
Oracle® Mobile Application Framework
Installing Oracle Mobile Application Framework

2.2.0

E63534-01

October 2015

Documentation that describes how to install the Oracle Mobile
Application Framework for use with Oracle JDeveloper to
create mobile applications that run natively on devices.

Oracle Mobile Application Framework Installing Oracle Mobile Application Framework, 2.2.0

E63534-01

Copyright © 2015, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Liza Rekadze, Walter Egan

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface ... v

Audience .. v

Documentation Accessibility .. v

Related Documents... v

Conventions... v

What's New in This Guide for Release 2.2.0... vii

1 Installing Mobile Application Framework with JDeveloper

1.1 Introduction to Installing the MAF Extension with JDeveloper... 1-1

1.2 Installation Requirements for MAF Applications to be Deployed to the iOS Platform........ 1-2

1.3 Installation Requirements for MAF Applications to be Deployed to the Android Platform

.. 1-2

1.4 Setting Up JDeveloper... 1-3

1.5 Installing the MAF Extension in JDeveloper ... 1-4

2 Setting Up the Development Environment

2.1 Introduction to the MAF Development Environment ... 2-1

2.2 Configuring the Development Environment for Target Platforms.. 2-1

2.3 Configuring the Development Environment for Form Factors ... 2-4

2.4 Setting Up Development Tools for the iOS Platform ... 2-6

2.4.1 How to Install Xcode and iOS SDK ... 2-6

2.4.2 How to Set Up an iPhone or iPad .. 2-7

2.4.3 How to Set Up an iPhone or iPad Simulator.. 2-7

2.5 Setting Up Development Tools for the Android Platform .. 2-7

2.5.1 How to Install the Android SDK.. 2-8

2.5.2 How to Set Up an Android-Powered Device... 2-8

2.5.3 How to Set Up an Android Emulator.. 2-9

2.6 Testing the Environment Setup ... 2-15

iii

3 Migrating Your Application to MAF 2.2.0

3.1 Migrating an Application to MAF 2.2.0.. 3-1

3.2 Migrating to JDK 8 in MAF 2.2.0 ... 3-1

3.3 Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0.. 3-2

3.4 Migrating ADF Mobile Applications .. 3-4

3.4.1 What Happens When You Migrate an ADF Mobile Application 3-6

3.4.2 What You May Need to Know About FARs in Migrated Applications....................... 3-8

3.5 Configuring your Migrated MAF Application to Use the Full Screen on iOS Devices......... 3-8

3.5.1 How to Configure your Migrated MAF Application to Use an iOS Device’s Full

Screen.. 3-9

3.5.2 What Happens When You Configure your Migrated MAF Application to Use an

iOS Device’s Full Screen .. 3-10

3.6 Retaining Legacy Behavior When Navigating a MAF Application Using Android’s Back

Button.. 3-10

3.6.1 How to Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of

Android´s Back Button... 3-11

3.7 Migrating to New cacerts File for SSL in MAF 2.2.0... 3-11

iv

Preface

Welcome to Installing Oracle Mobile Application Framework.

Audience
This manual is intended for developers who want to install the Oracle Mobile
Application Framework for use with Oracle JDeveloper to create mobile applications
that run natively on devices.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Documents
For more information, see Developing Mobile Applications with Oracle Mobile Application
Framework.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements (for example,
menus and menu items, buttons, tabs, dialog controls), including
options that you select.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates language and syntax elements, directory
and file names, URLs, text that appears on the screen, or text that you
enter.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

What's New in This Guide for Release 2.2.0

Section Change

Retaining Legacy Behavior When Navigating
a MAF Application Using Android’s Back
Button

Section added to describe how you can retain
the legacy behavior of MAF applications in
response to end user’s usage of Android’s
Back button. This release (MAF 2.2.0)
introduces new behavior.

Configuring your Migrated MAF Application
to Use the Full Screen on iOS Devices

Section added to describe how you can
configure migrated MAF applications to use
the full screen on devices running iOS 7 or
later.

vii

1
Installing Mobile Application Framework

with JDeveloper

This chapter describes how to install JDeveloper and the Mobile Application
Framework (MAF) extension for application development.

This chapter includes the following sections:

• Introduction to Installing the MAF Extension with JDeveloper

• Installation Requirements for MAF Applications to be Deployed to the iOS
Platform

• Installation Requirements for MAF Applications to be Deployed to the Android
Platform

• Setting Up JDeveloper

• Installing the MAF Extension in JDeveloper

1.1 Introduction to Installing the MAF Extension with JDeveloper
The first step in starting with MAF application development is to install Oracle
JDeveloper and the MAF extension.

In the current release, you must install JDeveloper using JDK 1.7, and then install the
MAF extension in JDeveloper specifying JDK 1.8 in the dialog that appears after
JDeveloper restarts after installation of the extension. This allows MAF applications to
compile with JDK 1.8.

Following installation of the MAF extension in JDeveloper, configure additional
development tools for the platforms where you intend to deploy your MAF
application. For more information, see Setting Up the Development Environment .

Before you can create a MAF application using the MAF extension in JDeveloper,
ensure that you have any third-party software required to develop applications for the
platform on which you intend to deploy your MAF application.

Note:

You can deploy the same MAF application to all supported platforms without
changing your application's code. You need the third-party software to test,
debug, and deploy the MAF application on the target platform.

Installing Mobile Application Framework with JDeveloper 1-1

1.2 Installation Requirements for MAF Applications to be Deployed to the
iOS Platform

Before you start creating a MAF application that you are planning to deploy to the iOS
platform, ensure that you have the following available:

• A computer running Apple Mac OS X Version 10.9.5 or later.

• Oracle JDeveloper (see Setting Up JDeveloper).

• Oracle JDeveloper extension for MAF (see Installing the MAF Extension in
JDeveloper).

• Xcode and iOS SDK (see How to Install Xcode and iOS SDK).

• The most recent version of JDK1.8.

• The most recent version of JDK1.7.

Before you start deploying your application to a development environment (see the
"Getting Started with Mobile Application Development" chapter in Developing Mobile
Applications with Oracle Mobile Application Framework), decide whether you would like
to use a mobile device or its simulator: if you are to use a simulator, see How to Set Up
an iPhone or iPad Simulator; if your goal is to deploy to a mobile device, ensure that,
in addition to the components included in the preceding list, you have the following
available:

• Various login credentials. For more information, see the "Deploying Mobile
Applications" chapter in Developing Mobile Applications with Oracle Mobile
Application Framework.

• iOS-powered device. For more information, see How to Set Up an iPhone or iPad.

1.3 Installation Requirements for MAF Applications to be Deployed to the
Android Platform

Before you start creating a MAF application that you are planning to deploy to the
Android, ensure that you have the following available:

• A computer running one of the following operating systems:

– Microsoft Windows Vista

– Microsoft Windows 7

– Mac OS X

• The most recent version of JDK1.8

• The most recent version of JDK1.7

• Android SDK Manager (see Setting Up Development Tools for the Android
Platform)

• Oracle JDeveloper (see Setting Up JDeveloper)

Installation Requirements for MAF Applications to be Deployed to the iOS Platform

1-2 Installing Oracle Mobile Application Framework

• Oracle JDeveloper extension for MAF (see Installing the MAF Extension in
JDeveloper)

Before you start deploying your application to a development environment (see the
"Getting Started with Mobile Application Development" chapter in Developing Mobile
Applications with Oracle Mobile Application Framework), decide whether you would like
to use a mobile device or its emulator: if you are to use an emulator, see Setting Up
Development Tools for the iOS Platform; if your goal is to deploy to a mobile device,
ensure that, in addition to the components included in the preceding list, you have the
following available:

• Various login credentials. For more information, see the "Deploying Mobile
Applications" chapter in Developing Mobile Applications with Oracle Mobile
Application Framework.

• Android-powered device. For more information, see Setting Up Development
Tools for the Android Platform.

1.4 Setting Up JDeveloper
Oracle JDeveloper and its MAF extension are essential tools used in developing MAF
applications.

Before you begin:

• Download and install the latest version of JDK 1.7.

This version of JDK is required by JDeveloper.

• Download and install the latest version of JDK 1.8.

This version of JDK is required by the MAF extension.

• Download the 12.1.3.0.0 release of JDeveloper (Studio Edition) available at
http://www.oracle.com/technetwork/developer-tools/jdev/
downloads/index.html.

To install JDeveloper on a computer running the Windows platform:

1. In your file system, navigate to the directory that contains the JDeveloper
executable file, then right-click that folder and select CMD Prompt Here As
Administrator.

2. Run the following command to explicitly install JDeveloper using the required
JDK 1.7:

<fully_qualified_path_to_JDK7>\bin\java -jar
<JDEV_12.1.3_jar>

For more information, see Installing Oracle JDeveloper.

