

[1] Oracle® Enterprise Pack for Eclipse
User’s Guide

12c (12.1.3.4)

E58434-01

March 2015

Describes how to use Oracle Enterprise Pack for Eclipse,
which is a set of plugins for Eclipse, to support Java EE
development. It allows you to create, configure and deploy
Oracle Mobile Application Framework applications for iOS
and Android. You can create, configure, and run Oracle ADF
applications on Glassfish and Oracle WebLogic Server.

Oracle Enterprise Pack for Eclipse User's Guide, 12c (12.1.3.4)

E58434-01

Copyright © 2008, 2015, Oracle and/or its affiliates. All rights reserved.

Primary Author: Catherine Pickersgill

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions ... xi

1 Oracle Enterprise Pack for Eclipse User's Guide

1.1 Oracle Application Development Framework Support.. 1-1
1.2 Oracle Mobile Application Framework Support ... 1-2
1.3 Oracle WebLogic Server Support ... 1-2
1.4 Integrating Oracle Cloud Services.. 1-2
1.5 Maven Support.. 1-2
1.6 Web Services Support... 1-3
1.7 REST Web Services Support.. 1-3
1.8 Oracle Database Support ... 1-3
1.9 Object-Relational Mappings Support... 1-3
1.10 Spring Support .. 1-3
1.11 Coherence Support ... 1-4
1.12 Web Application Development Support ... 1-4

2 Oracle ADF Tools Support

2.1 Getting Started with Oracle ADF ... 2-1
2.1.1 Understanding the Oracle ADF Architecture.. 2-2
2.1.2 Configuring Oracle WebLogic Server... 2-2
2.1.3 Creating an Oracle ADF Application.. 2-4
2.2 Working with the Oracle ADF Model Layer .. 2-5
2.2.1 Creating the JPA Model Project ... 2-6
2.2.2 Creating JPA Entities from Tables... 2-6
2.2.3 Working with Session Beans .. 2-7
2.2.3.1 Generating a Session Bean on Selected JPA Entities ... 2-7
2.2.3.2 Generating a JSF Managed Bean .. 2-7
2.2.3.3 Generating a Session Bean and a JSF Managed Bean using the Data Components

Model Wizard 2-8
2.2.3.4 Editing a Session Bean ... 2-8
2.2.4 Working with ADF Model Data Binding ... 2-8

iv

2.2.4.1 Creating ADF Data Controls.. 2-10
2.2.4.2 Using the ADF Data Control Manager... 2-12
2.2.4.3 Using the Data Palette to Create UI Components ... 2-15
2.2.4.4 Using the Bindings Tab in the Properties Window.. 2-17
2.2.4.5 Working with Page Definition Files.. 2-17
2.2.4.6 Opening a Page Definition File in the Page Definition Editor............................ 2-18
2.2.4.7 Understanding the Page Definition Editor .. 2-18
2.2.4.8 Understanding Bindings and Executables... 2-20
2.2.4.9 Adding Bindings and Executables.. 2-22
2.2.4.10 Working with Tree Bindings.. 2-22
2.2.5 Adding Data Binding to Existing UI Components .. 2-24
2.2.6 Debugging ADF Bindings ... 2-26
2.2.6.1 ADF Page Definition Artifact Validation... 2-26
2.2.7 Refactoring ADF Bindings... 2-27
2.3 Working with Oracle ADF Controller .. 2-27
2.3.1 Understanding ADF Task Flows .. 2-27
2.3.2 Creating a New Task Flow .. 2-27
2.3.3 Adding Activities to a Task Flow... 2-28
2.3.4 Adding ADF Bindings to a Task Flow... 2-28
2.3.5 Adding Control Flows to a Task Flow... 2-32
2.3.6 Using Task Flows as Regions.. 2-32
2.3.7 Running an ADF Task Flow.. 2-33
2.4 Working with Oracle ADF Faces ... 2-33
2.4.1 About ADF Faces Configuration Files... 2-34
2.4.2 About ADF Data Visualization Components ... 2-34
2.4.3 Working with ADF tags in JSP Pages .. 2-34
2.4.4 Support for ADF Components in the Palette.. 2-34
2.4.5 Using the Tag Drop Editor for ADF Faces Components .. 2-35
2.4.6 Using the Smart Editor for ADF Components ... 2-35
2.5 Deploying an Oracle ADF Application .. 2-35
2.6 Debugging an Oracle ADF Application ... 2-36
2.6.1 Using ADF Source Code with the Debugger.. 2-36
2.6.2 Setting ADF Declarative Breakpoints .. 2-37
2.6.3 Setting and Using ADF Task Flow Breakpoints... 2-37
2.6.4 Setting and Using ADF Page Definition Breakpoints ... 2-38
2.6.5 Setting and Using ADF Lifecycle Phase Breakpoints.. 2-39
2.6.6 Using the EL Expression Evaluator ... 2-40
2.6.7 Using the ADF Structure and Data Window.. 2-41
2.6.7.1 Using the ADF Structure Pane... 2-41
2.6.7.2 Using the ADF Data Pane... 2-41
2.7 Using AppXray for Oracle ADF Artifacts .. 2-42
2.8 Refactoring Oracle ADF Components .. 2-42
2.8.1 Refactoring ADF Pages .. 2-42
2.8.2 Refactoring ADF Task Flow configuration files... 2-43
2.8.3 Refactoring JSF/ADF Managed Beans .. 2-44
2.8.4 Refactoring ADF Data Binding Artifacts... 2-44
2.8.5 Externalizing Strings .. 2-45

v

2.8.6 Adding and Refactoring ADF Tag IDs .. 2-46
2.9 Reusing Oracle ADF Application Components .. 2-46
2.9.1 About ADF Library Support ... 2-46
2.9.1.1 Naming Conventions .. 2-46
2.9.2 Creating an ADF Library ... 2-47
2.10 Configuring and Using ADF with GlassFish Server .. 2-47
2.10.1 How to Download ADF Essentials .. 2-47
2.10.2 How to Download and Install GlassFish Server .. 2-48
2.10.3 How to Configure GlassFish for OEPE ... 2-49
2.10.4 How to Configure GlassFish for ADF Essentials ... 2-49
2.10.4.1 Installing ADF Essentials on a Domain.. 2-49
2.10.4.2 Installing ADF Essentials on a Domain With a Password................................... 2-50
2.10.5 How to Register the ADF Essentials Client WAR Library in Your Workspace 2-51
2.10.6 How to Create an ADF Application that Uses GlassFish Runtime........................... 2-52
2.10.7 How to Create a Global JDBC Data Source .. 2-55
2.10.8 Known Problems and Solutions ... 2-56
2.11 Appendix A Oracle ADF XML Files ... 2-57
2.11.1 Oracle ADF Data Binding Files... 2-57
2.11.2 Web Configuration Files .. 2-58

