog, enter values. Click Help for more information about using the dialog. Select the Generate Class If It Does Not Exist option if you want JDeveloper to create the class file for you. You can also open the Create Managed Bean dialog from the Properties window, by selecting one of the listener properties and clicking the Edit button. From there you can create a new managed bean and corresponding method.

	
Note:

When determining what scope to register a managed bean with or to store a value in, always try to use the narrowest scope possible. For more information about the different object scopes, see Section 14.2, "About Object Scope Lifecycles."

	
You can optionally add managed properties for the bean. When the bean is instantiated, any managed properties will be set with the provided value. With the bean selected in the Managed Bean table, click the New icon to add a row to the Managed Properties table. In the Properties window, enter a property name (other fields are optional).

	
Note:

While you can declare managed properties using this editor, the corresponding code is not generated on the Java class. You must add that code by creating private member fields of the appropriate type, and then by choosing the Generate Accessors menu item on the context menu of the code editor to generate the corresponding get and set methods for these bean properties.

14.4.2 What Happens When You Use JDeveloper to Create a Managed Bean

When you create a managed bean and elect to generate the Java file, JDeveloper creates a stub class with the given name and a default constructor. Example 14-12 shows the code added to the MyBean class stored in the view package.

Example 14-12 Generated Code for a Managed Bean

package view;

public class MyBean {
 public MyBean() {
 }
}

You now must add the logic required by your page. You can then refer to that logic using an EL expression that refers to the managed-bean-name given to the managed bean. For example, to access the myInfo property on the my_bean managed bean, the EL expression would be:

#{my_bean.myInfo}

JDeveloper also adds a managed-bean element to the adfc-mobile-config.xml file (or to the task flow file that is being edited). Example 14-13 shows the managed-bean element created for the MyBean class.

Example 14-13 Managed Bean Configuration on the adfc-mobile-config.xml File

<managed-bean>
 <managed-bean-name>my_bean</managed-bean-name>
 <managed-bean-class>view.MyBean</managed-bean-class>
 <managed-bean-scope>application</managed-bean-scope>
</managed-bean>

14.5 Exposing Business Services with Data Controls

Once you have your application's services in place, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those services.

You generate data controls with the Create Data Control menu item. Data controls consist of one or more XML metadata files that define the capabilities of the services that the bindings can work with at runtime. The data controls work in conjunction with the underlying services.

14.5.1 How to Create Data Controls

You create adapter-based data controls from within the Applications window of JDeveloper.

Before you begin:

It may be helpful to have a general understanding of using data controls. For more information, see Section 14.5, "Exposing Business Services with Data Controls."

You will need to complete this task:

	Create an application workspace and add the business services on which you want to base your data control. For information on creating an application workspace, see Section 2.2, "Creating a MAF Application."

To create a data control:

	
Right-click the top-level node for the data model project in the application workspace and choose New and then From Gallery.

	
In the New Gallery, expand Business Tier, select Data Controls, select the type of data control that you want to create, and click OK.

	
Complete the remaining steps of the wizard.

	
Note:

In some cases, you can create a data control by right-clicking the class or object on which the data control will be based and choosing Create Data Control.

14.5.2 What Happens in Your Project When You Create a Data Control

When you create a data control, JDeveloper creates the data control definition file (DataControls.dcx), opens the file in the overview editor, and displays the file's hierarchy in the Data Controls panel. This file enables the data control to work directly with the services and the bindings.

You can see the code from the corresponding XML file by clicking the Source tab in the editor window.

14.5.2.1 DataControls.dcx Overview Editor

The overview editor for the DataControls.dcx file provides a view of the hierarchies of data control objects and exposed methods of your data model.

See Table 14-6 for a description of the icons that are used in the overview editor and Data Controls panel.

You can change the settings for a data control object by selecting the object and clicking the Edit icon. For more information about editing a data control, see Section 14.8.1, "How to Edit a Data Control."

Figure 14-4 shows the DataControls.dcx file in the overview editor.

Figure 14-4 DataControls.dcx File in the Overview Editor

[image: This image is described in the surrounding text]

14.5.2.2 Data Controls Panel

The Data Controls panel serves as a palette, from which you can create databound UI components by dragging nodes from the Data Controls panel to the design editor for a page. The Data Controls panel appears in the Applications window once you have created a data control. Figure 14-5 shows the Data Controls panel for a sample application.

Figure 14-5 Data Controls Panel

[image: This image is described in the surrounding text]

14.5.3 Data Control Built-in Operations

The data control framework defines a standard set of operations for data controls. These operations are implemented using functionality of the underlying business service. At runtime, when one of these data collection operations is invoked by name by the data binding layer, the data control delegates the call to an appropriate service method to handle the built-in functionality. For example, in bean data controls, the Next operation relies on the bean collection's iterator.

Most of the built-in operations affect the current row. However, the execute operation refreshes the data control itself.

The operations available vary by data control type and the functionality of the underlying business service. Here is the full list of built-in operations:

	
Create: Creates a new row that becomes the current row. This new row is also added to the row set.

	
CreateInsert: Creates a new row that becomes the current row and inserts it into the row set.

	
Create With Parameters: Uses named parameters to create a new row that becomes the current row and inserts it into the row set.

	
Delete: Deletes the current row.

	
Execute: Refreshes the data collection by executing or reexecuting the accessor method.

ExecuteWithParams: Refreshes the data collection by first assigning new values to variables that passed as parameters, then executing or reexecuting the associated query. This operation is only available for data control collection objects that are based on parameterized queries.

	
First: Sets the first row in the row set to be the current row.

	
Last: Sets the last row in the row set to be the current row.

	
Next: Sets the next row in the row set to be the current row.

	
Next Set: Navigates forward one full set of rows.

	
Previous: Sets the previous row in the row set to be the current row.

	
Previous Set: Navigates backward one full set of rows.

	
removeRowWithKey: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, the row is removed.

	
setCurrentRowWithKey: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, that row becomes the current row.

	
setCurrentRowWithKeyValue: Tries to find a row using the primary key attribute value passed as a parameter. If found, that row becomes the current row.

14.6 Creating Databound UI Components from the Data Controls Panel

You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use data controls to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.

In the Data Controls panel, each data control object is represented by a specific icon. Table 14-6 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.

Table 14-6 Data Controls Panel Icons and Object Hierarchy

	Icon	Name	Description	Used to Create...
	
[image: This image is described in the surrounding text]

	
Data Control

	
Represents a data control.

	
Serves as a container for the other objects and is not used to create anything.

	
[image: This image is described in the surrounding text]

	
Collection

	
Represents a named data collection returned by an accessor method or operation.

	
Forms, tables, graphs, trees, range navigation components, master-detail components, and selection list components

	
[image: This image is described in the surrounding text]

	
Structured Attribute

	
Represents a returned object that is neither a Java primitive type (represented as an attribute) nor a collection of any type.

	
Forms, label, text field, date, list of values, and selection list components.

	
[image: This image is described in the surrounding text]

	
Attribute

	
Represents a discrete data element in an object (for example, an attribute in a row).

	
Label, text field, date, list of values, and selection list components.

	
[image: This image is described in the surrounding text]

	
Key Attribute

	
Represents an object attribute that has been declared as a primary key attribute, either in data control structure file or in the business service itself.

	
Label, text field, date, list of values, and selection list components.

	
[image: This image is described in the surrounding text]

	
Method

	
Represents a method or operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure, or a collection.

	
Command components.

For methods that accept parameters: command components and parameterized forms.

	
[image: This image is described in the surrounding text]

	
Method Return

	
Represents an object that is returned by a method or other operation. The returned object can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, or operations that can be performed on the parent collection.

	
For single values: text fields and selection lists.

For collections: forms, tables, trees, and range navigation components.

When a single-value method return is dropped, the method is not invoked automatically by the framework. To invoke the method, you can drop the corresponding method as a button. If the form is part of a task flow, you can create a method activity to invoke the method.

	
[image: This image is described in the surrounding text]

	
Operation

	
Represents a built-in data control operation that performs actions on the parent object.

	
UI command components, such as buttons and links.

	
[image: This image is described in the surrounding text]

	
Parameter

	
Represents a parameter value that is declared by the method or operation under which it appears.

	
Label, text, and selection list components.

14.6.1 How to Use the Data Controls Panel

JDeveloper provides you with a predefined set of UI components from which to choose for each data control item you can drop.

Before you begin:

It may be helpful to have an understanding of the different objects in the Data Controls panel. For more information, see Section 14.6, "Creating Databound UI Components from the Data Controls Panel."

You will need to complete these tasks:

	
Create a data control as described in Section 14.5.1, "How to Create Data Controls."

	
Create a a MAF AMX page as described in Section 12.3.1.2, "Creating MAF AMX Pages."

To use the Data Controls panel to create UI components:

	
Select an item in the Data Controls panel and drag it onto the visual editor for your page. For a definition of each item in the panel, see Table 14-6, "Data Controls Panel Icons and Object Hierarchy".

	
From the ensuing context menu, choose a UI component.

When you drag an item from the Data Controls panel and drop it on a page, JDeveloper displays a context menu of all the default UI components available for the item you dropped. The components displayed are based on the libraries in your project.

Figure 14-6 shows the context menu displayed when a data collection from the Data Controls panel is dropped on a page.

Figure 14-6 Dropping Component From Data Controls Panel

[image: This image is described in the surrounding text]

Depending on the component you select from the context menu, JDeveloper may display a dialog that enables you to define how you want the component to look. For example, if you select Form from the context menu, the Edit Form Fields dialog opens. Once you select a component, JDeveloper inserts the UI component on the page in the visual editor.

The UI components selected by default are determined first by any UI hints set on the corresponding business object. If no UI hints have been set, then JDeveloper uses input components for standard forms and tables, and output components for read-only forms and tables. Components for lists are determined based on the type of list you chose when dropping the data control object.

By default, the UI components created when you use the Data Controls are bound to attributes in the MAF data control and may have built-in features, such as:

	
Databound labels

	
Tooltips

	
Formatting

	
Basic navigation buttons

	
Validation, if validation rules are attached to a particular attribute.

The default components are fully functional without any further modifications. However, you can modify them to suit your particular needs.

	
Tip:

If you want to change the type of MAF databound component used on a page, the easiest method is to use either the visual editor or the structure window to delete the component, and then drag and drop a new one from the Data Controls panel. When you use the visual editor or the structure window to delete a databound component from a page, if the related binding objects in the page definition file are not referenced by any other component, JDeveloper automatically deletes those binding objects for you (automatic deletion of binding objects will not happen if you use the source editor).

14.6.2 What Happens When You Use the Data Controls Panel

When an application is built using the Data Controls panel, JDeveloper does the following:

	
Creates a DataBindings.cpx file in the default package for the project (if one does not already exist), and adds an entry for the page.

A DataBindings.cpx files defines the binding context for the application. The binding context is a container object that holds a list of available data controls and data binding objects. The DataBindings.cpx file maps individual pages to the binding definitions in the page definition file and registers the data controls used by those pages. For more information, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts."

	
Creates the adfm.xml file in the META-INF directory. This file creates a registry for the DataBindings.cpx file, which allows the application to locate it at runtime so that the binding context can be created.

	
Adds a page definition file (if one does not already exist for the page) to the page definition subpackage. The default subpackage is mobile.pageDefs in the adfmsrc directory.

	
Tip:

You can set the package configuration (such as name and location) in the ADF Model settings page of the Project Properties dialog (accessible by double-clicking the project node).

The page definition file (pageNamePageDef.xml) defines the binding container for each page in an application's view layer. The binding container provides runtime access to all the binding objects for a page. For more information about the page definition file, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts."

	
Tip:

The current binding container is also available from AdfContext for programmatic access.

	
Configures the page definition file, which includes adding definitions of the binding objects referenced by the page.

	
Adds the given component to the page.

These prebuilt components include the data binding expression language (EL) expressions that reference the binding objects in the page definition file. For more information, see Section 14.3.1, "About Data Binding EL Expressions."

	
Adds all the libraries, files, and configuration elements required by the UI components. For more information on the artifacts required for databound components, see Section 2.2.2, "What Happens When You Create a MAF Application."

14.7 What Happens at Runtime: How the Binding Context Works

When a page contains MAF bindings, at runtime the interaction with the business services initiated from the client or controller is managed by the application through a single object known as the binding context. The binding context is a runtime map (named data and accessible through the EL expression #{data}) of all data controls and page definitions within the application.

The MAF creates the binding context from the application, DataBindings.cpx, and page definition files, as shown in Figure 14-7. The union of all the DataControls.dcx files and any application modules in the workspace define the available data controls at design time, but the DataBindings.cpx file defines what data controls are available to the application at runtime. The DataBindings.cpx file lists all the data controls that are being used by pages in the application and maps the binding containers, which contain the binding objects defined in the page definition files, to web page URLs. The page definition files define the binding objects used by the application pages. There is one page definition file for each page.

The binding context does not contain live instances of these objects. Instead, it is a map that contains references that become data control or binding container objects on demand. When the object (such as a page definition) is released from the application (for example when a task flow ends or when the binding container or data control is released at the end of the request), data controls and binding containers turn back into reference objects. For more information about the DataBindings.cpx file, see Section 12.3.2.4.5, "What You May Need to Know About Generated Drag and Drop Artifacts."

Figure 14-7 File Binding Context Runtime Usage

[image: This image is described in the surrounding text]

	
Note:

Carefully consider the binding styles you use when configuring components. More specifically, combining standard bindings with managed bean bindings will frequently result in misunderstood behaviors because the class instances are unlikely to be the same between the binding infrastructure and the managed bean infrastructure. If you mix bindings, you may end up calling behavior on an instance that isn't directly linked to the UI.

For more information on working with bindings in MAF, see the following:

	
Section 12.3.2.4.4, "What You May Need to Know About Generated Bindings"

	
Section 12.3.2.4.6, "Using the MAF AMX Editor Bindings Tab"

	
Section 12.3.2.4.7, "What You May Need to Know About Removal of Unused Bindings"

14.8 Configuring Data Controls

When you create a data control, a standard set of values and behaviors are assumed for the data control. For example, the data control determines how the label for an attribute will display in a client. You can configure these values and behaviors by creating and modifying data control structure files that correspond to the elements of the data control. You first generate a data control structure file using the overview editor for the.dcx file.

14.8.1 How to Edit a Data Control

You can make a data control configurable by using the overview editor for the DataControls.dcx file to create data control structure files that correspond to objects encompassed by the data control. You can then edit the individual data control structure files.

Before you begin:

It may be helpful to have a general understanding of data control configuration. For more information, see Section 14.8, "Configuring Data Controls."

You will need to complete this task:

	Create a data control, as described in Section 14.5.1, "How to Create Data Controls."

To edit a data control:

	
In the Applications window, double-click DataControls.dcx.

	
In the overview editor, select the object that you would like to configure and click the Edit icon to generate a data control structure file, as shown in Figure 14-8.

Figure 14-8 Edit Button in Data Controls Registry

[image: This image is described in the surrounding text]

	
In the overview editor of the data control structure file, make the desired modifications.

14.8.2 What Happens When You Edit a Data Control

When you edit a data control, JDeveloper creates a data control structure file that contains metadata for the affected collection and opens that file in the overview editor. This file stores configuration data for the data control that is specific to that collection, such as any UI hints or validators that you have specified for the data object.

A data control structure file has the same base name as the data object with which it corresponds. For example, if you click the Edit icon when you have a collection node selected that corresponds with the Customer.java entity bean, the data control structure file is named Customer.xml. The data control structure file is generated in a package that corresponds to the package of the bean class, but with persdef prepended to the package name. For example, if the Customer.java bean is in the model package, the Customer.xml data control definition file is generated in the persdef.model package. Once a data control structure file has been generated, you can use the overview editor for that file to make further configurations.

A data control structure file contains the following information:

	
Attributes: Describes all of the attributes on the service. For example, for entity beans, there is an attribute for each bean property that is mapped to a database column. You can also add transient attributes. You can set UI hints that define how these attributes will display in the UI. You can also set other properties, such as whether the attribute value is required, whether it must be unique, and whether it is visible. For more information, see Section 14.9, "Working with Attributes."

You can also set validation for an attribute and create custom properties. For more information on validation, see Section 14.12, "Validating Attributes."

	
Accessors: Describes data control elements that return result sets.

	
Operations: Describes methods on the data object that are used by the data control's built-in operations, such as add and remove methods, which are used by the Create and Delete built-in operations, respectively.

Figure 14-9 shows the data control structure file for the Item bean.

Figure 14-9 Data Control Structure File in the Overview Editor

[image: This image is described in the surrounding text]

	
Note:

The overview editor of a data control structure file shows all of the attributes, accessors, and operations that are associated with the data object. However, the data control structure file's XML source only contains definitions for elements that you have edited. The base elements are introspected from the data object. Also, when you make changes to the underlying data object, the data control inherits those changes.

14.8.3 What You May Need to Know About MDS Customization of Data Controls

If you wish for all of the objects that are encompassed by the data control to be available for Oracle Metadata Services (MDS) customization, the packaged application must contain data control structure files for those objects.

When you create a data control based on the adapter framework, data control structure files are not generated by default, since they are not needed by the data control if you do not add metadata to a given object. Typically, a data control structure file is only generated for a data control object once you edit the data control to add declarative metadata (such as UI hints or validators) to that object, as described in Section 14.8.1, "How to Edit a Data Control." To create data control structure files for each data control object, you need to repeat that procedure for each data control object.

For more information on MDS, see Chapter 10, "Customizing MAF Application Artifacts with MDS."

14.9 Working with Attributes

When you create a data control for your business services, you can create a data control structure file for an individual data object in which you can declaratively augment the functionality of the data object's persistent attributes. For example, you can create validation rules and set UI hints to control the default presentation of attributes in UI components.

You set these properties on the Attributes page of the overview editor of the data control structure file. For information on creating a data control structure file, see Section 14.8.1, "How to Edit a Data Control."

14.9.1 How to Designate an Attribute as Primary Key

In the overview editor for a data object's data control structure file, you can designate an attribute as a primary key for that data object if you have not already done so in the data object's underlying class.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 14.9, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 14.8.1, "How to Edit a Data Control."

To set an attribute as a primary key:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to designate as the primary key and then click the Details tab.

	
On the Details page, set the Key Attribute property.

	
Note:

If the attribute has already been designated as the primary key in the class, the data control inherits that setting and the Key Attribute checkbox will be selected. However, in this case, you can not deselect the Key Attribute option.

14.9.2 How to Define a Static Default Value for an Attribute

The Value field in the Details section allows you to specify a static default value for the attribute when the value type is set to Literal. For example, you might set the default value of a ServiceRequest entity bean's Status attribute to Open, or set the default value of a User bean's UserRole attribute to user.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 14.9, "Working with Attributes."

To define a static default value for an attribute:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the Details tab.

	
On the Details page, select the Literal option.

	
In the text field below the Literal option, enter the default value for the attribute.

14.9.3 How to Set UI Hints on Attributes

You can set UI hints on attributes so that those attributes are displayed and labeled in a consistent and localizable way by any UI components that use those attributes. UI hints determine things such as the type of UI component to use to display the attribute, the label, the tooltip, and whether the field should be automatically submitted. You can also determine whether a given attribute is displayed or hidden. To create UI hints for attributes, use the overview editor for the data object's data control structure file, which is accessible from the Applications window.

Before you begin:

It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 14.9, "Working with Attributes."

You will need to complete this task:

	Create the desired data control structure files as described in Section 14.8.1, "How to Edit a Data Control."

To set a UI hint:

	
In the Applications window, double-click the desired data control structure file.

	
In the overview editor, click the Attributes navigation tab.

	
On the Attributes page, select the attribute you want to edit, and then click the UI Hints tab.

	
In the UI Hints section, set the desired UI hints.

14.9.4 What Happens When You Set UI Hints on Attributes

When you set UI hints on an attribute, those hints are stored as properties. Tags for the properties are added to the data object's data control structure file and the values for the properties are stored in a resource bundle file. If the resource bundle file does not already exist, it is generated in the data control's package and named according to the project name when you first set a UI hint.

Example 14-14 shows the code for the price attribute in the Item.xml data control structure file, including tags for the Label and Format Type hints which have been set for the attribute.

Example 14-14 XML Code for UI Hints

<PDefAttribute
 Name="price">
 <Properties>
 <SchemaBasedProperties>
 <LABEL
 ResId="${adfBundle['model.ModelBundle']['model.Item.price_LABEL']}"/>
 <FMT_FORMATTER ResId="${adfBundle['model.ModelBundle']
 ['model.Item.price_FMT_FORMATTER']}"/>
 </SchemaBasedProperties>
 </Properties>
</PDefAttribute>

Example 14-15 shows the corresponding entries for the Label and Format Type hints in the ModelBundle.properties resource bundle file, which contains the values for all of the project's localizable properties.

Example 14-15 Resource Bundle Code for UI Hints

model.Item.price_LABEL=Price
. . .
model.Item.price_FMT_FORMATTER=oracle.jbo.format.DefaultCurrencyFormatter

14.9.5 How to Access UI Hints Using EL Expressions

You can access UI hints using EL expressions to display the hint values as data in a page. You access UI hints through the binding instances that you create after dropping databound components onto your pages.

Example 14-16 was produced using the DeviceFeatures data control. It shows the EL expression that is produced by dragging and dropping Contact as a MAF form and only keeping the displayName and nickname fields. The labels in bold are examples of the retrieval of UI hints using EL.

Example 14-16 Using EL to Access UI HInts

<amx:panelFormLayout id="pfl2">
 <amx:inputText value="#{row.bindings.displayName.inputValue}"
 label="#{bindings.Contact.hints.displayName.label}" id="it9"/>
 <amx:inputText value="#{row.bindings.nickname.inputValue}"
 label="#{bindings.Contact.hints.nickname.label}"
 id="it10"/>
</amx:panelFormLayout>af:panelHeader id="ph1"

14.10 Creating and Using Bean Data Controls

Java bean data controls obtain their data structure from POJOs (plain old Java objects). To create a Java bean data control, right-click a Java class file (in the Applications window), and choose Create Data Control.

	
Note:

If the Java bean is using a background thread to update data in the UI, you need to manually call oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEvent. For information about the flushDataChangeEvent method, see Section 14.13, "About Data Change Events."

14.10.1 What You May Need to Know About Serialization of Bean Class Variables

MAF does not serialize to JavaScript Object Notation (JSON) data bean class variables that are declared as transient. To avoid serialization of a chain of nested objects, you should define them as transient. This strategy also helps to prevent the creation of cyclic objects due to object nesting.

Consider the following scenario: you have an Employee object that has a child Employee object representing the employee's manager. If you do not declare the child object transient, a chain of serialized nested objects will be created when you attempt to calculate the child Employee object at runtime.

To serialize and deserialize Java objects into JSON objects, use the JSONBeanSerializationHelper class. The JSONBeanSerializationHelper class enables you to implement your own custom JSON serialization and deserialization, and it provides a hook to alter the JSON object after the JSON serialization (and deserialization) process. The JSONBeanSerializationHelper class is similar to the GenericTypeSerializationHelper class, which you can use to serialize and deserialize GenericType objects in REST and SOAP-based web services. For details, see the oracle.adfmf.framework.api.JSONBeanSerializationHelper class in the MAF Javadoc.

MAF does not support serializing objects of the GregorianCalendar class. The JSONBeanSerializationHelper class cannot serialize objects of the GregorianCalendar class because the GregorianCalendar class has cyclical references in it. Instead, use java.util.Date or java.sql.Date for date manipulation. The following example shows how to convert a GregorianCalendar object using java.util.Date:

Calendar calDate = new GregorianCalendar();
calDate.set(1985, 12, 1); // "January 1, 1986"
Date date = calDate.getTime();

14.11 Using the DeviceFeatures Data Control

MAF exposes device-specific features that you can use in your application through the DeviceFeatures data control, a component that appears in the Data Controls panel when you create a new MAF application. The Cordova Java API is abstracted through this data control, enabling the application features implemented as MAF AMX to access various services embedded on a device. By dragging and dropping the operations provided by the DeviceFeatures data control into a MAF AMX page, you can add functions to manage the user contacts stored on a device, create and send both email and SMS text messages, ascertain the location of a device, use a device's camera, and retrieve images stored in a device's file system. The following sections describe each of these operations in detail, including how to use them declaratively and how to implement them with Java code and JavaScript.

Figure 14-10 MAF DeviceFeatures Data Control in the Overview Editor

[image: This image is described in the surrounding text]

The DeviceFeatures data control appears in the Data Controls panel automatically when you create an application using the MAF application template. Figure 14-10 shows the DeviceFeatures data control in the overview editor. The following methods are available:

	
createContact

	
findContacts

	
getPicture

	
removeContact

	
sendEmail

	
sendSMS

	
startLocationMonitor

	
updateContact

	
displayFile

After you create a page, you can drag DeviceFeatures data control methods (or other objects nested within those methods) from the Data Controls panel to a MAF AMX view to create command buttons and other components that are bound to the associated functionality. You can accept the default bindings or modify the bindings using EL. You can also use JavaScript or Java to implement or configure functionality. For information on how to include data controls in your MAF application, see Section 12.3.2.4, "Adding Data Controls to the View."

The DeviceManager is the object that enables you to access device functionality. You can get a handle on this object by calling DeviceManagerFactory.getDeviceManager. The following sections describe how you can invoke methods like getPicture or createContact using the DeviceManager object.

With the exception of network access, access to all of the Apache Cordova-enabled device capabilities is not enabled by default for MAF applications. The operations that the DeviceFeatures data control expose require that the associated plugin be enabled in the MAF application for the operation to function correctly at runtime. If, for example, you want to use the sendSMS operation from the DeviceFeatures data control, you must enable the SMS plugin in the MAF application. You can enable plugins manually or you can choose the appropriate option in the dialog that JDeveloper displays when you drag and drop an operation that does not have the associated plugin enabled in the MAF application. For example, JDeveloper displays the dialog in Figure 14-11 when you drag and drop the sendSMS operation to a MAF AMX page in a MAF application that has yet to enable the SMS plugin.

Figure 14-11 Enabling Plugin for a DeviceFeatures Data Control Operation

[image: This image is described in the surrounding text]

If the plugin that an operation requires is not enabled, a warning message appears in the source file of the MAF AMX page. Assume, for example, that the MAF application does not enable the SMS plugin. The warning message shown in Figure 14-12 appears in MAF AMX pages where the application attempts to invoke the sendSMS operation. You resolve this issue by manually enabling the plugin, as described in Chapter 9, "Using Plugins in MAF Applications."

Figure 14-12 DeviceFeatures Data Control Operation Requires Plugin

[image: Surrounding text describes Figure 14-12 .]

14.11.1 How to Use the getPicture Method to Enable Taking Pictures

The DeviceFeatures data control includes the getPicture method, which enables MAF applications to leverage a device's camera and photo library so end users can take a photo or retrieve an existing image. Example 14-17 shows JavaScript code that enables an end user to take a picture with a device's camera. Example 14-18 and Example 14-19 show Java code that will enable an end user to take a picture or retrieve a saved image. For information about the getPicture method, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

The following parameters control where the image is taken from and how it is returned:

	
Note:

If you do not specify a targetWidth, targetHeight, and quality for the picture being taken, the default values used are maximum values, and this can cause memory failures.

	
quality: Set the quality of the saved image. Range is 0 to 100, inclusive. A higher number indicates higher quality, but also increases the file size. Only applicable to JPEG images (specified by encodingType).

	
destinationType: Choose the format of the return value:

	
DeviceManager.CAMERA_DESTINATIONTYPE_DATA_URL (0)—Returns the image as a Base64-encoded string. This value is also specified as an enum using DeviceManager.CAMERA_DESTINATION_DATA_URL when used programmatically. You need to prefix the value returned with "data:image/gif;base64," in order to see the image in an image component.

	
DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI (1)—Returns the image file path. This value is also specified as an enum using DeviceManager.CAMERA_DESTINATION_FILE_URI when used programmatically.

	
Note:

If a file URI is returned by the getPicture method, it should be stripped of any query parameters before being used to determine the size of the file. For example:
String fileURI = ...getPicture(...);

fileURI = fileURI.substring(0, result.lastIndexOf("?"));

	
sourceType: Set the source of the picture:

	
DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY (0)—Enables the user to choose from a previously saved image. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_PHOTOLIBRARY when used programmatically.

	
DeviceManager.CAMERA_SOURCETYPE_CAMERA (1)—Enables the user to take a picture with device's camera. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_CAMERA when used programmatically.

	
DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM (2)—Allows the user to choose from an existing photo album. This value is also specified as an enum using DeviceManager.CAMERA_SOURCETYPE_SAVEDPHOTOALBUM when used programmatically.

	
allowEdit: Choose whether to allow simple editing of the image before selection (boolean).

	
encodingType: Choose the encoding of the returned image file:

	
DeviceManager.CAMERA_ENCODINGTYPE_JPEG (0)—Encodes the returned image as a JPEG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_JPEG when used programmatically.

	
DeviceManager.CAMERA_ENCODINGTYPE_PNG (1)—Encodes the returned image as a PNG file. This value is also specified as an enum using DeviceManager.CAMERA_ENCODINGTYPE_PNG when used programmatically.

	
targetWidth: Set the width in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used.

	
targetHeight: Set the height in pixels to scale the image. Aspect ratio is maintained. A negative or zero value indicates that the original dimensions of the image will be used.

To customize a getPicture operation using the DeviceFeatures data control:

	
Drag the getPicture operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page as a Button.

If you want to provide more control to the user, drop the getPicture operation as a Parameter Form. This allows the end user to specify settings before taking a picture or choosing an existing image.

	
In the Edit Action dialog, set the values for all parameters described above. Be sure to specify destinationType = 1 so that the image is returned as a filename.

	
Drag the return value of getPicture and drop it on the page as an Output Text.

	
From the Common Components panel, drag an Image from the Component Palette and drop it on the page.

	
Set the source attribute of the Image to the return value of the getPicture operation. The bindings expression should be: #{bindings.Return.inputValue}.

Figure 14-13 shows the bindings for displaying an image from the end user's photo library:

Figure 14-13 Bindings for Displaying an Image from the Photo Library at Design Time

[image: This image is described in the surrounding text]

When this application is run, the image chooser will automatically be displayed and the end user can select an image to display. The image chooser is displayed automatically because the Image control is bound to the return value of the getPicture operation, which in turn causes the getPicture operation to be invoked.

	
Note:

The timeout value for the getPicture method is set to 5 minutes. If the device operation takes longer than the timeout allowed, a timeout error is displayed.

Keep in mind the following platform-specific issues:

	
iOS

	
Set quality below 50 to avoid memory error on some devices.

	
When destinationType FILE_URI is used, photos are saved in the application's temporary directory.

	
The contents of the application's temporary directory are deleted when the application ends. You may also delete the contents of this directory using the navigator.fileMgr APIs if storage space is a concern.

	
targetWidth and targetHeight must both be specified to be used. If one or both parameters have a negative or zero value, the original dimensions of the image will be used.

	
Android

	
Ignores the allowEdit parameter.

	
Camera.PictureSourceType.PHOTOLIBRARY and Camera.PictureSourceType.SAVEDPHOTOALBUM both display the same photo album.

	
Camera.EncodingType is not supported. The parameter is ignored, and will always produce JPEG images.

	
targetWidth and targetHeight can be specified independently. If one parameter has a positive value and the other uses a negative or zero value to represent the original size, the positive value will be used for that dimension, and the other dimension will be scaled to maintain the original aspect ratio.

	
When destinationType DATA_URL is used, large images can exhaust available memory, producing an out-of-memory error, and will typically do so if the default image size is used. Set the targetWidth and targetHeight to constrain the image size.

Example 14-17 shows JavaScript code that allows the user to take a picture with a device's camera. The result will be the full path to the saved image.

Example 14-17 JavaScript Code Example for getPicture

// The camera, like many other device-specific features, is accessed
// from the global 'navigator' object in JavaScript.
// Note that in the Cordova JavaScript APIs, the parameters are passed
// in as a dictionary, so it is only necessary to provide key-value pairs
// for the parameters you want to specify.

navigator.camera.getPicture(onSuccess, onFail, { quality: 50 });

function onSuccess(imageURI) {
 var image = document.getElementById('myImage');
 image.src = imageURI;
}

function onFail(message) {
 alert('Failed because: ' + message);
}

Example 14-18 shows Java code that allows the user to take a picture with a device's camera. The result will be the full path to the saved image.

Example 14-18 Java Code Example for Taking a Picture with getPicture

import oracle.adf.model.datacontrols.device;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Take a picture with the device's camera.
// The result will be the full path to the saved PNG image.
String imageFilename = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URI,
 DeviceManager.CAMERA_SOURCETYPE_CAMERA, false,
 DeviceManager.CAMERA_ENCODINGTYPE_PNG, 0, 0);

Example 14-19 shows Java code that allows the user to retrieve a previously-saved image. The result will be a base64-encoded JPEG.

Example 14-19 Java Code Example for Retrieving an Image with getPicture

import oracle.adf.model.datacontrols.device;

// Retrieve a previously-saved image. The result will be a base64-encoded JPEG.
String imageData = DeviceManagerFactory.getDeviceManager().getPicture(100,
 DeviceManager.CAMERA_DESTINATIONTYPE_FILE_URL,
 DeviceManager.CAMERA_SOURCETYPE__PHOTOLIBRARY, false,
 DeviceManager.CAMERA_ENCODINGTYPE_JPEG, 0, 0);

14.11.2 How to Use the SendSMS Method to Enable Text Messaging

The DeviceFeatures data control includes the sendSMS method, which enables MAF applications to leverage a device's Short Message Service (SMS) text messaging interface so end users can send and receive SMS messages. MAF enables you to display a device's SMS interface and optionally pre-populate the following fields:

	
to: List recipients (comma-separated).

	
body: Add message body.

After the SMS text messaging interface is displayed, the end user can choose to either send the SMS or discard it. It is not possible to automatically send the SMS due to device and carrier restrictions; only the end user can actually send the SMS.

	
Note:

The timeout value for the sendSMS method is set to 5 minutes. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

In Android, if an end user switches away from their application while editing an SMS message and then subsequently returns to it, they will no longer be in the SMS editing screen. Instead, that message will have been saved as a draft that can then manually be selected for continued editing.

To customize a sendSMS operation using the DeviceFeatures data control:

To display an interactive form on the page for sending SMS, drag the sendSMS operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's SMS interface, which will display an SMS that is ready to send with all of the specified fields pre-populated.

Figure 14-14 shows the bindings for sending an SMS using an editable form on the page.

Figure 14-14 Bindings for Sending an SMS Using an Editable Form at Design Time

[image: This image is described in the surrounding text]

Example 14-20 and Example 14-21 show code examples that allow the end user to send an SMS message with a device's text messaging interface.

For information about the sendSMS method, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

Example 14-20 JavaScript Code Example for sendSMS

adf.mf.api.sendSMS({to: "5551234567", body: "This is a test message"});

Example 14-21 Java Code Example for sendSMS

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Send an SMS to the phone number "5551234567"
DeviceManagerFactory.getDeviceManager().sendSMS("5551234567", "This is a test message");

14.11.3 How to Use the sendEmail Method to Enable Email

The DeviceFeatures data control includes the sendEmail method, which enables MAF applications to leverage a device's email messaging interface so end users can send and receive email messages. MAF enables you to display a device's email interface and optionally pre-populate the following fields:

	
to: List recipients (comma-separated).

	
cc: List CC recipients (comma-separated).

	
subject: Add message subject.

	
body: Add message body.

	
bcc: List BCC recipients (comma-separated).

	
attachments: List file names to attach to the email (comma-separated).

	
mimeTypes: List MIME types to use for the attachments (comma-separated). Specify null to let MAF automatically determine the MIME types. It is also possible to specify only the MIME types for selected attachments as shown in Example 14-22 and Example 14-23.

After the device's email interface is displayed, the user can choose to either send the email or discard it. It is not possible to automatically send the email due to device and carrier restrictions; only the end user can actually send the email. The device must also have at least one email account configured to send email or an error will be displayed indicating that no email accounts could be found.

	
Note:

The timeout value for the sendEmail method is set to 5 minutes. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

In Android, if an end user switches away from their application while editing an email and then subsequently returns to it, they will no longer be in the email editing screen. Instead, the message will be saved as a draft that can then be manually selected for continued editing.

To customize a sendEmail operation using the DeviceFeatures data control:

In JDeveloper, drag the sendEmail operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as a Parameter Form. You can then customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields described above. Below this form will be a button to display the device's email interface, which will display an email ready to send with all of the specified fields pre-populated.

Figure 14-15 shows the bindings for sending an email using an editable form on the page.

Figure 14-15 Bindings for Sending an Email Using an Editable Form at Design Time

[image: This image is described in the surrounding text]

Example 14-22 and Example 14-23 show code examples that allow the end user to send an email message with the device's email interface.

For information about the sendEmail method, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

Example 14-22 JavaScript Code Example for sendEmail

// Populate an email to 'ann.li@example.com',
// copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'
// No BCC recipients or attachments
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By not specifying a value for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});

// For iOS only: Same as previous email, but this time, explicitly specify
// all the MIME types.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "text/plain,image/png"});

// For iOS only: Same as previous email, but this time, only specify
// the MIME type for the second attachment and let the system determine
// the MIME type for the first one.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: ",image/png"});

// For Android only: Same as previous e-mail, but this time, explicitly specify
// the MIME type.
adf.mf.api.sendEmail({to: "ann.li@example.com",
 cc: "joe.jones@example.com",
 subject: "Test message",
 body: "This is a test message"});
 bcc: "john.smith@example.com,jane.smith@example.com",
 attachments: "path/to/file1.txt,path/to/file2.png"});
 mimeTypes: "image/*"});
// You can also use "plain/text" as the MIME type as it just determines the type
// of applications to be filtered in the application chooser dialog.

Example 14-23 Java Code Example for sendEmail

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Populate an email to 'ann.li@example.com', copy 'joe.jones@example.com', with the
// subject 'Test message', and the body 'This is a test message'.
// No BCC recipients or attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 null,
 null,
 null);

// Populate the same email as before, but this time, also BCC
// 'john.smith@example.com' & 'jane.smith@example.com' and attach two files.
// By specifying null for the mimeTypes parameter, you are telling
// ADFMobile to automatically determine the MIME type for each of the attachments.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 null);

// Same as previous email, but this time, explicitly specify all the MIME types.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 "text/plain,image/png");

// Same as previous email, but this time, only specify the MIME type for the
// second attachment and let the system determine the MIME type for the first one.
DeviceManagerFactory.getDeviceManager().sendEmail(
 "ann.li@example.com",
 "joe.jones@example.com",
 "Test message",
 "This is a test message",
 "john.smith@example.com,jane.smith@example.com",
 "path/to/file1.txt,path/to/file2.png",
 ",image/png");

14.11.4 How to Use the createContact Method to Enable Creating Contacts

The DeviceFeatures data control includes the createContact method, which enables MAF applications to leverage a device's interface and file system for managing contacts so end users can create new contacts to save in the device's address book. MAF enables you to display the device's interface and optionally pre-populate the Contact fields. The createContact method takes in a Contact object as a parameter and returns the created Contact object, as shown in Example 14-25.

For more information about the createContact method and the Contact object, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/). Also see Section 14.11.5, "How to Use the findContacts Method to Enable Finding Contacts" for a description of Contact properties.

	
Note:

The timeout value for the createContact method is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

	
Note:

If a null Contact object is passed in to the method, an exception is thrown.

To customize a createContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the createContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Link or Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact object parameter to the createContact operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact from a Java bean class. Assuming a managed bean already exists with a getter for a Contact object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a createContact operation when pressed. Example 14-24 shows an example of managed bean code for creating a Contact object.

	
You can also drag a Contact return object from under the createContact operation in the Data Controls panel and drop it on to the page as a Form. You can then customize the form in the Edit Form Fields dialog. When the createContact operation is performed, the results will be displayed in this form.

Example 14-24 Managed Bean Code for Creating a Contact Object

private Contact contactToBeCreated;

public void setContactToBeCreated(Contact contactToBeCreated) {
 this.contactToBeCreated = contactToBeCreated;
}

public Contact getContactToBeCreated() {
 String givenName = "Mary";
 String familyName = "Jones";
 String note = "Just a Note";
 String phoneNumberType = "mobile";
 String phoneNumberValue = "650-555-0111";
 String phoneNumberNewValue = "650-555-0199";
 String emailType = "home";
 String emailTypeNew = "work";
 String emailValue = "Mary.Jones@example.com";
 String addressType = "home";
 String addressStreet = "500 Barnacle Pkwy";
 String addressLocality = "Redwood Shores";
 String addressCountry = "USA";
 String addressPostalCode = "94065";
 ContactField[] phoneNumbers = null;
 ContactField[] emails = null;
 ContactAddresses[] addresses = null;

 /*
 * Create contact
 */
 this.contactToBeCreated = new Contact();

 ContactName name = new ContactName();
 name.setFamilyName(familyName);
 name.setGivenName(givenName);
 this.contactToBeCreated.setName(name);

 ContactField phoneNumber = new ContactField();
 phoneNumber.setType(phoneNumberType);
 phoneNumber.setValue(phoneNumberValue);

 phoneNumbers = new ContactField[] { phoneNumber };

 ContactField email = new ContactField();
 email.setType(emailType);
 email.setValue(emailValue);

 emails = new ContactField[] { email };

 ContactAddresses address = new ContactAddresses();
 address.setType(addressType);
 address.setStreetAddress(addressStreet);
 address.setLocality(addressLocality);
 address.setCountry(addressCountry);

 addresses = new ContactAddresses[] { address };

 this.contactToBeCreated.setNote(note);
 this.contactToBeCreated.setPhoneNumbers(phoneNumbers);
 this.contactToBeCreated.setEmails(emails);
 this.contactToBeCreated.setAddresses(addresses);

 return this.contactToBeCreated;
}

Example 14-25 and Example 14-26 show code examples that allow the end user to create contacts on devices.

Example 14-25 JavaScript Code Example for createContact

// Contacts, like many other device-specific features,
// are accessed from the global 'navigator' object in JavaScript
var contact = navigator.contacts.create();

var name = new ContactName();
name.givenName = "Mary";
name.familyName = "Jones";

contact.name = name;

// Store contact phone numbers in ContactField[]
var phoneNumbers = [1];
phoneNumbers[0] = new ContactField('home', '650-555-0123', true);

contact.phoneNumbers = phoneNumbers;

// Store contact email addresses in ContactField[]
var emails = [1];
emails[0] = new ContactField('work', 'Mary.Jones@example.com');

contact.emails = emails;

// Save
contact.save(onSuccess, onFailure);

function onSuccess()
{
 alert("Create Contact successful.");
}

function onFailure(Error)
{
 alert("Create Contact failed: " + Error.code);
}

Example 14-26 Java Code Example for createContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

import oracle.adf.model.datacontrols.device.ContactAddresses;
import oracle.adf.model.datacontrols.device.ContactField;
import oracle.adf.model.datacontrols.device.ContactName;

String givenName = "Mary";
String familyName = "Jones";
String note = "Just a Note";
String phoneNumberType = "mobile";
String phoneNumberValue = "650-555-0111";
String phoneNumberNewValue = "650-555-0199";
String emailType = "home";
String emailTypeNew = "work";
String emailValue = "Mary.Jones@example.com";
String addressType = "home";
String addressStreet = "500 Barnacle Pkwy";
String addressLocality = "Redwood Shores";
String addressCountry = "USA";
String addressPostalCode = "91234";
ContactField[] phoneNumbers = null;
ContactField[] emails = null;
ContactAddresses[] addresses = null;
ContactField[] emails = null;

/*
* Create contact
*/
Contact aContact = new Contact();

ContactName name = new ContactName();
name.setFamilyName(familyName);
name.setGivenName(givenName);
aContact.setName(name);

ContactField phoneNumber = new ContactField();
phoneNumber.setType(phoneNumberType);
phoneNumber.setValue(phoneNumberValue);

phoneNumbers = new ContactField[] { phoneNumber };

ContactField email = new ContactField();
email.setType(emailType);
email.setValue(emailValue);

emails = new ContactField[] { email };

ContactAddresses address = new ContactAddresses();
address.setType(addressType);
address.setStreetAddress(addressStreet);
address.setLocality(addressLocality);
address.setCountry(addressCountry);

addresses = new ContactAddresses[] { address };

aContact.setNote(note);
aContact.setPhoneNumbers(phoneNumbers);
aContact.setEmails(emails);
aContact.setAddresses(addresses);

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
// Invoking the createContact method, using the DeviceDataControl object.
Contact createdContact = DeviceManagerFactory.getDeviceManager()
 .findContacts.createContact(aContact);

14.11.5 How to Use the findContacts Method to Enable Finding Contacts

The DeviceFeatures data control includes the findContacts method, which enables MAF applications to leverage a device's interface and file system for managing contacts so end users can find one or more contacts from the device's address book. MAF enables you to display the device's interface and optionally pre-populate the findContacts fields. The findContacts method takes in a filter string and a list of field names to look through (and return as part of the found contacts). The filter string can be anything to look for in the contacts. For more information about the findContacts method, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

The findContacts operation takes the following arguments:

	
contactFields: Required parameter. Use this parameter to specify which fields should be included in the Contact objects resulting from a findContacts operation. Separate fields with a comma (spacing does not matter).

	
filter: The search string used to filter contacts. (String) (Default: "")

	
multiple: Determines if the findContacts operation should return multiple contacts. (Boolean) (Default: false)

	
Note:

Passing in a field name that is not in the following list may result in a null return value for the findContacts operation. Also, only the fields specified in the Contact fields argument will be returned as part of the Contact object.

The following list shows the possible Contact properties that can be passed in to look through and be returned as part of the found contacts:

	
id: A globally unique identifier

	
displayName: The name of this contact, suitable for display to end-users

	
name: An object containing all components of a person's name

	
nickname: A casual name for the contact. If you set this field to null, it will be stored as an empty string.

	
phoneNumbers: An array of all the contact's phone numbers

	
emails: An array of all the contact's email addresses

	
addresses: An array of all the contact's addresses

	
ims: An array of all the contact's instant messaging (IM) addresses (The ims property is not supported in this release.)

	
Note:

MAF does not support the Contact property ims in this release. If you create a contact with the ims property, MAF will save the contact without the ims property. As a result, if a user tries to perform a search based on ims, the user will not be able to find the contact. Also, if a user tries to enter ims in a search field, the ims will be returned as null.

	
organizations: An array of all the contact's organizations

	
birthday: The birthday of the contact. Although you cannot programmatically set a contact's birthday field and persist it to the address book, you can still use the operating system's address book application to manually set this field.

	
note: A note about the contact. If you set this field to null, it will be stored as an empty string.

	
photos: An array of the contact's photos

	
categories: An array of all the contact's user-defined categories.

	
urls: An array of web pages associated to the contact

	
Note:

The timeout value for the findContacts method is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

To customize a findContacts operation using the DeviceFeatures data control:

	
In JDeveloper, drag the findContacts operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the findContacts operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a findContacts operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields described above. Below this form will be a button, which will use the entered values to perform a findContacts operation when pressed.

	
You can also drag a Contact return object from under the findContacts operation in the Data Controls panel and drop it on to the page as a Form. You can then customize the form in the Edit Form Fields dialog. When the findContacts operation is performed, the results will be displayed in this form.

Example 14-27 shows possible argument values for the findContacts method. Example 14-28 and Example 14-29 show how to find a contact by family name and get the contact's name, phone numbers, email, addresses, and note.

Example 14-27 Possible Argument Values for findContacts

// This will return just one contact with only the ID field:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("", "", false);

// This will return all contacts with only ID fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("", "", true);

// This will return just one contact with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*", "", false);

// This will return all contacts with all fields:
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts("*", "", true);

// These will throw an exception as contactFields is a required argument and cannot be null:
DeviceManagerFactory.getDeviceManager().findContacts(null, "", false);
DeviceManagerFactory.getDeviceManager().findContacts(null, "", true);

// These will throw an exception as the filter argument cannot be null:
DeviceManagerFactory.getDeviceManager().findContacts("", null, false);
DeviceManagerFactory.getDeviceManager().findContacts("", null, true);

	
Note:

The Contact fields passed are strings (containing the comma-delimited fields). If any arguments are passed as null to the method, an exception is thrown.

Example 14-28 JavaScript Code Example for findContacts

var filter = ["name", "phoneNumbers", "emails", "addresses", "note"];

var options = new ContactFindOptions();
options.filter="FamilyName";

// Contacts, like many other device-specific features, are accessed from
// the global 'navigator' object in JavaScript.
navigator.contacts.find(filter, onSuccess, onFail, options);

function onSuccess(contacts)
{
 alert ("Find Contact call succeeded! Number of contacts found = " + contacts.length);
}

function onFail(Error)
{
 alert("Find Contact failed: " + Error.code);
}

Example 14-29 Java Code Example for findContacts

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Find Contact - Find contact by family name.
 *
 * See if we can find the contact that we just created.
 */

String familyName = "FamilyName"

// Access device features in Java code by acquiring an instance of the
// DeviceManager from the DeviceManagerFactory.
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

14.11.6 How to Use the updateContact Method to Enable Updating Contacts

The DeviceFeatures data control includes the updateContact method, which enables MAF applications to leverage a device's interface and file system for managing contacts so end users can update contacts in the device's address book. MAF enables you to display the device's interface and optionally pre-populate the updateContact fields. The updateContact method takes in a Contact object as a parameter and returns the updated Contact object, as shown in Example 14-30.

For more information about the updateContact method and the Contact object, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/). Also see Section 14.11.5, "How to Use the findContacts Method to Enable Finding Contacts" for a description of Contact properties.

	
Note:

The Contact object that is needed as the input parameter can be found using the findContacts method as described in Section 14.11.5, "How to Use the findContacts Method to Enable Finding Contacts." If a null Contact object is passed in to the method, an exception is thrown.

To customize an updateContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the updateContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Link or Button.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter the Contact object parameter to the updateContact operation. This parameter must be an EL expression that refers to the property of a managed bean that is used to return the Contact from a Java bean class. Assuming a managed bean already exists with a getter for a Contact object, you can use the EL Expression Builder to set the value of the parameter. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a updateContact operation when pressed. Example 14-24 shows an example of managed bean code for creating a Contact object.

	
You can also drag a Contact return object from under the updateContact operation in the Data Controls panel and drop it on to the page as a Form. You can then customize the form in the Edit Form Fields dialog. When the updateContact operation is performed, the results will be displayed in this form.

Example 14-30 and Example 14-32 show how to update a contact's phone number. Example 14-31 and Example 14-33 show how to add another phone number to a contact.

Example 14-30 JavaScript Code Example for updateContact

function updateContact(contact)
{
 try
 {
 if (null != contact.phoneNumbers)
 {
 alert("Number of phone numbers = " + contact.phoneNumbers.length);
 var numPhoneNumbers = contact.phoneNumbers.length;
 for (var j = 0; j < numPhoneNumbers; j++)
 {
 alert("Type: " + contact.phoneNumbers[j].type + "\n" +
 "Value: " + contact.phoneNumbers[j].value + "\n" +
 "Preferred: " + contact.phoneNumbers[j].pref);

 contact.phoneNumbers[j].type = "mobile";
 contact.phoneNumbers[j].value = "408-555-0100";
 }

 // save
 contact.save(onSuccess, onFailure);
 }
 else
 {
 //alert ("No phone numbers found in the contact.");
 }
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);
}

Example 14-31 shows you how to add another phone number to the already existing phone numbers.

Example 14-31 JavaScript Code Example for Adding a Phone Number with updateContact

function updateContact(contact)
{
 try
 {
 var phoneNumbers = [1];
 phoneNumbers[0] = new ContactField('home', '650-555-0123', true);
 contact.phoneNumbers = phoneNumbers;

 // save
 contact.save(onSuccess, onFailure);
 }
 catch(e)
 {
 alert("updateContact - ERROR: " + e.description);
 }
}

function onSuccess()
{
 alert("Update Contact successful.");
}

function onFailure(Error)
{
 alert("Update Contact failed: " + Error.code);
}

Example 14-32 shows how to update a contact's phone number, email type, and postal code.

Example 14-32 Java Code Example for updateContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Update Contact - Updating phone number, email type, and adding address postal code
 */
String familyName = "FamilyName";
String phoneNumberNewValue = "650-555-0123";
String emailTypeNew = "work";
String addressPostalCode = "91234";

Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses,note", familyName, true);

// Assuming there was only one contact returned, we can use the first contact in the array.
// If more than one contact is returned then we have to filter more to find the exact contact
// we need to update.

foundContacts[0].getPhoneNumbers()[0].setValue(phoneNumberNewValue);
foundContacts[0].getEmails()[0].setType(emailTypeNew);
foundContacts[0].getAddresses()[0].setPostalCode(addressPostalCode);

Contact updatedContact = DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

Example 14-33 shows you how to add another phone number to the already existing phone numbers.

Example 14-33 Java Code Example for Adding a Phone Number with updateContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

String additionalPhoneNumberValue = "408-555-0123";
String additionalPhoneNumberType = "mobile";
// Create a new phoneNumber that will be appended to the previous one.
ContactField additionalPhoneNumber = new ContactField();
additionalPhoneNumber.setType(additionalPhoneNumberType);
additionalPhoneNumber.setValue(additionalPhoneNumberValue);

foundContacts[0].setPhoneNumbers(new ContactField[] { additionalPhoneNumber });

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
Contact updatedContact = DeviceManagerFactory.getDeviceManager().updateContact(foundContacts[0]);

	
Note:

The timeout value for the updateContact method is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

14.11.7 How to Use the removeContact Method to Enable Removing Contacts

The DeviceFeatures data control includes the removeContact method, which enables MAF applications to leverage a device's interface and file system for managing contacts so end users can remove contacts from the device's address book. MAF enables you to display the device's interface and optionally pre-populate the removeContact fields. The removeContact method takes in a Contact object as a parameter, as shown in Example 14-34.

	
Note:

The Contact object that is needed as the input parameter can be found using the findContacts method as described in Section 14.11.5, "How to Use the findContacts Method to Enable Finding Contacts."

To customize a removeContact operation using the DeviceFeatures data control:

	
In JDeveloper, drag the removeContact operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the removeContact operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a removeContact operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various Contact fields. Below this form will be a button, which will use the entered values to perform a removeContact operation when pressed.

	
You can also drag a Contact return object from under the removeContact operation in the Data Controls panel and drop it on to the page as a Form. You can then customize the form in the Edit Form Fields dialog. When the removeContact operation is performed, the results will be displayed in this form.

Example 14-34 and Example 14-35 show you how to delete a contact that you found using findContacts. For information about the removeContact method and the Contact object, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

	
Note:

In Android, the removeContact operation does not remove the contact fully. After a contact is removed by calling the removeContact method, a contact with the "(Unknown)" display name shows in the contacts list in the application.

Example 14-34 JavaScript Code Example for removeContact

// Remove the contact from the device
contact.remove(onSuccess,onError);

function onSuccess()
{
 alert("Removal Success");
}

function onError(contactError)'
{
 alert("Error = " + contactError.code);
}

Example 14-35 Java Code Example for removeContact

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

/*
 * Remove the contact from the device
 */
Contact[] foundContacts = DeviceManagerFactory.getDeviceManager().findContacts(
 "name,phoneNumbers,emails,addresses", familyName, true);

// Assuming there is only one contact returned, we can use the first contact in the array.
// If more than one contact is returned we will have to filter more to find the
// exact contact we want to remove.

// Access device features in Java code by acquiring an instance of the DeviceManager
// from the DeviceManagerFactory.
DeviceManagerFactory.getDeviceManager().removeContact(foundContacts[0]);

	
Note:

The timeout value for the removeContact method is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

14.11.8 How to Use the startLocationMonitor Method to Enable Geolocation

The DeviceFeatures data control includes the startLocationMonitor method, which enables MAF applications to leverage a device's geolocation services in order to obtain and track the device's location. MAF enables you to display a device's interface and optionally pre-populate the startLocationMonitor fields.

MAF exposes APIs that enable you to acquire a device's current position, allowing you to retrieve the device's current location for one instant in time or to subscribe to it on a periodic basis. Example 14-36 and Example 14-37 show code examples that will allow your application to obtain the device's location. For information about the startLocationMonitor method, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

	
Note:

The Android 2.n simulators will not return a geolocation result unless the enableHighAccuracy option is set to true.
The altitudeAccuracy property is not supported by Android devices.

Updates do not occur as frequently on the Android platform as on iOS.

To listen for changes in a device's location using the DeviceFeatures data control:

In JDeveloper, drag the startLocationMonitor operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as a Link or Button. When prompted by the Edit Action Dialog, populate the fields as follows:

	
enableHighAccuracy: If true, use the most accurate possible method of obtaining a location fix. This is just a hint; the operating system may not respect it. Devices often have several different mechanisms for obtaining a location fix, including cell tower triangulation, Wi-Fi hotspot lookup, and true GPS. Specifying false indicates that you are willing to accept a less accurate location, which may result in a faster response or consume less power.

	
updateInterval: Defines how often, in milliseconds, to receive updates. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update.

	
locationListener: EL expression that resolves to a bean method with the following signature:

void methodName(Location newLocation)

This EL expression will be evaluated every time a location update is received. For example, enter viewScope.LocationListenerBean.locationUpdated (without the surrounding#{}), then define a bean named LocationListenerBean in viewScope and implement a method with the following signature:

public void locationUpdated(Location currentLocation) {
 System.out.println(currentLocation);
 // To stop subscribing to location updates, invoke the following:
 // DeviceManagerFactory.getDeviceManager().clearWatchPosition(
 // currentLocation.getWatchId());
}

	
Note:

Do not use the EL syntax #{LocationListenerBean.locationUpdate} to specify the locationListener, unless you truly want the result of evaluating that expression to be the name of the locationListener.

Example 14-36 shows how to subscribe to changes in the device's location periodically. The example uses the DeviceManager.startUpdatingPosition method, which takes the following parameters:

	
int updateInterval: Defines how often to deliver location updates, in milliseconds. Location updates may not be delivered as frequently as specified; the operating system may wait until a significant change in the device's position has been detected before triggering another location update. Conversely, location updates may also be delivered at the specified frequency, but may be identical until the device's position has changed significantly.

	
boolean enableHighAccuracy: If set to true, use the most accurate possible method of obtaining a location fix.

	
String watchID: Defines a unique ID that can be subsequently used to stop subscribing to location updates

	
GeolocationCallback: An implementation of the GeolocationCallback interface. This implementation's locationUpdated method is invoked each time the location is updated, as shown in Example 14-36.

For an example of how to subscribe to changes in the device's position using JavaScript, refer to the Cordova documentation (http://cordova.apache.org/).

Parameters returned in the callback function specified by the locationListener are as follows:

	
double getAccuracy—Accuracy level of the latitude and longitude coordinates in meters

	
double getAltitude—Height of the position in meters above the ellipsoid

	
double getLatitude—Latitude in decimal degrees

	
double getLongitude—Longitude in decimal degrees

	
double getAltitudeAccuracy—Accuracy level of the altitude coordinate in meters

	
double getHeading—Direction of travel, specified in degrees counting clockwise relative to the true north

	
double getSpeed—Current ground speed of the device, specified in meters per second

	
long getTimestamp—Creation of a timestamp in milliseconds since the Unix epoch

	
String getWatchId—Only used when subscribing to periodic location updates. A unique ID that can be subsequently used to stop subscribing to location updates

For more information about the startLocationMonitor and startHeadingMonitor methods, see the DeviceDataControl class in the MAF Javadoc and refer to the Cordova documentation (http://cordova.apache.org/).

	
Note:

The timeout value for the startLocationMonitor and startHeadingMonitor methods is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

Example 14-36 Using Geolocation to Subscribe to Changes in a Device's Location

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.GeolocationCallback;
import oracle.adf.model.datacontrols.device.Location;

// Subscribe to location updates that will be delivered every 20 seconds, with high accuracy.
// As you can have multiple subscribers, let's identify this one as 'MyGPSSubscriptionID'.
// Notice that this call returns the watchID, which is usually the same as the watchID passed in.
// However, it may be different if the specified watchID conflicts with an existing watchID,
// so be sure to always use the returned watchID.
String watchID = DeviceManagerFactory.getDeviceManager().startUpdatingPosition(20000, true, "
 "MyGPSSubscriptionID", new GeolocationCallback() {
 public void locationUpdated(Location position) {
 System.out.println("Location updated to: " + position);
 }
});

// The previous call returns immediately so that you can continue processing.
// When the device's location changes, the locationUpdated() method specified in
// the previous call will be invoked in the context of the current feature.

// When you wish to stop being notified of location changes, call the following method:
DeviceManagerFactory().getDeviceManager().clearWatchPosition(watchID);

To obtain a device's location using the DeviceFeatures data control:

In JDeveloper, drag the startLocationMonitor operation from the DeviceFeatures data control in the Data Controls panel to the page designer and drop it as a Link or Button. Follow Example 14-36, but stop listening after the first location update is received.

Example 14-37 shows how to get a device's location one time. The example uses DeviceManager.getCurrentPosition, which takes the following parameters:

	
int maximumAge: Accept a cached value no older than this value, in milliseconds. If a location fix has been obtained within this window of time, then it will be returned immediately; otherwise, the call will block until a new location fix can be determined. The value of the maximumAge parameter must be at least 1000 ms; values less than this will be set to 1000 ms automatically.

	
boolean: enableHighAccuracy If set to true, use the most accurate possible method of obtaining a location fix.

Example 14-37 Using Geolocation to Get a Device's Current Location (One Time)

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;
import oracle.adf.model.datacontrols.device.Location;

// Get the device's current position, with highest accuracy, and accept a cached location that is
// no older than 60 seconds.
Location currentPosition = DeviceManagerFactory.getDeviceManager().getCurrentPosition(60000, true);
System.out.println("The device's current location is: latitude=" + currentPosition.getLatitude() +
 ", longitude=" + currentPosition.getLongitude());

14.11.9 How to Use the displayFile Method to Enable Displaying Files

The DeviceFeatures data control includes the displayFile method, which enables MAF applications to display files that are local to the device. Depending on the platform, application users can view PDFs, image files, Microsoft Office documents, and various other file types. On iOS, the application user has the option to preview supported files within the MAF application. Users can also open those files with third-party applications, email them, or send them to a printer. On Android, all files are opened in third-party applications. In other words, the application user leaves the MAF application while viewing the file. The user may return to the MAF application by pressing the Android Back button. If the device does not have an application capable of opening the given file, an error is displayed. For an example of how the displayFile method opens files on both iOS- and Android-powered devices, see the DeviceDemo sample application. This application is available in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

The displayFile method is only able to display files that are local to the device. This means that remote files first have to be downloaded. Use the call AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory) to return the directory root where downloaded files should be stored. Note that on iOS, this location is specific to the application, but on Android this location refers to the external storage directory. The external storage directory is publicly accessible and allows third-party applications to read files stored there.

Table 14-7 Supported File Types

	iOS	Android
	
For more information about supported file types, see the Quick Look preview controller documentation at the Apple iOS development site (http://developer.apple.com/library/ios/navigation/).

	
The framework will start the viewer associated with the given MIME type if it is installed on the device. There is no built-in framework for viewing specific file types. If the device does not have an application installed that handles the file type, the MAF application displays an error.

	
iWork documents

	

	
Microsoft Office documents (Office '97 and newer)

	

	
Rich Text Format (RTF) documents

	

	
PDF files

	

	
Images

	

	
Text files whose uniform type identifier (UTI) conforms to the public.text type

	

	
Comma-separated value (csv) files

	

To customize a displayFile operation using the DeviceFeatures data control:

	
In JDeveloper, drag the displayFile operation from the DeviceFeatures data control in the Data Controls panel and drop it on the page designer as a Link, Button, or Parameter Form.

Link or Button: You will be prompted with the Edit Action Binding dialog to enter values for arguments to the displayFile operation. At runtime, a button or link will be displayed on the page, which will use the entered values to perform a displayFile operation when pressed.

Parameter Form: Customize the form in the Edit Form Fields dialog. At runtime, an editable form will be displayed on the page, which enables the application user to enter values for the various fields. Below this form will be a button, which will use the entered values to perform a displayFile operation when pressed.

Example 14-38 shows you how to view files using the displayFile method. For information about the displayFile method, see the DeviceDataControl class in the MAF Javadoc).

Example 14-38 Java Code Example for displayFile

import oracle.adf.model.datacontrols.device.DeviceManagerFactory;

 URL remoteFileUrl;
 InputStream is;
 BufferedOutputStream fos;
 try {

 // Open connection to remote file; fileUrl here is a String containing the URL to the remote file.
 remoteFileUrl = new URL(fileUrl);
 URLConnection connection = remoteFileUrl.openConnection();
 is = new BufferedInputStream(connection.getInputStream());
 // Saving the file locally as 'previewTempFile.<extension>'
 String fileExt = fileUrl.substring(fileUrl.lastIndexOf('.'), fileUrl.length());
 String tempFile = "/previewTempFile" + fileExt;
 File localFile = null;
 // Save the file in the DownloadDirectory location
 localFile = new File(AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory) + tempFile);
 if (localFile.exists()) {
 localFile.delete();
 }
 // Use buffered streams to download the file.
 fos = new BufferedOutputStream(new FileOutputStream(localFile));
 byte[] data = new byte[1024];
 int read = 0;
 while ((read = is.read(data)) != -1) {
 fos.write(data, 0, read);
 }
 is.close();
 fos.close();

 // displayFile takes a URL string which has to be encoded on iOS.
 // iOS does not handle "+" as an encoding for space (" ") but
 // expects "%20" instead. Also, the leading slash MUST NOT be
 // encoded to "%2F". We will revert it to a slash after the
 // URLEncoder converts it to "%2F".
 StringBuffer buffer = new StringBuffer();
 String path = URLEncoder.encode(localFile.getPath(), "UTF-8");
 // replace "+" with "%20"
 String replacedString = "+";
 String replacement = "%20";
 int index = 0, previousIndex = 0;
 index = path.indexOf(replacedString, index);
 while (index != -1) {
 buffer.append(path.substring(previousIndex, index)).append(replacement);
 previousIndex = index + 1;
 index = path.indexOf(replacedString, index + replacedString.length());
 }
 buffer.append(path.substring(previousIndex, path.length()));
 // Revert the leading encoded slash ("%2F") to a literal slash ("/").
 if (buffer.indexOf("%2F") == 0) {
 buffer.replace(0, 3, "/");
 }

 // Create URL and invoke displayFile with its String representation.
 URL localURL = null;
 if (Utility.getOSFamily() == Utility.OSFAMILY_ANDROID) {
 localURL = new URL("file", "localhost", localFile.getAbsolutePath());
 }
 else if (Utility.getOSFamily() == Utility.OSFAMILY_IOS)
 {
 localURL = new URL("file", "localhost", buffer.toString());
 }
 DeviceManagerFactory.getDeviceManager().displayFile(localURL.toString(), "remote file");
 } catch (Throwable t) {
 System.out.println("Exception caught: " + t.toString());
 }

14.11.10 What You May Need to Know About Device Properties

There may be features of your application that rely on specific device characteristics or capabilities. For example, you may want to present a different user interface depending on the device's screen orientation, or there may be a mapping feature that you want to enable only if the device supports geolocation. MAF provides a number of properties that you can access from Java, JavaScript, and EL in order to support this type of dynamic behavior. Table 14-8 lists these properties, along with information about how to query them, what values to expect in return, and whether the property can change during the application's lifecycle. Example 14-39 shows an example of how you can access these properties using JavaScript.

	
Note:

The timeout value for device properties is set to 1 minute. If the device's operation takes longer than the timeout allowed, a timeout error is displayed.

Table 14-8 Device Properties and Corresponding EL Expressions

	Property	Static/

Dynamic	EL Expression	Sample Value	Java API
	
device.name

	
Static

	
#{deviceScope.device.name}

	
"iPhone Simulator", "Joe Smith's iPhone"

	
DeviceManager.getName()

	
device.platform

	
Static

	
#{deviceScope.device.platform}

	
"iPhone Simulator", "iPhone"

	
DeviceManager.getPlatform()

	
device.version

	
Static

	
#{deviceScope.device.version}

	
"4.3.2", "5.0.1"

	
DeviceManager.getVersion()

	
device.os

	
Static

	
#{deviceScope.device.os}

	
"iOS"

	
DeviceManager.getOs()

	
device.model

	
Static

	
#{deviceScope.device.model}

	
"x86_64", "i386", "iPhone3,1"

	
DeviceManager.getModel()

	
device.phonegap

	
Static

	
#{deviceScope.device.phonegap}

	
"1.0.0"

	
DeviceManager.getPhonegap()

	
hardware.hasCamera

	
Static

	
#{deviceScope.hardware.hasCamera}

	
"true", "false"

	
DeviceManager.hasCamera()

	
hardware.hasContacts

	
Static

	
#{deviceScope.hardware.hasContacts}

	
"true", "false"

	
DeviceManager.hasContacts()

	
hardware.hasTouchScreen

	
Static

	
#{deviceScope.hardware.hasTouchScreen}

	
"true", "false"

	
DeviceManager.hasTouchScreen()

	
hardware.hasGeolocation

	
Static

	
#{deviceScope.hardware.hasGeolocation}

	
"true", "false"

	
DeviceManager.hasGeolocation()

	
hardware.hasAccelerometer

	
Static

	
#{deviceScope.hardware.hasAccelerometer}

	
"true", "false"

	
DeviceManager.hasAccelerometer()

	
hardware.hasCompass

	
Static

	
#{deviceScope.hardware.hasCompass}

	
"true", "false"

	
DeviceManager.hasCompass()

	
hardware.hasFileAccess

	
Static

	
#{deviceScope.hardware.hasFileAccess}

	
"true", "false"

	
DeviceManager.hasFileAccess()

	
hardware.hasLocalStorage

	
Static

	
#{deviceScope.hardware.hasLocalStorage}

	
"true", "false"

	
DeviceManager.hasLocalStorage()

	
hardware.hasMediaPlayer

	
Static

	
#{deviceScope.hardware.hasMediaPlayer}

	
"true", "false"

	
DeviceManager.hasMediaPlayer()

	
hardware.hasMediaRecorder

	
Static

	
#{deviceScope.hardware.hasMediaRecorder}

	
"true", "false"

	
DeviceManager.hasMediaRecorder()

	
hardware.networkStatus

	
Dynamic

	
#{deviceScope.hardware.networkStatus}

	
"wifi", "2g", "unknown", "none"Foot 1

	
DeviceManager.getNetworkStatus()

	
hardware.screen.width

	
Dynamic

	
#{deviceScope.hardware.screen.width}

	
320, 480

	
DeviceManager.getScreenWidth()

	
hardware.screen.height

	
Dynamic

	
#{deviceScope.hardware.screen.height}

	
480, 320

	
DeviceManager.getScreenHeight()

	
hardware.availableWidth

	
Dynamic

	
#{deviceScope.hardware.screen.availableWidth}

	
<= 320, <= 480

	
DeviceManager.getAvailableScreenWidth()

	
hardware.availableHeight

	
Dynamic

	
#{deviceScope.hardware.screen.availableHeight}

	
<= 480, <= 320

	
DeviceManager.getAvailableScreenHeight()

	
hardware.screen.dpi

	
Static

	
#{deviceScope.hardware.screen.dpi}

	
160, 326

	
DeviceManager.getScreenDpi()

	
hardware.screen.diagonalSize

	
Static

	
#{deviceScope.hardware.screen.diagonalSize}

	
9.7, 6.78

	
DeviceManager.getScreenDiagonalSize()

	
hardware.screen.scaleFactor

	
Static

	
#{deviceScope.hardware.screen.scaleFactor}

	
1.0, 2.0

	
DeviceManager.getScreenScaleFactor()

Footnote 1 If both wifi and 2G are turned on, network status will be wifi, as wifi takes precedence over 2G.

Example 14-39 illustrates how you can access device properties using JavaScript.

Example 14-39 Using JavaScript to Access Device Properties

<!DOCTYPE html>
<html>
 <head>
 <title>Device Properties Example</title>

 <script type="text/javascript" charset="utf-8" src="cordova-2.2.0.js"></script>
 <script type="text/javascript" charset="utf-8">

 // Wait for Cordova to load
 //
 //document.addEventListener("deviceready", onDeviceReady, false);
 document.addEventListener("showpagecomplete",onDeviceReady,false);

 // Cordova is ready
 //
 function onDeviceReady() {
 adf.mf.api.getDeviceProperties(properties_success, properties_fail);
 }

 function properties_success(response) {
 try {
 var element = document.getElementById('deviceProperties');
 var device = response.device;
 var hardware = response.hardware;
 element.innerHTML = 'Device Name: ' + device.name + '
' +
 'Device Platform: ' + device.platform + '
' +
 'Device Version: ' + device.version + '
' +
 'Device OS: ' + device.os + '
' +
 'Device Model: ' + device.model + '
' +
 'Hardware Screen Width: ' + hardware.screen.width + '
' +
 'Hardware Screen Height: ' + hardware.screen.height + '
' +
 } catch (e) {alert("Exception: " + e);}
 }

 function properties_fail(error) {
 alert("getDeviceProperties failed");
 }

 </script>
 </head>
 <body>
 <p id="deviceProperties">Loading device properties...</p>
 </body>
</html>

	
Note:

You can declaratively bind a JavaScript function to the showpagecomplete event by adding an amx:clientListener tag as a direct child of <amx:view>, as in the following example:

<amx:clientListener type="showpagecomplete" method="myShowPageCompleteHandler"/>

For more information about the Client Listener (clientListener) component, see Section 13.3.24, "How to Use the Client Listener."

14.12 Validating Attributes

In the Mobile Application Framework, validation occurs in the data control layer, with validation rules set on binding attributes. Attribute validation takes place at a single point in the system, during the setValue operation on the bindings.

You can define the following validators for attributes exposed by the data controls:

	
Compare validator

	
Length validator

	
List validator

	
Range validator

All validators for a given attribute are executed, and nested exceptions are thrown for every validator that does not pass. You can define a validation message for attributes, which is displayed when a validation rule is fired at runtime. For more information, see Section 13.9, "Validating Input" and Section 14.12.1, "How to Add Validation Rules."

	
Note:

Due to a JSON limitation, the value that a BigDecimal can hold is within the range of a Double, and the value that a BigInteger can hold is within the range of a Long. If you want to use numbers greater than those allowed, you can call toString on BigDecimal or BigInteger to (de)serialize values as String.

Table 14-9 lists supported validation combinations for the length validator.

Table 14-9 Length Validation

	Compare type	Byte	Character
	
Equals

	
Supported

	
Supported

	
Not Equals

	
Supported

	
Supported

	
Less Than

	
Supported

	
Supported

	
Greater Than

	
Supported

	
Supported

	
Less Than Equal To

	
Supported

	
Supported

	
Greater Than Equal To

	
Supported

	
Supported

	
Between

	
Supported

	
Supported

Table 14-10 and Table 14-11 list supported validation combinations for the range validator.

Table 14-10 Range Validation

	Compare type	Byte	Char	Double	Float	Integer	Long	Short
	
Between

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not Between

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

Table 14-11 Range Validation - math, sql, and util Packages

	Compare type	java.math.BigDecimal	java.math.BigInteger	java.sql.Date	java.sql.Time	java.sql.Timestamp	java.util.Date
	
Between

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not Between

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

Table 14-12 lists supported validation combinations for the list validator.

Table 14-12 List Validation

	Compare type	String
	
In

	
Supported

	
Not In

	
Supported

Table 14-13 and Table 14-14 lists supported validation combinations for the compare validator.

Table 14-13 Compare Validation

	Compare type	Byte	Char	Double	Float	Integer	Long	Short	String
	
Equals

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not Equals

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Less Than

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Greater Than

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Less Than Equal To

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

	
Greater Than Equal To

	
Not supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Supported

	
Not supported

Table 14-14 Compare Validation - java.math, java.sql, and java.util Packages

	Compare type	java.math.BigDecimal	java.math.BigInteger	java.sql.Date	java.sql.Time	java.sql.Timestamp	java.util.Date
	
Equals

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Not Equals

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Less Than

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Greater Than

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Less Than Equal To

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

	
Greater Than Equal To

	
Supported

	
Supported

	
Not supported

	
Not supported

	
Not supported

	
Not supported

14.12.1 How to Add Validation Rules

You can define validation rules for a variety of use cases. To add a declarative validation rule to an entity object, use the Overview Editor for Data Control Structure Files - Attributes Page.

To add a validation rule:

	
From the Data Controls panel, right-click on a data controls object and choose Edit Definition.

	
In the Overview Editor for Data Control Structure Files, select the Attributes page.

[image: This image is described in the surrounding text]

	
Select the Validation Rules tab in the lower part of the page and then click Add. In the resulting Add Validation Rule dialog, define the validation rule and the failure handling.

[image: This image is described in the surrounding text]

14.12.2 What You May Need to Know About the Validator Metadata

The validator metadata is placed into the data control structure metadata XML files at design time. Example 14-40 shows a sample length validator.

Example 14-40 Length Validator Declared in Metadata File

<?xml version="1.0" encoding="windows-1252" ?>
<!DOCTYPE PDefViewObject SYSTEM "jbo_03_01.dtd">
<PDefViewObject
 xmlns="http://xmlns.oracle.com/bc4j"
 Name="Product"
 Version="12.1.1.61.36"
 xmlns:validation="http://xmlns.oracle.com/adfm/validation">
 <DesignTime>
 <Attr Name="_DCName" Value="DataControls.ProductListBean"/>
 <Attr Name="_SDName" Value="mobile.Product"/>
 </DesignTime>
 <PDefAttribute
 Name="name">
 <validation:LengthValidationBean
 Name="nameRule0"
 OnAttribute="name"
 CompareType="GREATERTHAN"
 DataType="BYTE"
 CompareLength="5"
 Inverse="false"/>
 </PDefAttribute>
</PDefViewObject>

14.13 About Data Change Events

To simplify data change events, JDeveloper uses the property change listener pattern. In most cases you can use JDeveloper to generate the necessary code to source notifications from your beans' property accessors by selecting the Notify listeners when property changes checkbox in the Generate Accessors dialog (see Section 14.3.5.2, "About the Managed Beans Category" for details). The PropertyChangeSupport object is generated automatically, with the calls to firePropertyChange in the newly-generated setter method. Additionally, the addPropertyChangeListener and removePropertyChangeListener methods are added so property change listeners can register and unregister themselves with this object. This is what the framework uses to capture changes to be pushed to the client cache and to notify the user interface layer that data has been changed.

	
Note:

If you are manually adding a PropertyChangeSupport object to a class, you must also include the addPropertyChangeListener and removePropertyChangeListener methods (using these explicit method names).

Property changes alone will not solve all the data change notifications, as in the case where you have a bean wrapped by a data control and you want to expose a collection of items. While a property change is sufficient when individual items of the list change, it is not sufficient for cardinality changes. In this case, rather than fire a property change for the entire collection, which would cause a degradation of performance, you can instead refresh just the collection delta. To do this you need to expose more data than is required for a simple property change, which you can do using the ProviderChangeSupport class. Provider change events are like property change events but apply to the entire provider instead of just an individual property.

	
Note:

The ProviderChangeSupport object is not generated automatically—you must manually add it to your class—along with the addProviderChangeListener and removeProviderChangeListener methods (using these explicit method names).

Since the provider change is required only when you have a dynamic collection exposed by a data control wrapped bean, there are only a few types of provider change events to fire:

	
fireProviderCreate—when a new element is added to the collection

	
fireProviderDelete—when an element is removed from the collection

	
fireProviderChange—when a single element is changed in the collection (necessary to prevent the whole list from refreshing)

	
fireProviderRefresh—when multiple changes are done to the collection at one time and you decide it is better to simply ask for the client to refresh the entire collection (this should only be used in bulk operations)

The ProviderChangeSupport class is used for sending notifications relating to collection elements, so that components update properly when a change occurs in a Java bean data control. It follows a similar pattern to the automatically-generated PropertyChangeSupport class, but the event objects used with ProviderChangeSupport send more information, including the type of operation as well as the key and position of the element that changed. ProviderChangeSupport captures structural changes to a collection, such as adding or removing an element (or provider) from a collection. PropertyChangeSupport captures changes to the individual items in the collection.

Example 14-41 shows how to use ProviderChangeSupport for sending notifications relating to structural changes to collection elements (such as when adding or removing a child). For more information on the ProviderChangeListener interface as well as the ProviderChangeEvent and ProviderChangeSupport classes, see the MAF Javadoc.