To install JDeveloper on a computer running the Mac OS X platform:

1. Open a Terminal window.

2. Set the JAVA_HOME to Java 1.7 by running the following command:

export JAVA_HOME=$(/usr/libexec/java_home -v1.7)

3. Verify that Java 1.7 is used by running the following command:

java -version

Setting Up JDeveloper

Installing Mobile Application Framework with JDeveloper 1-3

http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html
http://www.oracle.com/technetwork/developer-tools/jdev/downloads/index.html

4. Using the same Terminal window, install JDeveloper by executing the following:

java -jar <JDEV_12.1.3_jar>

For more information, see the section about using Oracle JDeveloper on the Mac OS X
platform in Installing Oracle JDeveloper.

To verify the installation of JDeveloper:

1. Check the <JDEV_HOME>\jdev\bin\jdev.conf file and confirm that the
SetJavaHome property points to JDK 1.7.

2. Start JDeveloper and select the Studio Developer (All Features) role when
prompted.

3. From the main menu, select Help > About > Version and ensure that the Java
platform 1.7 is used, as Figure 1-1 shows.

Figure 1-1 Verifying JDK Version

1.5 Installing the MAF Extension in JDeveloper
You download the MAF extension using the Check for Updates menu in JDeveloper.

Once you have installed the MAF extension, you need to configure additional
development tools for the platforms where you intend to deploy your MAF
application. For more information, see Setting Up the Development Environment .

To download and install the MAF extension:

1. In JDeveloper, choose Help > Check for Updates.

Installing the MAF Extension in JDeveloper

1-4 Installing Oracle Mobile Application Framework

Note:

You might need to configure proxy settings on your development computer:
on Windows, select Tools > Preferences from the main menu, and then Web
Browser and Proxy from the tree on the left of the Preferences dialog; on Mac
OS X, this option is accessed from JDeveloper > Preferences.

2. In the Select update source page that Figure 1-2 shows, select Official Oracle
Extensions and Updates under the Search Update Centers, and then click Next.

Figure 1-2 Checking for Updates in JDeveloper

Alternatively, if network access is not available, you can select the Install From
Local File option. In this case, you need to point to the MAF extension file that you
already downloaded to a directory on your development computer.

Installing the MAF Extension in JDeveloper

Installing Mobile Application Framework with JDeveloper 1-5

3. In the Select updates to install dialog, select the Mobile Application Framework
update.

4. In the License Agreements page, shown in Figure 1-3, review The Oracle Technology
Network License Terms for Oracle Mobile.

Note:

You must comply with all of the license terms and conditions with respect to
the Oracle Mobile Application Framework Program available at http://
www.oracle.com/technetwork/indexes/downloads/index.html.

5. Click I Agree.

Figure 1-3 Licensing Agreements for Mobile Application Framework Program

6. Click Next, and then click Finish.

Installing the MAF Extension in JDeveloper

1-6 Installing Oracle Mobile Application Framework

http://www.oracle.com/technetwork/indexes/downloads/index.html
http://www.oracle.com/technetwork/indexes/downloads/index.html

7. Restart JDeveloper.

8. Use the Create JDK 8 Profile dialog that Figure 1-4 shows to specify the path to the
directory on your computer that contains JDK 1.8.

Figure 1-4 Creating JDK 8 Profile

Note:

If you specify an invalid directory or directory that does not contain JDK 1.8,
an error dialog is displayed.

You do not have to complete the Create JDK 8 Profile dialog the next time you use
JDeveloper, unless you reinstall the MAF extension and choose not to preserve
JDeveloper's system preferences.

9. Check whether or not MAF has been successfully added to JDeveloper:

• Select File > New > From Gallery from the main menu to open the New
Gallery dialog.

• In the Categories tree on the left, expand the Client Tier node and make sure it
contains Mobile Application Framework (see Figure 1-5).

Installing the MAF Extension in JDeveloper

Installing Mobile Application Framework with JDeveloper 1-7

Figure 1-5 Verifying MAF Installation

In addition, verify that you installed the correct version of MAF. To do so, select
Help > About from the main menu, then select the Extensions tab on the About
Oracle JDeveloper dialog, and then examine the extension list entries by searching
for Mobile Application Framework, as Figure 1-6 shows.

Installing the MAF Extension in JDeveloper

1-8 Installing Oracle Mobile Application Framework

Figure 1-6 Verifying MAF Version

In addition to the preceding steps, your development environment must be configured
for target platforms and form factors. For more information, see Setting Up the
Development Environment .

Installing the MAF Extension in JDeveloper

Installing Mobile Application Framework with JDeveloper 1-9

Installing the MAF Extension in JDeveloper

1-10 Installing Oracle Mobile Application Framework

2
Setting Up the Development Environment

This chapter provides information on setting up and configuring the MAF
environment for application development and deployment.

This chapter includes the following sections:

• Introduction to the MAF Development Environment

• Configuring the Development Environment for Target Platforms

• Configuring the Development Environment for Form Factors

• Setting Up Development Tools for the iOS Platform

• Setting Up Development Tools for the Android Platform

• Testing the Environment Setup

2.1 Introduction to the MAF Development Environment
After you install JDeveloper and the MAF extension, as described in Installing Mobile
Application Framework with JDeveloper , you may need to configure the
development environment for the platforms to which you intend to deploy your MAF
application. In addition, you may need to configure form factors if you intend to test
or deploy on a particular mobile device. You may also need to install and configure
third-party tools that allow you to package and deploy your MAF application on
supported platforms.

For complete list of supported versions of development and runtime tools, see Oracle
Mobile Application Framework Certification Matrix by following the Certification
Information link on the MAF documentation page at http://www.oracle.com/
technetwork/developer-tools/maf/documentation/.

2.2 Configuring the Development Environment for Target Platforms
For successful packaging and deployment of your application to platforms supported
by MAF, JDeveloper must be provided with such information as the name of the
platform and directories on your development computer that are to house the
platform-specific tools and data. For convenience, MAF prepopulates JDeveloper
Preferences with these settings. Depending on several factors related to the application
signing, you may need to edit some of the fields.

Before you begin:

Download and install JDeveloper and the MAF extension, as described in Installing
Mobile Application Framework with JDeveloper .

Setting Up the Development Environment 2-1

http://www.oracle.com/technetwork/developer-tools/maf/documentation/
http://www.oracle.com/technetwork/developer-tools/maf/documentation/

Depending on your target platform, download and configure either the Android SDK
(see How to Install the Android SDK) or iOS SDK and Xcode (see How to Install
Xcode and iOS SDK).

To configure your environment for target platforms:

1. Select Tools > Preferences from JDeveloper's main menu to open Preferences.

2. In the Preferences dialog, select either Mobile Application Framework > Android
Platform or Mobile Application Framework > iOS Platform from the tree to open
a page that contains the path and configuration parameters for the supported
platforms, as Figure 2-1 and Figure 2-2 show.

Each platform-specific page hosts the preferences for the platform SDK (Android or
iOS), collecting any necessary information such as the path that MAF needs to
compile and deploy either Android or iOS projects:

• For the Android platform, specify the following:

– The Android SDK location on your computer.

– The local directory of your target Android platform.

– The Android build tools location on your computer.

– Information on the signing credentials.

Configuring the Development Environment for Target Platforms

2-2 Installing Oracle Mobile Application Framework

Figure 2-1 Configuring Platform Preferences for Android

• For the iOS platform, specify the following:

– Location of the iTunes media files, including the mobile applications that are
synchronized to the iOS-powered device.

– The iOS-powered device signing information (see the "Setting the Device
Signing Options" section in Developing Mobile Applications with Oracle Mobile
Application Framework).

Configuring the Development Environment for Target Platforms

Setting Up the Development Environment 2-3

Figure 2-2 Configuring Platform Preferences for iOS

2.3 Configuring the Development Environment for Form Factors
A form factor is a specific device configuration. Each form factor is identified by a
name that you specify for it and contains information on the specified resolution
denoted by pixel width and pixel height.

Since form factors defined in preferences are used in the MAF AMX page Preview tab
(see the "Using the Preview" section in Developing Mobile Applications with Oracle Mobile
Application Framework), you may choose to perform this configuration if you are
planning to include a MAF AMX application feature as part of your MAF application
and you do not want to accept the default settings. During development, you can
select or switch between various form factors to see how a MAF AMX page is
rendered. You can also see multiple form factors applied to the same page using the
split screen view.

For more information, see the "About the maf-config.xml File" section in Developing
Mobile Applications with Oracle Mobile Application Framework.

Before you begin:

Download and install JDeveloper and the MAF extension, as described in Installing
Mobile Application Framework with JDeveloper .