3 Oracle MAF Tools Support

3.1 Developing with Oracle MAF... 3-1

4 Oracle WebLogic Server Support

4.1 Feature Overview.. 4-1
4.2 WebLogic Shared Libraries ... 4-2
4.2.1 Common Operations ... 4-2
4.2.1.1 Adding a New Library to the Registry.. 4-2
4.2.1.2 Adding a Library Reference to the Project Classpath ... 4-3
4.2.1.3 Modifying a Library Reference on the Project Classpath 4-3
4.2.1.4 Removing a Library Reference from the Project Classpath.................................... 4-3
4.2.2 Validation Problems.. 4-4
4.2.2.1 Validation Errors .. 4-4
4.2.2.2 Validation Warnings .. 4-6
4.3 Support for WebLogic SCA ... 4-6
4.3.1 Configuring Projects to Use WebLogic SCA ... 4-6
4.3.2 Using Context Help for WebLogic SCA XML Attributes .. 4-7
4.3.3 Creating Complex Properties Using XML Template.. 4-8
4.3.4 Creating WebLogic SCA Data-Binding Customization Descriptor 4-8
4.3.5 Deploying a WebLogic SCA Application... 4-9
4.3.6 Running a WebLogic SCA Application.. 4-9
4.4 Support for WebLogic Scripting Tool (WLST) ... 4-9
4.4.1 Configuring Projects for WLST.. 4-9
4.4.2 Creating New WLST Files ... 4-10
4.4.3 Editing WLST Script... 4-10
4.4.4 Adding WLST Templates .. 4-10

vi

4.4.5 Navigating MBean Structures... 4-11
4.4.6 Using WLST Console ... 4-11
4.4.7 Executing WLST.. 4-11
4.4.8 Debugging WLST Script .. 4-12
4.4.9 Importing Existing WLST Script into OEPE ... 4-12
4.4.10 Known Issues and Limitations ... 4-12
4.5 Editing Deployment Descriptors ... 4-12
4.5.1 Using Deployment Descriptor Editors .. 4-12
4.5.1.1 Editor Keyboard Navigation.. 4-13
4.5.2 Creating JMS Descriptors .. 4-14
4.6 Using Deployment Plan Editor.. 4-14
4.6.1 Creating a New Deployment Plan .. 4-14
4.6.2 Editing a Deployment Plan ... 4-15
4.6.3 Using an Existing Deployment Plan to Configure an Application 4-16

5 Integrating Oracle Cloud Services

5.1 Adding Your Oracle Cloud Services.. 5-1
5.1.1 Using the Cloud View... 5-2
5.2 Getting up and Running with Your Java Cloud Service... 5-3
5.2.1 Viewing the Java Cloud Service Jobs Log .. 5-4
5.2.2 Viewing the Java Cloud Service Instance Log... 5-5
5.3 Validating with the Whitelist Scan... 5-6
5.4 Deploying to the Cloud.. 5-6
5.5 Oracle Developer Cloud Service... 5-6
5.5.1 Logging In to Oracle Developer Cloud Service... 5-6
5.5.2 Getting Up and Running with Your Developer Cloud Service 5-7
5.5.3 Using the Oracle Developer Services Cloud View ... 5-7
5.5.4 Importing an Oracle Developer Cloud Service Project .. 5-8
5.5.5 Exporting a Project from OEPE to Oracle Developer Cloud Service 5-8
5.5.6 Using eGit for DCS Source Control and Versioning .. 5-8
5.5.7 Using Git Tools in OEPE... 5-9
5.5.8 Committing Changes to Oracle Developer Cloud Service Git Repository 5-9
5.5.9 Pushing Changes From the Local Git Repository to Oracle Developer Cloud Service

Git Repository 5-10
5.5.10 Managing Documentation... 5-10
5.5.11 Updating Tasks ... 5-10
5.5.11.1 Importing Tasks from Oracle Developer Cloud Service With a Custom Query

5-10
5.5.11.2 Creating a Local Task ... 5-11
5.5.11.3 Editing a Task... 5-11
5.5.11.4 Synchronizing Tasks with Oracle Developer Cloud Service 5-11
5.5.11.5 Associating a Task with a Commit Transaction.. 5-11
5.5.12 Monitoring Hudson Builds ... 5-11

6 Maven Support

6.1 Using Maven with OEPE ... 6-1
6.2 Setting up Your Maven Environment.. 6-2

vii

6.2.1 How to Set Up Your Maven Environment... 6-2
6.3 Creating a Maven Settings File ... 6-3
6.3.1 How to Create Your Maven Settings File... 6-3
6.4 Populating the Maven Repository.. 6-4
6.4.1 How to Use the Oracle Maven Synchronization Plug-In .. 6-4
6.4.2 Running the Oracle Maven Synchronization Plug-in .. 6-5
6.4.2.1 Populating a Local Repository.. 6-6
6.4.2.2 Populating a Remote Repository.. 6-7
6.4.2.3 What Happens When You Run a Push Goal to Populate a Repository? 6-8
6.5 Installing the Maven Archetypes.. 6-8
6.5.1 How to Install the Maven Archetypes.. 6-9
6.6 Creating ADF Applications with Maven Integration.. 6-9
6.6.1 How to Create an ADF Application with Maven Integration from the Command Line..