Example 14-41 ProviderChangeSupport Code Example

public class NotePad {
 private static List s_notes = null;

/* manually adding property change listener as well as provider change listener. */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);
 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 …
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this) {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])
 s_notes.toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this) {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderCreate("notes", n.getUid(), n);
 }

 public void removeNote() {
 System.out.println("Removng a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this) {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");
 providerChangeSupport.fireProviderDelete("notes", n.getUid());
 }
 }

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 providerChangeSupport.fireProviderRefresh("notes");
 }

 public void addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }
}

Data changes are passed back to the client (to be cached) with any response message or return value from the JVM layer. This allows JDeveloper to compress and reduce the number of events and updates to refresh to the user interface, allowing the framework to be as efficient as possible.

However, there are times where you may need to have a background thread handle a long-running process (such as web-service interactions, database interactions, or expensive computations) and notify the user interface independent of a user action. To update data on an AMX page to reflect the current values of data fields whose values have changed, you can avoid the performance hit associated with reloading the whole AMX page by calling AdfmfJavaUtilities.flushDataChangeEvent to force the currently queued data changes to the client.

	
Note:

The flushDataChangeEvent method can only be executed from a background thread.

Example 14-42 shows how the flushDataChangeEvent method can be used to force pending data changes to the client. For more information about oracle.adfmf.framework.api.AdfmfJavaUtilities.flushDataChangeEvent, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Example 14-42 Data Change Event Example

/* Note – Simple POJO used by the NotePad managed bean or data control wrapped bean */

package mobile;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;

/**
 * Simple note object
 * uid - unique id - generated and not mutable
 * title - title for the note - mutable
 * note - note comment - mutable
 */
public class Note {
 /* standard JDeveloper generated property change support */
 protected transient PropertyChangeSupport
 propertyChangeSupport = new PropertyChangeSupport(this);

 private static boolean s_backgroundFlushTestRunning = false;

 public Note() {
 this("" + (System.currentTimeMillis() % 10000));
 }

 public Note(String id) {
 this("UID-"+id, "Title-"+id, "");
 }

 public Note(String uid, String title, String note) {
 this.uid = uid;
 this.title = title;
 this.note = note;
 }

 /* update the current note with the values passed in */
 public void updateNote(Note n) {
 if (this.getUid().compareTo(n.getUid()) == 0) {
 this.setTitle(n.getTitle());
 this.setNote(n.getNote());
 }
 else {
 throw new IllegalArgumentException("note");
 }
 }

 /* background thread to simulate some background process that make changes */
 public void startNodeBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 System.out.println("startBackgroundThread enter - " +
 s_backgroundFlushTestRunning);

 s_backgroundFlushTestRunning = true;
 for(int i = 0; i <= iterations; ++i) {
 try {
 System.out.println("executing " + i + " of " + iterations + "
 " iterations.");

 /* update a property value */
 if(i == 0) {
 setNote("thread starting");
 }
 else if(i == iterations) {
 setNote("thread complete");
 s_backgroundFlushTestRunning = false;
 }
 else {
 setNote("executing " + i + " of " + iterations + " iterations.");
 }
 setVersion(getVersion() + 1);
 setTitle("Thread Test v" + getVersion());
 AdfmfJavaUtilities.flushDataChangeEvent(); /* key line */
 }
 catch(Throwable t) {
 System.err.println("Error in the background thread: " + t);
 }

 try {
 Thread.sleep(delay); /* sleep for 6 seconds */
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

 protected String uid;
 protected String title;
 protected String note;
 protected int version;

 protected int iterations = 10;
 protected int delay = 500;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public String getUid() {
 return uid;
 }

 public void setTitle(String title) {
 String oldTitle = this.title;
 this.title = title;
 propertyChangeSupport.firePropertyChange("title", oldTitle, title);
 }

 public String getTitle() {
 return title;
 }

 public void setNote(String note) {
 String oldNote = this.note;
 this.note = note;
 propertyChangeSupport.firePropertyChange("note", oldNote, note);
 }

 public String getNote() {
 return note;
 }

 public void setVersion(int version) {
 int oldVersion = this.version;
 this.version = version;
 propertyChangeSupport.firePropertyChange("version", oldVersion, version);
 }

 public int getVersion() {
 return version;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.
 firePropertyChange("iterations", oldIterations, iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.
 firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

/* NotePad – Can be used as a managed bean or wrapped as a data control */

package mobile;

import java.util.ArrayList;
import java.util.List;

import oracle.adfmf.amx.event.ActionEvent;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.java.beans.PropertyChangeListener;
import oracle.adfmf.java.beans.PropertyChangeSupport;
import oracle.adfmf.java.beans.ProviderChangeListener;
import oracle.adfmf.java.beans.ProviderChangeSupport;

public class NotePad {
 private static List s_notes = null;
 private static boolean s_backgroundFlushTestRunning = false;

 protected transient PropertyChangeSupport propertyChangeSupport =
 new PropertyChangeSupport(this);

 protected transient ProviderChangeSupport
 providerChangeSupport = new ProviderChangeSupport(this);

 public NotePad() {
 if (s_notes == null) {
 s_notes = new ArrayList();

 for(int i = 1000; i < 1003; ++i) {
 s_notes.add(new Note(""+i));
 }
 }
 }

 public mobile.Note[] getNotes() {
 mobile.Note n[] = null;

 synchronized (this) {
 if(s_notes.size() > 0) {
 n = (mobile.Note[])s_notes.
 toArray(new mobile.Note[s_notes.size()]);
 }
 else {
 n = new mobile.Note[0];
 }
 }

 return n;
 }

 public void addNote() {
 System.out.println("Adding a note");
 Note n = new Note();
 int s = 0;

 synchronized (this) {
 s_notes.add(n);
 s = s_notes.size();
 }

 System.out.println("firing the events");

 /* update the note count property on the screen */
 propertyChangeSupport.
 firePropertyChange("noteCount", s-1, s);

 /* update the notes collection model with the new note */
 providerChangeSupport.
 fireProviderCreate("notes", n.getUid(), n);

 /* to update the client side model layer */
 AdfmfJavaUtilities.flushDataChangeEvent();
 }

 public void removeNote() {
 System.out.println("Removing a note");
 if(s_notes.size() > 0) {
 int end = -1;
 Note n = null;

 synchronized (this) {
 end = s_notes.size() - 1;
 n = (Note)s_notes.remove(end);
 }

 System.out.println("firing the events");

 /* update the client side model layer */
 providerChangeSupport.fireProviderDelete("notes", n.getUid());

 /* update the note count property on the screen */
 propertyChangeSupport.firePropertyChange("noteCount", -1, end);
 }
 }

 public void RefreshNotes() {
 System.out.println("Refreshing the notes");

 /* update the entire notes collection on the client */
 providerChangeSupport.fireProviderRefresh("notes");
 }

 public int getNoteCount() {
 int size = 0;

 synchronized (this) {
 size = s_notes.size();
 }
 return size;
 }

 public void addProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.addProviderChangeListener(l);
 }

 public void removeProviderChangeListener(ProviderChangeListener l) {
 providerChangeSupport.removeProviderChangeListener(l);
 }

 public void startListBackgroundThread(ActionEvent actionEvent) {
 for(int i = 0; i < 10; ++i) {
 _startListBackgroundThread(actionEvent);
 try {
 Thread.currentThread().sleep(i * 1234);
 }
 catch (InterruptedException e) {
 }
 }
 }

 public void
 _startListBackgroundThread(ActionEvent actionEvent) {
 Thread backgroundThread = new Thread() {
 public void run() {
 s_backgroundFlushTestRunning = true;

 for(int i = 0; i <= iterations; ++i) {
 System.out.println("executing " + i +
 " of " + iterations + " iterations.");

 try {
 /* update a property value */
 if(i == 0) {
 setStatus("thread starting");
 addNote(); // add a note
 }
 else if(i == iterations) {
 setStatus("thread complete");
 removeNote(); // remove a note
 s_backgroundFlushTestRunning = false;
 }
 else {
 setStatus("executing " + i + " of " +
 iterations + " iterations.");

 synchronized (this) {
 if(s_notes.size() > 0) {
 Note n =(Note)s_notes.get(0);

 n.setTitle("Updated-" +
 n.getUid() + " v" + i);
 }
 }
 }
 AdfmfJavaUtilities.flushDataChangeEvent();
 }
 catch(Throwable t) {
 System.err.
 println("Error in bg thread - " + t);
 }

 try {
 Thread.sleep(delay);
 }
 catch (InterruptedException ex) {
 setStatus("inturrpted " + ex);
 ex.printStackTrace();
 }
 }
 }
 };

 backgroundThread.start();
 }

 protected int iterations = 100;
 protected int delay = 750;

 protected String status;

 /* --- JDeveloper generated accessors --- */

 public void addPropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.addPropertyChangeListener(l);
 }

 public void removePropertyChangeListener(PropertyChangeListener l) {
 propertyChangeSupport.removePropertyChangeListener(l);
 }

 public void setStatus(String status) {
 String oldStatus = this.status;
 this.status = status;
 propertyChangeSupport.firePropertyChange("status", oldStatus, status);
 }

 public String getStatus() {
 return status;
 }

 public void setIterations(int iterations) {
 int oldIterations = this.iterations;
 this.iterations = iterations;
 propertyChangeSupport.firePropertyChange("iterations", oldIterations, iterations);
 }

 public int getIterations() {
 return iterations;
 }

 public void setDelay(int delay) {
 int oldDelay = this.delay;
 this.delay = delay;
 propertyChangeSupport.firePropertyChange("delay", oldDelay, delay);
 }

 public int getDelay() {
 return delay;
 }
}

The StockTracker sample application provides an example of how data change events use Java to enable data changes to be reflected in the user interface. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

For more information about sample applications, see Appendix G, "MAF Sample Applications."

15 Using Web Services in MAF AMX

This chapter describes how to integrate a third-party web service into the MAF AMX application feature implementation.

This chapter includes the following sections:

	
Section 15.1, "Introduction to Using Web Services in MAF Applications"

	
Section 15.2, "Creating a Web Service Data Control Using REST"

	
Section 15.3, "Creating a Web Service Data Control Using SOAP"

	
Section 15.4, "What You May Need to Know About Web Service Data Controls"

	
Section 15.5, "Creating a New Web Service Connection"

	
Section 15.6, "Adjusting the End Point for a Web Service Data Control"

	
Section 15.7, "Accessing Secure Web Services"

	
Section 15.8, "Invoking Web Services From Java"

	
Section 15.9, "Understanding Limitations Related to MAF Support for JavaScript"

	
Section 15.10, "Configuring the Browser Proxy Information"

15.1 Introduction to Using Web Services in MAF Applications

Web services allow applications and their features to exchange data and information through defined application programming interfaces. Using web services you can expose business functionality irrespective of the platform or language of the originating application because the business functionality is exposed in such a way that it is abstracted to a message composed of standard XML constructs that can be recognized and used by other applications.

In a MAF application, you use web services to interact with remote data sources. In particular:

	
To query data in remote data sources.

	
To write data to and from remote data sources.

Some of the most typical use cases for employing web services in MAF applications are:

	
To add functionality that is readily available as a web service, but which would be time-consuming to develop within the application.

	
To provide access to an application that runs on a different architecture.

Using web services in your MAF application enables you to do the following:

	
Choose from a subset of functionality exposed on the web service. Since you cannot request more enterprise data than offered by the web services, you can deal with the limitation of which enterprise data can and cannot be accessed by reducing the number of application features exposed in a web service data control.

	
Provide functionality that is too computationally intensive for the mobile device's resources. This could be due to either the actual amount of work the device would need to perform, or the fact that the functionality is based on a much larger data set than the one that is locally available on the device.

	
Note:

You may consider outsourcing the computationally intensive functionality to the service (the server side).

MAF supports consumption of both SOAP and REST web services. Before deciding which type to use, consider the following:

	
SOAP with its large payloads and verbose XML schemas can have an impact on performance of your MAF application. It is recommended to either use REST web services (if available) or inject a middleware solution such as Oracle Service Bus (see http://www.oracle.com/technetwork/middleware/service-bus/overview/index.html) to transform payloads from SOAP to REST JSON.

	
Since MAF is not an extract, transform and load tool (ETL), you would have to write code to accommodate complex web service payloads, which would result in decreased performance as well as code complexity. Using a middleware solution such as Oracle Service Bus can help with shaping the data payloads suitable for mobile environment.

The following web service scenarios usage demonstrate the data access (scenario 1) as well as computational and data-driven functionality (scenarios 2 and 3):

	
Fetch a set of Opportunity data from the enterprise data store to enable the end user to manipulate it on the device, and then post changes back to the enterprise data store through the web service.

	
Request a report be generated on some enterprise data, and then fetch the report.

	
Obtain a map image of a route to a customer site.

The most common way of using web services in an application feature developed with MAF is to create a data control for an external web service. For more information, see the following:

	
Section 15.2, "Creating a Web Service Data Control Using REST"

	
Section 15.3, "Creating a Web Service Data Control Using SOAP"

	
Section 15.4, "What You May Need to Know About Web Service Data Controls."

	
Section 14.1, "Introduction to Bindings and Data Controls."

15.2 Creating a Web Service Data Control Using REST

JDeveloper lets you create a data control for an existing REST web service. This REST web service returns an XML response.

	
Note:

If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see Section 15.10, "Configuring the Browser Proxy Information."

You can associate a REST web service data control with one or more HTTP methods using the same connection. You should be able to access custom operations exposed by a REST service. These custom operations mat to one of the HTTP methods and allow you to create a data control to expose these custom operations on the client.

To use security and notifications functionality on mobile devices, you can add custom headers and custom values to standard HTTP headers for use with specific operations exposed by the REST data control.

Before you begin:

Ensure that you have access to the REST web service that the data control is to access.

To create a REST web service data control:

	
In the Applications window, right-click the application name, and then select File > New > From Gallery from the main JDeveloper menu.

	
In the New Gallery dialog, expand the Business Tier node on the left and select Web Services. From the Items list on the right select Web Service Data Control (SOAP/REST) (see Figure 15-4), and then click OK.

	
On the Data Source page of the Create Web Service Data Control wizard, select REST, as Figure 15-1 shows.

Figure 15-1 Defining Data Source for REST Web Service Data Control

[image: This image is described in the surrounding text]

	
Follow the Create Web Service Data Control wizard instructions to complete creation of the data control, keeping in mind the following:

	
MAF supports only basic authentication for web services (see Section 15.7, "Accessing Secure Web Services"). When creating a new connection, select Basic in the Authentication Type field on the Create URL Connection dialog.

	
MAF supports all HTTP method types: GET, POST, PUT, and DELETE. You can select any of these method types when completing the Method Display Name fields on the Resources page, as Figure 15-2 shows.

	
Note:

You can include all four methods using the same connection and the same REST web service data control.

Figure 15-2 Defining Resources for REST Web Service Data Control

[image: This image is described in the surrounding text]

	
For each resource method on the Method Details page (see Figure 15-3), you need to provide an XSD file reference for the XML payload and response content. The XSD has to be available as a file in the ViewController project.

Figure 15-3 Defining Method Details for REST Web Service Data Control

[image: This image is described in the surrounding text]

	
Note:

Since MAF creates internal definitions for the XSD structures at compile time, the XSD should not change after the application has been compiled. Therefore, it is recommended to reference the XSD file locally, which also provides a benefit of allowing to use a MAF application offline.
Using the remote XSD negatively affects performance because MAF retrieves the XSD with each run of the application.

After the REST web services data control has been created by following the preceding steps, it behaves identically to its counterparts provided by other technologies available through JDeveloper.

A MAF sample application called RESTDemo (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer) demonstrates how to use REST web services in a MAF application.

For information on how to use REST web services through Java bypassing data controls, see Section 15.8.2, "How to Use REST Web Services Adapter."

15.3 Creating a Web Service Data Control Using SOAP

JDeveloper lets you create a data control for an existing SOAP web service using only the Web Services Description Language (WSDL) file for the service. You can either browse to a WSDL file on the local file system, locate one in a Universal Description, Discovery and Integration (UDDI) registry, or enter the WSDL URL directly.

	
Note:

If you are working behind a firewall and you want to use a web service that is outside the firewall, you must configure the Web Browser and Proxy settings in JDeveloper. For more information, see Section 15.10, "Configuring the Browser Proxy Information."

To create a SOAP web service data control:

	
In the Applications window, right-click the application name, and then select File > New > From Gallery from the main JDeveloper menu.

	
In the New Gallery dialog, expand the Business Tier node on the left and select Web Services. From the Items list on the right select Web Service Data Control (SOAP/REST) (see Figure 15-4), and then click OK.

Figure 15-4 Creating a New SOAP Web Service Data Control

[image: This image is described in the surrounding text]

	
On the Data Source page of the Create Web Service Data Control wizard, select SOAP.

	
Follow the wizard instructions to complete creation of the data control.

	
Note:

MAF supports the following encoding styles for both SOAP 1.1 and 1.2 versions:
	
Document/literal

	
Document/wrapped

	
RPC

15.3.1 How to Customize SOAP Headers

MAF allows you to specify a custom provider class in your DataControls.dcx file (see Example 15-3). This custom class extends oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider. You can use it to specify an implementation of the SoapHeader[] getAdditionalSoapHeaders() method.

Example 15-1 shows how to extend the SOAPProvider and create a custom header demonstrated in Example 15-2.

Example 15-1 Defining Custom SOAP Headers

package provider.ebs.soap;

import oracle.adfinternal.model.adapter.webservice.provider.soap.SOAPProvider;
import oracle.adfinternal.model.adapter.webservice.provider.soap.SoapHeader;

public class EBSSOAPProvider extends SOAPProvider {

public SoapHeader[] getAdditionalSoapHeaders() {
 SoapHeader header[] = new SoapHeader[2];
 SoapHeader token = null;
 SoapHeader user = null;
 SoapHeader pass = null;

 header[0] = new SoapHeader("http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "SOAHeader");
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "Responsibility",
 "SYSTEM_ADMINISTRATOR"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "RespApplication",
 "SYSADMIN"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "SecurityGroup",
 "STANDARD"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "NLSLanguage",
 "AMERICAN"));
 header[0].addChild(new SoapHeader(
 "http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/",
 "Org_Id",
 "0"));

 header[1] = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Security");
 token = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "UsernameToken");
 user = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Username",
 "sysadmin");
 pass = new SoapHeader(
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd",
 "Password",
 "sysadmin");

 header[1].addChild(token);
 token.addChild(user);
 token.addChild(pass);

 return header;
 }
}

Example 15-2 shows the new custom header.

Example 15-2 SOAP Header

<soap:Header xmlns:ns1="http://xmlns.oracle.com/apps/fnd/soaprovider/plsql/fnd_user_pkg/">
 <ns1:SOAHeader>
 <ns1:Responsibility>SYSTEM_ADMINISTRATOR</ns1:Responsibility>
 <ns1:RespApplication>SYSADMIN</ns1:RespApplication>
 <ns1:SecurityGroup>STANDARD</ns1:SecurityGroup>
 <ns1:NLSLanguage>AMERICAN</ns1:NLSLanguage>
 <ns1:Org_Id>0</ns1:Org_Id>
 </ns1:SOAHeader>
 <wsse:Security xmlns:wsse=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 soap:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsse=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 xmlns="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
 <wsse:Username>sysadmin</wsse:Username>
 <wsse:Password Type=
 http://docs.oasis-open.org/wss/2004/01/
 oasis-200401-wss-username-token-profile-1.0#PasswordText">sysadmin</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
</soap:Header>

@return

	
Note:

There is no predefined mechanism for passing variables into a class that extends SOAPProvider. Standard Java techniques should be sufficient. For example, you can add member variables and accessors to the class; then you can refer to them when setting the SoapHeader[] content returned by the getAdditionalSoapHeaders() method.

Example 15-3 demonstrates a sample DataControls.dcx file entry with the SOAPProvider registration.

Example 15-3 Registering SOAPProvider in DataControls.dcx File

<definition xmlns="http://xmlns.oracle.com/adfm/adapter/webservice"
 name="SoapService" version="1.0"
 provider="provider.ebs.soap.EBSSOAPProvider"
 wsdl="http://@SRG_WS_HOST@:@SRG_WS_PORT@/SoapService/SoapServicePort?wsdl" >
 <service name="SoapService" namespace="http://model/"
 connection="SoapService">
 <port name="SoapServicePort">
 <operation name="echoSoapHeader"/>
 </port>
 </service>
</definition>

	
Note:

You cannot specify dynamic SOAP headers using MAF.

15.3.2 How to Access Objects Returned by SOAP Calls

JDeveloper adds a dcStructureVersion property to the DataControls.dcx file for every web service data control created from a SOAP service reference. By default, this property is set to 2.

	
Tip:

If your application was developed using one of the previous versions of MAF and you intend to continue using the same code to access the response from Java, you should remove this property or change its value to 1.

The dcStructureVersion property serves customization purposes and impacts the structure of the result returned by the web service data control.

To access an object returned from a SOAP call, you should use code similar to the following:

result = (GenericType)AdfmfJavaUtilities.invokeDataControlMethod("WeatherSOAP",
 null,
 "GetCityWeatherByZIP",
 pnames,
 pvals,
 ptypes);
// access SOAP object to obtain information about the returned object
result.get("City");

When working with collections, consider using code similar to the following:

result = (GenericType)AdfmfJavaUtilities.invokeDataControlMethod("WeatherSOAP",
 null,
 "GetCityWeatherByZIP",
 pnames,
 pvals,
 ptypes);
result = result!=null && result.getParent()!=null ? result.getParent() : result;

15.4 What You May Need to Know About Web Service Data Controls

After the web service data control has been created, the web service operations and return values of the operations are displayed in the Data Controls window, as illustrated in Figure 15-5.

Figure 15-5 Web Service Data Control

[image: The surrounding text describes this image.]

Like other data controls, you can drag and drop the objects returned by the web service operations to create user interface components in a MAF AMX page. For more information, see Section 12.3.2.4, "Adding Data Controls to the View." When data returned from a web service operation is displayed, the following object types are handled:

	
Collections

	
Complex objects returned by a web service operation

	
Nested complex objects returned by a web service operation

Using a web service operation, both standard and complex data types can be updated and deleted.

As illustrated by Figure 15-5, each data control object is represented by an icon. Table 15-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create. For more information see Section 14.6, "Creating Databound UI Components from the Data Controls Panel."

Table 15-1 Data Controls Panel Icons and Object Hierarchy for Web Services

	Icon	Name	Description	Used to Create...
	
[image: The surrounding text describes this image.]

	
Data Control

	
Represents a data control. You cannot use the data control itself to create UI components, but you can use any of the child objects listed under it. Typically, there is one data control for each web service.

	
Serves as a container for other objects and is not used to create anything.

	[image: The surrounding text describes this image.]
	
Collection

	
Represents a data collection returned by an operation on the service. Collections also appear as children under method returns, other collections, or structured attributes. The children under a collection may be attributes, other collections, custom methods, and built-in operations that can be performed on the collection.

	
Forms, tables, graphs, trees, range navigation components, and master-detail components. See also Section 13.5, "Providing Data Visualization."

	
[image: The surrounding text describes this image.]

	
Attribute

	
Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong.

	
Label, text field, date, list of values, and selection list components. See also Section 13.2, "Designing the Page Layout."

	[image: The surrounding text describes this image.]
	
Structured Attribute

	
Represents a returned object that is a complex type but not a collection. For example, a structured attribute might represent a single user assigned to the current service request.

	
Label, text field, date, list of values, and selection list components. See also Section 13.2, "Designing the Page Layout."

	[image: The surrounding text describes this image.]
	
Method

	
Represents an operation in the data control or one of its exposed structures that may accept parameters, perform some business logic and optionally return single value, a structure or a collection of those.

	
Command components.

For methods that accept parameters: command components and parameterized forms. See also Section 13.3, "Creating and Using UI Components."

	[image: The surrounding text describes this image.]
	
Method Return

	
Represents an object that is returned by a web service method. The returned object can be a single value or a collection.

A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, and operations that can be performed on the parent collection.

When a single-value method return is dropped, the method is not invoked automatically by the framework. You should either drop the corresponding method as a button to invoke the method, or if working with task flows you can create a method activity for it.

	
The same components as for collections and attributes and for query forms.

	[image: The surrounding text describes this image.]
	
Operation

	
Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections. If an operation requires one or more parameters, they are listed in a Parameters node under the operation.

The following operations for navigation and setting the current row are supported: First, Last, Next, Previous, setCurrentRowWithKey, and SetCurrentRowWithKeyValue. Execute is supported for refreshing queries. Create and Delete are available as applicable, depending on the web service operation. Because the web service data controls are not transactional, Commit and Rollback are not supported.

	
User interface command components, such as buttons, links, and menus. For more information, see Section 13.3, "Creating and Using UI Components."

	[image: The surrounding text describes this image.]
	
Parameter

	
Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters node under a method or operation.

Array and structured parameters are exposed as updatable structured attributes and collections under the data control, which can be dropped as an ADF form or an updatable table on the UI. You can use the UI to build a parameter that is an array or a complex object (not a standard Java type).

	
Label, text, and selection list components. For more information, see Section 13.3.15, "How to Use List View and List Item Components."

15.5 Creating a New Web Service Connection

The connection information for the web service is stored in the connections.xml file along with the other connections in your application. You do not need to explicitly create this file, as it is generated in the.adf/META-INF directory by the New Web Service Data Control wizard at the time when the web service data control is created (see Section 15.2, "Creating a Web Service Data Control Using REST" and Section 15.3, "Creating a Web Service Data Control Using SOAP").

You modify the connection settings by editing the connections.xml file.

15.6 Adjusting the End Point for a Web Service Data Control

After creating a web service data control, you can modify the end point of the URI. This is useful in such cases as when you migrate an application feature from a test to production environment.

You modify the end point by editing the connections.xml file.

15.7 Accessing Secure Web Services

MAF supports both secured and unsecured web services. For more information, see Chapter 29, "Securing MAF Applications."

To access secured web services from your MAF application, you may need to configure web service data controls included in the application.

15.7.1 How to Enable Access to SOAP-Based Web Services

The following predefined security policies are supported for SOAP-based web services:

	
oracle/wss_http_token_client_policy

	
oracle/wss_http_token_over_ssl_client_policy

	
oracle/http_basic_auth_over_ssl_client_policy

	
oracle/wss_username_token_client_policy

	
oracle/wss_username_token_over_ssl_client_policy

For descriptions of these policies and their usage, see the "Determining Which Predefined Policies to Use" and "Predefined Policies" chapters in Oracle Fusion Middleware Securing Web Services and Managing Policies with Oracle Web Services Manager.

If a SOAP web service is secured, you can access it by configuring the web service data control with either oracle/wss_http_token_over_ssl_client_policy or oracle/wss_http_token_client_policy. To do so, use the Edit Data Control Policies dialog that Figure 15-6 shows. You can open this dialog as follows:

	
In the Applications window, select the .dcx file located in the application's view controller project.

	
In the Structure window, right-click the web service data control that you would like to configure, and then select Define Web Service Security from the context menu.

Figure 15-6 Editing Web Service Data Control Policies

[image: This image is described in the surrounding text]

	
Note:

JDeveloper stores the web service policy definitions in the wsm-assembly.xml file (located in META-INF directory of the application workspace).

15.7.2 How to Enable Access to REST-Based Web Services

Each time a MAF application requests a REST web service for cookie-based authorization, MAF's security framework enables the transport layer of the REST web service to check if cookie injection is enabled for the login connection associated with the URL endpoint of the REST web service. That is, the connections.xml file must include <injectCookiesToRESTHttpHeader value="true"/>. For details about configuring MAF application login to enable the login server cookie in REST web service calls, see Section 29.4.3, "How to Configure Authentication Using Oracle Mobile and Social Identity Management."

This is also true for an Oracle Access Management Mobile and Social (OAMMS) authentication context and the web resource is protected by an Oracle Access Manager server 10g WebGate, where the access token is injected as the encrypted cookie called the ObSSOCookie. For more information, see Section 29.4.13, "What Happens When You Enable Cookie Injection into REST Web Service Calls."

When a REST web service is expecting an OAuth access token, you must associate the REST connection with the predefined security policy that supports REST web services: oracle/oauth2_config_client_policy. Currently, the design time in JDeveloper does not support associating the policy. You must edit the REST connection to manually attach the policy set to the web service, where URI is set to oracle/oauth2_config_client_policy and someapi is the connection name, as illustrated in Example 15-4.

Example 15-4 Associating a Policy Set to a REST Connection

<sca11:policySet xmlns:sca11="http://docs.oasis-open.org/ns/opencsa/sca/200912"
 name="policySet"
 attachTo="MODULE('someapi')"
 <wsp:PolicyReference xmlns:wsp="http://www.w3.org/ns/ws-policy"
 DigestAlgorithm="http://www.w3.org/ns/ws-policy/Sha1Exc"
 URI="oracle/oauth2_config_client_policy"
 orawsp:status="enabled" orawsp:id="1"/>
</sca11:policySet>

For example, you would configure this policy when an OAMMS server is configured to authenticate against a social authentication server and the MAF application needs to invoke social service provider's REST API.

15.7.3 What You May Need to Know About Credential Injection

For secured web services, the user credentials are dynamically injected into a web service request at the time when the request is invoked. This process is similar for SOAP and REST web services.

MAF uses Oracle Web Services Manager (OWSM) Mobile Agent to propagate user identity through web service requests.

Before web services are invoked, the user must respond to an authentication prompt triggered by the user trying to invoke a secured MAF application feature or to start the application controlled by the access control service (ACS). In the latter case, the application must define a default login server with ACS URL, as well as to have at least one feature with a constraint that depends on the user.roles setting. The user credentials are stored in a credential store—a device-native and local repository used for storing credentials associated with the authentication provider's server URL and the user. At runtime, MAF assumes that all credentials have already been stored in the IDM Mobile credential store before the time of their usage.

In the connections.xml file, you have to specify the login server connection's adfCredentialStoreKey attribute value in the adfCredentialStoreKey attribute of the web service connection reference in order to associate the login server to the web service security (see Example 15-5 and Example 15-6).

	
Note:

Since JDeveloper does not provide an Overview editor for the connections.xml file, you can use the Properties window to update the <Reference> element's adfcredentialStoreKey attribute with the name configured for the adfCredentialStoreKey attribute of the login server connection. Alternatively, you can add or update the attribute using the Source editor.

Example 15-5 shows the definition of the web service connection referenced as adfCredentialStoreKey="MyAuth", where MyAuth is the name of the login connection reference.

Example 15-5 Defining the Web Service Connection

<Reference name="URLConnection1"
 className="oracle.adf.model.connection.url.HttpURLConnection"
 adfCredentialStoreKey="MyAuth"
 xmlns="">
 <Factory className="oracle.adf.model.connection.url.URLConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="URLConnection1">
 <Contents>
 <urlconnection name="URLConnection1"
 url="http://myhost.us.example.com:7777/
 SecureRESTWebService1/Echo">
 <authentication style="challange">
 <type>basic</type>
 <realm>myrealm</realm>
 </authentication>
 </urlconnection>
 </Contents>
 </XmlRefAddr>
 <SecureRefAddr addrType="username"/>
 <SecureRefAddr addrType="password"/>
 </RefAddresses>
</Reference>

Example 15-6 shows the definition of the login connection, where MyAuth is used as the credential store key value in the login server connection.

Example 15-6 Defining the Login Connection

<Reference name="MyAuthName"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="MyAuth"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://172.31.255.255:7777/
 SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <logout url="http://172.31.255.255:7777/
 /SecuredWeb1-ViewController-context-root/faces/view1.jsf"/>
 <accessControl url="http://myhost.us.example.com:7777/
 UserObjects/jersey/getUserObjects" />
 <idleTimeout value="10"/>
 <sessionTimeout value="36000"/>
 <userObjectFilter>
 <role name="testuser1_role1"/>
 <role name="testuser2_role1"/>
 <privilege name="testuser1_priv1"/>
 <privilege name="testuser2_priv1"/>
 <privilege name="testuser2_priv2"/>
 </userObjectFilter>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
</Reference>

If a web service request is rejected due to the authentication failure, MAF returns an appropriate exception and invokes an appropriate action (see Section 30.4, "Using and Configuring Logging"). If none of the existing exceptions correctly represent the condition, a new exception is added.

The connections.xml file is deployed and managed under the Configuration Service. For more information, see Chapter 16, "Configuring End Points Used in MAF Applications."

connections.xml files in FARs are aggregated when the MAF application is deployed. The credentials represent deployment-specific data and are not expected to be stored in FARs.

15.7.4 Limitations of Secure WSDL File Usage

Since a MAF application must make a WSDL file accessible at run time without authentication, you cannot use a secure WSDL file with a SOAP web service secured by the basic authentication.

If your intention is to secure the WSDL, consider the following: since the WSDL file is fetched by the GET method of the web service, if you secure each web service method, except the GET method, you can use a secure WSDL. If you secure the GET method, you should not secure the WSDL.

15.8 Invoking Web Services From Java

In your MAF application, you can invoke the web services layer (both REST and SOAP) from the Java code and use the results in Java methods.

MAF provides the GenericTypeBeanSerializationHelper utility class that you can use to perform conversions between POJOs (JavaBeans objects) and MAF's GenericType objects based on the following set of conversion rules:

	
When converting from POJO to GenericType objects:

	
Standard JavaBeans reflection rules are used for determining properties.

	
Transient properties are ignored in the conversion process.

	
Readable properties are converted into a GenericType attribute.

	
Array properties are represented as repeated attributes in the GenericType.

	
Map properties are represented as individual attributes in the GenericType.

	
Non-primitive properties are represented as nested GenericType objects.

	
When converting from GenericType objects to POJO:

	
Standard JavaBeans reflection rules are used for determining properties.

	
Transient properties are ignored in the conversion process.

	
Writable properties are converted from GenericType attributes.

	
Repeated attributes in the GenericType are converted into an array object.

	
If the POJO implements the Map interface, then any properties that cannot be set through standard accessors are set in the POJO through the set method of the Map.

	
Non-primitive attributes are represented as nested POJO objects.

The advantage of using this helper API is that it allows you to take the response received from a web service and convert it to a JavaBean in a single call.

For example, a web service passes back and forth an Employee object that needs to be reused throughout the business logic. This object has the following set of properties:

	
name of type String

	
address: a complex object with street, city, state, and zipcode attributes

	
id of type long

	
salary of type float

	
phone of type String, and there could be more than one phone

	
password of type String, and the password should never be transmitted to the back-end web service

Example 15-7 shows a potential code for the Employee object.

Example 15-7 Employee Object

public class Employee {

 protected String name;
 protected Address address;
 protected long id;
 protected float salary;
 protected String[] phone;
 protected transient String password;

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Address getAddress() {
 return address;
 }

 public void setAddress(Address address) {
 this.address = address;
 }

 public long getId() {
 return id;
 }

 public void setId(long id) {
 this.id = id;
 }

 public float getSalary() {
 return salary;
 }

 public void setSalary(float salary) {
 this.salary = salary;
 }

 public String getPassword() {
 return password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String[] getPhone() {
 return phone;
 }

 public void setPhone(String phone) {
 this.phone = phone;
 }

Example 15-8 shows the potential code for the Address object of the Employee class.

Example 15-8 Address Object

public class Address {

 protected String street;
 protected String city;
 protected String state;
 protected String zipcode;

 public String getStreet() {
 return street;
 }

 public void setStreet(String street) {
 this.street = street;
 }

 public String getCity() {
 return city;
 }

 public void setCity(String city) {
 this.city = city;
 }

 public String getState() {
 return state;
 }

 public void setState(String state) {
 this.state = state;
 }

 public String getZipcode() {
 return zipcode;
 }

 public void setZipcode(String zipcode) {
 this.zipcode = zipcode;
 }

Keeping in mind the conversion rules, note the following:

	
Since the password is defined as transient, it is ignored with respect to the conversion algorithm.

	
Since name, address, id, and salary all have get and set methods, they will all be converted to and from the GenericType.

	
Based on the property type, properties can be coerced between types, as defined in the coerceToType(Object, Class) method of the oracle.adfmf.misc.Converter class.

	
Complex objects, such as address, are recursed by the conversion algorithm to either build the child GenericType or to create and populate the POJO complex object depending on the direction of the conversion.

	
Since phone is an array of String objects each representing a unique phone number and since the cardinality of this element is greater than one, the conversion algorithm will find all matches of the phone attribute in the GenericType object, present them as an array, and invoke the setPhone method on the bean. The toGenericType method of the GenericTypeBeanSerializationHandler will take each array element and append it to the toGenericType as an individual phone attribute.

With the following defined:

final String EMPLOYEE_VIRTUAL_BEAN_NAME = "EmployeeDC.Types.Employee";
Employee emp = getEmployee();
GenericType gt = null;

	
The Employee object is converted to the GenericType as:

gt = GenericTypeBeanSerializationHelper.toGenericType
 (EMPLOYEE_VIRTUAL_BEAN_NAME, emp);

	
The GenericType is converted to the Employee object as:

emp = GenericTypeBeanSerializationHelper.fromGenericType
 (Employee.class, gt, null);

For successful conversion, consider the following:

	
Typically, POJOs closely follow their associated GenericType structure.

	
When deviating from the GenericType structure, one of the following strategies should be followed:

	
Additional bean properties should be declared transient.

	
Optional properties can be excluded from the POJO, provided that the backing service can handle the missing data if used as an operation parameter.

	
The GenericType is only exposed in SOAP data controls. The virtual types have an associated virtual bean name that is passed into the toGenericType method. You can access the virtual bean name by hovering over the virtual type in the Data Controls window of JDeveloper. The typical name format is <DCName>.Types.<methodName>.<argName>.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

15.8.1 How to Add and Delete Rows on Web Services Objects

MAF allows you to insert and delete rows from a web services object programmatically by accessing the iterator on that object. To do so, you use the createRow and deleteRow methods of the oracle.adfmf.bindings.iterator.BasicIterator class.

Example 15-9 shows how to add a row to a web services object.

Example 15-9 Inserting a Row

String keyFieldNames[] = {"EMPLID","ACAD_CAREER","INSTITUTION"};
String keyFieldValues[] = {"SR12030","UGRD","PSUNV"};
AmxAccessorIteratorBinding acIter =
 (AmxAccessorIteratorBinding)((AdfmfJavaUtilities.getValueExpression
 ("#{bindings.KEYIterator}", Object.class))
 .getValue(AdfmfJavaUtilities.getAdfELContext()));

BasicIterator iter = acIter.getIterator();
GenericType key = (GenericType)iter.getDataProvider();
key.setAttribute("FIELDNAME", keyFieldNames[0]);
key.setAttribute("FIELDVALUE", keyFieldValues[0]);

int totalRowCount = 0;
int currIndex = 0;

for (int i = 1; i < keyFieldNames.length; i++) {
 totalRowCount = iter.getTotalRowCount();
 currIndex = iter.getCurrentIndex();

 System.out.println("Starting to add rows.. \n\t Total Row Count: " +
 totalRowCount + "\n\t Current Row Index: " + currIndex);

 // Create rows for key iterator
 iter.createRow();

 totalRowCount = iter.getTotalRowCount();
 System.out.println("\t Total Row Count after creating row: " + totalRowCount);

 if (iter.hasNext()) {
 iter.next();
 }

 currIndex = iter.getCurrentIndex();
 System.out.println("\t Current Row Index after setting current
 index to newly added row: " + currIndex);

 GenericType key1 = (GenericType)iter.getDataProvider();
 key1.setAttribute("FIELDNAME", keyFieldNames[i]);
 key1.setAttribute("FIELDVALUE", keyFieldValues[i]);
}

// Execute method

// Add call to execute the action binding to execute the action.
// If this is a web service call, the modified GenericType object
// will be sent to the server and the server will respond appropriately

	
Note:

The createRow method signatures are available with and without a boolean input parameter. When this method is used without parameters, it produces the result identical to using the createRow with its boolean parameter value set to true: both createRow() and createRow(true) create a new row and insert it in the iterator.

15.8.2 How to Use REST Web Services Adapter

You can use the oracle.adfmf.dc.ws.rest.RestServiceAdapter interface to access data (that could be presented as JavaScript Object Notation, for example) sent across a REST call. The RestServiceAdapter interface lets you trigger execution of web service operations without the need to create a web service data control or interact with it directly.

To use the RestServiceAdapter interface in your MAF application, ensure that the connection exists in the connections.xml file (see Section 15.5, "Creating a New Web Service Connection"), and then add your code to the bean class, as the following examples show.

Example 15-10 demonstrates the use of the RestServiceAdapter for the GET request.

Example 15-10 Using RestServiceAdapter for GET Request

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

// Clear any previously set request properties, if any
restServiceAdapter.clearRequestProperties();

// Set the connection name
restServiceAdapter.setConnectionName("RestServerEndpoint");

// Specify the type of request
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET);

// Specify the number of retries
restServiceAdapter.setRetryLimit(0);

// Set the URI which is defined after the endpoint in the connections.xml.
// The request is the endpoint + the URI being set
restServiceAdapter.setRequestURI("/WebService/Departments/100");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For GET request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

Example 15-11 demonstrates the use of the RestServiceAdapter for the POST request.

Example 15-11 Using RestServiceAdapter for POST Request

String id = "111";
String name = "TestName111";
String location = "TestLocation111";
RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_POST);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String postData = makeDepartmentPost("DEPT", id, name, location);
 response = restServiceAdapter.send(postData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPost(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";
 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

Example 15-12 demonstrates the use of the RestServiceAdapter for the PUT request.

Example 15-12 Using RestServiceAdapter for PUT Request

String id = "111";
String name = "TestName111";
String location = "TestLocation111";
RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_PUT);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments");

String response = "";

// Execute SEND and RECEIVE operation
try {
 String putData = makeDepartmentPut("DEPT", id, name, location);
 response = restServiceAdapter.send(putData);
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + response);

private String makeDepartmentPut(String rootName, String id,
 String name, String location) {
 String ret = "<" + rootName + ">";
 ret += "<DEPTID>" + id + "</DEPTID>";
 ret += "<NAME>" + name + "</NAME>";
 ret += "<LOCATION>" + location + "</LOCATION>";
 ret += "</" + rootName + ">";
 return ret;
}

Example 15-13 demonstrates the use of the RestServiceAdapter for the DELETE request.

Example 15-13 Using RestServiceAdapter for DELETE Request

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("RestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_DELETE);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/WebService/Departments/44");

String response = "";

// Execute SEND and RECEIVE operation
try {
 // For DELETE request, there is no payload
 response = restServiceAdapter.send("");
}
catch (Exception e) {
 e.printStackTrace();
}

System.out.println("The response is: " + response);

When you use the RestServiceAdapter, you should set the Accept and Content-Type headers to ensure that your request and response payloads are not deemed invalid due to mismatched MIME type.

	
Note:

The REST web service adapter only supports UTF-8 character set on MAF applications. UTF-8 is embedded in the adapter program.

15.8.2.1 Accessing Input and Output Streams

You can use the following RestServiceAdapter methods to obtain and customize the javax.microedition.io.HttpConnection, as well as access and interact with the connection's input and output streams which allows you to read data from the HttpConnection and write to it for further upload to the server:

	
Get an HttpConnection:

HttpConnection getHttpConnection(String requestMethod,
 String request,
 Object httpHeadersValue)

	
Get the HttpConnection's OutputStream:

OutputStream getOutputStream(HttpConnection connection)

	
Get the HttpConnection's InputStream:

InputStream getInputStream(HttpConnection connection)

	
Close the HttpConnection:

void close (HttpConnection connection)

	
Look up a connection name in the connections.xml file and return the connection's end point:

String getConnectionEndPoint(String connecionName)

These methods, while accomplishing the same functionality as the RestServiceAdaper's send and sendReceive methods, provide opportunity for customization of the connection and the process of sending requests and receiving responses.

Example 15-14 initializes and returns an HttpConnection using the provided request method, request, and HTTP headers value. In addition, it injects basic authentication into the request headers from the credential store, obtains the input stream and closes the connection.

Example 15-14 Obtaining HttpConnection and Using Its Methods

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();

// Specify the type of request
String requestMethod = RestServiceAdapter.REQUEST_TYPE_GET;

// Get the connection end point from connections.xml
String requestEndPoint = restServiceAdapter.getConnectionEndPoint("GeoIP");

// Get the URI which is defined after the end point
String requestURI = "/xml/" + someIpAddress;

// The request is the end point + the URI being set
String request = requestEndPoint + requestURI;

// Specify some custom request headers
HashMap httpHeadersValue = new HashMap();
httpHeadersValue.put("Accept-Language", "en-US");
httpHeadersValue.put("My-Custom-Header-Item", "CustomItem1");

// Get the connection
HttpConnection connection =
 restServiceAdapter.getHttpConnection(requestMethod,
 request,
 httpHeadersValue);

// Get the input stream
InputStream inputStream = restServiceAdapter.getInputStream(connection);

// Define data
ByteArrayOutputStream byStream = new ByteArrayOutputStream();

int res = 0;
int bufsize = 0, bufread = 0;

byte[] data = (bufsize > 0) ? new byte[bufsize] : new byte[1024];

// Use the input stream to read data
while ((res = inputStream.read(data)) > 0) {
 byStream.write(data, 0, res);
 bufread = bufread + res;
}
data = byStream.toByteArray();

// Use data
...

restServiceAdapter.close(connection);
...

15.8.2.2 Support for Non-Text Responses

You can use the RestServiceAdapter to handle binary (non-text) responses received from web service calls. These responses can include any type of binary data, such as PDF or video files. The RestServiceAdapter method to use is sendReceive.

Example 15-15 shows how to send a request for a file to a REST server, and then save the file to a disk (see Example 15-16).

Example 15-15 Sending Request for File

RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

restServiceAdapter.clearRequestProperties();
restServiceAdapter.setConnectionName("JagRestServerEndpoint");
restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET);
restServiceAdapter.setRetryLimit(0);
restServiceAdapter.setRequestURI("/ftaServer/v1/kpis/123/related/1");

// Set credentials needed to access the REST server
String theUsername = "hr_spec_all";
String thePassword = "Welcome1";
String userPassword = theUsername + ":" + thePassword;
String encoding = new sun.misc.BASE64Encoder().encode(userPassword.getBytes());

restServiceAdapter.addRequestProperty("Authorization", "Basic " + encoding);

// Execute the SEND / RECEIVE operation.
// Since it is a GET request, there is no payload.
try {
 this.responseRaw = restServiceAdapter.sendReceive("");
}
catch (Exception e) {
 e.printStackTrace();
}
System.out.println("The response is: " + this.responseRaw);

// Write the response to a file
writeByteArrayToFile(this.responseRaw);

Example 15-16 demonstrates a method that is called by the code from Example 15-15. This method saves a byte[] response to a file on disk:

Example 15-16 Saving File to Disk

public void writeByteArrayToFile(byte[] fileContent) {
 BufferedOutputStream bos = null;
try {
 FileOutputStream fos = new FileOutputStream(new File(fileToSavePath));
 bos = new BufferedOutputStream(fos);

 // Write the byte [] to a file
 System.out.println("Writing byte array to file");
 bos.write(fileContent);
 System.out.println("File written");
}
catch(FileNotFoundException fnfe) {
 System.out.println("Specified file not found" + fnfe);
}
catch (IOException ioe) {
 System.out.println("Error while writing file" + ioe);
}
finally {
 if(bos != null) {
 try {
 // Flush the BufferedOutputStream
 bos.flush();

 // Close the BufferedOutputStream
 bos.close();
 }
 catch (Exception e) {
 }
 }
}

15.8.3 How to Enable Strict Validation of REST Responses

Using the maf-config.xml file, you can specify how MAF is to behave when a REST response contains a child or attribute that is not expected or defined in the XSD:

	
If the strict validation is enabled, MAF throws an exception.

	
If the strict validation is disabled, the condition is logged and the execution continues without exceptions thrown.

Example 15-17 shows how to set the validated parameter. If you define the value of this parameter as true, the validation proceeds as strict. The value of false (default) means that the validation is not strict.

Example 15-17 Enabling Strict Validation of REST Response

<generic-type>
 <conversion>
 <validated>true</validated>
 </conversion>
</generic-type>

15.8.4 How to Process JSON Responses

In addition to XML, a REST web service that you use in your MAF application can accommodate a message specified in a JavaScript Object Notation (JSON) format.

A MAF sample application called RESTDemo (located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer) includes the RESTJSONBean.java file that demonstrates how the RestServiceAdapter described in detail in Section 15.8.2, "How to Use REST Web Services Adapter" enables the use of JSON as a message format for REST web services

The RESTJSONResponse.java file that is also included in the RESTDemo represents the JSON message and is converted to an appropriate format using the fromJSON method of the JSONBeanSerializationHelper class.

The RESTJSONBean's loadData method shown in Example 15-18 demonstrates how to use the relevant APIs.

Example 15-18 Using JSON as Message Format

public class RESTJSONBean {
...
 public void setResponse(RESTJSONResponse response) {
 RESTJSONResponse oldResponse = this.response;
 this.response = response;
 propertyChangeSupport.firePropertyChange("response", oldResponse, response);
 }

 public void loadData() {
 RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter();

 // Clear previously set request properties, if any
 restServiceAdapter.clearRequestProperties();

 // Set the connection name
 restServiceAdapter.setConnectionName("GeoIP");

 // Specify the type of request
 restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET);

 // Specify the number of retries
 restServiceAdapter.setRetryLimit(0);

 // Set the URI which is defined after the endpoint in the connections.xml
 // The request is the endpoint + the URI being set
 restServiceAdapter.setRequestURI("/json/" + getSearchIp());

 setJsonResponse("");

 // Execute SEND and RECEIVE operation
 try {
 // For GET request, there is no payload
 setJsonResponse(restServiceAdapter.send(""));

 // Create a new RESTJSONResponse object and
 // parse the returned JSON string into this class
 RESTJSONResponse res = new RESTJSONResponse();
 res = (RESTJSONResponse)JSONBeanSerializationHelper.
 fromJSON(RESTJSONResponse.class, getJsonResponse());
 setResponse(res);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
...
}

For additional information and examples, see the tutorial called Consuming REST-JSON Web Services in Mobile Applications with Oracle Mobile Application Framework.

15.8.5 What You May Need to Know About Invoking Data Control Operations

You can use the invokeDataControlMethod method of the AdfmfJavaUtilities to invoke a data control operation which does not have to be explicitly added as a methodAction in a PageDef file.

For more information and examples, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

15.9 Understanding Limitations Related to MAF Support for JavaScript

Since MAF REST web service client does not support JavaScript, REST exchanges that require execution of JavaScript cannot be successfully processed by MAF applications. That is, a server response that expects the client to execute JavaScript cannot be completed. Your MAF application cannot include code to indirectly retrieve a web page that requires JavaScript support in order to complete the original request through redirection.

The following is an acceptable scenario on web browsers because most of them support JavaScript. However, it would not produce the desired outcome if used within a MAF application:

An application requests for data using REST web service and the application server redirects the request to the authentication server. The authentication server serves a web page that, in turn, redirects to another page, and then redirects back to the original REST end point. In the redirect sequence, one of the web pages that is served by the authentication server expects the client to execute a JavaScript and authenticates the end user against the application server.

15.10 Configuring the Browser Proxy Information

If the web service you are to call resides outside your corporate firewall, you need to ensure that you have set the appropriate Java system properties to configure the use of an HTTP proxy server.

By default, MAF determines the proxy information using the system settings on iOS and Android platforms. For example, if the proxy information is set using the Settings utility on an iOS-powered device, then CVM automatically absorbs it.

	
Note:

It is possible to define a different proxy for each MAF application.

If you do not want to obtain the proxy information from the device settings, first you need to add the -Dcom.oracle.net.httpProxySource system property. The default value of this property is native, which means that the proxy information is to be obtained from the device settings. You need to disable it by specifying a different value, such as user, for example: -Dcom.oracle.net.httpProxySource=user

CVM uses two different mechanisms for enabling the network connection:

	
The generic connection framework (GCF). If this mechanism is used, the proxy is defined through the system property -Dcom.sun.cdc.io.http.proxy=<host>:<port>

	
java.net API. If this mechanism is used, the proxy is defined through the standard http.proxyHost and http.proxyPort.

In either case, it is recommended to define all three properties in the maf.properties file, which would look similar to the following:

java.commandline.argument=-Dcom.oracle.net.httpProxySource=user
java.commandline.argument=-Dcom.sun.cdc.io.http.proxy=www-proxy.us.mycompany.com:80
java.commandline.argument=-Dhttp.proxyHost=www-proxy.us.mycompany.com
java.commandline.argument=-Dhttp.proxyPort=80

	
Note:

These properties affect only the CVM side of network calls.

16 Configuring End Points Used in MAF Applications

This chapter describes how to use the Configuration Service to configure end points that a MAF application can use.

This chapter includes the following sections:

	
Section 16.1, "Introduction to Configuring End Points in MAF Applications"

	
Section 16.2, "Defining the Configuration Service End Point"

	
Section 16.3, "Creating the User Interface for the Configuration Service"

	
Section 16.4, "About the URL Construction"

	
Section 16.5, "Setting Up the Configuration Service on the Server"

	
Section 16.6, "Migrating the Configuration Service from ADF Mobile"

16.1 Introduction to Configuring End Points in MAF Applications

The Configuration Service is a tool that allows you to configure end points used by web services, login utilities, and other parts of MAF applications.

16.2 Defining the Configuration Service End Point

The end point URL is defined in the connections.xml file and a new connection entry must be added to that file. This new connection should be of type HttpURLConnection, with its url value pointing to the configuration server end point URL and its name set to an arbitrary value which will eventually be referenced in a Java bean code.

Example 16-1 shows how to define the Configuration Service end point in the connections.xml file.

Example 16-1 Setting End Point in the connections.xml File

 <RefAddresses>
 <XmlRefAddr addrType="ConfigServiceConnection">
 <Contents>
 <urlconnection name="ConfigServiceConnection" url="http://127.0.0.1"/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>

<!-- Login Server connection for secured configuration service -->
 <Reference name="ConfigServerLogin" className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="ConfigServerLogin" partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://127.0.0.1"/>
 <logout url="http://127.0.0.1"/>
 <authenticationMode value="remote"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <maxFailuresBeforeCredentialCleared value="3"/>
 <injectCookiesToRestHttpHeader value="true"/>
 <includeBasicAuthHeader value="true"/>
 <rememberCredentials>
 <enableRememberUserName value="true"/>
 <rememberUserNameDefault value="true"/>
 <enableRememberPassword value="false"/>
 <enableStayLoggedIn value="false"/>
 </rememberCredentials>
 <accessControl/>
 <userObjectFilter/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>

If security is enabled for the configuration server, the connections.xml file has to include a login connection that points to the same end point URL as the URL connection. The login connection and HttpURLConnection should share the same adfCredentialStoreKey, as Example 16-1 shows.

Most of the time, the end point URL needs to be retrieved from the end user. To address this use case, create a user interface to retrieve the value of the end point URL from the end user and set it in an application preference. The retrieved value can then be used in a Java bean method to override the connection URL value, as Example 16-2 shows.

Example 16-2 Overriding the Connection Definition

AdfmfJavaUtilities.clearSecurityConfigOverrides(<ConfigService_ConnectionName>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_ConnectionName>, "urlconnection",
 "url", <ConfigService_EndpointURL>);
AdfmfJavaUtilities.addWhiteListEntry(AdfmfJavaUtilities.getFeatureId(),
 <ConfigService_EndpointURL>, false);

// Required if Config Service is secured and the authentication endpoints are input by the user
AdfmfJavaUtilities.clearSecurityConfigOverrides(<ConfigService_AuthenticationConnectionName>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_AuthenticationConnectionName>,
 "login", "url", <Login_EndpointURL>);
AdfmfJavaUtilities.overrideConnectionProperty(<ConfigService_AuthenticationConnectionName>,
 "logout", "url", <Logout_EndpointURL>);
AdfmfJavaUtilities.addWhiteListEntry(<Login_EndpointURL>, false);
AdfmfJavaUtilities.addWhiteListEntry(<Logout_EndpointURL>, false);

// Final step to apply the changes
AdfmfJavaUtilities.updateApplicationInformation(false);

16.3 Creating the User Interface for the Configuration Service

If there is a requirement for the Configuration Service user interface, you should create it in a new or existing application feature.

MAF provides a set of APIs within the oracle.adfmf.config.client.ConfigurationService class that allow to check for new changes on the server and download the updates. You can use these APIs in a Java bean to activate the respective methods through the Configuration Service application feature.

In the following list of APIs and their sample usage, the _configservice variable represents an instance of the oracle.adfmf.config.client.ConfigurationService class:

	
setDeliveryMechanism method sets the delivery mechanism for the Configuration Service. Since the communication with the previous release's configuration server is enabled through HTTP, http is passed in as an argument to this method:

_configservice.setDeliveryMechanism("http");

	
Note:

The method argument refers to the web transport that is to be used for the Configuration Service and should not be confused with HTTP or HTTPS: if the end point is an HTTPS URL, setting the transport to http is still valid.

	
setDeliveryMechanismConfiguration method sets additional attributes on the Configuration Service to associate the configuration server connection and the end point URL:

_configservice.setDeliveryMechanismConfiguration("connectionName",
 <ConfigService_ConnectionName>);

	
isThereAnyNewConfigurationChanges method checks whether or not there are any changes on the server that are available for download, and if there are, this method returns true:

_configservice.isThereAnyNewConfigurationChanges(<APPLICATION_ID>, <VERSION>);

	
stageAndActivateVersion method triggers download of updates by the Configuration Service. The application version is passed in as an argument to this method, either as a hard-coded value or obtained through the Application.getApplicationVersion API:

_configservice.stageAndActivateVersion("1.0");

_configservice.stageAndActivateVersion(Application.getApplicationVersion);

	
addProgressListener method registers an update progress listener on the Configuration Service to receive update messages and progress status. The underlying class should implement the ProgressListener interface and the updateProgress method which is to be called from the Configuration Service. The updateProgress method receives the progress update message and the update percentage complete:

_configservice.addProgressListener(this);

	
removeProgressListener method unregisters the update progress listener:

_configservice.removeProgressListener(this);

The ConfigServiceDemo sample application demonstrates how to use these APIs to communicate with the configuration server. The ConfigServiceDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

For more information about the oracle.adfmf.config.client.ConfigurationService class, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

16.4 About the URL Construction

The Configuration Service takes the endpoint URL that the user provides or that is specified in the connections.xml file and uses it to construct the URL to download the connections.xml file.

For example, if a user provides the following endpoint URL for an application that has an application ID value of com.mycompany.appname:

http://my.server.com:port/SomeLocation

Then, the Configuration Service constructs the following URL to download the connections.xml file:

http://my.server.com:port/SomeLocation/com.mycompany.appname/connections.xml

16.5 Setting Up the Configuration Service on the Server

The Configuration Service can be implemented as a service that accepts HTTP GET requests and returns the connections.xml file.

The URL used by the Configuration Service client is in the following format:

url configured in /connections.xml

The Configuration Service end point may be secured using basic authentication (BASIC_AUTH) over HTTP and HTTPS.

16.6 Migrating the Configuration Service from ADF Mobile

You have to perform a manual migration of the Configuration Service if you migrate an application that you created using ADF Mobile to MAF Release 2.0 or later.

MAF Release 2.0 removed support for the following APIs, properties, and utilities that enabled functionality of the Configuration Service:

	
The adf-config.xml file can no longer be used to enable the Configuration Service by setting the use-configuration-service-at-startup property or to provide the end point URL using the adfmf-configuration-service-seed-url property.

	
The checkForUpdates API that provided a way to check for Configuration Service updates is deprecated.

	
The Configuration Service was initiated from a UI provided by ADF Mobile.

The end point URL must be moved from the adf-config.xml file to the connections.xml file and a new connection element must be added to the connections.xml file, as described in Section 16.2, "Defining the Configuration Service End Point."

As part of the migration to this release of MAF, you create a user interface to retrieve the endpoint URL from the user and add a backing bean to invoke the Configuration Service APIs. For more information, see Section 16.3, "Creating the User Interface for the Configuration Service."

A MAF sample application called ConfigServiceDemo demonstrates how to use the APIs to communicate with the configuration server. The ConfigServiceDemo application is located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

17 Using the Local Database in MAF AMX

This chapter describes how to use the local SQLite database within a MAF AMX application feature.

This chapter includes the following sections:

	
Section 17.1, "Introduction to the Local SQLite Database Usage"

	
Section 17.2, "Using the Local SQLite Database"

17.1 Introduction to the Local SQLite Database Usage

SQLite is a relational database management system (RDBMS) specifically designed for embedded applications.

SQLite has the following characteristics:

	
It is ACID-compliant: like other traditional database systems, it has the properties of atomicity, consistency, isolation, and durability.

	
It is lightweight: the entire database consists of a small C library designed to be embedded directly within an application.

	
It is portable: the database is self-contained in a single file that is binary-compatible across a diverse range of computer architectures and operating systems

For more information, see the SQLite website at http://www.sqlite.org.

For a sample usage of the local SQLite database, see the MAF sample application called StockTracker located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer. For more information, see Section 17.2.8, "What You May Need to Know About the StockTracker Sample Application."

17.1.1 Differences Between SQLite and Other Relational Databases

SQLite is designed for use as an embedded database system, one typically used by a single user and often linked directly into the application. Enterprise databases, on the other hand, are designed for high concurrency in a distributed client-server environment. Because of these differences, there is a number of limitations compared to Oracle databases. Some of the most important differences are:

	
Concurrency

	
SQL Support and Interpretation

	
Data Types

	
Foreign Keys

	
Database Transactions

	
Authentication

For more information, see the following:

	
Documentation section of the SQLite website at http://www.sqlite.org/docs.html

	
"Limits In SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/limits.html

17.1.1.1 Concurrency

At any given time, a single instance of the SQLite database may have either a single read-write connection or multiple read-only connections.

Due to its coarse-grained locking mechanism, SQLite does not support multiple read-write connections to the same database instance. For more information, see "File Locking And Concurrency In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/lockingv3.html.

17.1.1.2 SQL Support and Interpretation

Although SQLite complies with the SQL92 standard, there are a few unsupported constructs, including the following:

	
RIGHT OUTER JOIN

	
FULL OUTER JOIN

	
GRANT

	
REVOKE

For more information, see "SQL Features That SQLite Does Not Implement" available from the Documentation section of the SQLite website at http://www.sqlite.org/omitted.html.

For information on how SQLite interprets SQL, see "SQL As Understood by SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/lang_createtable.html.

17.1.1.3 Data Types

While most database systems are strongly typed, SQLite is dynamically typed and therefore any value can be stored in any column, regardless of its declared type. SQLite does not return an error if, for instance, a string value is mistakenly stored in a numeric column. For more information, see "Datatypes In SQLite Version 3" available from the Documentation section of the SQLite website at http://www.sqlite.org/datatype3.html.

17.1.1.4 Foreign Keys

SQLite supports foreign keys. It parses and enforces foreign key constraints. For more information, see the SQLite Foreign Key Support available from the Documentation section of the SQLite site at http://www.sqlite.org/foreignkeys.html.

17.1.1.5 Database Transactions

Although SQLite is ACID-compliant and hence supports transactions, there are some fundamental differences between its transaction support and Oracle's:

	
Nested transactions: SQLite does not support nested transactions. Only a single transaction may be active at any given time.

	
Commit: SQLite permits either multiple read-only connections or a single read-write connection to any given database. Therefore, if you have multiple connections to the same database, only the first connection that attempts to modify the database can succeed.

	
Rollback: SQLite does not permit a transaction to be rolled back until all open ResultSets have been closed first.

For more information, see "Distinctive Features of SQLite" available from the Documentation section of the SQLite website at http://www.sqlite.org/different.html.

17.1.1.6 Authentication

SQLite does not support any form of role-based or user-based authentication. By default, anyone can access all of the data in the file. However, MAF provides encryption routines that you can use to secure the data and prevent access by users without the valid set of credentials. For more information, see Section 17.2.7, "How to Encrypt and Decrypt the Database."

17.2 Using the Local SQLite Database

MAF contains an encrypted SQLite 3.8.5 database.

A typical SQLite usage requires you to know the following:

	
How to Connect to the Database

	
How to Use SQL Script to Initialize the Database or How to Initialize the Database on a Desktop

	
How to Encrypt and Decrypt the Database

	
How to Use the VACUUM Command

17.2.1 How to Connect to the Database

Connecting to the SQLite database is somewhat different from opening a connection to an Oracle database. That said, once you have acquired the initial connection, you can use most of the same JDBC APIs and SQL syntax to query and modify the database.

You use the java.sql.Connection object associated with your application to connect to the SQLite database. When creating the connection, ensure that every SQLite JDBC URL begins with the text jdbc:sqlite:.

Example 17-1 shows how to open a connection to an unencrypted database. Prior to obtaining the connection, you have to load the JDBC driver.

Example 17-1 Connecting to Unencrypted Database

public static Connection getConnection() throws Exception {
 if (conn == null) {
 try {
 // create a database connection
 String Dir = AdfmfJavaUtilities.getDirectoryPathRoot(
 AdfmfJavaUtilities.ApplicationDirectory);
 String connStr = "jdbc:sqlite:" + Dir + "/portfolio.db";
 // Load the driver
 Class.forName("SQLite.JDBCDriver");
 conn = DriverManager.getConnection(connStr);
 }
 catch (SQLException e) {
 // If the error message is "out of memory", it probably
 // means that no database file is found
 System.err.println(e.getClass().getName() + ": " + e.getMessage());
 e.printStackTrace();
 }
 }
 return conn;
}

For additional examples, see the MAF sample application called StockTracker located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

Example 17-2 shows how to open a connection to an encrypted database.

Example 17-2 Connecting to Encrypted Database

java.sql.Connection connection = new SQLite.JDBCDataSource
 ("jdbc:sqlite:/path/to/database").getConnection(null,"password");

In the preceding example, the first parameter of the getConnection method is the user name, but since SQLite does not support user-based security, this value is ignored.

	
Note:

SQLite does not display any error messages if you open an encrypted database with an incorrect password. Likewise, you are not alerted if you mistakenly open an unencrypted database with a password. Instead, when you attempt to read or modify the data, an SQLException is thrown with the message "Error: file is encrypted or is not a database".

17.2.2 How to Use SQL Script to Initialize the Database

Typically, you can use an SQL script to initialize the database when the application starts. Example 17-3 shows the SQL initialization script that demonstrates some of the supported SQL syntax (described in Section 17.1.1.2, "SQL Support and Interpretation") through its use of the DROP TABLE, CREATE TABLE, and INSERT commands and the NUMBER and VARCHAR2 data types.

Example 17-3 SQL Initialization Script

DROP TABLE IF EXISTS PERSONS;

CREATE TABLE PERSONS
(
PERSON_ID NUMBER(15) NOT NULL,
FIRST_NAME VARCHAR2(30),
LAST_NAME VARCHAR2(30),
EMAIL VARCHAR2(25) NOT NULL
);

INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (100, 'David', 'King', 'steven@king.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (101, 'Neena', 'Kochhar', 'neena@kochhar.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (102, 'Lex', 'De Haan', 'lex@dehaan.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (103, 'Alexander', 'Hunold', 'alexander@hunold.net');
INSERT INTO PERSONS (PERSON_ID, FIRST_NAME, LAST_NAME, EMAIL) VALUES (104, 'Bruce', 'Ernst', 'bruce@ernst.net');

To use the SQL script, add it to the ApplicationController project of your MAF application as a resource. Suppose a sample script has been saved as initialize.sql in the META-INF directory. Example 17-4 shows the code that you should add to parse the SQL script and execute the statements.

Example 17-4 Initializing Database from SQL Script

private static void initializeDatabaseFromScript() throws Exception {
 InputStream scriptStream = null;
 Connection conn = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.
 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // If the database does not exist, a new database is automatically
 // created when the SQLite JDBC connection is created
 conn = new SQLite.JDBCDataSource("jdbc:sqlite:" + docRoot +
 "/sample.db").getConnection();

 // To improve performance, the statements are executed
 // one at a time in the context of a single transaction
 conn.setAutoCommit(false);

 // Since the SQL script has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 scriptStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/initialize.sql");
 BufferedReader scriptReader = new BufferedReader
 (new InputStreamReader(scriptStream));
 String nextLine;
 StringBuffer nextStatement = new StringBuffer();

 // The while loop iterates over all the lines in the SQL script,
 // assembling them into valid SQL statements and executing them as
 // a terminating semicolon is encountered
 Statement stmt = conn.createStatement();
 while ((nextLine = scriptReader.readLine()) != null) {
 // Skipping blank lines, comments, and COMMIT statements
 if (nextLine.startsWith("REM") ||
 nextLine.startsWith("COMMIT") ||
 nextLine.length() < 1)
 continue;
 nextStatement.append(nextLine);
 if (nextLine.endsWith(";")) {
 stmt.execute(nextStatement.toString());
 nextStatement = new StringBuffer();
 }
 }
 conn.commit();
 }
 finally {
 if (conn != null)
 conn.close();
 }
}

	
Note:

In Example 17-4, the error handling was omitted for simplicity.

You invoke the database initialization code (see Example 17-4) from the start method of the LifeCycleListenerImpl, as Example 17-5 shows.

Example 17-5 Invoking Database Initialization Code

public void start() {
 try {
 initializeDatabaseFromScript();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

17.2.3 How to Initialize the Database on a Desktop

Because SQLite databases are self-contained and binary-compatible across platforms, you can use the same database file on iOS, Android, Windows, Linux, and Mac OS platforms. In complex cases, you can initialize the database on a desktop using third-party tools (such as MesaSQLite, SQLiteManager, and SQLite Database Browser), and then package the resulting file as a resource in your application.

To use the database, add it to the ApplicationController project of your MAF application as a resource. Suppose a database has been saved as sample.db in the META-INF directory. Example 17-6 shows the code that you should add to copy the database from your application to the mobile device's file system to enable access to the database.

Example 17-6 Initializing Database on Desktop

private static void initializeDatabase() throws Exception {
 InputStream sourceStream = null;
 FileOutputStream destinationStream = null;
 try {
 // ApplicationDirectory returns the private read-write sandbox area
 // of the mobile device's file system that this application can access.
 // This is where the database is created
 String docRoot = AdfmfJavaUtilities.getDirectoryPathRoot
 (AdfmfJavaUtilities.ApplicationDirectory);
 String dbName = docRoot + "/sample.db";

 // Verify whether or not the database exists.
 // If it does, then it has already been initialized
 // and no furher actions are required
 File dbFile = new File(dbName);
 if (dbFile.exists())
 return;

 // Since the database has been packaged as a resource within
 // the application, the getResourceAsStream method is used
 sourceStream = Thread.currentThread().getContextClassLoader().
 getResourceAsStream("META-INF/sample.db");
 destinationStream = new FileOutputStream(dbName);
 byte[] buffer = new byte[1000];
 int bytesRead;
 while ((bytesRead = sourceStream.read(buffer)) != -1) {
 destinationStream.write(buffer, 0, bytesRead);
 }
 }
 finally {
 if (sourceStream != null)
 sourceStream.close();
 if (destinationStream != null)
 destinationStream.close();
 }
}

	
Note:

In Example 17-6, the error handling was omitted for simplicity.

You invoke the database initialization code (see Example 17-6) from the start method of the LifeCycleListenerImpl, as Example 17-7 shows.

Example 17-7 Invoking Database Initialization Code

public void start() {
 try {
 initializeDatabase();
 }
 catch (Exception e) {
 Trace.log(Utility.FrameworkLogger,
 Level.SEVERE,
 LifeCycleListenerImpl.class,
 "start",
 e);
 }
}

17.2.4 What You May Need to Know About Commit Handling

Commit statements are ignored when encountered. Each statement is committed as it is read from the SQL script. This auto-commit functionality is provided by the SQLite database by default. To improve your application's performance, you can disable the auto-commit to allow a regular execution of commit statements by using the Connection's setAutoCommit(false) method.

17.2.5 Limitations of the MAF's SQLite JDBC Driver

The following methods from the java.sql package have limited or no support in MAF:

	
The getByte method of the ResultSet is not supported. If used, this method will throw an SQLException when executed.

	
The execute method of the Statement always returns true (as opposed to returning true only for statements that return a ResultSet).

17.2.6 How to Use the VACUUM Command

When records are deleted from an SQLite database, its size does not change. This leads to fragmentation and, ultimately, results in degraded performance. You can avoid this by periodically running the VACUUM command.

	
Note:

The VACUUM can take a significant amount of time when run on large databases (approximately 0.5 seconds per megabyte on the Linux computer on which SQLite is developed). In addition, it can use up to twice as much temporary disk space as the original file while it is running.

Typically, the VACUUM command should be run from a properly registered LifeCycleListener implementation (see Chapter 11, "Using Lifecycle Listeners in MAF Applications.").

17.2.7 How to Encrypt and Decrypt the Database

MAF allows you to provide the SQLite database with an initial or subsequent encryption through the use of various APIs. Some of these APIs enable you to specify your own password for encrypting the database. Others are used when you prefer MAF to generate and, optionally, manage the password.

To encrypt the database with your own password:

	
Establish the database connection (see Section 17.2.1, "How to Connect to the Database").

	
Use the following utility method to encrypt the database with a new key:

AdfmfJavaUtilities.encryptDatabase(connection, "newPassword");

To permanently decrypt the database encrypted with your own password:

	
Open the encrypted database with the correct password.

	
Use the following utility method:

AdfmfJavaUtilities.decryptDatabase(connection);

	
Caution:

If you open a database incorrectly (for example, use an invalid password to open an encrypted database), and then encrypt it again, neither the old correct password, the invalid password, nor the new password can unlock the database resulting in the irretrievable loss of data.

To encrypt the database using the MAF-generated password:

	
Generate a password using the following method:

GeneratedPassword.setPassword("databasePasswordID", "initialSeedValue");

This method requires both a unique identifier and an initial seed value to aid the cryptographic functions in generating a strong password.

	
Retrieve the created password using the previously-specified ID as follows:

char[] password = GeneratedPassword.getPassword("databasePasswordID");

	
Establish the database connection (see Section 17.2.1, "How to Connect to the Database").

	
Encrypt the database as follows:

AdfmfJavaUtilities.encryptDatabase(connection, new String(password));

To decrypt the database and delete the MAF-generated password:

	
Obtain the correct password as follows:

char[] password = GeneratedPassword.getPassword("databasePasswordID");

	
Establish the database connection and decrypt the database as follows:

java.sql.Connection connection =
 SQLite.JDBCDataSource("jdbc:sqlite:/path/to/database").
 getConnection(null, new String(password));

	
Optionally, delete the generated password using the following method:

GeneratedPassword.clearPassword("databasePasswordID");

17.2.8 What You May Need to Know About the StockTracker Sample Application

The StockTracker sample application uses a custom SQLite database file that is packaged within this application. The database file contains a table with four records which include information on four stocks. When the application is activated, it reads data from the table and displays the four stocks. The information about the stocks can be subject to CRUD operations: the stocks can be created, reordered, updated, and deleted through the user interface. All the CRUD operations, including reordering of stocks, are updated in the SQLite database.

18 Customizing MAF AMX Application Feature Artifacts

This chapter describes how to preform customization of existing MAF AMX pages, task flows, and page definition files.

This chapter includes the following sections:

	
Section 18.1, "Introduction to Customizing MAF AMX Pages and Artifacts"

	
Section 18.2, "Customizing MAF AMX Pages and Artifacts"

18.1 Introduction to Customizing MAF AMX Pages and Artifacts

You can use the standard customization mechanism provided by JDeveloper and Oracle Metadata Service (MDS) to customize your existing MAF AMX application feature artifacts and metadata files, including the following:

	
MAF AMX files (.amx)

	
Task flow files, such as ViewController-task-flow.xml

	
Page definition files (<page name>.PageDef.xml)

	
Data control XML file—a package file that contains a data control structure file (that is, a package file named for a data control and prepended with persdef.).

The customization changes that you make at design time are applied to your files during deployment and become visible at runtime. MAF AMX supports the static seeded customization, where the final version for a specific customization context is seeded during deployment and work statically at runtime for that customization context. For each customization context you have to deploy a separate MAF application.

	
Note:

MAF AMX does not support the user customization that both creates and applies customization at runtime.

For information about customizing the MAF application-level artifacts, see Chapter 10, "Customizing MAF Application Artifacts with MDS."

18.2 Customizing MAF AMX Pages and Artifacts

You customize your MAF AMX pages and artifacts by following steps outlined in Section 10.1, "Introduction to Applying MDS Customizations to MAF Files."

When configuring customization layers, to help ensure the uniqueness of the identifier so that customizations are applied accurately, you can add an id-prefix token. When you add a new element, such as, for example, a commandButton to a MAF AMX page during customization, JDeveloper adds the id-prefix of the layer and layer value to the autogenerated identifier for the element to create an id for the newly added element in the customization metadata file. As shown in Example 10-1, "Layers and Layer Values Defined in CustomizationLayerValues.xml", the site layer has an id-prefix of " s " and the headquarters layer value has an id-prefix of " hq ". When you select site/headquarters as the tip layer and add a MAF AMX Button component to a page, the commandButton element will have an id of " shqcb1 " in the metadata customization file.

When the customization process is complete, JDeveloper creates a metadata file for the customizations and a subpackage for storing them. The metadata file contains the customizations for the customized object, which are applied over the base metadata at runtime. JDeveloper gives the new metadata file the same name as the base file for the object, but includes an additional .xml extension, as Figure 18-1, Figure 18-2, Figure 18-3, and Figure 18-4 show.

Figure 18-1 Customization File for MAF AMX Page

[image: Description of Figure 18-1 follows]

Figure 18-2 Customization File for Task Flow

[image: Description of Figure 18-2 follows]

Figure 18-3 Customization File for Page Definition

[image: Description of Figure 18-3 follows]

Figure 18-4 Customization File for Data Control XML File

[image: Description of Figure 18-4 follows]

19 Creating Custom MAF AMX UI Components

This chapter describes how to create custom MAF AMX UI components and specify them as part of the development environment.

This chapter includes the following sections:

	
Section 19.1, "Introduction to Creating Custom UI Components"

	
Section 19.2, "Using MAF APIs to Create Custom Components"

	
Section 19.3, "Creating Custom Components"

19.1 Introduction to Creating Custom UI Components

Using a combination of JavaScript and APIs provided by MAF, you can create new, fully functional interactive UI components and add them to a tag library to be used in your MAF AMX application feature.

19.2 Using MAF APIs to Create Custom Components

MAF provides the following APIs for creating custom components:

	
Static APIs (see Section 19.2.1, "How to Use Static APIs")

	
AmxEvent Classes (see Section 19.2.2, "How to Use AmxEvent Classes")

	
TypeHandler (see Section 19.2.3, "How to Use the TypeHandler")

	
AmxNode (see Section 19.2.4, "How to Use the AmxNode")

	
AmxTag (see Section 19.2.5, "How to Use the AmxTag")

	
VisitContext (see Section 19.2.6, "How to Use the VisitContext")

	
AmxAttributeChange (see Section 19.2.7, "How to Use the AmxAttributeChange")

	
AmxDescendentChanges (see Section 19.2.8, "How to Use the AmxDescendentChanges")

	
AmxCollectionChange (see Section 19.2.9, "How to Use the AmxCollectionChange")

	
AmxNodeChangeResult (see Section 19.2.10, "How to Use the AmxNodeChangeResult")

	
AmxNodeStates (see Section 19.2.11, "How to Use the AmxNodeStates")

	
AmxNodeUpdateArguments (see Section 19.2.12, "How to Use the AmxNodeUpdateArguments")

19.2.1 How to Use Static APIs

Table 19-1 lists static APIs that you can use to create custom UI components.

Table 19-1 Static APIs

	Return Type	Function Name	Parameters	Description
	
Function

	
adf.mf.api.amx.TypeHandler.register

	
String namespaceUrl,

String tagName,

adf.mf.api.amx.TypeHandler precreatedClass

	
Registers a TypeHandler class with a tag namespace and name.

Returns the registered adf.mf.api.amx.TypeHandler subclass so that prototype functions can be added.

The precreatedClass is optional but can be used if you first create a class that inherits from adf.mf.api.amx.TypeHandler.

	
void

	
adf.mf.api.amx.addBubbleEventListener

	
Node domNode,

String eventType,

Function listener,

Object eventData

	
Registers a bubble event listener (such as tap, taphold, keydown, touchstart, touchmove, touchend, focus, blur, resize, and so on).

Note that web browsers do not support all event types on all DOM nodes (see the browser documentation for details).

The eventData is optional and serves as extra data to be made available to the listener function.

	
void

	
adf.mf.api.amx.removeBubbleEventListener

	
Node domNode,

String eventType,

Function listener

	
Unregisters a bubble event listener that was added through adf.mf.api.amx.addBubbleEventListener.

Note that the removal of the meta events tap and taphold will cause all touchstart and touchend listeners, including those of other meta events, to become removed from the element as opposed to only the specified listener being removed.

	
void

	
adf.mf.api.amx.addDragListener

	
Node domNode,

Object payload,

Object eventData

	
Allows an element to trigger MAF AMX drag events.