Configuring the Development Environment for Form Factors

2-4 Installing Oracle Mobile Application Framework

To configure the form factors:

1. Open Preferences by selecting Tools > Preferences from the main menu in
JDeveloper.

2. In the Preferences dialog that Figure 2-3 shows, select Mobile Application
Framework from the tree on the left.

Figure 2-3 Defining Form Factors

The Mobile Application Framework page is populated with available form factors
and the default is set to Android Low.

This preference page allows you to create and manage a set of named form factors
that combine a screen resolution size and platform.

3. To create a new form factor, click the green plus sign (New), and then set the
following:

• Name: a meaningful string that is used to identify the form factor.

• Platform: the platform of the mobile device.

• Model: the type of the mobile device.

Configuring the Development Environment for Form Factors

Setting Up the Development Environment 2-5

• Default Orientation: the default device orientation used in the MAF AMX page
Preview tab. It might be Portrait or Landscape. Select this setting from the drop-
down list of values. The default value is Portrait and it is prepopulated during
creation of the new form factor.

• Width: width, in pixels. This value must be a positive integer, and its input is
validated.

• Height: height, in pixels. This value must be a positive integer, and its input is
validated.

• Scale Factor: the display scale factor. This value must be either one of 1.0, 2.0, or
3.0.

Note:

If you do not set the name and resolution for your form, MAF will display an
error message.

4. If you need to revert to default settings, click More Actions > Restore Defaults.

5. Click OK to finalize your settings.

2.4 Setting Up Development Tools for the iOS Platform
In addition to general-purpose tools listed in Introduction to Installing the MAF
Extension with JDeveloper, you might want to set up an iPhone or iPad when getting
ready for development of a MAF application for the iOS platform (see How to Set Up
an iPhone or iPad).

Since iPhone and iPad simulators are included in the iOS SDK installation, which, in
turn, is included in Xcode installation, you do not need to separately install them. For
more information, see How to Set Up an iPhone or iPad Simulator.

2.4.1 How to Install Xcode and iOS SDK
You download Xcode from http://developer.apple.com/xcode/. This
download includes the iOS SDK.

After installing Xcode, you have to run it at least once and complete the Apple
licensing and setup dialogs. If these steps are not performed, any build and deploy
cycle from JDeveloper to Xcode or device simulator will fail with a "Return code 69"
error.

Note:

Since older versions of Xcode and iOS SDK are not available from the Mac
App Store, in order to download them you must obtain an Apple ID from
http://appleid.apple.com, and then register this Apple ID with the
Apple Developer Program to gain access to the Apple developer site at
http://developer.apple.com.

Setting Up Development Tools for the iOS Platform

2-6 Installing Oracle Mobile Application Framework

http://developer.apple.com/xcode/
http://appleid.apple.com
http://developer.apple.com

2.4.2 How to Set Up an iPhone or iPad
In your MAF application development and deployment, you can use either the
iPhone, iPad, or their simulators (see How to Set Up an iPhone or iPad Simulator). If
you are planning to use an actual iPhone or iPad, which is preferable for testing (see
the "Testing MAF Applications" section in Developing Mobile Applications with Oracle
Mobile Application Framework), you need to connect it to your computer to establish a
link between the two devices.

To deploy to an iOS-powered device, you need to have an iOS-powered device with a
valid license, certificates, and distribution profiles. For more information, see the
"Deploying Mobile Applications" chapter in Developing Mobile Applications with Oracle
Mobile Application Framework.

Note:

Since Apple's licensing terms and conditions may change, ensure that you
understand them, comply with them, and stay up to date with any changes.

2.4.3 How to Set Up an iPhone or iPad Simulator
In your MAF application development and deployment, you can use either the iOS-
powered device itself (see How to Set Up an iPhone or iPad) or its simulator.
Deploying to a simulator is usually much faster than deploying to a device, and it also
means that you do not have to sign the application first.

A simulator can be invoked automatically, without any additional setup.

Note:

Before attempting to deploy your application from JDeveloper to a device
simulator, you must first run the simulator.

If you are planning to use web services in your application and you are behind a
corporate firewall, you might need to configure the external network access. You do so
by modifying the network settings in the System Preferences on your development
computer. For more information, see the "Configuring the Browser Proxy Information"
section in Developing Mobile Applications with Oracle Mobile Application Framework.

2.5 Setting Up Development Tools for the Android Platform
In addition to the general-purpose tools listed in Introduction to Installing the MAF
Extension with JDeveloper, you might want to set up an Android-powered device
when getting ready for development of a MAF application for the Android platform
(see How to Set Up an Android-Powered Device).

Since emulators are included in the Android SDK installation, you do not need to
separately install them. However, you cannot use an emulator until you create its
configuration (see How to Set Up an Android Emulator).

To develop for the Android platform, you can use any operating system that is
supported by both JDeveloper and Android.

Setting Up Development Tools for the Android Platform

Setting Up the Development Environment 2-7

For more information, see the "Developer Tools" section of the Android Developers
website at http://developer.android.com/tools/index.html.

2.5.1 How to Install the Android SDK
Android SDK includes development tools that you need to build applications for
Android-powered devices. Since the Android SDK is modular, it allows you to
download components separately depending on your target Android platform and
your application requirements.

When choosing the platform, keep in mind that MAF supports Android 4.0.3 or later.

Before you begin:

Ensure that your environment meets the operating system, JDK version, and hardware
requirements listed in the "Get the Android SDK" section of the Android Developers
website at http://developer.android.com/sdk/index.html.

Note:

Ant and Linux requirements are not applicable to the MAF development
environment; Eclipse might be applicable depending on your IDE of choice.

To install the Android SDK:

1. Download the Android SDK starter package from http://
developer.android.com/sdk/index.html.

2. Complete the installation by following the instructions provided in the "Setting Up
an Existing IDE" section of the Android Developers website at http://
developer.android.com/sdk/installing.html.

Note:

If you are not planning to use Eclipse, skip step 3 in the Android SDK
installation instructions.

2.5.2 How to Set Up an Android-Powered Device
In your MAF application development and deployment, you can use either the
Android device itself, which is preferable for testing (see the "Testing MAF
Applications" section in Developing Mobile Applications with Oracle Mobile Application
Framework), or an emulator (see How to Set Up an Android Emulator.).

For information on how to set up the Android-powered device, follow the instructions
from the "Using Hardware Devices" section of the Android Developers website at
http://developer.android.com/tools/device.html.

Note:

You might experience issues when using USB connectivity for the device-
based debugging. For more information, see the "Testing and Debugging MAF
Applications" chapter in Developing Mobile Applications with Oracle Mobile
Application Framework.

Setting Up Development Tools for the Android Platform

2-8 Installing Oracle Mobile Application Framework

http://developer.android.com/tools/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/installing.html
http://developer.android.com/sdk/installing.html
http://developer.android.com/tools/device.html

Your target Android-powered device might not be listed in the USB device
driver's.inf file, resulting in the failure to install the Android Debug Bridge (ADB).
You can eliminate this issue as follows:

1. Find the correct values for your device.

2. Update the [Google.NXx86] and [Google.NTamd64] sections of the
android_winusb.inf file.

For more information, see the "Google USB Driver" section of the Android Developers
website at http://developer.android.com/sdk/win-usb.html.

2.5.3 How to Set Up an Android Emulator
In your MAF application development and deployment, you can use either the
Android device itself (see How to Set Up an Android-Powered Device) or its emulator.
Deploying to an emulator is usually much faster than deploying to a device, and it
also means that you do not have to sign the application first.

For information on how to create an emulator configuration called Android Virtual
Device (AVD), follow the instructions from the "Managing Virtual Devices" section of
the Android Developers website at http://developer.android.com/tools/
devices/index.html. When creating an AVD through the Create New Android
Virtual Device dialog (see "Managing AVDs with AVD Manager" at http://
developer.android.com/tools/devices/managing-avds.html), review all
the settings to ensure that configuration matches what you are planning to emulate. In
particular, you should verify the following:

• The Target field should define the desired Android platform level for proper
emulation.

• The CPU/ABI field should reflect the ARM or Intel Atom system image (see
Configuring AVD for Intel HAXM).

• The SD card field should be defined based on whether the application uploads files
or files install themselves to the SD card.

• Default settings for the Hardware field (see the "Hardware Options" table at
http://developer.android.com/tools/devices/managing-
avds.html#hardwareopts) should be acceptable for a typical MAF application.
For additional hardware capabilities you may want to use in your application, such
as cameras or geolocation services, create new properties.

You need to create an AVD for each Android platform on which you are planning to
test your application.

For information on how to use the emulator, see the "Using the Android Emulator"
section in the Android Developers website at http://developer.android.com/
tools/devices/emulator.html.