6-10
6.6.2 How to Create an Maven Project with Maven integration from the Wizard 6-10
6.6.3 How to Add Maven Integration to New ADF Application Projects......................... 6-12
6.7 Importing Maven Projects .. 6-13
6.8 Using Maven to Deploy to a WebLogic Server ... 6-15
6.8.1 How to Deploy using Maven to a Running WebLogic Server................................... 6-15

7 Web Services Support

7.1 Starting Points of Web Services Development with OEPE... 7-1
7.1.1 Generating a Web Service From a WSDL File ... 7-1
7.1.1.1 Customizing a Web Service .. 7-2
7.1.2 Generating a Web Service From Java ... 7-6
7.1.2.1 Creating a Web Service from a Java Class .. 7-6
7.1.2.2 Creating a Web Service From Scratch Using Java ... 7-7
7.1.3 Generating a WSDL File ... 7-7
7.1.4 Contents of a WSDL File... 7-8
7.1.5 Imported WSDL Files.. 7-8
7.1.6 Creating a New WSDL File .. 7-8
7.1.7 Understanding Policy Stores.. 7-9
7.1.8 Testing Web Services... 7-9
7.2 Creating Web Services Projects.. 7-10
7.2.1 Creating a new Web Service Project .. 7-10
7.2.2 Creating a Web Service Project From an Existing Dynamic Web Project 7-11
7.3 Generating Client Code for Web Services .. 7-11
7.3.1 Generating Client Code From a WSDL File.. 7-11
7.3.2 Generating Client Code from a Java Class.. 7-12
7.3.3 Alternative Ways to Generate the Client Code .. 7-13
7.3.4 Deploying Java Web Service Applications to Oracle WebLogic Server 7-13
7.4 Generating JAXB Types .. 7-14
7.5 Using Client Proxy Templates ... 7-14
7.6 Using WebLogic Web Services Annotations View ... 7-16
7.6.1 Activating the WebLogic Web Services Annotations View 7-16
7.6.2 Using the WebLogic Web Services Annotations View ... 7-16
7.6.3 Supported Annotations.. 7-17

viii

7.7 Validating Web Services Projects .. 7-18
7.7.1 Validated Resources ... 7-18
7.7.2 Configuring Project Validation... 7-19
7.8 Generating Web Services for Spring Service Beans .. 7-19
7.9 Configuring HTTPS Client Credentials .. 7-20

8 REST Web Services Support

8.1 Getting Started with REST Web Services .. 8-1
8.2 Creating Projects Configured for REST .. 8-2
8.2.1 How to Create a Dynamic Web Project that is Configured for REST 8-2
8.2.2 How to Configure a Java Project for REST .. 8-4
8.3 Creating a REST Web Service ... 8-5
8.3.1 How to Create a Patterned REST Web Service.. 8-6
8.3.2 How to Create a POJO REST Web Service... 8-8
8.4 Mapping Incoming Requests to Java Methods.. 8-10
8.4.1 How to Map an HTTP Request to Java Methods in the REST Generation Wizard 8-10
8.4.2 How to Map HTTP Requests to Java Methods in the Java Class 8-10
8.4.3 How to Map HTTP Requests to Java Methods in the Annotations View 8-11
8.5 Customizing Media Types for the Request and Response Messages 8-11
8.5.1 How to Customize Media Types in the Java Source Editor 8-12
8.5.2 How to Customize Media Types in the Annotations View for a Java Class............ 8-12
8.6 Validation and Quick Fix.. 8-13
8.7 Content Assist... 8-14
8.8 Run-AS JAX-RS Support ... 8-14
8.8.1 How to Deploy to a Targeted Runtime J2EE Server.. 8-15
8.8.2 How to Deploy to a Basic HTTP Lightweight Server.. 8-15
8.9 Generate a Java REST Client from a WADL .. 8-17

9 Oracle Database Support

9.1 Getting Started with the Oracle Database Plugin for Eclipse... 9-1
9.1.1 Using the Database Explorer.. 9-1
9.1.1.1 Creating a Connection to a Database... 9-1
9.1.1.2 Working with a Database Connection... 9-2
9.1.1.3 Editing Data in a Table .. 9-2
9.1.1.4 Loading Data into a Table ... 9-3
9.1.1.5 Extracting Data from a Table .. 9-3
9.1.1.6 Generating DDL.. 9-3
9.1.2 SQL Tools ... 9-3
9.1.2.1 Using SQL Editor.. 9-4
9.1.2.2 Executing a Stored Procedure or Function ... 9-4
9.1.2.3 Executing Explain Plans .. 9-4
9.1.3 Granting and Revoking Privileges ... 9-4
9.1.4 Creating Tables .. 9-5
9.1.5 Troubleshooting... 9-6
9.2 Using the RDB Schema Editor .. 9-7
9.2.1 How to Display a Database Schema in the Editor .. 9-7
9.2.2 Working with RDB Schema Editor Features ... 9-8

ix

10 Object-Relational Mappings Support

10.1 Configuring a JPA Project to Use EclipseLink Persistence Provider................................ 10-1
10.2 Configuring a JPA Project to Use Kodo Persistence Provider... 10-3
10.3 Oracle WebLogic Server Support for Persistence Provider Libraries and Deployment 10-4

11 Spring Support

11.1 Generating Spring Artifacts.. 11-1
11.2 Generating Web Services for Spring Service Beans .. 11-4

12 Coherence Support

12.1 Coherence Tooling: Configuring Projects for Coherence... 12-1
12.1.1 Configuring Coherence Facet ... 12-1
12.1.2 Editing Coherence Launch Configuration .. 12-2
12.1.3 Editing Coherence Operational Configuration .. 12-3
12.1.4 Editing Coherence Cache Configuration... 12-3
12.2 Working with Coherence (GAR) Applications.. 12-3
12.2.1 Creating Coherence Applications .. 12-4
12.2.2 Exporting a Coherence Application... 12-4
12.2.3 Deploying a Coherence Application.. 12-5
12.2.4 Locating Your Deployed Coherence Application.. 12-5