The Object payload defines three member functions: start, drag, end. The first parameter of each function is the DOM event, the second parameter is a dragExtra Object with the following members:

	
eventSource: the DOM event source.

	
pageX: the x coordinate of the event.

	
pageY: the y coordinate of the event.

	
startPageX: the original pageX.

	
startPageY: the original pageY.

	
deltaPageX: the change in pageX.

	
deltaPageY: the change in pageY.

	
originalAngle: if defined, it is the original angle of the drag in degrees where 0 degrees is East, 90 is North, -90 is South, 180 is West.

and the following modifiable member flags:

	
preventDefault

	
stopPropagation

The eventData is optional and serves as extra data to be made available to the listener functions.

	
void

	
adf.mf.api.amx.removeDomNode

	
Node domNode

	
Removes a DOM node and its children, but prior to that removes event listeners added through adf.mf.api.amx.addBubbleEventListener.

	
void

	
adf.mf.api.amx.emptyHtmlElement

	
Node domNode

	
Empties an HTML element by removing children DOM nodes and calling adf.mf.api.amx.removeDomNode on each of the children nodes.

	
void

	
adf.mf.api.amx.processAmxEvent

	
adf.mf.api.amx.AmxNode amxNode,

String amxEventType,

String attributeValueName,

String newValue,

AmxEvent amxEvent,

Function successCallback

Function failureCallback

	
Processes an AmxEvent.

Change the value if attributeValueName is defined, process the appropriate setPropertyListener and actionListener subtags, and then process the [amxEventType]Listener attribute.

A success callback is invoked when the event has been successfully processed. Otherwise, the failure callback is invoked. Both the successCallback and failureCallback are optional.

	
void

	
adf.mf.api.amx.acceptEvent

	
None

	
Determines whether it is safe to proceed with invoking adf.mf.api.amx.processAmxEvent in order to avoid preparing anything you might need to pass into that function (for example, when in the middle of a page transition or in an environment such as a design-time preview).

	
void

	
adf.mf.api.amx.invokeEl

	
String expression,

Array<String> params,

String returnType,

Array<String> paramTypes,

Function successCallback,

Function failureCallback

	
Represents a utility similar to adf.mf.el.invoke() for invoking an EL method, with a difference that it refrains from execution in environments such as design-time previews.

	
void

	
adf.mf.api.amx.enableAmxEvent

	
adf.mf.api.amx.AmxNode amxNode,

Node domNode,

String eventType

	
Allows a DOM node to trigger custom MAF AMX events such as tapHold and swipe for amx:showPopupBehavior, amx:setPropertyListener, and so on.

	
void

	
adf.mf.api.amx.doNavigation

	
String outcome

	
Tells the controller that there is an intention to perform navigation for a given outcome.

	
void

	
adf.mf.api.amx.validate

	
Node domNode,

Function successCallback

	
Prevents an operation, such as navigation, when there are unsatisfied validators (required or amx:validationBehavior).

The successCallback is invoked if allowed to proceed.

	
void

	
adf.mf.api.amx.showLoadingIndicator

	
Number failSafeDuration,

Function failSafeClientHandler

	
Shows the busy indicator.

The parameters:

	
failSafeDuration: The approximate duration (non-negative integer in milliseconds) that MAF waits between showing and hiding the loading indicator (assuming some other trigger has not already shown the indicator). If this parameter is not specified or is set to null, then MAF uses the value of 10000 (10 seconds).

	
failSafeClientHandler: The optional JavaScript function that is invoked when the failSafeDuration has been reached. This function can be used to decide how to proceed. This function must return a String defined by one of the following values:

- hide: to hide the indicator as in the default fail-safe.

- repeat: to restart the timer for another duration where the function may get invoked again.

- freeze: to keep the indicator up and wait indefinitely; the page may become stuck in a frozen state until restarted.

To prevent the indicator from being displayed for longer than necessary, hide it.

	
void

	
adf.mf.api.amx.hideLoadingIndicator

	
None

	
Hides one instance of the loading indicator.

	
Object

	
adf.mf.api.amx.createIterator

	
Object dataItems

	
Creates an iterator that supports either a JavaScript array of objects or iterator over a tree node iterator (collection model).

Returns an iterator Object with next, hasNext, and isTreeNodeIterator functions where next returns undefined if no more objects are available.

	
void

	
adf.mf.api.amx.bulkLoadProviders

	
Object treeNodeIterator,

Number startingPoint,

Number maximumNumberOfRowsToLoad,

Function successCallback,

Function failCallback

	
Bulk-loads a set of data providers so they are cached and are locally accessible.

	
String

	
adf.mf.api.amx.buildRelativePath

	
String url

	
Builds the relative path based on the specified resource assuming it is relative to the current MAF AMX page. If there is a protocol on the resource, then it is assumed to be an absolute path and left unmodified.

	
void

	
adf.mf.api.amx.markNodeForUpdate

	
adf.mf.api.amx.AmxNodeUpdateArguments args

	
Function for TypeHandler instances to notify MAF of a state change to an AmxNode that requires the AmxNode hierarchy to be updated at that node and below.

If a custom createChildrenNodes method exists on the TypeHandler, it is called again for these AmxNode instances. This allows AmxNode instances that stamp their children to add new stamps due to a user change. The refresh method is called on the AmxNode with the provided properties if the AmxNode is ready to render. If the AmxNode is not ready to render, MAF waits for any EL to be resolved and the refresh method is called once all the data are available.

	
Note:

Other public APIs are available in the adf.mf.el package for logging, translation, and data channel.

19.2.2 How to Use AmxEvent Classes

Table 19-2 lists AMXEvent classes that you can use when creating custom UI components.

Table 19-2 AMXEvent Classes

	Class Name	Parameters	Description
	
adf.mf.api.amx.ActionEvent

	
None

	
An event triggering an outcome-based navigation.

See also oracle.adfmf.amx.event.ActionEvent in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
adf.mf.api.amx.MoveEvent

	
Object rowKeyMoved,

Object rowKeyInsertedBefore

	
An event for notifying that a specified row has been moved. It contains the key for the row that was moved along with the key for the row before which it was inserted.

See also oracle.adfmf.amx.event.MoveEvent in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
adf.mf.api.amx.SelectionEvent

	
Object oldRowKey,

Array<Object> selectedRowKeys

	
An event for changes of selection for a component.

See also oracle.adfmf.amx.event.SelectionEvent in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
adf.mf.api.amx.ValueChangeEvent

	
Object oldValue,

Object newValue

	
An event for changes of value for a component.

See also oracle.adfmf.amx.event.ValueChangeEvent in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

19.2.3 How to Use the TypeHandler

Table 19-3 lists TypeHandler APIs that you can use to create custom UI components.

Table 19-3 TypeHandler APIs

	Return Type	Function Name	Parameters	Description
	
HTMLElement

	
render

	
adf.mf.api.amx.AmxNode amxNode,

String id

	
Creates an initial DOM structure and returns the root element of the structure.

This member function is required and must be defined.

	
void

	
init

	
HTMLElement rootElement,

adf.mf.api.amx.AmxNode amxNode

	
Represents the handler invoked after all create functions that belong to the set of components created with this component are invoked.

	
void

	
postDisplay

	
HTMLElement rootElement,

adf.mf.api.amx.AmxNode amxNode

	
Represents the handler invoked after all init functions that belong to the set of components created with this component are invoked.

	
Boolean

	
createChildrenNodes

	
adf.mf.api.amx.AmxNode amxNode

	
Selectively adds AmxNode children for processing. Note that if one of the children is shown, the use of this function prevents processing of the other children.

Should return false if MAF is to create the children nodes instead of the custom implementation.

This function is optional.

	
adf.mf.api.amx.AmxNodeChangeResult

	
updateChildren

	
adf.mf.api.amx.AmxNode amxNode,

adf.mf.api.amx.AmxAttributeChange attributeChanges

	
Represents a handler for one of the following:

	
removing any old children and creating and adding any new children to the AmxNode.

	
through the return value, declaring what adf.mf.api.amx.AmxNodeChangeResult action should be taken.

This function is optional.

	
adf.mf.api.amx.AmxNodeChangeResult

	
getDescendentChangeAction

	
adf.mf.api.amx.AmxNode amxNode,

adf.mf.api.amx.AmxDescendentChanges descendentChanges

	
Allows a type handler to customize the handling of changes to descendent AmxNode instances.

	
void

	
refresh

	
adf.mf.api.amx.AmxAttributeChange attributeChanges,

adf.mf.api.amx.AmxDescendentChanges descendentChanges

	
Allows a type handler to selectively refresh the HTML in response to a change. This method is called after the updateChildren method.

The attributeChanges defines the changed attributes. If descendentChanges is not null, it defines the changes for any descendent nodes that need to be refreshed.

	
Boolean

	
isFlattenable

	
None

	
Declares whether or not the AmxNode is flattenable.Note that a flattened AmxNode might not have any behavior related to rendering: a type handler for a flattened AmxNode can only control child node creation and visiting, but cannot influence rendering.

	
Boolean

	
visit

	
adf.mf.api.amx.VisitContext visitContext,

Function visitCallback

	
Handles an AmxNode tree visitation starting from this AmxNode.

The visitCallback function to invoke when visiting uses parameters visitContext and AmxNode. Returns whether or not the visitation is complete and should not continue.

	
Boolean

	
visitChildren

	
adf.mf.api.amx.AmxNode amxNode,

adf.mf.api.amx.VisitContext visitContext,

Function visitCallback

	
Handles an AmxNode tree visitation starting from the children of this AmxNode.

The visitCallback function to invoke when visiting uses parameters visitContext and AmxNode. Returns whether or not the visitation is complete and should not continue.

	
void

	
preDestroy

	
HTMLElement rootElement,

adf.mf.api.amx.AmxNode amxNode

	
Handles anything just before the current view is destroyed; when about to navigate to a new view. Typically used to save client state such as scroll positions (see adf.mf.api.amx.setClientState).

	
void

	
destroy

	
HTMLElement rootElement,

adf.mf.api.amx.AmxNode amxNode

	
Handles anything after the new view is displayed and the old view is being removed.

19.2.4 How to Use the AmxNode

Table 19-4 lists AmxNode APIs that you can use to create custom UI components.

Table 19-4 AmxNode APIs

	String	Function Name	Parameters	Description
	
String

	
getId

	
None

	
Gets the unique identifier for this AmxNode. This value contributes to the ID on the root DOM element.

	
adf.mf.api.amx.AmxTag

	
getTag

	
None

	
Gets the AmxTag that created this AmxNode.

	
adf.mf.api.amx.TypeHandler

	
getTypeHandler

	
None

	
Gets the TypeHandler object associated with this AmxNode.

	
void

	
setClientState

	
Object payloadJsonObject

	
Stores or replaces the client state for the specified AmxNode ID.

Type handlers should call this function whenever a state change happens (for example, something that should be cached so that when the user navigates to a new page and then comes back, it would be restored like a scroll position). That said, it is not always feasible to detect when a state change happens so you may need to update the state for your component just before the view is going to be discarded. There are two possible scenarios for which you need to account:

	
refresh: for redrawing pieces of the DOM structure (within the same view).

	
preDestroy: for navigating to a new view and later navigating back.

The payloadJsonObject is the client state data to store for the lifetime of this view instance.

	
Object

	
getClientState

	
None

	
Gets the payloadJsonObject that was previously stored through the setClientState function during this view instance (undefined if not available).

	
void

	
setVolatileState

	
Object payloadJsonObject

	
Stores or replaces the client state for the specified AmxNode ID. Type handlers should call this function whenever a volatile state change happens (for example, something that should be forgotten when navigating to a new MAF AMX page but should be kept in case a component is redrawn).

The payloadJsonObject is the volatile state data to store until navigation occurs.

	
Object

	
getVolatileState

	
None

	
Gets the payloadJsonObject that was previously stored through the setVolatileState function since the last navigation (undefined if not available).

	
Object

	
getConverter

	
None

	
Get the converter, if applicable, for this AmxNode.

	
void

	
setConverter

	
Object converter

	
Set the converter for this AmxNode.

	
String

	
storeModifyableEl

	
String nameOfTheAttribute

	
For an attribute, creates and stores an EL expression that may be used to set EL values into the model.

The value is context-insensitive and may be used to set a value at any time. Common use is to set a value based on user interaction.

This function may be called by type handlers.

Returns null if the subject attribute is not bound to an EL value.

	
Object

	
getStampKey

	
None

	
Gets the stamp key for the AmxNode. The stamp key identifies AmxNode instances that are produced inside of iterating containers.

This is provided by the parent AmxNode. An example tag that uses stamp keys is the amx:iterator tag.

Returns null if the AmxNode is not stamped.

	
Array<String>

	
getDefinedAttributeNames

	
None

	
Gets a list of the attribute names that have been defined for this node.

	
Object

	
getAttribute

	
String name

	
Gets an attribute value for the attribute of the given name.

Return value may be null.

Returns undefined if the attribute is not set or is not yet loaded.

	
void

	
setAttributeResolvedValue

	
String name,

Object value

	
Used by the type handler or MAF to store the attribute value for an attribute onto the AmxNode.

This function does not update the model.

	
void

	
setAttribute

	
String name,

String value

	
Sets the value of an attribute on the model.

This value is sent to the Java side to update the EL value. The value on the AmxNode is not updated by this call. Instead, it is expected that a data change event will update the AmxNode.

	
Boolean

	
isAttributeDefined

	
String name

	
Checks whether the attribute was defined by the user.

	
adf.mf.api.amx.AmxNode

	
getParent

	
None

	
Gets either the parent AmxNode or null if at the top level.

	
void

	
addChild

	
adf.mf.api.amx.AmxNode child,

String facetName

	
Adds a child AmxNode to this AmxNode.

The facetName should be null if the child does not belong in a facet.

	
Boolean

	
removeChild

	
adf.mf.api.amx.AmxNode child

	
Removes a child AmxNode from this AmxNode.

Note that the child is removed from the hierarchy, but not the DOM for it. It is up to the caller to remove the DOM.

This is to allow type handlers to handle animation and other transitions when DOM is replaced.

Returns whether or not the child was found and removed.

	
Boolean

	
replaceChild

	
adf.mf.api.amx.AmxNode oldChild,

adf.mf.api.amx.AmxNode newChild

	
Replaces an existing child with another child.

Returns whether or not the old one was found and replaced.

	
Array<adf.mf.api.amx.AmxNode>

	
getChildren

	
String facetName,

Object stampKey

	
Gets children AmxNodes.

The two parameters are optional. The facetName can be null to get the non-facet children.

Returns an empty array if no children exist or if there are no children for the given qualifiers.

	
Map<String, Array<adf.mf.api.amx.AmxNode>>

	
getFacets

	
Object stampKey

	
Gets all of the facets of the AmxNode.

The stampKey is optional; if provided, it retrieves the facet AmxNode instances for a given stamp key.

	
Boolean

	
visit

	
adf.mf.api.amx.VisitContext visitContext,

Function visitCallback

	
Performs a tree visitation starting from this AmxNode.

The visitCallback function should accept the visitContext and the AmxNode as arguments.

Returns whether or not the visitation is complete and should not continue.

	
Boolean

	
visitChildren

	
adf.mf.api.amx.VisitContext visitContext,

Function visitCallback

	
Performs a tree visitation starting from the children of this AmxNode.

The visitCallback function should accept the visitContext and the AmxNode as arguments.

Returns whether the visitation is complete and should not continue.

	
Boolean

	
visitStampedChildren

	
Object stampKey,

Array<String> facetNamesToInclude,

Function filterCallback,

adf.mf.api.amx.VisitContext visitContext,

Function visitCallback

	
Convenience function for type handlers that stamp their children to visit the children AmxNode from inside of a custom visitChildren function.

When facetNamesToInclude is empty, no facets are processed for this stamp. When facetNamesToInclude is null, all facets are processed for this stamp.

The filterCallback may be null. The filterCallback must return a Boolean of true, meaning the tag will be used to create children, or false, meaning the tag will not be processed.

The visitCallback should accept the visitContext and AmxNode as arguments.

Returns whether or not the visitation is complete and should not continue.

	
Array<adf.mf.api.amx.AmxNode>

	
getRenderedChildren

	
String facetName,

Object stampKey

	
Gets the rendered children of the AmxNode.

The facetName indicates from which facet to retrieve the rendered children, or null for the non-facet children.

If the stampKey is provided, it retrieves the children AmxNode instances for a given stamp key.

Returns the children that should be rendered for the given stamp key. It flattens any components that can be flattened (flattenable) and does not return any non-rendered ones.

	
Boolean

	
isFlattenable

	
None

	
Determines whether or not the AmxNode is flattenable.

Note that a flattened AmxNode might not have any behavior related to rendering: a type handler for a flattened AmxNode can only control child node creation and visiting, but cannot influence rendering.

	
adf.mf.api.amx.AmxNodeStates

	
getState

	
None

	
Gets the current state of the AmxNode (as a constant value from adf.mf.api.amx.AmxNodeStates).

	
void

	
setState

	
state

	
Moves the adf.mf.api.amx.AmxNodeStates state of the AmxNode. Should only be called by MAF or the AmxNode's type handler.

	
HTMLElement

	
render

	
None

	
Renders the AmxNode.

Returns the root element rendered or null if the child is not rendered or if there is no type handler for this AmxNode.

	
Array<HTMLElement>

	
renderDescendants

	
String facetName,

Object key

	
Renders the subnodes of this AmxNode (if applicable, it flattens to the nearest descendant).

If facetName is not null, it renders the children of that facet. If facetName is null, the non-facet children are rendered.

The optional key is used for rendering the children AmxNode instances for that stamping key.

Returns an array of the root elements for each subNode.

	
void

	
rerender

	
None

	
Rerenders the AmxNode.

	
Boolean

	
isRendered

	
None

	
Checks the state of the AmxNode to see whether or not it should be rendered.

The AmxNode is considered to be renderable if it is in the ABLE_TO_RENDER, RENDERED or PARTIALLY_RENDERED state.

	
void

	
refresh

	
adf.mf.api.amx.AmxAttributeChange attributeChanges,

adf.mf.api.amx.AmxDescendentChanges descendentChanges

	
Refreshes the DOM of an AmxNode.

This method is called after the updateChildren method and should be implemented by type handlers that wish to update their DOM in response to a change.

	
	
	
void

	
createStampedChildren

	
Object stampKey,

Array<String> facetNamesToInclude,

Function filterCallback

	
Convenience function for type handlers that stamp their children to create child AmxNode instances from inside of a custom createChildrenNodes function.

This function creates children for any UI tags.

If facetNamesToInclude is empty, the facets are not processed for this stamp. If facetNamesToInclude is null, all the facets are processed. If the facetNamesToInclude includes a null value inside the array, children for non-facet tags are created.

The filterCallback is an optional function to filter the children that are created. The filterCallback function is invoked with the AmxNode, the stampKey, the child tag, and the facet name (or null for non-facets). The filterCallback function must return a boolean. If true, the tag is used to create children; if false, the tag is not processed.

19.2.5 How to Use the AmxTag

Table 19-5 lists AmxTag APIs that you can use to create custom UI components.

Table 19-5

	Return Type	Function Name	Parameters	Description
	
String

	
getNamespace

	
None

	
Gets the XML namespace URI for the tag.

	
String

	
getNsPrefixedName

	
None

	
Returns the tag name including the namespace as its prefix (not the local xmlns prefix).

This is the full XML name such as "http://xmlns.example.com/custom:custom".

	
String

	
getName

	
None

	
Gets the tag name.

This is the local XML tag name without the prefix.

	
adf.mf.api.amx.AmxTag

	
getParent

	
None

	
Gets the parent tag or null if it is the top-level tag.

	
String

	
getTextContent

	
None

	
Returns the text content of the tag.

	
Array<adf.mf.api.amx.AmxTag>

	
findTags

	
String namespace,

String tagName

	
Recursively searches the tag hierarchy for tags with the given namespace and tag name.

Returns the current tag if it matches.

	
Array<adf.mf.api.amx.AmxTag>

	
getChildren

	
String namespace,

String tagName

	
Gets the children of the tag.

Provides for optional filtering of the children namespaces and tag names. If a namespace is null, all the children are returned. If tagName is null, the children are not filtered by tag name.

	
Array<adf.mf.api.amx.AmxTag>

	
getChildrenFacetTags

	
None

	
Get all of the children facet tags.

This function is meant to assist the creation of the AmxNode process.

	
adf.mf.api.amx.AmxTag

	
getChildFacetTag

	
String name

	
Gets the facet tag with the given name.

This function is meant to assist the code if the presence of a facet changes the behavior of a type handler.

Returns null if the facet is not found.

	
Array<adf.mf.api.amx.AmxTag>

	
getChildrenUITags

	
None

	
Gets all children tags that are UI tags.

This function is meant to assist in creation of the AmxNode process.

This function not return any facet tags.

	
Array<String>

	
getAttributeNames

	
None

	
Gets all of the attribute names for the attributes that are specified on the tag.

	
Boolean

	
isAttributeElBound

	
String name

	
Determines whether or not the given attribute is bound to an EL expression (as opposed to a static value).

	
String

	
getAttribute

	
String name

	
Gets the attribute value (may be an EL string) for the attribute of the given name.

Returns undefined if the attribute is not specified.

	
Map<String, String>

	
getAttributes

	
None

	
Gets a key-value pair map of the attributes and their values.

	
Boolean

	
isUITag

	
None

	
Determines whether or not the node is a UI tag with a type handler and renders content.

	
Object{name:string, children:Array<adf.mf.api.amx.AmxTag>}

	
getFacet

	
None

	
Gets the tags for the children of this facet and the name of the facet if this tag is a facet tag.

This is a convenience function for building the AmxNode tree.

Returns an object with the name of the facet and the children tags of the facet. Returns null if the tag is not an amx:facet tag.

	
adf.mf.api.amx.AmxNode

	
buildAmxNode

	
adf.mf.api.amx.AmxNode parentNode,

Object stampKey

	
Creates a new instance of an AmxNode for this tag given the stamp ID.

If the tag is a facet tag, the tag creates an AmxNode for the child tag.

This function does not initialize the AmxNode. Instead, it returns either an uninitialized AmxNode or null for non-UI tags.

	
adf.mf.api.amx.TypeHandler

	
getTypeHandler

	
None

	
Gets the type handler for this tag.

19.2.6 How to Use the VisitContext

Table 19-6 lists VisitContext APIs that you can use when creating custom UI components.

Table 19-6 VisitContext APIs

	Return Type	Function Name	Parameters	Description
	
Boolean

	
isVisitAll

	
None

	
Determines whether or not all nodes should be visited.

	
Array<adf.mf.api.amx.AmxNode>

	
getNodesToWalk

	
None

	
Gets the nodes that should be walked during visitation.

This list does not necessarily include the nodes that should be visited (callback invoked).

	
Array<adf.mf.api.amx.AmxNode>

	
getNodesToVisit

	
None

	
Get the list of nodes to visit.

	
Array<adf.mf.api.amx.AmxNode>

	
getChildrenToWalk

	
adf.mf.api.amx.AmxNode parentAmxNode

	
Determine which child AmxNode instances, including facets (if any), should be walked of the given parent AmxNode.

Allows for type handlers to optimize how to walk the children if not all are being walked.

May return null.

19.2.7 How to Use the AmxAttributeChange

Table 19-7 lists AmxAttributeChange APIs that you can use when creating custom UI components.

Table 19-7 AmxAttributeChange APIs

	Return Type	Function Name	Parameters	Description
	
Array<String>

	
getChangedAttributeNames

	
None

	
Gets the names of the attributes that have been affected during the current change.

	
Boolean

	
isCollectionChange

	
String name

	
Determines whether the attribute change is a collection change.

	
adf.mf.api.amx.AmxCollectionChange

	
getCollectionChange

	
String name

	
Gets the collection model change information for an attribute. Returns null if no change object is available.

	
String

	
getOldValue

	
String name

	
Gets the value of the attribute before the change was made.

	
Boolean

	
hasChanged

	
String name

	
Determines whether the attribute with the given name has changed.

	
Number

	
getSize

	
None

	
Gets the number of attribute changes.

19.2.8 How to Use the AmxDescendentChanges

Table 19-8 lists AmxAttributeChange APIs that you can use when creating custom UI components.

Table 19-8 AmxDescendentChanges APIs

	Return Type	Function Name	Parameters	Description
	
Array<adf.mf.api.amx.AmxNode>

	
getAffectedNodes

	
None

	
Gets the unrendered changed descendent AmxNode instances.

	
adf.mf.api.amx.AmxAttributeChange

	
getChanges

	
adf.mf.api.amx.AmxNode amxNode

	
Gets the changes for a given AmxNode.

	
adf.mf.api.amx.AmxNodeStates

	
getPreviousNodeState

	
adf.mf.api.amx.AmxNode amxNode

	
Gets the state of the descendent AmxNode before the changes were applied.

19.2.9 How to Use the AmxCollectionChange

Table 19-9 lists AmxCollectionChange APIs that you can use when creating custom UI components.

Table 19-9 AmxCollectionChange APIs

	Return Type	Function Name	Parameters	Description
	
Boolean

	
isItemized

	
None

	
Determines whether or not the change to the collection may be itemized: the keys and elements on that collection were identified, so the TypeHandler can update just the appropriate items as opposed to rerendering the entire list from scratch.

	
Array<String>

	
getCreatedKeys

	
None

	
Gets either an array of keys that were created, or null if the change cannot be itemized.

	
Array<String>

	
getDeletedKeys

	
None

	
Gets either an array of the keys that were removed, or null if the change cannot be itemized.

	
Array<String>

	
getUpdatedKeys

	
None

	
Gets either an array of the keys that were updated, or null if the change cannot be itemized.

	
Array<String>

	
getDirtiedKeys

	
None

	
Gets either an array of the keys that were dirtied, or null if the change cannot be itemized.

19.2.10 How to Use the AmxNodeChangeResult

Table 19-10 lists AmxNodeChangeResult APIs that you can use when creating custom UI components.

Table 19-10 AmxNodeChangeResult APIs

	Members	Description
	
adf.mf.api.amx.AmxNodeChangeResult["NONE"]

	
Takes no action in response to an attribute change on a non-rendered descendent AmxNode.

	
adf.mf.api.amx.AmxNodeChangeResult["REFRESH"]

	
The attribute and its child AmxNode instances have been updated by the type handler and the DOM will be updated by the type handler's refresh function.

	
adf.mf.api.amx.AmxNodeChangeResult["RERENDER"]

	
The AmxNode and its child AmxNode instances been updated by the type handler, but the DOM should only be recreated as there is no need to modify the AmxNode hierarchy so the refresh function will not be called on the type handler.

	
adf.mf.api.amx.AmxNodeChangeResult["REPLACE"]

	
The type handler cannot handle the change. The DOM, as well as the AmxNode hierarchy should be recreated.

This value may only be returned from the updateChildren method on a type handler and cannot be returned from the getDescendentChangeAction method.

19.2.11 How to Use the AmxNodeStates

Table 19-11 lists AmxNodeStates APIs that you can use when creating custom UI components.

Table 19-11 AmxNodeStates APIs

	Members	Description
	
adf.mf.api.amx.AmxNodeStates["INITIAL"]

	
Initial state. The AmxNode has been created but not populated.

	
adf.mf.api.amx.AmxNodeStates["WAITING_ON_EL_EVALUATION"]

	
EL-based attributes needed for rendering have not been fully loaded yet.

	
adf.mf.api.amx.AmxNodeStates["ABLE_TO_RENDER"]

	
EL attributes have been loaded, but the AmxNode has not yet been rendered.

	
adf.mf.api.amx.AmxNodeStates["PARTIALLY_RENDERED"]

	
The EL is not fully loaded, but the AmxNode has partially rendered itself (reserved for future use).

	
adf.mf.api.amx.AmxNodeStates["RENDERED"]

	
The AmxNode has been fully rendered.

	
adf.mf.api.amx.AmxNodeStates["UNRENDERED"]

	
The AmxNode is not to be rendered.

19.2.12 How to Use the AmxNodeUpdateArguments

Table 19-12 lists AmxNodeUpdateArguments APIs that you can use when creating custom UI components.

Table 19-12 AmxNodeUpdateArguments APIs

	Return Type	Function Name	Parameters	Description
	
Array<adf.mf.api.amx.AmxNode>

	
getAffectedNodes

	
None

	
Gets an array of affected AmxNode instances.

	
Map<String,Boolean>

	
getAffectedAttributes

	
String amxNodeId

	
Gets an object representing the affected attributes for a given AmxNode ID.

	
Map<String,adf.mf.api.amx.AmxCollectionChange>

	
getCollectionChanges

	
String amxNodeId

	
Gets the collection changes for a given AmxNode and property.

The returned map is keyed by attribute name.

Returns undefined if there are no changes for the AmxNode.

	
void

	
setAffectedAttribute

	
adf.mf.api.amx.AmxNode amxNode,

String attributeName

	
Marks an attribute of an AmxNode as affected.

	
void

	
setCollectionChanges

	
String amxNodeId,

String attributeName,

adf.mf.api.amx.AmxCollectionChange collectionChanges

	
Sets the collection changes for a given AmxNode's attribute.

19.3 Creating Custom Components

You can create a custom UI component through the use of JavaScript and MAF APIs. This component's JavaScript file can be added to your project through the application feature-level includes. When you add your custom tag library, it is entered into the Components window's list of tag libraries and, when this library is selected, your custom component becomes available in the Components window, with its attributes displayed in the Properties window.

Before you begin:

Familiarize yourself with APIs described in Section 19.2, "Using MAF APIs to Create Custom Components."

To create a custom component:

	
Produce a JavaScript file that registers a tag namespace and series of one or more type handlers using the adf.mf.api.amx.TypeHandler.register API (see Table 19-1, "Static APIs" and Example 19-1, "JavaScript File for Custom Components").

	
For each type handler, implement a rendering member function.

	
Optionally, implement other functions.

	
Attach one or more of your JavaScript and CSS files to the MAF AMX application feature. For examples, see the following sample applications located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer:

	
custom.js and custom.css files included in the MAF sample application called CompGallery.

	
WorkBetter sample application contains a custom search component.

Alternatively, you can perform a design-time packaging.

	
For each MAF AMX page that uses one of the customs components, add an xmlns entry in the view element:

xmlns:custom="http://xmlns.example.com/custom"

Example 19-1 shows a JavaScript file that declares custom components.

Example 19-1 JavaScript File for Custom Components

(function() {
 // TypeHandler for custom "x" elements
 var x = adf.mf.api.amx.TypeHandler.register("http://xmlns.example.com/custom",
 "x");
 x.prototype.render = function(amxNode) {
 var rootElement = document.createElement("div");
 rootElement.appendChild(document.createTextNode("Hello World"));
 return rootElement;
 };

 // TypeHandler for custom "y" elements
 var y = adf.mf.api.amx.TypeHandler.register("http://xmlns.example.com/custom",
 "y");

 y.prototype.render = function(amxNode) {
 var rootElement = document.createElement("div");
 rootElement.appendChild(document.createTextNode("Goodbye World"));
 return rootElement;
 };

})();

For examples of how to create custom UI components, see the custom.amx, customOther.amx, exampleEvents.amx, and exampleList.amx files included in the MAF sample application called CompGallery. The sample applications are located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

20 Implementing Application Feature Content Using Remote URLs

This chapter describes how application features with content from remote URLs can access (or be restricted from) device services, enable the navigation bar, and invoke MAF applications.

This chapter includes the following sections:

	
Section 20.1, "Overview of Remote URL Applications"

	
Section 20.2, "Creating Whitelists for Application Components"

	
Section 20.3, "Enabling the Browser Navigation Bar on Remote URL Pages"

	
Section 20.4, "Invoking MAF Applications Using a Custom URL Scheme"

	
Section 20.5, "About Authoring Remote Content"

20.1 Overview of Remote URL Applications

By configuring the content type for an application feature as Remote URL in the overview editor for the maf-feature.xml file, as shown in Figure 20-1, you create a browser-based application that is served from the specified URL. Such server-hosted applications differ from client applications written in MAF AMX, local HTML, or a platform-specific language such as Objective-C in that they are intended for occasional use and cannot directly access the device's memory or services (such as the camera, contacts, or GPS). These interactions are instead contingent upon the capabilities of the device's browser. For details about configuring Remote URL content, see Section 5.2, "Defining the Application Feature Content as Remote URL or Local HTML."

Figure 20-1 Configuring Remote URL Content

[image: The surrounding text describes this image.]

20.1.1 Enabling Remote Applications to Access Device Services through Whitelists

To ensure security for remotely served content, MAF supports the concept of whitelists, a registry of URLs that opens within the application web view to access various device services, such as GPS, a camera, or a file system. If a web page is not included on a whitelist (that is, it is not whitelisted), then MAF's Apache Cordova implementation opens a web page in the device browser (such as Safari) instead. Without whitelisting, a remote web page cannot open within the MAF web view, thereby limiting its access to the embedded device capabilities. As illustrated in Figure 20-2, a URL that opens within the MAF web view is presented as an application feature.

Figure 20-2 URLs in the Device Browser and MAF Web View

[image: The surrounding text describes this image.]

20.1.2 Enabling Remote Applications to Access Container Services

Remote URL applications that open within the MAF web view use Apache Cordova JavaScript APIs to access device features and MAF JavaScript APIs to access the MAF container services. You use a JavaScript <script> tag that references the base.js libraries to enable this access.

In order to access MAF or Cordova JavaScript APIs from within a server-rendered web application (for example, getting and setting EL expressions, getting information about the application, taking a photo, or accessing contacts), you must use the virtual path /~maf.device~/ when including base.js so that the browser will identify the request as being for a MAF resource and not for the remote server. This approach works in both remote as well as local HTML pages and is the best way to include base.js in an HTML feature (regardless of where it is being served from).The following example shows how to include base.js from a device HTML page or from a remote HTML page:

<html>
 <head>
 <script src="/~maf.device~/www/js/base.js"></script>
...

When the container code reads /~maf.device~/ in the requested URL it then resolves the URL locally and treats it as a native request. MAF then reads the file from the file system in the container code and sends the local file content to the web view. See Section B.1, "Using MAF APIs to Create a Custom HTML Springboard Application Feature" for more information.

20.1.3 How Whitelisted Domains Access Device Capabilities

By default, the domains defined in the connections.xml file (the repository for all of the connections defined in the mobile application) are whitelisted automatically. These domains for remote URL content are created using the Create URL Connection dialog, shown in Figure 20-3. MAF parses the domain from each of the connection strings and adds these domains to the whitelist.

Figure 20-3 Creating the Connection to Retrieve the Content of the Remote URL Application Feature

[image: This image is described in the surrounding text]

JDeveloper then populates the connections.xml file, located in the Application Resources panel, with the connections information and also creates the connection resources.

In addition to the domains that MAF includes from the connections.xml file, you can enable (or restrict) remote URL content to open with the MAF web view by configuring whitelisted domains in the maf-application.xml file.

20.1.4 How to Create a Whitelist (or Restrict a Domain)

You configure the whitelist in the Security page of maf-application.xml, as shown in Figure 20-4.

Figure 20-4 Configuring a Whitelist

[image: This image is described in the surrounding text]

Before you begin:

Be aware that some URLs configured in the mobile application may open to other domains.

To create whitelists:

	
Open the maf-application.xml file and then select the Security tab.

	
Under the Remote URL Whitelist section, click Add and then enter the domains that can be called from within the web view of the application feature. These domains can include a wildcard (*). For example, *.example.com is a valid domain entry as is *.example.*. You cannot enter a fully qualified path.

	
Caution:

Entering only the wildcard allows the web view to request all domains and can pose a security risk; adding all domains to the whitelist not only enables all of them to open within the web view, but also enables all of them to access the device (whether or not it is intended for them to do so).

20.1.5 What Happens When You Add Domains to a Whitelist

When you add a domain, JDeveloper updates the <adfmf:remoteURLWhiteList> element as illustrated in Example 20-1.

Example 20-1 Configuring the Whitelist

...
<adfmf:remoteURLWhiteList>
 <adfmf:domain id="domain_1">*.oracle.*</adfmf:domain>
 <adfmf:domain id="domain_2">www.oracle.*</adfmf:domain>
 </adfmf:remoteURLWhiteList>
...

20.1.6 What You May Need to Know About Remote URLs

Some URLs are redirected to a URL that may not be part of the whitelist domain. These URLs may open in the device browser rather than the application web view. For example, if you whitelist www.oracle.com (<adfmf:domain>www.oracle.com<adfmf:domain>), MAF opens the mobile version of this site (www.m.oracle.com) in the device browser, because it does not pass the whitelist. Figure 20-5 shows a web page that has not been whitelisted and has opened within the device browser.

Figure 20-5 A Web Page Opening in the Device Browser, Not the MAF Web View

[image: This image is described in the surrounding text]

To enable www.oracle.com to open within the application web view, you must specify *.oracle.* or www.oracle.* as shown in Example 20-1.

Because the MAF whitelist is at the domain-level, you cannot restrict an individual page within a whitelisted domain from opening with an application feature web view; all pages are allowed.

20.2 Creating Whitelists for Application Components

Use a whitelist for pages that contain links to URLs that point to another domain. Such pages would otherwise open in the device browser instead of the MAF web view. In such a case, you can create an anchor tag or an <amx:goLink> component with a url attribute for the <amx:goLink> component that points outside of the application, such as the url attribute in <goLink2> in Example 20-2.

Example 20-2 <amx:goLink> with a url Parameter

<?xml version="1.0" encoding="UTF-8" ?>
<amx:view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:amx="http://xmlns.oracle.com/adf/mf/amx"
 xmlns:dvtm="http://xmlns.oracle.com/adf/mf/amx/dvt">
 <amx:panelPage id="pp1">
 <amx:panelGroupLayout id="panelGroupLayout1">
 <amx:goLink text="This opens in the device browser"
 id="golink1"
 url="http://www.example.com"
 shortDesc="Opens in device browser"/>
 <amx:goLink text="This opens in the web view"
 id="golink2"
 url="http://www.example2.com"
 shortDesc="Accesses device services"/>
 </amx:panelGroupLayout>
 </amx:panelPage>
</amx:view>

See also Section 13.3, "Creating and Using UI Components."

20.3 Enabling the Browser Navigation Bar on Remote URL Pages

MAF enables you to add a navigation bar with buttons for back, forward, and refresh actions for application features implemented as remotely served web content that open within the MAF web view, as shown in Figure 20-6. The forward and back buttons are disabled when either navigation forward or back is not possible.

	
Note:

The back button is disabled on Android-powered devices.

Figure 20-6 A Remote Web Page Displaying the Navigation and Refresh Buttons

[image: This image is described in the surrounding text]

20.3.1 How to Add the Navigation Bar to a Remote URL Application Feature

You enable users to navigate through, or refresh remote content through the Content tab of the overview editor for the maf-feature.xml file.

Before you begin:

Designate an application feature's content be delivered from a remotely hosted application by first selecting Remote URL and then by creating the connection to the host server, as described in Section 5.2, "Defining the Application Feature Content as Remote URL or Local HTML."

Ensure that the domain is whitelisted.

To enable a navigation bar:

	
Select the Remote URL application feature listed in the Features table in the maf-feature.xml file.

	
Click Content.

	
Select Show Browser Navigation Buttons, as shown in Figure 20-7.

Figure 20-7 Selecting Navigation Options

[image: This image is described in the surrounding text]

20.3.2 What Happens When You Enable the Browser Navigation Buttons for a Remote URL Application Feature

JDeveloper updates the adfmf:remoteURL element with an attribute called showNavButtons, which is set to true, as shown in Example 20-3.

Example 20-3 The showNavButtons Attribute

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
 <adfmf:feature id="oraclemobile" name="oraclemobile">
 <adfmf:content id="oraclemobile.1">
 <adfmf:remoteURL connection="connection1"
 showNavButtons="true"/>
 </adfmf:content>
 </adfmf:feature>
</adfmf:features>

After you deploy the application, MAF applies the forward, back, and refresh buttons to the web pages that are traversed from the home page of the Remote URL application feature, as shown in Figure 20-8.

Figure 20-8 Traversing Through a Remote URL Application Feature

[image: This image is described in the surrounding text]

20.4 Invoking MAF Applications Using a Custom URL Scheme

A custom URL scheme can be used to invoke a native application from other applications.

To invoke a MAF mobile application from another application, perform the following steps:

	
Register a custom URL scheme. You configure this URL scheme in the overview editor of the maf-application.xml file using the URL Scheme field. The URL with this scheme can then be used to invoke the MAF mobile application and pass data to it.

	
In the application controller project, create a custom URL event listener class (for example, CustomURLEventListener) that is notified of the URL. This class must implement the oracle.adfmf.framework.event.EventListener interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener interface, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Override and implement the onMessage(Event e) method that gets called with the URL that is used to invoke the MAF mobile application. The Event object can be used to retrieve useful information about URL payload and the application state. To get URL payload, use the Event.getPayload method. To get the application state at the time of URL event, use the Event.getApplicationState method. For more information, see the Event class in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
Register an application lifecycle event listener (ALCL) class.

For more information, see Chapter 11, "Using Lifecycle Listeners in MAF Applications."

Get an EventSource object in the start method of the ALCL class that represents the source of the custom URL event:

EventSource openURLEventSource = EventSourceFactory.getEventSource(EventSourceFactory.OPEN_URL_EVENT_SOURCE_NAME);

Create and add an object of the custom URL event listener class to the event source:

openURLEventSource.addListener(new CustomURLEventListener());

A MAF application can invoke another native application in the following ways:

	
Using an amx:goLink on a MAF AMX page whose URL begins with the custom URL scheme registered by the native application. For example:

<amx:goLink text="Open App" id="gl1" url="mycustomurlscheme://somedata"/>

	
Using an HTML link element on an HTML page whose href attribute value begins with the custom URL scheme registered by the native application. For example:

Open App

20.5 About Authoring Remote Content

You can design a browser-based user interface using Apache Trinidad components (described at http://myfaces.apache.org/trinidad/) as these components display equally well within the browsers of smartphones or feature phones. To accommodate smartphones and tablet devices, you may want to use ADF Rich Faces components as described in Oracle Fusion Middleware Developing Web User Interfaces with Oracle ADF Faces.

	
Note:

Oracle recommends using ADF Mobile browser for application features that derive their content from remote URLs. ADF Mobile browser applications are comprised of JSF pages populated with Apache Trinidad components. For more information, see Oracle Fusion Middleware Developing Oracle ADF Mobile Browser Applications.

21 Enabling User Preferences

This chapter describes how to create both application-level and application feature-level user preference pages.

This chapter includes the following sections:

	
Section 21.1, "Creating User Preference Pages for a Mobile Application"

	
Section 21.2, "Creating User Preference Pages for Application Features"

	
Section 21.3, "Using EL Expressions to Retrieve Stored Values for User Preference Pages"

	
Section 21.4, "Platform-Dependent Display Differences"

21.1 Creating User Preference Pages for a Mobile Application

Preferences enable you to add settings that can be configured by end users. Within both the maf-application.xml and maf-feature.xml files, the user preference pages are defined with the <adfmf:preferences> element.

As shown in Example 21-1, the child element of <adfmf:preferences> called <adfmf:preferenceGroup> and its child elements define the user preferences by creating pages that present options in various forms, such as text strings, dropdown menus, or in the case of Example 21-1, as a child page that can present the user with additional options for application settings.

You also use the <adfmf:preferences> element to create the preferences that users manage within each application feature.

Example 21-1 Defining Application-Level Preferences with the <adfmf:preferences> Element

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/adf/mf"
 name="MobileApplication"
 id="com.company.MobileApplication"
 appControllerFolder="ApplicationController"
 version="1"
 vendor="oracle"
 listener-class="application.LifeCycleListenerImpl">
 <adfmf:description>This app created by Mobile Application Framework</adfmf:description>
 <adfmf:featureReference id="PROD"/>
 <adfmf:featureReference id="HCM"/>
 <adfmf:featureReference id="Customers"/>
 <adfmf:preferences>
<adfmf:preferenceGroup id="a" label="Prefs Group A">
 <adfmf:preferenceBoolean id="a1_sound" label="Sound Effects"/>
 <adfmf:preferenceNumber id="a2_retries" label="Retries" default="3"/>
 <adfmf:preferenceList id="a3_background" label="Background" default="3">
 <adfmf:preferenceValue name="None" value="0" id="pv4"/>
 <adfmf:preferenceValue name="Field" value="1" id="pv1"/>
 <adfmf:preferenceValue name="Galaxy" value="2" id="pv5"/>
 <adfmf:preferenceValue name="Mountain" value="3" id="pv6"/>
 </adfmf:preferenceList>
 <adfmf:preferenceText id="a4_name" label="Default Name"/>
 <adfmf:preferencePage id="aa" label="Prefs SubGroup AA">
 <adfmf:preferenceGroup id="aa_sec" label="Security">
 <adfmf:preferenceBoolean id="aa_sec_useSec" label="Use Security"/>
 <adfmf:preferenceNumber id="aa_sec_timeout" label="Timeout (secs)" default="120"/>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
 </adfmf:preferenceGroup>
 <adfmf:preferenceGroup id="b" label="Prefs Group B">
 <adfmf:preferenceBoolean id="b_cloudSync" label="Cloud Sync"/>
 <adfmf:preferenceList id="b_dispUsage" label="Display Usage As" default="1">
 <adfmf:preferenceValue name="Percent" value="1" id="pv2"/>
 <adfmf:preferenceValue name="Minutes" value="2" id="pv3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:application>

Figure 21-1 shows an example of how opening child user preferences page can offer subsequent options.

Figure 21-1 User Preferences Pages

[image: This image is described in the surrounding text]

Preference pages are defined within the <adfmf:preferenceGroup> element and have the following child elements:

	
<adfmf:preferencePage>—Specifies a new page in the user interface.

	
<adfmf:preferenceList>—Provides users with a specific set of options.

	
<adfmf:preferenceValue>—A child element that defines a list element.

	
<adfmf:preferenceBoolean>—A boolean setting.

	
<adfmf:preferenceText>—A text preference setting.

See Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework for more information on these elements and their attributes.

For an example of creating preference pages at both the application and application-feature levels, refer to the PrefDemo sample application. This sample application is located in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

The PrefDemo application is comprised of an application-level settings page as well as three application feature preference pages, which are implemented as MAF AMX. Figure 21-2 shows the PrefDemo application settings page, which you invoke from the general settings page. In this illustration, the preference settings page is invoked from the iOS Settings application.

Figure 21-2 The PrefDemo Application Settings Page

[image: This image is described in the surrounding text]

The application feature preference pages, illustrated by App, Feature1 (which is selected), and Feature 2 in Figure 21-3, provide examples of preferences pages constructed from the MAF AMX Boolean Switch, Input Text, and Output Text components that use EL (Expression Language) to access the application feature and the various <adfmf:preferences> components configured within it. For more information, see Section 21.3, "Using EL Expressions to Retrieve Stored Values for User Preference Pages."

Figure 21-3 An Application Feature Preference Page from the PrefDemo Application

[image: This image is described in the surrounding text]

In the PrefDemo application, each MAF AMX preference page is referenced by a single bounded task flow comprised of a view activity and a control flow case that enables the page refresh.

21.1.1 How to Create Mobile Application-Level Preferences Pages

The Preferences page of the maf-application.xml overview editor, shown in Figure 21-4, enables you to build sets of application-level preference pages by nesting the child preference page elements within <adfmf:preferenceGroup>. The page presents the <adfmf:preferenceGroup> and its child elements as similarly named options (such as Preference Page, Preference List, Boolean Preference, and so on), which you assemble into a hierarchy (or tree), similar to the Structure window in JDeveloper.

Figure 21-4 Adding Mobile Application-Level Preferences Using the Preferences Page

[image: This image is described in the surrounding text]

To ensure that the maf-application.xml file is well-formed, use the Preferences page's Add dropdown list, shown in Figure 21-4, to construct the user preferences pages. While you can also drag components from the Preferences palette, shown in Figure 21-5, into either the editor, the Source window, or the Structure window, the page's dropdown list presents only the elements that can have the appropriate parent, child, or sibling relationship to a selected preferences element. For example, Figure 21-4 shows only the components that can be inserted within the Preference Group element, MobileApp. The editor also enables you to enter the values for the attributes specific to each preference element.

Figure 21-5 Preferences in the Component Palette

[image: This image is described in the surrounding text]

To create preferences pages:

	
In the maf-application.xml overview editor, click Preferences.

	
Click Add to create the parent <adfmf:preferenceGroup> element.

	
Enter the following information in the Insert Preference Group dialog, shown in Figure 21-6.

Figure 21-6 Defining the Parent Preference Group Element

[image: This image is described in the surrounding text]

	
Enter a unique identifier for the Preference Group element.

	
Enter the descriptive text that displays in the user interface. For an example of how this text displays in the user interface, see Sample in Figure 21-1.

	
Click Add to further define the preference pages using the Insert Before, Insert Inside, Insert After options to ensure that the XML document is well formed.

21.1.1.1 How to Create a New User Preference Page

The Preference Page component enables you to create a new user interface page. You create a Preference Page using the Insert Before, Insert Inside, Insert After options.

Before you begin:

You must create a Preference Group element.

To create a new user preference page:

	
In the Preferences page of the maf-application.xml overview editor, select the Preference Group element. In this example, the Preference Group is called MobileApp.

	
Click Add, then choose Insert Inside Preference Group > Preference Page, as shown in Figure 21-7.

Figure 21-7 Selecting the Preference Page Component

[image: This image is described in the surrounding text]

	
Define the following Preference Page attributes in the Insert Preference Page dialog, shown in Figure 21-8:

	
Enter a unique identifier for the Preference Page element.

	
Enter the descriptive text that displays in the user interface.

Figure 21-8 The Insert Preference Page Dialog

[image: This image is described in the surrounding text]

	
Create the body of the preference page by inserting a child Preference Group element by selecting the Preference Page, and then first choosing Insert Inside Preference Page and then Preference Group, as shown in Figure 21-9. After you define a unique identifier and display name for the child Preference Group, you can populate it with other elements, such as a Preference List element, as shown in Example 21-2.

Figure 21-9 Adding a Preference Group to a Preference Page

[image: This image is described in the surrounding text]

21.1.1.2 What Happens When You Add a Preference Page

After you define the Preference Page and its child Preference Group components in the overview editor, JDeveloper generates an <adfmf:preferencePage> with attributes similar to Example 21-2. The <adfmf:preferencePage> is nested within a parent <adfmf:preferenceGroup> element.

Example 21-2 Adding an <adfmf:PreferencePage element>

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="MobileApp">
 <adfmf:preferencePage id="application_version"
 label="Version">
 <adfmf:preferenceGroup id="version_select"
 label="Select Your Version">
 <adfmf:preferenceList id="edition"
 label="Edition"
 default="PERSONAL">
 adfmf:preferenceValue name="Enterprise"
 id="pv2"/>
 <adfmf:preferenceValue name="Personal"
 value="PERSONAL"
 id="pv1"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferencePage>
</adfmf:preferences>

21.1.1.3 How to Create User Preference Lists

Add a Preference List component to create a list of options.

Before you begin:

You must create Preference Group as the parent to the Preference List or any other list-related component.

To create a user preference list:

	
Select a Preference Group or Preference Page and then click Add, then Insert Inside, and then Preference List. Example 21-2 shows adding a Preference List as a child of a Preference Group component called Select Your Version.

Figure 21-10 Adding a Preference List Component to a Preference Group

[image: This image is described in the surrounding text]

	
Define the following attributes using the Insert Preference List dialog, shown in Example 21-2, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 21-11 The Insert Preference List Dialog

[image: This image is described in the surrounding text]

	
Define a list of items by clicking Add in the Preference Value table, shown in Figure 21-12. You can also remove a preference value by selecting it and then clicking Delete. You can change the order in which the preference values display by selecting the preference value and then using the up- and down-arrows.

You can present the user with a default setting by choosing Default. As illustrated in Example 21-2, the default status is defined within the <adfmf:preferenceList> element as default="ENTERPIRSE".

	
Tip:

In addition to clicking Add, you can add Preference Value components by dragging them either into the Structure window or the Source window.

Figure 21-12 Adding Preference Values

[image: This image is described in the surrounding text]

21.1.1.4 What Happens When You Create a Preference List

After you add Preference List component to a Preference Group and then define a series of Preference Values, JDeveloper updates the <adfmf:preferences> section with an <adfmf:preferenceList> element, as shown in Example 21-2.

21.1.1.5 How to Create a Boolean Preference List

See, for example, Example 21-1.

Before you begin:

Because an <adfmf:preferenceBoolean> element must be nested within an <adfmf:preferenceGroup> element, you must first insert a Preference Group component to the hierarchy.

To create a boolean preference list:

	
Select a Preference Group element, such as GPS Settings in Figure 21-13.

Figure 21-13 Adding a Boolean Preference to a Preference Group

[image: This image is described in the surrounding text]

	
Define the following attributes using the Insert Boolean Preference dialog, shown in Figure 21-14, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 21-14 The Insert Boolean Preference Dialog

[image: This image is described in the surrounding text]

	
Accept the default value of false, or select true.

21.1.1.6 What Happens When You Add a Boolean Preference

When you add a Boolean Preference and designate its default value, JDeveloper updates the <adfmf:preferences> section of the maf-application.xml file with a <adfmf:preferenceBoolean> element, as illustrated in Example 21-3.

Example 21-3 Adding an <adfmf:preferenceBoolean> Element

<adfmf:preferencePage id="gps_tracking"
 label="Your_GPS_Locations">
 <adfmf:preferenceGroup id="gps"
 label="GPS Settings">
 <adfmf:preferenceBoolean id="track_gps"
 label="Automatically Track Location"
 default="true"/>
</adfmf:preferencePage>

21.1.1.7 How to Add a Text Preference

Use the insert options, shown in Figure 21-15, to create a Text Preference, a dialog that enables users to store information or view default text. Figure 21-15 shows creating a text preference within a Preference Group called Security.

Figure 21-15 Inserting a Text Preference

[image: This image is described in the surrounding text]

Before you begin:

Create a Preference Group element.

To create a text preference:

	
Select a Preference Group element.

	
Select Insert Inside and then Text Preference.

	
Enter the following information into the Insert Text Preference dialog, shown in Figure 21-16, and then click OK.

	
Enter a unique identifier.

	
Enter the descriptive text that displays in the user interface.

Figure 21-16 The Insert Text Preference Dialog

[image: This image is described in the surrounding text]

	
Define the following for the preference text dialog:

	
Enter the default text value.

	
Select Secret to hide the text preference.

Figure 21-17 Defining the Text Preference

[image: This image is described in the surrounding text]

21.1.1.8 What Happens When You Define a Text Preference

When you add a Text Preference and designate its default value, JDeveloper updates the <adfmf:preferences> section of the maf-application.xml file with a <adfmf:preferenceText> element, as illustrated in Example 21-4.

Example 21-4 Adding the <adfmf:preferenceText> Element

 <adfmf:preferenceGroup id="security" label="Security">
 <adfmf:preferenceText id="serviceURL"
 label="Security URL"
 default="http://security.example.com/provider"/>
 <adfmf:preferenceText id="username"
 label="User Name"/>
 <adfmf:preferenceText id="password"
 label="Password"
 secret="true"/>
 </adfmf:preferenceGroup>

The Preference Group elements that define a security URL, user name, and password preference setting display similarly to Figure 21-18.

Figure 21-18 Text Preferences

[image: This image is described in the surrounding text]

Figure 21-18 illustrates <adfmf:preferenceText> elements with a seeded value for the Security URL and an input value for the User Name. Because the MAF preferences are integrated with the iOS Settings application, the secret="true" attribute for the Password input text results in the application following the iOS convention of obscuring the user input with bullet points. For more information, see the description for the isSecure text field element in Settings Application Schema Reference, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/) and Section 21.4, "Platform-Dependent Display Differences."

21.1.2 What Happens When You Create an Application-Level Preference Page

After you deploy the mobile application, the application-wide preference settings page is propagated to the device's global settings application, such as the Settings application on iOS-powered devices. For more information, see Appendix D, "Converting Preferences for Deployment."

21.2 Creating User Preference Pages for Application Features

As described in Chapter 8, "Reusing MAF Application Content," you can distribute an application feature independently of its mobile application by adding a Feature Application Archive (FAR) .jar file containing the application feature to the library of another mobile application. You then reference the application feature in the application's maf-application.xml file. If an application feature requires a specific set of user preferences in addition to the general preferences defined for the consuming application, you can define them using the Preferences tab of the maf-feature.xml overview editor, shown in Figure 21-19. You build application feature preferences in the same manner as the application-level preferences, which are described in Section 21.1, "Creating User Preference Pages for a Mobile Application." After you define the preferences in the maf-feature.xml file, you then create the actual preference page by creating an application feature that references a MAF AMX page that is embedded with the Boolean Switch, Input, and Output components described in Section 13.3, "Creating and Using UI Components."

Figure 21-19 Setting Application Feature-Level Preferences

[image: This image is described in the surrounding text]

21.3 Using EL Expressions to Retrieve Stored Values for User Preference Pages

When creating an application feature-level preference page, you add EL expressions to the MAF AMX components, such as the Input Text component in Example 21-5.

Example 21-5 Referencing Preference Values Using EL in MAF AMX Components

<amx:inputText label="Number" id="it1" inputType="number"
 value="#{preferenceScope.feature.Feature1.f1top.f1Number}"/>

As illustrated in Example 21-5, EL expressions use the preferenceScope object to enable applications to access an application feature-level preference. These EL expressions are in the following format:

preferenceScope.feature.feature-id.group-id.property-id

Figure 21-20 illustrates using the Expression Builder to create the EL expression.The preference itself is designated by the IDs configured for various components in maf-feature.xml, such as the ID of the application feature <adfmf:feature id="Feature1">), the ID of a Preference Group (<adfmf:preferenceGroup id="f1top">), and the ID of a preference property (<adfmf:preferenceNumber id="f1Number">).

The EL expression may include zero or more group-id and property-id elements.

Figure 21-20 Building an EL Expression for a Preference

[image: This image is described in the surrounding text]

21.3.1 What You May Need to Know About preferenceScope

An EL expression has the following resolution pattern:

	
From the JavaScript layer, EL value expressions are resolved using the following JavaScript function:

adf.mf.el.getValue(expression, success, failed)

The resolution of adf.mf.el.getValue begins with an attempt to resolve the expression locally using the JS-EL parser and JavaScript Context Cache. If the expression cannot be resolved locally, the expression is passed to the embedded Java layer for evaluation where it is resolved by the Java EL parser. This is done through the GenericInvokeRequest to the Model's getValue method.

	
At the Java layer, an EL value expression is resolved using the following approach:

String val = AdfmfJavaUtilities.evaluateELExpression("#{preferenceScope.feature.f0.vendor}");

For a setValue method, the expression is resolved as follows:

ValueExpression ve = AdfmfJavaUtilities.getValueExpression("#{preferenceScope.feature.f0.vendor}");
ve.setValue(AdfmfJavaUtilities.getADFELContext(), value);

Evaluation of the EL expression involves looking up the preferenceScope object. The evaluation is from left to right, where each token is resolved independently. After a token is resolved, it is used to resolve the next token (which is on its right).

Preferences cannot be exposed without the preferenceScope object. For more information about the preferenceScope object, see Section 14.3.5.3, "About the Mobile Application Framework Objects Category."

21.3.2 Reading Preference Values in iOS Native Views

MAF integrates APIs provided for a native UI (such as UIView or UIViewController) to allow certain configurations on iOS platform.

When the native UI is initialized, an instance of the ADFSession object becomes available. You can use its getPreferences method to instruct MAF to provide a listing of the available preferences for the application as defined in the maf-application.xml file. As shown in Example 21-6, this method returns a NSArray* of preference property objects that can include the id, value, and label for the preference. This API call ensures that either the end user provided the value for a particular preference, or that the default value of the preference is returned.

Example 21-6 Getting Preferences

//...
-(id) initWithADFSession:(id<ADFSession>) providedSession
{
 id me = [self init];
 session = providedSession;
 //...
 // Dump the preferences to the data display
 NSArray* prefsArray = [session getPreferences];
 NSString* prefs = [prefsArray JSONRepresentation];
 self.theData.text = [[NSString alloc] initWithFormat:
 :@"%@\nUser Preferences = --> %@ <--", self.theData.text, prefs];
 //...
 return me;
}

21.4 Platform-Dependent Display Differences

The MAF preference pages maintain the native look-and-feel for both the iOS and Android platforms. Consequently, the MAF preference pages display differently on the two platforms. As shown in Table 21-1, preferences display inline on the iOS platform, meaning that the system does not invoke dialog pages. With a few exceptions, the Android platform presents these components as dialogs.

Table 21-1 Preference Component Comparison by Platform

	Component	iOS	iOS Display Examples	Android	Android Display Examples
	
Preference Groups (Category Selection)

	
The iOS platform displays the preference elements within their parent preference group.

	[image: This image is described in the surrounding text]
	
The Android platform displays the preference elements within their parent preference group.

	[image: This image is described in the surrounding text]

	
Boolean Preference List

	
The Boolean preference is represented as value pair, such as on and off.

	[image: This image is described in the surrounding text]
	
Android presents the Boolean preference as a check box.

	[image: This image is described in the surrounding text]

	
Text Preference

	
iOS displays the text inline.

	[image: This image is described in the surrounding text]
	
Android displays the default text within an input field.

	[image: This image is described in the surrounding text]

	
Text Preference (as secret input text)

	
On iOS platforms, users enter text inline, with each character obscured by a bullet point after it has been entered. For more information, see Section 21.1.1.8, "What Happens When You Define a Text Preference."

	[image: This image is described in the surrounding text]
	
Android launches an input text dialog and obscures each character with a bullet point after it has been entered.

	[image: This image is described in the surrounding text]

	
Single Item Selection List (from a Preference List)

	
iOS platforms display the single item selection list in a separate preferences page.

	[image: This image is described in the surrounding text]
	
Android displays the single item selection list in a dialog.

	[image: This image is described in the surrounding text]

	
Preference Page

	
iOS launches a child preference page from a preference group.

	[image: This image is described in the surrounding text]
	
Android launches a child preference page from a preference group.

	[image: This image is described in the surrounding text]

Although iOS and Android platforms have a Settings application, only the iOS platform supports integrating application-level preferences into the Settings application, as shown by the preferences in Figure 21-21.

Figure 21-21 Oracle Mobile Preferences in the iOS Settings Application

[image: This image is described in the surrounding text]

On Android-powered devices, users access application-specific preferences pages similar to the one shown in Figure 21-22 only when the application is running.

Figure 21-22 The Preferences Menu on an Android-Powered Device

[image: This image is described in the surrounding text]

22 Setting Constraints on Application Features

This chapter describes how to set constraints that can restrict an application feature based on user access privileges or device requirements.

This chapter includes the following sections:

	
Section 22.1, "Introduction to Constraints"

	
Section 22.2, "Defining Constraints for Application Features"

22.1 Introduction to Constraints

A constraint describes when an application feature or application content should be used. Constraints can restrict access based on users and user roles, the characteristics of the device on which the mobile application is targeted to run, and the hardware available on the device. You can set constraints at two levels: at the application feature level, where you control the visibility of an application feature on a user's device, and at the content level, where you can specify which type of MAF content can be delivered for an application feature. The overview editor for the maf-feature.xml file enables you to set both of these types of constraints. Constraints are evaluated by the MAF runtime and must evaluate to true to enable the end user to view or use specific content, or even access the application feature itself.

22.1.1 Using Constraints to Show or Hide an Application Feature

The Constraints tab, shown in Figure 22-1, enables you to set the application feature-level constraints. For example, an application feature that uses the device's camera displays within the mobile application's navigation bar or springboard only if the MAF runtime determines that the device actually has a camera function. You can also use feature level constraints to secure an application based on user roles and privileges. Figure 22-1 illustrates creating constraints that would allow only a user with administrator privileges to access the application feature, should the

MAF runtime evaluate the constraint to true. If the runtime evaluates the constraint to false, then it prevents an end user from accessing the application feature, because it does not appear on the navigation bar or within the springboard.

Figure 22-1 Setting Application Feature-Level Constraints

[image: This image is described in the surrounding text]

22.1.2 Using Constraints to Deliver Specific Content Types

To accommodate such factors as device hardware properties or user privileges, a single application feature can have more than one type of content to deliver different versions of the user interface. By setting constraints on the content of an application feature, you designate the conditions for determining what end users can see or how application pages can be used.

Using the Content tab, shown in Figure 22-2, you can, for example, specify content that delivers one type of user interface for users who have been granted administrative privileges and a separate user interface for those who have basic user privileges. In addition, content-level constraints can accommodate the layout considerations of a device. Figure 22-2 illustrates how a sample application performs this using a constraint based on the screen width of a device to deliver AMX Mobile task flows that call pages tailored to the layout of the iPhone and the iPad. When an end user launches the sample application, the MAF runtime evaluates the constraint that is set for the Employees application feature. If the runtime ascertains that the diagonal width of the device's screen exceeds six inches, it selects the Employees_pad_taskflow.xml file, which calls the MAF AMX pages designed for the iPad. If this constraint evaluates to false (that is, the diagonal width of the screen is less than six inches), then the runtime selects the MAF task flow that calls iPhone-specific pages, Employees_phone_taskflow.xml. In addition, the Content tab enables you to select navigation bar and springboard images that display when the runtime selects specific content. If you do not select content-specific images, then MAF instead uses the application feature-level images that are designated in the General tab.

	
Note:

Images must adhere to the platform-specific guidelines, as described in Section 3.3, "Setting Display Properties for an Application Feature."

Figure 22-2 Setting Content-Level Constraints

[image: This image is described in the surrounding text]

For more information on the sample applications, see Appendix G, "MAF Sample Applications."

22.2 Defining Constraints for Application Features

When setting application feature-level constraints, the property, operator, and value attributes of the <adfmf:constraint> element (a child element of <adfmf:constraints>) enable you to restrict application usage based on a user, a device, or hardware. An example of defining these attributes, shown in Example 22-1, illustrates defining these attributes to restrict access to an application feature to a Field Rep and to also restrict the application to run only on an iOS-powered device.

Example 22-1 The <adfmf:constraint> Element

<adfmf:constraints>
 <adfmf:constraint property="user.roles"
 operator="contains"
 value="Field Rep"/>
 <adfmf:constraint property="device.model"
 operator="contains"
 value="ios"/>
</adfmf:constraints>

22.2.1 How to Define the Constraints for an Application Feature

You declaratively configure the constraints for a selected application feature using the Constraints tab in the Features page, shown in Figure 22-2.

Defining the constraints for an application feature:

	
Click the Constraints tab.

	
Click Add.

	
Select a property and an appropriate operator and then enter a value. For more information on using properties, see Section 22.2.3, "About the property Attribute."

22.2.2 What Happens When You Define a Constraint

Entering the values in the Constraints tab updates the descriptor file's <adfmf:constraints> element with defined <adfmf:constraint> elements, similar to Example 22-1.

22.2.3 About the property Attribute

MAF provides a set of property attributes that reflect users, devices, and hardware properties. Using these properties in conjunction with the following operators and an appropriate value determines how an application feature can be used.

	
contains

	
equal

	
less

	
more

	
not

22.2.4 About User Constraints and Access Control

After a user logs into a mobile application, the MAF runtime reconciles the user role-based constraints configured for each application feature against the user roles and privileges retrieved by the Access Control Service (ACS). MAF then presents only the application feature (or application feature content) to end users whose privileges satisfy the constraints. In addition to setting these user privilege and role constraints, you create access control for the mobile application by entering the following in the Create MAF Login Connection dialog, shown in Figure 22-3 (and described in Section 29.5.2, "How to Designate the Login Page"):

	
The URL of the REST Web service that transmits a list of user roles and privileges.

	
A list the user roles checked by the application feature.

	
A list of privileges.

See also Section 29.4.19, "What You May Need to Know About the Access Control Service."

Figure 22-3 Configuring Retrieval of User Roles and Privileges

[image: This image is described in the surrounding text]

You control access to application features using constraints based on user.roles and user.privileges. For example, to allow only a user with the manager role to access an application feature, you must add a constraint of user.roles contains manager to the definition of the application feature.

The user.roles and user.privileges use the contains and not operators as follows:

	
contains—If the collection of roles or privileges contains the named role or privilege, then the runtime evaluates the constraint to true. Example 22-2 shows an example of using the user.roles property with the contains operator. The application feature will appear in the mobile application if the user's roles include the role of employee.

Example 22-2 Using the contains Operator for a User Role Collection

<feature ...>
 ...
 <constraints>
 <constraint property="user.roles"
 operator="contains"
 value="employee" />
 </constraints>
 ...
</feature>

	
not—If the collection of roles or privileges does not contain the named role or privilege, then the runtime evaluates the constraint to true. In Example 22-3, the application feature is not included if the user's privileges contain the manager privilege.

Example 22-3 Using the not Operator with the user.privileges Property to Restrict Access to an Application Feature

<feature ...>
 ...
 <constraints>
 <constraint property="user.privileges"
 operator="not"
 value="manager" />
 </constraints>
 ...
</feature>

22.2.5 About Hardware-Related Constraints

The hardware object references the hardware available on the device, such as the presence of a camera, the ability to provide compass heading information, or to store files. These properties use the equal operator.

	
hardware.networkStatus—Indicates the state of the network at the startup of the application. This property can be modified with three attribute values: NotReachable, CarrierDataConnection, and WiFiConnection. Example 22-4 illustrates the latter value. As illustrated in this example, setting this value means that this mobile application feature only displays in the mobile application if the device hardware indicates that there is a Wi-Fi connection. In other words, if the device does not have a Wi-Fi connection when the mobile application loads, then this application feature will not display.

Example 22-4 Defining the hardware.networkStatus Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.networkStatus"
 operator="equal"
 value="WiFiConnection" />
 </constraints>
...
</feature>

	
Note:

This constraint is evaluated at startup on iOS-powered devices. If a device does not have a Wi-Fi connection at startup but subsequently attains one (for example, when a user enters a Wi-Fi hotspot), then the application feature remains unaffected and does not become available until the user stops and then restarts the mobile application.

	
hardware.hasAccelerometer—Indicates whether or not the device has an accelerometer. This property is defined by a true or false value. Example 22-5 shows a true value, indicating that this application feature is only available if the hardware has an accelerometer.

Example 22-5 Using the hardware.hasAccelerometer Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasAccelerometer"
 operator="equal"
 value="true" />
 </constraints>
...
</feature>

	
Note:

Because all iOS-based hardware have accelerometers, this property must always have a value of true for the application feature to be available on iOS-powered devices.

	
hardware.hasCamera—Indicates whether or not the device has a camera. This constraint is defined using a value attribute of true or false. In Example 22-6, the value is set to true, indicating that the application feature is only available if the device includes a camera.

Example 22-6 Using the hardware.hasCamera Property

<feature ...>
...
 <constraints>
 <constraint property="hardware.hasCamera"
 operator="equal"
 value="true" />
 </constraints>
...
</feature>

	
Note:

Not all iOS-based hardware have cameras. This value is dynamically evaluated at the startup of mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to true.

	
hardware.hasCompass—Indicates whether the device has a compass. You define this constraint with the attribute value of true or false, as shown in Example 22-7.

Example 22-7 Using the hardware.hasCompass Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasCompass"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Not every iOS-powered device has a compass. This value is dynamically evaluated at the startup of mobile applications on an iOS-powered device. At this time, the mobile application removes the application features that do not evaluate to true.

	
hardware.hasContacts—Indicates whether the device has an address book or contacts. You define this constraint with the attribute value of true or false, as shown in Example 22-8.

Example 22-8 Using the hardware.hasContacts Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasContacts"
 operator="equal"
 value"=true" />
 </constraints>
 ...
</feature>

	
Note:

Because contacts on iOS-based hardware are accessed through Apache Cordova, the value attribute is always set to true for iOS-powered devices.

	
hardware.hasFileAccess—Indicates whether the device provides file access. You define this constraint with the attribute value of true or false, as shown in Example 22-9. The application feature is only available if the runtime evaluates this constraint to true.

Example 22-9 Using the hardware.hasFileAccess Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasFileAccess"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Because file access on iOS-based hardware is accessed through Apache Cordova, the value attribute is always true for iOS-powered devices.

	
hardware.hasGeoLocation—Indicates whether or not the device provides geolocation services. You define this constraint with the attribute value of true or false, as shown in Example 22-10. The application feature is only available if the device supports geolocation.

Example 22-10 Using the hardware.hasGeoLocation Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasGeoLocation"
 operator="equal"
 value="true"/>
 </constraints>
 ...
</feature>

	
Note:

Apache Cordova does not provide access to the gelocation service for all iOS-powered devices. Depending on the device, the application feature may not be available when the constraint is evaluated by the runtime.

	
hardware.hasLocalStorage—Indicates whether the device provides local storage of files. You define this constraint with the value attribute of true or false, as shown in Example 22-11. The application feature only displays if the device supports storing files locally.

Example 22-11 Using the hasLocalStorage Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasLocalStorage"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Because Apache Cordova provides access to local file storage on all iOS hardware, the value attribute is always true for iOS-powered devices.

	
hardware.hasMediaPlayer—Indicates whether or not the device has a media player. You define this constraint with the value attribute of true or false, as shown in Example 22-12. The application feature only displays if the device has a media player.

Example 22-12 Using the hardware.hasMediaPlayer Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaPlayer"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

For iOS-powered devices, the value attribute is always true, because Apache Cordova provides access to media players on iOS-based hardware.

	
hardware.hasMediaRecorder—Indicates whether or not the device has a media recorder. You define this constraint with the value of true or false, as shown in Example 22-13. The application feature is only included if the device hardware supports a media recorder.

Example 22-13 Using the hardware.hasMediaRecorder Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasMediaRecorder"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Set this value to true for all iOS-powered devices because all iOS-based hardware have media recorders which can be accessed through Apache Cordova. Some devices, such as the Apple iTouch, do not have a microphone but can allow end users to make recordings by attaching an external microphone.

	
hardware.hasTouchScreen—Indicates whether or not the hardware provides a touch screen. You define this constraint with the value attribute of true or false, as shown in Example 22-14. The application feature is only included if the device hardware supports a touch screen.

Example 22-14 Using the hardware.hasTouchScreen Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.hasTouchScreen"
 operator="equal"
 value="true" />
 </constraints>
 ...
</feature>

	
Note:

Set the value attribute to true for iOS-powered devices, because all iOS-based hardware provides touch screens.

	
hardware.screen.width—Indicates the width of the screen for the device in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical device pixels (such as such as 320 in Example 22-15), not physical device pixels, which represent the actual pixels that appear on a device. The value depends on the orientation of the device.

Example 22-15 Using the hardware.screen.width Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.width"
 operator="equal"
 value="320" />
 </constraints>
 ...
</feature>

	
Note:

This value is evaluated at the startup of the mobile application when the runtime evaluates constraints and dismisses application features with constraints that do not evaluate to true. If a user rotates the device after the mobile application starts, MAF's runtime does not re-evaluate this constraint because the set of application features is fixed after the mobile application starts.

	
hardware.screen.height—Indicates the height of screen for the device in its current position. Enter a numerical value that reflects the screen's height in terms of logical pixels, such as 320 or 480, as shown in Example 22-16. The value depends on the orientation of the device.

Example 22-16 Using the hardware screen.height Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.height"
 operator="equal"
 value="480" />
 </constraints>
 ...
</feature>

	
Note:

When the mobile application starts, the MAF runtime evaluates the screen height value for this constraint as part of the process of dismissing application features with constraints that do not evaluate to true. If a user changes the orientation of the device after the mobile application starts, the runtime does not re-evaluate this constraint, because the set of application features is fixed after the mobile application starts.

	
hardware.screen.availableWidth—Indicates the available width of the device's screen in its current orientation. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 22-17. The value depends on the orientation of the device.

Example 22-17 Using the hardware.screen.availableWidth Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableWidth"
 operator="equal"
 value"320" />
 </constraints>
 ...
</feature>

	
hardware.screen.availableHeight—Indicates the available height of the screen for the device in its current position. Enter a numerical value that reflects the screen's width in terms of logical pixels, such as 320 or 480, as shown in Example 22-18. The value depends on the orientation of the device.

Example 22-18 Using the hardware.screen.availableHeight Property

<feature ...>
 ...
 <constraints>
 <constraint property="hardware.screen.availableHeight"
 operator="equal"
 value"480" />
 </constraints>
 ...
</feature>

22.2.6 Creating Dynamic Constraints on Application Features and Content

In addition to displaying or hiding an application feature or user interface content based on the static constraints that are defined by the name, operator, and value attributes, you can enable a mobile application to render its application features and content dynamically by defining constraints with EL expressions. The dynamic evaluation of constraints based on EL expressions enables you to write expressions that can call your own bean logic, write complex EL expressions, or even write logic-accessing application preferences. Defining constraints as EL expressions provides flexibility in that the MAF runtime may initially hide an application feature if it evaluates an EL expression as false, but may display it at a later point when it evaluates the same EL expression as true. The <adfmf:constraintExpression> element enables you to define constraints on an application feature using EL expressions, as illustrated by the deferred method expression in Example 22-19.

Example 22-19 Defining a Dynamic Constraint with EL Expressions

<adfmf:constraints>
 <adfmf:constraint id="c1" property="hardware.screen.dpi" operator="more" value="120"/>
 <adfmf:constraint id="c2" property="device.model" operator="equal" value="iPad"/>
 <adfmf:constraintExpression id="c3" value="#{myBean.checkConstraint}"/>
</adfmf:constraints>

As also illustrated by Example 22-19, you can nest this element among the static constraints defined within the <adfmf:constraints> element of the maf-feature.xml file. For more information, see Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

22.2.6.1 About Combining Static and EL-Defined Constraints

The MAF runtime must evaluate all the criteria of a static constraint to true to enable it to display. It displays application features and content when it evaluates the constraint EL expressions as true, but hides them when it evaluates the expressions as false.

22.2.6.2 How to Define a Dynamic Constraint

Unlike static constraints, you do not create (or update) a dynamic constraint using the maf-feature.xml overview editor. Instead, you create an <adfmf:constraintExpression> by dragging the Constraint Expression component into either the Source editor or the Structure window and then use the Expression Builder to populate this component with the EL expression.

To define an Constraint Expression component:

	
Choose the Source editor for the maf-feature.xml file.

	
Navigate to the <adfmf-constraints> element.

	
In the Components window, select the Common components, as illustrated in Figure 22-4.

Figure 22-4 The Constraint Expression Component

[image: This image is described in the surrounding text]

	
Choose the Constraint Expression component and add it to the <adfmf-constraints> element using any of the following methods:

	
Double-click the Constraint Expression component in the Components window.

	
Drag the Constraint Expression component into the <adfmf-constraints> element in the Source editor.

	
Drag the Constraint Expression component into the Constraints node of the Structure window.

	
Enter the EL expression in the Insert constraintExpression dialog, shown in Figure 22-5, or create an EL expression with the Expression Builder, which you access by clicking the Property Menu icon (the gear) in this dialog.

Figure 22-5 Defining an EL Constraint Using the InsertconstraintExpession Dialog

[image: This image is described in the surrounding text]

Example 22-19 illustrates creating an EL expression from the ADF Managed Bean category. However, you can create an constraint's EL expression from any of the categories described in Section 14.3.5, "About the Categories in the Expression Builder."

	
Note:

Only application scope managed beans defined in adfc-mobile-config.xml can be used in a constraint's EL expression.

Figure 22-6 Building a Constraint's EL Expression

[image: This image is described in the surrounding text]

	
Click OK.

23 Accessing Data on Oracle Cloud

This chapter describes how a MAF application can access data hosted on Oracle Java Cloud Service.

This chapter includes the following section:

	
Section 23.1, "Enabling MAF Applications to Access Data Hosted on Oracle Cloud"

23.1 Enabling MAF Applications to Access Data Hosted on Oracle Cloud

MAF applications can access both SOAP and REST web services hosted on Oracle Cloud. To enable access to the hosted SOAP web services, create a web service data control, as described in Section 15.3, "Creating a Web Service Data Control Using SOAP." You can enable access to REST web services by creating a web service data control, as described in Section 15.2, "Creating a Web Service Data Control Using REST." Depending on the content type, MAF applications can access cloud data by dragging and dropping a data control into a MAF AMX UI component, as described in Section 12.3.2, "How to Add UI Components and Data Controls to a MAF AMX Page," or programmatically, for applications whose content is delivered from a either a remote web server or from locally stored HTML files.

23.1.1 How to Authenticate Against Oracle Cloud

You use the MAF Login Server Connection dialog to create a login server connection to authenticate against Oracle Cloud.

Before you begin:

Obtain the Oracle Cloud URL that is used for the login server connection.

To create a login URL with an Oracle Cloud endpoint:

	
Select Application, then New, and then Connections.

	
Select MAF Server Login Connection.

	
Complete the Connect MAF Login Connection dialog, shown in Figure 23-1, by entering the following:

	
A name for the connection in the Name field.