2.5.3.1 Configuring the Android Emulator

After the basic Android emulator setup is complete, you may choose to perform the
following configurations:

• Save the emulator state (see Saving the Emulator State)

• Create, save, and reuse the SD card (see Creating_ Saving_ and Reusing the SD
Card)

Setting Up Development Tools for the Android Platform

Setting Up the Development Environment 2-9

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/index.html
http://developer.android.com/tools/devices/managing-avds.html
http://developer.android.com/tools/devices/managing-avds.html
http://developer.android.com/tools/devices/managing-avds.html#hardwareopts
http://developer.android.com/tools/devices/managing-avds.html#hardwareopts
http://developer.android.com/tools/devices/emulator.html
http://developer.android.com/tools/devices/emulator.html

• Configure the network (see Configuring the Network)

• Configure the network proxy (see Configuring the Network Proxy)

2.5.3.1.1 Saving the Emulator State

You can reduce the emulator's load time by saving the emulator state or reusing the
saved state. To do so, you manipulate the avd files or folders that are located in the C:
\Users\username\.android\avd directory (on a Windows computer). Each avd
folder contains several files, such as userdata.img, userdata.qemu.img, and
cache.img. You can copy the cache.img file to another emulator's avd folder to use
that state with another emulator.

Alternatively, you can use the command line to run relevant commands, such as, for
example, -snapshot-list, -no-snapstorage, and so on. You can access these
commands through emulator -help command.

Caution:

When using this utility, keep in mind that in the process of loading, all
contents of the system, including the user data and SD card images, will be
overwritten with the contents they held when the snapshot was made. Unless
saved in a different snapshot, any changes will be lost.

2.5.3.1.2 Creating, Saving, and Reusing the SD Card

The "SD Card Emulation" section of the Android Developers website at http://
developer.android.com/tools/devices/emulator.html#sdcard lists
reasons for creating, saving, and reusing the SD card. You can perform these
operations by executing the following commands:

• To create an SD card:

C:\android sdk directory\tools>mksdcard -l SD500M 500M C:\Android\sd500m.img

• To list existing AVDs:

C:\android sdk directory\tools>android list avd

This produces a listing similar to the following:

Name: AndroidEmulator1
Device: Nexus S (Google)
Path: C:\Users\username\.android\avd\AndroidEmulator1.avd
Target: Android 4.2.2 (API level 17)
Tag/ABI: default/x86
Skin: 480x800

Name: AndroidEmulator2
Device: Nexus S (Google)
Path: C:\Users\username\.android\avd\AndroidEmulator2.avd
Target: Android 4.2.2 (API level 17)
Tag/ABI: default/armeabi-v7a
Skin: 480x800
Sdcard: 500M

• To start the AndroidEmulator2 with the SD card that has just been created:

C:\Android\android sdk directory\tools>emulator -avd AndroidEmulator2 -sdcard C:
\Android\sd500m.img

Setting Up Development Tools for the Android Platform

2-10 Installing Oracle Mobile Application Framework

http://developer.android.com/tools/devices/emulator.html#sdcard
http://developer.android.com/tools/devices/emulator.html#sdcard

• To list the running Android emulator instances:

C:\Android\android sdk directory\platform-tools>adb devices

• To copy a test image to the SD card (this requires the emulator to restart):

C:\Android\sdk\platform-tools>adb push test.png sdcard/Pictures
85 KB/s (1494 bytes in 0.017s)

For more information, see the Android Tools Help at http://
developer.android.com/tools/help/index.html.

2.5.3.1.3 Configuring the Network

From the Android emulator, you can access your host computer through the 10.0.2.2
IP. To connect to the emulator from the host computer, you have to execute the adb
command from a command line on your development computer or from a script to set
up the port forwarding.

To forward socket connections, execute

adb forward local remote

using the following forward specifications:

• tcp:port

• localabstract:unix domain socket name

• localreserved:unix domain socket name

• localfilesystem:unix domain socket name

• dev:character device name

• jdwp:process pid (remote only)

For example, an arbitrary client can request connection to a server running on the
emulator at port 55000 as follows:

adb -e forward tcp:8555 tcp:55000

In this example, from the host computer, the client would connect to localhost:
8555 and communicate through that socket.

For more information, see the "Android Debug Bridge" section in the Android
Developers website at http://developer.android.com/tools/help/
adb.html.

2.5.3.1.4 Configuring the Network Proxy

If your development computer is behind a corporate firewall, you might need to
configure a proxy by using one of the following techniques:

1. Execute this command to start the emulator and initiate its connection with the
browser:

emulator -avd myavd -http-proxy myproxy

2. Start the emulator and then use its Settings utility as follows:

a. Select Wireless & Networks

b. Select Mobile Networks > Access Point Names

Setting Up Development Tools for the Android Platform

Setting Up the Development Environment 2-11

http://developer.android.com/tools/help/index.html
http://developer.android.com/tools/help/index.html
http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html

c. Select the appropriate internet option

d. Set the proxy, port, username, and password using the Edit access point list

2.5.3.2 Speeding Up the Android Emulator

The Intel Hardware Accelerated Execution Manager (Intel HAXM) is designed to
accelerate the Android-powered device emulator by making use of Intel drivers.

The Intel HAXM is available for computers running Microsoft Windows, Mac OS X,
and a separate kernel-based virtual machine option (KRM) for Linux. See http://
software.intel.com/en-us/android/articles/intel-hardware-
accelerated-execution-manager to access installation guides and detailed
descriptions of system requirements for each operating system.

Regardless of which operating system your development computer is running on, it
must have the following:

• Version 17 or later of the Android SDK installed (see How to Install the Android
SDK).

Note:

Currently, the recommended version for MAF development is 21.

• Intel processor with support for Intel VT-x, EM64T and Execute Disable (XD) Bit
functionality at the BIOS level.

• At least 1 GB of available RAM.

To download the Intel HAXM, either use the Android SDK Manager (see Speeding Up
the Android Emulator on Intel Architecture) or use the following Intel locations:

• Download for Microsoft Windows

• Download for Mac OS X

• Download for Linux

To install the Intel HAXM, follow the steps described in the "Speeding Up the Android
Emulator on Intel Architecture" article available at http://
software.intel.com/en-us/android/articles/speeding-up-the-
android-emulator-on-intel-architecture. It is particularly important to
configure AVD (see Configuring AVD for Intel HAXM).

If your development computer is running either Microsoft Windows 8.n or later, or
Mac OS X 10.9.n or later, you have to apply a Hotfix provided by Intel before using the
emulator with the Intel HAXM.

Note:

If you do not apply the Hotfix, your computer will freeze and you will lose
your work.

To download the Hotfix, use the following locations:

• Download for Microsoft Windows

Setting Up Development Tools for the Android Platform

2-12 Installing Oracle Mobile Application Framework

http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager-end-user-license-agreement
http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager-end-user-license-agreement-macosx
http://software.intel.com/en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture
http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager-end-user-license-agreement-windows-hotfix

• Download for Mac OS X

For more information, see the following:

• Installation Guide and System Requirements - Windows

• Installation Guide and System Requirements - Mac OS X

• Installation Guide and System Requirements - Linux

2.5.3.2.1 Configuring AVD for Intel HAXM

When enabling the Intel HAXM, ensure that you download the Intel system image for
the Android API level using the Android SDK Manager (see Figure 2-4). The following
steps described in Speeding Up the Android Emulator on Intel Architecture guide you
through the configuration process:

• After you have installed the Android SDK, open the SDK Manager and then find
the Intel HAXM in the extras section.

• Select Intel x86 Emulator Accelerator (HAXM) and click Install packages.

Once you have installed the package, the status changes to Installed, which is not
accurate: the SDK only copies the Intel HAXM executable on your computer; you
have to manually install the executable.

Figure 2-4 Downloading Intel System Image in Android SDK Manager

Setting Up Development Tools for the Android Platform

Setting Up the Development Environment 2-13

http://software.intel.com/en-us/android/articles/intel-hardware-accelerated-execution-manager-end-user-license-agreement-macos-hotfix
http://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-windows
http://software.intel.com/en-us/android/articles/installation-instructions-for-intel-hardware-accelerated-execution-manager-mac-os-x
http://software.intel.com/en-us/blogs/2012/03/12/how-to-start-intel-hardware-assisted-virtualization-hypervisor-on-linux-to-speed-up-intel-android-x86-gingerbread-emulator
http://software.intel.com/en-us/android/articles/speeding-up-the-android-emulator-on-intel-architecture

• To install the Intel HAXM executable, depending on your development platform
search your hard drive for one of the following:

– On Windows, search for IntelHaxm.exe

– On Mac OS X, search for IntelHaxm.dmg

If you accepted default settings, the executable should be located at C:\Program
Files\Android\android-sdk\extras\Intel
\Hardware_Accelerated_Execution_Manager\IntelHaxm.exe on
Windows.