13 Web Application Development Support

13.1 Using AppXray Technology... 13-1
13.1.1 Enabling and Disabling AppXray .. 13-2
13.1.2 Visualizing AppXray Dependencies.. 13-2
13.2 Configuring JSF Projects ... 13-3
13.2.1 Supported JSF Libraries and Versions... 13-5
13.2.2 Creating a Faces Configuration File... 13-5
13.2.3 Using the Faces Configuration Node... 13-5
13.2.3.1 Creating a New Managed Bean... 13-6
13.2.3.2 Creating a New Navigation Case.. 13-6
13.2.3.3 Creating a New Converter ... 13-7
13.2.3.4 Creating a New Validator .. 13-7
13.2.4 Using the Faces Configuration Editor ... 13-7
13.2.5 Understanding JSF Resource Bundles ... 13-8
13.3 Configuring JSTL Projects... 13-8
13.3.1 Supported JSTL Libraries and Versions .. 13-9
13.4 Configuring Projects for Apache Trinidad... 13-9
13.4.1 Trinidad Library Support by the Trinidad Facet ... 13-10
13.5 Configuring Projects with External Resources .. 13-11
13.5.1 Using a Dynamic Project.. 13-11
13.5.2 Using Linked Resources .. 13-11
13.5.3 Configuring a Deployment Assembly... 13-11
13.6 Creating a JSF Project From an Existing Web Project .. 13-12
13.7 Using the Web Page Editor... 13-12

x

13.7.1 Using the Design View .. 13-13
13.7.2 Using the Preview Tab... 13-13
13.7.3 Using the Source View... 13-14
13.7.3.1 Using the Content Assist .. 13-14
13.7.3.2 Using HyperLink... 13-14
13.7.3.3 Using HoverHelp .. 13-14
13.7.4 Using the Outline View ... 13-14
13.8 Editing Tags Using Property Sheets.. 13-14
13.8.1 Choosing Binding ... 13-15
13.8.2 Choosing a Method .. 13-15
13.8.3 Selecting a Navigation Case .. 13-15
13.8.4 Selecting a File ... 13-15
13.8.5 Selecting a Style Class .. 13-15
13.8.6 Defining CSS Style .. 13-15
13.8.7 Choosing a Resource Bundle .. 13-16
13.8.8 Choosing a Validator.. 13-16
13.8.9 Choosing a Converter .. 13-16
13.9 Using the Web Page Editor Palette.. 13-16
13.9.1 Displaying the Palette in External View.. 13-17
13.9.2 Editing Tag Library Entries in the Palette... 13-17
13.9.3 Using the Data Palette.. 13-17
13.9.4 Customizing the Palette... 13-18
13.9.5 Docking and Undocking the Palette .. 13-18
13.9.6 Modifying the Display of the Palette ... 13-18
13.10 Enabling Localization in the Web Page Editor .. 13-19
13.11 Creating JSF HTML Tags .. 13-19
13.11.1 Adding a PanelGrid Tag.. 13-20
13.11.2 Adding a dataTable Tag .. 13-20
13.11.3 Adding a form Tag ... 13-21
13.12 Generating Struts Artifacts ... 13-22
13.12.1 Configuring a Project for Struts.. 13-22
13.12.2 Generating Struts Files and Updating the Configuration... 13-23
13.13 Supported Versions ... 13-23

xi

Preface

Welcome to the Oracle Enterprise Pack for Eclipse User's Guide.

Audience
This document is intended for application developers who develop applications using
Oracle Enterprise Pack for Eclipse.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Related Documents
For more information, see the following documents:

■ Installing Oracle Enterprise Pack for Eclipse

■ Oracle Enterprise Pack for Eclipse Online Help

■ Developing Mobile Applications with Oracle Mobile Application Framework (OEPE
Edition)

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

xii

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Convention Meaning

1

Oracle Enterprise Pack for Eclipse User's Guide 1-1

1Oracle Enterprise Pack for Eclipse User's
Guide

[2] Oracle Enterprise Pack for Eclipse (OEPE) is a set of plug-ins designed for the Eclipse
IDE to support Java EE development.

This document describes the following key features of OEPE:

■ Oracle Application Development Framework Support

■ Oracle Mobile Application Framework Support

■ Oracle WebLogic Server Support

■ Integrating Oracle Cloud Services

■ Maven Support

■ Web Services Support

■ REST Web Services Support

■ Oracle Database Support

■ Object-Relational Mappings Support

■ Spring Support

■ Coherence Support

■ Web Application Development Support

1.1 Oracle Application Development Framework Support
OEPE provides a set of plugins for the Eclipse IDE designed to create, configure, and
run Oracle ADF applications.

The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies to simplify and accelerate implementing
service-oriented applications. If you develop enterprise solutions that search, display,
create, modify, and validate data using web, wireless, desktop, or web services
interfaces, Oracle ADF can simplify your job. Used in tandem, OEPE and Oracle ADF
give you an environment that covers the full development lifecycle from design to
deployment, with drag and drop data binding and visual UI design features built in.

For information on ADF runtimes see, Configuring Oracle WebLogic Server and
Configuring and Using ADF with GlassFish Server.

For more information, see Oracle ADF Tools Support.

Oracle Mobile Application Framework Support

1-2 Oracle Enterprise Pack for Eclipse User's Guide

1.2 Oracle Mobile Application Framework Support
Oracle Mobile Application Framework (MAF) allows you to create mobile applications
that run natively on both iOS and Android phones and tablets.

Oracle MAF is a hybrid mobile architecture, one that uses HTML5 and CSS to render
the user interface in the web view, Java for the application business logic, and Apache
Cordova to access device features such as GPS activities and e-mail.

For more information, see Oracle MAF Tools Support.

1.3 Oracle WebLogic Server Support
Oracle WebLogic Server is a scalable, enterprise-ready Java Platform, Enterprise
Edition (Java EE) application server. The WebLogic Server infrastructure supports the
deployment of many types of distributed applications and is an ideal foundation for
building applications.