	
The URL for Oracle Cloud in the Login URL field.

For more information, refer to the Oracle JDeveloper online help and Section 29.5.2, "How to Designate the Login Page."

Figure 23-1 Creating the Login to Oracle Cloud

[image: This image is described in the surrounding text]

23.1.2 How to Create a Web Service Data Control to Access Oracle Java Cloud

The Create Data Service Control Wizard enables you to create the data control that accesses the hosted data. You use the WSDL URL of the SOAP web service deployed to Oracle Java Cloud to create this data control. If you do not know this URL, then you must create the URL to the WSDL document by appending the web service port name and ?wsdl to the application context root.

Before you begin:

You must have access to a SOAP web service application that has been deployed to Oracle Java Cloud Service. This application must be available through the Applications pane of the Oracle Java Cloud Service Control home page. In addition, its Status and State must be noted as both Up and Active, respectively, as illustrated by the HCMMobileService application shown in Figure 23-2.

Figure 23-2 The Java Cloud Services Control Home Page

[image: This image is described in the surrounding text]

To create a web service data control:

	
Obtain the application context root of the web service hosted on Oracle Cloud as follows:

	
Traverse to the application home page, shown in Figure 23-3, by clicking the application in the Applications pane (shown in Figure 23-2).

	
Copy the URL, as shown in Figure 23-3. This URL is the application context root of the WSDL document.

Figure 23-3 Copying the Web Service Application Context Root

[image: This image is described in the surrounding text]

	
In JDeveloper, right-click the view controller project in the Application Navigator and then open the Create Web Service Data Control Wizard, as described in Section 15.3, "Creating a Web Service Data Control Using SOAP."

	
In the Data Source page, shown in Figure 23-4, enter the name of the data control.

Figure 23-4 Entering the URL for the WSDL Document

[image: This image is described in the surrounding text]

	
In the URL field, paste the URL of the SOAP-based web service that is deployed to (and currently running on) Oracle Cloud Java Service.

	
Enable the data control to access the WSDL by appending a web service port name and ?wsdl to the application context root, such as HCMServicePort?wsdl in Figure 23-4.

	
In the Data Controls Operations page, shown in Figure 23-5, select from among the web service operations that can be used by the application feature to retrieve data, and then click Finish.

Figure 23-5 Selecting the Web Service Operations

[image: This image is described in the surrounding text]

Figure 23-5 shows the web service operations returned by the MAF design time that can be made available to the MAF application. In this example, the design time has queried a web service that hosts human resources data and has returned operations to retrieve employee data, including expense approvals.

23.1.2.1 Configuring the Policy for SOAP-Based Web Services

You must configure a policy for a SOAP-based web service that is secured on Oracle Cloud. Using the Edit Data Service Control Policies dialog, described at Section 15.7, "Accessing Secure Web Services," you can select the oracle/wss_http_token_over_ssl_client_policy. For descriptions of this (and other) policies, see "Determining Which Predefined Policies to Use" and "Predefined Policies" chapters in Oracle Fusion Middleware Securing Web Services and Managing Policies with Oracle Web Services Manager.

	
Note:

Only the oracle/wss_http_token_over_ssl_client_policy is supported for SOAP-based web services. For REST-based web services, MAF supports both basic authentication and SSL policies.

23.1.3 What Happens When You Deploy a MAF Application that Accesses Oracle Java Cloud Service

After you deploy the application, the operations of the web service data control retrieve the data from a web service running on the Oracle Java Cloud Service instance.

24 Enabling and Using Notifications

This chapter describes how to enable MAF applications to register for, and handle, push notification messages.

This chapter includes the following sections:

	
Section 24.1, "Introduction to Push Notifications"

	
Section 24.2, "Enabling Push Notifications for a MAF Application"

	
Section 24.3, "What You May Need to Know About the Push Notification Payload"

24.1 Introduction to Push Notifications

Push notifications are notifications sent from an external source, such as a server, to an application on a mobile device. These may appear as messages in the form of an alert, or as a banner, depending on the state of the application and user settings. Figure 24-1 shows a push notification alert on an iOS-powered device.

Figure 24-1 Push Notification

[image: This image is described in the surrounding text]

When end users are notified, they can launch the application, or they can choose to ignore the notification. In this case, the application is not activated. Notifications may also accompany an alert message with a brief, distinctive sound.

Applications must register with a notification service to receive push notifications. If the registration succeeds, then the notification service issues a token to the application. The application shares this token with its provider (located on a remote server), and in doing so, enables the provider to send notifications to the application through the notification service. MAF registers on behalf of the application using application-provided registration configuration, described in Section 24.2, "Enabling Push Notifications for a MAF Application." Registration occurs upon every start of the MAF application to ensure a valid token. After a successful registration, MAF shares the token obtained from the platform-specific notification service with the provider. On iOS, the notification service is Apple Push Notification Service (APNs). Google Cloud Messaging (GCM) for Android provides the notification service for applications installed on Android-powered devices.

24.1.1 How MAF Applications Display Notifications Depending on Application State

A MAF application can receive push notifications regardless of its state: the display of these messages, which can appear even when the application is not in the foreground, depends on the state of the MAF application and the user settings. Table 24-1 describes how the iOS operating system handles push notifications depending on the state of the MAF application.

Table 24-1 Handling Push Notifications on an iOS-Powered Device

	State	Action
	
The MAF application is installed, but not running.

	
The notification message displays with the registered notification style (none, banner, or alert). When the user taps the message (if its a banner-style notification) or touches the action button (if the message appears as an alert), the MAF application launches, invoking the application notification handlers.

	
The MAF application is running in the background.

	
The notification message displays with the registered notification style (none, banner, alert). When the user taps the message (if it is a banner-style notification), or touches the action button (if the message appears as an alert), the MAF application launches, invoking the application notification handlers.

	
The MAF application is running in the foreground.

	
No notification message displays. The application notification handlers are invoked.

On the iOS and Android platforms, if the application is not running in the foreground, then any push notification messages associated with it are queued in a specific location, such as the iOS Notification Center or the notification drawer on Android-powered devices.

24.2 Enabling Push Notifications for a MAF Application

You can enable push notifications by performing the following tasks:

	
Allow the MAF application to receive push notifications by choosing Push Notifications in the Device Access page of the maf-application.xml overview editor, as shown in Figure 24-2.

	
Note:

By default, a MAF application does not allow push notifications (nor any other device type of device access).

Figure 24-2 Allowing Push Notifications

[image: This image is described in the surrounding text]

	
In the application controller project, register an application lifecycle event listener (ALCL) class. For more information, see Section 3.3, "Setting Display Properties for an Application Feature" and Chapter 11, "Using Lifecycle Listeners in MAF Applications."

	
Implement the oracle.adfmf.application.PushNotificationConfig interface in the ALCL. This interface provides the configuration required to successfully register with the push notification service.

Override and implement the getNotificationStyle and getSourceAuthorizationId methods of the PushNotificationConfig interface. The getNotificationStyle method enables you to specify the notification styles for which the application registers. The getSourceAuthorizationId method enables you to enter the Google Project Number of the accounts authorized to send messages to the MAF application. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
In the application controller project, create a push notification event listener class (for example, NativePushNotificationListener) that handles push notification events. This class must implement the oracle.adfmf.framework.event.EventListener interface that defines an event listener. For more information on the oracle.adfmf.framework.event.EventListener interface, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Override and implement the onOpen, onMessage, and onError methods to register for and receive notification events. After a successful registration with the push notification service, MAF calls the onOpen method with the registration token that must be shared with the provider by the application developer. The onError method is invoked if there is an error when registering with the notification service, with the error returned by the push notification service encapsulated as an AdfException.

MAF calls the onMessage(Event e) method with the notification payload whenever the application receives a notification. The Event object can be used to retrieve useful information about notification payload and the application state. To get the notification payload, use the Event.getPayload method. To get the application state at the time of notification, use the Event.getApplicationState method. For more information, see the Event class in Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

	
Get an EventSource object in the start method of the ALCL class that represents the source of a native push notification event:

EventSource evtSource =
EventSourceFactory.getEventSource(EventSourceFactory.NATIVE_PUSH_NOTIFICATION_
 REMOTE_EVENT
 _SOURCE_NAME);

	
Create and add an object of the push notification events listener class to the event source:

evtSource.addListener(new NativePushNotificationListener());

MAF sample applications called PushDemo and PushServer demonstrate how to handle push notifications. These sample applications are located in the PublicSamples.zip file within the jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples directory on your development computer.

24.3 What You May Need to Know About the Push Notification Payload

MAF respects the following keys for a JSON-formatted payload:

	
alert: the text message shown in the notification prompt.

	
sound: a sound that is played when the notification is received.

	
badge: the number to badge the application icon on iOS.

	
Note:

On Android, the payload can be a JSON object with key-value pairs. The value is always stringified, because the GCM server converts non-string values to strings before sending them to an application. This is not the case with the APNs, which preserves the value types. For more information, refer to the description of the "data" message parameter in the "Implementing GCM Server" section of Google Cloud Messaging. This document is available from the Android Developers website (http://developer.android.com/index.html) or the Android SDK documentation.

25 Synchronizing and Caching Data

This chapter describes how to enable data synchronization and caching in MAF applications.

This chapter includes the following sections:

	
Section 25.1, "Introduction to Data Caching and Synchronization"

	
Section 25.1.1, "Implementing Data Caching with the sync-config.xml File"

	
Section 25.1.2, "What You May Need to Know About Using a FAR to Update the sync-config.xml File"

25.1 Introduction to Data Caching and Synchronization

Data synchronization is a key part of providing a positive user experience to the users of mobile applications. Users expect mobile applications to be available and to work, at all times. Unfortunately, Mobile application connectivity is notoriously unreliable, as network connectivity may not be available, or it may come and go as connections are established and subsequently dropped. In order to provide the best possible user experience for your Mobile applications, MAF provides synchronization APIs that enable you to develop applications that will continue to work, even when offline, ensuring the best possible user experience for your Mobile applications. When network connectivity is unavailable, your application can access locally stored cached data to ensure a seamless user experience.

25.1.1 Implementing Data Caching with the sync-config.xml File

The sync-config.xml file enables the mobile application to not only cache the data retrieved from server-side resources accessed through various types of web services (SOAP, REST-XML, or REST with JSON payloads) to the embedded SQLite database, but also enables the application to update this data within the cache and to the server-side resource.

Rather than implement caching capabilities in the application code, you can configure them by editing the properties in the sync-config.xml file. When you create an application, it contains a default version of the sync-config.xml file, as shown in Figure 25-1. You can access the sync-config.xml file from the ADF-META-INF node of the Application Resources pane, and you can modify the file using the Source editor in JDeveloper. The MAF runtime reads this file after it is deployed.

	
Note:

Although this is an application-wide resource, you can include the sync-config.xml file in a feature archive (FAR) file. When the FAR is added to a MAF application, its sync-config.xml file is merged with the application's sync-config.xml. For more information, see Section 25.1.2, "What You May Need to Know About Using a FAR to Update the sync-config.xml File."

Example 25-1 illustrates the default sync-config.xml file. The properties in this file enable you to configure the caching policy for:

	
Static lists that seldom change

	
Large collections that frequently change (fetching deltas rather than refreshing the entire list)

	
Highly dynamic data, where the results are highly contextual and should therefore be refreshed rather than cached

	
Caching an individual resource and its direct children, both with one-to-one and one-to-n cardinality

Example 25-1 The sync-config.xml File

<?xml version="1.0" encoding="UTF-8"?>
<Settings xmlns="http://xmlns.oracle.com/sync/config">
 <BaseUri>http://127.0.0.1</BaseUri>
 <AppId/>
 <LazyPersistence/>
 <RefreshPolicy/>
 <DbStorageFolderPath/>
 <FileStorageFolderPath/>
 <Policies>
 <DefaultPolicy>
 <FetchPolicy>FETCH_FROM_SERVICE</FetchPolicy>
 <UpdatePolicy>UPDATE_IF_ONLINE</UpdatePolicy>
 <ExpirationPolicy>NEVER_EXPIRE</ExpirationPolicy>
 <EvictionPolicy>MANUAL_EVICTION</EvictionPolicy>
 </DefaultPolicy>
 </Policies>
</Settings>

Figure 25-1 Data Storage Policy Settings in the sync-config.xml File's Overview Editor

[image: Surrounding text describes Figure 25-1 .]

25.1.2 What You May Need to Know About Using a FAR to Update the sync-config.xml File

The sync-config.xml file is included in the Feature Archive file when the view controller project is deployed as a FAR. Like the connections.xml file, MAF merges the contents of the sync-config.xml file in the FAR (jar-sync-config.xml) with those of the consuming application's sync-config.xml file after you add the FAR to the application. Because the sync-config.xml file describes the web service endpoints used by the mobile application, you can update the endpoints for all of the web services used by the application features that comprise a mobile application by adding a FAR as described in Section 8.4, "What Happens When You Add a FAR as a View Controller Project."

After you add the FAR to the application, MAF logs messages that prompt you to verify and, if needed, modify the application's sync-config.xml and connections.xml files. As illustrated in Figure 25-2, these messages reflect the state of the sync-config.xml file in the consuming application.

Figure 25-2 The Messages Log

[image: The surrounding text describes this image.]

If the consuming application lacks the sync-config.xml file, then MAF adds the file to the application and writes a message similar to the following:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logNoSyncConfigInAppUsingFar
WARNING: The application does not contain a synchronization file, "sync-config.xml". Creating one
containing the synchronization configuration in the Feaure Archive.

MAF writes a log message similar to the following that requests that you verify (or create) a connection if the sync-config.xml file's <ServerGroup> elements do not have corresponding <Reference> elements defined in the consuming application's connections.xml file:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logAddedServerGroups
WARNING: The following server groups were added sync-config.xml by the Add to Application
operation:
{
 ServerGroup1 - there is no existing application connection defined for this server group.
Please create the connection.

 ServerGroup2 - verify its configuration.
}

If the <ServerGroup> definitions in the consuming application's sync-config.xml file duplicate those of the counterpart sync-config.xml file included in the FAR, then MAF writes the following SEVERE-level message to the log:

oracle.adfmf.framework.dt.deploy.features.deployers.SyncConfigMerger _logDuplicateServerGroups
SEVERE: Cannot merge the server groups from the Feature Archive because the following definitions
already exist:
ServerGroup1
ServerGroup2

26 Displaying Error Messages in MAF Applications

This chapter describes how to use the AdfException class to invoke errors and how to localize error messages.

This chapter includes the following sections:

	
Section 26.1, "Introduction to Error Handling in MAF Applications"

	
Section 26.2, "Displaying Error Messages and Stopping Background Threads"

	
Section 26.3, "Localizing Error Messages"

26.1 Introduction to Error Handling in MAF Applications

Errors arising from mobile applications might be unexpected, such as a failed connection to a remote server, or expected, such as a violation of an application business rule. Errors or exceptions might occur in the primary request thread or in a secondary thread that runs a background task. If the application supports multiple languages, then it must display the error message in the user's language.

To enable a MAF application to throw an exception, use oracle.adfmf.framework.exception.AdfException class. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

The following code enables MAF to handle an exception gracefully. A popup message, similar to the one illustrated in Figure 26-1displays within the application and shows the message severity and explanatory text.

throw new AdfException("My error message", AdfException.ERROR);

Figure 26-1 An Error Message

[image: This image is described in the surrounding text]

	
Note:

Similar error messages display within application when the exception is thrown within a managed bean or a data control bean.

26.2 Displaying Error Messages and Stopping Background Threads

The MessageUtils class, illustrated in Example 26-1, enables an application to stop a thread and display an error by first making a JavaScript call (invokeContainerJavaScriptFunction) and then throwing an exception. The addMessage method enables the error to display. For more information, see Section 26.2.1, "How Applications Display Error Message for Background Thread Exceptions." See also Section B.2.19, "invokeContainerJavaScriptFunction."

The MessageUtils class uses the BundleFactory and Utility methods for retrieving the resource bundle and the error message and dynamically checks if a thread is running in the background. Using this class, you can move code from the main thread to the background thread.

Example 26-1 A MessageUtils Class

package oracle.errorhandling.demo.mobile;

import java.util.ResourceBundle;

import oracle.adfmf.framework.api.AdfmfContainerUtilities;
import oracle.adfmf.framework.api.AdfmfJavaUtilities;
import oracle.adfmf.framework.exception.AdfException;
import oracle.adfmf.util.BundleFactory;
import oracle.adfmf.util.Utility;

public class MessageUtils {

 public static void handleError(AdfException ex) {
 handleMessage(ex.getSeverity(), ex.getMessage());
 }

 public static void handleError(String message) {
 handleMessage(AdfException.ERROR, message);
 }
 public static void handleError(Exception ex) {
 handleMessage(AdfException.ERROR, ex.getLocalizedMessage());
 }

 public static void handleMessage(String severity, String message) {
 if (AdfmfJavaUtilities.isBackgroundThread()) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(AdfmfJavaUtilities.
 getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {severity,
 null,
 null});
 if (AdfException.ERROR.equals(severity)) {
 // we still need to throw execption to stop background thread processing
 throw new AdfException(message,severity);
 }
 }
 else {
 throw new AdfException(message,severity);
 }
 }

 public static void addJavaScriptMessage(String severity, String message) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(AdfmfJavaUtilities.
 getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {severity,
 message,
 null,
 null });
 }

}

26.2.1 How Applications Display Error Message for Background Thread Exceptions

Applications do not display error messages when exceptions are thrown for background threads. To enable error messages to display under these circumstances, applications call the addMessage method. The addMessage method takes the following parameters:

	
The severity of the error

	
The summary message

	
The detail message

	
a clientComponentId.

Example 26-2 illustrates how you can enable the application to alert the user when an error occurs in the background by using the addMessage method.

Example 26-2 Allowing the Display of an Error Message for Background Threads

Runnable runnable = new Runnable() {
 public void run() {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction(
 AdfmfJavaUtilities.getFeatureName(),
 "adf.mf.api.amx.addMessage", new Object[] {AdfException.ERROR,
 "My error message for background thread",
 null,
 null });
 }
};
Thread thread = new Thread(runnable);
thread.start();

Because the adf.mf.api.amx.addMessage JavaScript function is the same method that is used when the application throws AdfException in the primary request thread, users receive the same popup error message whether the error message is referring to exceptions in the main thread or from a background thread.

	
Note:

As illustrated in Example 26-2, the detail message and the clientComponentId can be a Null value. A detail message displays on a new line in the same font size as the summary message.

However, you can prevent an error message from appearing if you place the code within a piece of Java logic that runs in a background thread, as illustrated in Example 26-3. Using the method illustrated in Example 26-4 enables the background thread to stop silently without notifying the user.

Example 26-3 Preventing the Display of an Error Message

Runnable runnable = new Runnable() {
 public void run() {
 // this exception will be lost because no popup error
 // message will display in the MAF application
 throw new AdfException("My (lost) error message in background",
 AdfException.ERROR);
 }
};
Thread thread = new Thread(runnable);
thread.start();

26.3 Localizing Error Messages

MAF uses standard Java resource bundles to display an exception error message in the language of the application user. As illustrated in Example 26-4, the resource bundle name (the .xlf file) and bundle message key is passed to the AdfException constructor method to enable the error message to be read from a resource bundle.

Example 26-4 Passing the Resource Bundle Name and Message Key to the AdfException Constructor Method

private static final String XLF_BUNDLE_NAME="oracle.errorhandling..mobile.ViewControllerBundle";
 throw new AdfException(AdfException.ERROR, XLF_BUNDLE_NAME,
 "MY_ERROR_MESSAGE",
 null);

To ensure that the application does not throw an MissingResourceException error, use the oracle.adfmf.util.BundleFactory method to retrieve the resource bundle and then use the oracle.adfmf.util.Utility method to retrieve the error message, as illustrated in Example 26-5.

Example 26-5 Using the BundleFactory and Utility Methods to Retrieve the Resource Bundle and Error Message

ResourceBundle bundle = BundleFactory.getBundle(XLF_BUNDLE_NAME);
String message = Utility.getResourceString(bundle, "MY_ERROR_MESSAGE",null);
throw new AdfException(message,AdfException.ERROR);

Example 26-6 illustrates using the adf.mf.api.amx.addMessage JavaScript function to display the localized error message when an exception is thrown from a background thread.

Example 26-6 Displaying an Localized Error Method for a Background Exception

ResourceBundle bundle = BundleFactory.getBundle(XLF_BUNDLE_NAME);
String message = Utility.getResourceString(bundle, "MY_ERROR_MESSAGE_BG",null);
AdfmfContainerUtilities.invokeContainerJavaScriptFunction(AdfmfJavaUtilities.
 getFeatureName(),
 "adf.mf.api.amx.addMessage",
 new Object[] {AdfException.ERROR,
 message,
 null,
 null });

27 Deploying MAF Applications

This chapter describes how to deploy MAF applications for testing and for publishing.

This chapter includes the following sections:

	
Section 27.1, "Introduction to Deployment of MAF Applications"

	
Section 27.2, "Working with Deployment Profiles"

	
Section 27.3, "Deploying an Android Application"

	
Section 27.4, "Deploying an iOS Application"

	
Section 27.5, "Deploying Feature Archive Files (FARs)"

	
Section 27.6, "Creating a Mobile Application Archive File"

	
Section 27.7, "Creating Unsigned Deployment Packages"

	
Section 27.8, "Deploying MAF Applications from the Command Line"

	
Section 27.9, "Deploying with Oracle Mobile Security Suite"

27.1 Introduction to Deployment of MAF Applications

Before you can publish an application for distribution to end users, you must test it on a simulator or on an actual device to assess its behavior and ease of use. By deploying an iOS application bundle (.ipa and .app files) or Android application package (.apk) file to the platform-appropriate device or simulator, MAF enables you to test applications before publishing them to the App Store (Apple iTunes), or to an application marketplace, such as Google Play.

27.1.1 MAF Deployment Options

MAF executes the deployment of a project by copying a platform-specific template application to a temporary location, updating that application with the code, resources, and configuration defined in the MAF project. MAF then builds and deploys the application using the tools of the target platform. You can deploy a mobile application as the platform-specific package (.ipa, .h for Android) which you can make available from a download site or application marketplace, such as the Apple App Store or Google Play. For testing and debugging, you can deploy to a simulator or to a device. You can reuse the application features by deploying the view controller projects as a feature archive (FAR). You also have the option to reuse the entire mobile application by deploying it as a Mobile Application Archive (.maa) file.

27.1.1.1 Deployment of Project Libraries

The libraries that you declare for the project using the Libraries and Classpaths Dialog, shown in Figure 27-1, are included in the deployment artifacts for the project. This dialog enables the application features to access these libraries at runtime.

Figure 27-1 Adding Libraries to the Project

[image: This image is described in the surrounding text]

27.1.1.2 Deployment of the JVM Libraries

For both Android and iOS applications, each MAF deployment includes a set of different libraries that are specific to the type of deployment (release or debug) in combination with the deployment target (simulators or actual devices). In addition, each set of these libraries includes a JVM JAR file. The application binding layer resides within this virtual machine, which is a collection of Objective-C libraries. For example, MAF deploys a JVM JAR file and a set of libraries for a debug deployment targeted at an iOS simulator, but deploys a different JVM JAR file and set of libraries to a debug deployment targeted to an actual iOS-powered device.

27.2 Working with Deployment Profiles

Preparing mobile applications for deployment begins with the creation of platform-specific deployment profiles. A deployment profile defines how an application is packaged into the archive that will be deployed to iOS- or Android-powered devices, iOS simulators, or Android emulators. The deployment profile does the following:

	
Specifies the format and contents of the archive. For iOS, the archive format is an .ipa file, known as an application bundle. For Android, the format is an Android application package (.apk) file.

	
Note:

The .apk file is archive-compatible, meaning that you can view its contents using an archiving tool such as WinZip or 7-Zip.

	
Lists the source files, deployment descriptors, and other auxiliary files that will be packaged into the archive file.

	
Describes the type and name of the archive file to be created.

	
Highlights dependency information, platform-specific instructions, and other information.

27.2.1 About Automatically Generated Deployment Profiles

After you create an application, MAF generates deployment profiles that are seeded with default settings and image files. Provided that you have configured the environment correctly, you can use these profiles to deploy a MAF application immediately after creating it by choosing Application and then Deploy, as shown in Figure 27-2.

Figure 27-2 Default Deployment Profiles

[image: This image is described in the surrounding text]

Using the Deployment Action page, shown in Figure 27-3, you then select the appropriate deployment target.

Figure 27-3 Selecting a Deployment Target

[image: This image is described in the surrounding text]

	
Note:

iOS and Android application deployments have distinct environment set up and configuration requirements. For more information, see Section 27.3, "Deploying an Android Application," and Section 27.4, "Deploying an iOS Application."

As illustrated in Figure 27-2, MAF creates application-level profiles for both supported platforms (iOS and Android) and names them iOS1 and Android1.

	
Note:

MAF increments the name of each new deployment profile by 1. For example, iOS2, iOS3.

You can accept the default values used for these profiles, or edit them by selecting the profile from the Deployment page of the Application Properties dialog and then clicking Edit. Figure 27-4 illustrates the Options page for a default Android application profile. For information on the values configured for MAF application profiles, see Section 27.2.4, "How to Create an Android Deployment Profile" and Section 27.2.5, "How to Create an iOS Deployment Profile."

Figure 27-4 Editing a Default Deployment Profile

[image: This image is described in the surrounding text]

MAF packages the application and view controller projects as separate Feature Archive (FAR) files. These JAR files of MAF files are used as resources for other applications and are described in Section 27.5, "Deploying Feature Archive Files (FARs)." Because MAF creates these FAR files as dependencies to the MAF application profile, you can include or exclude them using the Profile Dependencies page of the Application Properties dialog, as illustrated in Figure 27-5.

	
Note:

The application controller project must contain a single FAR profile dependency; otherwise, the deployment will fail.

Figure 27-5 Editing FAR Contents from MAF Projects

[image: This image is described in the surrounding text]

Using the File Groups-related pages of the Project Properties dialog, you can customize the contents of the view controller FAR file, as shown in Figure 27-6. For more information on the Project Properties dialog, see the Oracle JDeveloper online help and also the "Configuring Deployment Profiles" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Figure 27-6 Editing the View Controller Project's FAR

[image: This image is described in the surrounding text]

In addition to the platform-specific deployment profiles, MAF also creates a deployment profile that enables you to package the MAF application as a MAF Application Archive (.maa) file. Using this file, you can create a new MAF application using a pre-existing application that has been packaged as an .maa file. For more information, see Section 27.6, "Creating a Mobile Application Archive File" and Section 27.7, "Creating Unsigned Deployment Packages."

By default, this deployment file bears the name of the MAF application followed by _archive. As illustrated in Figure 27-2, this profile is called Employees_archive and, if needed, can be edited using the Application Properties dialog.

Figure 27-7 Editing the Default Deployment Profiles Using the Application Properties Dialog

[image: This image is described in the surrounding text]

For more information on editing deployment profiles using the Application Properties dialog pages, see the "Viewing and Changing Deployment Profile Properties" section in Oracle Fusion Middleware User's Guide for Oracle JDeveloper and the Oracle JDeveloper online help for the Application Properties and Project Properties dialogs.

27.2.2 How to Create a Deployment Profile

As described in Section 27.2.1, "About Automatically Generated Deployment Profiles," MAF creates a set of deployment profiles when you create a mobile application. You can deploy an application using these profiles, edit them, or construct new ones using the MAF-specific deployment profile pages. The Create Deployment Profile wizard, shown in Figure 27-8, enables you to create a default deployment profile from these pages. You can create as many deployment profiles as needed. For more information on these standard deployment profile pages, click Help to see the JDeveloper online help.

	
Note:

MAF application deployment only requires the creation of an application-level deployment profile; you do not have to create a view controller-level deployment profile.

Before you begin:

To enable JDeveloper to deploy mobile applications, you must designate the SDKs for the target platforms as described in the "Configuring the Development Environment for Platforms and Form Factors" section in Installing Oracle Mobile Application Framework.

	
Tip:

For iOS deployments, run iTunes and the iOS Simulator at least once before you configure their directory locations.

To create a deployment profile:

	
Choose Application and then Deploy.

	
Choose New Deployment Profile.

	
Depending on the target platform, select either MAF for Android, MAF for iOS, or MAF Application Archive, as shown in Figure 27-8.

	
Accept the default name for the profile or enter a new one. Click OK.

	
If needed, use the Options and Application Images pages as required for the applications and then click OK.

Figure 27-8 The Create Deployment Profile Wizard

[image: This image is described in the surrounding text]

27.2.3 What Happens When You Create a Deployment Profile

After you complete the wizard, JDeveloper creates a deployment profile and opens the Deployment Profile Properties editor.

Table 27-1 lists the MAF-specific pages in the Deployment Profile Properties editor, shown in Figure 27-10.

Table 27-1 MAF-Specific Deployment Profile Pages

	Page	Function
	
iOS Options

	
Enables you to modify the settings for an application to be deployed on an iOS-powered device or iOS simulator.

	
Android Options

	
Enables you to modify the settings for an application deployed to an Android-powered device or Android emulator.

	
Application Images

	
Enables you to assign custom icons to an application by adding the appropriate graphics file.

	
Device Orientations

	
Enables you to restrict the display of an application to certain device orientations. This page is used only for iOS deployment profiles.

	

	
Note:

Deployment depends on the needs of your application. You can deploy an application using the default values seeded in the pages listed in Table 27-1.

When you deploy an application, JDeveloper creates a deployment directory and related subdirectory. It also creates Feature Archive files (FARs) for the view controller projects (which must have different names) and application controller project. In addition to these two FARs, JDeveloper creates copies of any FARs that were imported into the project. Changes to the compilation profiles require the removal of the deployment directory. You can remove this directory, as well as the deployment directory within the view controller project that contains the FAR, by selecting Build and then Clean All.

27.2.4 How to Create an Android Deployment Profile

The deployment profile creates the template for the application deployment to an Android device or emulator, or for creating an application as an Android application package (.apk) file.

To create the deployment profile for Android, you must define the signing options for the application, the behavior of the javac compiler, and if needed, override the default Oracle images used for application icons with custom ones.

Before you begin:

Install and download the Android SDK as described in the "How to Install the Android SDK" section in Installing Oracle Mobile Application Framework.

If you deploy to an Android emulator, you must create a virtual device for each emulator instance using the Android Virtual Device Manager, as described in the "Managing Virtual Devices" document, available from the Android Developers website (http://developer.android.com/tools/devices/index.html).

You must also set the MAF preferences for the Android platform SDKs (accessed by choosing Tools > Preferences > Mobile Application Framework > Android Platform) to the locations for the SDK, platform, and build tools, which are part of the Android SDK package download. Figure 27-9 shows these locations.

	
Note:

To enable deployment, the Android Build Tools Location field must reference the location of the build tools aapt file (appt.exe on Windows systems).
MAF populates the Android Build Tools Location field with the latest version of the build-tools directory installed on the development computer.

	
Note:

Push notifications require devices and emulators running Android 4.0.3 (API 15) platform (or later). The Google Play store must be installed on these devices, and the Google API must be installed in the SDK to enable push notifications on emulators. Users must create a Google account (and be logged in).
See also the "GCM Architectural Overview" chapter in Google Cloud Messaging for Android, available from the Android Developers website (http://developer.android.com/index.html).

Figure 27-9 Setting the Android SDK, Platform, and Signing Properties

[image: This image is described in the surrounding text]

Using the Android Platform page, you also define the debug and release properties for a key that is used to sign the MAF application that you deploy to the Android platform. Within the deployment profile, you subsequently designate a mobile application's release type as either debug or release. You only need to define the signing key properties once. For more information, see Section 27.2.4.3, "Defining the Android Signing Options." See also the application publishing information in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html).

27.2.4.1 Setting the Options for the Application Details

The Android Options page, shown in Figure 27-10, enables you to do the following:

	
Denote the version of the application. For more information, refer to the "Versioning Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/versioning.html).

	
Configure the Android zipalign tool, an archive alignment tool that optimizes the packaging of .apk files. Data files stored in each application package, such as data manifests, are continually accessed by multiple processes within the Android operating environment. For more information, see the "zipalign" document, available from the Android Developers website (http://developer.android.com/tools/help/zipalign.html).

	
Set the logging level output as either non-verbose or debug (verbose).

	
Set the signing options appropriate to the deployment target (emulator or device). For more information, see Section 27.2.4.3, "Defining the Android Signing Options."

Figure 27-10 The Deployment Profile Properties Editor (Android Options Page)

[image: This image is described in the surrounding text]

To set the application options:

	
Choose Android Options, as shown in Figure 27-10.

	
Accept the default values, or define the following options:

	
Application Bundle ID—A unique ID for the application, as set in the id attribute of the maf-application.xml file. Each application deployed to an Android device has a unique ID, one that cannot start with a numeric value. For more information, see Section 3.3, "Setting Display Properties for an Application Feature."

If needed, you can override this value in the deployment file. However, for the application to deploy, this name must follow the <manifest> element's package attribute of the Android manifest file. This element is described in the document entitled "The AndroidManifest.xml File," which is available from the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html). Specifically, the ID uses a reverse package format of an internet domain (com.company.application). To avoid naming collisions, the package name reflects domain ownership, such as com.oracle.application.

	
Note:

The application bundle ID cannot contain spaces.

	
Application Archive Name—If needed, enter the name for the .apk file created by MAF. Otherwise, accept the default name.

By default, MAF bases the name of the .apk file on the application id attribute configured in the maf-application.xml file. For more information, see Section 3.3, "Setting Display Properties for an Application Feature."

	
Version Name—The release version of the application code that displays for the user. See also Section 3.3, "Setting Display Properties for an Application Feature."

	
Version Code—An integer value that represents the version of the application code, which is checked programmatically by other applications for upgrades or downgrades. The minimum and default value is 1. You can select any value and increment it by 1 for each successive release.

27.2.4.2 Setting Deployment Options

The Options page enables you to set values that are passed in by the javac compiler tool options, set the zipalign options, and also the Android API revisions.

To set the JDK-Compatibility level for the R.java and .class files:

	
Select the JDK-compatibility level from the Source Files dropdown list. The value is specified when the deployment runs the javac tool to compile R.java, the Android-generated file for referencing application resources, using the javac -source option.

For information on R.java, see the "Accessing Resources" document, available from the Android Developers website (http://developer.android.com/guide/topics/resources/accessing-resources.html).

	
Select the JDK version compatibility for the compiled .class files from the Class Files dropdown list. The value is specified when the deployment runs the javac tool to compile the R.java file using the javac -target option.

	
The Target SDK API Level shows the minimum API Level on which the application is designed to run. This value cannot be changed. For more information, refer to the description of the <uses-sdk> attribute in the document entitled "The AndroidManifest.xml File," available through the Android Developers website (http://developer.android.com/guide/topics/manifest/manifest-intro.html).

	
Select the minimum API Level on which the application is able to run from the Minimum SDK API Level dropdown list. The minimum and default value is 15, which corresponds to Android 4.0.3 platform. You may increase the minimum SDK version to exclude devices running older Android versions from installing your application.

	
Select the native-encoding name that controls how the compiler interprets characters beyond the ASCII character set from the Character Encoding dropdown list. The default is UTF-8.

To set the ZIP alignment options:

Select the byte alignment (32-bit or 64-bit). Selecting 32-bit (the default) provides 4-byte boundary alignment.

To set the storage option for the deployed application:

By default, mobile applications are stored on a Android-powered device's internal storage after they have been deployed from JDeveloper to a device, or downloaded from an application marketplace, such as Google Play. The following options, which are available from the Preferred Storage Location dropdown list, enable you to specify a preferred storage location for the mobile application.

	
Internal—Forces the mobile application to be installed on the device's internal storage.

	
External—Allows the application to be installed on the device's SD card. However, if the Android system determines that the application cannot be installed on the SD card (for example, no SD card has been mounted, or the SD card exists but has insufficient space), then it installs the application on the device's internal storage instead. The mobile device user can move the application between internal and external storage using the system settings.

	
Auto—Specifies that the application may be installed on the device's external or internal storage. The mobile device user can move the application between internal and external storage using the system settings.

Selecting the External or Auto options enables the deployment framework to update the <manifest> element in the AndroidManifest.xml file with an android:installLocation attribute and a value of "preferExternal" or "auto". Populating the AndroidManifest.xml file with this attribute enables mobile applications to be stored on an external SD card or internal storage. For more information, see the "App Install Location" chapter in Data Storage Guide, available from the Android Developers website (http://developer.android.com/guide/topics/data/install-location.html) or from the Android SDK documentation.

To set the logging level:

Select Verbose Output for the Android deployment to log the full output provided by each of the command-line tools invoked by the deployment while building the .apk. If you do not select this option, then the deployment does not log the full output.

27.2.4.3 Defining the Android Signing Options

An application must be signed before it can be deployed to an Android device or emulator. Android does not require a certificate authority; an application can instead be self-signed.

Defining how the deployment signs a mobile application is a two-step process: within the MAF Platforms preference page, you first define debug and release properties for a key that is used to sign Android applications. You only need to configure the debug and release signing properties once. After you define these options, you configure the deployment profile to designate if the application should be deployed in the debug or release mode.

Before you begin:

If no keystore file exists, you can create one using the keytool utility, as illustrated in Example 27-1.

Example 27-1 Generating a Keystore

keytool -genkeypair
 -v
 -keystore c:\jdeveloper\mywork\releasesigning.keystore
 -alias releaseKeyAlias
 -keyalg RSA
 -keysize 2048
 -validity 10000

As described in the "Signing Your Applications" document, available from the Android Developers website (http://developer.android.com/tools/publishing/app-signing.html), the keytool prompts you to provide passwords for the keystore and key, and to provide the Distinguished Name fields for your key before it generates the keystore. In Example 27-1, the keystore contains a single key, valid for 10,000 days. Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html) for information on how to use the keytool utility.

To configure the key options for the debug mode:

	
Choose Tools, then Preferences, and then Mobile Application Framework.

	
Choose Platforms.

	
Select the Debug tab, shown in Figure 27-11.

Figure 27-11 Configuring a Debug Deployment

[image: This image is described in the surrounding text]

	
Enter a password used by the deployment to create a keystore file and key needed for a debug deployment in the Key and Keystore Password field. This password, which generates a keystore and keyfile for deployment to an Android-powered device or emulator, can be any value, but must be at least six characters long. The default password is Android.

To configure the key options for a release mode:

	
Choose Tools, then Preferences, and then Mobile Application Framework.

	
Choose Platforms.

	
Select the Release tab, shown in Figure 27-9, and then define the following:

	
Keystore Location—Enter, or browse to and retrieve, the directory of the keystore containing the private key used for signing the application for distribution.

	
Keystore Password—Enter the password for the keystore. This password allows access to the physical file.

	
Key Alias—Enter an alias for the key. This is the value set for the keytool's -alias argument. Only the first eight characters of the alias are used.

	
Key Password—Enter the password for the key. This password allows access to the key (identified by the alias) within the keystore.

	
Tip:

Enter the password and key password requested by the keytool utility before it generates the keystore.

In addition to designating how the application will be signed, these parameters designate how the R.Java classes are compiled.

	
Click OK.

To Set the Android build mode:

	
In the Options page, select either Debug or Release as the build mode:

	
Select Debug for developing and testing an application (such as Java and JavaScript debugging). This option enables you to deploy an application on the Android platform without having to provide a private key. Use this option when deploying an application to an Android emulator or to an Android-powered device for testing. See also Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript."

	
Note:

You cannot publish an application signed with the debug keystore and key; this keystore and key are used for testing purposes only and cannot be used to publish an application to end users.

	
When the application is ready to be published, select Release. Use this option when the application is ready to be published to an application marketplace, such as Google Play.

	
Tip:

Use the release mode, not the debug mode, to test application performance.

	
Click OK.

After the .apk file is signed in either debug or release mode, you can deploy it to a device or to an emulator. At runtime, MAF indicates that an application has been deployed in debug mode by overlaying a debugging symbol that is represented by an exclamation point within a red triangle, as shown in Figure 27-12.

Figure 27-12 Deployment Modes

[image: The surrounding text describes this image.]

27.2.4.4 What You May Need to Know About Credential Storage

MAF stores passwords for the key and keystore in the file-based credential store, cwallet.sso. This file, which manages credential storage and retrieval, is located within the o.maf folder in the user's JDeveloper system folder. For example, in a Windows 7 environment, the cwallet.sso file is located at C:\Users\jsmith\AppData\Roaming\JDeveloper\system12.1.3\o.maf.

For more information, see the "About Oracle Wallet" section in Oracle Fusion Middleware Administrator's Guide and the "Credential Store Basics" section in Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services.

	
Note:

MAF stores the key and keystore credentials in a file called product-preferences.xml. MAF migrates these credentials to the cwallet.sso file if you preserve the preference settings by clicking Yes in the Confirm Import Preferences dialog during the installation process of the current version of JDeveloper and MAF. However, the cwallet.sso file is not migrated to other installations of the current version of Oracle JDeveloper with MAF. If you reinstall (or create a separate installation), you must either copy the cwallet.sso file to the o.maf folder or reconfigure the release mode credentials in the Platforms preferences page.

27.2.4.5 How to Add a Custom Image to an Android Application

Enabling MAF application icons to display properly on Android-powered devices of different sizes and resolutions requires low-, medium-, and high-density versions of the same images. MAF provides default Oracle images that fulfill these display requirements. However, if the application requires custom icons, you can use the Application Images page, shown in Figure 27-13, to override default images by selecting PNG-formatted images for the application icon and for the splash screen. For the latter, you can add portrait and landscape images. If you do not add a custom image file, then the default Oracle icon is used instead. To create custom images, refer to the "Iconography" document, available from the Android Developers website (http://developer.android.com/design/style/iconography.html).

Figure 27-13 Setting Custom Images for an Android Application

[image: This image is described in the surrounding text]

Before you begin:

Obtain the images in the PNG, JPEG, or GIF file format that use the dimensions, density, and components that are appropriate to Android theme and that can also support multiple screen types. For more information, see "Supporting Multiple Screens" document, available from the Android Developers website (http://developer.android.com/guide/practices/screens_support.html).

To add custom images:

	
Click Application Images.

	
Use the Browse function to select the splash screen and icon image files from the project file. Figure 27-13 shows selecting images for application icons and portrait orientation splash screen images that applications use for displaying on devices with low-, medium-, high- and extra-high density displays.

	
Click OK.

27.2.4.6 What Happens When JDeveloper Deploys Images for Android Applications

During deployment, MAF enables JDeveloper to copy the images from their source location to a temporary deployment folder. For the default images that ship with the MAF extension (located at application workspace directory\Application Resources\Resources\images), JDeveloper copies them from their seeded location to a deployment subdirectory of the view controller project (application workspace\ViewController\deploy). As shown in Table 27-2, each image file is copied to a subdirectory called drawable, named for the drawable object, described on the Android Developers website (http://developer.android.com/reference/android/graphics/drawable/Drawable.html). Each drawable directory matches the image density (ldpi, mdpi, hdpi, and xhdpi) and orientation (port, land). Within these directories, JDeveloper renames each icon image file as adfmf_icon.png and each splash screen image as adfmf_loading.png.

Table 27-2 Deployment File Locations for Seeded Application Images

	Source File (...\resource\Android)	Temporary Deployment File (...ViewController\deploy)
	
display-ldpi-icon.png

	
drawable-ldpi\adfmf_icon.png

	
display-mdpi-icon.png

	
drawable-mdpi\adfmf_icon.png

	
display-hdpi-icon.png

	
drawable-hdpi\adfmf_icon.png

	
display-xhdpi-icon.png

	
drawable-xhdpi\adfmf_icon.png

	
display-port-ldpi-splashscreen.png

	
drawable-port-ldpi\adfmf_loading.png

	
display-port-mdpi-splashscreen.png

	
drawable-port-mdpi\adfmf_loading.png

	
display-port-hdpi-splashscreen.png

	
drawable-port-hdpi\adfmf_loading.png

	
display-port-xhdpi-splashscreen.png

	
drawable-port-xhdpi\adfmf_loading.png

	
display-land-ldpi-splashscreen.png

	
drawable-land-ldpi\adfmf_loading.png

	
display-land-mdpi-splashscreen.png

	
drawable-land-mdpi\adfmf_loading.png

	
display-land-hdpi-splashscreen.png

	
drawable-land-hdpi\adfmf_loading.png

	
display-land-xhdpi-splashscreen.png

	
drawable-land-xhdpi\adfmf_loading.png

For custom images, JDeveloper copies the set of application icons from their specified location to the corresponding density and orientation subdirectory of the temporary deployment location.

27.2.5 How to Create an iOS Deployment Profile

For iOS, use the Deployment Profiles Properties Editor to define the iOS application build configuration as well as the locations for the splash screen images and application icons.

Before you begin:

Download Xcode (which includes the Xcode IDE, performance analysis tools, the iOS simulator, and the Mac OS X and iOS SDKs) to the Apple computer that also runs JDeveloper.

	
Tip:

Refer to the Certification and Support Matrix on Oracle Technology Network (http://www.oracle.com/technetwork/developer-tools/maf/documentation) for the minimum supported version required to compile applications.

Because Xcode is used during deployment, you must install it on the Apple computer before you deploy the mobile application from JDeveloper.

	
Tip:

While the current version of Xcode is available through the App Store, you can download prior versions through the following site:
https://developer.apple.com/xcode/

Access to this site requires an Apple ID and registration as an Apple developer.

After you download Xcode, you must enter the location of its xcodebuild tool and, for deployment to iOS simulators, the location of the iOS simulator's SDK, in the iOS Platform preference page. For more information, see the "Configuring the Development Environment for Platforms and Form Factors" section in Installing Oracle Mobile Application Framework.

	
Note:

Run both iTunes and the iOS simulator at least once before entering their locations in the iOS Platform preference page.

To deploy a mobile application to an iOS-powered device (as opposed to deployment to an iOS simulator), you must obtain both a provisioning profile and a certification from the iOS Provisioning Profile as described in Section 27.2.5.2, "Setting the Device Signing Options."

To create a deployment profile:

	
Choose Application > Application Properties > Deployment.

	
In the Deployment page, double-click an iOS deployment profile.

	
Choose iOS Options, as shown in Figure 27-14.

	
Accept the default values, or define the following:

	
Application Bundle Id—If needed, enter a bundle ID to use for this application that identifies the domain name of the company. The application bundle Id must be unique for each application installed on an iOS device and must adhere to reverse-package style naming conventions (that is, com.<organization name>.<company name>). For more information, see the App Distribution Guide, which is available through the iOS Developer Library at http://developer.apple.com/library/ios/navigation/). For information on obtaining the Bundle Seed Id using the iOS Provisioning Portal, see Section 27.4.4.3, "Registering an Application ID." See also Section 3.3, "Setting Display Properties for an Application Feature."

	
Note:

The application bundle ID cannot contain spaces.

Because each application bundle ID is unique, you can deploy multiple mobile applications to the same device. Two applications can even have the same name as long as their application bundle IDs are different. Mobile applications deployed to the same device are in their own respective sandboxes. They are unaware of each other and do not share data (they have only the Device scope in common).

	
Application Archive Name—If needed, enter the name for the .ipa file or the .app file. MAF creates an .ipa file when you select either the Deploy to distribution package or Deploy to iTunes for synchronization to device options in the Deployment Action dialog, shown in Figure 27-24. It creates an .app file when you select the Deploy application to simulator option. Otherwise, accept the default name. For more information, see Section 27.4.2, "How to Deploy an Application to an iOS-Powered Device" and Section 27.4.5, "How to Distribute an iOS Application to the App Store."

By default, MAF bases the name of the .ipa file (or .app file) on the application id attribute configured in the maf-application.xml file. For more information, see Section 3.3, "Setting Display Properties for an Application Feature."

	
Minimum iOS Version—Indicates the earliest version of iOS to which you can deploy the application. The default value is the current version. The version depends on the version of the installed SDK.

	
Simulator—Select the hardware and iOS version of the simulator to which you are deploying the application. Available versions are displayed in the dropdown list. For more information, see the iOS Simulator User Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
Family—Select the family of iOS products on which the application is intended to run. The default option is for both iPad and iPhone.

Figure 27-14 Setting the iOS Options

[image: This image is described in the surrounding text]

27.2.5.1 Defining the iOS Build Options

The iOS build options enable you to deploy an application with debug or release bits and libraries. The iOS Options page is also where you can enable containerization with Oracle Mobile Security Suite (OMSS).

Before you begin:

Deployment of an iOS application (that is, an .ipa file) to an iOS-powered device requires a provisioning profile, which is a required component for installation, and also a signed certificate that identifies the developer and an application on a device. You must obtain these from the iOS Provisioning portal as described in Section 27.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device." In addition, you must enter the location for a provisioning profile and the name of the certificate in the iOS Platform preference page, as described in Section 27.2.5.2, "Setting the Device Signing Options."

How to set the build options:

	
Choose Application > Application Properties > Deployment.

	
In the Deployment page, double-click an iOS deployment profile.

	
Choose iOS Options, as shown in Figure 27-14.

	
Choose from the following build options.

	
Debug—Select this option for development builds. Designating a debug build results in the inclusion of debugging symbols. See also Section 30.3.2, "How to Debug on the iOS Platform" and Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript."

	
Release—Select to compile the build with release bits and libraries.

	
Tip:

Use the release mode, not the debug mode, to test application performance.

	
Enable Oracle Mobile Security Suite—Select to enable containerization with Oracle Mobile Security Suite. For more information, see Section 27.9, "Deploying with Oracle Mobile Security Suite."

At runtime, MAF indicates that an application has been deployed in debug mode by overlaying a debugging symbol that is represented by an exclamation point within a red triangle, as shown in Figure 27-12, "Deployment Modes".

27.2.5.2 Setting the Device Signing Options

The iOS Platform preference page for iOS includes fields for the location of the provisioning profile on the development computer and the name of the signing identity. You must define these parameters if you deploy an application to a distribution package or to iTunes for synchronization to a device. You use a signing identity to code sign your application. When Xcode requests your development certificate, the certificate and its public key is stored in the Member Center, and the signing identity (the certificate with its public and private key) is stored in your keychain. You will not be able to code sign without this private key.

	
Note:

Neither a signing identity nor a provisioning profile are required if you deploy a mobile application to an iOS simulator.

To set the signing options:

	
Choose Tools > Preferences > Mobile Application Framework > iOS Platform.

	
From the Provisioning Profile dropdown list, choose the provisioning profile.

	
In the Signing Identity field, enter the name of the developer or distribution certificate that identifies the originator of the code (such as a developer or a company). You can view the name of the certificate using the Keychain Access utility (accessed from the Applications folder). Copy the entire name from the Keychain Access utility. The name entered into this field may look similar to the following example.

iPhone Developer: John Smith (Oracle123)

Figure 27-15 The Device Signing Section of the iOS Platform Preference Page

[image: This image is described in the surrounding text]

	
Note:

There are provisioning profiles used for both development and release versions of an application. While a provisioning profile used for the release version of an application can be installed on any device, a provisioning profile for a development version can only be installed on the devices whose IDs are embedded into the profile. For more information, see the App Distribution Guide, which is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

27.2.5.3 Adding a Custom Image to an iOS Application

The Application Images page enables you to rebrand an application by overriding the default Oracle image used for application icons and artwork with custom images. The options in this page, shown in Figure 27-16, enable you to enter the locations of custom images used for different situations, device orientation, and device resolutions. For more information on iOS application icon images, see the "Icon and Image Design" section in iOS Human Interface Guidelines. This document is available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
Note:

All images must be in the PNG format.

To add custom images:

	
Choose Application > Application Properties > Deployment.

	
In the Deployment page, double-click an iOS deployment profile.

	
Select iOS Options > Application Images from the tree on the left of the iOS deployment profile properties editor.

	
Choose Browse to select an icon image to override the default Apple image that iTunes assigns to .ipa files. This image is required for all applications and must be 512 x 512 pixels for both iPhone and iPad applications. For more information, see Section 27.2.5.4, "What You May Need to Know About iTunes Artwork."

	
Select the device type to display the available image types in the tree. By default, MAF displays all of the image styles and types available to iPad and iPhone devices. However, you can narrow the selection by selecting the device type, as shown in Figure 27-16. In the Icon Folder field, MAF displays the location within the application's Resources directory where these image files are stored.

Figure 27-16 Selecting the Application Images

[image: The surrounding text describes this image.]

	
Select an image type from the tree.

	
In the File field, choose Browse to select another image. This image file must exist within the current application.

During deployment, JDeveloper copies the custom image file into the deployment profile and renames it to match the name of the default image.

	
Click OK.

27.2.5.4 What You May Need to Know About iTunes Artwork

By default, mobile applications deployed to an iOS device through iTunes, or deployed as an archive (.ipa file) for download, use the default Oracle image unless otherwise specified.

By selecting an iTunes artwork image as the icon for the deployed application, you override the default image. You can use an image to differentiate between versions of the application. Figure 27-17 illustrates the difference between the default image and a user-selected image, where Application4 is displayed with the default image and Application6 is displayed with a user-selected image (the Oracle icon, scaled to 512 x 512 pixels).

Figure 27-17 Custom and Default Application Icons

[image: This image is described in the surrounding text]

During deployment, MAF ensures that the icon displays in iTunes by adding the iTunes artwork image to the top-level of the .ipa file in a file called iTunesArtwork.

	
Note:

iTunes artwork is only packaged into the application when you select the deployment type called Deploy to iTunes for synchronization to device.

27.2.5.5 How to Restrict the Display to a Specific Device Orientation

By default, MAF supports all orientations for both iPhone and iPad. If, for example, an application must display only in portrait and in upside-down orientations on iPads, you can limit the application to rotate only to these orientations using the Device Orientation page, shown in Figure 27-18

Figure 27-18 Select a Device Orientation

[image: This image is described in the surrounding text]

To limit the display of an application to a specific device orientation:

	
Choose Device Orientations, as shown in Figure 27-18.

	
Clear all unneeded orientations from among those listed in Table 27-3. By default, MAF deploys to all of these device orientations. By default, all of these orientations are selected.

Table 27-3 iPhone Device Orientations

	Icon	Description
	
[image: This image is described in the surrounding text]

	
iPad, portrait—The home button is at the bottom of the screen.

	
[image: This image is described in the surrounding text]

	
iPad, upside-down—The home button is at the top of the screen.

	
[image: This image is described in the surrounding text]

	
iPad, landscape left—The home button is at the left side of the screen.

	
[image: This image is described in the surrounding text]

	
iPad, landscape right—The home button is at the right side of the screen.

	
[image: This image is described in the surrounding text]

	
iPhone, portrait—The home button is at the bottom of the screen.

	
[image: This image is described in the surrounding text]

	
iPhone, upside-down—The home button is at the top of the screen.

	
[image: This image is described in the surrounding text]

	
iPhone, landscape left—The home button is at the left side of the screen.

	
[image: This image is described in the surrounding text]

	
iPhone, landscape right—The home button is at the right side of the screen.

	
Click OK.

27.2.5.6 What Happens When You Deselect Device Orientations

Deselecting a device orientation updates the source .plist file.

27.3 Deploying an Android Application

After you define the deployment profile, you can deploy a mobile application to the Android platform using the Deployment Action dialog, shown in Figure 27-19. Using this dialog, you can deploy the completed application to an Android emulator or to an Android-powered device for testing. After you have tested and debugged the application, this dialog enables you to bundle the mobile application as an Android application package (.apk) file so that it can be published to end users through an application marketplace, such as Google Play.

	
Tip:

As an alternative to the Deployment Action dialog, you can deploy a mobile application to the Android platform in a headless mode using the OJDeploy command line tool as described in Section 27.8, "Deploying MAF Applications from the Command Line."

Figure 27-19 Deployment Action Dialog for Android Applications

[image: This image is described in the surrounding text]

27.3.1 How to Deploy an Android Application to an Android Emulator

You can deploy the mobile application directly to an Android emulator, also known as an Android Virtual Device (AVD).

Before you begin:

Deployment to an Android emulator requires the following:

	
Install Android Platform version 21 (Android 5.0).

	
Ensure that the Android Virtual Device instance configuration reflects the ARM or Intel Atom x86 system image.

	
In the Android Options page of the deployment profile:

	
Ensure that Debug is selected.

	
Click OK.

	
Note:

The Android Platform preferences page must be configured with the password that is used to generate the keystore and key for debug-mode deployment. See Section 27.2.4.3, "Defining the Android Signing Options."

	
Start the Android emulator (Android Virtual Device) before you deploy an application.

You can start the emulator using the Android Virtual Device Manager, as illustrated in Figure 27-20, or from the command line by first navigating to the tools directory (located in Android\android-sdk) and then starting the emulator by first entering emulator -avd followed by the emulator name (such as -avd AndroidEmulator1).

	
Note:

You can run only one Android emulator during a deployment.

Figure 27-20 Starting an Emulator Using Android Virtual Device Manager

[image: This image is described in the surrounding text]

To deploy an application to an Android emulator:

	
Choose Applications, then Deploy, and then select an Android deployment profile.

	
Choose Deploy application to emulator and then choose Next.

	
Review the Summary page, shown in Figure 27-8, choose Back to select another deployment activity or choose Finish. The Summary page displays the following parameters from the deployment profile:

	
Application Bundle Id—The unique, Java language-like package name identifying the application.

	
Note:

The Summary page shown in Figure 27-21 shows that the application bundle ID is in the reverse package format required for a successful deployment to an emulator. Deploying an application that does not follow the reverse-package format causes the emulator to shut down, which prevents the deployment from completing.

	
File—The name of the .apk that is deployed to an Android target.

	
Deploy Mode—The build mode. This value is either Release or Debug, depending on the value set in the deployment profile.

Figure 27-21 Summary for Android Emulator Deployment

[image: This image is described in the surrounding text]

	
Review the deployment log, as shown in Figure 27-22. The deployment log notes that the deployer starts the Android Debug Bridge server when it detects a running instance of an Android emulator. See also Section 27.3.6, "What You May Need to Know About Using the Android Debug Bridge."

Figure 27-22 The Deployment Log

[image: This image is described in the surrounding text]

27.3.2 How to Deploy an Application to an Android-Powered Device

You can deploy a mobile application directly to an Android-powered device that runs on API 15 or later (that is, Platform 4.0.3.).

Before you begin:

In order to deploy directly to an Android-powered device, connect the device to the development computer that hosts JDeveloper, set the device to developer mode, and turn on USB debugging. For more information, see "How to Set Up an Android-Powered Device" in Installing Oracle Mobile Application Framework.

In the Android Options page, select Debug as the build mode. Ensure that the debug signing credentials are configured in the Android Platform preference page. For details, see Section 27.2.4.1, "Setting the Options for the Application Details."

To deploy an application to an Android device:

	
Choose Applications, then Deploy, then select an Android deployment profile.

	
Choose Deploy application to device and then choose Next.

	
Review the Summary page. Click Back or Next.

	
Click Finish.

27.3.3 How to Publish an Android Application

After you have tested and debugged the application, as described in Chapter 30, "Testing and Debugging MAF Applications," you can publish it to an application marketplace (such as Google Play) by following the instructions provided on the Android Developers website (http://developer.android.com/tools/publishing/publishing_overview.html).

Before you begin:

In the Android Options page of the deployment profile, select Release as the build mode.

	
Note:

You must configure the signing options in the Android Platform preference page (accessed by choosing Tools > Preferences > Mobile Application Framework) as described in Section 27.2.4.3, "Defining the Android Signing Options."

To deploy an application as an .apk file:

	
Choose Applications, then Deploy, then select an Android deployment profile.

	
Choose Deploy application to package and then choose Next.

	
Review the Summary page, shown in Figure 27-21. Click Back or Next.

	
Click Finish.

	
Publish the application to an application marketplace.

27.3.4 What Happens in JDeveloper When You Create an .apk File

Deploying an application results in the following being deployed in an .apk file.

	
The content in the adfmsrc

	
The content in the .adf folder

	
maf-application.xml and maf-feature.xml files

	
logging.properties file

	
The JVM files

27.3.5 Selecting the Most Recently Used Deployment Profiles

After you select a deployment action, JDeveloper creates a shortcut on the Deploy menu that enables you to easily redeploy the application using that same deployment action.

27.3.6 What You May Need to Know About Using the Android Debug Bridge

The deployment restarts the Android Debug Bridge server five times until it detects a device (if deploying to a device) or emulator (if deploying to an Android emulator). If it detects neither, then it ends the deployment process, as shown in Figure 27-23.

Figure 27-23 Deployment Terminated

[image: This image is described in the surrounding text]

If you are using the Android Debug Bridge command line tool prior to deployment, then you must enter the same command again after the deployment has completed. For example, if you entered adb logcat to view logging information for an emulator or device prior to deployment, you would have to enter adb logcat again after the application has been deployed to resume the retrieval of the logging output. For more information about the Android Debug Bridge command line tool, which is located within (and executed from) the platform-tools directory of the Android SDK installation, refer to the Android Developers website (http://developer.android.com/tools/help/adb.html).

27.4 Deploying an iOS Application

The Deployment Action dialog, shown in Figure 27-24, enables you to deploy an iOS application directly to an iOS simulator or to a device through iTunes. You can only deploy an iOS application from an Apple computer. Deployment to the iOS simulator does not require membership to either the iOS Developer Program or the iOS Developer Enterprise Program; registration as an Apple developer, which provides access to versions of Xcode that are not available through the App Store, will suffice. For more information on iOS developer programs, which are required for deployment to iOS-powered devices (and are described at Section 27.4.2, "How to Deploy an Application to an iOS-Powered Device," and Section 27.4.5, "How to Distribute an iOS Application to the App Store"), see https://developer.apple.com/programs/.

Figure 27-24 The Deployment Action Dialog (for iOS Applications)

[image: This image is described in the surrounding text]

	
Tip:

As an alternative to the Deployment Action dialog, you can deploy a mobile application to the iOS platform manually using the OJDeploy command line tool as described in Section 27.8, "Deploying MAF Applications from the Command Line."

27.4.1 How to Deploy an iOS Application to an iOS Simulator

The Deployment Actions dialog enables you to deploy an iOS application directly to an iOS simulator.

Before you begin:

To enable deployment to an iOS simulator, you must perform the following tasks:

	
Run Xcode after installing it, agree to the licensing agreements, and perform other post-installation tasks, as prompted.

	
Note:

You must run Xcode at least once before you deploy the application to the iOS simulator. Otherwise, the deployment will not succeed.

	
Run the iOS simulator at least once after installing Xcode.

	
In the iOS Options page of the deployment profile, select Debug, and then click OK.

	
Before you deploy an application, shut down the iOS simulator if it is running. If you do not shut down the simulator, the deployment will do it for you.

	
Refer to the iOS Simulator User Guide, available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/). The iOS simulator is installed with Xcode.

To deploy an application to an iOS simulator:

	
Choose Applications, then Deploy, then select an iOS deployment profile.

	
Choose Deploy application to simulator and then choose Next.

	
Review the Summary page, shown in Figure 27-25, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Signature—The developer or company that authored the application. If this value has not been configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Note:

Deployment to an iOS simulator does not require that the values for Signing Identity and Provisioning Profile be defined. In this deployment scenario, the Summary page displays <Not Specified> for these values.

Figure 27-25 The Deployment Actions Summary Dialog

[image: This image is described in the surrounding text]

27.4.2 How to Deploy an Application to an iOS-Powered Device

The Deploy to iTunes for Synchronization to device option enables you to deploy a mobile application to an iOS-powered device for debugging and testing. Deployment to an iOS-powered device or to a distribution site requires membership to either the iOS Developer Program or the iOS Developer Enterprise Program. For more information, see https://developer.apple.com/programs/.

Before you begin:

You cannot deploy an application directly from JDeveloper to a iOS device; an application must instead be deployed from the Applications folder in Apple iTunes. To accomplish this, you must perform the following tasks:

	
Download Apple iTunes to your development computer and run it at least once to create the needed folders and directories.

	
Set the location of the Automatically Add to iTunes folder (the location used for application deployment) in the iOS Platform preference page, shown in Figure 27-26.

	
Tip:

Although your user home directory (/User/<username>/Music/iTunes/iTunes Media/Automatically Add to iTunes.localized) is the default directory for the iTunes Media folder, you can change the location of this folder as follows:
	
In iTunes, select Edit, Preferences, then Advanced.

	
Click Change and then browse to the new location.

	
Consolidate the library.

	
Delete the original iTunes Media folder.

For instructions, refer to Apple Support (http://support.apple.com).

You must also update the location in the iOS Platform preference page.

Figure 27-26 Setting the Location for the iTunes Media Folder

[image: This image is described in the surrounding text]

	
Enter the name and location of the provisioning profile and the signing identity in the iOS Platform preference page. The OS Provisioning Portal generates the certificate and provisioning profile needed for deployment to iOS devices, or for publishing .ipa files to the App Store or to an internal download site.

	
Note:

The deployment will fail unless you set the iOS provisioning profile and signing identity to deploy to a device or to an archive. MAF logs applications that fail to deploy under such circumstances. For more information, see Section 27.4.4, "What You May Need to Know About Deploying an Application to an iOS-Powered Device."

	
In the iOS Options page of the deployment profile, select Debug as the build mode and then OK.

	
Refer to the App Distribution Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

To deploy an application to an iOS-powered device:

	
Choose Applications, then Deploy, and then select an iOS deployment profile.

	
Choose Deploy to iTunes for Synchronization to device and then choose Next.

	
Review the Summary page, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Signature—The developer (or company) who authored the application. If this value has not been configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the Options page of the deployment profile, then the Summary page displays <Not Specified>.

	
Note:

You must specify the Signature and Provisioning Profile values in the Options page to enable deployment to iTunes.

	
Connect the iOS-powered device to the development computer.

	
Open iTunes and then synchronize the device.

27.4.3 What Happens When You Deploy an Application to an iOS Device

The application appears in the iTunes Apps Folder, similar to the one illustrated in Figure 27-17 after a successful deployment.

27.4.4 What You May Need to Know About Deploying an Application to an iOS-Powered Device

You cannot deploy an iOS application (that is, an .ipa file) to an iOS-powered device or publish it to either the App Store or to an internal hosted download site without first creating a provisioning profile using the iOS Provisioning Portal, which is accessible only to members of the iOS Developer Program. You enter the location of the provisioning profile and the name of the certificate in the Options page as described in Section 27.2.5.2, "Setting the Device Signing Options."

As noted in the App Distribution Guide, (which is available through the iOS Developer Library at http://developer.apple.com/library/ios/navigation/), a provisioning profile associates development certificates, devices, and an application ID. The iOS Provisioning Portal enables you to create these entities as well as the provisioning profile.

	
Tip:

After you download the provisioning profile, double-click this file to add it to your Library/MobileDevice/Provisioning Profile directory.

Figure 27-27 The iOS Provisioning Portal

[image: This image is described in the surrounding text]

27.4.4.1 Creating iOS Development Certificates

A certificate is an electronic document that combines information about a developer's identity with a public key and private key. After you download a certificate, you essentially install your identity into the development computer, as the iOS Development Certificate identifies you as an iOS developer and enables the signing of the application for deployment. In the iOS operating environment, all certificates are managed by the Keychain.

Using the Certificates page in the iOS Provisioning Portal, you log a CSR (Certificate Signing Request). The iOS Provisioning Portal issues the iOS Development Certificate after you complete the CSR.

27.4.4.2 Registering an Apple Device for Testing and Debugging

After you install a certificate on your development computer, review the Current Available Devices tab (located in the iOS Provisioning Portal's Devices page) to identify the Apple devices used by you (or your company) for testing or debugging. The application cannot deploy unless the device is included in this list, which identifies each device by its serial number-like Unique Device Identifier (UDID).

27.4.4.3 Registering an Application ID

An application ID is a unique identifier for an application on a device. An application ID is comprised of the administrator-created reverse domain name called a Bundle Identifier in the format described in Section 3.2, "Setting Display Properties for a MAF Application" prefixed by a ten-character alpha-numeric string called a bundle seed, which is generated by Apple. Figure 27-28 illustrates an application ID that is unique, one that does not share files or the Keychain with any other applications.

Figure 27-28 An Explicit Application ID

[image: This image is described in the surrounding text]

Using a wildcard character (*) for the application name, such as 8E549T7128.com.oracle.*, enables a suite of applications to share an application ID. For example, if the administrator names com.oracle.MAF.* on the iOS Provisioning Portal, it enables you to specify different applications (com.oracle.MAF.application1 and com.oracle.MAF.application2).

	
Note:

For applications that receive push notifications, the application ID must be a full, unique ID, not a wildcard character; applications identified using wildcards cannot receive push notifications. For more information, see the "Provisioning and Development" section of Local and Push Notification Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/)

When applications share the same prefix, such as 8E549T7128, they can share files or Keychains.

	
Note:

The Bundle ID must match the application ID set in the Options page of the deployment profile.

27.4.5 How to Distribute an iOS Application to the App Store

After you test and debug an application on an iOS device, you can distribute the application to a wider audience through the App Store or an internal download site. To publish an application to the App Store, you must submit the .ipa file to iTunes Connect, which enables you to add .ipa files to iTunes, as well as update applications and create test users.

Before you begin:

Before you distribute the application, you must perform the following tasks:

	
In the iOS Platform preference page, shown in Figure 27-26, enter the location of the Automatically Add to iTunes directory.

	
Tip:

Run iTunes at least once before entering this location. See also Section 27.4.2, "How to Deploy an Application to an iOS-Powered Device."

	
Test the application on an actual iOS device. See Section 27.4.2, "How to Deploy an Application to an iOS-Powered Device."

	
Obtain a distribution certificate through the iOS Provisioning Portal.

	
Note:

Only the Team Agent can create a distribution certificate.

	
Obtain an iTunes Connect account for distributing the .ipa file to iTunes. For information, see "Prepare App Submission" in the iOS Development Center's App Store Resource Center. Specifically, review the App Store Review Guidelines to ensure acceptance by the App Review Team.

	
You may want to review both the and iTunes Connect Developer Guide. These guides are both available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

	
In the iOS Options page of the deployment profile, select App Distribution Guide Release as the build mode and then click OK.

To distribute an iOS application to the App Store:

	
Choose Applications, then Deploy, and then select an iOS deployment profile.

	
Choose Deploy to Distribution Package.

	
Review the Summary page, which displays the following values. Click Finish.

	
Application Bundle Id—The unique name that includes a Java language-like package name (com.<organization name>.<application name>) prefixed with the Bundle Seed that is generated from the iOS Provisioning Portal.

	
File—The file name of the final image deployed to an iOS target.

	
Signature—The application's author. If this value has not been configured in the iOS Platform preference page of the deployment profile, then the Summary page displays <Not Specified>.

	
Provisioning Profile—The name of the provisioning profile that associates one or more development certificates and devices with an application ID. If this value is not configured in the iOS Platform preference page, then the Summary page displays <Not Specified>.

	
Note:

You must specify the Signature and Provisioning Profile values in the Options page to enable the .ipa file to be accepted by iTunes.

	
Log in to iTunes Connect.

	
Submit the .ipa file to iTunes Connect for consideration using the Manage Your Applications module and the Application Loader described in the "Adding New Apps" and "Using Application Loader" sections in iTunes Connect Developer Guide.

	
After the application has been approved, refer to the "Creating Test Users" section in iTunes Connect Developer Guide for information on using the Manage Users module. For testing multi-language applications, create a test user account for the regions for which the application is localized.

	
Refer to the "Editing and Updating App Information" section in iTunes Connect Developer Guide for information on updating the binary using the Managing Your Application module.

27.5 Deploying Feature Archive Files (FARs)

To enable re-use by MAF view controller projects, application features— typically, those implemented as MAF AMX or Local HTML— are bundled into an archive known as a Feature Archive (FAR). As stated in Chapter 8, "Reusing MAF Application Content," a FAR is a JAR file that contains the application feature artifacts that can be consumed by mobile applications, such as icon images, resource bundles, HTML, JavaScript, or other implementation-specific files. (A FAR may contain Java classes, though these classes must be compiled.) Example 27-2 illustrates the contents of a FAR, which includes a single maf-feature.xml file and a connections.xml file. For more information on connections.xml, see the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application Development Framework.

Example 27-2 Contents of a Feature Archive File

connections.xml (or some form of connection metadata)

 META-INF
 adfm.xml
 maf-feature.xml
 MANIFEST.MF
 task-flow-registry.xml

 oracle
 application1
 mobile
 Class1.class
 DataBindings.cpx
 pageDefs
 view1PageDefs

 model
 adfc-mobile-config.adfc.diagram
 ViewController-task-flow.adfc.diagram

 public_html
 adfc-mobile-config.xml
 index.html
 navbar-icon.html
 springboard-icon.html
 view1.amx
 ViewController-task-flow.xml

Working with Feature Archive files involves the following tasks:

	
Creating a Feature Archive file—You create a Feature Archive by deploying a feature application as a library JAR file.

	
Using the Feature Archive file when creating a mobile application—This includes importing FARs and re-mapping the imported connection.

	
Deploying a mobile application that includes features from FARs—This includes unpacking the FAR to a uniquely named folder within the deployment template.

	
Note:

MAF generates FARs during the deployment process. You only need to deploy a view controller project if you use the FAR in another application.

27.5.1 How to Create a Deployment Profile for a Feature Archive

Use the Create Deployment Profile dialog, shown in Figure 27-29.

Figure 27-29 Create MAF Feature Archive Dialog

[image: This image is described in the surrounding text]

Before you begin:

Create the appropriate connections for the application. Because FARs may be used in different MAF applications with different connection requirements, choose a connection name that represents the connection source or the actual standardized connection name.

How to create a deployment profile for a Feature Archive:

	
Right-click a view controller project, choose New, then Deploy, and then New Deployment Profile.

	
Note:

You do not need to create a separate, application-level deployment profile.

	
Select MAF Feature Archive in the Create Deployment Profile dialog.

	
Enter a profile name, or accept the default, and then click OK.

	
Note:

Name the profile appropriately. Otherwise, you may encounter problems if you upload more than one application feature with the same archive name. For more information, see Section 8.5, "What You May Need to Know About Enabling the Reuse of Feature Archive Resources."

	
Select the connections that you want to include in the Feature Archive JAR file, as shown in Figure 27-30.

Figure 27-30 Selecting a Connection for the FAR

[image: This image is described in the surrounding text]

	
Click Next, review the options, and then click Finish.

27.5.2 How to Deploy the Feature Archive Deployment Profile

The Deployment Actions dialog enables you to deploy the FAR as a JAR file. This dialog, shown in Figure 27-31, includes only one deployment option, Deploy to feature archive JAR file.

Figure 27-31 Deployment Actions

[image: This image is described in the surrounding text]

How to deploy the Feature Archive deployment profile:

	
Right-click the view controller project and then select the Feature Archive deployment profile.

	
Click Finish. The Summary page, shown in Figure 27-32, displays the full path of where the Feature Archive file's JAR path is deployed.

Figure 27-32 Deployment Summary Page

[image: This image is described in the surrounding text]

27.5.3 What Happens When You Deploy a Feature Archive File Deployment Profile

After you complete the deployment action dialog, MAF creates a library JAR in the path shown in the Summary page. To make this JAR available for consumption by other applications, you must first make it available through the Resource Palette, shown in Figure 27-33 (and described in Section 8.2, "Using FAR Content in a MAF Application") by creating a connection to the location of the Feature Archive JAR. Figure 27-33 shows Feature Archives that can be made available to a mobile application through a file system connection.

Figure 27-33 Deployed Feature Archive JARs in the Resource Palette

[image: This image is described in the surrounding text]

27.6 Creating a Mobile Application Archive File

You can create a new mobile application from an existing mobile application by first packaging the original mobile application as a Mobile Application Archive (.maa) file and then by deriving a new mobile application from this file. An .maa file can be used by third parties, as described in Section 27.7, "Creating Unsigned Deployment Packages."

An .maa file preserves the structure of the mobile application. Table 27-4 describes the contents of this file.

Table 27-4 Contents of a Mobile Application Archive File

	Directory	Description
	
adf

	
Contains the META-INF directory, which contains the metadata files, including:

	
The adf-config.xml file

	
The maf-application.xml file

	
The maf-config.xml file

	
Other applicable application-level files, such as the connections.xmlfile

	
Projects

	
Contains a JAR file for each project in the workspace. For example, a ViewController.jar file and a ApplicationController.jar file are located in this directory when you deploy a default mobile application to an .maa file. The Projects directory of the .maa file does not include the .java files from the original project. Instead, the .java files are compiled and the resulting .class files are placed in a separate JAR file that is contained in the project JAR file (such as ApplicationController.JAR/classlib/mobileApplicationArchive.jar).

	
ExternalLibs

	
Contains the application-level libraries (including FARs) that are external to the original mobile application.

	
META-INF

	
Includes the cvm.properties and logging.properties files.

	
resources

	
Includes the following directories:

	
android—Contains Android-specific image files for application icons and splash screens.

	
ios—Contains iOS-specific image files for application icons and splash screens.

	
security—Includes the cacerts file (the keystore file).

In addition to the artifacts listed in Table 27-4, the .maa file includes any folder containing FARs or JAR files that are internal to the original mobile application, as well as its control (.jws)file. See also Section 27.7.2, "What Happens When You Import a MAF Application Archive File."

27.6.1 How to Create a Mobile Application Archive File

JDeveloper creates a default MAF Application Archive deployment profile after you create a mobile application. Using the Mobile Application Archive wizard, you can create the .maa file.

	
Tip:

You can also create an .maa file using OJDeploy, as described in Section 27.8, "Deploying MAF Applications from the Command Line."

To create a Mobile Application Archive file:

	
Click Application, then Deploy, then New Deployment Profile.

	
In the Create Deployment Profile dialog, choose MAF Application Archive and then click OK, as shown in Figure 27-34.

Figure 27-34 Creating an MAA Deployment Profile

[image: This image is described in the surrounding text]

	
If needed, enter a name for the Mobile Application Archive in the Application Archives Options page, shown in Figure 27-35, or accept the default name (and path). Click OK.

Figure 27-35 Entering a Name and Path for the Mobile Application Archive File

[image: This image is described in the surrounding text]

	
If needed, perform the following:

	
In the Application Descriptors page, shown in Figure 27-36, enter the file group name (or accept the default name) used for the contents of the META-INF folder (application_workspace\src\META-INF).

Figure 27-36 Entering a File Group Name for the META-INF Contents

[image: This image is described in the surrounding text]

	
Select the Contributors sub-page of this Application Descriptors page to edit the list of directories and JAR files that provide the contents for the file group.

Figure 27-37 Editing Contributors to the Mobile Application Archive File

[image: This image is described in the surrounding text]

	
Use the Filters page, shown in Figure 27-38 to edit the files that will be included in the .maa file or set the content inclusion or exclusion rules.

Figure 27-38 Including (or Excluding) Files and Directories

[image: This image is described in the surrounding text]

	
Use the Profile Dependencies page, shown in Figure 27-39, to specify dependent profiles within the project.

Figure 27-39 Selecting Deployment Profiles

[image: This image is described in the surrounding text]

To package a mobile application as a MAF Application Archive file:

	
Choose Application, then Deploy and then choose the MAF Application Archive deployment profile.

	
In the Deployment Action wizard, select Deploy application to MAA, as shown in Figure 27-40.

Figure 27-40 Deployment to a MAF Application Archive File

[image: This image is described in the surrounding text]

	
Click Next to review the deployment summary, as shown in Figure 27-41.

Figure 27-41 MAF Application Archive Deployment Summary

[image: This image is described in the surrounding text]

	
Click Finish.

27.7 Creating Unsigned Deployment Packages

The MAF Application Archive (.maa) file format enables you to provide third-parties with an unsigned mobile application. By deriving a mobile application from an imported .maa file, you enable various customizations, which include:

	
Giving an application a unique application ID (to enable push notifications, for example).

	
Signing an application with a company-specific credential or certificate.

	
Replacing the resources with customized splash screens and application icons.

	
Note:

Importing an .maa file into an existing application overwrites the workspace and project container files (the.jws and .jpr files, respectively). As a result, all prior changes to MAF AMX pages and configuration files, such as maf-application.xml, maf-config.xml, connections.xml, and adf-config.xml, will not be retained.

27.7.1 How to Create an Unsigned Application

You create an unsigned application by importing an .maa file into a new mobile application.

To create an unsigned application:

	
Choose File and then New.

	
In the New Gallery, choose Applications and then MAF Application from Archive File.

	
Note:

Alternatively, you can choose File, then Import, and then MAF Application from Archive File.

	
In the Location page, choose Browse in the MAA File field.

	
In the Select MAA File to Import page, highlight the .maa file, as shown in Figure 27-42, and then click Open.

Figure 27-42 Selecting the .maa File

[image: This image is described in the surrounding text]

	
If needed, perform the following, or accept the default values:

	
Enter a name for the mobile application derived from the .maa file in the Application File field, as shown in Figure 27-43.