The Intel HAXM only functions in combination with one of the Intel Atom processor
x86 system images, which are available for Android 2.3.3 (API 10), 4.0.3 (API 15), 4.1.2
(API 16), 4.2.2 (API 17), 4.4 (API 19), 4.4W (API 20), 5.0 (API 21). These system images
can be installed exactly like the ARM-based images through the Android SDK
Manager.

Figure 2-5 Installing Intel Atom System Image

To complete the process, use the AVD Manager to create a new virtual device that has
hardware-accelerated emulation by selecting Intel Atom (x86) as the CPU/ABI, (see
Figure 2-6).

Setting Up Development Tools for the Android Platform

2-14 Installing Oracle Mobile Application Framework

Note:

This option appears in the list only if you have the Intel x86 system image
installed.

Figure 2-6 Creating Accelerated AVD

2.6 Testing the Environment Setup
You can test your environment setup as follows:

1. In JDeveloper, open the HelloWorld sample application by selecting the
HelloWorld.jws file (see the "Mobile Application Framework Sample
Applications" appendix in Developing Mobile Applications with Oracle Mobile
Application Framework).

Testing the Environment Setup

Setting Up the Development Environment 2-15

2. Select Application > Deploy from the main menu.

For more information, see the "Deploying Mobile Applications" chapter in
Developing Mobile Applications with Oracle Mobile Application Framework.

3. From the drop-down menu, select the deployment profile for the platform to which
you wish to deploy the application.

4. Since using an iOS-powered device simulator or Android-powered device
emulator to test the environment setup is preferable because it does not require
signing of the application, you should select one of the following deployment
actions using the Deploy dialog:

• For iOS, select Deploy application to simulator, as Figure 2-7 shows.

Figure 2-7 Selecting Deployment Action for iOS

• For Android, select Deploy application to emulator, as Figure 2-8 shows.
Ensure that the emulator is running before you start the deployment.

Testing the Environment Setup

2-16 Installing Oracle Mobile Application Framework

Figure 2-8 Selecting Deployment Action for Android

5. Click Next on the Deploy dialog to verify the Summary page, and then click Finish.

For more information, see one of the following sections in Developing Mobile
Applications with Oracle Mobile Application Framework:

• "How to Deploy an iOS Application to an iOS Simulator"

• "How to Deploy an Android Application to an Android Emulator"

For more information on deployment, see the "Deploying Mobile Applications"
chapter in Developing Mobile Applications with Oracle Mobile Application Framework

After a successful deployment (which might take a few minutes), your iOS-powered
device simulator or Android-powered device emulator will display the HelloWorld
application icon that you have to activate to launch the application.

Testing the Environment Setup

Setting Up the Development Environment 2-17

Testing the Environment Setup

2-18 Installing Oracle Mobile Application Framework

3
Migrating Your Application to MAF 2.2.0

This chapter provides information about migrating applications created using earlier
releases of MAF and ADF Mobile to MAF 2.2.0.

This chapter includes the following sections:

• Migrating an Application to MAF 2.2.0

• Migrating to JDK 8 in MAF 2.2.0

• Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0

• Migrating ADF Mobile Applications

• Configuring your Migrated MAF Application to Use the Full Screen on iOS Devices

• Retaining Legacy Behavior When Navigating a MAF Application Using Android’s
Back Button

• Migrating to New cacerts File for SSL in MAF 2.2.0

3.1 Migrating an Application to MAF 2.2.0
The MAF 2.1.0 release introduced significant changes described in this chapter. Use
the information in this chapter if you migrate an application created in a pre-MAF
2.1.0 release to MAF 2.2.0. If you migrate an application to MAF 2.2.0 that was created
in MAF 2.1.0 or previously migrated to MAF 2.2.0, MAF will have made already made
the changes required by migration to JDK 8, management of Cordova plugins, and a
new cacerts file.

MAF 2.1.0 used newer versions of Apache Cordova and Java. It also changed the way
that JDeveloper registered plugins in your MAF application. For SSL, it delivered a
cacerts file that contains new CA root certificates.

Read the subsequent sections in this chapter that describe how these changes impact
the migration of your MAF application to MAF 2.1.0 or later.

Finally, MAF 2.1.0 delivered an updated SQLite database and JDBC driver. Review,
and migrate as necessary, any code in your migrated MAF application that connects to
the SQLite database. For more information about how to connect to the SQLite
database, see the "Using the Local SQLite Database" section in the Developing Mobile
Applications with Oracle Mobile Application Framework.

3.2 Migrating to JDK 8 in MAF 2.2.0
MAF applications that you create in MAF 2.1.0 and later use JDK 8. You specify the
location of your JDK 8 installation the first time you start JDeveloper after installing
the MAF extension, as described in Installing the MAF Extension in JDeveloper.

Migrating Your Application to MAF 2.2.0 3-1

If you migrate a MAF application that compiled with an earlier version of Java, note
that MAF 2.1.0 and later requires JDK 8 and compiles applications using the Java SE
Embedded 8 compact2 profile. When you open an application that you migrated from
a pre-MAF 2.1.0 release in MAF 2.2.0 for the first time, JDeveloper makes the following
changes:

• Renames the configuration file that specifies the startup parameters of the JVM
from cvm.properties to maf.properties. For more information about the
maf.properties file, see the "How to Enable Debugging of Java Code and
JavaScript" section in Developing Mobile Applications with Oracle Mobile Application
Framework.

• Replaces instances (if any) of the following import statement in the application's
Java source files:

com.sun.util.logging

With:

java.util.logging

• Replaces the following entries in the application's logging.properties file

.handlers=com.sun.util.logging.ConsoleHandler

.formatter=com.sun.util.logging.SimpleFormatter

With:

.handlers=java.util.logging.ConsoleHandler

.formatter=java.util.logging.SimpleFormatter

For more information about the logging.properties file, see the "How to
Configure Logging Using the Properties File" section in Developing Mobile
Applications with Oracle Mobile Application Framework.

3.3 Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0
MAF applications developed using earlier releases of MAF (prior to MAF 2.1.0)
registered plugins in the maf-application file. Release MAF 2.1.0 and later
registers plugins in the maf-plugins.xml file. JDeveloper makes the following
changes to an application from an earlier release that uses plugins when you migrate
the application:

• Comments out entries in the maf-application.xml file that referenced plugins.
For example, JDeveloper comments out entries such as the following:

<!--<adfmf:cordovaPlugins>
 <adfmf:plugin fullyQualifiedName="BarcodeScanner"
 implementationClass="com.phonegap.plugins.
 barcodescanner.BarcodeScanner" platform="Android"
 name="BarcodeScanner">

</adfmf:cordovaPlugins>-->

• Registers the plugin in the maf-plugins.xml file, as shown in the following
example:

<cordova-plugins>
 ...
 <cordova-plugin id="c3" pluginId="org.apache.cordova.barcodeScanner">

Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0

3-2 Installing Oracle Mobile Application Framework

 <platform id="p3" name="ios" enabled="true"/>
 <platform id="p4" name="android" enabled="false"/>
 </cordova-plugin>
 </cordova-plugins>

To complete the migration and make sure that your migrated MAF application can use
the plugins it used previously, verify that the:

• Version of the plugin is supported by MAF.

MAF applications in 2.2.0 use Cordova 3.7.2 on Android and Cordova 3.8.0 on iOS.

Obtain a newer version of the plugin if the plugin was created using an earlier
release of Cordova.

• Set the relative path to the plugin so that the MAF application's maf-
plugins.xml file correctly references the plugin. For more information, see the
"Registering Additional Plugins in Your MAF Application" section in Developing
Mobile Applications with Oracle Mobile Application Framework.

If the maf-plugins.xml file does not correctly reference a plugin using a relative
path, the overview editor for the maf-application.xml file's Path* field which
requires a value is empty and the maf-plugins.xml displays a validation failure,
as shown in Figure 3-1.

Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0

Migrating Your Application to MAF 2.2.0 3-3

Figure 3-1 MAF Application that Does Not Specify Path to Plugin

3.4 Migrating ADF Mobile Applications
MAF automatically migrates the configuration of applications written in Versions
11.1.2.3.0 and 11.1.2.4.0 of ADF Mobile. After you open the workspace (.jws) file of an
ADF Mobile application, MAF alerts you that the application is not the current version
by presenting the Open Warning dialog (illustrated in Figure 3-2), that prompts you to
continue with the migration, or dismiss the dialog and close the file.

Migrating ADF Mobile Applications

3-4 Installing Oracle Mobile Application Framework

Figure 3-2 Open Warning Dialog

MAF writes the status of the migration to the Log window, as illustrated by Figure 3-3.
The migration process also logs the following warning if it detects that the application
to migrate uses the old configuration service API.