The WebLogic Server complete implementation of the Java EE 5.0 specification
provides a standard set of APIs for creating distributed Java applications that can
access a wide variety of services, such as databases, messaging services, and
connections to external enterprise systems. End-user clients access these applications
using Web browser clients or Java clients. It also supports the Spring Framework, a
programming model for Java applications which provides an alternative to aspects of
the Java EE model.

OEPE enables you to develop, deploy, and debug Oracle WebLogic Server
applications.You can:

■ Develop applications faster with virtual EAR technology.

■ Deploy applications remotely.

■ Use the OEPE support for WebLogic Shared Libraries.

■ Use the OEPE support for WebLogic SCA.

■ Use the OEPE support for WLST.

■ Use the OEPE support for XMLBeans.

■ Use EJBGen.

For more information, see Oracle WebLogic Server Support.

1.4 Integrating Oracle Cloud Services
Oracle Cloud offers a broad portfolio of software as a service applications, platform as
a service, and social capabilities, all on a subscription basis. Oracle Cloud delivers
instant value and productivity for end users, administrators, and developers alike
through functionally rich, integrated, secure, enterprise cloud services.

You can develop applications in OEPE and deploy them to Oracle Cloud. For more
information, see Integrating Oracle Cloud Services

1.5 Maven Support
Maven is an open source build management tool that is central to project build tasks
such as compilation, packaging, and artifact management. Maven uses a strict
XML-based rule set to promote consistency while maintaining flexibility. Most
Java-centric continuous integration systems integrate well with Maven, making it a

Spring Support

Oracle Enterprise Pack for Eclipse User's Guide 1-3

good choice for an underlying build system. This chapter describes how use Maven
for Oracle Enterprise Pack for Eclipse (OEPE).

For more information, see Maven Support.

1.6 Web Services Support
Web services are programs that can be accessed remotely using different XML-based
languages. What these programs can do (that is, the functionality they implement) is
described in a standard XML vocabulary called Web Services Description Language
(WSDL). For example, a banking Web service may implement functions to check an
account, print a statement, and deposit and withdraw funds. These functions are
described in a WSDL file that any consumer can invoke to access the banking Web
service. As a result, a consumer does not have to know anything more about a Web
service than the WSDL file that describes what it can do.

OEPE lets you to build enterprise-class Web services that employ standard Web service
technologies, such as XML, SOAP, and WSDL. OEPE simplifies Web service
development by allowing you to focus on application logic, rather than the complex
implementation details traditionally required by these technologies.

For more information, see Web Services Support.

1.7 REST Web Services Support
You can create and run web services in OEPE which conform to the Representational
State Transfer (REST) architectural style using Java API for RESTful Web Services
(JAX-RS)

For more information, see REST Web Services Support.

1.8 Oracle Database Support
The OEPE database support lets you easily connect to, create, explore, and query
Oracle databases. Support includes database visualization through the Data Source
Explorer view and DDL generation.

For more information, see Oracle Database Support.

1.9 Object-Relational Mappings Support
JPA, part of the Java EE EJB 3.0 specification, greatly simplifies Java persistence. It
provides an object-relational mapping approach that allows you to declaratively
define how to map Java objects to relational database tables in a standard, portable
way. JPA works both inside a Java EE application server and outside an EJB container
in a Java Standard Edition (Java SE) application.

With OEPE, you can create a persistence layer that uses EJB 3.0 JPA.

For more information, see Object-Relational Mappings Support.

1.10 Spring Support
Using OEPE, you can generate Spring configuration and beans from persistence
mappings.

For more information, see Spring Support.

Coherence Support

1-4 Oracle Enterprise Pack for Eclipse User's Guide

1.11 Coherence Support
OEPE provides support for Oracle Coherence. Coherence provides replicated and
distributed (partitioned) data management and caching services on top of a
peer-to-peer clustering protocol.

For more information, see Coherence Support.

1.12 Web Application Development Support
OEPE simplifies various aspects of your Web application development process.

For more information, see Web Application Development Support.

2

Oracle ADF Tools Support 2-1

2Oracle ADF Tools Support

[3] OEPE provides a set of plugins for the Eclipse IDE designed to create, configure, and
run Oracle Application Development Framework (ADF) applications.

This section contains the following sections:

■ Getting Started with Oracle ADF

■ Working with the Oracle ADF Model Layer

■ Working with Oracle ADF Controller

■ Working with Oracle ADF Faces

■ Deploying an Oracle ADF Application

■ Debugging an Oracle ADF Application

■ Using AppXray for Oracle ADF Artifacts

■ Refactoring Oracle ADF Components

■ Reusing Oracle ADF Application Components

■ Configuring and Using ADF with GlassFish Server

■ Appendix A Oracle ADF XML Files

2.1 Getting Started with Oracle ADF
The Oracle Application Development Framework (Oracle ADF) is an end-to-end
application framework that builds on Java Platform, Enterprise Edition (Java EE)
standards and open-source technologies. You can use Oracle ADF to implement
enterprise solutions that search, display, create, modify, and validate data using web,
wireless, desktop, or web services interfaces. Because of its declarative nature, Oracle
ADF simplifies and accelerates development by allowing users to focus on the logic of
application creation rather than coding details.

Note: This document contains links to more detailed conceptual
information in other Oracle ADF documentation. Keep in mind that
while the information is sometimes presented in the context of another
Oracle IDE (JDeveloper), the concepts are applicable to OEPE as well.
For your ease of understanding, equivalent JDeveloper and OEPE IDE
components are listed in the table below.

Oracle JDeveloper IDE Component Corresponding OEPE IDE Component

Applications Window Project Explorer

Structures Window Outline

Components Window Palette

Data Controls Panel Data Palette

Properties Window Properties

Databases Window Data Source Explorer

Log Window Console

Application Servers Window Servers

Getting Started with Oracle ADF

2-2 Oracle Enterprise Pack for Eclipse User's Guide

2.1.1 Understanding the Oracle ADF Architecture
In line with community best practices, applications you build using the ADF web
technology stack achieve a clean separation of business logic, page navigation, and
user interface by adhering to a model-view-controller architecture.