	
Click Browse to retrieve the directory of the mobile application.

Figure 27-43 Entering the Directory Location

[image: This image is described in the surrounding text]

	
Click Next.

	
Review the import summary information and then click Finish.

Figure 27-44 Summary of MAF Application Archive Contents

[image: This image is described in the surrounding text]

27.7.2 What Happens When You Import a MAF Application Archive File

MAF performs the following after you import an .maa file:

	
Creates an application folder.

	
Unpacks the workspace container (.jws) file from the .maa file to the application file and renames it per the user-specified value.

	
Unpacks the adf directory and its contents to the application folder. This directory is renamed .adf.

	
Unpacks the META-INF directory and its contents and places them in a src directory in the application folder.

	
Unpacks the ExternalLibs directory and its contents to the application folder.

	
Note:

While any of the external resources contained in this directory are available in the mobile application that has been packaged as an .maa file (and imported into the application), the references to these resources will be invalid for a mobile application derived from the .maa file.

	
Unpacks the resources directory to the application folder.

	
Unpacks all folders that contain FARs (or other libraries) that are internal to the original mobile application. MAF preserves the original locations of these artifacts.

	
For each JAR file within the original mobile application's Projects directory, MAF performs the following:

	
Creates a project folder under the application directory that corresponds to the name of the JAR file (but without the .jar extension).

	
Unpacks the contents of the JAR files into the appropriate project folder. MAF includes the following in these project folders:

	
The original .jpr file.

	
The standard directories, such as META-INF, public_html, src, and adfmsrc.

	
The contents of the ExternalLibs directory.

	
Note:

While any of the external resources contained in this directory are available in the MAF project that has been packaged with the imported .maa file, the references to these resources will be invalid for an existing project, or a project created by importing the .maa file.

	
The classlib directory, which contains any Java classes packaged in a JAR file.

	
Note:

If the .maa file includes a classlib directory, then MAF adds all of the JAR files from this directory as library dependencies in the newly created mobile application.

27.8 Deploying MAF Applications from the Command Line

You can deploy iOS or Android applications from JDeveloper without starting the JDeveloper IDE using the OJDeploy command line tool. Command line deployment can serve as a tool for testing, as well as a means of deploying applications using a script.

After you have created iOS or Android deployment files using Deployment Profile Properties editor, you can use OJDeploy to deploy applications in the headless mode to iOS simulators and iOS-powered devices (through iTunes), or as iOS bundles (.ipa and .app files), or Feature Archive JAR files. Likewise, OJDeploy enables you to deploy applications to both Android emulators and Android-powered devices, or deploy them as an Android application package (.apk) file or as Feature Archive JAR files. For information on OJDeploy, see "Deploying from the Command Line" in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

	
Note:

To use OJDeploy on a Mac, add the following line to the ojdeploy.conf file:
SetSkipJ2SDKCheck true

This file is located at: jdev_install/jdeveloper/jdev/bin

27.8.1 Using OJDeploy to Deploy Mobile Applications

The following commands enable you to deploy MAF deployment profiles:

	
deployToDevice—Deploys an application to iOS- or Android-powered devices. For iOS applications, this command is used in debugging scenarios where the application is deployed to a device using iTunes. For more information, see Section 27.4.5, "How to Distribute an iOS Application to the App Store."

	
deployToSimulator—Deploys an application to an iOS simulator (as an .app file) or Android emulator. You can only deploy a mobile application to an iOS simulator on an Apple computer.

	
deployToPackage—Deploys an iOS application as an .ipa file or an Android application as an .apk file. You can only package an application as an .ipa file on an Apple computer.

	
deployToFeatureArchive—Deploys a Feature Archive to a JAR file.

	
deployToApplicationArchive—Packages a mobile application as a MAF Application Archive (.maa) file.

You use these commands in conjunction with the ojdeploy command line tool, OJDeploy's arguments, and its options as follows:

ojdeploy deployToSimulator -profile <profile name> -workspace <jws file location>

	
Note:

OJDeploy commands and arguments are case-sensitive.

Table 27-5 lists the OJDeploy arguments that you use to modify the MAF deployment commands.

	
Tip:

Using the -help option with any command (such as ojdeploy deployToSimulator -help) retrieves usage and syntax information.

Table 27-5 OJDeploy Arguments for MAF Deployments

	Argument	Description
	
-profile

	
The name of the Android or iOS deployment profile. For example:

ojdeploy deployToSimulator -profile iosDeployProfile ...

	
-workspace

	
The full path to the mobile application workspace container (.jws) file. For example:

... -workspace /usr/jsmith/mywork/Application1/Application1.jws

To package a mobile application as a mobile Application Archive:

ojdeploy deployToApplicationArchive
 -profile applicationArchiveProfile
 -workspace /usr/jdoe/Application1/application1.jws

	
-project

	
For the deployToFeatureArchive command, you must provide the name of the project (that is, a view controller project) that contains the Feature Archive deployment profile. For example:

ojdeploy deployToFeatureArchive
 -profile farProfileName
 -project ViewController
 ...

	
-buildfile

	
The full path to a build file for batch deploy.

	
-buildfileschema

	
Print XML Schema for the build file.

In addition to the arguments listed in Table 27-5, you can also use OJDeploy options described in the "Command Usage" section of Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

	
Note:

The following options are not supported:
	
-forcerewrite

	
-nocompile

	
-nodatasources

	
-nodepdendents

	
-outputfile

	
-updatewebxmlejbrefs

Table 27-6 provides examples of how to use the OJDeploy options with the MAF deployment commands.

Table 27-6 OJDeploy Options for MAF Deployments

	Option	Description
	
-clean

	
Deletes all files from the project output directory before compiling. For example:

ojdeploy deployToSimulator
 -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean

	
-stdout, -stderr

	
Redirects the standard output and error logging streams to a file for each profile and project. For example:

ojdeploy deployToSimulator -profile iosDeployProfile
 -workspace /usr/jsmith/jdeveloper/mywork/Application1.jws
 -clean
 -stdout /usr/jsmith/stdout/stdout.log
 -stderr /usr/jsmith/stderr/stderr.log

Table 27-7 lists the macros used with the deployToApplicationArchive command:

Table 27-7 Macros Used with MAF Application Archive Packaging

	Macros	Description
	
workspace.name

	
The name of the application workspace container file (without the .jws extension).

	
workspace.dir

	
The directory of the application workspace container (.jws) file.

	
profile.name

	
The name of the profile being deployed.

	
profile.dir

	
The default deployment directory for the profile.

	
base.dir

	
Override the current OJDeploy directory using this parameter. You can also override the current OJDeploy directory using the basedir attribute in the build script.

27.9 Deploying with Oracle Mobile Security Suite

Oracle Mobile Security Suite (OMSS) provides enterprise-level security for mobile applications. It offers encryption of application data and database contents and prevents data leakage. You can download the OMSS C14N tool from Oracle Support.

	
Note:

At present, OMSS is only available on iOS devices.

OMSS uses containerization at deployment time to encrypt your application content. You enable containerization in the iOS deployment profile properties editor (see Figure 27-46). You must also specify the name and location of the provisioning profile as described in Section 27.2.5.2, "Setting the Device Signing Options."

To containerize an application using Oracle Mobile Security Suite:

	
Choose Tools, then Preferences, and then Mobile Application Framework.

	
Select Containerize.

	
Specify the location of the c14n containerization tool in JDeveloper preferences, as shown in Figure 27-45.

Figure 27-45 Specifying the location of the Containerization tool

[image: Surrounding text describes Figure 27-45 .]

	
Click the Browse icon and browse to the location of the Oracle Mobile Security App Containerization tool on your local file system.

	
Click OK to select the containerization tool.

	
Choose Application > Application Properties > Deployment.

	
In the Deployment page, double-click an iOS deployment profile.

	
At the bottom of the iOS deployment profile properties editor, select Enable Oracle Mobile Security Suite, as shown in Figure 27-46.

Figure 27-46 Selecting OMSS Containerization in the iOS Deployment Profile

[image: Surrounding text describes Figure 27-46 .]

To deploy an application using Oracle Mobile Security Suite:

	
Choose Application, then Deploy, and then select an iOS deployment profile.

	
In the Deployment Action dialog, select iTunes (for device deploy) from the list.

	
Note:

Containerization is supported for iTunes deployment only. Deployment to a distribution package or simulator will not invoke the c14n tool to create a containerized IPA file.

	
Deploy the application to iTunes. An IPA file secured by Oracle Mobile Security Suite will be created. After you add the containerized application to your device, it will display a lock icon, as shown in Figure 27-47.

Figure 27-47 Mobile Application Displaying the Lock Icon for Containerization

[image: Surrounding text describes Figure 27-47 .]

28 Understanding Secure Mobile Development Practices

This chapter describes how Mobile Application Framework provides protection from common security risks identified by the Open Web Application Security Project (OWASP).

This chapter includes the following sections:

	
Section 28.1, "Weak Server-Side Controls"

	
Section 28.2, "Insecure Data Storage on the Device"

	
Section 28.3, "Insufficient Transport Layer Protection"

	
Section 28.4, "Side-Channel Data Leakage"

	
Section 28.5, "Poor Authorization and Authentication"

	
Section 28.6, "Broken Cryptography"

	
Section 28.7, "Client-Side Injection From Cross-Site Scripting"

	
Section 28.8, "Security Decisions From Untrusted Inputs"

	
Section 28.9, "Improper Session Handling"

	
Section 28.10, "Lack of Binary Protections Resulting in Sensitive Information Disclosure"

28.1 Weak Server-Side Controls

Build security into a mobile application. Even in the earliest stages of designing a mobile application, you must assess not only the risks that are unique to mobile applications, but also those that are common to the sever-side resources that the mobile application accesses. Like their desktop counterparts, mobile applications can be made vulnerable by attacks on the backend services that store their data. Because this risk is not unique to mobile applications, the standards described by the OWASP Top Ten Project (https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project) also apply when you create mobile applications. Because client applications running on mobile devices can be vulnerable, do not use them to enforce access control. Because this function should be performed by the server-side application, MAF does not provide anything out-of-the box for validating data sent from the client. You must ensure that the data intended for a mobile application is valid. For more information, see the following:

	
"Understanding Web Service Security Concepts" in Oracle Fusion Middleware Understanding Oracle Web Services Manager

	
"Web Service Security Standards" in Oracle Fusion Middleware Understanding Oracle Web Services Manager

	
Oracle Fusion Middleware Securing Applications with Oracle Platform Security Services

28.2 Insecure Data Storage on the Device

Shortcomings in a mobile application's design can make local files accessible to users, thereby exposing sensitive data stored on a device's local file system. This data may include usernames and passwords, cookies, and authentication tokens. Although most users may not be aware that their data is vulnerable—or that it is even stored on the device itself—a malicious user could exploit this situation by having the tools to open the local database and view credentials. When assessing the security requirements for an application, you should assume the likelihood of a phone falling into the wrong hands. MAF provides the API to secure data stored on the device by encrypting the device database and local data stores.

28.2.1 Encrypting the SQLite Database

MAF's embedded SQLite database protects locally stored data. MAF applications do not share the SQLite database; the application that creates the database is the only application that can access it. Further, only users with the correct username and password can access this database. The AdfmfJavaUtilities class enables you to create keys to secure the password for this database and also to encrypt the data stored within it. To provide a secure key to the database, the AdfmfJavaUtilities class includes the GeneratedPassword utility class that generates a strong password and then stores it securely. The AdfmfJavaUtilities class also provides the encryptDatabase method for encrypting the database with a password. For general information about the SQLite database, see Chapter 17, "Using the Local Database in MAF AMX" For more information on the GeneratedPassword, the encryptDatabase (and its counterpart, decryptDatabase), see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework and Section 17.2.7, "How to Encrypt and Decrypt the Database." For a sample application, see the StockTracker sample in the PublicSamples.zip, as described in Appendix G, "MAF Sample Applications."

	
Note:

Always use the GeneratedPassword utility. Do not hard-code the key.

28.2.2 Securing the Device's Local Data Stores

You can store files in the local file system programmatically on both the iOS and Android platforms using the adfmfJavaUtilties class' getDirectoryPathRoot method. Using this method provides agnostic access to store application data on the device. The following options are available for this method:

	
Temporary directory

	
Application directory

	
Cache directory

	
Download directory

	
Tip:

When users synchronize their devices to their desktop computers, the data stored in the device's Application directory is transferred to the desktop system where it can be exposed. Store data in the Temporary directory. For iOS, data stored in the temporary directory is not synchronized with the desktop when the device is synchronized using iTunes.

For any files that require security, you can encrypt and decrypt them using the Java cryptographic APIs (javax.crypto). For more information on the javax.crypto package, see Java Platform, Standard Edition 1.4 API. For more information, refer to Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework and Section B.3, "Accessing Files Using the getDirectoryPathRoot Method." See also the "File System Basics" section in File System Programming Guide, available from the iOS Developer Library (https://developer.apple.com/library/).

28.2.3 About Security and Application Logs

Ensure that no sensitive data can be written to log files because they can be viewed if the device is synchronized with a desktop computer. When users connect their iOS devices to a desktop system to synchronize data, the application log files are ultimately stored on the desktop in an unencrypted format. Log files synchronized from Android devices can be viewed using the Android Device Monitor tool. See also Section 28.4, "Side-Channel Data Leakage."

28.3 Insufficient Transport Layer Protection

Mobile applications may use SSL/TLS when accessing data over a provider network, or neither of these protocols if they use WiFi. Because provider networks can be hacked, never assume that they are safe. You should therefore enforce SSL when the application transports sensitive data and validate that all certificates are legitimate and signed by public authorities.

Because all of the endpoints used by a mobile application must be secured with SSL, MAF provides a set of web service policies that support SSL. For SOAP web services, MAF applications use the following policies:

	
oracle/http_basic_auth_over_ssl_client_policy

	
oracle/wss_username_token_over_ssl_client_policy

	
oracle/wss_http_token_over_ssl_client_policy

MAF provides a cacerts file seeded with entries of known and trusted Certificate Authorities. Application developers can add other certificates to this file, if needed. For more information, see Section 29.8, "Supporting SSL."

28.4 Side-Channel Data Leakage

Unintended data leakage can originate from such sources as:

	
Disabling screen shots (backgrounding) -- iOS and Android take screen shots of the application before backgrounding the application for improving perceived performance of the application reactivation. However, these screen shots are a cause of security concern due to the potential leak of customer data.

	
Key stroke logging -- On iOS and Android, some of the information entered via keyboard is automatically logged in the application directory for use with type-ahead capabilities. This feature could lead to potential leaks of customer data.

	
Debugging messages -- Applications can write sensitive data in debugging logs. Setting the logging level to FINE results in log messages being written for all of the data transmitted between the user's device and the server.

	
Disable clipboard copy and open-in functionality for sensitive documents displayed as part of the application. MAF currently does not provide the capability to disable copy and open-in functionality and is being targeted for a future release.

	
Temporary directories -- They may contain sensitive information.

	
Third-party libraries -- These libraries (such as ad libraries) can leak user information about the user, the device, or the user's location.

To prevent data leakage:

	
Do not log credential, personally identifiable information (PII), or other sensitive data to the application log. Store all sensitive information in the native keychain or an encrypted database or file system.

	
When debugging an application, review any files that are created and anything written to them.

	
Remove debugging messages before publishing the application.

28.5 Poor Authorization and Authentication

Weak authentication mechanisms and client-side access control both compromise security.

Although it may be easier for end users to authenticate a device using a phone number or some type of identifier (IMEI, IMSI, or UUID) rather than a user name and password, these identifiers can easily be discovered through brute force attacks and should never be used as a sole authenticator. Mobile applications must instead use strong credentials when accessing sensitive data. The authentication should reflect the user, not the device. Further, you can enhance authentication by using contextual identifiers (such as location), voice, fingerprints, or behavioral information.

A developer can use either the default login page provided by MAF or a custom login page that they create. For more information, see Section 29.5.2, "How to Designate the Login Page."

All features in a MAF application that require secure access must enable security, as described in Section 29.5.1, "How to Enable Application Features to Require Authentication."

Additionally, access control must be enforced by the server, not the client. Locating this function on the client mobile application is less secure. Access Control Service (ACS) allows developers to use roles/privileges defined on the server to enforce access control in the mobile application. Access Control Service is a RESTful service that could be implemented by application developers to filter the user roles/privileges that are valid for the application. While an application may support thousands of user roles, the service only returns the roles that you designate for the mobile application. For more information, see Section 29.4.18, "How to Configure Access Control."

28.6 Broken Cryptography

Encryption becomes fallible because:

	
Applications use broken implementations or use known algorithms improperly.

	
Data is insecure because of easily defeated cryptography.

In addition, Base-64 encoding, obfuscation, and serialization are not encryption (and should not be mistaken for encryption).

To encrypt data successfully:

	
Do not store the key with the encrypted data.

	
Use the platform-specific file encryption API or another trusted source. Do not create your own cryptography.

In addition to securing the embedded SQLite database using the encryption methods mentioned in Section 28.2, "Insecure Data Storage on the Device." Also, apply SSL to create secure web service calls as described in Section 28.3, "Insufficient Transport Layer Protection." MAF uses Oracle Access Manager for Mobile and Social IDM SDK for secure handling of credentials.

28.7 Client-Side Injection From Cross-Site Scripting

Because mobile applications draw content and data from many different sources, they can be vulnerable to Cross-Site Scripting (XSS) injections, which co-opt the user session. While MAF protects against XSS primarily through encoding, it uses whitelists as an additional safeguard.

Whitelisting protects MAF applications from CSRF attacks by allowing only the permitted domains to open within the application feature's web view. The URIs that are not included in the list automatically open within the device's browser, outside of the mobile application's sandbox.

In addition to injection attacks, mobile applications are vulnerable to Cross-Site Request Forgery (CSRF), where a malicious page performs an unintended action in a targeted application on behalf of a user through the cookies cached in a web browser that store user identity. The combination of whitelists and application sandboxing address CSRF concerns.

28.7.1 Protecting Applications Against XSS Through Whitelists

For MAF applications, XSS and CSRF attacks may occur in applications whose user interface is delivered through a remote server. When you configure a mobile application to derive its content from a remote URL, the overview editor provided by MAF enables you to create a whitelist of the URLs that deliver the content. Whitelisted URLs open with the MAF web view and can access specified devices features and services. As described in Section 20.1.1, "Enabling Remote Applications to Access Device Services through Whitelists," you can configure a whitelisted URI using a wildcard.

	
Caution:

To prevent an unintended URI from accessing device features, define the whitelist for specific target domains only. Use the wildcard carefully when defining a whitelisted domain; do not define wildcard-based whitelist configurations, which can be used for a wide range of URI (for example, avoid configurations, such as: <adfmf:domain>*.*</adfmf:domain> or <adfmf:domain>*.com</adfmf:domain>).

28.7.2 Protecting MAF Applications from Injection Attacks Using Device Access Permissions

The URIs that you whitelist can access data stored on the user's device and its various device capabilities, such as its camera or address book. Such access is not granted by default; as described in Section 9.2, "Enabling a Core Plugin in Your MAF Application," you can configure a MAF application to limit the device's capabilities that a whitelisted URI can access to any of the following:

	
open network sockets (must be granted when user authentication is configured)

	
GPS and network-based location services

	
contact

	
e-mail

	
SMS

	
phone

	
push notifications

	
locally stored files

	
Tip:

In addition to the whitelist configuration, you can programmatically protect users against such security risks as fake login pages injected by XSS through the updateSecurityConfigWithURLParameters method, which detects changes in the login configuration and then prompts users to confirm the change by re-authenticating, as described in Part , "How to Update Connection Attributes of a Named Connection at Runtime." Additionally, MAF informs users whenever they open a secured application feature. Authentication can be deferred when the default application does not participate in security. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

28.7.3 About Injection Attack Risks from Custom HTML Components

Using HTML to create a custom user interface component in a MAF AMX page may leave an application open to an injection attack. MAF provides two components for HTML content in MAF AMX pages: the <amx:verbatim> component and the <amx:outputHTML> component. Because the <amx:verbatim> component does not allow dynamic HTML, it is not susceptible to an injection attack. However, the <amx:outputHTML> component, which delivers dynamic HTML content through an EL binding, may be vulnerable when you configure its security attribute to none. By default, this attribute is set to high to enable the framework to escape various HTML tags and remove JavaScript, such as an onClick event. Because setting it to none enables iFrame components and JavaScript (which allows AJAX requests within the AMX page), you must ensure that the HTML and JavaScript are properly encoded. For more information, see Section 13.3.18, "How to Use Verbatim Component" and Section 13.3.19, "How to Use Output HTML Component." See also Section 28.8, "Security Decisions From Untrusted Inputs."

28.7.4 About SQL Injections and XML Injections

Mobile applications are vulnerable to SQL injections, which can enable an attacker to read the data stored in the embedded SQLite database.

To prevent SQL injections:

	
Application developers are required to validate and encode all data stored in the local database.

	
Application developers are expected to encode and validate XML and HTML content processed by the application.

28.8 Security Decisions From Untrusted Inputs

On both iOS and Android platforms, applications (such as Skype) may not always request permissions from outside parties, providing an entry point for attackers that may result in malicious applications circumventing security. As a result, applications are vulnerable to client-side injection and data leakages. Always prompt for additional authorization or provide additional steps to launch sensitive applications when additional authorization is not possible.

You must ensure that all of the data that the application receives from (or sends to) an untrusted third-party application can be subject to input validation. The client side XML input to the application must be encoded and validated. Although MAF AMX components can validate user input, data must be validated on the server, which should never trust the data it receives from a client. In other words, the server is responsible for ensuring that the XML, JSON, and JavaScript that is sent back and forth between it and the client is properly encoded.

When you configure the URL scheme that launches a MAF application from another application, you must validate the parameters sent through the URL to ensure that no malicious data or URIs can be passed to the MAF application. For more information, see Section 20.4, "Invoking MAF Applications Using a Custom URL Scheme." See also Section 28.1, "Weak Server-Side Controls."

About JSON Parsing

Use MAF's JSON encoding API where possible. For scenarios requiring custom JSON composition, be careful when composing JSON with user-entered data. For more information about processing JSON data, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

28.9 Improper Session Handling

Usability requirements for mobile applications often require sessions to last for long periods. Mobile applications use cookies, SSO services, and OAUTH tokens for session management. Oracle Access Management Mobile and Social (OAMMS) supports OAuth tokens.

	
Note:

OAuth access tokens can be revoked remotely.

To enable proper session handling:

	
Configure session timeout in the Login Server connection to a value less than server-side session timeout.

Do not use a device ID as a session token because it never expires. An application should expire tokens, even though doing so forces users to re-authenticate.

	
Ensure that proper best practices (see OWASP Top Ten Project, https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project) are followed for token generation on the server.

Do not use session tokens that can be easily guessed or are poorly generated. A session token should be unpredictable and have high entropy.

Oracle Identity Management (IDM) stack provides support for standards-based tokens (such as, OAuth Access Token, JWT Token) for use with mobile applications. MAF provides out of the box support for Oracle IDM OAuth server and Oracle recommends using such standards-based authentication mechanisms with MAF applications.

As described in Section 29.4.2, "How to Configure Basic Authentication," configuring an application that requires users to authenticate against a login server includes options to set the duration of the session and idle timeouts. By default, the duration of an application feature session lasts eight hours. The default time for an application feature to remain idle is five minutes. MAF expires user credentials when either of the configured time periods expire and prompts users to re-authenticate.

28.10 Lack of Binary Protections Resulting in Sensitive Information Disclosure

Using reverse engineering, attackers can discover such sensitive data as API keys, passwords, and sensitive business logic. To protect this information:

	
Store API keys and sensitive business logic on the server.

	
Do not store passwords in the application binary.

	
Never hard-code a password. Instead, use the GeneratedPassword utility described in Section 28.2, "Insecure Data Storage on the Device."

	
Because log files can be monitored, ensure that applications do not write sensitive information to the log files. See also Section 28.4, "Side-Channel Data Leakage."

	
Keep in mind that information stored on a file system (that is, stored externally from the mobile application). Store sensitive data in an encrypted database or file system, or in the native keychain. See also Risk 1: Insecure Data Storage on the Device.

29 Securing MAF Applications

This chapter provides an overview of the security framework within MAF and also describes how to configure MAF applications to participate in security.

This chapter includes the following sections:

	
Section 29.1, "Introduction to MAF Security."

	
Section 29.2, "About the User Login Process"

	
Section 29.3, "Overview of the Authentication Process for MAF Applications"

	
Section 29.4, "Configuring MAF Connections"

	
Section 29.5, "Configuring Security for MAF Applications"

	
Section 29.6, "Allowing Access to Device Capabilities"

	
Section 29.7, "Enabling Users to Log Out from Application Features"

	
Section 29.8, "Supporting SSL"

29.1 Introduction to MAF Security

MAF presents users with a login page when a secured application feature has been activated. For example, users are prompted with login pages when an application feature is about to be displayed within the web view or when the operating system returns an application to the foreground. MAF determines whether access to the application feature requires user authentication when an application feature is secured by an authentication server, or when it includes constraints based on user roles or user privileges. Only when the user successfully enters valid credentials does MAF render the intended web view, UI component, or application page.

While the presence of these conditions in any of the application features can prevent users from accessing a MAF application without a successful login, you can enable users to access a MAF application that contains both secured and non-secured application features by including a default application feature that is neither secured nor includes user access-related constraints. In this situation, users can access the MAF application without authentication. The default application feature provides the entrance point to the MAF application for these anonymous users, who can both view non-secured data and authenticate against the remote server when accessing a secured application feature. You can designate a non-secure default application feature by:

	
Allowing anonymous users access to public information through the default application feature, but only enabling authorized users to access secured information.

	
Allowing users to authenticate only when they require access to a secured application feature. Users can otherwise access the MAF application as anonymous users, or login to navigate to secured features.

	
Allowing users to log out of secured application features when secured access is not wanted, thereby explicitly prohibiting access to secured application features by unauthorized users.

	
Note:

MAF enables anonymous users because the application login process is detached from the application initialization flow; a user can start a MAF application and access unsecured application features as an anonymous user without having to provide authentication credentials. In such a case, MAF limits the user's actions by disabling privileged UI components.

For more information, see Section 29.5.1, "How to Enable Application Features to Require Authentication," and Section 22.2.4, "About User Constraints and Access Control."

The IDM Mobile SDKs provide APIs for authentication, cryptography, user and role management, and secure storage. The SDKs support authentication through Basic Authentication and REST web services exposed by the Mobile and Social server. The Mobile and Social server supports authentication against the Oracle Access Manager (OAM) Server with (or without) strong authentication using Relying Party authentication (that is, authentication against third-party OpenId and OAuth service providers), and authentication against a directory server with (or without) strong authentication.

A MAF application uses either the default page or a customized login page that is written in HTML. When authentication beyond a login page is required, a knowledge-based authentication (KBA) page can be enabled when knowledge-based authentication is configured on OAM server. KBA screens provide an additional challenge to users by prompting for additional information, such as "mother's maiden name." Like the login page, the KBA screen can be customized.

Application features defined with user.roles or user.privileges constraints can be accessed only by users who have been granted the specific role and privileges. When users log into such an application feature, a web service known as the Access Control Service (ACS) returns the user objects that grant them access to this application feature. For more information about ACS, see Section 29.4.19, "What You May Need to Know About the Access Control Service."

29.2 About the User Login Process

From the end-user perspective, the login process is as follows:

	
MAF presents a web view of a login page, shown in Figure 29-1 whenever the user attempts to access an application feature that is secured. If the secured application feature is the default, then MAF prompts users with the login page when they launch the application.

Figure 29-1 The Login Page

[image: This image is described in the surrounding text]

	
Note:

As described in Section 29.5.4.2, "The Custom Login Page," MAF provides not only a default login page, but also supports the use of a custom login page and, optionally, a custom knowledge-based authentication (KBA) screen.

	
The user enters a user name and password and then clicks OK.

	
Note:

MAF allows multiple users for the same application. Users may freely log in to an application after a previous user logs out.

	
If the user name and password are verified, MAF displays the intended web view, page, or user interface component.

	
MAF presents challenges to the user name and password until the user logs in successfully. When users cannot login, they can only navigate to another application feature.

	
After authenticating their user name and password, the user may be presented with knowledge-based authentication (KBA) screen to challenge their credentials with additional questions. When KBA is configured, the user must correctly reply to the questions in order to complete the login process. KBA is an optional configuration that requires the appropriate configuration on OAM server.

	
Note:

Authentication times out when a predefined time period has passed since the last activation of an application feature. MAF only renews the timer for the idle timeout when one of the application features that uses the connection to the authentication server has been activated.

29.3 Overview of the Authentication Process for MAF Applications

MAF applications may require that user credentials be verified against a remote login server (such as the Oracle Access Manager Identity Server used by Oracle ADF Fusion web applications) or a local credential store that resides on the user's device. To support local and remote connectivity modes, MAF supports these authentication protocols:

	
HTTP Basic

	
Mobile-Social

	
OAuth

	
Web SSO

By default, authentication of the MAF application user is against the remote login server regardless of the authentication protocol chosen at design time. Developers may configure the application, in the case of Oracle Access Management Mobile and Social (OAMMS) and basic authentication to enable local authentication. However, initially, because the local credential store is not populated with credentials, login to access secured application features requires authentication against a remote login server. Successful remote authentication enables the subsequent use of the local credential store, which houses the user's login credentials from the authentication server on the device. Thus, after the user is authenticated against the server within the same application session (that is, within the lifecycle of the application execution), MAF stores this authentication context locally, allowing it to be used for subsequent authentication attempts. In this case, MAF does not contact the server if the local authentication context is sufficient to authenticate the user. Although a connection to the authentication server is required for the initial authentication, continual access to this server is not required for applications using local authentication.

	
Tip:

While authentication against a local credential store can be faster than authentication against a remote login server, Oracle recommends authentication using OAuth or Web SSO authentication protocols, which only support remote connectivity.

Table 29-1 summarizes the login configuration options of a MAF application. The connectivity mode depends on the chosen authentication protocol.

Table 29-1 MAF Connectivity Modes and Supported Authentication Protocols

	Connectivity Mode	Support Protocols	Mode Description
	
local

	
	
HTTP Basic

	
Mobile-Social

	
Requires the application to authenticate against a remote login server only when locally stored credentials are unavailable on the device. The initial login is always against the remote login server. After the initial successful login, MAF persists the credentials locally within a credential store in the device. These credentials will be used for subsequent access to the application feature. See also Section 29.4.17, "What You May Need to Know About Web Service Security."

	
remote

	
	
HTTP Basic

	
Mobile-Social

	
OAuth

	
Web SSO

	
Requires the application to authenticate against a remote login server, such as Oracle Access Manager (OAM) Identity Server or a secured web application. Authentication against the remote server is required each time a user logs in. If the device cannot contact the server, then a user cannot access the secured MAF feature despite a previously successful authentication.

	
hybrid

	
	
HTTP Basic

	
Mobile-Social

	
Requires the application to authenticate against a remote login server when network connectivity is available, even when local credentials are available on the device. Only when a lack of network connectivity prevents access to the login server will local credentials on the device will be used.

As an example, the following process depicts the flow of security when the MAF application has been configured for the Mobile-Social authentication protocol to verify user credentials against a remote authentication server:

	
MAF presents the user with the login page (similar to the one shown in Figure 29-1) or knowledge-based authentication screen.

	
The APIs of the Oracle Access Management Mobile and Social (OAMMS) client SDKs handle credential authentication against both the authentication server and the credential store on the device, which may store a saved user object. If the authentication succeeds, the APIs return a valid user object to MAF. Otherwise, they return a failure.

	
Note:

Logging into OAMMS populates the roles and privilege collections to the user object.

	
If the login succeeds, MAF receives an OAM token used in the cookie. MAF sets the cookie into each login connection.

	
The OAMMS client SDK APIs cache the credentials in the device's local credential keystore. MAF will clear the local credential keystore when the threshold for the application session timeout or idle timeout is exceeded.

	
If the login fails, the login page or KBA screen remains, thereby preventing users from continuing.

29.4 Configuring MAF Connections

You must define at least one connection to the application login server for an application feature that participates in security. The absence of a defined connection to an application login server results in an invalid configuration. As a result, the application will not function properly.

29.4.1 How to Create a MAF Login Connection

As Figure 29-2 shows, you can use the Create MAF Connection dialog to select the connection type and, depending on the connection type, enable both local and remote authentication (hybrid). Depending on application requirements, you can configure a connection to servers that support the following authentication protocols:

	
HTTP Basic

	
Mobile-Social

	
OAuth

	
Web SSO

	
Note:

Oracle recommends that you configure a connection to the login server using the OAuth or Web SSO connection type. OAuth and Web SSO require authentication against a remote login server and do not allow users to authenticate on the device from a local credential store.

Figure 29-2 Configuring Authentication

[image: This image is described in the surrounding text]

To create a login server connection:

	
Perform one of the following actions.

	
In the Navigator, expand the Descriptors node and then ADF META-INF, and double-click maf-application.xml. Then, in the overview editor for the maf-application.xml file, expand the Security - Authentication and Access Control section and click Create, as shown in Figure 29-3.

Figure 29-3 Adding a Server Connection

[image: This image is described in the surrounding text]

	
Alternatively, choose Connections in the New Gallery and then MAF Login Server Connection.

	
In the Create MAF Login Connection dialog, choose the desired Authentication Server Type.

	
Configure the connection type as described in the following sections.

Note that options that appear in the dialog with an asterisk are required fields. The dialog enables the Test Connection button only after all required fields are completed. This button appears only when basic authentication is selected in the dialog.

29.4.2 How to Configure Basic Authentication

As Figure 29-4 shows, you can select the HTTP Basic authentication server type in the Create MAF Login Connection dialog to configure a connection for basic authentication.

Figure 29-4 Configuring Basic Authentication

[image: This image is described in the surrounding text]

To configure basic authentication:

	
In the Create MAF Login Connection dialog, choose HTTP Basic for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
In the General tab, define the following:

	
Connectivity Mode—Select the type of authentication, as described in Table 29-1.

	
Connection Name—Enter a name for the connection.

	
Idle Timeout—Enter the time for an application feature to remain idle after MAF no longer detects the activation of an application feature. After this period expires, the user is timed-out of all the application features that are secured by the login connection. In this situation, MAF prompts users with the login page when they access the feature again. By default, MAF presents the login page when an application remains idle for 300 seconds (five minutes).

	
Note:

MAF authenticates against the local credential store after an idle timeout, but does not perform this authentication after a session timeout.

	
Session Timeout—Enter the time, in seconds, that a user can remain logged in to an application feature. After the session expires, MAF prompts the user with a login page if the idle timeout period has not expired. By default, a user session lasts for 28,800 seconds (eight hours).

	
Maximum Login Attempts—Set the maximum number of failed login attempts allowed for a user before local credentials will be cleared. By default, MAF grants a user three unsuccessful login attempts before it clears the user's locally stored credentials and contacts the remote login server for subsequent login attempts. Subsequent to contacting the remote server, the user is allowed an indefinite number of login attempts.

Note that when the user fails login attempts for the number of times specified, the local credentials will be cleared and MAF will thus execute authentication against the server. This ensures that users can login with a new password after an administrator changes their password and it is not yet stored on a device. Where local authentication is allowed, the password will be stored securely on a device when the user successfully logs into the server connection.

	
Note:

MAF clears locally stored user credentials even when the application feature is configured to use local authentication.

	
Click the HTTP Basic tab and configure the following, as shown in Figure 29-5.

	
Multi-Tenant Aware—MAF supports the notion of multi-tenancy, where a application includes a hosted application feature that can be shared by different organizations (tenants), but can appear as though it is owned by a particular tenant. You can define multi-tenancy awareness for the MAF application connection by selecting this option. See also Section 29.4.21, "What Happens When You Define a Multi-Tenant Connection."

	
Login URL—Enter the login URL for the login page.

The login URL should not be a login page on the remote server, but rather a page that is secured and presents the HTTP Basic user name/password challenge. The login URL must point to a web resource that does not result in file transfer when requested; it must not point to a file resource.

	
Logout URL—Enter the logout URL for the authentication server.

The logout URL may be the same as the login URL, but alternatively may be a URL to the remote server that performs additional actions on the session, such as invalidating it. The logout URL must point to a web resource that does not result in file transfer when requested; it must not point to a file resource.

Figure 29-5 Configuring Basic Authentication

[image: The surrounding text describes this image.]

	
Click the Auto Login tab and configure the parameters as described in Section 29.4.8, "How to Store Login Credentials."

	
Click the Authorization tab and configure the parameters as described in Section 29.4.18, "How to Configure Access Control."

	
Click the General tab, and then click Test Connection.

	
Click OK.

29.4.3 How to Configure Authentication Using Oracle Mobile and Social Identity Management

As Figure 29-6 shows, you can select the Mobile-Social authentication server type in the Create MAF Login Connection dialog to configure a connection for MAF applications to authenticate with the Oracle Access Manager (OAM) server. The OAM backend for this connection type must be running Oracle Mobile and Social server and 10g WebGate (a web server plug-in that intercepts HTTP requests for resources and forwards them to the OAM server for authentication and authorization).

Figure 29-6 Configuring Authentication with Mobile-Social

[image: The surrounding text describes this image.]

Before you begin:

Confirm that the OAM backend runs Oracle Mobile and Social Server and 10g Webgate.

Configure the server to use the OM_PROP_OAMMS_URL property key. This URL (including protocol, host name, and port number) is required to reach the Mobile and Social server. Only the HTTP and HTTPS protocols are supported. You must also configure the server to inject an OAM_ID cookie into the web server request header.

	
Note:

This connection type requires KBA (knowledge-based authentication). For more information, see Section 29.5.2, "How to Designate the Login Page."

To configure authentication with Oracle Access Management through an Oracle Mobile and Social server:

	
In the Create MAF Login Connection dialog, choose Mobile-Social for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
In the General tab, define the following:

	
Connectivity Mode—Select the type of authentication, as described in Table 29-1.

	
Connection Name—Enter a name for the connection.

	
Idle Timeout—Enter the time for an application feature to remain idle after MAF no longer detects the activation of an application feature. After this period expires, the user is timed-out of all the application features that are secured by the login connection. In this situation, MAF prompts users with the login page when they access the feature again. By default, MAF presents the login page when an application remains idle for 300 seconds (five minutes).

	
Note:

MAF authenticates against the local credential store after an idle timeout, but does not perform this authentication after a session timeout.

	
Session Timeout—Enter the time, in seconds, that a user can remain logged in to an application feature. After the session expires, MAF prompts the user with a login page if the idle timeout period has not expired. By default, a user session lasts for 28,800 seconds (eight hours).

	
Maximum Login Attempts—Set the maximum number of failed login attempts allowed for a user before local credentials will be cleared. By default, MAF grants a user three unsuccessful login attempts before it clears the user's locally stored credentials and contacts the remote login server for subsequent login attempts. Subsequent to contacting the remote server, the user is allowed an indefinite number of login attempts.

Note that when the user fails login attempts for the number of times specified, the local credentials will be cleared and MAF will thus execute authentication against the server. This ensures that users can login with a new password after an administrator changes their password and it is not yet stored on a device. Where local authentication is allowed, the password will be stored securely on a device when the user successfully logs into the server connection.

	
Note:

MAF clears locally stored user credentials even when the application feature is configured to use local authentication.

	
Click the Mobile-Social tab and enter the URL to the Oracle Access Management Mobile and Social server and enter the MAF application service domain.

You can also configure the connection to enable the server to make location updates on the device, as shown in Figure 29-7.

Figure 29-7 Configuring the OAM Authentication

[image: The surrounding text describes this image.]

	
Click the AutoLogin tab and configure the parameters as described in Section 29.4.8, "How to Store Login Credentials."

	
Click the Authorization tab and configure the parameters as described in Section 29.4.18, "How to Configure Access Control."

29.4.4 How to Configure OAuth Authentication

As Figure 29-8 shows, you can use the Create MAF Login Connection dialog to configure how third-party applications (clients) gain limited access to protected data or services stored on a remote server. The Relying Party authentication provided by Oracle Mobile and Social server enables an application to authenticate against a third-party OAuth provider. Oracle Web Services Manager (OWSM) Lite Mobile ADF Application Agent injects the cookie into the security header of the web service call.

Figure 29-8 Configuring OAuth

[image: The surrounding text describes this image.]

Before you begin:

Configure the server to use the OM_PROP_OAUTH_OAUTH20_SERVER property key.

To configure authentication with an OAuth server:

	
In the Create MAF Login Connection dialog, choose OAuth for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
In the General tab, configure the following:

	
Connection Name—Enter a name for the connection.

	
Click the OAuth tab and configure the following, as shown in Figure 29-9:

	
Choose the Grant Type to determine where the application obtains the login page. Select Authorization Code when you want the server login page to display. Select Resource Owner Credentials when you want the MAF application to display the default login page, or custom login page, when one is configured.

	
Enter enter the Client Identifier and, optionally, enter a connection password value in the Client Secret field.

	
Enter the authorization server's Redirect Endpoint and the URIs for the endpoints for the Authorization Server Endpoint itself and the Token Endpoint.

	
Enter the Logout URL to redirect to upon user logout. This field is mandatory and the URL parameters are determined by the specific authentication provider.

	
Select Enable Embedded Browser Mode when you want the login page to display within the embedded browser within the application. Deselect to display the login page in an external browser. Note that when single sign-on (SSO) is desired, you must deselect this option to force the application to use the external browser.

Figure 29-9 Configuring the Client ID and Endpoints

[image: The surrounding text describes this image.]

	
Click the Authorization tab and configure the parameters as described in Section 29.4.18, "How to Configure Access Control."

29.4.5 How to Configure Web SSO Authentication

As Figure 29-10 shows, you can use the Create MAF Login Connection dialog to configure a cross-domain single sign-on.

Figure 29-10 Configuring Federated SSO Authentication

[image: The surrounding text describes this image.]

To configure authentication with a Web SSO server:

	
In the Create MAF Login Connection dialog, choose Web SSO for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
In the General tab, configure the following:

	
Connection Name—Enter a name for the connection.

	
Session Timeout—Enter the time, in seconds, that a user can remain logged in to an application feature. After the session expires, MAF prompts the user with a login page if the idle timeout period has not expired. By default, a user session lasts for 28,800 seconds (eight hours).

	
Click the Web SSO tab and configure the following URLs that enable successful and unsuccessful logins, as shown in Figure 29-11:

	
Login URL—Enter the URL that when visited, the user will be prompted to enter credentials. The login URL must point to a web resource that does not result in file transfer when requested; it must not point to a file resource.

	
Logout URL—Enter a server side URL that logs out the user by terminating the server session. The logout URL must point to a web resource that does not result in file transfer when requested; it must not point to a file resource.

	
Login Success URL—Enter a target URL to redirect the user to after the user successfully authenticates.

The login success URL can be the same as the login URL. For example, if the login URL and login success URL is http://www.mysite.com, then when the user points the browser to http://www.mysite.com, the browser will redirect to the login page for the site before it redirects upon successful authentication back to http://www.mysite.com. Then, when MAF detects the page named by the login success URL, MAF completes the login process and activates the requested feature. Thus, the contents of the login success URL page will not be displayed to the user and user will have access to the MAF feature.

	
Login Failure URL—Enter a URL to redirect the user to after unsuccessful authentication. Alternatively, when no failure URL exists, enter any URL.

As the browser loads the login failure URL, MAF first detects the error and returns control to the application. This is useful when the MAF application limits the user to attempt login a maximum number of times. In this case, MAF will redirect user to the login failure URL after the user fails to authenticate by the last allowed attempt.

In the case where no failure URL exists, it is permissible to enter any URL. In this case, authentication will be terminated either when the user clicks the cancel button in the login page or when login times out due to no user action for a given period of time (the inactivity timeout is two minutes).

Figure 29-11 Configuring the Authentication URLs

[image: The surrounding text describes this image.]

	
Click the Authorization tab and configure the parameters, as described in Section 29.4.18, "How to Configure Access Control."

29.4.6 How to Configure a Placeholder Connection for MAF Application Login

As Figure 29-12 shows, you can use the Create MAF Login Connection dialog to create a named connection during development and populate the login attributes to fully define the connection at runtime. This connection type is particularly useful when the connection attributes are not all known at design time.

Application developers must use AdfmfJavaUtilities.updateSecurityConfigWithURLParameters API to fully define the placeholder connection created at design time, as described in Section 29.4.7, "How to Update Connection Attributes of a Named Connection at Runtime."

Figure 29-12 Configuring a Placeholder Connection

[image: The surrounding text describes this image.]

To configure a placeholder connection for definition at runtime:

	
In the Create MAF Login Connection dialog, choose Specify Values at Runtime for Authentication Server Type.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
In the General tab, enter a name for the connection.

This identifier will be used by the application developer to identify the connection to update, as described in Section 29.4.7, "How to Update Connection Attributes of a Named Connection at Runtime.":

	
Click the Authorization tab and configure the parameters, as described in Section 29.4.18, "How to Configure Access Control."

29.4.7 How to Update Connection Attributes of a Named Connection at Runtime

Application developers can use the AdfmfJavaUtilities.updateSecurityConfigWithURLParameters API to define or to redefine the connection attributes of a connection that already exists: either by placeholder (when you select Specify Values at Runtime in the Create MAF Login Connection dialog, as shown in Figure 29-12) or by a fully populated connection definition.

	
Note:

The typical timing is to call the AdfmfJavaUtilities.updateSecurityConfigWithURLParameters API in a start() method implementation within an application lifecycle listener. You must not call this method from within the feature lifecycle listener.

To update connection attributes associated with the configUrlParam parameter, call the updatedSecurityConfigWithURLParameters method as follows:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.updateSecurityConfigWithURLParameters(configUrlParam,
 key, message, showConfirmation);

The key parameter is set as a String object from the value defined for the adfCredentialStoreKey parameter in the connections.xml file. The method may be invoked with the showConfirmation parameter set to true to allow MAF to display a confirmation prompt to the end user once MAF detects a connection configuration change to an existing attribute of the connection.

For more information on the AdfmfJavaUtilties class and the usage of the configUrlParam parameter, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

29.4.8 How to Store Login Credentials

When security is not critical, MAF supports storing user credentials, which can be replayed to the login server or used to authenticate users locally (depending on the mode defined for the login connection. Storing credentials enhances the user experience by enabling users to access the MAF application without having to login. The IDM Mobile SDKs enable MAF to support the following modes:

	
auto login—MAF caches the user credentials and then replays them to the authentication server during subsequent authentications. In this mode, users can start an application without MAF prompting them to enter or confirm their credentials. MAF can, however, inform users that it has started a new application session.

	
remember credentials—MAF caches the user credentials and populates the login page's user name and password fields. After the user confirms these credentials by tapping the login button, MAF replays them to the authentication server.

	
remember user name—MAF caches the user name and populates the login page's username field. After the user enters the password and confirms by tapping the login button, MAF replays these credentials to the authentication server.

	
Note:

Users can decide whether MAF stores their credentials.

As Figure 29-13 shows, you can use the AutoLogin page of the Create MAF Login Connection dialog to select credential storing options. Selecting credential options populates the login page with options to remember the user name and password and should not be selected when a device is shared by multiple end users.

Figure 29-13 Caching User Credentials

[image: This image is described in the surrounding text]

29.4.9 What Happens When You Create a Connection for a MAF Application

MAF aggregates all of the connection information in the connections.xml file (located in the Applications window's Application Resources panel under the Descriptors and ADF META-INF nodes). This file, shown in Example 29-1, can be bundled with the application or can be hosted for the Configuration Service. In the latter case, MAF checks for the updated configuration information each time an application starts.

Example 29-1 MAF Connections Defined in the connections.xml File

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="Connection_1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="Connection_1"
 partial="false"
 manageInOracleEnterpriseManager="true"
 deployable="true"
 xmlns="">
 <Factory className="oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://10.0.0.0/SecuredWebServicelogin/login"/>
 <logout url="http://10.0.0.0/SecuredWebServicelogout/logout"/>
 <accessControl url="http://10.0.0.0/Identity/Authorize"/>
 <isAcsCalledAutomatically value="false"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <isMultiTenantAware value="true"/>
 <multiTenantHeaderName value="Oracle_Multi_Tenant"/>
 <injectCookiesToRESTHttpHeader value="true"/>
 <userObjectFilter>
 <role name="manager"/>
 <privilege name="account manager"/>
 <privilege name="supervisor"/>
 <privilege name=""/>
 </userObjectFilter>
 <rememberCredentials>
 <enableRememberUserName value="true"/>
 <rememberUserNameDefault value="true"/>
 <enableRememberPassword value="true"/>
 <rememberPasswordDefault value="true"/>
 <enableStayLoggedIn value="true"/>
 <stayLoggedInDefault value="true"/>
 </rememberCredentials>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

For more information, see the "Lookup Defined in the connections.xml File" section in Oracle Fusion Middleware Developing Fusion Web Applications with Oracle Application Development Framework.

29.4.10 What You May Need to Know About the Login Connection Configuration

When you define the login URL to grant access to secured MAF features, either in the connections.xml file or programmatically, the login URL must not point to a file resource, such as mydocument.txt. The login URL must point to a web resource that does not result in file transfer when requested. If a file resource is used instead, the MAF application may hang or login will fail, thus preventing the user from accessing the secured MAF feature.

29.4.11 What You May Need to Know About Multiple Identities for Local and Hybrid Login Connections

Like a remote connection, local and hybrid login connection modes allow a user to log in and log out using any number of identities within an application lifecycle. When you define a login connection to use these connectivity modes, you enable users to log back into a secured application feature using the local credential store if they have previously logged into a secured application feature within the current session timeout duration. In this case, users who have logged out explicitly, or have been logged out because the idle timeout has expired, can log back into a secured application feature (or any other application feature secured by the login server that protects that application feature).

	
Note:

Local and hybrid connections are only available for basic authentication and authentication to Oracle Access Management Mobile and Social (OAMMS). Because OAuth and Federate SSO use remote authentication, application users cannot log back into an application unless they authenticate successfully.

29.4.12 What You May Need to Know About Migrating a MAF Application and Authentication Modes

When you migrate a MAF application, you must verify that the authentication mode defined in maf-feature.xml (such as <adfmf:feature id="feature1" name="feature1" credentials="remote">) is defined by the authenticationMode attribute in the connections.xml file. Use JDeveloper's audit rules, which detect the presence of the credentials attribute, to assist you in removing it from maf-feature.xml.

Because the authenticationMode attribute in the connections.xml file can only be defined as either remote or local, do not migrate the value of none (<adfmf:feature id="feature1" name="feature1" credentials="none">), as doing so causes the deployment to fail.

29.4.13 What Happens When You Enable Cookie Injection into REST Web Service Calls

If you selected the Include login server cookie in REST call option in the Create MAF Login Connection dialog, shown in Figure 29-15, you instructed MAF to retrieve this user session cookie sent by the login server and then inject it into the HTTP header of the REST web service call that originated from the MAF application.

Each time a MAF application requests a REST web service, the MAF security framework enables the transport layer of the REST web service to check if cookie injection is enabled for the login connection associated with the URL endpoint of the REST web service. That is, the connections.xml file must include <injectCookiesToRESTHttpHeader value="true"/>, as illustrated in Example 29-1.

If the connection allows cookie injection, and if the domains for the login server and the REST web service endpoint are identical, then the security framework retrieves the cookies stored when a user has logged into an application feature. MAF propagates all of the cookies stored for a domain in a REST web service request. MAF stores cookies per the Set-Cookie headers in the Rest web service response. The Set-Cookie headers may add cookies to the store, or replace existing cookies with new ones if they have the same name. The cookies returned by the REST web service response, as well as those returned by the authentication process, are injected into subsequent REST web service requests.

	
Note:

MAF constructs the cookie string by calling the Oracle Access Management Mobile and Social (OAMMS) API, which returns cookies by name from a platform-specific cookie store. The IDM Mobile SDK manages the cookies returned by authentication servers, the names of which are defined in the connections.xml file.

29.4.14 What You May Need to Know About Adding Cookies to REST Web Service Calls

After a user has been successfully authenticated by a MAF application, the login server creates the security context for the user and generates a cookie that tracks the user session. If you selected the Include login server cookie in REST call option in the Create MAF Login Connection dialog, shown in Figure 29-15, you instructed MAF to retrieve this user session cookie sent by the login server and then inject it into the HTTP header of the REST web service call that originated from the MAF application.

Propagating the cookie to the web service call enables the retrieval of the user's security context, which is stored on the login server, and enables the MAF application to use the REST web service to access the application data that is authorized for the user. After the user session cookie expires, MAF challenges the user for credentials and then re-authenticates the user. A user that has been re-authenticated can continue to access the authorized application data through the REST web service call.

29.4.15 What Happens at Runtime: When MAF Calls a REST Web Service

After a user is authenticated locally, MAF silently authenticates the user against the login server when the MAF application calls a REST web service. After the user's credentials are authenticated, MAF executes the application's request to the REST web service. If the REST web service returns a 401 status code (Unauthorized), MAF prompts the user to authenticate again. If the REST web service returns a 302 code (Found or temporarily moved), MAF checks the login server to confirm if the user is authenticated. If so, then the code is handled as a 302 redirect.

If the user has not been authenticated against the login server, then MAF prompts the user to authenticate again. In some cases, a login server may prompt users to authenticate using its own web page when it returns a 302 status code. MAF does not support redirection in these instances and instead prompts the user to login again using a MAF login page.

29.4.16 What You May Need to Know About Injecting Basic Authentication Headers

When servers do not honor cookies, MAF enables application features to access secure resources by injecting a basic authentication header into the HTTP requests made from their web views. By default, MAF uses basic authentication. Because the Include basic authentication header in HTTP requests option is selected by default, MAF enables application features to access secure resources by injecting a basic authentication header into the HTTP requests made from their web views.

	
Note:

To prevent MAF from injecting the basic authentication header, set the value attribute to false for the <injectBasicAuthHeader> element.

Defining an authentication realm for the user name and password populates the connections.xml file with a defined <realm> element. As illustrated in Example 29-2, MAF adds the header regardless of whether the connections.xml file includes these definitions or not.

Example 29-2 Using the connections.xml File to Inject the Basic Authentication Header

<?xml version = '1.0' encoding = 'UTF-8'?>
<References xmlns="http://xmlns.oracle.com/adf/jndi">
 <Reference name="connection1"
 className="oracle.adf.model.connection.adfmf.LoginConnection"
 adfCredentialStoreKey="connection1"
 partial="false" manageInOracleEnterpriseManager="true"
 deployable="true" xmlns="">
 <Factory className=
 "oracle.adf.model.connection.adfmf.LoginConnectionFactory"/>
 <RefAddresses>
 <XmlRefAddr addrType="adfmfLogin">
 <Contents>
 <login url="http://www.us.example.com/userInfo"/>
 <logout url="http://www.us.example.com/userInfo"/>
 <accessControl url="http://10.0.0.0/identity/authorize"/>
 <idleTimeout value="300"/>
 <sessionTimeout value="28800"/>
 <cookieNames/>
 <realm value="Secure Area"/>
 <injectBasicAuthHeader value="true"/>
 <userObjectFilter/>
 </Contents>
 </XmlRefAddr>
 </RefAddresses>
 </Reference>
</References>

29.4.17 What You May Need to Know About Web Service Security

There are no login pages for web services; user access is instead enabled by MAF injecting credentials into the header of the web service call. Web services gain access to application data using the locally stored credentials persisted by MAF after the user's first successful login to the authentication server. The name of the local credential store is reflected by the adfCredentialStoreKey attribute of the login server connection (such as adfCredentialStoreKey="Connection_1" in Example 29-1). To enable a web service to use this credential store, the name defined for the adfCredentialStoreKey attribute of a SOAP or REST web service connection must match the name defined for the login server's adfCredentialStoreKey attribute.

	
Note:

Because there is no overview editor for the connections.xml file, you can use the Properties window to update the <Reference> element's adfcredentialStoreKey attribute with the name configured for adfCredentialStoreKey attribute of the login server connection. Alternatively, you can add or update the attribute using the Source editor.

For more information, see Section 15.7.3, "What You May Need to Know About Credential Injection."

29.4.18 How to Configure Access Control

Access Control Service (ACS) is a RESTful web service with JSON that may be optionally deployed onto an external server that is separate from your MAF application. Typically, you provide the ACS service for your MAF application to consume when your application features contain secured components and you want to allow users to download their user roles and privileges through a single HTTP POST message. If you intend to provide this service with your application, then you must implement and host the ACS service; MAF does not provide this service. Figure 29-14 shows the Authorization page of the Create MAF Login Connection dialog that you would use to configure the MAF application to support access control.

Figure 29-14 Configuring Access Control

[image: This image is described in the surrounding text]

The access control granted by the application login server is based on the evaluation of the user.roles and user.privileges constraints configured for an application feature, as described in Section 22.2.4, "About User Constraints and Access Control." For example, to allow only a user with manager_role role to access an application feature, you must define the <adfmf:constraints> element in the maf-feature.xml file with the following:

<adfmf:constraint property="user.roles"
 operator="contains"
 value="manager_role"/>
</adfmf:constraints>

At the start of application, the RESTful web service known as the Access Control Service (ACS) is invoked for the application login server connection and the roles and privileges assigned to the user are then fetched. MAF then challenges the user to login against the application login server connection.

MAF evaluates the constraints configured for each application against the retrieved user roles and privileges and makes only the application features available to the user that satisfy all of the associated constraints.

To configure access control:

	
In the Create MAF Login Connection dialog, click the Authorization tab.

For information about opening the Create MAF Login Connection dialog, see Section 29.4.1, "How to Create a MAF Login Connection."

	
On the Authorization page, complete the authorization requirements, as shown in Figure 29-14.

	
Include login server cookie in REST calls—For application features using remote authentication, select this option to enable a REST web service to retrieve the authorized user data that is stored on a login server through a login server-generated user session cookie. For more information, see Section 29.4.14, "What You May Need to Know About Adding Cookies to REST Web Service Calls."

	
Note:

To enable cookies to be injected in the REST web service call, the application feature must use remote authentication (MAF does not support injecting cookies for application features that store user credentials locally) and the domain entered for Login URL must be identical to the domain of the REST web service end point.

	
Include basic authentication header in HTTP requests—Select this option when the connection type will use Basic authentication or Mobile-Social authentication to enable MAF to add a basic authentication header into the HTTP requests made from a web view. Basic authentication is the default request method used by MAF. A basic authentication header is injected only when the login connection type is HTTP Basic. See also Section 29.4.16, "What You May Need to Know About Injecting Basic Authentication Headers."

	
Access Control Service URL—Enter the URL that is the endpoint for the Access Control Service (ACS).

	
Note:

MAF injects all cookies issued by the authentication server (that is, the login server) into the HTTP request header when it invokes the ACS. Cookie injection occurs when you select Include login server cookie in REST calls and enter identical domains for Access Control URL and the Login URL parameters. MAF verifies the domains of the ACS URL and login URL are identical before injecting a cookie. Otherwise, a cookie from login server will not be injected in the ACS request and thus authentication against ACS will fail. Ideally, the ACS URL should be protected so user authentication is required for secure access. See also Section 29.4.14, "What You May Need to Know About Adding Cookies to REST Web Service Calls."

	
Filter List of User Roles—Enter the user roles checked by the application feature. Because there may be thousands of user roles and privileges defined in a security system, use the manifest provided by the application feature developer that lists the roles specific to the application feature to create this list.

	
Filter List of Privileges—Enter the privileges checked by the application feature.

29.4.19 What You May Need to Know About the Access Control Service

The Access Control Service (ACS) is a RESTful web service with JSON that enables users to download their user roles and privileges through a single HTTP POST message. This is a request message, one which returns the roles or privileges (or both) for a given user. It can also return specific roles and privileges by providing lists of required roles and privileges. The request message is comprised of the following:

	
Request header fields: If-Match, Accept-Language, User-Agent, Authorization, Content-Type, Content Length.

	
A request message body (a request for user information).

	
The requested JSON object that contains:

	
userId—The user ID.

	
filterMask—A combination of "role" and "privilege" elements are used to determine if either the filters for user roles, or for privileges, should be used.

	
roleFilter—A list of roles used to filter the user information.

	
privilegeFilter—A list of privileges used to filter the user information.

	
Note:

If all of the roles should be returned, then do not include the "role" element in the filterMask array.
If all of the privileges should be returned, then do not include the "privilege" element in the filterMask array.

Example 29-3 illustrates an HTTP POST message and identifies a JSON object as the payload, one that requests all of the filters and roles assigned to a user, John Smith.

Example 29-3 The ACS Request for User Roles and Privileges

Protocol: POST
Authoization: Basic xxxxxxxxxxxx
Content-Type: application/json

{
 "userId": "johnsmith",
 "filterMask": ["role", "privilege"],
 "roleFilter": ["role1", "role2"],
 "privilegeFilter": ["priv1", "priv2", "priv3"]
}

The response is comprised of the following:

	
A response header with the following fields: Last-Modified, Content-Type, and Content-Length.

	
A response message body that includes the user information details.

	
The returned JSON object, which includes the following:

	
userId—the ID of the user.

	
roles—A list of user roles, which can be filtered by defining the roleFilter array in the request. Otherwise, the response returns an entire list of roles assigned to the user.

	
privileges—A list of the user's privileges, which can be filtered by defining the privilegeFilter array in the request. Otherwise, the response returns an entire list of privileges assigned to the user.

Example 29-4 illustrates the returned JSON object that contains the user name and the roles and privileges assigned to the user, John Smith.

Example 29-4 The Returned JSON Object

Content-Type: application/json

{
 "userId": "johnsmith",
 "roles": ["role1"],
 "privileges": ["priv1", "priv3"]
}

	
Note:

There are no login pages for web services; user access is instead enabled by MAF, which automatically adds credentials to the header of the web service. For more information, see Section 15.7.3, "What You May Need to Know About Credential Injection."

	
Note:

You must implement and host the ACS service; MAF does not provide this service.

29.4.20 How to Alter the Application Loading Sequence

MAF invokes the Access Control Service (ACS) after a user successfully authenticates against a login connection that defines the ACS endpoint, such as http://10.0.0.0/Identity/Authorize in Figure 29-14. By changing this behavior to prevent the ACS from being called immediately after a successful login, you can insert a custom process between the login and the invocation of the ACS. This additional logic may be a security context called by MAF after a successful login that is based on the specifics of an application, or related to the user's responsibilities, organization, or security group.

You can change the sequence by updating the connections.xml file with <isAcsCalledAutomatically value = "false"/> and through the following method of the AdfmfJavaUtilities class, which enables MAF application features to call the ACS whenever it is required:

invokeACS(String key, String OptionalExtraPayLoad, boolean appLogin)

The invokeACS method enables you to inject extra payload into an ACS request. The key parameter is returned as a String object from the value defined for the adfCredentialStoreKey parameter in the connections.xml file, as illustrated in Example 29-2. The appLogin parameter may be set to true to cause ACS to reevaluate the feature access. The OptionalExtraPayLoad parameter is reserved for future use and is not used.

Invoking ACS through either the invokeACS method or the isAcsCalledAutomatically parameter retrieves the role-based constraints for an application.

	
Note:

MAF automatically invokes the ACS after a successful login if <isAcsCalledAutomatically value = "false"/> is not included in the connections.xml file.

When a secured application feature calls the invokeACS method, MAF fetches the user constraints for all of the application features associated with the application login connection, including those configured for the secured application feature. When an unsecured application feature calls this method, MAF only retrieves the constraints associated with the login connection.

	
Note:

In addition to the invokeACS method, the AdfmfJavaUtilities class includes the following lifecycle methods:
	
applicationLogout—Logs out the application login connection.

	
featureLogout(<feature_ID>)—Logs out the login connection associated with the application feature.

For more information, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

29.4.21 What Happens When You Define a Multi-Tenant Connection

After you complete the Create MAF Login Connection dialog, MAF populates the connections.xml file with the <isMultiTenantAware> element set to true. In multi-tenant connection, the user name is the aggregation of tenant name and user name.

The login page uses a JavaScript utility to discern if a connection is multi-tenant aware. If the login page detects such a connection, it provides an additional field that requires the user to enter the tenant name configured in the Create MAF Login Connection. After a successful login (which includes entering the correct tenant ID), MAF stores the tenant ID in the local credential store.

29.5 Configuring Security for MAF Applications

You configure security using the overview editors for the maf-feature.xml and maf-application.xml files, as well as the Create MAF Login Connection dialog. The overview editors enable you to designate the type of login page (default or custom) that MAF presents to users when they select application features that require authentication or to include user role- or user privilege-based constraints. They also enable you to select which embedded application features require security.

29.5.1 How to Enable Application Features to Require Authentication

You can define each application feature to participate in security. You perform the remainder of the security configuration using the Security page of the maf-application.xml overview editor. For application features whose content is served from a remote URL, the overview editor enables you to whitelist the domains so that remote URL content can display within the MAF web view. For more information, see Chapter 20, "Implementing Application Feature Content Using Remote URLs."

The maf-feature.xml overview editor, shown in Figure 29-15, enables you to designate which application features participate in security.

Figure 29-15 Designating User Credentials Options for an Application Feature

[image: This image is described in the surrounding text]

Before you begin:

When you enable security for a feature, the application requires access the network to authenticate the user. For more information about granting the application access to network sockets, see Section 9.2, "Enabling a Core Plugin in Your MAF Application."

To designate user access for an application feature:

	
In the Navigator, in the user interface project, expand Application Sources and then META-INF folder nodes, and then double-click maf-feature.xml.

	
In the overview editor for the maf-feature.xml file, select an application feature listed in the Features table or click Add to add an application feature.

	
Select Enable Security for any application feature that requires login.

	
Tip:

If you do not apply this option to the default application, you enable users to login anonymously (that is, without presenting login credentials). Users can then access unsecured data and features and, when required, login (authenticated users can access both secured and unsecured data). Providing unsecured application features within a MAF application enables users to logout of secured application features, but remain within the application itself and continue to access both unsecured application features and data.

29.5.2 How to Designate the Login Page

After you designate security for the application features, you use the Security page of the maf-application.xml overview editor, shown in Figure 29-16, to configure the login page as well as create a connection to the login server and assign it to each of the application features that participate in security. All of the application features listed in this page have been designated in the maf-feature.xml file as requiring security.

Typically, a group of application features are secured with the same login server connection, enabling users to open any of these applications without MAF prompting them to login again. In some cases, however, the credentials required for the application features can vary, with one set of application features secured by one login server and another set secured by a second login server. To accommodate such situations, you can define any number of connections to a login server for a MAF application. In terms of the maf-application.xml file, the authentication server connections associated with the feature references are designated using the loginConnRefId attribute as follows:

<adfmf:featureReference refId="feature1" loginConnRefId="BasicAuthentication"/>
<adfmf:featureReference refId="feature2" loginConnRefId="OAMMS"/>

MAF applications can be authenticated against any standard login server that supports basic authentication over HTTP or HTTPS. MAF also supports authentication against Oracle Identity Management. You can also opt for a custom login page for a specific application feature. For more information, see Section 29.5.4, "What You May Need to Know About Login Pages."

	
Note:

By default, all secured application features share the same connection, which, as shown in Figure 29-16, is denoted as <application login server>. The Properties window for a Feature Reference notes this default option in its Login Server Connection dropdown menu as <default> (application login server). You can select other connections that are defined for the MAF application using the Create MAF Login Connection dialog.

Figure 29-16 The Security Page of the maf-application.xml Overview Editor

[image: This image is described in the surrounding text]

Before you begin:

If the MAF application uses a custom login page, add the file to the public_html directory of the application controller project (JDeveloper\mywork\Application\ApplicationController\public_html) to make it available from the Web Content node in the Application Navigator, as shown in Figure 29-17. See also Section 29.5.3, "How to Create a Custom Login HTML or Custom KBA Page" and Section 5.4, "What You May Need to Know About Selecting External Resources."

Add constraints for user privileges and roles, as described in Section 22.2.4, "About User Constraints and Access Control."

Provision an Access Control Service (ACS) server. For more information, Section 29.4.19, "What You May Need to Know About the Access Control Service."

Figure 29-17 Adding a Custom Login Page

[image: This image is described in the surrounding text]

To designate the login page and KBA page:

	
In the Navigator, expand the Application Resources panel, expand Descriptors and then ADF META-INF folder nodes, and then double-click maf-application.xml.

	
In the overview editor for the maf-application.xml file, click the Security navigation tab.

	
On the Security page, designate the type of login page:

	
Choose Login Page for a view that accepts a user name and password.

	
Choose KBA Page for a knowledge-based (KBA) view that presents users with challenges to their credentials and also accepts their answers. Knowledge based authentication can be configured on OAAM server and user can be prompted with another page that asks additional questions such as "mother's maiden name". This feature is available for the Mobile-Social authentication type only.

	
Select the content (or user interface) for the selected login page and, optionally, a KBA page:

	
Default—The default login page or KBA screen used for all of the selected embedded application features. For more information, see Section 29.5.4.1, "The Default Login Page." The default login page and default KBA page is provided by MAF.

	
Custom—Click Browse to retrieve the path location of the file within the application controller project. Alternatively, click New to create a custom HTML page within the application controller project for either the login page or the KBA page. For more information, see Section 29.5.4.2, "The Custom Login Page" and Section 29.5.3, "How to Create a Custom Login HTML or Custom KBA Page."

	
Tip:

Rather than retrieve the location of the login page using the Browse function, you can drag the login page from the Application Navigator into the field.

29.5.3 How to Create a Custom Login HTML or Custom KBA Page

When authentication beyond a login page is required, a knowledge-based authentication (KBA) page can be enabled when knowledge-based authentication is configured on OAM server. KBA screens provide an additional challenge to users by prompting for additional information, such as "mother's maiden name." Like the login page, the KBA screen can be customized.

You can create the custom login page by modifying the default login page, adf.login.html or adf.kba.html, artifacts generated by the MAF deployment in the www directory.

Before you begin:

To access the login pages within the www directory, deploy a MAF application and then traverse to the deploy directory. For iOS deployments, the pages are located at the following:

application workspace directory/deploy/deployment profile name/temporary_xcode_project/www/adf.login.html

and

application workspace directory/deploy/deployment profile name/temporary_xcode_project/www/adf.kba.html

For Android deployments, the pages are located within the Android application package (.apk) file at the following:

application workspace directory/application name/deploy/deployment profile name/deployment profile name.apk/assets/www/adf.login.html

and

application workspace directory/application name/deploy/deployment profile name/deployment profile name.apk/assets/www/adf.kba.html

To create a custom login page:

	
Copy the default login page to a location within the user interface project's public_html directory, such as JDeveloper\mywork\application name\ApplicationController\public_html.

	
Rename the login page.

	
Update the page.

	
In the Security page for the overview editor of the maf-application.xml file, select Custom and then click Browse to retrieve the location of the login page.

29.5.4 What You May Need to Know About Login Pages

The entry point for the authentication process to an application feature is the activate lifecycle event, described at Chapter 11, "Using Lifecycle Listeners in MAF Applications." Every time an application feature is activated (that is, the activate event handler for the application feature is called), the application feature login process is executed. This process navigates to the login page (which is either the default or a custom login page) where it determines if user authentication is needed. Before the process navigates to the login page, however, the originally intended application feature must be registered with MAF. When authentication succeeds, the login page retrieves the originally intended destination from MAF and navigates to it.

29.5.4.1 The Default Login Page

The default login page provided by MAF (shown in Figure 29-1) is comprised of a login button, input text fields for the user name, password, and multi-tenant name, and an error message section. This is a cross-platform page, one written in HTML.

29.5.4.2 The Custom Login Page

When you add a custom login page for a selected application feature using the overview editor for the maf-application.xml file, JDeveloper adds the <adfmf:login> element and populates its child <adfmf:LocalHTML> element, as shown in Example 29-5. As with all <adfmf:LocalHTML> elements, its url attribute references a location within the public_html directory. The user authentication mechanism and navigation control are identical to the default login page.

Example 29-5 The Login Element

<adfmf:login defaultConnRefId="Connection_1">
 <adfmf:localHTML url="newlogin.html"/>
</adfmf:login>

Custom login pages are written in HTML. The fields for both the login page and the knowledge-based (KBA) page must include specifically defined <input> and <label> elements.

	
Tip:

Use the default the login pages that are generated when you deploy a MAF application as a guide for creating custom login pages. To access the login pages within the www directory, deploy a MAF application and then traverse to the deploy directory, as described in Section 29.5.3, "How to Create a Custom Login HTML or Custom KBA Page."

Example 29-6 illustrates the required <input> and <label> elements for a default login page.

Example 29-6 Required Elements for the Default Login Page

<input type="text"
 autocorrect="off"
 autocapitalize="none"
 name="oracle_access_user_id"
 id="oracle_access_user_id" value="">
 </input>

<input type="text"
 autocorrect="off"'
 autocapitalize="none"
 name="oracle_access_iddomain_id"
 id="oracle_access_iddomain_id" value="">
 </input>

<input type="password"
 name="oracle_access_pwd_id"
 id="oracle_access_pwd_id" value="">
 </input>

<input type="checkbox"
 class="message-text"
 name="oracle_access_auto_login_id"
 id="oracle_access_auto_login_id">
 </input>Keep me logged in

<input type="checkbox"
 class="message-text"
 name="oracle_access_remember_username_id"
 id="oracle_access_remember_username_id">
 </input>Remember my username

<input type="checkbox"
 class="message-text"
 name="oracle_access_remember_credentials_id"
 id="oracle_access_remember_credentials_id">
 </input>Remember my password

<label id="oracle_access_error_id"
 class="error-text">
 </label>

<input class="commandButton"
 type="button"
 onclick="oracle_access_sendParams(this.id)"
 value="Login" id="oracle_access_submit_id"/>

Example 29-7 illustrates the required elements for a KBA login page.

Example 29-7 Required Elements for a KBA Login Page

<input type="text"

<label id="oracle_access_kba_ques_id" >Question</label>

<input class="field-value"
 name="oracle_access_kba_ans_id"
 id="oracle_access_kba_ans_id">
 </input>

<label id="oracle_access_error_id"
 class="error-text">
 </label>

<label id="message_id"
 class="message-text">
 </label>

<input type="button"
 onclick="oracle_access_sendParams(this.id)"
 value="Login"
 id="oracle_access_submit_id"/>

29.5.5 What You May Need to Know About Login Page Elements

Every HTML login page should include the user interface elements listed in Table 29-2.

Table 29-2 Login Page Fields and Their Associated IDs

	Page Element	ID
	
username field

	
oracle_access_user_id

	
password field

	
oracle_access_pwd_id

	
login button

	
oracle_access_submit_id

	
cancel button

	
oracle_access_cancel_id

	
identity domain/tenant name field

	
oracle_access_iddomain_id

	
KBA question field (read-only/label)

	
oracle_access_kba_ques_id

	
KBA answer field

	
oracle_access_ans_id

	
error field

	
oracle_access_error_id

	
auto login check box

	
oracle_access_auto_login_id

	
remember credentials check box

	
oracle_access_remember_credentials_id

	
remember username check box

	
oracle_access_remember_username_id

Table 29-3 lists the recommended JavaScript code used by the OnClick event.

Table 29-3 JavaScript Used by the OnClick Event

	Button	JavaScript
	
login button

	
oracle_access_sendParams(this.id)

	
cancel button

	
oracle_access_sendParams(this.id)

	
KBA submit button

	
oracle_access_sendParams(this.id)

	
KBA cancel button

	
oracle_access_sendParams(this.id)

29.5.6 What Happens in JDeveloper When You Configure Security for Application Features

After an application feature has been designated to participate in security, JDeveloper updates the Features With Security Enabled table with a corresponding feature reference, as shown in Figure 29-16. If each of the referenced application features authenticate against the same login server connection defined in the connections.xml file, JDeveloper updates the maf-application.xml file with a single <adfmf:login> element defined with a defaultConnRefId attribute (such as <adfmf:login defaultConnRefId="Connection_1">).

For application features configured to use different login server connections defined in the connections.xml file JDeveloper updates each referenced application feature with a loginConnReference attribute (<adfmf:featureReference refId="feature2" loginConnRefId="Connection2"/>). For more information, see Section 29.5.1, "How to Enable Application Features to Require Authentication." See also the Oracle Fusion Middleware Tag Reference for Oracle Mobile Application Framework.

29.6 Allowing Access to Device Capabilities

Access to device capabilities is defined by the Cordova plugins that are included in the MAF application. A set of core plugins are provided by MAF. Enabling one of these plugins will enable any device access permissions that it requires. Any additional Cordova plugins that you include in your MAF application will also enable the device access permissions required.

Because the vast majority of MAF applications require network access, permission to access the network is enabled by default (the only device capability that is enabled by default):

	
Network Information—Allows the application to open network sockets. You must leave the network access capability enabled when security is enabled for at least one device feature.

Because you can enable or restrict, device capabilities, the various platform-specific configuration files and manifest files that are updated by the deployment framework list only the device capabilities in use (or rather, the plugins that the MAF application is registered to use). These files enable MAF to share information about the use of these capabilities with other applications. For example, a MAF application can report to the AppStore or to Google Play that it does not use location-based capabilities (even though MAF applications have this capability).

For more information about Cordova plugins in MAF applications, see Chapter 9, "Using Plugins in MAF Applications."

29.7 Enabling Users to Log Out from Application Features

MAF does not terminate application features when a user logs out of one that contains secured content or is restricted through constraints; a user can remain within the application and access its unsecured content and features as an anonymous user. Because MAF enables constraints to be re-initialized, it allows a user to login to an application repeatedly using the same identity. It also enables multiple identities to share the access to the application by allowing the user to login using different identities.

The logoutFeature and logout methods of the AdfmfJavaUtilities class, described in the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework, enable users to explicitly login and logout from the authentication server after launching an application. In addition, they enable a user to login to the authentication server after the user invokes a secured application feature. Although a user can log out from individual application features, a user will be simultaneously logged out of application features secured by the same connection.

These methods enables users to perform the following the following:

	
Logging out of an application feature but continuing to access its unsecured content (that is, MAF does not terminate the application).

	
Authenticating with the login server while in an application to enable its secured content and UI components.

	
Logging out of a MAF application or application feature and then logging in again using a different identity.

	
Logging out of a MAF application or application feature and then logging in again using the same identity but with updated roles and privileges.

To enable logging out of the current authentication server, call the logout method of the AdfmfJavaUtilities class as follows. For example:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.logout();

To enable logging from the authentication server associated with the key parameter, call the logoutFeature method as follows:

import oracle.adfmf.framework.api.AdfmfJavaUtilities;
...
 AdfmfJavaUtilities.logoutFeature(adfCrendentialStorykey);

The adfCredentialStorykey parameter is returned as a String object from the value defined for the adfCredentialStoreKey parameter in the connections.xml file. For more information on the AdfmfJavaUtilties class and the usage of the key parameter, see the Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

29.8 Supporting SSL

MAF provides a cacerts certificate file, the Java mechanism for HTTPS handshakes between the client application and the server. JDeveloper creates this file within the Application Resources Security folder (located at JDeveloper\mywork\application name\resources\Security\cacerts). The MAF cacerts file identifies a set of certificates from well-known and trusted sources to the JVM and enables deployment. For an application that requires custom certificates (such as in cases where RSA cryptography is not used), you must add private certificates before deploying the application.

Before you begin:

It may be helpful to have an understanding of the contents of the cacerts file. For more information, see the "Migrating to New cacerts Files for SSL in MAF" section in Installing Oracle Mobile Application Framework.

You may also find it helpful to understand how JDeveloper creates the cacerts file. For more information, see Section C.2, "About the Application Controller Project-Level Resources."

Refer to Java SE Technical Documentation (http://download.oracle.com/javase/index.html) for information on the cacerts file and how to use the keytool utility.

To add private certificates:

	
Create a private certificate. For example, create a certificate file called new_cert.

	
Add the private certificate to the application as follows:

	
Create a copy of the seeded cacerts file (cp cacerts cacerts.org).

	
Use the Java SE keytool utility to add certificates to a cacerts file. Example 29-8 illustrates adding certificates to a cacerts file called new_cert.

Example 29-8 Adding a Certificate Using the keytool Utility

keytool -importcert
 -keystore cacerts
 -file new_cert
 -storepass changeit
 -noprompt

Example 29-8 illustrates how to add a single certificate. Repeat this procedure for each certificate. Table 29-4 lists the keytool options

Table 29-4 Options For Adding Certificates

	Option	Description
	
-importcert

	
Imports a certificate.

	
-keystore cacerts file

	
Identifies the file location of the imported certificate.

	
-file certificate file

	
Identifies the file containing the new certificate.

	
-storepass changeit

	
Provides a password for the cacerts file. By default, the password is changeit.

	
-noprompt

	
Instructs the keytool not to ask the user (through stdin) whether to trust the certificate or not.