The MAF 2.0 Configuration Service API is not backwards compatible with previous
versions and cannot be migrated automatically. Refer to Section 9.3 "Migrating
the Configuration Service API" in Oracle Fusion Middleware Developing Mobile
Applications with Oracle Mobile Application Framework 2.0. for information on
migrating to the new API.

For more information, see the "Migrating the Configuration Service" section in
Developing Mobile Applications with Oracle Mobile Application Framework.

Figure 3-3 Migration Log

Migrating ADF Mobile Applications

Migrating Your Application to MAF 2.2.0 3-5

3.4.1 What Happens When You Migrate an ADF Mobile Application
Table 3-1 describes how migration affects ADF Mobile artifacts.

Table 3-1 Migration of ADF Mobile Artifacts and Configuration

File Name Change

adfmf-feature.xml The migration makes the following changes:

• Renames the file as maf-feature.xml.
• Replaces the credentials attribute with

securityEnabled=true.
• Transcribes the credentials attribute definition (defined

as either local or remote) as a hybrid connection
definition (<authenticationMode
value="hybrid"/>) in the connections.xml file.

adfmf-
application.xml

The migration renames the file as maf-application.xml.

connections.xml The migration removes the secure SOAP web service
connections defined by the <policy-references> element
from the connections.xml file. These definitions are
populated to the wsm-assembly.xml file. The migration
creates stub connections.xml and wsm-assembly.xml files
if the ADF Mobile application does not include a
connections.xml file. If the ADF Mobile application
includes a connections.xml that has no web services policy
definitions, then the migration creates a stub wsm-assembly
file.

adfmf-config.xml The migration renames the file as maf-config.xml. It also
adds the default skin version for the skin family if the skin
family is the default skin family and the skin version is not
specified. For example, the maf-config.xml may be modified
to include the following values:

<skin-family>mobileAlta</skin-family> <skin-
version>v1.1</skin-version>

adfmf-skins.xml The migration renames the file as maf-skins.xml.

The application migrates from the ADF Mobile Framework technology to use the
Mobile Application Framework technology as a project feature. Figure 3-4 shows the
Features page for an application controller project that uses the Mobile Application
Framework technology. Choose Project Properties > Features to view this dialog.

Migrating ADF Mobile Applications

3-6 Installing Oracle Mobile Application Framework

Figure 3-4 Mobile Application Framework Project Feature

MAF does not override the icon, splash screen, or navigation bar images created for
the ADF Mobile application; the image files within the application controller's
resources file are retained. Likewise, any images used for application features are
also retained.

3.4.1.1 About Migrating Web Service Policy Definitions

MAF stores web service policy definitions in the wsm-assembly.xml file. ADF
Mobile applications store this information in the connections.xml file. Example 3-1
illustrates oracle/wss_username_token_client_policy by the <policy-
references> element in the connections.xml file.

Example 3-2 illustrates the policy defined in the wsm-assembly.xml file.

Example 3-1 The connections.xml File

<policy-references xmlns="http://oracle.com/adf">policy-reference category="security"
 uri="oracle/wss_username_token_client_policy"
 enabled="true"
 id="oracle/wss_username_token_client_policy" xmlns=""/>
</policy-references>

Migrating ADF Mobile Applications

Migrating Your Application to MAF 2.2.0 3-7

Example 3-2 The wsm-assembly.xml File

<wsp:PolicyReference xmlns:wsp="http://www.w3.org/ns/ws-policy"
 DigestAlgorithm="http://www.w3.org/ns/ws-policy/Sha1Exc"
 URI="oracle/wss_username_token_client_policy"
 orawsp:status="enabled"
 orawsp:id="2"/>

3.4.2 What You May Need to Know About FARs in Migrated Applications
MAF does not migrate the adfmf-feature.xml file packaged within a Feature
Archive (FAR) file. You replace the ADF Mobile FARs used by a migrated application
to make sure that the credentials attribute has been replaced by
securityEnabled=true in the FAR's maf-feature.xml file.

After you migrate the application:

1. Choose Application Properties > Libraries and Classpath.

2. Select the FAR and click Remove.

3. Import the FAR containing the migrated view controller.

4. Migrate the ADF Mobile application that contains the view controller project that
was packaged as a FAR.

Note:

A FAR cannot include both an adfmf-feature.xml file and a maf-
feature.xml file.

a. Deploy the view controller project as a FAR.

b. Import the FAR into the migrated application.

For more information about how to import a FAR into an application, see the "How to
Use FAR Content in a MAF Application" section of Developing Mobile Applications with
Oracle Mobile Application Framework.

3.5 Configuring your Migrated MAF Application to Use the Full Screen on
iOS Devices

MAF applications that you create using the MAF 2.2.0 release and later use the full
screen by default on devices running iOS 7 or later.

This means that the iOS device’s status bar appears on top of the content rendered by
the MAF application. Content from the MAF application appears overlaid by the
status icons of the status bar, as shown in Figure 3-5. This happens because the iOS
device’s status bar’s background is transparent. In Figure 3-5, a MAF application’s
yellow panel header component appears overlaid by the status bar’s information
about network, time, and battery.

The status bar that renders in an iOS device supports two styles: light and dark. MAF
provides APIs to get and set the status bar style on the iOS device so that it renders
appropriately when the MAF application renders in the background. Apply the light
style to the status bar when the status bar renders on a MAF application with a dark
background. Apply the dark style to the status bar when the status bar renders on a
light background.

Configuring your Migrated MAF Application to Use the Full Screen on iOS Devices

3-8 Installing Oracle Mobile Application Framework

MAF provides the following JavaScript methods to get and set the style of your MAF
application on an iOS device:

adf.mf.api.getStatusBarStyle = function(callback)
adf.mf.api.setStatusBarStyle = function(style, callback)

For more information about these methods, see JSDoc Reference for Oracle Mobile
Application Framework.

MAF also provides the following Java methods in
oracle.adfmf.framework.api.AdfmfContainerUtilities that you can use
to set the status bar style from a managed bean or lifecycle listener in your MAF
application.

getStatusBarStyle()
setStatusBarStyle(AdfmfContainerUtilities.STATUS_BAR_STYLE color)

For more information about these methods, see Java API Reference for Oracle Mobile
Application Framework.

The MAF application ignores these methods on non-iOS devices. For more
information about using Java and JavaScript APIs in your MAF application, see the
"Local HTML and Application Container APIs" appendix in Developing Mobile
Applications with Oracle Mobile Application Framework.

Figure 3-5 MAF Application Using the Full Screen on an iOS Device

MAF applications migrated to MAF 2.2.0 do not exhibit the just-described behavior.
Instead, the iOS device’s status bar appears above the MAF application. You can
configure a MAF application that you migrate to MAF 2.2.0 to use the full screen on
devices running iOS 7 or later.

3.5.1 How to Configure your Migrated MAF Application to Use an iOS Device’s Full
Screen

You configure a MAF application that you migrate to MAF 2.2.0 to use the full screen
on a device running iOS 7 or later by setting the <fullscreenLayout> element in
the maf-config.xml file.

To configure a migrated MAF application to use the full screen on an iOS device:

1. In the Applications window, expand the Application Resources panel.

2. In the Application Resources panel, expand Descriptors and then ADF META-
INF.

3. Double-click the maf-config.xml file

4. In the Structure window, right-click the adfmf-config node and choose Go to
Properties.

Configuring your Migrated MAF Application to Use the Full Screen on iOS Devices

Migrating Your Application to MAF 2.2.0 3-9

5. In the Properties window, choose fullscreen from the fullscreenLayout
dropdown menu.

3.5.2 What Happens When You Configure your Migrated MAF Application to Use an iOS
Device’s Full Screen

JDeveloper writes the entry shown in the following example to the maf-config.xml
file of your migrated MAF application.

Example 3-3 Configuration in maf-config.xml to Render a Migrated MAF
Application on the Full Screen of an iOS Device

<?xml version="1.0" encoding="UTF-8" ?>
 <adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 ...
 <fullscreenLayout>fullscreen</fullscreenLayout>
</adfmf-config>

3.6 Retaining Legacy Behavior When Navigating a MAF Application Using
Android’s Back Button

MAF 2.2.0 introduces a change in the way that MAF applications created using this
release respond to usage of the Android system´s Back button. A MAF application that
you created in a previous release and migrate to MAF 2.2.0 or later uses the new
behavior.

Figure 3-6 shows a navigation flow on a MAF application where an end user has
navigated between three application features (Customer, Sales, and Billing) to the
Billing Page 3 page of the Billing application feature.