For more information about the Oracle ADF Architecture, see the Oracle ADF
Architecture section in the "Introduction to Building Fusion Web Applications with
Oracle ADF" chapter of Developing Fusion Web Applications with Oracle Application
Development Framework.

2.1.2 Configuring Oracle WebLogic Server
Before starting to create your pages, you need to create a server configuration for
Oracle WebLogic Server (WLS). It will be the link to the WLS instance that will be used
to run the project.

Note: To use GlassFish ADF enabled runtime with you JAVA or ADF
application see Section 2.10, "Configuring and Using ADF with
GlassFish Server".

The WebLogic server should be running. You can use an existing domain or create a
new domain.

To configure WLS using an existing domain:

1. From the main menu, select Window > Show View > Other.

2. In the Show View dialog, select Server > Servers to open the Servers pane.

3. In the Servers pane, right-click and select New > Server.

Alternatively if there are no servers defined, click the No servers are available.
Click this link to create new server. link.

4. On the Define a New Server page of the New Server wizard, expand Oracle and
select the type of Oracle WebLogic server you are running, for example, Oracle
WebLogic Server 12c (12.1.3). Enter the server’s hostname, for example localhost
and click Next.

5. On the server details page of the Define a New Server wizard, click Browse
next to WebLogic Home. In the Browse for Folder dialog navigate to the WebLogic
home directory and click OK.

Getting Started with Oracle ADF

Oracle ADF Tools Support 2-3

Alternatively, if you have already defined domains for the IDE they are listed
when you choose Browse > Known Domains.

Click Next.

6. On the Add and Remove page, in Available select your application and click Add
to shuttle the selection to the Configured. This associates your application with
the newly created domain.

Click Finish.

The new server connection appears in the Servers pane. Note that the server is a in
stopped state.

To configure WLS and create a new domain:

1. From the main menu, select Window > Show View > Other.

2. In the Show View dialog, select Server > Servers to open the Servers pane.

3. In the Servers pane, right-click and select New > Server.

Alternatively if there are no servers defined, click the No servers are available.
Click this link to create new server. link.

4. In the New Server wizard on the Define a New Server page, select the server type.
Select Oracle and then select the type of Oracle WebLogic server you are running,
for example, Oracle WebLogic Server 12c (12.1.3). Click Next.

5. To create a new domain, in the server details page of the Define a New Server
wizard, click Create then Create Domain. In the New WebLogic Domain
dialog:

■ Enter a name for the domain.

■ Optionally specify a password that will override the default password
welcome1.

■ Check that the extensions you want are selected.

The IDE validates the domain path you choose and automatically enters the Java
home path in Java home. It also lists the relevant extensions on the server.

Click Next.

6. In the New WebLogic Domain dialog, specify a name and a location for the
domain. Optionally, you can specify a new password (the default is welcome1).
Under Extensions, select Oracle JRF - 12.1.3.0.

Click Finish.

7. On the New Server wizard, Domain directory is now populated. Click Next.

8. On the Add and Remove page, in the Available list, select your application. Then
click Add to shuttle the selection to the Configured pane. This associates your
application with the newly created domain.

Click Finish.

The new server connection appears in the Servers pane. Note that the server is a in
stopped state.

To configure WLS using the WebLogic Server configuration wizard:

1. From the main menu, select Window > Show View > Other.

2. In the Show View dialog, select Server > Servers to open the Servers pane.

Getting Started with Oracle ADF

2-4 Oracle Enterprise Pack for Eclipse User's Guide

3. In the Servers pane, right-click and select New > Server.

Alternatively if there are no servers defined, click the No servers are available.
Click this link to create new server. link.

4. In the New Server wizard on the Define a New Server page, select the server type.
Select Oracle and then select the type of Oracle WebLogic server you are running,
for example, Oracle WebLogic Server 12c (12.1.3). Click Next.

5. To create a new domain or update an existing domain using the WebLogic Server
configuration wizard, click Create then Launch Domain Configuration
Wizard.

The Oracle Fusion Middleware Configuration Wizard opens where you can create
a new domain or update an existing domain.

Once you have specified the domain in the configuration wizard, click Browse
next to WebLogic Home. In the Browse for Folder dialog navigate to the WebLogic
home directory and click OK.

6. On the New Server wizard, Domain directory is now populated. Click Next.

7. On the Add and Remove page, in the Available list, select your application. Then
click Add to shuttle the selection to the Configured pane. This associates your
application with the newly created domain.

Click Finish.

The new server connection appears in the Servers pane. Note that the server is a in
stopped state.

2.1.3 Creating an Oracle ADF Application
OEPE supports the creation of the following ADF application artifacts:

■ JPA Entity

■ EJB Session Bean as service

■ JSF Managed Bean for binding

■ ADF Data Controls for binding data to the View and Controller

■ ADF Task Flow as Controller

■ ADF Components as View

To create an ADF application:

1. From the main menu, select File > New > ADF Application.

2. In the New Oracle ADF Application dialog, enter the following:

■ Application name

■ Application project location The default is user_home/workspace.

■ Dynamic web project name. The default is Web. This name is appended to the
application name.

3. Click New Runtime to set the WebLogic Runtime environment. The New Server
Runtime Environment wizard opens.

4. In the New Server Runtime Environment wizard, Select Oracle and then select the
type of Oracle WebLogic server you are running, for example, Oracle WebLogic
Server 12c (12.1.3) and click Next.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-5

5. On the server details page, click Browse next to WebLogic home and browse to
the location of your WebLogic server installation. Click OK.

6. In the New Oracle ADF Application dialog, select a JPA project in the JPA Project
field. To optionally create a new JPA project, click New JPA Project.