	
Visually inspect the contents of the new cacerts file to ensure that all of the fields are correct. Use the following command:

keytool -list -v -keystore cacerts | more

	
Verify that the certificate is for the given hostname.

	
Note:

The certificate's common name (CN) must match the hostname exactly.

	
Ensure that the customized certificate file is located within the Security directory (JDeveloper\mywork\application name\resources\Security) so that it can be read by the JVM.

	
Deploy the application.

	
Note:

During deployment, if a certificate file exists within the Security directory, MAF copies it into the Android or Xcode template project, replacing any default copies of the cacerts file.

	
Validate that you can access the protected resources over SSL.

30 Testing and Debugging MAF Applications

This chapter provides information on testing and debugging MAF applications developed for both iOS and Android platforms.

This chapter includes the following sections:

	
Section 30.1, "Introduction to Testing and Debugging MAF Applications"

	
Section 30.2, "Testing MAF Applications"

	
Section 30.3, "Debugging MAF Applications"

	
Section 30.4, "Using and Configuring Logging"

30.1 Introduction to Testing and Debugging MAF Applications

Before you start any testing and debugging of your MAF application, you have to deploy it to one of the following:

	
iOS-powered device

	
iOS-powered device simulator

	
Android-powered device

	
Android-powered device emulator

You cannot run the MAF application until it is deployed. For more information, see Chapter 27, "Deploying MAF Applications."

To test and debug a MAF application, you generally take the following steps:

	
Test the application's infrastructure, such as a splash screen, application feature navigation, authentication, and preferences, ensuring that all declared application features are available.

	
If the application includes MAF AMX content, test this application feature's logic, page flows, data controls, and UI components.

	
Make changes to the application as necessary.

	
Reconnect the mobile device or restart the simulator, and then deploy and run the application for further testing and debugging.

For more information, see the following:

	
Section 30.3, "Debugging MAF Applications"

	
Section 30.2, "Testing MAF Applications"

30.2 Testing MAF Applications

There are two approaches to testing a MAF application:

	
Testing on a mobile device: this method always provides the most accurate behavior, and is also necessary to gauge the performance of your application. However, you may not have access to all the devices on which you wish to test, making device testing inconclusive.

	
Testing on a mobile device emulator or simulator: this method usually offers better performance and faster deployment, as well as convenience. However, even though a device emulator or simulator closely approximates the corresponding physical device, there might be differences in behavior and limitations on the capabilities that can be emulated.

Typically, a combination of both approaches yields the best results.

30.2.1 How to Perform Accessibility Testing on iOS-Powered Devices

You should use a combination of the following methods to test the accessibility of your MAF application developed for iOS-powered devices:

	
Testing with the Accessibility Inspector on an iOS-powered device simulator.

For detailed information, see the "Testing the Accessibility of Your iPhone Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.

	
Testing with the VoiceOver on an iOS-powered device.

For more information, see the "Using VoiceOver to Test Your Application" section in the Accessibility Programming Guide for iOS available through the iOS Developer Library.

30.3 Debugging MAF Applications

JDeveloper is equipped with debugging mechanisms that allow you to execute a Java program in debug mode and use standard breakpoints to monitor and control execution of an application. For more information, see the section on debugging applications in Oracle Fusion Middleware User's Guide for Oracle JDeveloper.

Since a MAF application cannot be run inside JDeveloper, the debugging approach is different: you can use the JDeveloper debugger to connect to a Java Virtual Machine instance on a mobile device or simulator and control the Java portions of your deployed MAF application.

MAF automatically configures the project properties for debugging (see Section 30.3.1, "What You May Need to Know About the Debugging Configuration"). The following are the steps you need to take to use JDeveloper to debug the Java code in your MAF application:

To test or debug an application:

	
From JDeveloper's main menu, click Run > Choose Active Run Configuration to select an active run configuration.

	
In the Applications window, right-click on any file that you want to test and choose Run.

Alternatively, choose Debug if you want to run the application with debugging enabled.

	
Tip:

You can also open any file in the MAF application in Source view, right-click on it, and then select Run or Debug.

	
Note:

If you are using an existing application that doesn't have the pre-defined set of run configurations, you can create new run configurations (see Section 30.3.1, "What You May Need to Know About the Debugging Configuration").

For additional information, see the following:

	
Section 27.1.1.2, "Deployment of the JVM Libraries"

	
Section 30.3.1, "What You May Need to Know About the Debugging Configuration"

30.3.1 What You May Need to Know About the Debugging Configuration

When a new MAF application is created, the creation wizard automatically configures the application properties for debugging. This includes the creation of default run configurations that may be used to run or debug the MAF application on an iOS simulator or Android emulator or device. These run configurations allow you to build, deploy, run, or debug a MAF application by clicking the JDeveloper Run or Debug buttons. When you click the Run or Debug button in JDeveloper and select a MAF run configuration, the deployment profile associated with the run configuration is executed to build and deploy the application to the targeted device. Once the application has been deployed, it automatically starts. If the Debug button was selected, the application will start with the debugger.

To create a new configuration or to modify an existing one, complete the Edit Run Configuration dialog, as shown in Figure 30-1:

	
From JDeveloper's main menu, click Application > Project Properties to open the Project Properties dialog.

	
In the Project Properties dialog, select the Run/Debug node from the tree on the left.

Alternatively, choose Run > Choose Active Run Configuration > Manage Run Configurations.

	
Create a new configuration or modify an existing one.

If using Shared Settings, click Edit Shared Settings to open a dialog that allows you to create or edit new MAF run configurations. If using Project Settings, click New or Edit. With shared settings, the run configurations are shared across all projects. Use Shared Settings is the default option so you can use the MAF run configurations that exist at the time the project was added.

	
Complete the Edit Run Configuration dialog as follows:

	
Select Mobile Run Configuration from the tree on the left.

	
Select your target platform.

	
Select a deployment profile.

	
Enter the port number, up to five digits long. This number is initially seeded with the value of the java.debug.port property contained in the maf.properties file and appears as hint text. If a value isn't specified for the port, the seeded value is used.

	
For iOS, set the following options:

	
Application Arguments—Enter arguments that can be passed to the MAF application upon startup for customizing the runtime behavior of the application. For example, -consoleRedirect=/<path>/<to>/log.txt directs the log output to the file specified. The path must be an absolute path to receive the log file. The location must be writable for the current user.

	
Simulator—Choose which simulator you are deploying the application to. The options depend on which versions of the iOS SDK have been installed.

	
iOS version—Choose which version of iOS the simulator should use. The the dropdown menu displays the iOS versions that the selected device supports.

	
For Android, set the following options:

	
Target—Select the deployment target (Emulator or Device).

	
Max Attempts—Choose the maximum number of connection attempts to allow.

	
Interval (seconds)— Choose the length of time in seconds between connection attempts.

	
Tip:

If the Android device or emulator is slow or times out, try increasing the Max Attempts or the Interval to allow sufficient time for Java to initialize and to force the Android starter to wait longer or try more attempts before quitting.

Figure 30-1 Mobile Run Configuration Dialog

[image: This image is described in the surrounding text]

30.3.2 How to Debug on the iOS Platform

To debug a MAF application on the iOS platform using JDeveloper, follow the debugging procedure described in Section 30.3, "Debugging MAF Applications."

For information on how to configure an iOS-powered device or simulator and how to deploy a MAF application for debugging, see the following:

	
Section 27.4.1, "How to Deploy an iOS Application to an iOS Simulator"

	
Section 27.4.2, "How to Deploy an Application to an iOS-Powered Device"

	
Section 27.4.4.2, "Registering an Apple Device for Testing and Debugging"

30.3.3 How to Debug on the Android Platform

To debug a MAF application on the Android platform using JDeveloper, follow the debugging procedure described in Section 30.3, "Debugging MAF Applications."

For information on how to configure an Android-powered device or emulator and how to deploy a MAF application for debugging, see Section 27.3.1, "How to Deploy an Android Application to an Android Emulator."

To allow debugging of a MAF application running on an Android-powered device or its emulator, you enable the Network device access option in the maf-application.xml file, as Figure 30-2 shows.

Figure 30-2 Enabling Android Debugging

[image: This image is described in the surrounding text]

30.3.4 How to Debug the MAF AMX Content

If your MAF application includes the MAF AMX content, after you configure the device or emulator, you can set breakpoints, view the contents of variables, and inspect the method call stack just as you would when debugging other types of applications in JDeveloper.

	
Note:

You can only debug your Java code and JavaScript (see Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript"). Debugging of EL expressions or other declarative elements is not supported.

30.3.5 How to Enable Debugging of Java Code and JavaScript

A maf.properties file allows you to specify startup parameters for the JVM and web views of MAF to enable debugging of the Java code and JavaScript. The maf.properties file is automatically created and placed in the Descriptors/META-INF directory under the Application Resources (see Section 30.4, "Using and Configuring Logging"), which corresponds to the <application_name>/src/META-INF location in your application file system.

When you execute a MAF run configuration, the following debugging properties are automatically set in the maf.properties file:

	
java.debug.enabled: Set to true if doing a debug session; set to false if doing a run session.

	
Caution:

When java.debug.enabled is set to true, the JVM waits for a debugger to establish a connection to it. Failure of the debugger to connect will result in the failure of the MAF AMX application feature to load.

	
java.debug.port: Set to the port number configured in the MAF run configuration being executed.

	
javascript.debug.enabled: Set to true if doing a debug session; set to false if doing a run session. Applies to Android only.

	
Note:

The javascript.debug.enabled property is not required for enabling JavaScript debugging when the MAF application is running on an iOS-powered simulator or iOS-powered device.

The contents of the maf.properties file may be similar to the following:

java.debug.enabled=true
java.debug.port=8000

javascript.debug.enabled=true

For information on how to use JDeveloper to debug the Java code, see Section 30.3, "Debugging MAF Applications."

30.3.5.1 What You May Need to Know About Debugging of JavaScript Using an iOS-Powered Device Simulator on iOS 7 and iOS 8 Platforms

If you are working with the iOS 7 or 8 platform, you can use the Safari browser to debug JavaScript. To do so, open the Safari preferences, select Advanced, and then enable the Develop menu in the browser by selecting Show Develop menu in menu bar, as shown in Figure 30-3.

Figure 30-3 Enabling Safari Browser Options

[image: This image is described in the surrounding text]

When the Develop menu is enabled, select either iPhone Simulator or iPad Simulator, as Figure 30-4 and Figure 30-5 show, and then select a UIWebView that you are planning to debug, as Figure 30-6 shows.

	
Note:

Whether the Develop menu displays an iPhone Simulator or iPad Simulator option depends on which device simulator is launched.

Figure 30-4 Using Develop Menu on Safari Browser for Debugging on iPhone Simulator

[image: This image is described in the surrounding text]

Figure 30-5 Using Develop Menu on Safari Browser for Debugging on iPad Simulator

[image: This image is described in the surrounding text]

Figure 30-6 Using Develop Menu on Safari Browser to Select UIWebView

[image: This image is described in the surrounding text]

Figure 30-7 and Figure 30-8 show the CSS, DOM, and HTML Safari Remote Web Inspector in action.

Figure 30-7 Remote Web Inspector

[image: This image is described in the surrounding text]

Figure 30-8 AMX Page Analyzed by Remote Web Inspector at Runtime

[image: This image is described in the surrounding text]

Figure 30-9 and Figure 30-10 show JavaScript debugging using breakpoints inside the Safari browser.

Figure 30-9 JavaScript Debugging in Safari Browser

[image: This image is described in the surrounding text]

Figure 30-10 AMX Page Debugged at Runtime

[image: This image is described in the surrounding text]

30.4 Using and Configuring Logging

For your MAF application, you can enable logging on all supported platforms through JavaScript (see Section 30.4.2, "How to Use JavaScript Logging") and embedded code (see Section 30.4.3, "How to Use Embedded Logging") using a single configuration with the log output directed to a single file. This log output includes the output produced by System.out.println and System.err.println statements.

The default MAF's logging process is as follows:

	
The logging begins at application startup.

	
The existing log file from the previous application run is deleted, so only the contents of the current run are available.

	
When you are running your application on an iOS-powered device simulator, you can only access the Java logging output through a file of whose name and location you are notified as soon as the output redirection occurs and the file is generated. One of the typical locations for this file is /Users/<userid>/Library/Developer/CoreSimulator/Devices/<device_id>/data/Containers/Data/Application/<container_id>/application.log, where <device_id> and <container_id> references represent long UUID strings created by iOS during the installation of the application. The values of these references cannot be predicted and when multiple simulators or applications are installed, it is difficult to determine which folder corresponds with the simulator used during deployment. Therefore, it is recommended to use the -consoleRedirect=/<path>/<to>/log.txt to direct the log output to a known location. Note that the path must be an absolute path to receive the log file and the location must be writable for the current user.

When you are running your application on an iOS-powered device, the console output is redirected to an application.log file that is placed in the Documents/logs directory of your application.

On Android, the output is forwarded to a text file with the same name as the application. The output file location is /sdcard. If this location is not present or is configured as read-only, the log output is rerouted to the application's writable data directory.

	
The logging.properties file is automatically created and placed in the Descriptors/META-INF directory under the Application Resources (see Section 30.4, "Using and Configuring Logging"), which corresponds to the <application_name>/src/META-INF location in your application file system. In this file, it is defined that all loggers use the java.util.logging.ConsoleHandler and SimpleFormatter, and the log level is set to SEVERE. You can edit this file to specify different logging behavior (see Section 30.4.1, "How to Configure Logging Using the Properties File").

	
Note:

In your MAF application, you cannot use loggers from the java.util.logging package.

MAF loggers are declared in the oracle.adfmf.util.Utility class as follows:

public static final String APP_LOGNAME = "oracle.adfmf.application";
public static final Logger ApplicationLogger = Logger.getLogger(APP_LOGNAME);

public static final String FRAMEWORK_LOGNAME = "oracle.adfmf.framework";
public static final Logger FrameworkLogger = Logger.getLogger(FRAMEWORK_LOGNAME);

The logger that you are to use in your MAF application is the ApplicationLogger.

You can also use methods of the oracle.adfmf.util.logging.Trace class.

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

30.4.1 How to Configure Logging Using the Properties File

Example 30-1 shows the logging.properties file that you use to configure logging.

Example 30-1 logging.properties File

default - all loggers to use the ConsoleHandler
.handlers=java.util.logging.ConsoleHandler
default - all loggers to use the SimpleFormatter
.formatter=java.util.logging.SimpleFormatter

oracle.adfmf.util.logging.ConsoleHandler.formatter=
 oracle.adfmf.util.logging.PatternFormatter
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

#configure the framework logger to only use the adfmf ConsoleHandler
oracle.adfmf.framework.useParentHandlers=false
oracle.adfmf.framework.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.framework.level=SEVERE

#configure the application logger to only use the adfmf ConsoleHandler
oracle.adfmf.application.useParentHandlers=false
oracle.adfmf.application.handlers=oracle.adfmf.util.logging.ConsoleHandler
oracle.adfmf.application.level=SEVERE

The oracle.adfmf.util.logging.ConsoleHandler plays the role of the receiver of the custom formatter.

The oracle.adfmf.util.logging.PatternFormatter allows the following advanced formatting tokens that enable log messages to be printed:

	
%LEVEL%—the logging level.

	
%LOGGER%—the name of the logger to which the output is being written.

	
%CLASS%—the class that is being logged.

	
%METHOD%—the method that is being logged.

	
%TIME%—the time the logging message was sent.

	
%MESSAGE%—the actual message.

The following logging levels are available:

	
SEVERE: this is a message level indicating a serious failure.

	
WARNING: this is a message level indicating a potential problem.

	
INFO: this is a message level for informational messages.

	
FINE: this is a message level providing tracing information.

	
FINER: this level indicates a fairly detailed tracing message.

	
FINEST: this level indicates a highly detailed tracing message.

	
Caution:

When selecting the amount of verbosity for a logging level, keep in mind that by increasing the verbosity of the output at the SEVERE, WARNING, and INFO level negatively affects performance of your application.

The logger defined in the logging.properties file matches the logger obtained from the oracle.adfmf.util.Utility class (see Section 30.4, "Using and Configuring Logging"). The logging levels also match. If you decide to use the logging level that is more fine-grained than INFO, you have to change the ConsoleHandler's logging level to the same level, as Example 30-2 shows.

Example 30-2 Setting Very Fine-Grained Logging Level

oracle.adfmf.util.logging.ConsoleHandler.formatter=
 oracle.adfmf.util.logging.PatternFormatter
oracle.adfmf.util.logging.ConsoleHandler.level=FINEST
oracle.adfmf.util.logging.PatternFormatter.pattern=
 [%LEVEL%-%LOGGER%-%CLASS%-%METHOD%]%MESSAGE%

30.4.2 How to Use JavaScript Logging

JavaScript writes the output to the console.log or.error/.warn/.info. This output is redirected into the file through the System.out utility.

You customize the log output by supplying a message. The following JavaScript code produces "Message from JavaScript" output:

<script type="text/javascript" charset="utf-8">
 function test_function() { console.log("Message from JavaScript"); }
</script>

To make use of the properties defined in the logging file, you need to use the adf.mf.log package and the Application logger that it provides.

The following logging levels are available:

	
adf.mf.log.level.SEVERE

	
adf.mf.log.level.WARNING

	
adf.mf.log.level.INFO

	
adf.mf.log.level.CONFIG

	
adf.mf.log.level.FINE

	
adf.mf.log.level.FINER

	
adf.mf.log.level.FINEST

To trigger logging, use the adf.mf.log.Application logger's logp method and specify the following through the method's parameters:

	
the logging level

	
the current class name as a String

	
the current method as a String

	
the message string as a String

Example 30-3 shows how to use the logp method in a MAF application.

Example 30-3 Using Logging Method

adf.mf.log.Application.logp(adf.mf.log.level.WARNING,
 "myClass",
 "myMethod",
 "My Message");

Upon execution of the logp method, the following output is produced:

[WARNING - oracle.adfmf.application - myClass - myMethod] My Message

30.4.3 How to Use Embedded Logging

Embedded logging uses the java.util.logging.Logger, as illustrated in Example 30-4. Note that the EmbeddedClass represents a Java class defined in the project.

Example 30-4 Using Embedded Logging

import java.util.logging.Level;
import java.util.logging.Logger;
import oracle.adfmf.util.logging.*;
...
 Utility.ApplicationLogger.logp(Level.WARNING,
 EmbeddedClass.class.getName(),
 "onTestMessage",
 "embedded warning message 1");
 Logger.getLogger(Utility.APP_LOGNAME).logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 2");
 Logger.getLogger("oracle.adfmf.application").logp(Level.WARNING,
 this.getClass().getName(),
 "onTestMessage",
 "embedded warning message 3");

The preceding code produces the following output:

[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 1
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 2
[WARNING - oracle.adfmf.application - EmbeddedClass - onTestMessage] embedded warning message 3

30.4.4 How to Use Xcode for Debugging and Logging on the iOS Platform

Even though it is not recommended to manipulate your MAF projects with Xcode because you can lose some or all of your changes during the next deployment with JDeveloper, you may choose to do so in exceptional circumstances.

Before you begin:

Deploy the application to the iOS simulator from JDeveloper.

To open the generated project directly in Xcode:

	
Navigate to the workspace_directory\deploy\deployment profile name\temporary_xcode_project\.

	
Open the Xcode project called Oracle_ADFmc_Container_Template.xcodeproj.

If your development computer is running on Mac OS 10.8.n and you are debugging your MAF application using Xcode, you cannot see the Java output in the IDE (on either JDeveloper console or Xcode console). Instead, the output is redirected to a file (see Section 30.4, "Using and Configuring Logging"). By adding the following argument to your application's schema, you can disable this behavior and enable access to the Java, JavaScript, and Objective-C log output in Xcode in real time when debugging on either an iOS-powered device or its simulator:

-consoleRedirect=FALSE

30.4.5 How to Access the Application Log

Using the following APIs, you can access the application log information:

	
oracle.adfmf.framework.api.PerfMon

	
oracle.adfmf.framework.api.LogEntry

	
oracle.adfmf.util.HOTS

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

A Troubleshooting

This appendix describes problems with various aspects of MAF applications, as well as how to diagnose and resolve them.

This appendix includes the following sections:

	
Section A.1, "Problems with Input Components on iOS Simulators"

	
Section A.2, "The Geographic Map Component Limits Number of Address Points"

	
Section A.3, "Code Signing Issues Prevent Deployment"

	
Section A.4, "The credentials Attribute Causes Deployment to Fail"

A.1 Problems with Input Components on iOS Simulators

Issue:

On MAF applications deployed to iOS simulators, text entered into one <amx:inputText> component field becomes attached to the beginning of the text entered in subsequent field when navigating from one field to another using a mouse. For example, on a page with First Name, Middle Name, and Last Name input text fields, if you enter John in the First Name field, then click the Middle Name field, and enter P, the text displays as JohnP. Likewise, when you click the Last Name field, and enter Smith, the text in that field displays as JohnPSmith, as shown in Figure A-1.

Figure A-1 Text Values Concatenate in Subsequent <amx:inputText> fields

[image: This image is described in the surrounding text]

	
Note:

This behavior only occurs on iOS simulators and in web pages, not on actual devices.

Solution:

Use the keyboard on the simulator to traverse the input text fields rather than the mouse.

A.2 The Geographic Map Component Limits Number of Address Points

Issue:

The Geographic Map component is unable to resolve all address points when Google maps are used as the map provider. This problem is caused by the license that allows users without the business license only limited access to the geocoding service that enables address resolution.

Solution:

MAF provides a handler for error messages produced by the geocoding service. These messages are displayed at runtime if the maximum allowed number of address points is exceeded. The number of requests is limited to 10 requests per second and redundant requests are not sent to the geocoding API.

You should monitor error messages listed in Table A-1.

Table A-1

	Error ID	Message	Description
	
OVER_QUERY_LIMIT

	
GeoCoder quota has been exceeded.

	
Indicates that you are over your quota.

	
REQUEST_DENIED

	
Request denied! Check your API key and client ID.

	
Indicates that the request was denied, possibly because the request includes a result_type or location_type parameter but does not include an API key or client ID.

A.3 Code Signing Issues Prevent Deployment

Issue:

In some iOS development environments, MAF application deployment fails because of code signing errors.

Solution:

To ensure that the MAF application is signed, add code signing data to the Mach-O (Mach object) file by configuring the environment with CODESIGN_ALLOCATE. For example, enter the following from the Terminal:

export CODESIGN_ALLOCATE="/Applications/Xcode.app/Contents/Developer/usr/bin/codesign_allocate"

For more information, see codesign_allocate(1) OS X Manual Page and OS X ABI Mach-O File Format Reference, both available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

A.4 The credentials Attribute Causes Deployment to Fail

Issue:

The presence of the credentials attribute defined for the adfmf:feature element in the maf-feature.xml file causes JDeveloper to cancel deployment and write an error similar to the following to the deployment log:

XML validation failed for file
/Users/jsmith/jdeveloper/mywork/MobileApplication/ViewController/src/META-INF/maf-feature.xml.
[12:26:44 PM] The file contains the following errors:
Error (Line 3, Column 44): Attribute credentials not defined on element adfmf:feature
Error (Line 10, Column 49): Attribute credentials not defined on element adfmf:feature
Error (Line 19, Column 51): Attribute credentials not defined on element adfmf:feature
Error (Line 35, Column 69): Attribute credentials not defined on element adfmf:feature
Error (Line 50, Column 65): Attribute credentials not defined on element adfmf:feature
[12:26:50 PM] Deployment cancelled.
[12:26:50 PM] ---- Deployment incomplete ----.
[12:26:50 PM] XML validation failed.

Solution:

When you migrate an application created by ADF Mobile, you must verify that the authentication mode once defined in maf-feature.xml (such as <adfmf:feature id="feature1" name="feature1" credentials="remote">) is now defined using the authenticationMode attribute in the connections.xml file. JDeveloper's audit rules can detect the presence of the credentials attribute and assist you in removing it from the maf-feature.xml file.

Because only the local and remote values are valid for the autneticationMode attribute, do not migrate the value of none (<adfmf:feature id="feature1" name="feature1" credentials="none">) to the authenticateionMode attribute, as doing so will cause the deployment will fail. For more information, see Section 29.3, "Overview of the Authentication Process for MAF Applications."

B Local HTML and Application Container APIs

This chapter describes the MAF JavaScript API extensions, the MAF Container Utilities API, and how to use the AdfmfJavaUtilities API for HTML application features, including custom HTML springboard applications.

This chapter includes the following sections:

	
Section B.1, "Using MAF APIs to Create a Custom HTML Springboard Application Feature"

	
Section B.2, "The MAF Container Utilities API"

	
Section B.3, "Accessing Files Using the getDirectoryPathRoot Method"

B.1 Using MAF APIs to Create a Custom HTML Springboard Application Feature

Using JavaScript to call the JavaScript API extensions enables you to add the navigation functions to a custom springboard page authored in HTML. As stated in Section 4.5, "What You May Need to Know About Custom Springboard Application Features with HTML Content," you can enable callbacks and use Apache Cordova by including methods in the JavaScript <script> tag. Example B-1 illustrates using this tag to call Cordova.

Example B-1 Embedding the <script> Tag in an HTML Springboard Page

...
<script type="text/javascript">if (!window.adf) window.adf = {};
 adf.wwwPath = "/~maf.device~/www/js/base.js";</script>
<script type="text/javascript" src="/~maf.device~/www/js/base.js"></script>
...

It is recommended that you use the virtual path /~maf.device~/ when including base.js so that the browser will identify the request as being for a MAF resource and not for the remote server. This approach works in both remote as well as local HTML pages and is the best way to include base.js in an HTML feature (regardless of where it is being served from). For more information, see Section 20.1.2, "Enabling Remote Applications to Access Container Services."

	
Note:

MAF does not load a JQuery JavaScript file if it has already loaded a custom version of JQuery before the base.js library file.

	
Tip:

To access (and determine the location of) the www/js directory, you must first deploy a MAF application and traverse to the deploy directory. The www/js directory resides within the platform-specific artifacts generated by the deployment. For iOS deployments, the directory is located within the temporary_xcode_project directory. For Android deployments, this directory is located in the assets directory of the Android application package (.apk) file. See also Section 4.5, "What You May Need to Know About Custom Springboard Application Features with HTML Content."

	
Note:

Because the path does not exist during design time, JDeveloper notes the JavaScript includes in the source editor as an error by highlighting it with a red, wavy underline. This path is resolved at runtime.

The MAF extension to the Cordova API enables the mobile device's API to access the configuration metadata in the maf-feature.xml and maf-application.xml files, which in turn results in communication between the mobile device and MAF's infrastructure. These extensions also direct the display behavior of the application features.

For information on the default MAF springboard page, springboard.amx, and about the ApplicationFeatures data control that you can use to build a customized springboard, see Section 4.6, "What You May Need to Know About Custom Springboard Application Features with MAF AMX Content."

B.1.1 About Executing Code in Custom HTML Pages

Example B-2 illustrates a script defining the showpagecomplete event on the handlePageShown callback function. By listening to this event using standard DOM (Document Object Model) event listening, custom HTML pages (such as login pages) can invoke their own code after MAF has loaded and displayed the page for the first time.

Example B-2 Using the showpagecomplete Event

<script>
 function handlePageShown()
 {
 console.log("Page is shown!");
 }
 document.addEventListener("showpagecomplete", handlePageShown, false);
</script>

	
Note:

The showpagecomplete event guarantees the appropriate MAF state; other browser and third-party events, such as load and Cordova's deviceready, may not. Do not use them.

B.2 The MAF Container Utilities API

The methods of the MAF Container Utilities API provide MAF applications with such functionality as navigating to the navigation bar, displaying a springboard, or displaying application features. You can use these methods at the Java and JavaScript layers of MAF.

In Java, the Container Utilities API is implemented as static methods on the AdfmfContainerUtilities class, which is located in the oracle.adfmf.framework.api package. Example B-3 illustrates calling the gotoSpringboard method. For more information on oracle.adfmf.framework.api.AdfmfContainerUtilities, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Example B-3 Calling the Container Utilities API in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilities;
...
AdfmfContainerUtilities.gotoSpringboard();
...

B.2.1 Using the JavaScript Callbacks

The signatures of Java and JavaScript both match. In Java, they are synchronous and return results directly. Because JavaScript is asynchronous, there are two callback functions added for every function: a success callback that returns the results and a failed callback that returns any exception that is thrown. Within a Java method, the success value is returned from the function, or method, and the exception is thrown directly from the method. The pseudocode in Example B-4 illustrates how a call with no arguments, public static functionName() throws, is executed within Java using try and catch blocks.

Example B-4 Executing a Call with No Arguments in Java

...
 try {
 result = AdfmfContainerUtilities.functionName();
 }
 catch() {
 ...
 }

...

Because JavaScript calls are asynchronous, the return is required through the callback mechanism when the execution of the function is complete. The pseudocode in Example B-5 illustrates the signature of the JavaScript call.

Example B-5 The JavaScript Call Signature

adf.mf.api.functionName(
 function(req, res) { alert("functionName complete"); },
 function(req, res) { alert("functionName failed with " +
 adf.mf.util.stringify(res); }
);

As illustrated by Example B-5, this call is defined as function(request, response). The value of the request argument is the actual request. The response is defined as function(request, response) and its value is the actual request. The response is thrown during the execution of the function.

The pseudocode in illustrates how a call with one or more arguments, such as public static <return value> <function name>(<arg0>, <arg1>, ...) throws <exceptions>, is executed within Java using a try-catch block.

Example B-6 Executing a Call with Multiple Arguments in Java

try {
 result = AdfmfContainerUtilities.<function_name>(<arg0>, <arg1>, ...);
}
catch(<exception>) {
 ...
}

JavaScript calls cannot return a result because they are asynchronous. They instead require a callback mechanism when the execution of the function has completed. The signature for both the success and failed callbacks is function(request, response), where the request argument is a JSON representation for the actual request and the response is the JSON representation of what was returned by the method (in the case of success callback functions) or, for failed callback functions, a JSON representation of the thrown exception.

	
Note:

The callback functions must be invoked before subsequent JavaScript calls can be made to avoid problems related to stack depth or race conditions.

B.2.2 Using the Container Utilities API

The Container Utilities API provides the following methods:

	
getApplicationInformation—Retrieves the metadata for the MAF application.

	
gotoDefaultFeature—Activates the default application feature.

	
gotoFeature—Activates a specific application feature.

	
getFeatures—Retrieves the application features.

	
getFeatureByName—Retrieves information about the application feature using the application feature's name.

	
getFeatureById—Retrieves an application feature using its ID.

	
resetFeature—Resets the application feature to the same state as when it was loaded.

	
resetApplication—Resets the application.

	
gotoSpringboard—Activates the springboard.

	
showSpringboard—Shows the springboard

	
hideSpringboard—Hides the springboard

	
showNavigationBar—Displays the navigation bar.

	
hideNavigationBar—Hides the navigation bar.

	
showPreferences—Displays the preferences page.

	
invokeMethod—Invokes a Java method.

	
invokeContainerMethod—Invokes a native method on the specified class with the given arguments.

	
invokeContainerJavaScriptFunction—Invokes a JavaScript method.

	
sendEmail—Displays the mobile device's email interface.

	
sendSMS—Displays the mobile device's text messaging (SMS) interface.

The Container Utilities API also include methods for placing badges and badge numbers on applications. For more information, see Section B.2.22, "Application Icon Badging."

B.2.3 getApplicationInformation

This method returns an ApplicationInformation object that contains information about the application. This method returns such metadata as the application ID, application name, version, and the vendor of an application.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.ApplicationInformation
 getApplicationInformation()
 throws oracle.adfmf.framework.exception.AdfException

Example B-7 illustrates calling this method.

Example B-7 Retrieving Application Information Using Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 ApplicationInformation ai = AdfmfContainerUtilities.getApplicationInformation();
 String applicationId = ai.getId();
 String applicationName = ai.getName();
 String vendor = ai.getVendor();
 String version = ai.getVersion();
 ...
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getApplicationInformation(success, failed)

The success callback must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value, which is the ApplicatiaonInformation object containing application-level metadata. This includes the application name, vendor, version, and application ID.

The failed callback must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-8 illustrates using these callback functions to retrieve the application information.

Example B-8 Using Callback Functions in JavaScript to Return Application Information

adf.mf.api.getApplicationInformation(
 function(req, res) { alert("getApplicationInformation complete"); },
 function(req, res) { alert("getApplicationInformation failed with " +
 adf.mf.util.stringify(res); }
);

B.2.4 gotoDefaultFeature

This method requests that MAF display the default application feature. The default application feature is the one that is displayed when the MAF application is started.

	
Note:

This method may not be able to display an application feature if it has authentication- or authorization-related problems.

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoDefaultFeature(success, failed)

The success callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the error.

Example B-9 illustrates using these callbacks to call the default application feature.

Example B-9 Using JavaScript Callback Functions to Activate the Default Application Feature

adf.mf.api.gotoDefaultFeature(
 function(req, res) { alert("gotoDefaultFeature complete"); },
 function(req, res) { alert("gotoDefaultFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.5 gotoFeature

This method requests that MAF display the application feature identified by its ID.

	
Note:

This method may not be able to display an application feature if it has authentication- or authorization-related problems.

Within Java, this method is called as follows:

public static void gotoFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in Example B-10, is the ID of the application feature.

Example B-10 Activating an Application Feature

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.gotoFeature("feature.id");
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoFeature(featureId, success, failed)

The featureId parameter is the application feature ID. This parameter activates the success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-11 illustrates using these callback functions to call an application feature.

Example B-11 Activating an Application Feature Using JavaScript Callback Functions

adf.mf.api.gotoFeature("feature0",
 function(req, res) { alert("gotoFeature complete"); },
 function(req, res) { alert("gotoFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.6 getFeatures

This method returns an array of FeatureInformation objects that represent the available application features. The returned metadata includes the feature ID, the application feature name, and the file locations for the image files used for the application icons. This call enables a custom springboard implementation to access the list of application features that are available after constraints have been applied. (These application features would also display within the default springboard.)

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation[] getFeatures()
 throws oracle.adfmf.framework.exception.AdfException

Example B-12 illustrates using this method.

Example B-12 Retrieving the Application Feature Information Using Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 FeatureInformation[] fia = null;
 fia = AdfmfContainerUtilities.getFeatures();

 for(int f = 0; f < fia.length; ++f) {
 FeatureInformation fi = fia[i];
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 ...
 }
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned values and the exceptions to be passed back to the JavaScript calling code as follows:

public void getFeatures(success, failed)

The success callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the associated AdfmfContainerUtilities method's return value (the array of FeatureInformation objects).

The failed callback function must be in the form of function(request, response), where the request argument contains the original request and the response argument contains the error (AdfException).

Example B-13 Using JavaScript Callback Functions to Retrieve Application Feature Information

adf.mf.api.getFeatures(
 function(req, res) { alert("getFeatures complete"); },
 function(req, res) { alert("getFeatures failed with " +
 adf.mf.util.stringify(res); }
);

B.2.7 getFeatureByName

This method returns information about the application feature using the passed-in name of the application feature.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation getFeatureByName(java.lang.String
 featureName)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in Example B-14, is the name of the application feature.

Example B-14 Retrieving the Application Feature Information Using the Application Feature Name

 ...
 try {
 FeatureInformation fi = AdfmfContainerUtilities.getFeatureByName("feature.name");
 String featureId = fi.getId();
 String featureName = fi.getName();
 String featureIconPath = = fi.getIcon();
 String featureImagePath = fi.getImage();
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureByName(featureName, success, failed)

The featureName parameter is the name of the application feature. The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-15 illustrates using these callback functions.

Example B-15 Using JavaScript Callback Functions to Retrieve the Application Feature Information Using the Application Feature Name

adf.mf.api.getFeatureByName("feature.name",
 function(req, res) { alert("getFeatureByName complete"); },
 function(req, res) { alert("getFeatureByName failed with " +
 adf.mf.util.stringify(res); }
);

B.2.8 getFeatureById

This method retrieves an application feature using its application ID.

Within Java, this method is called as follows:

public static oracle.adfmf.framework.FeatureInformation getFeatureById(String featureId)
 throws oracle.adfmf.framework.exception.AdfException

This method's parameter, as shown in Example B-16, is the ID of the application feature.

Example B-16 Retrieving an Application Feature Using its ID in Java

 try {
 FeatureInformation fi = AdfmfContainerUtilities.getFeatureById("feature.id");
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void getFeatureById(featureId, success, failed)

The featureId parameter is the ID of the application feature. The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated AdfmfContainerUtilities method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-17 illustrates using these callback functions to retrieve an application feature.

Example B-17 Using JavaScript Callback Functions to Retrieve an Application Feature by its ID

adf.mf.api.getFeatureById("feature.id",
 function(req, res) { alert("getFeatureById complete"); },
 function(req, res) { alert("getFeatureById failed with " +
 adf.mf.util.stringify(res); }
);

B.2.9 resetFeature

This method resets the state of the application feature. It resets the Java-side model for the application feature and then restarts the user interface presentation as if the MAF application had just been loaded and displayed the application feature for the first time.

Within Java, this method is called as follows:

public static void resetFeature(java.lang.String featureId)
 throws oracle.adfmf.framework.exception.AdfException

The method's parameter, as shown in Example B-18, is the ID of the application feature that is to be reset.

Example B-18 Resetting an Application Feature in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.resetFeature("feature.id");
 }
 catch(AdfException e) {
 // handle the exception
}

In JavaScript, the success and failed callback functions enable the returned value and exception to be passed back to the JavaScript calling code as follows:

public void resetFeature(featureId, success, failed)

The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (The ID of the application feature).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-19 illustrates using these callback functions to call an application feature.

Example B-19 Using JavaScript Callback Functions to Reset an Application Feature

adf.mf.api.resetFeature("feature0",
 function(req, res) { alert("resetFeature complete"); },
 function(req, res) { alert("resetFeature failed with " +
 adf.mf.util.stringify(res); }
);

B.2.10 resetApplication

This method resets the running application and it should be used only when resetting individual application features is not sufficient. For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Within Java, this method is called as follows:

public static void resetApplication(java.lang.String message)

The method's parameter, as shown in Example B-20, is either a message describing the reason for which the application is being restarted, or null if no message is required.

Example B-20 Resetting an Application in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.resetApplication("New content is available");
 }
 catch(Exception e) {
 // handle the exception
}

In JavaScript, the success and failed callback functions enable the returned value and exception to be passed back to the JavaScript calling code as follows:

public void resetApplication(message, success, failed)

The success callback function and must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (The ID of the application feature).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-21 illustrates using these callback functions to call an application.

Example B-21 Using JavaScript Callback Functions to Reset an Application

adf.mf.api.resetApplication("message1",
 function(req, res) { alert("resetApplication complete"); },
 function(req, res) { alert("resetApplication failed with " +
 adf.mf.util.stringify(res); }
);

B.2.11 gotoSpringboard

This method requests that MAF activate the springboard.

	
Note:

This method may not be able to display the springboard if it has not been designated as a feature reference in the maf-application.xml file, or if it has authentication or authorization-related problems. See also Section 4.2, "Configuring Application Navigation."

Within Java, this method is called as follows:

public static void gotoSpringboard()

Example B-22 illustrates using this method

Example B-22 Activating the Springboard in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.gotoSpringboard();
 }
 catch(AdfException e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void gotoSpringboard(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-23 illustrates using these callback functions.

Example B-23 Using JavaScript Callback Functions to Activate the Springboard

adf.mf.api.gotoSpringboard(
 function(req, res) { alert("gotoSpringboard complete"); },
 function(req, res) { alert("gotoSpringboard failed with " +
 adf.mf.util.stringify(res); }
);

B.2.12 showSpringboard

This method requests that MAF display the springboard.

Within Java, this method is called as follows:

public static void showSpringboard()

Example B-24 illustrates using this method.

Example B-24 Showing the Springboard in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showSpringboard();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void showSpringboard(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-25 illustrates using these callback functions.

Example B-25 Using JavaScript Callback Functions to Show the Springboard

adf.mf.api.showSpringboard(
 function(req, res) { alert("showSpringboard complete"); },
 function(req, res) { alert("showSpringboard failed with " + adf.mf.util.stringify(res); }
);

B.2.13 hideSpringboard

This method requests that MAF hide the springboard.

Within Java, this method is called as follows:

public static void hideSpringboard()

Example B-26 illustrates using this method.

Example B-26 Hiding the Springboard in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.hideSpringboard();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void hideSpringboard(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-27 illustrates using these callback functions.

Example B-27 Using JavaScript Callback Functions to Hide the Springboard

adf.mf.api.hideSpringboard(
 function(req, res) { alert("hideSpringboard complete"); },
 function(req, res) { alert("hideSpringboard failed with " + adf.mf.util.stringify(res); }
);

B.2.14 showNavigationBar

This method requests that MAF display the navigation bar.

Within Java, this method is called as follows:

public static void showNavigationBar()

Example B-28 illustrates using this method.

Example B-28 Showing the Navigation Bar in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showNavigationBar();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void showNavigationBar(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-29 illustrates using these callback functions.

Example B-29 Using JavaScript Callback Functions to Show the Navigation Bar

adf.mf.api.showNavigationBar(
 function(req, res) { alert("showNavigationBar complete"); },
 function(req, res) { alert("showNavigationBar failed with " + adf.mf.util.stringify(res); }
);

B.2.15 hideNavigationBar

This method requests that MAF hide the navigation bar.

Within Java, this method is called as follows:

public static void hideNavigationBar()

Example B-30 illustrates using this method.

Example B-30 Hiding the Navigation Bar in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.hideNavigationBar();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void hideNavigationBar(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-31 illustrates using these callback functions.

Example B-31 Using JavaScript Callback Functions to Hide the Navigation Bar

adf.mf.api.hideNavigationBar(
 function(req, res) { alert("hideNavigationBar complete"); },
 function(req, res) { alert("hideNavigationBar failed with " + adf.mf.util.stringify(res); }
);

B.2.16 showPreferences

This method requests that MAF display the preferences page.

Within Java, this method is called as follows:

public static void showPreferences()

Example B-32 illustrates using this method.

Example B-32 Showing the Preferences Page in Java

import oracle.adfmf.framework.api.AdfmfContainerUtilties;

 ...
 try {
 AdfmfContainerUtilities.showPreferences();
 }
 catch(Exception e) {
 // handle the exception
 }

In JavaScript, the success and failed callback functions enable the returned value and the exception to be passed back to the JavaScript calling code as follows:

public void showPreferences(success, failed)

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value (void).

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Example B-29 illustrates using these callback functions.

Example B-33 Using JavaScript Callback Functions to Display Preferences

adf.mf.api.showPreferences(
 function(req, res) { alert("showPreferences complete"); },
 function(req, res) { alert("showPreferences failed with " + adf.mf.util.stringify(res); }
);

B.2.17 invokeMethod

This method is not available in Java. Example B-34 illustrates using the JavaScript callback methods to invoke a Java method from any class in a classpath.

Example B-34 Using JavaScript Callback Function to Call a Java Method

adf.mf.api.invokeMethod(classname,
 methodname,
 param1,
 param2,
 ...
 paramN,
 successCallback,
 failedCallback);

Table B-1 lists the parameters taken by this method.

Table B-1 Parameters Passed to invokeMethod

	Parameter	Description
	
classname

	
The class name (including the package information) that MAF uses to create an instance when calling the Java method.

	
methodname

	
The name of the method that should be invoked on the instance of the class specified by the classname parameter.

The success callback function must be in the form of function(request, response), where the request contains the original request and the response contains the associated method's return value.

The failed callback function must be in the form of function(request, response), where the request contains the original request and the response contains the error.

Examples of using this method with multiple parameters are as follows:

	

adf.mf.api.invokeMethod("TestBean", "setStringProp", "foo", success, failed);

	

adf.mf.api.invokeMethod("TestBean", "getStringProp", success, failed)

An example of using an integer parameter is as follows:

adf.mf.api.invokeMethod("TestBean", "testSimpleIntMethod", "101", success, failed);

The following illustrates using complex parameters:

adf.mf.api.invokeMethod("TestBean", "testComplexMethod",
 {"foo":"newfoo","baz":"newbaz",".type":"TestBeanComplexSubType"}, success, failed);

The following illustrates using no parameters:

adf.mf.api.invokeMethod("TestBean", "getComplexColl", success, failed);

The following illustrates using String parameters:

adf.mf.api.invokeMethod("TestBean", "testMethodStringStringString", "Hello ",
 "World", success, failed);

B.2.18 invokeContainerMethod

The invokeContainerMethod invokes a native method on the specified class with the given arguments. Table B-2 lists the parameters passed by this method.

Table B-2 Parameters Passed to invokeContainerMethod

	Parameter	Description
	
className

	
The class name (including the package information) that MAF uses to create an instance.

	
methodName

	
The name of the method that should be invoked.

	
args

	
An array of arguments that are passed to the method. Within this array, these arguments should be arranged in the order expected by the method.

This method returns an Object.

Example B-35 The invokeContainerMethod Method

public static java.lang.Object invokeContainerMethod(java.lang.String className,
 java.lang.String methodName)
 java.lang.Object[] args)

B.2.19 invokeContainerJavaScriptFunction

The invokeContainerJavaScriptFunction invokes a JavaScript method. Table B-3 lists the parameters passed by this method.

Table B-3 Parameters Passed to invokeContainerJavaScriptFunction

	Parameter	Description
	
featureId

	
The ID of the application feature used by MAF to determine the context for the JavaScript invocation. The ID determines the web view in which this method is called.

	
method

	
The name of the method that should be invoked.

	
args

	
An array of arguments that are passed to the method. Within this array, these arguments should be arranged in the order expected by the method.

This method returns a JSON object.

	
Note:

The invokeContainerJavaScriptFunction API expects the JavaScript function to finish within 15 seconds for applications running on an Android-powered device or emulator, or it will return a timeout error.

Example B-36 The invokeContainerJavaScriptFunction Method

public static java.lang.Object invokeContainerJavaScriptFunction(java.lang.String featureId,
 java.lang.Object[] args)
 throws oracle.adfmf.framework.exception.AdfException

The pseudocode in Example B-37 illustrates a JavaScript file called appFunctions.js that is included in the application feature, called feature1. The JavaScript method, application.testFunction, which is described within this file, is called by the invokeContainerJavaScriptFunction method, shown in Example B-38. Because the application includes a command button that is configured with an action listener that calls this function, a user sees the following alerts after clicking this button:

	
APP ALERT 0

	
APP ALERT 1

	
APP ALERT 2

Example B-37 appFunctions.js

(function()
 {
 if (!window.application) window.application = {};

 application.testFunction = function()
 {
 var args = arguments;

 alert("APP ALERT " + args.length + " ");
 return "application.testFunction - passed";
 };
 })();

The pseudocode in Example B-38 illustrates how the invokeApplicationJavaScriptFunction method calls the JavaScript method (application.testFunction) that is described in Example B-37.

Example B-38 Calling the JavaScript Function from Java

invokeApplicationJavaScriptFuntions
 public void invokeApplicationJavaScriptFuntions(ActionEvent actionEvent) {
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {"P1"});
 AdfmfContainerUtilities.invokeContainerJavaScriptFunction("feature1",
 "application.testFunction",
 new Object[] {"P1", "P2"});
 }

For more information, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework and the APIDemo sample application. This sample application is in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

B.2.20 sendEmail

For information, see Section 14.11.3, "How to Use the sendEmail Method to Enable Email."

B.2.21 sendSMS

For information, see Section 14.11.2, "How to Use the SendSMS Method to Enable Text Messaging."

B.2.22 Application Icon Badging

The AdfmfContainerUtilities class includes methods to place or retrieve a badge number on a MAF application icon. Table B-4 describes these methods.

Table B-4 Icon Badging Methods

	Method	Description	Parameters
	
getApplicationIconBadgeNumber

	
Gets the current badge value on the MAF application icon. Returns zero (0) if the application icon is not badged.

	
None

	
setApplicationIconBadgeNumber

	
Sets the badge number on a MAF application icon.

	
The value of the badge (int badge).

	
Note:

Application icon badging is not supported on Android.

B.3 Accessing Files Using the getDirectoryPathRoot Method

The AdfmfJavaUtilties API includes the getDirectoryPathRoot method. This method, which can only be called from the Java layer, enables access to files on both iOS and Android systems. As shown in Example B-39, this method enables access to the location of the temporary files, application files (on iOS systems), and the cache directory on the device using the TemporaryDirectory, ApplicationDirectory, and DeviceOnlyDirectory constants, respectively. Files stored in the DeviceOnlyDirectory location are not synchronized when the device is connected.

	
Note:

Verify that any directories or files accessed by an application exist before the application attempts to access them.

For more information on oracle.adfmf.framework.api.AdfmfJavaUtilities, see Oracle Fusion Middleware Java API Reference for Oracle Mobile Application Framework.

Example B-39 Accessing Files

import oracle.adfmf.framework.api.AdfmfJavaUtilities;

...

public void getDirectoryPathRoot() {
 // returns the directory for storing temporary files
 String tempDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.TemporaryDirectory);

 // returns the directory for storing application files
 String appDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.ApplicationDirectory);

 // returns the directory for storing cache files
 String deviceDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DeviceOnlyDirectory);

 // returns the directory for storing downloaded files
 String downloadDir =
 AdfmfJavaUtilities.getDirectoryPathRoot(AdfmfJavaUtilities.DownloadDirectory);
}

B.3.1 Accessing Platform-Independent Download Locations

File storage requirements differ by platform. The Android platform does not prescribe a central location from which applications can access files; instead, an application can write a file to any location to which it has write permission. iOS platforms, on the other hand, generally store files within an application directory. Because of these differences, passing ApplicationDirectory to the getDirectoryPathRoot method can return the file location needed to display attachments for applications running on iOS-powered devices, but not on Android-powered devices. Rather than writing platform-specific code to retrieve these locations for applications intended to run on both iOS- and Android-powered devices, you can enable the getDirectoryPathRoot method to return the paths to both the external storage location and the default attachments directory by passing it DownloadDirectory. This constant (an enum type) reflects the locations used by the displayFile method of the DeviceManager API, which displays attachments by using platform-specific functionality to locate these locations.

On Android, DownloadDirectory refers to the path returned by the Environment.getExternalStorageDirectory method (which retrieves the external Android storage directory, such as an SD card). For MAF applications running on iOS-powered devices, it returns the same location as ApplicationDirectory. For more information on the getExternalStorageDirectory, see the package reference documentation available from the Android Developers website (http://developer.android.com/reference/packages.html). See also Files System Programming Guide, available from the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

C MAF Application and Project Files

This appendix provides a reference for the files that JDeveloper generates when you create a MAF application using the Mobile Application Framework Application template.

This appendix includes the following section:

	
Section C.1, "Introduction to MAF Application and Project Files"

	
Section C.2, "About the Application Controller Project-Level Resources"

	
Section C.3, "About the View Controller Project Resources"

	
Section C.4, "About the MAF Application Configuration File"

	
Section C.5, "About the MAF Application Feature Configuration File"

C.1 Introduction to MAF Application and Project Files

By default, JDeveloper creates a MAF application with two projects (ApplicationController and ViewController). The ApplicationController project contains application-wide resources such as a login page if you configure security for your MAF application. The ViewController project contains application feature resources such as HTML, AMX, or task flow files that render the content of an application feature. For more information about these projects, see Section C.2, "About the Application Controller Project-Level Resources" and Section C.3, "About the View Controller Project Resources."

JDeveloper also generates files within these projects that you use to configure your MAF application and application features or files that your MAF application needs when you deploy it to the targeted platform. Example C-1 shows the files that JDeveloper generates for a newly-created MAF application.

Two of the files that you use most frequently as you develop a MAF application are the maf-application.xml file (application configuration) and the maf-features.xml file (feature configuration). For more information about these files, see Section C.4, "About the MAF Application Configuration File" and Section C.5, "About the MAF Application Feature Configuration File."

Example C-1 Files in a Newly-Created MAF Application

RootApplicationDirectory
| MAFApplication.jws
|
+---.adf
| \---META-INF
| adf-config.xml
| maf-application.xml
| maf-config.xml
| maf-plugins.xml
| sync-config.xml
|
+---.data
| \---00000000
| 00000000.jdb
| je.lck
|
+---ApplicationController
| | ApplicationController.jpr
| |
| +---adfmsrc
| | +---application
| | | DataControls.dcx
| | |
| | \---META-INF
| | adfm.xml
| |
| +---public_html
| \---src
| +---application
| | LifeCycleListenerImpl.java
| |
| \---META-INF
| maf-skins.xml
|
+---resources
| +---android
| | display-hdpi-icon.png
| | // Additional image files omitted for brevity
| | display-xhdpi-icon.png
| |
| +---default
| | MissingIcon_144x144.png
| |
| +---ios
| | Default-1104h@2x.png
| | // Additional image files omitted for brevity
| | iTunesArtwork.png
| |
| \---security
| cacerts
|
+---src
| \---META-INF
| logging.properties
| maf.properties
|
\---ViewController
 | ViewController.jpr
 |
 +---public_html
 \---src
 \---META-INF
 maf-feature.xml

C.2 About the Application Controller Project-Level Resources

JDeveloper generates the files for the MAF application in the application controller project. These files, described in Table C-1, contain configuration information describing the metadata of the MAF application. You access these files from the Application Resources pane of the Applications window, shown in Figure C-1.

Figure C-1 MAF Application Artifacts Accessed from the Application Resources Pane

[image: This image is described in the surrounding text]

The application controller project, which contains the application-wide resources, provides the presentation layer of the MAF application in that it includes metadata files for configuring how the application will display on a mobile device. This project dictates the security for the MAF application and can include the application's login page, an application-wide resource. The application controller project is essentially a consumer of the view controller project, which defines the application features and their content. For more information, see Section C.3, "About the View Controller Project Resources."

Table C-1 MAF Application-Level Artifacts Accessed Through Application Resources

	Artifact(s)	File Location	Description
	
maf-application.xml

	
application workspace directory\.adf\Meta-INF

For example:

JDevloper\mywork\application name\.adf\META-INF

	
An XML file that defines application-level information. You can define the content for an application, its navigation behavior, and its user authentication requirements.

	
maf-config.xml

	
application workspace directory\.adf\Meta-INF

For example:

JDeveloper\mywork\application name\.adf\META-INF

	
Use to configure the default skin used for MAF applications. For more information, see Chapter 7, "Skinning MAF Applications."

	
Application images

	
application workspace directory\Application Resources\resources\ios

For example:

JDeveloper\mywork\application name\resources\ios

	
A set of images required for the deployment of iOS and Android applications. These include PNG images for application icons and splash screens. Deployment to an iOS-powered device, such as an iPhone, requires a set of images in varying sizes.

The default iOS images provided with the project include:

	
images used when the device is in both landscape and portrait orientations

	
images used for retina displays (that is, icon.png and icon@2x.png)

	
an iPad image (icon-72.png)

To override these images, see Section 27.2.5.3, "Adding a Custom Image to an iOS Application."

	
cacerts

	
application workspace directory\Application Resources\resources\Security\cacerts

For example:

JDeveloper\mywork\application name\resources\Security\cacerts

	
The cacerts certificate file, a system-wide keystore that identifies the CA certificates to the Java virtual machine (JVM). You can update this file using the Java keytool utility. You can create a custom certificate file using keytool as described in Section 29.8, "Supporting SSL." Any certificate file must reside within the Security directory.

	
logging.properties

	
application workspace directory\ src\.META-INF\logging.properties

For example:

JDeveloper\mywork\application name\src\META-INF\logging.properties

	
Enables you to set the application error logging, such as the logging level and logging console. For more information, see Section 30.4, "Using and Configuring Logging."

	
maf.properties

	
application workspace directory\src\.META-INF\maf.properties

For example:

JDeveloper\mywork\application name\src\META-INF\maf.properties

	
The configuration file for the JVM. Use this file to configure the application startup and heap space allotment, as well as Java and JavaScript debugging options. For more information, see Section 30.3.5, "How to Enable Debugging of Java Code and JavaScript."

	
adf-config.xml

	
application workspace directory\.adf\META-INF

For example:

JDeveloper\mywork\application\.adf\META-INF

	
Used to configure application-level settings, including the Configuration Service parameters. See also Chapter 16, "Configuring End Points Used in MAF Applications."

	
connections.xml

	
application workspace directory\.adf\META-INF

For example:

JDeveloper\mywork\application name\.adf\META-INF

	
The repository for all of the connections defined in the MAF application.

	
wsm-assembly.xml

	
application workspace directory\.adf\META-INF

For example:

JDeveloper\mywork\application name\.adf\META-INF

	
Stores the web service policy definitions used for secured web services.

	
Tip:

Place code that supports application-wide functionality, such as an application-level lifecycle listener, in the application controller project.

Within the application controller project itself, JDeveloper creates the artifacts listed in Table C-2.

Table C-2 Application Controller Artifacts

	Artifact(s)	File Location	Description
	
LifeCycleListenerImpl.java

	
application workspace directory\ApplicationController\src\application

For example:

JDeveloper\mywork\application name\ApplicationController\src\application

	
The default application lifecycle listener (ALCL) for the MAF application.

For more information, see Chapter 11, "Using Lifecycle Listeners in MAF Applications."

	
maf-skins.xml

	
application workspace directory\ApplicationController\src\META-INF

For example:

JDeveloper\mywork\application name\ApplicationController\src\META-INF

	
Defines the available skins and also enables you to define new skins.

For more information, see Chapter 7, "Skinning MAF Applications."

	
adfm.xml

	
application workspace directory \ApplicationController\adfmsrc\META-INF

For example:

JDeveloper\mywork\application name\ApplicationController\adfmsrc\META-INF

	
Maintains the paths (and relative paths) for the .cpx, .dcx, .jpx, and .xcfg files (registries of metadata).

	
DataControls.dcx

	
application workspace directory\ApplicationController\adfmsrc\

For example:

JDeveloper\mywork\application name\ApplicationController\adfmsrc\

	
The data controls registry. For information on using the DeviceFeatures data control, which leverages the services of the device, see Section 14, "Using Bindings and Creating Data Controls in MAF AMX." For information on the ApplicationFeatures data control, which enables you to create a springboard page that calls the embedded application features, see Section 4.6, "What You May Need to Know About Custom Springboard Application Features with MAF AMX Content."

C.3 About the View Controller Project Resources

The view controller project (which is generated with the default name, ViewController) contains the resources for application features. Unlike the application controller project, the view controller project's metadata files describe the resources at the application feature-level, in particular the various application features that can be aggregated into a MAF application so that they can display on a mobile device within the springboard of the MAF application itself or its navigation bar at runtime. Furthermore, the application feature metadata files describe whether the application feature is comprised of HTML or MAF AMX pages. In addition, the view controller project can include these application pages as well as application feature-level resources, such as icon images to represent the application feature on the springboard and navigation bar defined for the MAF application.

	
Tip:

Store code specific to an application feature within the view controller project. Use the application controller project as the location for code shared across application features, particularly those defined in separate view controller projects.

The view controller project can be decoupled from the application controller project and deployed as an archive file for reuse in other MAF applications as described in Chapter 8, "Reusing MAF Application Content." In rare cases, an application controller project can consume more than one view controller project.

	
Note:

Adding a MAF view controller project as a dependency of another MAF view controller project, or as a dependency of a MAF application controller project, prevents the deployment of a MAF application. For more information, see Section 2.5.2, "What You May Need to Know About Feature Reference IDs and Feature IDs."

As shown in Table C-3, these resources include the configuration file for application features called maf-feature.xml.

Table C-3 View Controller Artifacts

	Artifact(s)	File Location	Description
	
maf-feature.xml

	
application workspace directory\src\META_INF\maf-feature.xml

For example:

JDeveloper\mywork\application name\ViewController\src\META-INF

	
A stub XML descriptor file that enables you to define application features. After you have configured the Mobile Preferences, as described in Installing Oracle Mobile Application Framework, you can deploy this application using the default deployment profile settings. For more information, see Chapter 27, "Deploying MAF Applications."

	
Application-Specific Content

	
application workspace directory\ViewController\public_html

For example:

JDeveloper\mywork\application name\ViewController\public_html

	
The application features defined in maf-feature.xml display in the public_html directory. Mobile content can include MAF AMX pages, CSS files, and task flows. Any custom images that you add to an application feature must be located within this directory. For more information, see Section 5.4, "What You May Need to Know About Selecting External Resources."

C.4 About the MAF Application Configuration File

The maf-application.xml file specifies the basic configuration of the MAF application by designating its display name, a unique application ID (to prevent naming collisions) and selecting the application features that display on the MAF application's springboard at runtime. Furthermore, the maf-application.xml file enables you to create the user preferences pages for the MAF application.

This file, which is generated by JDeveloper after you complete the application creation wizard as described in Section 2.2, "Creating a MAF Application," contains the elements listed in Table C-4.

Table C-4 Elements of the Application Descriptor File

	Element	Description
	
<adfmf:application>

	
The root element of maf-application.xml.

	
<adfmf:description>

	
A description of the application.

	
<adfmf:featureReference>

	
A feature reference denotes which of the application features packaged in the FAR (Feature archive file) or defined in the maf-feature.xml file is relevant to the content of the MAF application. You define the character and content of MAF applications by selecting feature references. For more information about FARs, see Chapter 8, "Reusing MAF Application Content."

	
<adfmf:preferences>

	
Enables you to set the user preference options and behavior at the application level. You can also set how user preferences display and behave for the application features in the maf-feature.xml file. For more information, see Chapter 21, "Enabling User Preferences."

	
<adfmf:login>

	
Enables you to set the login page for an application feature. For more information, see Chapter 29, "Securing MAF Applications."

	
<adfmf:navigation>

	
Enables you to define the behavior of the navigation bar and the springboard. A springboard is a home page in which all of the application icons and labels for the embedded application features are organized in a List View. A springboard provides a top-level view of all of the applications available to a user, who can page through and select applications. For more information, see Chapter 4, "Configuring the Application Navigation."

C.5 About the MAF Application Feature Configuration File

The maf-feature.xml file configures the application features that the <adfmf:featureReference> elements in the MAF application's maf-application.xml file references. Example C-2 shows the People and Organization application features of the WorkBetter sample application in that application's maf-feature.xml file.

The <adfmf:features> root element in the maf-feature.xml file accepts one or more <adfmf:feature> elements where you define the properties of the application feature(s) in your MAF application. In Example C-2, values are provided for the properties that define the name and identify of the People and Organization application features in addition to the icons that render in the springboard and navigation bars for these application features in the WorkBetter sample application. Furthermore, the <adfmf:feature> elements reference the content that the application features render. The People and Organization application features reference task flows, .CSS and .JS files.

MAF applications implement security at the application feature level. One step in securing an application feature is to require that end users be authenticated before they can access the application feature. You do this by configuring the Enable Security property (securityEnabled) for the application feature in the maf-feature.xml file. For more information, see Section 29.5, "Configuring Security for MAF Applications."

Table C-5 Child Elements of <Feature> Element

	Element	Description
	
<adfmf:content>

	
Describes the format that the application feature uses for a particular device or user. The content (generally, the user interface) of an application feature can be written as MAF AMX pages, HTML5 pages, or be delivered from web pages hosted on a remote web server. For more information on designating content as a web application, see Chapter 20, "Implementing Application Feature Content Using Remote URLs."

	
<adfmf:constraint>

	
Determines whether a given application feature can be displayed in the application at runtime. Constraints can be used to allow or prevent the use of an application feature based on such criteria as user roles or device properties. For more information, see Chapter 22, "Setting Constraints on Application Features."

Example C-2 WorkBetter Sample Application's maf-feature.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:adfmf="http://xmlns.oracle.com/adf/mf">
<adfmf:feature id="People" name="People" icon="images/people.png" image="images/people.png">
 <adfmf:content id="People.1">
 <adfmf:amx file="People/taskflow.xml#taskflow">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/WorkBetter.css" id="i1"/>
 <adfmf:include type="JavaScript" file="js/customsearch.js" id="i2"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
 <adfmf:feature id="Organizations" name="Organizations" icon="images/departments.png"
 image="images/departments.png">
 <adfmf:content id="Organizations.1">
 <adfmf:amx file="Organizations/taskflow.xml#taskflow">
 <adfmf:includes>
 <adfmf:include type="StyleSheet" file="css/WorkBetter.css" id="i3"/>
 <adfmf:include type="JavaScript" file="js/customsearch.js" id="i4"/>
 </adfmf:includes>
 </adfmf:amx>
 </adfmf:content>
 </adfmf:feature>
 ...
 </adfmf:features>

D Converting Preferences for Deployment

This appendix describes how MAF converts user preferences during deployment.

This document includes the following sections:

	
Section D.1, "Naming Patterns for Preferences"

	
Section D.2, "Converting Preferences for Android"

	
Section D.3, "Converting Preferences for iOS"

D.1 Naming Patterns for Preferences

Conversion of MAF application preferences to a mobile-platform representation occurs when a deployment target is invoked. Following conversion, the naming pattern described in Table D-1 ensures that each preference can be uniquely identified on the mobile platform. Each preference element in the maf-application.xml and maf-feature.xml files must be uniquely identified within the scope of its sibling elements prior to deployment.

The following are examples of identifier values:

	
application.gen.gps.trackGPS

	
feature.f0.gen.gps.trackGPS

Table D-1 describes how to generate fully qualified preference identifiers.

Table D-1 MAF Naming Patterns for Preferences

	Expression	Description	Syntax
	
PreferenceIdentifier

	
Represents an identifier value of a preference element that has been converted to a mobile platform representation.

	
ApplicationPreferences | FeaturePreferences

	
ApplicationPreferences

	
Use this expression to build a preference identifier value that is generated from the maf-application.xml file.

	
application.ApplicationElementPath

ApplicationElementPath represents a dot-separated list of id attribute values beginning with the top-most parent element, <adfmf:preferences>, and ending with the element that is to be identified. In the following segment from the maf-application.xml file, this generated identifier is shown in the comment as application.gen.gps.trackGPS.

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be "application.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
</adfmf:preferences>

	
FeaturePreferences

	
Use this expression to build a preference identifier value that is generated from the maf-feature.xml file.

	
feature.FeatureElementPath

FeatureElementPath represents a dot-separated list of id attribute values beginning with <adfmf:feature>, the top-most parent element, and ending with the element that is to be identified. In the following segment from the maf-feature.xml file, this generated identifier is displayed in the comment as feature.f0.gen.gps.trackGPS.

<adfmf:feature id="f0">
 <adfmf:preferences>
 <adfmf:preferenceGroup id="gen">
 <adfmf:preferenceGroup id="gps">
<!-- The mobile-platform identifier would be "feature.f0.gen.gps.trackGPS" -->
 <adfmf:preferenceBoolean id="trackGPS"/>
 </adfmf:preferenceGroup>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>

The <adfmf:preferences> element cited in the code examples in Table D-1 does not have an id attribute and is therefore not represented in any preference identifiers.

D.2 Converting Preferences for Android

The MAF deployment uses XML and XLS to transform the user preference pages defined at both the application feature and application-level into the following three XML documents:

	
maf_preferences.xml

	
maf_arrays.xml

	
maf_strings.xml

D.2.1 maf_references.xml

This file contains the transformed preferences from both of the maf-feature.xml and maf-application.xml files.

D.2.1.1 Preferences Element Mapping

Table D-2 shows the mapping of MAF's preference definitions to Android template preferences, and Android native preferences:

Table D-2 Mapping MAF Preferences to Android Preferences

	MAF Preference Definition	Custom or Android Native Preference Definition (Used by MAF Deployment)	Android Native Preference Definition (Not used by MAF Deployment)
	
<adfmf:preferenceBoolean>

	
oracle.adfmf.preferences.AdfMFPreferenceBoolean

	
CheckBoxPreference

	
<adfmf:preferenceNumber>

	
oracle.adfmf.preferences.AdfMFPreferenceText

	
EditPreferenceText

	
<adfmf:preferenceText>

	
oracle.adfmf.preferences.AdfMFPreferenceText

	
EditTextPreference

	
<adfdmf:preferenceList>

	
oracle.adfmf.preferences.AdfMFPreferenceList

	
ListPreference

	
<adfmf:PreferenceGroup>

	
PreferenceCategory

	
PreferenceCategory

	
<adfmf:PreferencePage>

	
PreferenceScreen

	
PreferenceScreen

D.2.1.2 Preference Attribute Mapping

The maf_preferences.xml file contains references to string resources contained in both the maf_strings.xml and maf_arrays.xml files. The Android SDK defines the syntax for resources in XML files as @[<package_name>:]<resource_type>/<resource_name>. This file contains references to string values as well as the name and value pairs of list preferences. The XSL constructs the following for the strings and list preferences:

	
<package_name> is the name of the package in which the resource is located (not required when referencing resources from the same package). This component of the reference will not be used.

	
<resource_type> is the R subclass for the resource type. This component will have a value of string if constructing a string reference or array if constructing a list preference.

	
<resource_name> is the android:name attribute value in the XML element. The value for this component will be the value of the <PreferenceIdentifier>_title when specifying the android:title attribute (see Section D.1, "Naming Patterns for Preferences." for the definition of <PreferenceIdentifier>.

Table D-3 and Table D-4 show the mapping of MAF attributes for a given MAF preference to the Android preference.

In this table:

	
Entries of the form {X} (such as {default} in Table D-3) indicate the value of a MAF attribute named X.

	
Entries having <PreferenceIdentifier> indicate the value of the preference identifier, as defined in Section D.1, "Naming Patterns for Preferences."

	
Attributes with an asterisk (*) are custom template attributes defined in a MAF namespace and must appear in the maf_preferences.xml file in the form adfmf:<attributeName>. Otherwise, the attributes are part of the Android namespace and must appear in the maf_preferences.xml file as android:<attributeName>.

Table D-3 Mapping of MAF Preference Attributes to Android Preferences

	MAF Attribute Definition	Template Custom or Android Native Preference Attribute	Android Attribute Value	Applies to
	
id

	
key

	
<PreferenceIdentifier>

	
AdfMFPreferenceBoolean, AdfMFPreferenceText, AdfMFPreferenceList, PreferenceScreen, PreferenceCategory

	
default

	
defaultValue

	
{default}

	
AdfMFPreferenceBoolean, AdfMFPreferenceText, AdfMFPreferenceList

	
label

	
title

	
@string/<PreferenceIdentifier>___title if the given {label} value is not a reference to a string resource bundle. References a string in maf_strings.xml having the given {label}.

	
AdfMFPreferenceBooleanAdfM, FPreferenceNumber, AdfMFPreferenceText, AdfMFPreferenceList, PreferenceScreen, PreferenceCategory

	
secret

	
password

	
{secret}

	
AdfMFPreferenceText

	
min

	
min*

	
{min}

	
AdfMFPreferenceText

	
max

	
max*

	
{max}

	
AdfMFPreferenceText

	
name

	
entryValues

	
@array/<PreferenceIdentifier>___entryValues

	
AdfMFPreferenceList

	
value

	
entries

	
@array/<PreferenceIdentifier>___entries

	
AdfMFPreferenceList

D.2.1.3 Attribute Default Values

The overview editors for the maf-application.xml and maf-feature.xml files exclude an attribute name and value from the XML if:

	
The attribute type is xsd:boolean.

	
The attribute value has a <default> value option.

	
The user specifies <default> as the value.

The XSL must know the MAF attributes that are boolean typed and their corresponding default values. The XSL, then, specifies the appropriate Android or template custom attribute value where has been selected by the user.

Table D-4 indicates what the deployment will specify for the android:defaultValue attribute if the MAF preference being transformed does not contain a default attribute:

Table D-4 Transforming Attributes with Non-Default Values

	MAF Preference Element	Android Preference Equivalent	Default Attribute Value
	
preferenceBoolean

	
AdfMFPreferenceBoolean

	
false

	
preferenceText

	
AdfMFPreferenceText

	
Empty string

	
preferenceList

	
AdfMFPreferenceList

	
Empty string

D.2.1.4 Preferences Screen Root Element

The maf_preferences.xml file has a root element called <PreferenceScreen>. The Android template requires that this element have the following XML namespace definition:

xmlns:adfmf="http://schemas.android.com/apk/res/<Application Package Name>

The <Application Package Name> element is defined as the same application package name in the AndroidManifest.xml file. <Android Package Name> defines the definition for the Android package name specified in the AndroidManifest.xml file. For more information, see Section 3.2, "Setting Display Properties for a MAF Application."

The deployment uses the Application Bundle Id value from the Android deployment profile if it exists. If it does not exist in the profile, the deployment obtains this value from the application display name and Application Id contained in the maf-application.xml file. The deployment Java code will pass the value to the XSL document as a parameter.

Example D-1 shows MAF preferences contained in the maf-feature.xml file.

Example D-1 Preferences Defined in the maf-feature.xml File

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"
 image="oracle.hello/springboard-icon.png">
 <adfmf:content id="Hello.Generic">
 <adfmf:localHTML url="oracle.hello/index.html"/>
 </adfmf:content>
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup"
 label="preference group">
 <adfmf:preferenceBoolean id="boolPref"
 label="boolPref perference"
 default="true"/>
 <adfmf:preferenceNumber id="numPref"
 label="numPref preference"
 default="1"
 min="1"
 max="10"/>
 <adfmf:preferenceText id="textPref"
 label="textPref preferences"
 default="Foo"/>
 <adfmf:preferenceList id="listPref"
 label="listPref preference"
 default="value2">
 <adfmf:preferenceValue name="name1"
 value="value1"/>
 <adfmf:preferenceValue name="name2"
 value="value2"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>
</adfmf:features>

D.2.2 maf_arrays.xml

The maf_arrays.xml file consists of string-array elements that enumerate the names and values of list preferences that are referenced from the maf_preferences.xml file. Each <preferenceList> element contained in the maf-application.xml and maf-feature.xml files is transformed into two string-array elements, one element for the name and one element for the values. For example, the MAF preferenceList definition described in Example D-2 results in <string-array name="feature.oracle.hello.prefGroup.MyList___entry_values"> and <string-array name="feature.oracle.hello.prefGroup.MyList___entries"> in the maf_arrays.xml file shown in Example D-3.

Example D-2 PreferenceList Definition in the maf-feature.xml File

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">

<adfmf:feature id="oracle.hello" name="Hello" icon="oracle.hello/navbar-icon.png" image="oracle.hello/springboard-icon.png">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceList id="MyList" label="My List">
 <adfmf:preferenceValue name="name1" value="value1"/>
 <adfmf:preferenceValue name="name2" value="value2"/>
 <adfmf:preferenceValue name="name3" value="value3"/>
 </adfmf:preferenceList>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
</adfmf:feature>
...

Example D-3 illustrates the pair of string array elements in the maf_arrays.xml file that are transformed from a <preferenceList> element.

Example D-3 Preference Lists Converted to <string-array> Elements in maf_arrays.xml

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">

 <string-array name="feature_oracle_hello_prefGroup.MyList___entry_values">
 <item>name1</item>
 <item>name2</item>
 <item>name3</item>
 </string-array>

 <string-array name="feature_oracle_hello_prefGroup.MyList___entries">
 <item>value1</item>
 <item>value2</item>
 <item>value3</item>
 </string-array>
</resources>

Example D-4 shows the <string-arrays> referenced in maf_preferences.xml.

Example D-4 PreferenceList Reference from the maf_preferences.xml File

<oracle.adfmf.preferences.AdfMFPreferenceList android:key="feature.oracle.hello.MyList"
android:title="@string/feature_oracle_hello_prefGroup.MyList___title"
android:entries="@array/feature_oracle_hello_prefGroup.MyList___entries"
android:entryValues="@array/feature_oracle_hello_prefGroup.MyList___entry_values" />

D.2.3 maf_strings.xml

The maf_strings.xml file, shown in Example D-5, consists of string elements that are referenced by the maf_preferences.xml file, as well as any resource bundle references defined in the maf-application.xml and maf-feature.xml files. Each string element has a name attribute that uniquely identifies the string and the string value.

Example D-5 The maf_strings.xml File

<resources xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:adfmf="http://schemas.android.com/apk/res/oracle.myandroidapp">
...
 <string name="feature.PROD.bundle.FeatureName">Products</string>
 <string name="feature.oracle.hello.prefGroup.MyBooleanPreference___title">My feature boolean pref</string>
...
</resources>

If the source of the string is not a reference to a resource bundle string, the naming convention for the name attribute is <PreferenceIdentifier>___<androidAttributeName>.

Example D-6 Resource Bundle References Defined in the maf-feature.xml File

<adfmf:features xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:adfmf="http://xmlns.oracle.com/jdev/adfmf">
 <adfmf:loadBundle basename="mobile.ViewControllerBundle"
 var="bundle"/>
 <adfmf:feature id="oracle.hello"
 name="Hello"
 icon="oracle.hello/navbar-icon.png"
 image="oracle.hello/springboard-icon.png">
 <adfmf:feature id="PROD"
 name="#{bundle.FeatureName}"
 icon="openMore.png"
 image="G.png"
 credentials="none">
...
 <adfmf:preferences>
 <adfmf:preferenceGroup id="prefGroup">
 <adfmf:preferenceBoolean default="true"
 id="MyBooleanPreference"
 label="My feature boolean pref"/>
 </adfmf:preferenceGroup>
 </adfmf:preferences>
 </adfmf:feature>

D.3 Converting Preferences for iOS

The MAF deployment transforms the MAF preferences listed in Table D-4 to the preference list (.plist) file representation required by an iOS Settings application.

Table D-5 MAF Preferences and Their iOS Counterparts

	MAF Preferences Component	iOS Representation
	
<adfmf:preferencePage>

	
PSChildPaneSpecifier

	
<adfmf:preferenceGroup>

	
PSGroupSpecifier

	
<adfmf:preferenceBoolean>

	
PSToggleSwitchSpecifier

	
<adfmf:preferenceList>

	
PSMultiValueSpecifier

	
<adfmf:preferenceText>

	
PSTextFieldSpecifier

	
<adfmf:preferenceNumber>

	
PSTextFieldSpecifier

For information on the iOS requirement for preference list (.plist) files, see Preferences and Settings Programming Guide, which is available through the iOS Developer Library (http://developer.apple.com/library/ios/navigation/).

Example D-7 XML Based on the maf-application.xml File

<adfmf:preferences>
 <adfmf:preferenceGroup id="gen"
 label="Oracle Way Cool Mobile App">
 <adfmf:preferenceGroup id="SubPage01"
 label="Child Page">
 </adfmf:preferenceGroup>
</adfmf:preferences>

E MAF Application Usage

This appendix provides an introductory information on the MAF user experience.

This appendix includes the following sections:

	
Section E.1, "Introduction to MAF Application Usage"

	
Section E.2, "Installing the MAF Application on a Mobile Device"

	
Section E.3, "Navigating Between Application Features"

	
Section E.4, "Setting Preferences"

	
Section E.5, "Viewing Log Files"

	
Section E.6, "Limitations to the Application Usage"

E.1 Introduction to MAF Application Usage

After installing a MAF application (see Section E.2, "Installing the MAF Application on a Mobile Device"), the end user can start using it by selecting the application icon on their mobile device's home screen (see Figure E-1), which displays the splash screen while the application launches. After the completion of the launch, the end user can navigate between application features (see Section E.3, "Navigating Between Application Features"), set preferences (see Section E.4, "Setting Preferences"), and perform all other tasks.

For information on the user login, see Section 29.2, "About the User Login Process."

Figure E-1 Application Icon on iPhone

[image: This image is described in the surrounding text]

E.2 Installing the MAF Application on a Mobile Device

The end user can download and install a MAF application through their regular application provisioning mechanism.

During installation, the application's Preferences are populated with default settings. For information on how to modify the defaults, see Section E.4, "Setting Preferences" and Section E.2.2, "How to Install MAF Applications on Android-Powered Devices".

Removing the MAF application from a mobile device is not different from uninstalling any other application (see Section E.2.3, "How to Uninstall a MAF Application").

E.2.1 How to Install MAF Applications on iOS-Powered Devices

Users of iOS-powered devices download and install MAF applications in one of the following ways:

	
From an enterprise-specific distribution mechanism:

	
using iTunes;

	
deploying through iPhone Configuration Utility;

	
wirelessly, hosted on a web server.

	
From Apple's App Store.

E.2.2 How to Install MAF Applications on Android-Powered Devices

In addition to installing MAF applications available through the application marketplace, the end user can download applications available outside of the application marketplace. It is recommended to search the web for information on how to do this.

E.2.3 How to Uninstall a MAF Application

A MAF application is removed from the mobile device just like any other application. During the uninstall process, all application data and all external preferences are removed along with the application.

E.3 Navigating Between Application Features

To provide access to each application feature, MAF applications allow for navigation between enabled application features using either a navigation bar or a springboard.

For information on configuring navigation during the application development, see Chapter 4, "Configuring the Application Navigation."

E.3.1 How to Navigate Between Application Features on iOS-Powered Devices

Figure E-2 shows elements of the MAF UI displayed on an iPhone.