Figure 3-6 Navigation Flow Between Application Features and Pages in a MAF Application

Prior to Release MAF 2.2.0, the default MAF application behavior in response to an
end user tapping Android’s system Back button on:

• Billing Page 3 was to navigate to the Sales application feature

• Sales application feature was to navigate to the Customers application feature

Retaining Legacy Behavior When Navigating a MAF Application Using Android’s Back Button

3-10 Installing Oracle Mobile Application Framework

• Customer application feature was to close the MAF application

In MAF 2.2.0 and later, the default MAF application behavior in response to an end
user tapping Android’s system Back button on:

• Billing Page 3 is to navigate to Billing Page 2

• Billing Page 2 is to navigate to Billing Page 1

• Billing Page 1 is to hibernate the MAF application

You can customize how your MAF application responds to an end user´s tap of the
Android system´s Back button, as described in the “Navigating a MAF Application
Using Android’s Back Button” section of the Developing Mobile Applications with Oracle
Mobile Application Framework.

You can also configure your MAF application to exhibit the pre-MAF 2.2.0 application
behavior (navigate between application features) by setting a property in the maf-
config.xml, as described in How to Retain Pre-MAF 2.2.0 Application Behavior in
Response to Usage of Android´s Back Button.

3.6.1 How to Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of
Android´s Back Button

You configure the legacyBack element in the maf-config.xml file to make your
MAF application exhibit pre-MAF 2.2.0 behavior when an end user taps Android´s
Back button.

To Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of Android´s
Back Button:

1. In the Applications window, double-click the maf-config.xml file.

By default, this is in the Application Resources pane under the Descriptors and
ADF META-INF nodes.

2. In the maf-config.xml file, set the value of the legacyBack element to true, as
shown in Example 3-4.

Example 3-4 legacyBack element to Retain Pre-MAF 2.2.0 Application Behavior for
Usage of Android Back Button

<?xml version="1.0" encoding="UTF-8" ?>
<adfmf-config xmlns="http://xmlns.oracle.com/adf/mf/config">
 ...
 <legacyBack>true</legacyBack>
</adfmf-config>

3.7 Migrating to New cacerts File for SSL in MAF 2.2.0
MAF 2.1.0 delivered a new cacerts file for use in MAF applications. Make sure that
the cacerts file packaged in the MAF application that you publish for your end users
to install contains the same CA root certificates as the HTTPS server that end users
connect to when they use your MAF application.

You may need to import new certificates to your MAF application's cacerts file if
the HTTPS server contains certificates not present in your MAF application's cacerts
file. Similarly, system administrators for the HTTPS servers that your MAF application

Migrating to New cacerts File for SSL in MAF 2.2.0

Migrating Your Application to MAF 2.2.0 3-11

connects to may need to import new certificates if your MAF application uses a
certificate not present on the HTTPS server.

Use JDK 8's keytool utility to view and manage the certificates in your MAF
application's cacerts file. The following example demonstrates how you might use
JDK 8's keytool utility to display the list of certificates in a cacerts file:

JDK8install/bin/keytool -list -v -keystore dirPathToCacertsFile/
cacerts –storepass changeit | grep "Issuer:"

For more information about using the JDK 8's keytool utility to manage certificates,
see http://docs.oracle.com/javase/8/docs/technotes/tools/
#security. For example, to use the keytool utility on Windows, see http://
docs.oracle.com/javase/8/docs/technotes/tools/windows/
keytool.html. For UNIX-based operating systems, see http://
docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html.

For more information about the cacerts file and using SSL to secure your MAF
application, see the "Supporting SSL" section in Developing Mobile Applications with
Oracle Mobile Application Framework.

Example 3-5 lists the issuers of CA root certificates included in MAF 2.1.0's cacerts
file. Use JDK 8's keytool utility, as previously described, to manage the certificates in
this file to meet the requirements of the environment where your MAF application will
be used.

Example 3-5 CA Root Certificate Issuers in MAF 2.1.0 cacerts File

Issuer: CN=DigiCert Assured ID Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: CN=TC TrustCenter Class 2 CA II, OU=TC TrustCenter Class 2 CA, O=TC TrustCenter GmbH, C=DE
Issuer: EMAILADDRESS=premium-server@thawte.com, CN=Thawte Premium Server CA, OU=Certification
Services Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=SwissSign Platinum CA - G2, O=SwissSign AG, C=CH
Issuer: CN=SwissSign Silver CA - G2, O=SwissSign AG, C=CH
Issuer: EMAILADDRESS=server-certs@thawte.com, CN=Thawte Server CA, OU=Certification Services
Division, O=Thawte Consulting cc, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=Equifax Secure eBusiness CA-1, O=Equifax Secure Inc., C=US
Issuer: CN=SecureTrust CA, O=SecureTrust Corporation, C=US
Issuer: CN=UTN-USERFirst-Client Authentication and Email, OU=http://www.usertrust.com, O=The
USERTRUST Network, L=Salt Lake City, ST=UT, C=US
Issuer: EMAILADDRESS=personal-freemail@thawte.com, CN=Thawte Personal Freemail CA, OU=Certification
Services Division, O=Thawte Consulting, L=Cape Town, ST=Western Cape, C=ZA
Issuer: CN=AffirmTrust Networking, O=AffirmTrust, C=US
Issuer: CN=Entrust Root Certification Authority, OU="(c) 2006 Entrust, Inc.", OU=www.entrust.net/CPS
is incorporated by reference, O="Entrust, Inc.", C=US
Issuer: CN=UTN-USERFirst-Hardware, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: CN=Certum CA, O=Unizeto Sp. z o.o., C=PL
Issuer: CN=AddTrust Class 1 CA Root, OU=AddTrust TTP Network, O=AddTrust AB, C=SE
Issuer: CN=Entrust Root Certification Authority - G2, OU="(c) 2009 Entrust, Inc. - for authorized use
only", OU=See www.entrust.net/legal-terms, O="Entrust, Inc.", C=US
Issuer: OU=Equifax Secure Certificate Authority, O=Equifax, C=US
Issuer: CN=QuoVadis Root CA 3, O=QuoVadis Limited, C=BM
Issuer: CN=QuoVadis Root CA 2, O=QuoVadis Limited, C=BM
Issuer: CN=DigiCert High Assurance EV Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 1 Policy
Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network
Issuer: CN=Equifax Secure Global eBusiness CA-1, O=Equifax Secure Inc., C=US
Issuer: CN=GeoTrust Universal CA, O=GeoTrust Inc., C=US
Issuer: OU=Class 3 Public Primary Certification Authority, O="VeriSign, Inc.", C=US
Issuer: CN=thawte Primary Root CA - G3, OU="(c) 2008 thawte, Inc. - For authorized use only",

Migrating to New cacerts File for SSL in MAF 2.2.0

3-12 Installing Oracle Mobile Application Framework

http://docs.oracle.com/javase/8/docs/technotes/tools/#security
http://docs.oracle.com/javase/8/docs/technotes/tools/#security
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
http://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