7. In the New JPA Project wizard, enter the following details then click Next:

■ Project name

■ Project location (user_home/workspace by default)

■ Target runtime

■ JPA version (If you have installed JPA 2.0, the version defaults to 2.0)

■ Configuration

Note: You can modify the default configuration to add the Oracle
WebLogic EJB Extensions facet or the Oracle WebLogic Utility Module
Extensions facet. These facets cannot be added together. The benefit of
using the WLS Extensions facet during project creation is that you can
take advantage of the EclipseLink/TopLink shared libraries that ship
with Oracle WebLogic Server. If you do not select a WLS Extensions
facet, you will need to manually configure your JPA runtime.

■ EAR Membership. Select an EAR file to add the project to. Note that the JPA
project will be added to the application's EAR file by default.

■ Working sets. For more information, see the help topic "Working Sets" in the
Workbench User Guide > Concepts > Workbench.

8. On the Java page, specify the source folders on build path and the default output
folder, and click Next.

9. On the JPA Facet page, specify the Platform, JPA Implementation, and database
connection settings, and click Finish.

10. In the New Oracle ADF Application dialog, you will see that your JPA project is
listed in the JPA Project field. Click Add project to working sets if you would like
to include the current project in a working set. Select an existing working set from
the Working sets menu or create a new one.

11. Click Finish.

Two projects are created in the Project Explorer - an EAR project and a dynamic
web project. If you created a JPA project, that is also added to the Project Explorer.

Note: Using the ADF application wizard is not the only way you can
create ADF applications. You can also add the ADF facets to your
existing project to use ADF design time features.

2.2 Working with the Oracle ADF Model Layer
The model layer represents the data values related to the current page.

Working with the Oracle ADF Model Layer

2-6 Oracle Enterprise Pack for Eclipse User's Guide

2.2.1 Creating the JPA Model Project
If you did not create the JPA project when you created your ADF Application, you can
create one using the New Gallery.

To create the JPA project:

1. From the main menu, select File > New > Other. From the New Gallery, open the
JPA node and select JPA Project.

2. In the New JPA Project wizard, enter the following details:

■ Project name.

■ Project location. By default, this is user_home/workspace.

■ Target runtime. Choose from the list of those defined, or click New Runtime to
define a new one.

■ JPA version. The default is 2.1 and the other available JPA versions are 1.0
and 2.0.

■ Configuration. The default is Basic JPA Configuration. You can modify it by
clicking Modify and choosing to enable additional facets. The best option here
depends on how you separate your EAR modules. If you store JPA entities as
EJBs, then the EJB model is a better choice because it configures the project to
use JPA (creating the persistence.xml, adding the design time tools for JPA like
entity creation and annotation content assist) as well as EJB (wizards to create
a new session bean). If you are separating the entities and EJBs into different
modules, then it makes sense to use the JPA configuration preset and use the
current preset only for Entity configuration, then create an additional EJB
utility module later.

Note: You can modify the default configuration to add the Oracle
WebLogic EJB Extensions facet or the Oracle WebLogic Utility Module
Extensions facet. These facets cannot be both added to the same
configuration. The benefit of using the WLS Extensions facet during
project creation is that you can take advantage of the
EclipseLink/TopLink shared libraries that ship with Oracle WebLogic
Server. If you do not select a WLS Extensions facet, you will need to
manually configure your JPA runtime.

■ EAR Membership. Select an EAR file to add the project to. If you do not select
an EAR, the project is added to the current ADF EAR project.

■ Working sets

3. Once you have added details in the JPA Project page of the New JPA Project
Wizard, click Next.

4. On the Java page, specify the source folders on build path and the default output
folder, and click Next.

5. On the JPA Facet page, specify the Platform, JPA Implementation, and database
connection settings, and click Finish.

2.2.2 Creating JPA Entities from Tables
You create JPA Entities from tables.

To create JPA Entities from Tables:

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-7

1. Right-click your JPA project, and in the context menu, select JPA Tools > Generate
Entities from Tables.

2. On the Generate Custom Entities wizard - Select Tables page, select a database
connection from the Connection dropdown list, or click the New Connections
button to add a connection.

3. On the Generate Custom Entities wizard - Select Tables page, select a database
schema from the Schema dropdown list, and select the tables you want to
generate entities from in the Tables area. Then click Next.

4. On the Table Associations page, review and optionally edit the table associations.
Then click Next.

5. On the Customize Default Entity Generation page, optionally customize aspects of
entities that will be generated by default from database tables. You must specify a
Java package.

6. On the Customize Individual Entities page, optionally customize individual
entities. Then click Finish.

7. In the Project Explorer, expand the src folder in your JPA project to see the JPA
entities that have been created.

2.2.3 Working with Session Beans
Session beans implement business logic. A session bean instance serves one client at a
time.

2.2.3.1 Generating a Session Bean on Selected JPA Entities
You can generate session beans on JPA entities.

To generate a session bean on selected JPA entities:

1. Right-click your JPA project to open the context menu.

2. In the context menu, select New > Session Bean (EJB 3.x) from JPA Entities.

3. On the Session Bean (EJB 3.x) page of the Create EJB 3.x Session Bean from JPA
Entities wizard, specify a Java package and a class name. Then click Next.

4. On the Select Entities page, indicate which entities to access via the generated
session bean. Then click Finish.

5. You can view the generated session bean in the Project Explorer.

2.2.3.2 Generating a JSF Managed Bean
You can generate a JSF Managed Bean which is a wrapper on a session bean.

To generate a JSF Managed Bean:

1. Right-click the session bean in the Project Explorer to open the context menu.

2. In the context menu, select New > Data Model Components > Generate JSF
Managed Bean.

3. On the Managed Bean page of the Create Managed Bean wizard, specify the Java
package and the Session bean to wrap. Then click Finish.

4. View the generated JSF Managed Bean in the Project Explorer.

Notes: ■While regeneration is available for EJBs, it is currently not
supported for a Managed Bean. The Create Managed Bean wizard
will fail if the class already exists.