Figure E-2 UI Elements on iPhone

[image: This image is described in the surrounding text]

The UI consists of a navigation bar populated with navigation items (icons). The first navigation item is highlighted to indicate that it is selected.

	
Note:

If the springboard is defined for the application, a Home navigation button represented by an overlay is rendered above the navigation bar, but is not a part of it. This button allows the end user to return to the springboard from the application content: [image: This image is described in the surrounding text]
If the springboard is not specified for the application, the Home icon is not displayed.

For more information, see Chapter 4, "Configuring the Application Navigation."

The navigation bar in the example that Figure E-2 shows contains six navigation items, and since not all of them can be displayed at the same time due to the space limitations on an iPhone, the fifth icon is represented by the More feature. When activated, the More feature expands the navigation bar into the mode that lists the remaining navigation items. On an iPad, all navigation items are displayed. The content area above the navigation bar provides the content specific to this particular solution, which is an approval tool for purchase orders and is bundled with the application.

	
Note:

If at least one icon for an application feature is shown on the navigation bar, the end user is presented with Hide and Show buttons that allow to display the navigation bar when it is hidden, and hide when it is shown: [image: This image is described in the surrounding text]
If the application XML file (adfmf-application.xml) only defines a single application feature, or if the constraints (or conditions) allow for only a single application feature to be displayed, then the navigation bar is hidden.

The Hide and Show buttons may not be presented to the end user and the navigation bar could be initially hidden if the adfmf-application.xml file does not reference any application features to be displayed on the navigation bar. In this case, if the springboard is defined, it will be the only navigation tool for the application.

For more information, see Section E.3.1.2, "Using Single-Featured Applications."

Figure E-3 shows the iPhone screen after the activation of the More icon and display of the remaining navigation items as a list. The end user can rearrange items within the More list.

Figure E-3 Display of All Navigation Items on iPhone

[image: This image is described in the surrounding text]

To change which navigation items appear on the navigation bar at the application startup, the end user can select Edit to enter the Configure mode, as Figure E-4 shows.

Figure E-4 "Configure" Mode on iPhone

[image: This image is described in the surrounding text]

The Configure mode allows for dragging icons from the content area and dropping them onto the navigation bar. In this example, Submit navigation item was replaced with Gle navigation item on the navigation bar, and Submit is listed under More items, as Figure E-5 shows. To exit the configuration mode, the user selects Done to return to the More screen.

Figure E-5 Changing Navigation Bar Display on iPhone

[image: This image is described in the surrounding text]

If the end user selects the newly repositioned Gle navigation item in the navigation bar, Gle page is displayed in the content area, as Figure E-6 shows.

Figure E-6 Activation of Repositioned Navigation Item on iPhone

[image: This image is described in the surrounding text]

E.3.1.1 Navigating Using the Springboard

By default, the springboard navigation is disabled in MAF. It is enabled during development by configuring the adfmf-application.xml file (see Chapter 4, "Configuring the Application Navigation.").

If a MAF application is enabled for navigation using the springboard, the end user is presented a display similar to the one shown in Figure E-7 when the application starts.

Figure E-7 Springboard Display

[image: This image is described in the surrounding text]

In the preceding illustration, the default springboard supplied by MAF is displayed on an iPhone in the default portrait layout (for information on how to create a custom springboard during development, see Chapter 4, "Configuring the Application Navigation"). There are three pages of the application content features that are available to the end user, which is indicated by the three dots at the bottom of the screen. The end user is on page one of the three pages, which is denoted by the bright dot in the first position.

To open the second page of features (see Figure E-8), the end user swipes the iPhone screen from right to left, pushing the first page to the left and bringing the second page from the right. As the first page moves left, it fades out, and as the second page moves in, it fades in.

Figure E-8 Springboard - Second Page

[image: This image is described in the surrounding text]

In the preceding illustration, the end user is on page two of the three pages, which is denoted by the bright dot in the second position.

When the end user rotates the mobile device to landscape orientation, the springboard icons animate into positions that will better accommodate such change (see Figure E-9).

Figure E-9 Springboard Display in Landscape

[image: This image is described in the surrounding text]

Note that the page did not change when the display orientation changed, and the end user is still on page two.

To return to the first page of features while the display is in landscape orientation (see Figure E-10), the end user swipes the iPhone screen from left to right, pushing the second page to the right and bringing the first page from the left.

Figure E-10 Springboard in Landscape - First Page

[image: This image is described in the surrounding text]

To view a particular feature (such as Contacts) from page one, the end user touches the Contacts icon or its corresponding text.

On iOS-powered devices, the end user can return to the springboard from any application feature by performing a device shake gesture.

On Android-powered devices, the end user can use a menu item that lets them return to the springboard at any time.

E.3.1.2 Using Single-Featured Applications

Some applications may have only a single feature, and this feature is not configured to be displayed on a Springboard or navigation bar. In this case, only this single feature is presented to the end user; the special buttons that control the display of the navigation bar or return to the Springboard are not visible.

E.3.2 How to Navigate on Android-Powered Devices

The application feature navigation on Android-powered devices is almost identical to the navigation on iOS-powered devices (see Section E.3.1, "How to Navigate Between Application Features on iOS-Powered Devices"), with the exception of the More feature: on Android-powered devices, the More feature, when activated, triggers the display of a list of the remaining navigation items. The navigation bar does not change its appearance.

E.4 Setting Preferences

The end user can configure the application preferences in the manner already prescribed by the mobile platform.

For information on configuring preferences during the application development, see Chapter 21, "Enabling User Preferences."

E.4.1 How to Set Preferences on iOS-Powered Devices

The end user can open the Settings application on their iOS-powered device and select MAF application's Settings icon to access all the settings available for that application. The modified settings take effect upon exiting the Settings application. This is a typical behavior of all applications on iOS-powered devices.

Preferences are populated with default values at startup. These values are defined in the adf-feature.xml file. In addition to the standard ways of setting Preferences values, they can be defined as follows:

	
By making selection from a list of values.

	
As non-readable values (for entering passwords and such).

	
As binary values.

Preferences are displayed on cascading pages. Modifiable preferences can be easily distinguished from the ones that cannot be modified.

Preferences can be used to globally set the user credentials (see Chapter 29, "Securing MAF Applications").

E.4.2 How to Set Preferences on Android-Powered Devices

Setting Preferences on Android-powered devices does not differ from the same operation on iOS-powered devices (see Section E.4.1, "How to Set Preferences on iOS-Powered Devices"): the Preferences are accessed through the Preferences menu item.

	
Note:

The Preferences menu item does not appear in the menu if there are no preferences defined for the application.

E.5 Viewing Log Files

For diagnostic and support purposes, the application log file for enabled application features is available for viewing on the device.

On an iOS-powered device, log files are located in ~/Library/Logs/CrashReporter/MobileDevice/<DEVICE_NAME>. Note that the device must be synchronized prior to accessing log files.

For information on locating and viewing log output on Android-powered devices, see http://developer.android.com/tools/help/logcat.html.

For more information on logging, see Section 30.4, "Using and Configuring Logging".

E.6 Limitations to the Application Usage

There is a number of limitations to the usage of various modules of a typical MAF application.

E.6.1 List View Component Limitations

When using a MAF AMX List View component (see Section 13.3.15, "How to Use List View and List Item Components"), the end user should be aware of the following limitation:

	
If a List View component is in edit mode, the end user is only allowed to reorder rows (represented by List Item components) and cannot select or highlight a row.

E.6.2 Data Visualization Components Limitations

The following are limitations of which the end user should be aware when using MAF AMX data visualization components (see Section 13.5, "Providing Data Visualization"):

	
With the exception of the geographic map (see Section 13.5.17, "How to Create a Geographic Map Component"), MAF AMX data visualization components do not support interactivity on the Android 2.n platform.

	
WAI-ARIA accessibility functionality is not supported on Android for data visualization components.

E.6.3 Device Back Button Limitations on the Android Platform

On Android 4.n, the device back button returns the end user to the previously visited application feature. If the end user continues to activate the device back button until they reach the application feature they visited first at the start of the application, the application exists.

For information on how to configure navigation between views, see Section 13.3.5.7, "Enabling the Back Button Navigation."

E.6.4 Accessibility Support Limitations

The following are limitations of which the end user should be aware when accessibility is required (see Section 13.8, "Understanding MAF Support for Accessibility"):

	
MAF AMX UI components might not perform as expected when the application is run in the Android screen reader mode.

	
WAI-ARIA accessibility functionality is not supported on Android for DVT components.

F Parsing XML

This appendix contains information about libraries that can be used to parse XML.

This appendix includes the following section:

	
Section F.1, "Parsing XML Using kXML Library"

F.1 Parsing XML Using kXML Library

kXML, one of the core MAF libraries, provides API that you can use to parse XML. This library is exposed to the application through the JDK Profiler Interface (JVMPI).

For more information, consult kXML documentation at:

	
http://kxml.sourceforge.net/kxml2

	
http://kxml.sourceforge.net/kxml2/javadoc

G MAF Sample Applications

This appendix describes the MAF sample applications.

This appendix includes the following section:

	
Section G.1, "Overview of the MAF Sample Applications"

G.1 Overview of the MAF Sample Applications

MAF ships with a set of a sample applications that provide different development scenarios, such as creating the basic artifacts, accessing such device-native features as SMS and e-mail, or performing CRUD (Create, Read, Update, and Delete) operations on a local SQLite database. These applications are in the PublicSamples.zip file at the following location within the JDeveloper installation directory of your development computer:

jdev_install/jdeveloper/jdev/extensions/oracle.maf/Samples

To view these applications, extract the PublicSamples.zip file to your JDeveloper working directory (typically, this is User Home Directory/jdeveloper/mywork).

These applications, which are described in Table G-1, are complete. Except where noted otherwise, these applications can be deployed to a simulator after you configure the development environment as described in Installing Oracle Mobile Application Framework.

Table G-1 MAF Sample Applications

	Application Name	Description	Additional Resources Required to Run the Sample Application
	
HelloWorld

	
The "hello world" application for MAF, which demonstrates the basic structure of the framework. This basic application has a single application feature that is implemented with a local HTML file. Use this application to ascertain that the development environment is set up correctly to compile and deploy an application. See also Section 2.2.2, "What Happens When You Create a MAF Application."

	

	
ACS

	
This application provides the REST services that are used within the SecurityDemo application to configure the login server and the Access Control Service.

	
This web application needs to be deployed on a Weblogic server.

	
APIDemo

	
This application demonstrates how to invoke custom JavaScript methods from within a MAF AMX page. Use this approach to invoke the Apache Cordova APIs that are not included in the DeviceFeatures data control. You can also use this approach to add custom JavaScript methods to an application and invoke them as well. This application also demonstrates calling back to Java from the JavaScript methods. For more information, see Section 3.3, "Setting Display Properties for an Application Feature" and Section B.2, "The MAF Container Utilities API."

	

	
BarcodeDemo

	
This application demonstrates how to make use of a Cordova plugin by calling the BarcodeScanner plugin from embedded JavaScript that is invoked from a backing bean. Android and iOS versions of the plugin were manually added to the application controller and view controller projects, then registered within the maf-application.xml file. For more information, see Chapter 9, "Using Plugins in MAF Applications."

	

	
CompGallery

	
This application serves as an introduction to the MAF AMX UI components by demonstrating all of these components. Using this application, you can change the attributes of these components and see the effects of those changes in real time without recompiling and redeploying the application after each change. See generally Chapter 13, "Creating the MAF AMX User Interface."

	

	
ConfigServiceDemo

	
This application demonstrates the use of the Configuration Service to change the end points used in a MAF application. Changes to end points in connections.xml are propagated to the application on the device and the application re-initialized to consume the new end points. For more information, see Section 16.1, "Introduction to Configuring End Points in MAF Applications."

	

	
DeviceDemo

	
This application shows you how to use the DeviceFeatures Data Control to expose device features such as geolocation, e-mail, SMS, and contacts, as well as how to query the device for its properties. This feature demonstrates how to use displayFile method from DeviceFeatures data control to display various types files like .doc, .ppt, .xls, and .png. For more information, see Section 14.11, "Using the DeviceFeatures Data Control" and Section 14.11.9, "How to Use the displayFile Method to Enable Displaying Files."

	
You must also run this application on an actual device, because SMS and some of the device properties do not function on an iOS simulator or Android emulator.

	
ExpandCollapseComponent

	
This application demonstrates how to create a custom component that can act as a container for any type of AMX component. It also provides an example of expand and collapse functionality. For more details look at the cardview.js file in the js folder. This JavaScript file contains a method (expandcollapse.prototype.render) that renders the UI of the component. It also contains a method that demonstrates how to render the child components of the custom component. For more information, see Section 19.1, "Introduction to Creating Custom UI Components."

	

	
FragmentDemo

	
This application shows how you can use fragments to define reusable artifacts that can used as templates. It demonstrates how you can have multiple content types for each feature, one for tablet, one for phone, and use the fragment so that you don't have to code the list/form each time.

	

	
GestureDemo

	
This application demonstrates how gestures can be implemented and used in MAF applications. See also Section 13.4, "Enabling Gestures."

	

	
LifecycleEvents

	
This application implements lifecycle event handlers on the MAF application itself and its embedded application features. This application shows you where to insert code to enable the applications to perform their own logic at certain points in the lifecycle. See also Chapter 11, "Using Lifecycle Listeners in MAF Applications."

	
For iOS, the LifecycleEvents sample application logs data to the Console application, located at Applications-Utilities-Console application.

	
Navigation

	
This application demonstrates the various navigation techniques in MAF, including bounded task flows and routers. It also demonstrates the various page transitions. See also Section 12.2, "Creating Task Flows."

	
This application must be opened from the Samples directory. The Default springboard option must be cleared in the Applications page of the maf-application.xml overview editor, then selected again.

	
PrefDemo

	
This application demonstrates application-wide and application feature-specific user setting pages. See generally Chapter 21, "Enabling User Preferences."

	

	
PushDemo

	
This application demonstrates how to register for and receive push notifications from the Apple Push Notification and Google Could Messaging servers. For more information, see Section 24.2, "Enabling Push Notifications for a MAF Application."

	
This application is used with the PushServer sample application, which provides the ability to initiate a push notification.

	
PushServer

	
This application provides the ability to initiate a push notification that is received by the PushDemo sample application. For more information, see Section 24.2, "Enabling Push Notifications for a MAF Application."

	
This web application needs to be deployed on a Weblogic server. This application is used with the PushDemo sample application, which demonstrates how to register for and receive push notifications from the Apple Push Notification and Google Could Messaging servers.

	
RangeChangeDemo

	
This application demonstrates how to use a RangeChangeEvent to invoke a Java handler method when the List View requires new data to be fetched from an external source. It also demonstrates how to configure the scrolling and buffering behavior of a List View using its attributes. For more information, see Section 13.3.15.1, "Configuring Paging and Dynamic Scrolling."

	

	
RESTDemo

	
This application demonstrates how to use REST web services. The application feature, REST-JSON, uses a publicly available web service to retrieve the geo-coordinates of a given IP address. The service returns data in the JSON format. In the REST-JSON feature, the URL connection is used directly by the RESTServiceAdapter helper class to invoke the web service and then the response is parsed using the JSONSerializationHelper class and then populating a bean data control. The user interface is bound to this bean. For the application feature, the web service call results in a form and a map. The latter is centered with a marker that contains the returned geo-coordinate.

	

	
SecurityDemo

	
This application demonstrates how to secure a MAF application, configure authentication and the login server, use the Access Control Service, and access secure web services. For more information, see Section 29.1, "Introduction to MAF Security."

	
This application is used with the ACS sample application, which provides the REST services used to configure the login server and the Access Control Service.

	
SkinningDemo

	
This application demonstrates how to skin applications and add a unique look and feel by either overriding the supplied style sheets or extending them with their own style sheets. This application also shows how skins control the styling of MAF AMX UI components based on the type of device. It also demonstrates the ability to change skin families (out-of-the-box or custom) at runtime. See also Chapter 7, "Skinning MAF Applications."

	

	
SlidingWindows

	
This application demonstrates the use of the AdfmfSlidingWindowUtilities API, which can be used to display multiple features on the screen at the same time. This sample shows how you can create a custom springboard or create a global navigation bar using the AdfmfSlidingWindowUtilities API.

	

	
StockTracker

	
This sample demonstrates a simple example of how to build CRUD operations using a SQLite DB and a dean data control. It displays a list of stocks and allows you to Create, Update, Delete or Reorder the stocks. It uses a local SQLite database to store its data. The StockTracker application persists the data during CRUD operations. This sample also demonstrates how data change events use Java to enable data changes to be reflected in the user interface. It also has a variety of layout use cases, gestures, and basic MAF application layout patterns. This sample also demonstrates how to use CREATE and DELETE operations to add or delete items to and from a collection. For more details, look at the addStock and deleteStock methods in Portfolio.java class located in the Portfolio package. See also Section 14.13, "About Data Change Events."

	

	
UIDemo

	
This application demonstrates the user interface layout and shows how to create the various list and button styles that are commonly used in MAF applications. It also demonstrates how to create the action sheet style of a popup component and how to use various chart and gauge components. See Section 13.3, "Creating and Using UI Components" and Section 13.5, "Providing Data Visualization."

	
This application must be opened from the Samples directory. The Default springboard option must be cleared in the Applications page of the maf-application.xml overview editor, then selected again.

	
WorkBetter

	
This human resources application contains two features: People and Organizations.People: This feature includes a search component, which allows you to search for people. It also demonstrates the ability to create custom components as well as how to build reusable layouts as fragments and use them between different features. It demonstrates how to use various DVT visualization components to display performance, compensation, and timeline- related information.Organizations: Like the People feature, this feature demonstrates how to build reusable layouts as fragments and use them between different features. It also demonstrates how to create views for different form factors and configure them.

This application is meant to be an end-to-end demo of the various UI techniques and components available. It shows a variety of layout patterns and demonstrates various uses for both common and more complex components. It is not meant to showcase a compete application but rather focus on the user interface. Please consult other samples for things like data-model or web services.

	

Oracle Legal Notices

Copyright Notice

Copyright © 1994-2015, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Alpha and Beta Draft Documentation Notice

If this document is in preproduction status:

This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.

[image: Oracle Logo]

OEBPS/img/edit_form_fields3.png
Configure the companents that you want to csplay i your form. Note that you can remove or edit the resiting
components after you cick OK. You can akso add more components directly o the layout later.

Value Binding

 <defauit>
o <defait> = minsalery I MAF Output Text w/ Label
o <defait> = maxSalary I MAF Output Text w/ Label

6 ¢ < o

OEBPS/img/edit_iter_fields.png
D Edit Ite

Iterator Content:

Display Label
 <defauit>
 <defauit>
 <defauit>

+X
Value Binding ‘Component To Use
= jobtd I8 WP Output Text/Label
= te I3 MAF Outout Textw/Label
= minsalary 2 MAF Input Text w/ Label

MAF Input Text

LSRR

OEBPS/img/back_button.png
{ Back Details

OEBPS/img/adf_elpickpropicon.gif

OEBPS/img/create_rb.png
EX3)

O Appliction Poperties - DAARinstallattempt2\ Oracl\Midlieware\Oracle Homejdevelopenmywork Applcation.

Q Search Resource Bundles

Use Custom Settings

‘Applcation Content
- Customization Libraries
Deployment
- IDE Performance Cache
Libraries and Classpath

Use Applcation Settings

Appication Bundle Search

Register Override Bundes

- Maven Creste and re tion-fevel bundles. Registered bundles may then be:
wsed through for use with application s, The defult bundl s

slways incuged.

Run
-

W Polcy Store
Bundle List

on Buccle

[Select Applcaton et

OEBPS/img/transition.png
‘control-flow-case - Detail - Properties

Q Fnd @
= General

Control Flow Rule

ronsai:

Control Flow Case:

OEBPS/img/safari1.png
Ii i 'i'ﬁ'a Search Google or enter an address.

Onen Page With
User Agent

l

Show Web Inspector

Show Error Console Nl
Show Page Source x%U
Show Page Resources %A
Show Snippet Editor

Show Extension Builder

Start Profiling JavaScript X 03P
Start Timeline Recording X 03T

Empty Caches e
Disable Caches

Disable Images
Disable Styles

Disable Javascript
Disable Site-s;
Disable Local

Hacks
Restrictions

 Enable WebGL

OEBPS/img/navdrag_beh.png
Components |2
al

AOF Vbl AMX -
2 General Contras

i Text and Selecton

2 Data Vews

layout

1 Operations

= Atwbute st

88 Atwbute set H
Load Bundie

Behavior

G Close Popup Behavior

@0 Loading Indicator Behavior
e
G Show Popup Behavior

B Transiton

o Vaiidation Behavior
Liseners

5 ActonLstener

£ setProperty Listener
Valdators and Converters
& convert Date Time

[Convert Number

8 vaidaton Goup

BT

OEBPS/img/circular_gauge.png

OEBPS/img/iosoptions.png
8006

MAF for iOS Deployment Profile Properties

Q search

vt oepeniencn
o

Help

i0s Options.

Application Details
Application Bundle id:

Application Archive Name:

Deployment

[com.company ProductCatalog

ProductCatalog

Minimum 05 Version: [7.0

]

Simulator Target: [Phone 6 (105 8.1 - iPhone 6) ¥
Target Eaily: iPhone/iPad ~

uid Mode
® ebug
O Release

Enable Oracle Mobile Security Suite

ok

Cancel

OEBPS/img/mafpagewizards.png

OEBPS/img/preview_tab1.png

OEBPS/img/funnel.png

OEBPS/img/select_bean.png

OEBPS/img/all_facets.png
Page Facets

OEBPS/img/left_right_list.png
Start Text End Text

Start Text End Text

Start Text End Text

OEBPS/img/psl_facet.png
@B} Table Layout
A ouputText- 2ing
- [Deck
2-E5 popup.
-E5 Popup.
B Popup.

Insert Before Panel Stretch Layout
Insert Inside Panel Stretch Layout
Insert After Panel Stretch Layout

Surround With.

Cuparios

Cueay

OEBPS/img/omss_lockicon.png
oes ATET-LTE 12:20PM 7 100% .

‘StockTracker

OEBPS/img/generalappsettings.png

OEBPS/img/ws_methodreturnicon.png

OEBPS/img/my_error_message.png
656
Error Demo [Wessoiits

RiEicesion
tacesion in Backgronnd

 avasain addiiessaar = abareand

OEBPS/img/autocorrect.png
Tomo|
“Tomorrow x

OEBPS/img/popup_id3.png
f
|
:
|

Q Find €]

Reset to Default

ElProperty Help

[Specifies the ID of the component
frelative to which the popup il be
jagned.

OEBPS/img/listview_eb1.png
% Select List View Data Collection

Expression Buider | DataControl Defintons:
Select values from variables and operators to create an expression or directly type the expression here:

Expression: 9

#{EmpRecords.emplnfolisth

&[] ADF Managed Beans
£-® EmpRecords
5@ emplnfo

- emplinfos
53 employeefiame.
- number

MyBean
ppicationscope
pageFlowscope L
jenscope e
ADF Mabile Objects y

Create Property

= [o

OEBPS/img/create_taskflow2.png
Enter the fie name and directory for your new Mobie Appication
Framework Task Flow.

Eile Name:
ew-fonomt

Drectory:
:\IDeveloer\mywork\Samples R WiewControlier\public_html | Browse...

e oK Cancel

OEBPS/img/adf_elpickattribicon.png

OEBPS/img/drag_and_drop_dir2.png
o \application\ViewController\adfmsrc\

© \mobile
= \pageDefs

= view1PageDef.xml

= view2PageDefxml

= DataBindings.cpx

sopcatont

- proecs aav-

S ———

peucontoler

=23 Appcsion sources

[onbe]
[—

=1 mobile.pageDefs

view1PageDef x|
T I METATE

] sdfmami

G mat-festure.ami
3 Resaurces

=5 web Conert:
23 cracl el
2 ctcmoble-conig i

L vewtomx

2 vwcontoler-taskiowoxnl

OEBPS/img/convert_number.png
ar
AOF Vbl AMX
2 General Contras
i Text and Selecton
2 Data Vews
layout
1 Operations
Atrbute List
88 Atwbute set
Load Bundie
Behavior
G Close Popup Behavior
@0 Loading Indicator Behavior
e
G Show Popup Behavior
B Transiton
o Vaiidation Behavior
Liseners
5 ActonLstener
£ setProperty Listener
Valdators and Converters
& convert Date Time
(@) Convert Number
& Vaication Group.

OEBPS/img/add_facet.png

OEBPS/img/listview_bound1.png
Decide whether you wank to bind your st view to a data source now, or create i with unbound lst tems,

[Bind Data
L ata Colecon;[Flbdings EmpRcords.coleciartiodelr ThReoe
Gerert e | ==

List Item Selection: ~ (3) Single Ttem () None,

B) coupnbystietrorentreatobuin voe.

X =) stitems e cptonslycrvped b s atrbute

OEBPS/img/button_action.png
Button Action
Acton:
ActonListener:

Usetiindon:

WindowEmbedstyle

[<defautt> <
|_back
feae @

[Productoetais

WindowModaltyType: | <default> (model... ¥| v

WindowHeight:
WindowWidth

—

OEBPS/img/devbrowser.png
i0S Android

Carrier & 345 PM -
4

=Y https://m.oracle.com/inde

a oracle.com

ORACLE'
ORACLE

Mobile Application

Mobile Application

Oracle Headlines
Oracle Headlines

Create the Future With Java 8
Create the Future With Java 8 Lear about Java 8' new features and enhancemen
Learn about Java 85 new fealures and enhancements. Watch the Webcast on demand >

Watch the Webcast on demand > The 2014 Modern Marketing Tour is Now Underway

‘The 2014 Modern Marketing Tour is Now Underway Wilyoube tere?

Willyou bo there? Leam more >
Learn more > Oracle Solais/SPARC i Better for Your Modern
Enterprise
Oracle Solaris/SPARC is Better for Your Modern
Find out why companies are switching from IBM AIX|
Enterprise
Power o Oracie Solaris/SPARC.
Find out why companies are swithing from 1BM
v come: ° Getthe facts >
AlX/Power to Oracle Solaris'SPARC.
Oracle at COLLABORATE 14
Get the facts >
Network,learn, and share information at more than 1,200

panels, patiipate in top-quaity raiing,

m T -

April 7-11 in Las Vegas

Register now >

OEBPS/img/appwidesettings1.png
Carrier = 11:55 AM -

{ Settings PrefDemo

APP PREFERENCES

Aop Boolean @

App Number 123
App List Item 1
AppText default text

App Secret Text

App Page

F1 PREFERENCES

1 Baolean ©

OEBPS/img/elebconstraints.png
Select values from variables and operators to create an expression or directly type the expression here:
Expression:

@ e
+{myBean chedConstrans)

OEBPS/img/back_nav.png
+--[goB]--> view <--[goAgaing] <--+

+-- viewd

+--[goC]--> vieuC <--[goAgainC] <--+

OEBPS/img/create_fragmentattr.png
Insert Before Attbute Name »
Insert Inside Attrbute Name. »

rbut

<9 Attribute Name.
<> Attribute Type
€9 Defauit Value
< Desaription
<) Requred

OEBPS/img/create_db_nbox.png
§ Create i

Configure the N Box grd by specifying the number of boxes along each dmension, assigning vakues and optional text
labeks

Bows: = [umber | Cotams: = fumber]

Rows Tite: [ral o oxpresson

Cobsms Tt sl or xpressan |

Row

o[

NextRow

OEBPS/img/maa_contribs.png
Q search

“Applicaton Archive ptons.

& Fie Groups
& Appication Deserptors

Contributors

application Source Path

Order of Contrbutors:

OEBPS/img/delete_binding.png
A

irm Removal of Bindings

Do you want to remove the bindings associated with these
components?

Bindings cannot be pasted after removed. If you stil want your components to be:
databound after pasting them elsewhere n this document, choose No.

) T Hesoge st i
{

OEBPS/img/sample2.png
ol version-r1.0% encoding-"UTR-G" 2>
S <Application xalns="hetp: //xalns. oracLe. con/adtn/applicasion”
versione"i2.1.1.60.73" hacrDacaBindings”
SeparateRILFiles-"false Fackage-"nobile” ClientType-"Generic">
5 paear
o —
< pageian>
8 <agedetinttionlsages>
“page 1d-"aobile. vievlPageDet” path-"aobile.pageDets. vievlPageDat”/>
<Mpagebetinitiontsages>
5 caatacontrolUsages
<o 14-"DeviceDataControl” path"aodel.DeviceDasatonsrol/>
</datacontrottisages
</mpiication

‘wobile_viewlPageDee"/>

OEBPS/img/maa_depsum.png
Summary

Deployment Action

OEBPS/img/adf_elpickiteratoricon.png

OEBPS/img/return_button.png
o
Back Input Text ﬁ el

Outside a form

«Label tex{

< D> Done

OEBPS/img/add_security.png
[E Authentication and Access Control
Appication / Configuration Login Server:

Features with Security Enabled:

E—T Y

Featre D

Logn Server Connection

OEBPS/img/def_lifecycle.png
A2 LUBRS

package application;
& import ...

B /## The application life cycle listener provides the basic structure fo
public class LifeCycleListenerlnpl implements LifeCycleListener
B¢
public LifeCycleListenerinpl ()
8
}

B /++ The start method will be called at the start of the application.
public void start()
8
// 2dd code nere.
}

B /++ The stop method will be called at the temmination of the applicat
public void stop()
8
// 2dd code nere...
}

B /++ The activate method vwill be called vhen the application is starte
public void activate()
8
// 2dd code nere...

OEBPS/img/create_method1.png
Method Name:
fgetetiome]

e oK Cancel

OEBPS/img/gotopage1.png
‘BFI1" labelPosition="topStart” fielddali
<amx:panelLabelindiessage label="#{bindings.depcliane.hints.label}” id="plan2">
<amx:outputText value="#{bindings.deptNane. inpucValue}” i
</amx:panelLabelAndliessage>
<amxipanclLabelindlicssage label="4 (bindings.address. hints. label] " i

_back™/>

<amx:outputText value="
</amx:panelLabelAndliessage|
<amx:panellabelAndliessage
<amx:outputText value="3|
</amx:panelLabelAndliessage|
<amx:panellabelAndliessage
<amx:outputText value="3|
</amx:panelLabelAndliessage|
<amx:panellabelAndliessage
<amx:outputText value="3|
</amx:panelLabelAndliessage|
<amx:panellabelAndliessage
<amx:outputText value="3|
</amx:panelLabelAndliessage|
<amx:panellabelAndliessage
<amx:outputText value="3|
</amx:panelLabelAndliessage|
</amx:panelFornLayout>
</amx:pane1Page>
</amxiviews

Go to Decaration

stz .
Facets -panelPage
2 Reformat
[e
Source
Refactor

8
@ v
1 zone

-

Assnis
CaealtEnter

J——
Asnines

Altsome

starc™>

0t3"/>

ia="plans">

‘plans™>

{ngs . Lastliare .1

OEBPS/img/listview_prop.png
List View - #{bindings Contact! 3 collectionbodl} - Properties:
Q Find

Coopsedovitorss [|
Coopesnigers [9]
sowdhidercowe [)

Edt
Method Expression Buider.

tyie

ElBehavior Reset to Default
Move Listener: ElProperty Help
Wi [#oind| [Defines a method reference to a

selecton Istener.

Selected Row Keys:
Selection Listener:

OEBPS/img/delete_comp.png
5 S Panel Goup Layout
5= List View - #{

</amx: facet>

Cueay

E
=
E
E

E <amx:panelGrowplayont 1d="pgl3zL"

inlinestyle

5 <o BRI 1" 1istvien1” -

p——

SnowDividexCoun

dividerode-"zi

busferScracegy=

</amx:cel1Fon
<amx:cellForm:
<amx:outp:
</amx:cel1Fon
</amx: ronLayout>

</amx:cel1Fon

</amx: rouLayout>
/amx: tableLayout>
fanx : commandButton id:
h
famx: setPropertyListe:

OEBPS/img/convert_date.png
Components. |
al

AOF Vbl AMX
2 General Contras
i Text and Selecton
2 Data Vews
layout
1 Operations

@ Atrbute

= Atwbute st

88 Atwbute set

Load Bundie

Behavior

G Close Popup Behavior
@0 Loading Indicator Behavior
e
G Show Popup Behavior

B Transiton

o Vaiidation Behavior
Liseners

5 ActonLstener

£ setProperty Listener
Valdators and Converters
& convert Date Time

[Convert Number

& Vaication Group.

‘Convert Date Time - Properties)
Q Find

>

| « @

ElRules

R —
e —
L —
A —

other

OEBPS/img/createhtmldialog.png
Define appication features here. Configure their usage in maf-applicaton.i.

File Name:

Jinites chin
Drectoy:

[p:\estallidey WAFWIAF_2.1.0\maf-2.1000.201411 13- 1354\idevelopermywork ApplicationdVien Controler pubi_hmiVeaturel | Q
[[] Greate as XL fie (*.xhim)

e Cancel

OEBPS/img/audit_profiles.png
profie: Code AssstRules v sevens.

]
]
i
i
i
|

1)

Expand Al Colapse Al

Hep

Select Al Deselect Al

File not in public_html directory
oradie ma.feature-url references-not.

“The fle is notlocated in the projects
public_him drectory.

S

style:

Messages: The fie s notlocated n the

projects publc_htm
drectory. Itwil notbe
deployed o the MAF
Runtime. Please move the
fie toa location n the
projects publc_htm
drectory.

OEBPS/img/selectbooleanpref.png
references
(22 preference Group - Mobiepp
5 {31 reference page -Verson
&3] Preference Page -Your G5 Locaions

refeen oo e

OEBPS/img/edit_defaultfar.png
Lbrary Dependendes.
- Connectons

FAR Options
& Fle Groups

- Project Output

Contrbutors

Filters

Fies | Patterns.

This fie group indudes the project output directory as a conirbutor. You may.
nesd to comple the project to e al fles coming from the output drectory.

Expand Al Nodes:

OEBPS/img/task_flow_behavior.png
Diagram | Overview | Source History

OEBPS/img/ws_structuredattributeicon.png

OEBPS/img/error_message2.png
Carrier

Error k

i © Your password must be
greater than 8

characters

Sta

Login

OEBPS/img/edit_form_fields.png
Configure the companents that you want to csplay i your form. Note that you can remove or edit the resiting
components after you cick OK. You can akso add more components directly o the layout later.

Value Binding

(SRR

OEBPS/dcommon/oracle-logo.jpg
ORACLE

Mobile Application Framework
Developing Mobile Applications with
Oracle Mobile Application Framework,
2.1.0

OEBPS/img/viewconflw.png
Create MAF Task Flow

Enter th fie name and directory for your new Mobie Appication Framework
Task Flow.

File Name:
VewContoter-taskcfomoxnl

Drectory:
:\IDeveloper\mywork\WobieAppication\ViewControler\public_html | Browse....

e oK Cancel

OEBPS/img/imageresource.png
Select values from variables and operators to create an expression or directly type the expression here:

0 Q@

Expression:

#{viencontrolerBundie.IMAGEPATH)

OEBPS/img/maa_deploy.png
Deployment Action

Deployment Action

© Summary

Select a deployment action from the st below.

Deploy the appicaton to an MAF Application Archve fie.

OEBPS/img/round_button.png

OEBPS/img/deploy_modes.png
Relase Mode Debug Mode

Carrier = 11:47 AM [Carrier ¥ 11:44 AM L_J

= Portfolio Manage Portfolio Manage
STOCK1 35.00 STOCK1 35.00

Acme Wireless 1,000 Acme Wireless 1,000

OEBPS/img/cclass_dlog.png
Running dependency analysis.

Deploying profile.
Hizote Archive Module to C:\JDeveloper\mywori\Applicscion?\mobile\deplov\SicsCC.isr

Zlapsed vime for deploymenc: less chan one second

OEBPS/img/skin_prefsmf.png
MobileAlta

Home

General
Text & Select
Data Views
Layout
Operations
Visualization

Switch to Alta Switch to Fusion Fx

MobileFusionFx

1108 AM

Home
General
Text & Select
Data Views

Layout

Operations

Visualization

Switch to Alta Switch to Fusion Fx

OEBPS/img/preferencespage.png
Application
Plugins.

Feature References
Preferences
Security

Preferences *[1X

&% Text Preference - Email
4% Text Preference - Password

Add|

Label:

PreferenceType:

<

[MobileApp

Ii

(Group

OEBPS/img/adf_keyattributeicon.png

OEBPS/img/mobilepreferencepalette.png
I Cordova Plugins
IPreferences.

& &

Boolean Number Preference
Preference Preference Growp.

& 2 &

Preference Preference Preference.

List Page Value

&

Text
Preference

OEBPS/img/cloud_dcs2.png
@somp OREST

Specify 3 WSDL URL or a Java source fl with JAX-AS annotations that describes the service. Click the Services.
button to display the services described.

WRL: |https:/fmyhost. us.example. com/HCMService/HCMServicePortzwsdl

.
S

Itis recommended to copy the WSDL ocally t the project. If you choose not to copy, then the Web Service has.
tobe runing n order for JDeveloper to display this data control i the Data Control panel.

Select the service to create the data control.

Serviee:[{httpsfhem. demo,adff oraclefHCMservice

OEBPS/img/maf-drop-table.png

OEBPS/img/android_nestedpage.png
PLEED
‘Samples

sampleBoolean2 (]

Sample Dropdown List 2

OEBPS/img/insert_amxitem.png
The commandButton component creates a
button that, when pressed, will generate an

Hep

OEBPS/img/no_facets.png
Page Facets.

[Feader]

[Prmary Acton
] Secondary Acton
[Footer

OEBPS/img/featureconstraint.png
@
Features
+ X
Nome Vendor Soptcaton Verson | Enable Sectty
= -
feature2 0
featuwe s o
featre s o
features o |
featues 8] |
Gomrat] Gorivats [sGantentslpbreferencese]
Constraints: + X
Property™ Operator™

OEBPS/img/go_search.png

OEBPS/img/workbetter.png
Carrier & 1203 PM -

People

Garier & 11:57 AM - Carer = 11:58 AM - Carer T 12:02PM -
Q Enter Name
E: < Back Mozhe < Back Mozhe < Back Mozhe

ﬂ Mozhe Atkinson » Mozhe Atkinson Mozhe Atkinson Mozhe Atkinson
Stock Glerk » Stock Clerk Stock Clerk Stock Clerk
>

Shipping

(@) Devid austin Shipping Shipping

Programmer
RATING POTENTIAL
8 o £ Adam Fripp
Hermann Baer : -
Public Relations Representative @ South San Francisco, California ﬁ *
Shelli Baida
ﬁ Purchasing Clerk © MATKINSO@home.net Below Average

Gustomer Meeting
Bar Inc

; TENURE COMP RATIO
Amit Banda @ 650.124.6234
Sales Representative
Training Training
e, © so2sczx¢ o © S arsnen| (50
oo (Eles J
Years $2,800 ‘

Sarah Bell

E] Shipping Clerk oeo []

nvin B 25 | 601 | 608 | ons | ez | e
= s o s 0% =

Putomarce Comp Tinsine | petomarce

macs Comp Timeline

OEBPS/img/enablefeaturesecurity.png
Define appication features here. Confgure their usage in maf-apolicafion. .

Features: * X

10 Name. Vendor ‘Applicaton Version | Enable Security

OEBPS/img/fedsso_gen.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

OEBPS/img/ws_collectionicon.png

OEBPS/img/omss_containerize.png
8006 Preferences

Q search Mobile Application Framework: Containerization
Fittp Analyzer Specify the location of the Oracle Mobile Security App Containerization tool. (05 X Only)

issues

JavaScript Editor Install Location: [/opt/Oraclejomss Y

J5P and HTML Visul Edit

waven

werge

- Mobile Applicaton Fram
" Android platform

105 Platform
Mouseover Popups
News

Oracle Cloud
Profiler

Resource Bundle
Run

Shortcut Keys

Swing GUI Builder
TaskTags

Toptink

umL “
Usage Reporting
Versioning

Help oK Cancel

OEBPS/img/appfeaturedcpanel.png
] OradeMobileAppitcation v v
2l Projects m®- 7=

2| Application Resources.

=IData Controls. RY E-

&m applcationlconBadgeNumber
&3 appicationinformation
am animatespringboard
6@ defauitFeature

& name
- navbarDisplayedAtStartup.
@ showSpringboardAtStartup.

B springboardFeature
& springboardidth
8 vendor
@ (E] alFeaturelds
@ (E] lFeatreNames
@ (E] features
-] Operations
& (Bl features
s edentilType
s faDrectory

6@ farRootDirectory
@ frameworkFeature

OEBPS/img/treemap_dt.png
New York Maine

Vermont

OEBPS/img/method_call.png
Q Find

) General

o Actviy = [rethodCalt

Outcome =

Feed Outcome: |

tostringQ: [<defoult> (fase)

Value =

OEBPS/img/farapprefs.png
*+X T
‘Show on Navigation Bar Show on Springboard @
3

‘Seaurity. /&

OEBPS/img/preferencegroup2.png
Carrier & 12140 PM -

{ Settings MobilePrefs

SAMPLES

Default Text Default Text

Sample Boolean O

Sample Dropdown List

Sample Hidden Text e

Child Page
Sound Effects
Retries 3

Background Mountain

e EE———

Carrier & 1243 PM -

< MobilePrefs Sample Dropdown List

B camplo tom 1

sample item 2

sample item 3

OEBPS/img/mdsxml.png
- META-INF
53] adml
& maffeature.smi
-0 META INFymdssysicust
& Baste
= headquarters.
o

- Resources

OEBPS/img/adblogwindow.png
r12:26:43
r12:26:43
r12:26:43
r12:26:44
r12:26:48

2
2
2
2
2

6!
26
26
26
26

8
e
"
"
e

-

-~ Deploymen scarted. -
Targes placform is (Android) .
Beginning deployment of MAF application "Mobile Application” to Android using profile "Android2”.
Chacking state of Android Debug Bridge server...
Starced Android Debug Bridge server.
Verifying a single Android emilator is online and connected to the ADS server.
Shutting down Andraid Debug Bridge server
Deploymens cancelled
Deployment incomplete —---
Sailed to devect s connected Android emilator. Make sure che emilator is running. Ovhervise,

menuslly restarc the ADS server. The fallowing results wers provided by ADS
Lisc of devicss sccached
(oracle.sdfns. framevork.dt.deploy.sndroid deployers.CheckhvoachedDevicesDeployes)

OEBPS/img/dc_cust.png
=-(E3] ApplcationController

=-(0 Application Sources
1@ application
1 application. mdssys.cust
=1 persdef oracle.adf

£ model

- datacontrols
- deviee

1 mdssys
) Contact.xml

OEBPS/img/mafmrtask.png
[peoplexm!
& & Lo showe ([A V1243 10 @ 1@

Bounded Task Flow

Detail

Detall Tablet

FormFactor

Detail_Phone

OEBPS/img/prefscopeel.png
Select values from variables and operators to create an expression or directly type the expression here:

0 Q@

Expression:

#{preferencescope. feature Feature 1. fitop. iliumber}

OEBPS/img/popup_id4.png
b Edit

rty;

Choose a component. If an item canot be selected, trequires an 1. Note that vald Ids use a combination of reltive:
nd absolute path references depending on thei relationship to the current component.

indicates naming container

e Cancel

OEBPS/img/androidoptionspanel.png
‘O MAF for Android Deployment Profile Properties

Q search Android Options

Library Dependencies Application Details
Profile Dependencies
= Application Bundle Id: [com.company.MobileApp |
“Application Images ‘Application Archive Name: [MobileApp.]
Version Name: 10 |
Version Code: B
Deployment
‘Source Fles: Target SDK API Level
Class Files: Minimum SDK API Level:
Chorader Encoding:
rtered sorage oca..
[Verbose Output.
Build Mode:
@ Debug
O Release

OEBPS/img/loginpagefeature.png
Welcome

Username

user]

Password

Keep me logged in
Remember my username

Login

[y

OEBPS/img/filled_taskflow2.png
Products-
Q& o

Bounded Task Flaw

DRI FFIOEI

details

products. productdetails

Diagram | Sourcs) Ovarview] Fistory ¢ [

OEBPS/img/taskflow5.png
[Enployees_phone_taskfom.xml
Q& 0%~ Isowr |[RA NI B U

Bounded Task Flaw

metrics,
task-flow-cal - taskFlowCall - Properties

Q Find
) General

sy

Task Flow Reference

“call

' Soamen: ewfonsm v
e —

[Description

[Parameters

Listeners.

9 Customization

OEBPS/img/iphone_landscpl.png

OEBPS/img/config_cust.png
(@ ottt ol confueaton can b eded marly n he source

+ X

Use the follwing editor fo cases where the customization configuration
map to the global namespace (/).

 Customization Configuration: Match Path =/

‘Custonization Classes
com.mycompany. IndustryCC
commycompany SteCC

‘

e

Configure Design Time Customization Layer Values

OEBPS/img/create_maa.png
Clck OK to create your new deployment profie and immedately open it to see its configuration.
Profie Type:

(e Appication archive
Deployment Profie Name:
[pame _arcrive2

Cretes 2 i o deployn 2 Moble AgpcationFamenork splcaton o 3 b spcation e

Hep

OEBPS/img/fragment_file1.png
Qe (Fnd IR RE

<2xml version="1.0" encoding="UTE-2" 2>
"http:/ /. 3. 0rg/2001 /XMLSchera-instance”
xmlns:amx="htep: //xmlns. oracle. com/ads/ne/ams"
xmlns:avem="http: //xmlns. oracle. con/ adf/me/ ams/dve">
<fragment xmlns="http://xmlns.oracle.con/ads/nf/ams/ fragnent” 1d="f1"/>
</amx: FragnentDef>

OEBPS/img/custom_resource.png
 Project Properties -

Q Ssearch

IDeveloper\mywork\Application1WiewControllerWiewController. jpr

Resource Bundle

Project Source Paths
ADF Business Companerts
ADF Model

ADF Task Flows

ADF View

ant

Compler

Dependencies
Deployment

ETB Mode

Extension

Facelets Tag Lbraries
Features

Javadac

Java EE Applcation

A

35 Tag Lbraries

35 isual Edtor

Libraries and Classpath

RunjDebug

(O Use Custom Settings Customize Settings.
(@ Use Project Settings

Basic Configuration | Bundle Search

Register addtional bundies for this project o ncluds them n the Select Text Resaurce picker
The default undle is abways ncluded.

Bundle List

e fram Project
AppicationControler.jr|
Customization.jor

Contvle o

Help

OEBPS/img/cordova_additional.png
Core Pluging
= Additional Plugins
Register any additional plugins required by your application. Adding a plugin wil register it in maf-plugins.xml.
Plugis: * X
Pgn 13 Pt

[This plugin alows allows you to manipulate the native calendar.

OEBPS/img/maf_ba1_conn.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Applcation Resources (-

e

General | HTTPBasic | Autologn | Authorization
Connectvity Mode:

uthentcateon sever fvalable, othrvse ol

Connecton Name:™

Idie Timeout: Session Timeout:
[] econcs. (25800 seconds
Maximum Logn Attenpis:

] Treshold or cearnglocal reentil.

&
{

OEBPS/img/publichtmlwarn.png
TR R

uTE-e" 2>
i<adfn: features xmlns:xsi="http://www.w3.0rg/2001/XML5chena-instance” xmlns:adfmf="http://xmlns.oracle.con/ads/me"™>
B <adfnr:feature id="featurel” name="feature 1" securityEnabled="true">
B <adfmf:content id="featurel.l™>
<adfmf:10calHTUL Url="../../.:/:/Ache Sales/ViewController/public html/Customers/untitled h
</adfnf:content>

& The file s not located in the project’s publi_htm directory. 1t wil not be deployed to the MAF Runtime. Please move the il to a location n the project’s public_htm directory,

The fl i notlocated in the project’s public_htmi drectory.

! S o rngpUE

OEBPS/img/adf_datacontrolicon.png

OEBPS/img/create_fragment.png
e Fragment.

Enter th fie name and dectory for your new Mobie Appication Framework
AMX Page Fragment.

e Name: [Fagnentt.amdt]
Drectory: [D:UDeveloermywork Samples\CompGalery VienControler bl fiml | O

ok Cancel

OEBPS/img/sample3.png
E

oo

<7xml versio

1.0 encoding="UTF-8" 7>
<pageDefinition xulns="Http: //xulns. oracle. con/adfn/uinodel” version="12.1.1.60.73" i
Package="nobile.pageDefs">

“vieulPageDer”

<parameters/>
<executahles>

<variablelterator id="varisbles”/>

<methodIterator Binds="GetContacts.result” DataControl="DeviceDataControl” Rangedize="2s"

BeanClass="oracle. adfuf.nodel. datacontrols. device. Contact” id="GetContactsTterator” />
</executables>
<bindings>

<methodfiction id="GetContacts” RequiresUpdateliodel="true" Action="invokeethod” Methodiane="GetContacts”

IsViewdbjectlietho
Instancellane="data. DeviceDataControl. dataProvider”

"Ealse” DataContro

"DeviceDataControl”

Returnliane="data. DeviceDataControl . nethodResults.
GetContacts_DeviceDataControl_dataProvider_GetContacts_result’/>

<attributeValues IterBinding="GetContactsIterator” id="contactData™

<RttrNames>
<Item Value="contactdata’/>
</RttrHames>
</attributevalues>
</bindings>

</pageDefinition>

OEBPS/img/amxincludes.png
<No Feature Cortent Selected> ~

[<Ho Feature Cortent selected>
[HumanCaptingportraittpt

pproval approval

OEBPS/img/split_screen3.png
barChartamy.
WE o el Flcelllorisrenene =i
<[] Bar chart m? oS
w
B
“ W Series 1
30 W Series 2
Series 3
Series 4
2 M Series 5
o
.

‘Source Bindings History |Preview

@ r o BE] | | Vorestrecontressecet>

<[] Bar chart

28 588

Grow A

Source Bindings History | Preview 1

OEBPS/img/inputtextprob.png
First Name: John

Middle Name JohnP

Last Name JohnPSmith

OEBPS/img/ps_facet.png
= Panelpage
5] Facet-header
5 Facet -primary

& Hpacet -

@) Tabe Layout|
A ouputTet

Insert Before Panel Spitter
Insert Inside Panel Sptter
Insert After Panel Spiter
Surround With.

- [Deck
-E5 popup.
-] Popup.
B popup.

Cuparios

Cueay

v Navigator

OEBPS/img/fardepsumm.png
Deployment Summary:
= Feature Archive Detais
.-Fie: C:\iDeveloper mywork\ace ViewControler deploy acmeFAR jar

OEBPS/img/createmafvcpage.png
Create MAF AMX Page

Enter the fie name and directory for your new Mobie Application Framework
AMXPage. Q

e Neme: [custom_springboard.amx]

£ \IDeveloper ymyworkWobieAppitcation\VienControler pubic_himl |

Page Facets
[Header
[JPrimary Acton
] Secondary Acton
[Footer

OEBPS/img/cloud_connection2.png
Create MAF Login Connection ==

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

General | HTTPBasic | Autologn | Authorization

e
Aitentcate o seve Fvaiale,atenvse o

Tt

Idle Timeout: ‘Session Timeout:

[] seconds [28800 seconds

M Logn Atenpts:
] treshold or clearnglocal reentil,

Indude logn server cookie i REST calls

ichdebasc authentcaton header n HTTP reusts [

[Successfully estabished connections to login URL and logout LRL. No access
control URL i gven for Authorizaton.

OEBPS/img/valid_attributes_tab.png
ot

@

S pr—
| Attributes

Create or delte transent atnbutes, personalze tibutes by addng defaut vaes, Ut hits, vadaton rles and custom propertes.
ustofVaes | | Q- fame %+ X
Operators. | [e . >

e Integer

e strng

formatied strng

stectaddress strng

locaity strng

regen string

counry strng

Detais | ks | Vakdoin Ruks | Custom Proprtes- | Dependencs |

+7 %

Nome e vadton e

OEBPS/img/hiddennavbar2.png
i0S Android
Canier;®, LESPM = EETEE

This is an Application Feature

This is an
Application Feature

= o &
~ Hide Navigation Springboard

OEBPS/img/adf_elpickvaricon.gif

OEBPS/img/create_mb1.png

OEBPS/img/create_graph.png
Quick!
Start Layouts:

2

OEBPS/img/nbox.png
YBIH paw #oT

High

Med

OEBPS/img/fardeployaction.png
O Deploy AcmeSales ==

Deployment Action

/G, Deployment Action | Select deployment acton from the st below.

-

© Summary

Deploy the mobile application project o a feature archive JAR fe.

OEBPS/img/maa_location.png
Location

Location

© Eosh

Provide the ocation of the MAF Appication Archive (MAA) fie 25 wel 2s the.
location of the new application.

MAA Fie:

[rwork\Mobie_Sales \deploy Wobie_Sales_archive piobie_Sales_archive.maa|

‘Appication Fe:

renhppicaton

Directory:
[c:WDeveloperimpmorkinenppication

OEBPS/img/dc_policy1.png
o0 it | Polici
Canfigure OWSM policies for the web service client, f required.

Policy Store (def location): YT

MTOM [I~/
Reabity [I
Addressing [[¥)

Security Management

Polcies Q search] Show Selected Policies Show Descriptions

[] oracle/no_authentication_client_policy
This policy facilates the disabling o a globally attached authentication policy. This il View
include disabling that whole global policy containing any other assertions in additon to the
authentication assertion.

[oracle/no_messageprotection_client_policy
This policy facilates the disabling of a globall attached message protection policy. This will View
include disabling that whole global policy containing any other assertions in additon to the
messageprotection assertion

[] oracle/sts_trust_config_client_policy
his policy provides STS Configuration information on the clientside. Tis informaton’s View

Override Properties.

Help oK Cancel

OEBPS/img/listview_bound6.png
Decide whether you want to bind your ist view to 2 data source now, or create it with unbound st tems.

Lst Data Collection: [#{bindings. Contact.name}.]

List Ttem Content:
= Hement Ve

B 00000000

List Ttem Selection: ~ (3) Single Ttem () None,

Divider Attrbute: (<o Divider>] wistitems are optonally rouped by this atirbute.

-

o [oo Conce

OEBPS/img/ws_methodicon.png

OEBPS/img/edit_listview5.png
¥ Edit List View

List Ttem Content:
= Hement Valve Binding

OEBPS/img/adf_attributeicon.png

OEBPS/img/select_amx_type.png
Define appication features here. Configure their usage in maf-applicaton.i.

Features: + X
i Sopicaton Verson Enable Seaurty
GemrainfsGorsiinan] Cortent. [reierencesal
Content: X7
10 Type @

AMX ~| 3
Task Flow &
R foca i

te LRL

OEBPS/img/iphone_portrait.png

OEBPS/img/cclass_tiplayer.png
o (==
Employees_2 - Customization Context

(O View without Customizations

(@ Editvith folowing Customization Context

Neme

T layer

Customization Context : site/headquarters.

Configure appication layer values.
4

OEBPS/img/featurepreferences.png
& Nunbes preference
{3 Preference Group Gﬂw"'

e nimeout (secs)
o
R e dudse
‘Preference List - Display Usage As.

OEBPS/img/adf_structure.png
@7

List of Values Q- Name +x
€ 5] 4%

Detals | UlHints | Valdation Rules | Custom Properties | Dependencies

e \mm \ Updatal: ways

Defaul Valg ———————————————
@ Lieral O Expression

. g

overon [STRFED i

Persistent

Transient

Key Attrbute

OEBPS/img/start_app.png
Carrier % 10:18 AM =

MyMobileApp

OEBPS/img/tf_params3.png
taskflow-cal - taskFlowCall - Properties

Q Find

EGeneral

o Activity ID*: askFlowCall

Task Flaw Reference

Document: [JWEB-INFftask-flow-definitiont xl

D [eskhondeniont

OEBPS/img/sync_configlog.png
ADEMFUnsscuradConfigServer - existing spplicstion URL connsction of the ssme name will be ussd for the dependency. Verify its configuration.
ADEMEConfigServerLogin - existing spplicstion LoginConnection connection of the ssme mame will be ussd for the dependency. Verify its configuration.
WARNING: ADEMESscursdConfigServer - existing spplicstion URL conmection of the ssme name will be ussd for the dependsncy. Verify its configuration.

3
Jan 30, 2014 €:39:45 B oracle adfmf. framework dc.deploy.common.deployers validavion wml SimpleXmlValidater logStartOfValidavion
TNFO: Validaving application XML files chat are updated as a result of the "Add to Applicavion” operavion...

Jan 30, 2014 €:39:45 BM oracle.adfmf. framework dc.syncconfig SyncConfiglogger loghddedServerGroups

WARNING: The following server groups were added to file, "sync-config.xml" by the "Add to Application” operation:

¢

ServerGroupl - thers is no existing spplicstion conmsction defined for this ssrver group. Dlesss creste the commsction.
ServerGroupz - thers is mo existing spplicstion connsction defined for this ssrver group. Dlesss creste the commsction.
ServerGroups - verify its configuration.

Messages | Extensions | Deployment

OEBPS/img/element_id.png
<ol version="1.0" encoding="UTF-8" 7>
“http: / /. v3. 0rg/2001 /XL chena-instance” xmlns: amx
“http: //sulns. oxacle. con/3dev/dvea”>
B <amx:panelPage id="ppl™>
<amx: comandButton text="Comnand Buttonl” id="commendButtonl”/>
<amx: comandButton text="Comnand Buttonl” id="commendButtonl”/>
? <amx; comandButton text="Comnand Buttonl”/>

) <am: view xulns:xsi

smlns: dvta:

A Geermeawie X
T

OEBPS/img/create_listview_ui.png
Create List View

Decide whether you want to bind your st view to 2 data source now, or create it with unbound st tems.

List Ttem Content:

= Hement
L Text

List Ttem Selection: ~ (3) Single Ttem () None,
(<Moo] uistitems are optonally rouped by tis attrbute.

-

[Conce

OEBPS/img/create_geomap.png
Create Map

Indicate whether the pointlocation i speified as an x & pair (ongitude and ltitude) or an

address, and then select the appropriate data source atfributes.

Layer1d: [T

Data Type: (5) Address () Coordnate

5]

[

5]

[]Set aurent row for master detal

Hep

OEBPS/img/adf_elpickbindvaricon.png
|2} bindings

OEBPS/img/client_listener.png
|

I General Controls
I Text and selecton
IData views
ltayout

=l Operations

m Atbute

& Atwbute set
(] Load sundie

G Close Popup Behavior
N
S Nevigaton Drag Behavier
G Show Popup Behavior
B Transiton
o Vaiidation Behavior
5 Action Listener

5 setProperty Listener
[convert Date Time.
[Convert Number
B valdation Grovp.

Clent Listenr - propertes G
Q Fnd @

=
e E—

OEBPS/img/inlinestyle_editor.png
EiStyle

P

N T———
R 20O R/

[= Font/Text
o
- e

!

Font Family:
Font Feature Settings:
Font Kerring:
Font Language Override:
o FontSize:
Font Size Adust:
Font Stretch:

il

Font Style:
Font Synthesis: tstye
Font Variant:

Font Variant Caps:
Font Variant East Asiant
Font Variant Ligatures:
Font Variant Numeric:
Font Variant Positon:
Font weight:

Line Height:

Overfiom Wrap:

il

I

OEBPS/img/scatter_chart.png
m Series 1
® Series 2
+ Series 3
+ Series 4

OEBPS/img/deploymentlog.png
B
B
B
B
B
B
B
B
B
B
B
B
B
r12:25:33

L] - -

-~ Deploymen scarted. ----
Targes placform is (Android) .
Beginning deployment of MAF application "Mobile Application” to Android using profile "Android2”.
Checking state of Android Debug Bridge server...

Starced Android Debug Bridge server.

Verifying a single Android emilator is online and connected to the ADS server.
Verifying this is an MAF spplication...

Verifying existence of the .adf source directory of the MAF spplicavion...
Verifying Applicavion Controller project exists

Verifying application dependencies...

Running dependency analysis. ..

Building. .

Deploying 3 profiles
Verifying project is an MAF project...

fizote Archive Meduls to Co\JDeveloper\mmori\Mebile

Boplication\ViewContraller\deplov\VienConcraller MobileFeatursarehived jar

r12:25:33
r12:25:33
Jicacion

[12:25:3¢
[12:25:3¢

B
B
B
B
B

Verifying project is an MAF project. .
fizote Archive Moduls te Co\JDeveloper\mmori\Mebile
1icationController\deplov\ApplicationControl ler MobileFesturehrehived jar
Starting to prepare the packaging.
Verifying project dependencies...
Validaving applicavion XML files.
Validaving XML files in project ApplicavionController...
Validaving XML files in project ViewConvroller.
Copying FARs to the MAF spplicstion...
Sxcracting Feacure Archive file, "ApplicacionController MobileFestursArehived jar” o deployment

Zolder, "ApplicavionController”.

OEBPS/img/adf_methodreturnicon.png

OEBPS/img/adf_elpicklisticon.png

OEBPS/img/ipad_landscprt.png

OEBPS/img/operation_menu.png
Create
5 v psameter orn...

@ MAF Button
£ wenk

OEBPS/img/maf_ba_conn.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Idie Timeout: Session Timeout:

0] seconc [0 secons
Moxinum Log Aterpts:

Trveshol for dearng loca aedents.

OEBPS/img/verbatim_palette.png
|

Q-] °
MAF AMX -
=l General Controls

@ sution

OEBPS/img/line_chart.png
1

&
- ~ Series 1
— Series 2
“ ~ Series 3
— Series 4
- \/——\ - seress
2

10

_—
B ———————
GroupA GrowpB GrouwpC GroupD GrowpE

OEBPS/img/android_prefmenu2.png
& 242
App Prefeences

App Boolean v
App Number

App List

AppText

App Secret Text

App Page

F1 Preferences

F1 Boolean v

OEBPS/img/adf_structuredattributeicon.png

OEBPS/img/valid_add_rule.png
Define the Validation you want o perform with thi rie and configure the Valdation Faiure response.

Neme: postaCodeRuled]
Descrpton [05ZpCode]

e [tength =)

e
o

Length Definiton

e —

OEBPS/img/omaas_tab.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

General | Mobie-socal Autologn | Authorization

Ensbe Locaton Updste
oA LRL™
ot exanple.com: 14100]

OEBPS/img/android_boolean.png
Sample Boolean

OEBPS/img/taskflow6.png
task-flow-return - taskFlowReturn - Properties.
Q Find

) General

o4 [aFonRetamt

Outcome =

oam * [asForRetmi

[Description

EBehavior

Reentry: <defauit> (not outcome dependent)

End Transaction: <defauit> (none)

irati

OEBPS/img/tf_params.png

OEBPS/img/set_prop_listener.png
I General Controls
I Text and selecton
IData views
SlLayout

=l Operations

m Atbute

Atviute st
& Atwbute set

[E]Load Bunde

Sehavior

EF Close Popup chavior

@2 Losding Indcator Gehavior
D Novigaton Drag Behavor
R Show Popup Behavio

[Transiton

& Vaidstion sehavior

Listeners

OEBPS/img/addlibrefrence.png
Remove Feature Reference from maf-application.xmi

Add to Catalog

R Delete Delete

OEBPS/img/startandroidemulator.png
ey ==

‘Android Virtual Devices | Device Definitions|

List of exsting Android Virtual Devices located at C:\Users\y_User_Name\.android\avd

AVD Neme Target Neme Platform APILevel CPU/ABL
] AndroidEmulator ~ Android 4.2.2 422 7 Intel Atom (86)
[Emulatort Android 422 422 7 ARM (armeabi-173)
[Android Android 50 50 Intel Atom (6)
[Emulator 21 Android 5.0 50 2 Intel Atom (86)

PERRE EE

A Arepairable Android Virtual Device. 3¢ An Android Virtual Device that failed to load. Click Details’ to see the error.

OEBPS/img/custom_springboard.png

OEBPS/img/default_springboard8.png
ADF Regression

Native

Settings2 Settings3.

OEBPS/img/bar_chart.png
80

B

)

)

2

10

m Series 1
o Series 2

Series 3
m Series 4
W Series 5

OEBPS/img/wsdcops_2.png
Data Control Operations

‘Select the operations that you want the data control o support.

Data Control Operations. [inciude Hitp Header Parameter
¢ EommeFonat Avaiable: Selected:
& HCMservice R criservice]
T & HCMServicsPort & HCMServicsPort
s & aetEmployess 3 gethpprovals

& gt

OEBPS/img/bound_tf.png
Employees_phone_taskfiow. xml
Q& 0%~ isonr (HATIBE 00 @

Bounded Task Flaw

metrics,

OEBPS/img/ipad_upsddwn.png

OEBPS/img/new_fragment.png
[categories: Ttems:] Show All Desariptions.
& Gerera L

(5 Business Ter s

= GientTir) AT AMX Page Fragment

Launches the Create MAF AMX Page Fragment dialog, in which you create anew
Mobie Appication Framework AVX Page Fragment (.amxf) fie. To enable tis option,
Youmust select a projector a fie within a project n the Appication Navigator..

@ e Feature

3 e ok Flow

OEBPS/img/listview_gallery.png
@5 Listview Gallery

st Formats:

Main-5ub Text

StartEnd

Quadtant

Help

Variatons: Description
A text feld appears ot the start sde of the st
[

Styles:

o Cancel

OEBPS/img/create_mb.png
Generate Class If It Does Not Bxist

e oK Cancel

OEBPS/img/quad_list_nochev.png
Start Text End Text
Lower start text Lower end text
Start Text End Text
Lower start text Lower end text
Start Text End Text
Lower start text Lower end text

OEBPS/img/input_number1.png
Input Number —.—

OEBPS/img/link2.png
Label

linked »

OEBPS/img/create_prefgroupdialog.png

OEBPS/img/create_db_timeline.png
b Cre

Timeline

Configure the tine range and csplay scales for the tme axs.

e @
e @

s
Configure the data you want to display for the timeline series. Optionally add and configure a Configure optional values.
‘second series (you can add more, but you'll need to conditionally render them since the:
component displays two at most).
Tielne eres Dota: +x 5 temendonte: []
— =T

.

<

OEBPS/img/amx_seltext.png
===

Enter the Dispay Value for your text resource and the selected bundle il be searched
automatcaly for matches. If you do not select a matching resource a new one wil be created.

o [Gearsaecion

No matching text resources exist

OEBPS/img/list_with_icons.png
{1 Listitem Text
(=} Listitem Text

@ Listitem Text

OEBPS/img/adf_collectionicon.png

OEBPS/img/bindings_dialog.png
[viewt.amx | [0] afuf-patterns sl x | [5]amiodelroviderFactory java x |[o]urTextbunde sats x | 5] accessorpefintion jav
Q Frnd
Page Data Binding Definition

This shows the Oracle ADF dats bindings defined for your page. Select a binding to see is relationship to the underlying Dats Control,

Page Definton Fll: oblejpaqeDefs/view1PageDef il

Bindings and Executables Contextual Events | Parameters

Bidings *+/ R Erecutabes /% Dsta Control

) FindCortacts &[] varables
() First O GetHeading oo
(&) previous @ GetHeading_p1 {E Suplerview
% Next 0 getlocation_p0
Last O getLocation_p1
GE’E“Z:‘:S 7@ getlocation p2
& contactbata O getlocation 53
covesins O getlocation pi
an B rekonsscstartor
tocation [GetContactsiterator
(] Getreadingierator
[ettocatontterator
(2] Assetvrentterator

& JnitextrasbataControl

contactDataz

Preview Source | Bindings | History

OEBPS/img/adf_parametericon.png

OEBPS/img/createmafapppage.png
Create MAF AMX Page

Enter the fie name and directory for your new Mobile Appication Framemork AMX
Page. B

e Name: [ppicaton resorce amc]

+VDeveloper nywork obieAppication|ApplcatonCont oler pubic_iml | Q

Page Facets
[Feader]

[Prmary Acton
] Secondary Acton
[Footer

OEBPS/img/create_db_gauge.png
Select the gauge metric attrbute and optonally configure a data range and threshalds.

veticvabe: [

Mpimum Vale: |

Jr——

] show Metric Label
Threshold Attrbutes:
Threshold = Threshold Label

OEBPS/img/elconstraints.png
Insert constraintExpression

e e—

tep [& | cocal

OEBPS/img/popup_id7.png
Q Fnd @

[<defauit>

OEBPS/img/email_bindings_dt.png
806

Edit Form Fields

Canfigure the components that you want to display in your form. Note that you can remove or edit the
resulting components after you click OK. You can also add more components directly ta the layout later.

Fields:
Display Label

Value Binding

Component To Use

<default>

<default>
<default>
<default>
<default>

EEEEEE

<default>

Help

S
= subject

= body
=hbec

= artachments
= mimeTypes

2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.
2 ADF Mobile Input Text w/ La.

ok Cancel

e ¢ 2ol

OEBPS/img/oauth_gen.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

OEBPS/img/go_link1.png

OEBPS/img/connectionsdialog.png
Greate URL Connection,

Configure a new URL connicton, Choase Application Resources to add
this connection to the current application. Choose Resorce Palette f you
don'twank 3 singl application to own .

Create Connectionin: (3) Applcation Resources () Resource Palette

ame:

comnectont]

WAL Endpant
Fetoifm.crade com]

Authentication Type:

[

Username:

passuord:

Test Connection
Status:

The cannection successfull establihed.

Help o Cancel

OEBPS/img/slidingwindow.png
@Aboul

This application shows you how to use the AdfmfSlidingWindowUtilities API as a programmatic interface to displa)
multiple features on the screen at the same time.

SLIDING DRAWER LEFT

This functionality demonstrates how to create, show or hide a window which contains the a feature.Users can tap g
springboard icon to expand or collapse the springboad. The springboard icon acts like a toggle button .For
implementation details refer to WindowBean java in ViewController project.

SLIDING DRAWER RIGHT

This functionality demonstrates how to create and show a global tool bar which is visible all the time. This example]
shows how to create a sliding drawer window which will appear on the right hand side of the device. Users can tap
the dotted icon on the right hand side center of the screen, to expand or collapse the sliding drawer window.For

implementation details refer to SlidingDrawerBean.java and LifeCycleListenerimpl.java files in ApplicationControllef
project

OEBPS/img/android_secret.png
Sample Hidden Text

OEBPS/img/inserttextprefdialog.png

OEBPS/img/facet_dvt.png
- view
55 Novigation rag Sehavior
5 Novigation rag Sehavior
&l PanelPage
&] Focet-header

5 Facet -primary
5 Facet -secondary

panel Group Layout

| Area - #{bindngs.in

-S4 Panel Group Layout
B popup.

</a
E <am
</a
InsertBefore Area E
Insert Inside Area »
Insert After Area »
Surround With..

GotoDedaration Cut-period

achart#areachart1 -

e UL+

OEBPS/img/select_text_res2.png
Select Text Re:

===

Enter the Dispay Value for your text resource and the selected bundle il be searched
automatcaly for matches. If you do not select a matching resource a new one wil be created.

Display Value:
Produis

[Frenh string fo Producttist

Matching Text Resources:

OEBPS/img/android_catselect.png
“ W36

Samples

Sample Boolean

Sample Dropdown List
Sample Hidden Text

Child Page

OEBPS/img/radio_button2.png
Radio Button Value 1

Value 2

Value 3

OEBPS/img/select_many_check1.png
Select Many Checkbox ~Selection 1
Selection 2 v

Selection 3

OEBPS/dcommon/oracle.gif

OEBPS/img/form_menu.png

OEBPS/img/maa_sum.png
You have completed the MAF Application from Archive wizard.

Vhen you cick Fiish, the wizard wil create an MAF appication containing selected resources
from the MAA fie as el as any referenced FARS.

1) MAA Fie: C:\JDeveloperimyworkMobie_Sales\deploy Wobie_Sales_archive Vobie_Saled
“Appiication: C:\IDeveloper\mywork\newApplication\newApplication jws
1) Project: C:\IDeveloper mywork\newAppiication AppiicationController ApplicationContr
[Project: C:\IDeveloper\mymork\nenApplication\VienControler ViewController.jor

OEBPS/img/combo_chart.png
m Series 1
Series 2
Series 3
m Series 4
W Series 5

OEBPS/img/upgrade_log.png
Sun Nov 24 05:24:10 BST 2013
Please check the following files and manually merge che changes in che old version to the new version if needed

New Version 014 Version File Location

connections.xml connections old.xml C-\ADFMF\ demo\ Upgrade\ Testipp archive-l-cust\ . adf\META-INF

OEBPS/img/push_notification.png
AT&T = 2:14 PM =/

on Wednesday

| €6

Productivity ~ Calenda

Qe ol I3

Photos

Meeting Reminder

Meeting in 5 mins

Launch
Settings - Calculator FaceTime
.

Safari Phone Music

10

OEBPS/img/create_db_nbox2.png
§ Create i

Configure the N Box grd by specifying the number of boxes along each dmension, assigning vakues and optional text
labeks

E
g
:

#Hviencontr

‘#{viencontrolerfunde Employees. Employee. phone_LABELT

Row2 Comn 2.
vae: e | Vae: * fnother vaod]
Lsbet: fiedloropresson[7] Label: ieralor oresson[+]
NextRow Next Column

[ty

OEBPS/img/inserttextpref.png
@
g - R Lo M
=
refe 3] Preference Page - Version PreferenceType:

53] reference Page -Your GPS Locatons.

Insert Before Preference Group
Insert Insi Group

OEBPS/img/property_inspector.png

OEBPS/img/whitelistineditor.png
5/ Remote URL Whitelist
Note: All connections defined in connections.xri are automaticaly white sted

Alowed Domains:

* X

oxample.com
erampe. |

OEBPS/img/element_id2.png
= [Warnings (2)
- Tis 1 vl s abeady nuse Provid a unique o the element: commandBution
8 The 1 propery has ot been st Provide e I or th clement; cormandsutton
o vew
& panlpoge
@ utton - Commandutront

@ Buttan - Command Button!

OEBPS/img/tf_params2.png
callTaskFlow

Paget caltoBoundedtaskfiow

OEBPS/img/customiz_project.png
= Projects BART7-E
rewController
23 Applcaton saurces
3 Resources
=23 web Content
& 0 meksys
=0 cust
& Caste
[ERE——
5] home.amd
5] vewContrclr-tsk How. sl xrl
5 £ remotaoffces
53] headquarterAcivties anmx.xmi.
L ——"
5] viewContralr-task How sl vl

OEBPS/img/add_fragmentchild.png
‘simpleFragment am - Structure

@
50 s (9
=€) Fragment Def
R JFragment.
e
8 Facetoef|

OEBPS/img/contentconstraint.png
Organizations.phone: AMX
Fe: [oranizatons_padforganizatons_pad_tafon smt70rganizatons_pad_fasion J+Q
ncades: + X

Type~ Fiew

Sprghoard inage: [Efaded Fom Gareral b

194x 144

OEBPS/img/loadingind.png
Components. E]
al

AOF Vbl AMX -
2 General Contras
i Text and Selecton
2 Data Vews
layout
1 Operations

@ Atrbute

= Atrbute it

88 Atwbute set

Load Bundie

Behavior

G Close Popup Behavior

@0 Loading Indcator Behavior
s —
G Show Popup Behavior

B Transiton

o Vaiidation Behavior
Liseners

5 ActonLstener

£ setProperty Listener
Valdators and Converters

& convert Date Time

[Convert Number

& Vaication Group.

Loading Indicator Behavior - Properties
Q Find

OEBPS/img/shownavoption.png
SRS

OEBPS/img/getstartamx.png
=]

Appicatons
MobieAppication -
=l Projects m®- 7=

applcatonControler
-2 Applcation Sources
- @ applcation
- vETA I
&[22 Web Content
[adfc mobie-config xnl
) appicaton_resource.amx
[ApplicationControllr-task-flow.anl
VewControler
-2 Applcation Sources
&-Cveraae
@ maf feature.ml
&[22 Web Content
&[0 custom_springboard
{2 custom_springboard.amx.
[e mobie-configxnl
[ViewControler task-fow.enl

OEBPS/img/maf-dc-panel.png
=l Data Controls.

18 DeveeFeatures

- [Enployeelist
& Joblist

/Y E

OEBPS/img/iospreferencespage.png
8086

Preferences

Q search

ST
e
< ot plcaton ram
it o
Comeinerion
Ot clout
[

Resource Bundle
Run
Shortcut Keys
Swing GUI Builder
TaskTags
Toptink
umL
Usage Reporting
Versioning
- Web Browser and Proxy.
Ws Policy Store
XML Schemas

Help

Mobile Application Framework: 0S Platform
“Automaticaly Add to Tunes” Directory:

[sersWy_User Name\WuscVTunes\Tunes MedaVautomtial Add t Tunes 1

Example: \Users/My_User_Name/Music/TunesTunes Media/Automaticaly Add to Tunes.

Device Signing

These fieds are required if eploying to, or packaging for, an actual 0S device

Provisoing Profie: | Mobile Profile - Company ~

Soning Identty: |

ok Cancel

OEBPS/img/map_childtags.png
‘Components.
al
MAF AN Dsta Vsuslzatons
4 Commen
- Shared Chid Tags
@ @ @
Awbwe Awbwe Atrbute
Excepton Gops MatchRule
Ruie
@ @ Q
Legend Major Tick. Marker
Secton
@ 3 @
pont Reference Reference
Locaton e e Tiem
@ @
Reference Teklabel
Object
= Other Type-Speciic Chid Tags
e
@ @ @
NEoxCel NeoxCoumn NoxNode
Themstic ep
- @ i
wes Aeabats Aveslayer
Larer
L]
pointata
Larer
Tinne
@ @ @
Tmedxs Tmelneliem Timeine
Seres
Sunburst and Treemsp
@ @
Suwbust Treensp

Node Node.

Legend

@
Minor Tick

@

Reference
Line Item

@
NBoxRow

L5
AreaLocation

|«

OEBPS/img/springboard_toggle.png
ioS Android

= [El

OEBPS/img/carousel_palette.png
Components
(|
e e

I General Controls
I Text and selecton
=IData views

S r—
T ool

©/ g

@ Carouma Tem
@ Finstp
@ Fim s Tem
Bl nertor

R —

OEBPS/img/jarappresources.png

OEBPS/img/comp_gallery7.png

OEBPS/img/access_audit.png
) <amx: view xulns

E
=

0o

L E

"1.0" encoding="UTF-6" 2>

51="http: / /v, u3. 0G/2001/XHLSchena-instance”
Xmlns: amx="http: //xmlns. oracle. con/ade /t /amx"

mlns: dvem="http: //xmlns. oracle. con/adf /nf /aws/dve">

<amx:panelPage id="ppl™>

<amx: facet name="header”™
<amx:outputText id="header” value="Job Details" /|

</ams: facet>

<am: facet name="prinary™>

<amx: commandButton id="back” text: "_back"/>
</ams

~ aponThe ShortDesc”strbute should be present: and descrbe the sction that wiltake place). .

e nane T ahel Andiescane 1abel o é (hindines tirle hinrs lahell® 1

"Back” action

OEBPS/img/skin_hier2.png
mobileAlta-v1.0

mobileFusionFx-v1.0 ’

' '

mobileAlta-v1.1 ‘ mobileFusionFx-v1.1 ’

PR S
mobileAlta-v1.2

PR S
mobileAlta-v1.3

OEBPS/img/select_button1.png
Select Button ([ZEEH Ve 2 | vae3

OEBPS/img/adf_methodicon.png

OEBPS/img/feature_refs_navigation.png

OEBPS/img/structuredef_editbutton.png
Data Controls / Structure Hame:
Orderssession [y Awrbues

Ed selected slement.

OEBPS/img/method_menu.png
Create
5 v psameter orn...

@ MAF Button
£ wenk

OEBPS/img/edit_listview.png
|6 Edit List view [x]

List Item Content:

Eement value Binding
1 =

List Ttem Selection: ~ (3) Single Ttem () None,

Ovidr trbute; [choDiers] Lt koms v oty rouped by this e,

Divider Mod:

] Group by frst et or st st v

Help o Cancel

OEBPS/img/autocap.png
Set To wordg
Words

OEBPS/img/link1.png

OEBPS/img/cclassdepsum.png
Deployment Action

Deployment Summary:

= Archive Detals.
-~ Output fie: C:\IDeveloper\mywork\Appiication2\mobil \deploy \SiteCC.jar
Inciude manifest: Yes
- Compressed: No.

OEBPS/img/farconnect.png
Connections
Select the pplcaton cornectons you want o incude i yourlbrary and decde:
Whethr o ndude conectn detas,or .5t connecon names.