OU=Certification Services Division, O="thawte, Inc.", C=US
Issuer: CN=thawte Primary Root CA - G2, OU="(c) 2007 thawte, Inc. - For authorized use only",
O="thawte, Inc.", C=US
Issuer: CN=Deutsche Telekom Root CA 2, OU=T-TeleSec Trust Center, O=Deutsche Telekom AG, C=DE
Issuer: CN=Buypass Class 3 Root CA, O=Buypass AS-983163327, C=NO
Issuer: CN=UTN-USERFirst-Object, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: CN=GeoTrust Primary Certification Authority, O=GeoTrust Inc., C=US
Issuer: CN=Buypass Class 2 Root CA, O=Buypass AS-983163327, C=NO
Issuer: CN=Baltimore CyberTrust Code Signing Root, OU=CyberTrust, O=Baltimore, C=IE
Issuer: OU=Class 1 Public Primary Certification Authority, O="VeriSign, Inc.", C=US
Issuer: CN=Baltimore CyberTrust Root, OU=CyberTrust, O=Baltimore, C=IE
Issuer: OU=Starfield Class 2 Certification Authority, O="Starfield Technologies, Inc.", C=US
Issuer: CN=Chambers of Commerce Root, OU=http://www.chambersign.org, O=AC Camerfirma SA CIF
A82743287, C=EU
Issuer: CN=T-TeleSec GlobalRoot Class 3, OU=T-Systems Trust Center, O=T-Systems Enterprise Services
GmbH, C=DE
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G5, OU="(c) 2006 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=T-TeleSec GlobalRoot Class 2, OU=T-Systems Trust Center, O=T-Systems Enterprise Services
GmbH, C=DE
Issuer: CN=TC TrustCenter Universal CA I, OU=TC TrustCenter Universal CA, O=TC TrustCenter GmbH, C=DE
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G4, OU="(c) 2007 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=VeriSign Class 3 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=XRamp Global Certification Authority, O=XRamp Security Services Inc,
OU=www.xrampsecurity.com, C=US
Issuer: CN=Class 3P Primary CA, O=Certplus, C=FR
Issuer: CN=Certum Trusted Network CA, OU=Certum Certification Authority, O=Unizeto Technologies S.A.,
C=PL
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 3
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=GlobalSign, O=GlobalSign, OU=GlobalSign Root CA - R3
Issuer: CN=UTN - DATACorp SGC, OU=http://www.usertrust.com, O=The USERTRUST Network, L=Salt Lake
City, ST=UT, C=US
Issuer: OU=Security Communication RootCA2, O="SECOM Trust Systems CO.,LTD.", C=JP
Issuer: CN=GTE CyberTrust Global Root, OU="GTE CyberTrust Solutions, Inc.", O=GTE Corporation, C=US
Issuer: OU=Security Communication RootCA1, O=SECOM Trust.net, C=JP
Issuer: CN=AffirmTrust Commercial, O=AffirmTrust, C=US
Issuer: CN=TC TrustCenter Class 4 CA II, OU=TC TrustCenter Class 4 CA, O=TC TrustCenter GmbH, C=DE
Issuer: CN=VeriSign Universal Root Certification Authority, OU="(c) 2008 VeriSign, Inc. - For
authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=GlobalSign, O=GlobalSign, OU=GlobalSign Root CA - R2
Issuer: CN=Class 2 Primary CA, O=Certplus, C=FR
Issuer: CN=DigiCert Global Root CA, OU=www.digicert.com, O=DigiCert Inc, C=US
Issuer: CN=GlobalSign Root CA, OU=Root CA, O=GlobalSign nv-sa, C=BE
Issuer: CN=thawte Primary Root CA, OU="(c) 2006 thawte, Inc. - For authorized use only",
OU=Certification Services Division, O="thawte, Inc.", C=US
Issuer: CN=Starfield Root Certificate Authority - G2, O="Starfield Technologies, Inc.", L=Scottsdale,
ST=Arizona, C=US
Issuer: CN=GeoTrust Global CA, O=GeoTrust Inc., C=US
Issuer: CN=Sonera Class2 CA, O=Sonera, C=FI
Issuer: CN=Thawte Timestamping CA, OU=Thawte Certification, O=Thawte, L=Durbanville, ST=Western Cape,
C=ZA
Issuer: CN=Sonera Class1 CA, O=Sonera, C=FI
Issuer: CN=QuoVadis Root Certification Authority, OU=Root Certification Authority, O=QuoVadis
Limited, C=BM
Issuer: CN=AffirmTrust Premium ECC, O=AffirmTrust, C=US
Issuer: CN=Starfield Services Root Certificate Authority - G2, O="Starfield Technologies, Inc.",
L=Scottsdale, ST=Arizona, C=US

Migrating to New cacerts File for SSL in MAF 2.2.0

Migrating Your Application to MAF 2.2.0 3-13

Issuer: EMAILADDRESS=info@valicert.com, CN=http://www.valicert.com/, OU=ValiCert Class 2 Policy
Validation Authority, O="ValiCert, Inc.", L=ValiCert Validation Network
Issuer: CN=AAA Certificate Services, O=Comodo CA Limited, L=Salford, ST=Greater Manchester, C=GB
Issuer: CN=America Online Root Certification Authority 2, O=America Online Inc., C=US
Issuer: CN=AddTrust Qualified CA Root, OU=AddTrust TTP Network, O=AddTrust AB, C=SE
Issuer: CN=KEYNECTIS ROOT CA, OU=ROOT, O=KEYNECTIS, C=FR
Issuer: CN=America Online Root Certification Authority 1, O=America Online Inc., C=US
Issuer: CN=VeriSign Class 2 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: CN=AddTrust External CA Root, OU=AddTrust External TTP Network, O=AddTrust AB, C=SE
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 2
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=GeoTrust Primary Certification Authority - G3, OU=(c) 2008 GeoTrust Inc. - For authorized
use only, O=GeoTrust Inc., C=US
Issuer: CN=GeoTrust Primary Certification Authority - G2, OU=(c) 2007 GeoTrust Inc. - For authorized
use only, O=GeoTrust Inc., C=US
Issuer: CN=SwissSign Gold CA - G2, O=SwissSign AG, C=CH
Issuer: CN=Entrust.net Certification Authority (2048), OU=(c) 1999 Entrust.net Limited,
OU=www.entrust.net/CPS_2048 incorp. by ref. (limits liab.), O=Entrust.net
Issuer: OU=ePKI Root Certification Authority, O="Chunghwa Telecom Co., Ltd.", C=TW
Issuer: CN=Global Chambersign Root - 2008, O=AC Camerfirma S.A., SERIALNUMBER=A82743287, L=Madrid
(see current address at www.camerfirma.com/address), C=EU
Issuer: CN=Chambers of Commerce Root - 2008, O=AC Camerfirma S.A., SERIALNUMBER=A82743287, L=Madrid
(see current address at www.camerfirma.com/address), C=EU
Issuer: OU=Go Daddy Class 2 Certification Authority, O="The Go Daddy Group, Inc.", C=US
Issuer: CN=AffirmTrust Premium, O=AffirmTrust, C=US
Issuer: CN=VeriSign Class 1 Public Primary Certification Authority - G3, OU="(c) 1999 VeriSign, Inc.
- For authorized use only", OU=VeriSign Trust Network, O="VeriSign, Inc.", C=US
Issuer: OU=Security Communication EV RootCA1, O="SECOM Trust Systems CO.,LTD.", C=JP
Issuer: OU=VeriSign Trust Network, OU="(c) 1998 VeriSign, Inc. - For authorized use only", OU=Class 1
Public Primary Certification Authority - G2, O="VeriSign, Inc.", C=US
Issuer: CN=Go Daddy Root Certificate Authority - G2, O="GoDaddy.com, Inc.", L=Scottsdale, ST=Arizona,
C=US

Migrating to New cacerts File for SSL in MAF 2.2.0

3-14 Installing Oracle Mobile Application Framework

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in This Guide for Release 2.2.0
	1 Installing Mobile Application Framework with JDeveloper
	1.1 Introduction to Installing the MAF Extension with JDeveloper
	1.2 Installation Requirements for MAF Applications to be Deployed to the iOS Platform
	1.3 Installation Requirements for MAF Applications to be Deployed to the Android Platform
	1.4 Setting Up JDeveloper
	1.5 Installing the MAF Extension in JDeveloper

	2 Setting Up the Development Environment
	2.1 Introduction to the MAF Development Environment
	2.2 Configuring the Development Environment for Target Platforms
	2.3 Configuring the Development Environment for Form Factors
	2.4 Setting Up Development Tools for the iOS Platform
	2.4.1 How to Install Xcode and iOS SDK
	2.4.2 How to Set Up an iPhone or iPad
	2.4.3 How to Set Up an iPhone or iPad Simulator

	2.5 Setting Up Development Tools for the Android Platform
	2.5.1 How to Install the Android SDK
	2.5.2 How to Set Up an Android-Powered Device
	2.5.3 How to Set Up an Android Emulator
	2.5.3.1 Configuring the Android Emulator
	2.5.3.1.1 Saving the Emulator State
	2.5.3.1.2 Creating, Saving, and Reusing the SD Card
	2.5.3.1.3 Configuring the Network
	2.5.3.1.4 Configuring the Network Proxy

	2.5.3.2 Speeding Up the Android Emulator
	2.5.3.2.1 Configuring AVD for Intel HAXM

	2.6 Testing the Environment Setup

	3 Migrating Your Application to MAF 2.2.0
	3.1 Migrating an Application to MAF 2.2.0
	3.2 Migrating to JDK 8 in MAF 2.2.0
	3.3 Migrating Cordova Plugins from Earlier Releases to MAF 2.2.0
	3.4 Migrating ADF Mobile Applications
	3.4.1 What Happens When You Migrate an ADF Mobile Application
	3.4.1.1 About Migrating Web Service Policy Definitions

	3.4.2 What You May Need to Know About FARs in Migrated Applications

	3.5 Configuring your Migrated MAF Application to Use the Full Screen on iOS Devices
	3.5.1 How to Configure your Migrated MAF Application to Use an iOS Device’s Full Screen
	3.5.2 What Happens When You Configure your Migrated MAF Application to Use an iOS Device’s Full Screen

	3.6 Retaining Legacy Behavior When Navigating a MAF Application Using Android’s Back Button
	3.6.1 How to Retain Pre-MAF 2.2.0 Application Behavior in Response to Usage of Android´s Back Button

	3.7 Migrating to New cacerts File for SSL in MAF 2.2.0