Incude: (O Connecton Detais (excuding secure content)

OEBPS/img/ios_outputtext.png
1242 PM -

MobilePrefs

Default Text Default Text,
‘Sample Boolean
Sample Dropdown List

Sample Hidden Text seeee

QWERTYUIOP

OEBPS/img/android_outputtext.png
¥ ass

Default Text

OEBPS/img/ios_secret.png
Carrier ¥ 1242PM -
< Settings MobilePrefs

Default Text Default Text

Sample Boolean

‘Sample Dropdown List

Sample Hidden Text seeee

OEBPS/img/createfardialog.png
Clck OK to create your new deployment profie and immedately open it to see its configuration.
Profie Type:

Pt e
Deployment Profile Name:

Creates a profie for deploying Mobie Application Framework Feature components as JAR fle. The
resuiting JAR can then be imported into other MAF appicatins.

Hep

OEBPS/img/iosprovportal.png
& Developer Technologies Resources Programs Support Member Center

Qsearch Developer

OS Provisioning Portal Weicome.
Provisioning Portal : Oracle Corporation Go 10 10S Dev Center
(E— . por e
Certifcates Welcome to the iOS Provisioning Portal 5 108 Team Administration Guide
The i0S Provisioning Portal is designed to take you through the necessary steps to test
pences your applications on i0S devices and prepare them for distribution.
AppiDs How-To's
[OPtining your Certicate
Provisioning W Viewvideo

Distribution Configure A Downlosd LN ¢ Assigning Devices
gl rofie iﬁ &install B Viewvideo
rov

G
B Viewvideo

Creating Provisioning Profiles

OEBPS/img/amx_page.png
M Re (B
1.07 encoding="UTE-2" 2>
31="http: //wans.u3. 05/ 2001 /XMLSChera-instance”
slns:ami="hecp: //xmlns oracle. con/ads/ne /anz"
slns dvem="htcp://xmlng. oracle. con/ads/t/anx/dvE">
<amx:panelpage 14="ppl">
<amx: facet name="header”>
<amx:outputText value="Header” 1d="otl"/>
</amx:facet>
</amx:panelpage>

</amxiviews

OEBPS/img/insert_dvt.png
rt MAF.

e e

Select MAF AMX Data Visualizations ftem to create:

/An AMIX DVT area chart. An area chart is one
which data is represented as lines with the

Hep

OEBPS/img/upgrade1.png
O Upgrade Mobile Application from Archive - Step 1 of2 =

Archive

- Upgrade to a new version o the appication being customized by specifying
© Archive an updated Mobie Appiication Frameork (MAF) Applicaion Archive (MAR)
& summary fe.

MaA

[workWiobie_Sales\deploy Wobie_Sales_archive\Mobie_Sales_archvemaa| |

OEBPS/img/multiselection_menu.png
MAF Select Many Choice:
9] MAF Selectany Checibox

OEBPS/img/edit_list_bind2.png
Configure st data and map s return values to the page's base data source. You can reate a fixed st of vaes for the
list, or populate values dynamicaly at runtme.

s Dot Source:([5] Enplyestistroot edtEnpires 5 s
T dat s o beuplated wih B vaie

@oynamiclist OFxedlst O Model Drivenist

sttasoce: ([Enpiocltrostemress

Data Mapping:

+ [X
[Deta value List Atrbute
phonehiumber er

Map one or morefst attribute values to the data values you want to update.
LstItems.

Select the data source attribute that provides the s tem display value.

Dsplay Atrbute:
“No Selecton” Item: [Selection Required =] [

==

OEBPS/img/inset_list.png
Listitem Text
Listitem Text
Listitem Text

This is really long text to test how it

OEBPS/img/maf_overview.png
0 Oracle Ieveloper 12¢ - WorkBette s ViewControlerpr: Dsta\deAMARinstlNdevelopenmyworsamples\PublicSamples WorkBeten, adIETAINFmf-applcatonml

=
=

1

F=) (YT ae——

Define appication features here. Configure their usage in maf-applicaton.i.

Name. Vendor

‘Applcaton Version Enable Security

Vendor:

Lfecyde Event Listener:
URL Scheme:

© Navigati

] Show Navigation Ber on Appication Launch
] Show Navigation Ber Togole Bution

OEBPS/img/navigationcomponents.png
= Navigatic

‘Show Navigation Bar on Applicaton Launch
‘Show Navigation Bar Toggle Button
Springboard:

O None

©® Default

O custom

|

Show Springboard on Application Launch
Show Springboard Toggle Button
Springboard Animation: () None) Side Right

O

OEBPS/img/edit_prop_action.png
" Edit Propes

(&) Method Binding
p— o
e o)
=
() Action Outcome

OEBPS/img/ws_datacontrolicon.png

OEBPS/img/oauth_tab.png
MAF Logir

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

Authentication Server Type:

General | OAuth Authorization
GrantType: () Authorization Code () Resource Owner Credentials
Clent1d:= Clent secret:
55736303627 apps. xampleusercond] |
Authorizaton Endpoint:™
[Pttp:/7accounts.exampie.com/ojoauth2/auth |
Token Encpoint™

Rt faccounts. exampiecomfoloautrafauts]
Redrect Endpont:™

[rtosfpocaiost]

OEBPS/img/insertchildprefgroup.png

OEBPS/img/comp_palette1.png
E

Link (Go)

Fim strip

o..u-.m...‘
i Textand slecton
- -
] a-
Chedbox _ Chedbax
(Select Many)
T G
Input Date Input.
Nuber Sider
2 mm
RadoButton Select utton
[=]
Swich
(Boolean)
i Dataviews
=]
= —
Atrbute Lt Carousel
eraor
@
Fimswp Terator
Tiem
Sitayout

=+l Operations

OEBPS/img/quad_list.png
Start Text End Text
Lower start text Lower end text
Start Text End Text
Lower start text Lower end text
Start Text End Text
Lower start text Lower end text

OEBPS/img/hide_show_navbar.png

OEBPS/img/spark_chart.png

OEBPS/img/popup_id6.png
commandButtonl” text="Show Eopup">
‘popup1” alignlds"srongl type:

action” ¢

</amx: commandButton>

© Referenced id wiongt does not exist, mere

<amx:spacer id="sl" inlineStyle="height:20p:"/>
<amx:panelGroupLayout id="pgll" layout="horizontal” scrollPolicy="none” inl:
<custom:resizable id="pphResize” start="s0" top="80" width="115" heigh
<amc:outputText id="pph" value="Align element” inlineStyle="-webkit-use:
</custon:
</anx:panelGrouplLayout>
<amx:spacer id="s2" inlineStyle="height:20px;"/>

OEBPS/img/comp_gallery6.png
Gauge Types:

60%,
Horizontal Gradar
StatusMeter Status Meter

with Thresholds.

Description

(Creates a gauge thatindicates the
progress of a task or the level of

OEBPS/img/authorization.png
Create MAF

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: (@ Applcation Resources (1) Recou o<

s e

General | HTTPBasic | Autologn | Authorization

Incucelogn sever cokie n REST cals
e bos auhentcaton headr i HTTP reuests
Access Control Service RL:
[Fto:/10.0.0.Ofcentiy/muthorze]
e +x

+ X

status:

OEBPS/img/cloudappdetail2.png
cLoup

Java Cloud Services Control

3ava Cloud Services > Java Cloud Service: java >
Application: HCMMobileService

@ appcaion +

I Performance Summary

B ey
06 p1a () 12 " (3 () 1z6m "
September 03 1

Up Since. 5ep3, 2012 11:35:11 PH
State Active
Java Cloud Service java

Application URLs

URL

hitps://myhost.us.example.com/HCMService
Openlinkin new tab

Open inkin new windon

e Openinkin incogrito windon

Active Sessions 0 Save Ik as.

Reques rocessingTie () 0.00 e — |

equests (per i) 0.00
Requests (per minute) Inspect slemert

OEBPS/img/dvt_comps.png
MAF AMX Data Visusi:

=l Common

chart

iIRiB

g. %lﬂ E. @ [B
it

L

t
Gauge

iR

Statusmeter
Map

i

Miscelaneous

Treemap.

2] Shared Chid Tags

21 Other Type:Specific Chid Tags.

iv

OEBPS/img/debug_breakpoints1.png
606 Web Inspector — iPhone Simulator — Oracle (en) — (null) — bootstrap.htm|

= 9, v = D2 A) Qo @0 Ao
a3t <« > [ExtraScripts) i js/amx-commonTags.js R
—— W 77 Adding event Uistener for touchstart to call stop propogation because
vatsmk | 7 otherise goLink inside ListIten would trigger listIten's action.
@ scuallisiener — JsJamcjans | 64 Var mousedoun = “rousedour
L 5 (amx-hasTouch())
¥ Breakpoints et R
o T rererm—— DY mousedown = "touchstart”;
[Al Exceptions »| N
[All Uncaught Exceptions (1) | <72 ;dl.mtlol.m.ndwbbltiventl.istmer(dulm, mousedown, function(e)
P
v [i Js/amx-commonTagsjs 75 . stopPropagation();

Uine 482 -5 !
Une 484 = 1/ Adding VAI-ARIA Attribute to the markup for the role attribute
dorNode. setAttribute("role”, "link");
Line 489 - wvar shortDesc = amxNode.getAttribute("shortDesc"
lnesst - {1 Gharsoese =m0y
{
domNode. setAttribute("aria-label”, shortDesc);
Y
I
U6 srender chitg etenents it there are any
U Lo descendants = seode.renderoescendints(
for (var i=0, size=descendants.length; i<size; ++i)
iR
‘domNode. appendChild(descendants[i]);
el
[Ap—
PN
o
496 . -d:. 1zu;t..‘=:ivymn¢\u. register(adf.mf.api.amx.AnxTag.NAMESPACE_AMX, "outputText").prototype.render =
w7
15 var domade = document. createEtenent (“spon®)

49 var displayValue = anx.getTextValue(anxNode. ettt ribute("
500

alue));

501 // Mark this with a role of heading if it has a styleClass that makes it a heading
502 var styleClass = amode.getAttribute("styleClass");

3 i (styleClass i= null & adf.af. internal.ax.getCSSClasstianelndex(styleClass, "smx-text-sectiontitle’)
s L

505 donNode. setAttribute("role", "heading

6}

507

505 var truncateAt = parselnt(amiode.getAttribute("truncateAt”));

S (HiaNe(Eruncateht) £ truncatekt > © G typeof amdlode.getAteribute("value®) 1= “undefined")
s10

51 7/ trom the tagdoc:

512 77 the length at which the text should automatically begin truncating.

513 77 When set to zero (the default), the string will never truncate. Values

s1 77 fron one to fifteen will display the first 12 characters followed by an

s1s 77 ellipsis (...). The outputText component will not truncate strings shorter

s16 77 than fifteen characters. For exanple, for the value of 1234567899123456,

517 77 setting truncateAt to 8 or 16 will not truncate. Setting truncateAt to any

s 77 value between 1-15 will truncate to 123456789012,

s10 if (truncateat < 15)

s20 i

sa1 | truncatent = 15;

(® Filter Breakpoint List 3>

OEBPS/img/highlight_button.png
Save

OEBPS/img/features_iphone44.png

OEBPS/img/left_right_sublist.png
Start Text End Text

Start Text End Text

Start Text End Text

OEBPS/img/film_palette.png
Components I
(|
e e -

I General Controls
I Text and selecton
=IData views

©/ g

Bl Attt Lt tator
@ Carouse
B Carousetem

Fim strp

@ Finstp T
B rertor

Lsteners.

B —

OEBPS/img/withnavbar2.png
i0S
Carrier 3:24 PM -

O
ORACLE

Mbile Application

Oracle Headlines

Create the Future With Java 8

Learn abor

va 8's new features and enhancemens

Watch the Webcast on demand >

‘The 2014 Modern Marketing Tour is Now Underway
Willyou bo there?

Learn more >

Oracle Solaris/SPARC is Better for Your Modern
Enterprise

Find out why companios are switching from IBM

Elm 10 Oracle Solaris/SPARC.
acts >

Oracle

Android

< O
ORACLE’

e Oracl
Mobile Application

Oracle Headlines

Create the Future With Java 8

Learn about Java 8 n

Watch the Webcast on demand >

The 2014 Modern Marketing Tour is Now Underway.
Wil you be there?

Learn more >

Oracte Solaris/SPARC is Beter for Your Modern
Enterprise

Find ou

why companies are switching from IBM AIX.

Power to Orac

ais/SPARC,

Get the facts >

Oracie at COLLABORATE 14

OEBPS/img/addfarvc.png

OEBPS/img/adf_elpickbindvar2icon.png
data

OEBPS/img/iosdevicesigning.png
Device Signing
These fields are required if deploying to, or packaging for, an actual i0S device.

Erovisioning Profile: [Mobile Profie - Company ~

Signing Identity: |

OEBPS/img/layout_comps.png
‘Sub-Section Title 1

Name sJane Don »
Street

Address 123 Main Street »
Phone 212-555-0123
‘Sub-Section Title 2

Type Personal »

Anniversary November 22, 2005

Date
Created June 20, 2011

OEBPS/img/geo_map.png
North
Pacific
Ocean

North
Atlantic
ocean

OEBPS/img/selection_control.png

OEBPS/img/status_meter.png

OEBPS/img/cutting_comp.png
2

5 S Panel Goup Layout
£ List View - #{

</amx:cellFornat>
</amx: rouLayout>
</amx:tableLayout>

E <amx:panelGroupLayout id="pgl321"
inlinescyle
i id="listViewl”
feconsize="#(b1
showbividezCoun
dividerMode="51
busferscrateqy=
i
el
Insert Before List View
Insert Inside List View
Insert After List View
Surround Wih..
Eacets -List View »
. , </amx:cel1For
<amx:cellforn
‘Expand Al Below, <amx:outp
Collapse Al Belon </amx:cel1For
Show As Top </amx: ronLayout>

</amx: cel1For
</amx: rouLayout>
/amx: tableLayout>
kamx: comandButton id
n
anx: setPropertyListe

Cueay

OEBPS/img/omaas_gen.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: (@ Applcation Resources

e

Gensal | Ve ocal | Auologn | Autrizaton
Camecty ode:
uthentcateon sever fvalable, othrvse ol
Comectiniane

foamms_connection]

Idie Timeout: Session Timeout:

0] seconc [0 secons
Moxinum Log Aterpts:

Trveshol for dearng loca aedents.

&
{

OEBPS/img/cclassfilter.png
Filters

Fies | Patterns.

This fie group indudes the project output directory as a conirbutor. You may.
nesd to comple the project to e al fles coming from the output drectory.

5 [7] C3 Merged Contents of Tris ik Group's Contributors

OEBPS/img/new_taskflow.png
[categories: ttems:] Show Al Descrptons
& General () Mar Avxpage
- Business Ter
& Clent Ter (55l MAF AV Page Fragment
|- ADF Desktop Integraton
Sxtersion bevlpmert @ e

[} MAF Task Flow

Creates a task flow source fle whose content defines a bounded Mobie Application
Framework Task Flow. To enable this option, you must select a project r a i within
2 project n the Appicaton Naviaator.

OEBPS/img/connectionslog.png
°

Messages -Log - | Buld-issues |

ug 23, 2013 2:15:05 BM oracle.sdfmt.common.uril MeAppUtils sddlar
INFO: Festure srchive "AcmeSsles.jar” hes been sdded to spplication’s libraries and classpach
These connections were affected by the Add to Project operavion
[
WARNING: OracleCommectionl - existing spplicstion URL connection of the sams meme will be used for the dependency. Verify its configuracion
3
Bug 23, 2013 2:26:52 BM oracle.sdfmt.common.uril MeAppUtils sdddar
TNFO: Feature archive "StockTracker.jar” has been added to application’s libraries and classpach
These connections were affected by the Add to Project operavion
[

WARNING: OracleCommectionl - existing spplicstion URL connection of the sams meme will be used for the dependency. Verify its configuracion

Messages | Deployment » (3> Running: ViewController jor -

OEBPS/img/basic_http_tag.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

General | HTTPBasic | Autologin | Authorization
] Ml Terant Aware

Logn URL=

[Ftt:710.0.0.0/5ome ebSite SomeSeauredResource]
Logout LRL:=

[Ftte710.0.0.SomeWebSite ogout ntmi]

OEBPS/img/cloudconsole.png
Java Cloud Services Control

oo

Seo 0201233230 POt €,

i .
B o
[E R

OEBPS/img/facets_notselected.png
R

@ W | Phone ~ 100%~ [E]E | <NoFeature Content selected>

‘Source Bindings History |Preview | ¢

Qe (Find G ARk E

[<2xml version="1.0" encoding="UTF-&" 2>

xmlns:dvem="http: //xmlns. oracle. con/ adf/me/ ams/dve">
<amx:panelPage id="ppl"/>
</amxiviews

OEBPS/img/pie_chart1.png
1242%

25 72%
e W Series 1
Series 2
e Series 3
Series 4
W Series 5
P

B07%

OEBPS/img/main_sub_icons.png
P e

Main Text
= This is a subtext

] Main Text
This is a subtext

OEBPS/img/simple_list.png
Listitem Text
Listitem Text
Listitem Text

This is really long text to test how it is hi

OEBPS/img/texprefonios.png
tings | Hello Applic: n

Secul

Security URL. htto/lwww.security.ex..

User Name sean

Password eeesesed

OEBPS/img/urlconnectdialog.png
Greate URL Connection,

Configure a new URL connicton, Choase Application Resources to add
this connection to the current application. Choose Resorce Palette f you
don'twank 3 singl application to own .

Create Connection n

appication Resources

Resource Paltte.

ame:

Conmection o erver for Remots Applcation]

LRL Endpont
[nte: /7w, example, com |

Authentication Type:

[

Username:

passuord:

Test Connection
Status:

The cannection successfull establihed.

Help o Cancel

OEBPS/img/createnewpagedialog.png
ous
B ——

= [| e

OEBPS/img/configremoteurl.png
88 mar-feature.m! - L

€]
Features
Define application features here. Configure their usage in maf-application xml
Features: * X
h = Name. Vendor Application Version | Enable Security
k)
@
[Remote URL ¢
: &
URL Connection: ~| & 7] [1show srowser Navigation Buttons
3

OEBPS/img/iosdeviceorientation.png
MAF for iOS Deployment Profile Properties.

Q search

E

Library Dependencies
Profile Dependencies
105 Options

- Application Images

Help

Device Orientat

ns

Select the device orientations to support. All orientations are supported by default.

iPhane

Pad

]

W = (=
= [

ok Cancel

OEBPS/img/maf-gs-default.png
I i Py e e
Fle Edit View Application Refactor Search Navigate Buld Run Tesm Tools Window Help

O 508 90 Q O- & &t > &

Applcations 2 | & maf-feature i
(5] Appications -l
S Progects e
(& AppicatonControler
‘(3 Applcation Sources
@ appication

[Datacontroks.dex
(8] LifecycListenerinpljava

- Features

+ X

‘Applcatin Version | Enable Security

ifecyce Event Litener:
BN
NevigatonBar Tco: | N
Springboard Image: |]

Overview] Source. History i

Load done _orack.adfm. framework Featureinformation

OEBPS/img/resourcebundledialog.png
£ Project Properties - C:UDeveloperimyworkiAcme\WiewControllerWiewController. jpr

Q Search Resource Bundle

Project Source aths Use Custom Settings
AOF Gusiness Componirts

A0F Hodel

AOF Task Fows Basc Confiation | BundieSearch
A0F iew

At) automaticaly Syncharize Bunde
Conpier

Dependenies
Deployment

ETB Mode
Extension One Bunde Per project

Facelets Tag Lbraries Default Project Bunds ame: [oble ViewControlerBundle

Features One Bundle Per Ell
Javadac

Java EE Applcation
A

35 Tag Lbraries

35 isual Edtor
Libraries and Classpath
Maven

Use Project Settings

[Worn Abov Hard-coded Transitable Stings

(1] Aways Promp For Descrption

Resource s Type: 4 Resource ande =]

RunjDebug

Help

OEBPS/img/adf_operationsicon.png

OEBPS/img/android1edit.png
‘O MAF for Android Deployment Profile Properties

Q search Android Options

Library Dependencies Application Details
Profile Dependencies
= Application Bundle Id: [com.company.MobileApp |
“Application Images ‘Application Archive Name: [MobileApp.]
Version Name: 10 |
Version Code: B
Deployment
‘Source Fles: Target SDK API Level
Class Files: Minimum SDK API Level:
Chorader Encoding:
rtered sorage oca..
[Verbose Output.
Build Mode:
@ Debug
O Release

OEBPS/img/create_sunburst.png
Select the coliectons you want to indude in the herarchy and configure the associated node:
data. You can always change thisater.

Check the selected hierarchy to configure it data bindings.

iy propertes.

(Group by v

OEBPS/img/remoteurltrav3.png
Carrier & 1210 PM -

>0

Carrier & 12:14 PM -

<>

About Oracle Oracle Conferences
OpenWorld

Carrier & 12:15 PM -

Register Now and Save < O

e e i | _____OracLe |
optimize your systems, new solutions RACLE
— — that will help you take your business to R

oRActe the next level, and new practices that

foma | Moot will make you more successful in your 1
job and in your indust

Password

2014 Sponsorship
Opportunites

Register Now

Justity Your Trip Oracle's Network Use policies.
Oracls Notwork Usepolces,

g)rma(ion
For password reset, contact Oracle Helpdesk

Povered by Orace Access Manager 19—,

OEBPS/img/ios_deployaction.png
Deploy i0S2

ployment Action
. Deployment Act

© summary

Deployment summary:

= Application Detai
-~ Application Bunde Id: com.company.OracleMobileApplication
File: OracleMobileApplication.app
- Signature: <Not Specified>
Provisioning Profile: <Not Specified>

Help

< Back

ish

Cancel

OEBPS/img/edit_autoprofile.png
Profile Dependencies
Specfy dependencies on other JAR deployment profes.

Java EE Modes:

‘applcatonControler.jor
] [E] AppicationController_MobieFeatureArchive1

OEBPS/img/android_prtimage.png
Appiication Images
Use these settings 1o override the pltform defaut images.
Patform Dispay Types:
] vedum Dersty
[3) tigh Density

(8] Low Density

Aoplcaton fon: esorces/anon ey xhdconng

] Q

Sosh Sreen Poral); [Ssmucesfandiodply port i psheeen g

] Q

Solsh Sreen (Lacape): s cesfandio sy fand i psheceen g

] Q

OEBPS/img/upgrade2.png
L Y ety e) =
Summary

o e The current application is about to be upgraded.

© Summary Al application files must be writable before proceeding.

Vihen you cick Finish, the appication wil be dosed whi Upgrading to the new appication archive. Existing customizatons wilbe
preserved.

‘Some files may requre updates to be merged manually. Any such fies wil be isted.

the upgraded ap
(0} Locaton of the copy of the application: : s JBASSE 1 ORA AppDatalLocaTempOradetiobie ApplicationpgradelSales_copy.
I3 Location of the log fes: C:\sers\IBASSE ~1.0RA\AppData\.ocalTemp\OracieMobleppicationUpgrace .og

<Back Enish Cancel

OEBPS/img/addpreflist.png
e - - - K

- R | tave: [Slect Your Verson v
e
PreferenceType: G 7]

OEBPS/img/insert_comps.png
Eacets -Panel Page
Refagtor

‘Expand Al Below,
Collapse AllBelon
Show AsTop

Find Usages... vy

</ame:

amxipanchage#

‘Source | Bindings |

OEBPS/img/tempcustomlogin.png
Feature References O Defauit
Prefurences ® custon
[searty Content [epage] [astom lagn e EXN

OEBPS/img/removelibfeature.png
Feature References: *X 3
R Show on Nevigaton 5ar Shor on Sprngboard @
featrer <defalt> e <defat> (rue) H
featre2 <sefoult> () <defat> () b

N T R

Open

Adyanced Search..

Add Feature Reference to maf-applicationxml

OEBPS/img/narrow_select.png
8086

MAF for iOS Deployment Profile Properties.

Q search

E

Library Dependencies
Profile Dependencies
105 Options

;

Device Orientations

Application Images.
Use these settings to override the platform default images
unesArtwork Image

Munesarovork: [esources/ios TunesArworkpng

Application Images

iphone ipad [T

= Application Icons.
iPhone App 3x
~ipad App 1x
iPad App 2x
Splash Screens
Spotlight

Required. Application icon for iPhone/iPod touch Re
(120x120)

setings Fie: fcon-120.m0 Q

tina.

\con Folder: [[Users/username/jdevelopermyviork MobileApplication; resources/ios

1a

Cancel

OEBPS/img/edit_list_bind1.png
Configure st data and map s return values to the page's base data source. You can reate a fixed st of vaes for the
list, or populate values dynamicaly at runtme.

s Dot Source:([5] Enplyestistroot edtEnpires
The dat source tobe updated with et valoe

@oynamiclist OFxedlst O Model Drivenist

<]

sttasoce: ([Enpiocltrostemress

Data Mapping:

+ [X
[Deta value List Atrbute
phonehiumber er

Map one or morefst attribute values to the data values you want to update.
LstItems.

Select the data source attribute that provides the s tem display value.

Dslay At
“No Selecton” Item: [Selection Required <[]Q
[CIwru

OEBPS/img/newsecuritypage.png
@
[Login Page
(@ Defauit
()| EXN
cranrne
(@ Defauit
)| EXN

£ Authentication and Access Control

Appication / Configuration Login Server:

Features with Security Enabled:
Featre D Logn Server Connection
feature1 BasicAuthentication
featire2 oamms
feature3 \<ppication logi server>)
£/ Remote URL Whitelist

Note: All connections defined in connections.xri are automaticaly white sted

Alowed Domains:

+ X

OEBPS/img/insertbooleandialog.png
T —

= [| e

OEBPS/img/appsinitunes.png
o000 iTunes

<« (> 4@«‘ 6 ‘\ Mulu\ Qv search

LIBRARY. D Genres

1 music iPhone, iPod touch, and iPad Apps 2Apps
H Movies

17V Shows. f

= Y

=

STORE Applicationd Applications

1 Tunes store Unknown Genre Unknown Genre

< Ping . ;

© bt iPhone and iPod touch Apps 1App
SHARED K

G Home Sharing

GENIUS.

8 Genlus =
I Y | 3apps

Check for Updates © Get More Apps ©

OEBPS/img/adf_elpicktreeicon.png

OEBPS/img/create_gauge.png
(Grce shape LED gauge.

OEBPS/img/fragment3.png
Components
Q-

MAF A Fragment
< Attrbute

Q9 Attribute List
< Attribute Name.
< Attribute Type
Q) Defauit Value
€ Desarption

< Facet

< FacetName.

€ Fragment.

9 Name.

<9 Popup.

€9 Popup 1d

QY Ref

€ Required

OEBPS/img/comp_gallery5.png
|52 Busbe

|1 scatter

Chart Types:

Quick
Start Layouts:

e

OEBPS/img/application_res2.png
B dsply-tand-hcpispiashscreen png
G displayJand fdpi-splashscreen.png

{] display-and-mdpi-splashscreen.png

[display-and-xhdpi-splashscreen.png

G dipiay-cpi-con.png

++{G display-mdpi-icon.png

{5 dsplay-porthepi-spashscreen.png

(B display-portdpisplashscreen.png

{5 dplay-port-mcpi-splashscreen.png

(B display-port xhdpisplashscreen.png

]
=@

(B display-xhdpi-con.png
defait

B Defat-1135h@2x. 09
Bl Defait 566 @2x 20

{0 Defauit4and.png

{] Defauit- andscape-Ipad.png

[Defauit- andscape.png.

1] Defauitandscape@2x.png

{0 Defauit-Landscape @2x~ipad.png.

{E] Defauit- andscapeRetina.png

{3 DefaultLandscapeRetina@2x.png

{3 Defauit-Portrait-pad.png

{0 Defauit-Portrait.png

{E] Defauit-portrait@2x.png

IData Controls BV E-
IRecent Fles.

N

OEBPS/img/default_springboard6.png
Carrier

Settings7 Settingss Settings9

Settings10 Settings11

OEBPS/img/facet_listview.png

OEBPS/img/popup_id5.png
34-"commandButtonl” text="Show Eopup">
‘BoRNRId=SommandBuEEeRL, Type:

action” alignld="pph” align

© 1d commandButtont referenced by popupld does not point to an MAF AMX popup component. rere

</amx: facet>

51" inlineStyle="height:20px;"/>
'pall” layouc="horizental” scrollPolicy="none” inlineStyle:
‘pphResize” starc="20" Top="E0” width="115" helght="20">

‘ppn” value="Align element” inlineStyle="-webkit-user-selectino

</custon: resizable>
</anx:panelGrouplLayout>

<amx:spacer id="32" inlineStyle="height:20px;"/>

OEBPS/img/taskflow_cust.png
& B featrez
& Cmdseys
=0 cust
& Caste
=-{2 headquarter
5] ewContrclr-tssk fow.snlxrl
2 viewContraller-task flownl

OEBPS/img/edit_listview8.png
¥ Edit List View

List Ttem Content:

= Hement Valve Binding
L Text

List Ttem Selection: ~ (3) Single Ttem () None,

Onvider tribute: Listitems are optonaly rouped by thi sttt
Divider Mode: e Ed Groups by first letter or entire attribute value.
o cancel
b fesc [y

fost
faderess
|ty
ftete -

OEBPS/img/device_dc_appnav.png
This st the Oracle ADF data contros publhed by this project, including a metadata summary. To ed the data control defintion o enable custorization, selecta Data.
controls node and cick Ed.

e 2§y Stucurename:
o B ropicatrrestres Atrbutes | Acessors | Operatons |
& [Deverestures Name

-] areateContact(Contact)

-5 dsplyFie(String, String)

(B findContacts(String, String, boolean)

-] getpicture(rnt nt nt, bookean,int,int, in)

-] removeContact(Contact)

&-[E] sendemai(String, String, String, String, String, String, String)

-(E] sendsws(stng, String)

-] startLocatonMonitorboolean, int, String)

-] updateContact(Contact)

Tpe

-] dplayFie(String, String)

&-{E] findContacts(String, String, boolean)

-] getpicture(rnt nt nt, boolean,int, it int)
=] removeContact(Contact)

-] sendemai(string, String, Sring, String, Sri
&-E] sendsis(String, String)

517 comrt e atetstoe enlasn it Shine) T

‘
IRecent Fles.

3

OEBPS/img/carousel_facet.png
Find Usages... Cueary

OEBPS/img/create_db_treemap.png
§ Create Treemap

Herarchy:

Select the coliectons you want to indude in the herarchy and configure the associated node:
data. You can always change thisater.

v 5]
M

Label:

Employee Area
n attribute group et you configure mrkers for selcted data values and display propertes. Each group corresponds to a single legend section, 25
ustrated in these examples.

Grovping Ruls: +*X
Groupby vake

OEBPS/img/choice1.png
Choice

Value 1

OEBPS/img/resourcepalette.png

OEBPS/img/addtoapplication.png

OEBPS/img/action_listener.png
‘Components |
Q!

MAF AMX -
I General Controls

I Text and selecton

IData views

ltayout

=l Operations

© 5

@ Atrbute
= Atrbute it
88 Atwbute set
Load Bundie
Behavior
G Close Popup Behavior
@0 Loading Indicator Behavior
e
G Show Popup Behavior
B Transiton
o Vaiidation Behavior
Liseners
“Action Listener
£ GentLstener
£ setProperty Listener
Valdators and Converters
& convert Date Time
[Convert Number
& Vaication Group.

‘Acton Ltener - Properies =
Q @
& Common
e |
we [
Eother

OEBPS/img/androiddebugprefs.png
o

Q search

C
w

veougger
Deployment

Diagrams

External Editor

File Templates

File Types "
Global Ignore List

Hitp Analyzer

Testes

JavaSeript Editor

3P and HTML Visual €
Maven

Merge

Mobile Application Frar |

- Containerization
108 Platform
Mouseover Popups

Mobile Application Framework: Android Platform

[p:\AndroidspKisdk

Example: C:\Program Files\Android\adt-bundle-windows-x86_64\sdk
Android Platform Location:

[p:\AndroidsDK\sdkiplatforms\android-21

Example: C:\Program
Files\Android\adt-bundle-windows-x86_64\sdk\platforms\android-21

Android Build Tools Location:

[p:\AndroidsDK\sdk\build-tools\android-4.4

Bxample: C:\Program
Files\Android\adt-bundle-windows-x86_64\sdk\build-tools\Android-4.4

Signing Credentials
Debug | Release

Q

‘Specify a password for the debug key used o sign the application when deploying

in debug mode.

O —

OEBPS/img/gotopage5.png
Q

Search

Shortcut Keys
® [Show Mapped Commands Only
3 tore Actions -
Command Shortaut
o to Bookmark 5 s H
o to Bookmark & e
o to Bookmark 0
o to Bookmark 1 oot
o to Bookmark 2 a2
GoToPrevious Highlght AltShiftp.
Go'To Previous Method
o to Dederaton Cttperod |
Go'toSource
& Go toPrevious Diference
B Go toNext Difference J
2 GotoFrstDifference
New Shortcut: | ==

Conficts:

Confictng shortcuts il be removed f the key combination i reasigned.

{ [

OEBPS/img/navbar_default2.png
i0S Android
Carer = 150 PM = ENTT

This is an Application Feature

This is an
Application Feature

feature 1

OEBPS/img/skinadddlog.png

OEBPS/img/dial_gauge.png

OEBPS/img/mobile_run_config.png
 Edit Run

Q search

Tool Settings

Mobile Run Configuration
—

Oios

©landrod
o e

Debug Port:

Optons.
Target:

® Emiator

O Deyice.

Debug Comnect Retry Options
w512
Interval (seconds): [5[3]

OEBPS/img/iter_palette.png
©/ g

Q!
MAF AMX -

I General Controls
I Text and selecton
=IData views

Bl Attt Lt tator
@ Carouse

B Carouse e

@ Finstp

@ Fim Strip Item

OEBPS/img/default_springboard7.png
Settings6

Settings10 Settings11 Settings12
cee

OEBPS/img/default_act.png
a8 mn -

Bounded Task Flaw

ANFH 0@ @

,
,
o ,
Surround it
Refscor ,
e cox
o ce
0 et i
X peete Salete
GotoSource
G to Properties.
Go toDeclration Ctpaios
&y wske "
8 rebuid Ateshins
D> &
& vetug
U Actity
I Gotobased o Tempite
© Goto DefautActvity
Selectin Appications Window _Atiome
Find Usages.. Creaty

OEBPS/img/textresourcepage.png
=]

Enter the Dispay Value for your text resource and the selected bundle il be searched
automatcaly for matches. If you do not select a matching resource a new one wil be created.

Display Value:
[Acme Sales

o [Gearsaecion

No matching text resources exist

OEBPS/img/defaultandroiddep.png
% Deploy Android1

Deployment Action

2, Deployment Action
i

© summary

Select a deployment action from the st below.

IDeploy applcation to emuator
IDeploy appication to package:

Deplay the moble application to an Android device connected to the develapment machine

OEBPS/img/includecss.png
oS-

€]
Features
Define appiication eatures here. Configure their usage i maf-application.i.
h 16 Name Vendor Application Version Enable Security.
Organzations Organzations &]
Dasrboard Dasrboard O
Springboard Springboard 0)
General | Constraints | Content. | Preferences,
Content: $-X >
1= Type @
¢
+ &
Fie: peopl/taskion.miztaskfon XS

Constraints: + X

Property™ Operator™ Value™

Navigaton ar Lcons[(Efauied from Genral b KN

sax6

Springosrd images [(efauted rom General b KN

sax6

OEBPS/img/amx_resxlf.png
<?xml version="1.0" encoding="UTF-8" 2>

S <amx:view xmlns:xsi="http://wa.u3.orq/2001/XMLSchena-instance” Xmlns:amk="http://mlns.oracle.com/ads/mt/amk"
xmlns:avem="http: //xmlns. oracle. com/ adf/me/ams/dve">

5 <amx:panelPage 1d="ppL">

3 <amx:facet name="header">

e e T e s e
R
<amx: facet name="prinary"> © Output Text - Products - Properties - Editor =]
T =]
<amx: facet name="secondary"> Q Fnd @
<amx; comandButton id="co2"/>
</amx:facet> El
</amx:pane1page> o i
S
aRendered: frue
ovae: products
o
P e
-
.
S

OEBPS/img/edit_prop_other.png

OEBPS/img/mafpage.png
W Series 1
W Series 2
1 Series 3

Series 4

W Series 5

—

Futton
=/ Text and selection.

—

InputText OutputText

=IData views
Atirbute List
Iterator

imij

Fim Strip

SLayout
=+l Operations

—

(A

Carousel

@

Fim Strip
Ttem

@
e
o=

Radio Button

Carousel
Ttem

O

«@® o«

OEBPS/img/createprefpage.png

OEBPS/img/output_text1.png
output

OEBPS/img/facets_selected.png
Qe Fnd G ARk E

<zxml version="1.0" encoding="UTE-2" 2>

/vn.43.079/2001 /XML chera-instance”
xmlns: ams="htep: //xmlns . oracle. com/ads/me/ams"
xmlns:dvem="http: //xmlns. oracle. con/ adf/me/ ams/dve">

<amx:panelPage id="ppl">

<amx:facet name="headez™>

<amx:outputText value="Footer” id="ot2"/>
</amx: facet>
</amx:pane1Page>
</amxiviews

‘Source | Bindings History Preview ¢

OEBPS/img/led_gauge.png
65

OEBPS/img/listview_dc.png

OEBPS/img/main_sub_list.png
Main Text
This is a subtext

Main Text
This is a subtext

Main Text
This is a subtext

OEBPS/img/maa_depends.png
Profile Dependencies
Specfy dependencies on other JAR deployment profes.

Java EE Modues:
1 & aame_archive
] some_archive1

OEBPS/img/pie_chart.png
m Series 1
o Series 2

Series 3
m Series 4
W Series 5

OEBPS/img/switch4.png
Switch

OEBPS/img/placeholder_gen.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

Authentication Server Type: [<spefy values at runtime> 7|

General | Authorization
Connection Name:
fmyrt_connection

OEBPS/img/amxpage_cust.png
= [featuret
- mdssys
= st
=D ste
= headquarter

5] untedt am s
f—
By s

) untited amx

OEBPS/img/safari3.png
| Window Help .

‘Open Page With >
User Agent >
Show Web Inspector N

Show Error Console %
Show Page Source U
Show Page Resources %A
Show Snippet Editor

Show Extension Builder

Start Profiling Javascript xoxp
Start Timeline Recording ot
Empty Caches xxe

Disable Caches

Disable Images
Disable Styles

Disable JavaScript

Disable Site-specific Hacks
Disable Local File Restrictions

Enable WebGL

Allow JavaScript from Smart Search Field

05 Simulator - Phone Retina (4-inch)
Carrier & 11:30 AM
Oracle (en)

adf.backchannel.html | I-lerna

bootstrap.html

carousel

carousel2

risiolrS e e
clientListener ;‘* 0

e
commandButton s vesconvoie:
commandLink

commandLink Gestures

575652 FDocurmer

SerTimes 3147483648

Ime-1403077771437.033584

mnnmmm.mmu-mmw
Srasfiowd eatureRoo

OEBPS/img/androidsdkpreferences.png
o

Q search

C
w

veougger
Deployment

Diagrams

External Editor

File Templates

File Types "
Global Ignore List

Hitp Analyzer

Testes

JavaSeript Editor

3P and HTML Visual €
Maven

Merge

Mobile Application Frar |

- Containerization
108 Platform
Mouseover Popups

Mobile Application Framework: Android Platform

[p:\AndroidspKisdk

Example: C:\Program Files\Android\adt-bundle-windows-x86_64\sdk
Android Platform Location:

[p:\AndroidsDK\sdkiplatforms\android-21

Example: C:\Program
Files\Android\adt-bundle-windows-x86_64\sdk\platforms\android-21

Android Build Tools Location:

[p:\AndroidsDK\sdk\build-tools\android-4.4

Bxample: C:\Program
Files\Android\adt-bundle-windows-x86_64\sdk\build-tools\Android-4.4

Signing Credentials
Debug | Release

Q

‘Specify a password for the debug key used o sign the application when deploying

in debug mode.

O —

OEBPS/img/create_db_sunburst.png
% Create Sunburst

Select the coliectons you want to indude in the herarchy and configure the associated node:
data. You can always change thisater.

v 5]
M

Label:

Employee Area

n attribute group et you configure mrkers for selcted data values and display propertes. Each group corresponds to a single legend section, 25
ustrated in these examples.

Grovping Ruls: +*X
roup by vale e

OEBPS/img/select_text_res.png
Reset to Default
ElProperty Help

[Specifies the value of the
|component. The value in the
|component wil be updated nto the
lobject pointed to by the value
latirbute when onlur ocaurs.

OEBPS/img/listener_type.png
#(Productlistbean. products}”
var="row>
<amx:1istItem id="listItenl” action="details™
<am:outputText id="outpurTexcl”
value=" (#rov. nane}+">
</ams; outputText>
<am:setPropertyListener frou:

"#{row)” 1d="11"
(pageFLovscope. product)”
"action™>

</amx:setPropertyListener>
</amc: ListTten>
</ame:Listviews

aFrom: [#{pageFlonscope.pTru.
To: [#{AmxProperties.outpu

v &

[<defauit> (acton)

OEBPS/img/load_bundle.png
‘Components J;
Q!

MAF AMX -
I General Controls

I Text and selecton

IData views

ltayout

=l Operations

© 5

@ srvinte
= arviuteLst
8 bt set

! LoadBunde >

Behavior
G Close Popup Behavior

@0 Loading Indicator Behavior
e
G Show Popup Behavior

B Transiton

o Vaiidation Behavior
Liseners

5 ActonLstener

5 Clent Listener

£ setProperty Listener
Valdators and Converters

& convert Date Time.

@ Converturber
@ Vaidstion Group

Losd Bunde - Propertes =]
Q Fnd @
5 Common

OEBPS/img/methoddet_restdc.png
- fpatho

e

teonse 60 [PemlvenCarvaisrcessesnsed] &)
e E— Y

] T Hesder Pramter

R parameters: +* X
Name Defait vaue

<Back Next>

OEBPS/img/network_debug.png
You must grant access to any device capabiities your applicaton wil use.

Granted Permission Feature Requesting Access.

O
O
Emais
O
m]

5] Phone

R of adnfdeveerestirehcees, s slovs e sppicaion o open etk ot

OEBPS/img/selecttextresource.png
o Name =
e

o adfnf:

[Acme sakes

[pttp: //xmins. orade. com/adfjmf

@ Appication Controller Folder: [AppicationControler

@ Appication Version:
Base Metadata Version:
Customization Version:
Descripton:

© Uifecyde Event Litener:

ElProperty Help

m

[T name of the appication

OEBPS/img/timeline.png
gan 29, 2010
Event 3

Jan 13,2010 Jan 27, 2010
Event Event 3

| a2 WS Ve | U7 | wie | w19 | w25 | w26 | ver | ves | e | wa |

OEBPS/img/default_deploy.png
£ Oracl
Ble Edt Vew vigste Buld Run Tesm Took Widow Help

3 58 (& e A > &
open
Reopen »

ller. jpr,

Close
b Dekte
Renane.
version,

@® Find application Files:
Show Overvien
7 Fiter Appiication.

-] Menags Templates.
Edit Resource Bundees.

051,
Mobiapplcation_srchive.

Application Properties.
[

@ Projest Properties ew Deployment Profie.

OEBPS/img/appid.png
Reverse Domain Format
(Set by Administrator)
|

8E549T7128.com.oracle.applicationName

| |
Bundle Seed Bundle ID
(Generated by Apple)

OEBPS/img/ios_catselection.png
Carrier ¥ 12:40 PM. -

< Settings MobilePrefs

Sam

Default Text Default Text
Sample Boolean O
Sample Dropdown List

Sample Hidden Text seees

Child Page

OEBPS/img/adf_elpickmethacticon.png

OEBPS/img/adf_bean.gif

OEBPS/img/elexcomp.png
N
© © ©
Feores Hat Incce
© © ©

NativeView Parameter Preferences.

OEBPS/img/taskflow2.png
MAF Task Flow -

I Source Hlements.
=l Components

Bounded Task Flaw

»

Actvies
&l vethod sl

@ Router

O sk Fow ol

sk Fow Retun

View

ControlFiow

= Control Flow Case

48 Vikdeard Control Fow Rde

Drop content onto this blank
diagram from the
Components Window,
Resources Window, or
Applications Window.

=l Applicaion Resources.
DataControls @) TV 3
IRecent Fles.

OEBPS/img/editresbundle.png
O EditResource Bundles
(S am
Q- al
TextResources X
Display Value Key Description
e S e
lfunumsnw

e
- —

OEBPS/img/pagedef_cust.png
&£ Applcaton Sources
= featuret
etediPageDef xnl
=1 featurel.mdssys.cust
=@ site
=) headquarter
3] untitedpageDef.xml sl

OEBPS/img/featureprefs2.png
Carrier =

TOP GROUP
Boolean
Number

List

Text

Secret Text
SUB GROUP

Sub

11:53 AM

F2 Prefs

«©

123
item1
default text

secret text

Faatu Feature2

OEBPS/img/android_deployaction.png
ﬁ

Deployment Action

Deployment Action | Select a deployment acton from the st below.

© Summary

Deploy the mobile appication to an Ancroid emuator

OEBPS/img/allowpush.png
ORoOoooooo

[Alows the applcaton t receive push notifcatons.

OEBPS/img/fragment_attr.png

OEBPS/img/defaultspringbd.png
Carrier

Mobile App
[E) feature 1

50 feature2

50 feature 3

OEBPS/img/create_amx_page.png
Enter the fie name and directory for your new Mobie Appication Framenork AMX Page.

e Name: [department.amx]
Orectory: [D:UDevelerimyworkiSamples AR WienControler\publc_himlOrganzations phone | Q

Page Facets

eader|

] primary Acton
] Secondary Action
[JFooter

OEBPS/img/create_deployprofile.png
 Creste Deployment Profile

Cldk OK to create your new deployment profie and immediately open it to sz its configuration.
Profie Type:

Fie
Fie
Application Archive

MaF for 105
12 Fie

Creates a profie for deploying the Java EE enterprise archive (EAR) fie o an application server. The
EAR fle consists of the application's assembled WAR, EJB JAR, and dient JAR fles.

== [

OEBPS/img/cordova_core.png
I Core Plugins.

Enable any core plugins that your appication requires. Enabing a plugin wil register

itin maf-plugins .

[Enable this plugin o access the network on Android.

DataControls G 7 S~ o Addii .
Recent Fies

Register any additonalplugins required by your appication. Adding a plugin wil
register itin maf-plugins. .

Plugins: * X

[This plugin alows allows you to manipulate the native calendar.

OEBPS/img/dial_gauge1.png

OEBPS/img/ws_parametericon.png

OEBPS/img/default_springboard5.png
Carrier

Products

Native2

Settings

Contacts

ADF Regres...

Native

Settings3.

OEBPS/img/ws_operationsicon.png

OEBPS/img/checkbox2.png
Checkbox Selected @

OEBPS/img/fedsso_tab.png
MAF

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

s T

General | WebSSO | Authorization
Logn URL:*

[Pttp://sales_exampie.com/710 1/SecureRESTWebservice 1/ApLogin |
Logout L=

[Ftofsses _example com7101/SecureRESTWebService /ApaLogout]
Logh Success URL™

[t saes _example.com7101/SecureRESTWebServiceappriome]
Logh Faure URL:*

[t saes _example.com7101/SecureRESTwiebServiceAppError]

OEBPS/img/style_attr.png

OEBPS/img/soapdcpanel.png
o (==
Appicatons
=] Employees 2 -~
s1prjecs o 7=
2 Applcation Resources
= Data Controls WY E-
- Soap1.
&= findShoppingCartiew_parameters
& findCrteria
- exdudeatribute
@ fetchsie
- fetchStart
- fiter
- sortOrder
(] findattrbute
& (] chidFindcriteria
@ chidatttiame
- exdudeatribute
@ fetchsie
- fetchStart
- fiter
& sortOrder
(] sortatribute.
" descending
3 name
-] Operations
- (] findattribute
&3 Operations
8 Create
3 Delete
B Frst
4B Last
B Next
488 Previous
45 setCurrentRowWithKey.
488 setCurentRonWitrKeyValue
&= findContrl

N

OEBPS/img/select_multiple_txt.png
% Select Text Resource

Resource Bundle: [acme (ViewContraler jor)

Enter the Display.

i be searched

kel or 1t ewcont e (enCont e 53 |G peveoperyon Al siont VenCerleneene |
o e Bundes

e unde=
Dy e L
anployee
e

Employee

OEBPS/img/localized_string.png
almi HIAMEE

UTF-8" 2>
/. 3. 07/2001 /LS chena-instance”
xmlns: amx="heep: / /xulns. oracle. con/ jdev/amx”
xmlns: dven="hetp: / /xulns. oracle. con/ jdev/dvea>

<amx:panelPage id="ppl™>
<amx: facet name="header™
<amx:outputText styleClass="amx-header-title”
value="#(viewcontrollerBundle. PRODUITS)"
1d="outputTexcl” />

<amx:listview value="#(ProductlistBean. products)”
14="1istVienl™>
<amx:1istItem action="details” id="listItenl™
<amx:outputText value="#{rov.nane}+"
1d="outputText2" />
<am:setPropertyListener from="f(rou)"
to="# (pageFlovscope. product}”
type="action”/>

footer”>
<amx:outputText styleClass="ui-ticle”
value="cue Inc”
1d="outputText3"/>
</am: facet>
</amx:pane1Page>
<amx:1loadBundle basenane="uobile.ViewControllerBundle”
var="vieucontrollerBundle” />
</ame: view

OEBPS/img/advanced_dvt.png
il Led

Geographic Thematic Map
Map

Miscelaneous

Marker Minor Tick
=l Other Type-Specific Chid Tags.
NBox
@ @
NBoxCel NBox Column
Thematic Map
- @
area Areabata
Layer
Tinelne
@ @

TmeAxis Timeine Item

Rating

Atrbute
Match Rule

Point
Location

NBox Node

AreaLayer

Timeline

Statusmeter

Treemap.

Legend

Reference
area

NBoxRow

AreaLocation

Arealtem

PontData
Layer

Major Tk

Reference
Line Item

»

OEBPS/img/alert_button1.png
Delete

OEBPS/img/iterator_dc.png

OEBPS/img/rangechange_l.png
 Edit Pre

nge Change Listener

OEBPS/img/features_iphone100.png
Mows mua v

Gle

Sann getings Hslo

Carrier 10:07 AM]

OEBPS/img/pagedef.png
e —
al

Page Data Binding Definition
This shows the Oracle ADF data bindings defined for your page. Select a binding to see ts elationship to the underlying Data Control

Data Binding Registry: mobie DataBindings.cpx

Data Control

D seectabindng o exeautable

OEBPS/img/logincredentials.png
Create MAF Logi

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

General | HTTPBasic | Autologn | Authorization

(m]
[Enable opton to sty logged n
[Keep userlogged nby default

Test Connection
status:

OEBPS/img/popup_id1.png
a Fnd ®

Algn 1d: Reset to Default
Decoration: ElProperty Help

[Bpecifies the ID of the popup that
B Other il be shown.

OEBPS/img/sunburst.png
Maine

o New York

OEBPS/img/sms_bindings_dt.png
800 Edit Form Fields

Configure the components that you want to display in your form. Note that you can remove or edit the resulting
companents after you click OK. You can also add more components directly ta the layout later.

Fields: #X

Display Label Value Binding Component To Use

3 <default> = body g5 ADF Mobile Input Text w/ Label

e ¢ 2ol

Help oK Cancel

OEBPS/img/skin_hier.png

OEBPS/img/enableplugin.png
Enable SIS Access =

The Cordova plugin SMS must be enabled before sendSMS() can be called.
() Enable SMS for tis appicaton.
O Enable Cordova Plugins manualy.

[Conce

OEBPS/img/debug_css2.png
i0S Simulator - iPhone Retina (4-inch) / iOS 7.1 (11D167)
rrier = 11:32 AM -

Back Link Properties

OUTSIDE A FORM
ink1

WITH AN IMAGE

ink1
INSIDE A FORM

~—
8'"eaa -

ffiName feature2 SN istviewTosts puDetsTests More

OEBPS/img/create_map.png

OEBPS/img/resources_restdc.png
[Tro
O []
e

Method display names are used only
in the Data Control Paette.

OEBPS/img/create_spec_chart.png
Select the data values you want to display for the bars and the x axi of your chart, and then configure thei labels.

Avaiable:

[

[actve
& advess
@ borus
& aty

(@ commission
() comprato
& country
(@ deptid
(& deptiame
& emai

(& emprd
& facebook
& frathame
& goode
(& hireDate
& lastrame
& Inkedin
(& marFirstame
@ mgtd

(@ marLastiiame.
1 mobite

Bars: [Drag atributes here from the Available list | -

XAis: [Drag atributes here from the Available list] -
Change Data shape...

Attrbute Labek:

Atribute Label -]

Hep

OEBPS/img/tmap2.png

OEBPS/img/maa_filters.png

OEBPS/img/safari2.png
eo0o
i i'i'ﬁ'a Search Google or enter an address. I

Show Web Inspector

Show Error Console x#C
Show Page Source x%U
Show Page Resources %A
Show Snippet Editor

Show Extension Builder

Start Profiling JavaScript X 03P
Start Timeline Recording X 03T

Empty Caches e
Disable Caches

Disable Images
Disable Styles

Disable Javascript

Disable Site-specific Hacks
Disable Local File Restrictions

 Enable WebGL

OEBPS/img/ios_singleitem.png
Carrier ® 12:43 PM -

< MobilePrefs Sample Dropdown List

sample item 1
sample item 2

sample item 3

OEBPS/img/gs_config.png
+ X
o <
I
+ X

of

OEBPS/img/omss_prefs.png
8006

MAF for iOS Deployment Profile Properties

Q search

vt oepeniencn
o

Help

i0s Options.

Application Details
Application Bundle id:

Application Archive Name:

Deployment

[com.company ProductCatalog

ProductCatalog

Minimum 05 Version: [7.0

]

Simulator Target: [Phone 6 (105 8.1 - iPhone 6) ¥
Target Eaily: iPhone/iPad ~

uid Mode
® ebug
O Release

Enable Oracle Mobile Security Suite

ok

Cancel

OEBPS/img/enableplugin_audit.png
<amx:panelPage id="ppl">
<amx:facet name="headez™>
<amx:outputText value="Header" i
</amx: facet>

oo

ot1n/>

5 Applcationis ot alowed to acess deice S, EnableDevice SHS acces i mf-aplaton xnfor s to wak. e |

</amx: facet>
</amx:pane1Page>
</amxiviews

OEBPS/img/ios_springboard.png
Carrier = 5:00 PM

Photos Contacts Settings Game Center

Calendar Maps Newsstand Passbook

StockTracker Navigation ~ Weather! WorkBetter

OEBPS/img/gotopage2.png
New-fowxi

OEBPS/img/text_control.png
[create
Single Selection >

2 MAF Input Text w/ Label
I M It Text

T3 maF Qutput Text w/Label
A meroupitText

OEBPS/img/maa_descriptors.png
Application Descriptors
] —
e tane:

OEBPS/img/create_datalayer.png
§ Create Data Layer

Configure the data you want to display as shown i this example. For points, optionally
assodiate them with a single area layer in your map, or display them on al layers.

[et curent o for masterdetal

Hep

OEBPS/img/farvc.png
[e mobie-config xnl
VewControler

223 Applcation Sources
& B veranv
@ maf feature.ml
&[22 Web Content

41 Applicaton Resources
21 Data Controls VY E-
IRecent Fles.

N

OEBPS/img/input_text1.png
Input Text text

OEBPS/img/create_method.png
cre:

Method Name:

OEBPS/img/rest_ws_datasource.png
Data Source

Name: fiyRest]

Osomp @REsT

How do you want to dentty the resources n this web service?

© AP Doaumentation
Desabe theresources manually. Optionaly popuste the response automatical by making test cal.
Comnecton: + /7 Q
Source URI:

OEBPS/img/maf-dcx-overview.png
DataControls.dox.
Data Control Registry

T st the Oracle ADF data controls published by this project, including a metadata summary. To ed the data control defintion o enable custorization, selecta
Data controls node and cick Ed.

Deta Conts
= B Deparmentiat

2 @) Srectretane:

Hevbutes [phezmornsfsOpsraoni]

Tpe

it
java.lang.String
it

it

0

OEBPS/img/mb_edit.png
‘Method Expression Buider...
Reset to Defaut

Property Hep

[pefines a reference to an action
Imethod sent by the command

lcomponent, or the static outcome
lof an action.

OEBPS/img/bubble_chart.png
70

50

B

)

)

2

10

=

0

W0

B

@ Series 1
® Series 2
© Series 3
@ Series 4

OEBPS/img/audit1.png
Q search Audit

e | ——

- ADF Business Components
o

.

o Coser

e
P

s
e

et

oo o

Debugger

Deployment.

sl

i

- File Templates
e
Gomtgwre st

vy

TEE T

OEBPS/img/button_styles.png
Normal Disabled Activated
Default

Text Text
adfmf-commandButton-alternate

Text Text

adfmf-commandButton-alternate2

Text Text
adfmf-commandButton-dark

Text Text
adfmf-commandButton-confirm

Text Text
adfmf-commandButton-bright

Text Text

adfmf-commandButton-highlight

Text Text
adfmf-commandButton-small
Text

adfmf-commandButton-large

OEBPS/img/android_deploysum.png
Summary

Deployment Action
Deployment Summary:
5 Appication Detal
-~ Applicaton Bunde 1d: com.company.MobieApplication
File: MobleAppication.apk
- Deploy Mode: Release.

ws o ow |

OEBPS/img/new_ws_datacontrol.png
ttems:] Show Al Descrptons

- Clent Tier

- Database Ter

- Web Tier
Alltems.

@ 33va ieb Senvice

@ 33va ieb Senvice from isoL
@, Toplink DB Web Service Provider
@ Web Service Centand roxy.
8] Uoo1 Regisry Comecton

@ ResTR senvice

@ RESTR Cient andProxy

1 URL Service Dt Contrl

5 Web Service Data Control (SOAP/REST)
Launches the Create Web Service Data Conirol wizard, which you can use to reate
new Data Controlfrom a SOAP or REST based Web Service, The same izard can be
used to update an exitina Vieb Service Data Control.

8] wsot poaument

& st Comecton

OEBPS/img/generate_accessors_dialog.png
& Generate Accessors

redprt]

O mygean Select all
Kiercperty Sirng

setMyProperty(Siing) : veid Selct Geters

getypragenty() : Sting

Select Setters

eloct Al

scope wosters; Cltnal - Clsmivonzsd

In setter methods:

oty lsteners when property changss:

OEBPS/img/router.png

OEBPS/img/edit_lb.png
Configure the Datasource and Attrbute for Muti Selection

[Slemployestistrootenpioyees]

Mot Select Base Attrbute:

Mol Select Dislay Attribute:

OEBPS/img/iosboolean.png
Sample Boolean O

OEBPS/img/projectlibs.png
Q search

- Vieb Application

([o Applcation Lbraries

[CREE]

Add iprary...
Add AR Directory. .

OEBPS/img/iphone_landscprt.png

OEBPS/img/load_morerows.png
Load More Rows...

OEBPS/img/adf_adfrtsimple_bc.png
MAFdata binding fles.
Appicaton moaue

oata binang
aeccrpion e

Page emrton

ete g Owect
ete g Owecz

ete g Owecs

OEBPS/img/ipad_portrait.png

OEBPS/img/addprefvalues.png
@
e AN —
| TR

Preference Value. *X|T

OEBPS/img/features_iphone55.png
Carrier % 10:07 AM =

Wy submit >

W Biog >

OEBPS/img/maa_options.png
[Fopermyorkiacme \deploy \acme_archive2\acrme_archive2.maa]

-
Congressonevel [Defadt

[Include ManifestFie (META-INF MANIFEST.MF)

Brojct tobrowse: | —

‘Addtonal Manifest Fles to Merge into MANIFEST.MF

OEBPS/img/edit_rcl.png
Fetch Size:

‘Method Expression Bulder...
Selected Row Keys: Reset to Default
Lsteners ElProperty Help
Move Listener: [pefines a method reference o2
fange change Istener.
Selection Listener:

OEBPS/img/webviewbrowser.png
URL Opening
Within the Device
Browser

Carrier & 3145 PM -
a oracle.com 4

ORACLE"

Get The Oracle

Mobile Application

URL Opening Within
the MAF
Web View

Carrier 3:24 PM -

O
ORACLE'

Get The Oracle -
Mobile Application

Oracle Headlines

Create the Future With Java 8
Learn about Java 85 new fealures and enhancements.

Watch the Webeast on demand >

‘The 2014 Modern Marketing Tour is Now Underway
Willyou be there?

Learn more >

Oracle Solaris/SPARC is Better for Your Modern
Enterprise
Find out why companies are swithing from 1BM

AlX/Power to Oracle Solaris'SPARC.

o] a

Get the facts >

Oracle Headlines

Create the Future With Java 8
Learn about Java 85 new fealures and enhancements.

Watch the Webcast on demand >

‘The 2014 Modern Marketing Tour is Now Underway
Willyou bo there?

Learn more >

Oracle Solaris/SPARC is Better for Your Modern
Enterprise

Find out why companios are switching from IBM

Elm o Oracle Solars/SPARC,
acts >

i Oracle

OEBPS/img/camera_bindings_dt.png
Edit Action Binding e — e

Select a data collection and the action you want your cantrol to iniiate. The control intiates the action on the data objects of the
selected colection,
Data Collection:

New

Selectanerator: |

[] Aply to al ierators in page definition

Parameters
Option

Name Type Value
aualty int 100 | ——
destinatonType int 1 e
sourcerype int o e
alowdic boolean false [—
encodingType int 1 e
argecwdin it 0]

Help oK Cancel

OEBPS/img/checkbox1.png
Checkbox (1)

OEBPS/img/preflistdialog.png
B ——

= [| e

OEBPS/img/debug_breakpoints2.png
iOS Simulator - iPhone Retina (4-inch) / iOS 7.1 (11D167)

arrier & 11:35 AM -
Back Link Properties

OUTSIDE A FORM

ink1

WITH AN IMAGE

ink1

INSIDE A FORM

[Label Link1 >

— —~
t = 7T =

.. 8 a -

HiName feature? QS istviewTests npuDetsTess More

OEBPS/img/edit_form_fields2.png
Configure the companents that you want to csplay i your form. Note that you can remove or edit the resiting
components after you cick OK. You can akso add more components directly o the layout later.

Fields:
Display Label
 <defauit>
 <defauit>
 <defauit>

* X
Value Bindng ‘Component To Use:
= jbid) MAF Output Text w/Label
= tte 5 MAF Input Text wj Label
=5 minsalery 5 MAF Input Text

LSRR

OEBPS/img/edit_list_bind3.png
Select a data collection and atirbute you want your control to operate on. The value to
return to the bound atirbute i determined when the user changes the controfsselection
state, You mustknow what values the bound atirbute takes in order to supply meaningful
Selection state values.

e s s
e

e~ —

e oK Cancel

OEBPS/img/taskflow_overview_editor.png
New-fow.saml -

ContilFiows | TkFowID:

Diagram | Overview | Source History ¢

OEBPS/img/sync_config_overview.png
ARk E

2xm] version="L.0" encoding="UTF-2"2>
El<settings xmlns="http://xmlns.oracle.con/sync/config">

<BaseUri>htep://127.0.0.1</Baselri>
EvicTIoN

<appa/> E
<LazgPersistence/>

<RefresnPolicy/>

<DbStorageFolderpath/>

<FileStorageFolderPath/>
<Policies>
<DefaultPolicy>
<FetchPolicy>FETCH_FROM_SERVICEC/FetchPolicy>
<TpdatePolicy >UPDATE_TF_ONLINEC/UpdatePolicy>
<ExpirationPolicy>NEVER EXPIRES/ExpirationPolicy>
<EvictionPolicy
</DefaultPolicy>
</Policies>
/Settings>

OEBPS/img/android_singlelist.png
4 #1025

Sample Dropdown List

sampleitem 1

sample item 2

sample item 3

cncel

OEBPS/img/config_fragment2.png
s Configure Fragment Content

Page Fragment Content:
Atrbute Type Valve

e

aultvalie

Attrbute Desarptions
Desaription of an atirbute

e oK Cancel

OEBPS/img/left_right_listsub1.png
Start Text EndText
This is the subtext
Start Text EndText
This is the subtext
Start Text EndText

This is the subtext

OEBPS/img/ui_iphone.png
10:01 AM_

Approve

| Carrier =

Purchase Order 1234

Purchase Order 3456

Purchase Order 2345

Purchase Order 6789

{——— Hide Nav. Bar Button

|—— Navigation Bar
| Navigation tem

OEBPS/img/navdrag_rt.png
Carrier F 9:50 AM -
o

Properties Done

Action properties

[forward n

OEBPS/img/taskflow3.png
Activities

@ Eamnam & Method Call
23 Employees._phone

ia @ router
=1 3 TaskFlow Call

@l meskFowRetm

@3 springboard view
o

= Control Flow Case.

48 Wideard ControlFow Rule

=[5 tskfo-defiton -Newfon
- ® default-activity - viewl
5] view - views

OEBPS/img/many_choice1.png
Select Option

[Signature Required

OEBPS/img/chart_children.png
Components |2
al
MAF AN Dsta Vsuslzatons -
2 Commen
- Shared Chid Tags
@ @ @ @ @ @
Attribute. Attribute. Attribute: Legend Legend Major Tick.
Exception Gops vatchue Secton
Ruie
Q @ @ @ @ @
Varker Vinor Tide pont Reference Reference Reference
Locaton e Weslen Lnelten
@ @
Reference TikLabel
Object
= Other Type-Speciic Chid Tags
chat H
@ @ @ @ @ @ @
ustne ChartDats Chartvae FumelDats Overview PeDataltem SeresSty
Teem Fomat Tem
@ @ 3
Xow vAs Yo
Gauge
@ @ @ @
Gaugelsbel Mewclsbel Reference Threshold
Format e
e
@ @ @ @
NEoxCel NooxCom NBoxtode NBoxRow
Themstic ep
- @ S L5 L]
Aes eabata Arealayer Avealocaton PantData
Layer Layer
Tl
@ @ @
Tie fxs Timeinelten Timeine
Seres
Sunburst and Treemsp
@ @ J
Suwbust Treemsp
Node Node. =

<€ > »

OEBPS/img/popup_id2.png
pup 1d

Choose a component. If an item canot be selected, trequires an 1. Note that vald Ids use a combination of reltive:
nd absolute path references depending on thei relationship to the current component.

indicates naming container

e Cancel

OEBPS/img/listview_source.png
cti

lect L n

iew D:

Expression Builder | DataControl Definitions
&8 Company
[Constructors
=& findEmpRecords(String)
&[] Parameters.
-
[DeviceDataControl

[p—
5 B EmpRecorcs

Help o Cancel
y

OEBPS/img/safari_debug.png
Advanced

EZNS =P S © |

General_Bookmarks Tabs AUtoFill Passwords Security Privacy Notifications Extensions.

00 #'

Advanced

() Never use font sizes smaller than
[Press Tab to highlight each item on a webpage
‘Option-Tab highiights each it

Accessibilty:

Style sheet: | None Selected

Default encoding: [Western (ISO Latin 1)

Proxi Change Settings....

menu bar

(¥ Show Develop menu

OEBPS/img/date_control.png
&0 MAF Input Date w/ Label

OEBPS/img/create_databound.png

OEBPS/img/maa_import.png
QO0hw ==

e s e Sales_rchve maa

File Type: [MAA Files (maa)

OEBPS/img/upgrade_merge.png
[Application Upgrade Merge Conflicts

The spplication was successfull uparaded. However, JDeveloper must be restarted to complete the process, and
the folluwing fles may need to be manually merged. Afte restarting Developer compare the il for meraing,
Restart Jeveloper ow?

Note that the merge fle candidates are also sted n the merge log e,

Files to Merge:
New Versian Ol Version File Locatian -

cannections.xml cannections_oldxml C|ADFMFidemolLparadelTestApp_archive-1-cust, adf META-INF

Ves No

OEBPS/img/rating_gauge.png

OEBPS/img/skin_compar.png
MobileAlta

Home

General
Text & Select
Data Views
Layout
Operations
Visualization

Switch to Alta Switch to Fusion Fx

MobileFusionFx

1108 AM

Home
General
Text & Select
Data Views

Layout

Operations

Visualization

Switch to Alta Switch to Fusion Fx

OEBPS/img/split_screen1.png
&
50

“ m Series 1

Series 2

o Series 3

m Series 4

2 W Series 5
0
o

Groun 4 Grouns
Source Bindings History | Preview|
Q-(Fnd GAMRK E

B <amx:panelGrouplayout id="pglComponentPanel”
styleClass="dvtn-gallery-component-container">

E

aven-gallery-conponent”
+{pageFlowscope. dataCursor) ™
dataCarsorBehavior="#{pageFlowScope . dataCursorBehavior
datalabelPosition="4{pageFlowScope. Label Position) "
dataSelection="4{pageFlowScope. dataSelection)”
£ootnote="4 [pageFlowScope.. footnote]
£ootnoteHial ign="4 (pageFlonScape. footnoteHial ign) "
hideAndShowBehavior="4 [pageFLowScope hideAndShouehavi
zo1loverBehavior="4 [pageFlowScope .ol loverBehavior) "
seriesEefect="#{pageFlowScope. seriesEfrect)”
+{pageFlowScope. stacked 2 'on' : 'off'}"
4 (pegeFlowScope. citleDisplay 2 pageFlowScope
4 (pageFlowscope . titleDisplay 2 pageFlowscope.ti
titleHalign="4 {pageFlowScope. titlealign} "
enimationonDataChange="# (pageFlouscope animationondate
enimationIndicators="4(pageFlovscope .animationTndicate
enimationburation="#{pageFlowScope. animationduration] "
enimationOnDispley="4(pageFlowScope . animationonDisplay
enimationUpColor="4 (pageFlowScope .animationlpColor) "
enimationDownColor="4 (pageFlowScope . animationbownColor
shorcbesc="#{pageFlowScope. shortDesc} ">
El <amx: facet name="dataStamp">
= <dvtm:chartDataTten 1d="cdil" group="4{row.gzoup]" value="4{row.vz
mxipanepageppt ~ amxipanclrouplayout#pgcompenertpancl + dvtmibarchart#tbarchart1 - 6231

‘Source | Bindings History Preview ¢ € > I

OEBPS/img/remoteurlconfig.png
Define appication features here. Configure their usage in maf-applicaton.i.

Features: + X
e S
#*-X T
Type @
£
4%

p— H 7 s o
Constraints: +X
Property™ Operator™ Value®

OEBPS/img/createtextpref.png
maf-sppication.m

Application
B E
> 53] How Are You Getting There?
= [Select Your Means of Transpart Default: hitp: /security.foo.comjprovider

& Hode of Transportaion
&3] Your_GPS Locatons
s settings

& ST

- UserNome

& Password

[searet

OEBPS/img/amxcontentdefine.png
Define appication features here. Configure their usage in maf-applicaton.i.

Features:

* X

=

‘Applcaton Version

Content: *-X T
= Type @
¢
¢
File: [Organizations/taskfiow.xmitaskfow |+ Q
Indudes: X
Ty e
tesheet s ioretter.css
savasarpt efesstomsearch s

vyl

OEBPS/img/edit_sellistener.png
Managed Bean: e
Methad: <] hew

Help o Cancel

OEBPS/img/features_iphone33.png
Garrier %

OEBPS/img/ws_attributeicon.png

OEBPS/img/cclassdepjar.png
0 Deploy StecC

Deployment Action

Deployment Action

x

© Summary

Select a deployment action from the st below.

Creates a packaged JAR archive.

OEBPS/img/debug_css1.png
Q- Search Resource Content).

v B bootstrap.hml
& amx-ios7-Itr.png
4 daraimage/png;bases...
4 dataimage/png;bases...
4 icon-72.png
i bases
@ add-mobileAlta-v1.2-1...
o add-mobileAlta-v1.2.css
o amx-mobileAlta-1.2.css
o custom.css
[1gap_exec
| commandlink.amx
[icon-72.ng

(2 Exta scripts

[Local storage

[Session Storage

Web Inspector — iPhone Simulator — Oracle (en) — (null) — bootstrap.htm!

<8B3 BB BB E B E O
<i= Copyright (c) 2011, 2014, Oracle and/or its affiliates. ALL
rights reserved. —>

vehtnl height="100%" lang="
class=" amx-ios">
» <head>.</head>
v<body dir="ltr" styles
Created by Oracle MAF 7.7.7.7.7 = S{env.J0B_NAME}
‘${env.BUILD_NUMBER} —->
v<div id="bodyPage" class="amx-debug">
<div data-role="header"></div>
v<div id="bodyPageViews">
¥ <div data-pagename="/compDeno/connandLink.amx" clas:
“current anx-view-container " style="display: block;">
v<div id="_autod" class="arx-view anx-node">
v<div 16="pp1" class="amc-has-predestroy amx-panelPage
amx-node”>
> <div class="anx-panelPage-header-prinarylsBack amx-
panelPage-header">.</div>
<div class="anx-panelPage-contentirapper">
v<div id="ppl_content" class="amx-scrollable amx-
panclPage-content">
<span role="heading" id="otnf" class="amx-text-
sectiontitle amx-outputText amx-node">Outside a
forne/span>
»<a role="Link" href="#" aria-label="Link1" id=
“commandLink2" class="arx-comandLink amx-node">
<t2>
<span role="heading" id="otnfi" class="amx-text-
sectiontitle amx-outputText amx-node">With an
inage
»<a role="link" href="#" aria-label="Link1" id=
“commandLink3" class="arx-comandLink amx-node">
<t2>
<span role="heading" id="otf" class="amx-text-
sectiontitle amx-outputText amx-node">Inside a
forne/span>
v<div role="fors" class="arx-node amx-
scrollPolicy-auto anx-panelFormLayout amx-label-
position-start am-field-halign-end" id="form">
-panelFornLayout_body">
mx-panelFormLayout_column'

‘en” dir="ltr" data-naf-locale="en-us"

panelFornLayout_sizingTable">
> <div class="anx-
panelFornLayout_sizingRow">-</div>
V<div class="arx-panelLabe AndHessage
amc-node field" aria-labelledby="Label"
anelLabe AndMessage1”>
v <div class=""ield-label"

> <div class
</div>
</div>
</div>
</div>

— Style Attribute
No Properties — Click to Edit

+ New Rule

@ » — amx-mobileal
—webiit-user-select:

cs5:1678

(@ 1abel — User Agent Stylesheet
cursor: defauls

(1) .amx-panelFornLayout .field .field-
Tabel mobi 554504

white-space: normal
word-break: initial

amx-panelFormLayout. ax-label-
position-start .fielg-label, .ami-
panelFornLayout - amx-label-position-
topStart . field-label — am-
mobileAlta-1.2.cs5:4563

text-align: stars

() .field > .field-label — am:
mobileAlta-1.2.cs5:2052

@ . tield-label — amx:
12.c551978
R
ey
cotors il $3430341
font-size: 16px;
—webiituserselecti—texts
S
user—select text;

@ » — amx-mobileAlta-1.2.cs5:1678

—webkit—user—selecti—noner

OEBPS/img/expbuilder.png
Select values from variables and operators to create an expression or directly type the expression here:
Expression:

@ e
+{myBean chedConstrans)

OEBPS/img/ios_prefmenu.png
Carrier = 11:55 AM -

{ Settings PrefDemo

APP PREFERENCES

Aop Boolean @

App Number 123

App List item 1

AppText default text

App Secret Text eeecescsccce

App Page

F1 PREFERENCES

F1 Boolean O

OEBPS/img/iosdeployaction.png
Deployment Action

Deployment Action | Select a deployment action from the list below.

& summary

Deploy to distribution package
Deploy to iTunes for synchronization to device

Deploy the mobile application to an 105 simulator..

o T s —

OEBPS/img/connections_constraint.png
Create MAF Login Connection

Configure a connection to provide remote authenticaton services for 2
Mobie Applcation Framemork (MAF) appication.

Create Comnectonin: @ Appication Resources.

e

General | HTTPBasic | Autologn | Authorization

Access Control Service URL:

[Fte:7710.0.0 Ofcentityfautrorze

Fiter st of User Roles: % X
+ X

status:
Successfuly estabished connections tologin URL, logout URL and access control
GRL.

OEBPS/img/outputhtml.png

OEBPS/img/taskflow_file2.png
[E) e —_—
fQQ ~ ishon 1§ A4 H.

Bounded Task Flaw

Components
Q-]
MAF TaskFlow
2 Source Bements
= Conpanents
Actvies
&l vethod sl
@ Router
O sk Fow ol
sk Fow Retun
& vew
ControlFiow
= Control Flow Case
48 vikdeard Control Fow Rde

+IDiagram Amnotations.

OEBPS/img/maf-app-springboard.png
Springboard

i+ WorkBetter

ganizations

ORACLE’

Selected application feature

L)

MyGroup My Directs

My Team Activities

78 24

Meetings Training
Events Time Off

My Notifications

@ 3 Approved
@ 2+ waiting

€ 1 Rejected

Compensation Ratio
Above Range
In Range

Below Range

52

a3

OEBPS/img/gotopage3.png
=[5 Panel
@ [Facet
- Facet
&l Panel
& &ar
@-Igp
T
@-Igp
T
@-Igp
-1

Insert Before Panel Page.
Insert Inside Panel Page
Insert After Panel Page

Eacets -Panel Page
Refagtor

‘Expand Al Below,
Collapse AllBelon
Show AsTop

Cueay

OEBPS/img/new_amx_page.png
) New

Q

[categories: ems:] Show Al Desarptions
el MAF AMX Page
(5 Business Ter Launches the Create MAF AMX Page dg, nwich you eate anew Mobie
ADF Business Components Appicaton Framenork AMX Page (.am) fie. To enabie tis option, you must selecta
~~Contexts and Dependency Ijecton. | projector e within 2 rajectin the Apication Naviator.
Data Controls

i MAF AMX Page Fragment
G war Featre
[war TaskFow

OEBPS/img/cclassdeppr.png
Clck OK to create your new deployment profie and immedately open it to see its configuration.

Deployment Profile Name:
=3

Desaripton:

Create a simple JAR archive from a Project.

OEBPS/img/edtidefualtprofiles.png
6] os1.(MaF for 05)
(5] Moblerppication_archive (MAF Applicaton Archive)

OEBPS/img/maf_arch.png
Moblle Device Server-Side

Dexcs Natve Container Resources
Web View Appiaton | || | configuration
Configuraion | £ Eorver
8
HTML H
£ =M
HTMLS & H
st Java VM Push g APNs & GCM
-] J3
Presenaton oL Aovescou
MAF Business 2 e
AMX View Logic 8
& Controller e
0BG SoaPa
Locattma ‘ = i o
g
g

|

Encrypted
saLite DB

OEBPS/img/config_fragment.png
s Configure Fragment Content

Page Fragment Content:
Atrbute Type Valve

e e

Attrbute Desarptions

OEBPS/img/ios_nestedpage.png
Carrier ¥ 1243 PM

< MobilePrefs Chiid Page

SAMPLES

Sample Boolean 2

Sample Dropdown List 2

OEBPS/img/appfeature_gentab.png
Features:

Define appication features here. Configure their usage in maf-applicaton.i.

* X

Organizations Organizations

‘Applcaton Vers... | Enable Security

O
|m]

Lfecyde Event Listener:

JQ

Navigaton Bar o [magespeape g

BN

sax6

Springboard Image: [mages/people.prg

BN

sax6

OEBPS/img/cust_class.png
(CreatelavaClass ==

Enerthe detas o yournew doss. E
Noe: [siecC]
eackage: frobie] Q
Extends: foroce adfnfmetadta bean Custonpraperiesbefiion | (A
Optara Atwbutes

Inpements: * X

Acces Moders Other Modsiers

® public (@) <Nane>

O package protected O abstract

Otea

Constructors from Supercass
Implement Abstract Methods
[[]Main Method

e oK Cancel

OEBPS/img/ipad_landscpl.png

OEBPS/img/area_chart.png
B
m Series 1
W Series 2
Series 3
) m Series 4

Group C

OEBPS/img/audit2.png
% Audit Profile

T

Rules | Code Assists | Metrics | Suppression Schemes

Q-
-] Applcaton Development Framework (ADF)

saveas.

Verify that the component has short description.
-+[¢] Verify that the component s labeled.
Verify that the iputText has hintText.

Expand Al Colapse Al Select Al Deselect Al

orade maf accesshiity

‘Chedks usage of MAF AVX companents to verify that they meet
basic accessibiity requrements.

OEBPS/img/unbound_tf.png
adfc-moble-config.xmi
QQ 0% v isonr (AT BB IO@

Unbaunded Task Flow

deptdstail

DeptList DeptDetai

empdstail

deptdetail

empdstail

o Empbot