■ OEPE uses the @generated annotation to determine what can be
overwritten when regenerating the EJB. If you customize one of
the generated methods, persist for example, you will need to
remove the @generated label from the method before regenerating
an EJB.

Working with the Oracle ADF Model Layer

2-8 Oracle Enterprise Pack for Eclipse User's Guide

2.2.3.3 Generating a Session Bean and a JSF Managed Bean using the Data
Components Model Wizard
You can generate a Session Bean facade on selected entities and generate a JSF
Managed Bean to wrap the services in the session facade using the Data Components
Model Wizard.

To generate a Session Bean and a JSF Managed Bean using the Data Components
Model Wizard:

1. Open the New Gallery by selecting File > New > Other.

2. Expand Application Development Framework, and double-click Data Model
Components.

3. On the Session Bean (EJB 3.x) page of the Create Data Model Components wizard,
specify the Java package and class name for the session bean. Then click Next.

4. On the Select Entities page, indicate which entities to access via the generated
session bean, then click Next.

5. On the Data Object page, select JSF Managed Bean or ADF Data Control as the
Data object type. Then specify name and location details for the Managed Bean
and click Finish. For more information on ADF Model Data Binding see "Working
with ADF Model Data Binding".

6. In the Project Explorer, view the generated session bean facade in the JPA project
and the JSF Managed Bean in the web project.

2.2.3.4 Editing a Session Bean
You can edit sessions beans.

To edit the session bean facade:

1. Right-click the session bean to open the context menu.

2. In the context menu, select Data Model Components > Edit Session Bean Facade.

3. On the Select Entities page, indicate which entities you want to add to or remove
from the session bean facade.

2.2.4 Working with ADF Model Data Binding
ADF Model implements two concepts that enable the decoupling of the user interface
technology from the business service implementation: data controls and bindings.
Data controls abstract the implementation technology by using standard metadata
interfaces to describe the bean's operations and data collections, including information
about the properties, methods, and types involved. In OEPE, you can view this
information in the Data Palette, and create databound HTML elements for JSP pages
by dragging and dropping data control artifacts from the Data Palette onto the editor

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-9

for a page. OEPE automatically creates the metadata that describes the bindings from
the page to the services. At runtime, the ADF Model layer reads the metadata
information from the appropriate XML files for both the data controls and the
bindings, and then implements the two-way connection between your user interface
and your services.

Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations. There are three basic kinds of declarative
binding objects:

■ Executable bindings: Include iterator bindings, which simplify the building of user
interfaces that allow scrolling and paging through collections of data and
drilling-down from summary to detail information. Executable bindings also
include bindings that allow searching and nesting a series of pages within another
page.

■ Value bindings: Used by UI components that display data. Value bindings range
from the most basic variety that work with a simple text field to more
sophisticated list and tree bindings that support the additional needs of list, table,
and tree UI controls.

■ Action bindings: Used by UI command components like hyperlinks or buttons to
invoke built-in or custom operations on data collections or a data control without
writing code.

Figure 2–1, "ADF Bindings" shows how bindings connect UI components to data
control collections and methods.

Working with the Oracle ADF Model Layer

2-10 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–1 ADF Bindings

The group of bindings supporting the UI components on a page are described in a
page-specific XML file called the page definition file. The ADF Model layer uses this
file at runtime to instantiate the page's bindings. These bindings are held in a
request-scoped map called the binding container.

2.2.4.1 Creating ADF Data Controls
Once you have your application's services in place, you can use OEPE to create data
controls that provide the information needed to declaratively bind UI components to
those services. In an ADF application, you can create a data control for the session
bean or POJO, and that data control will contain representation of all data on the bean.
The data control consists of a number of XML metadata files that define the
capabilities of the service that the bindings can work with at runtime.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-11

To create a data control from the Project Explorer:

1. In the Project Explorer, right-click the session bean or POJO for which you want to
create a data control.

2. From the context menu, select Model Components > Create ADF Data Control.

Alternatively, you can also create a data control from the New Gallery.

To create a data control from the New Gallery:

1. Right-click your model project and select New > Other from the context menu.

2. In the New gallery, choose Oracle > Application Development Framework >
ADF Data Control.

3. On the Bean Class page, select project [Project] and the bean [Bean Class] from
which to create the data control. Note: The Project dropdown list contains all
eligible projects in the workspace.

4. Preview and confirm the project changes on the Summary page and click Finish.

The metadata file datacontrols.dcx is created in the adfmsrc > model node of your
Model project, as shown in Figure 2–2, "Data Control File in Project Explorer". When
you create a data control based on an EJB session bean, the data control contains a
representation of all the methods exposed on the bean, as well as underlying entity
beans, and the methods and properties exposed on those.

Figure 2–2 Data Control File in Project Explorer

For a description of Oracle ADF Data Bindings metadata files and links to more
information, see Section 2.11, "Appendix A Oracle ADF XML Files."

Working with the Oracle ADF Model Layer

2-12 Oracle Enterprise Pack for Eclipse User's Guide

With a web page in focus, you can open the Data section of the Palette to view and
drag-and-drop data controls, JSF Managed Beans, and page variables on to the page,
shown in Figure 2–3, "Data Palette".

Figure 2–3 Data Palette

For more information about ADF data controls, see "Using ADF Data Controls" in
Developing Applications with Oracle ADF Data Control.

2.2.4.2 Using the ADF Data Control Manager
The Data Control Manager shows all the data controls available to your ADF project.
Use the Data Control Manager to view details about your data control objects,
including the data type associated with your Java elements, and related artifacts.

The Data Controls tab of the Data Control Manager shows the data control tree. The
Structure Definitions tab shows the structure definition control objects. Every data
control object exposes the structure definition of your data objects and is shown in the
Structure Definitions view. When you are customizing your data structure in the 12c
runtime, you customize the structure definition object. Customizing a structure
definition object impacts every data control object that exposes that structure
definition object.

Note that in 12c applications you can customize your data structure definition object,
but in 11g applications, the Data Control Manager shows your available data controls,
java elements, and object types, but doesn’t allow customizing of the structure
definition object.

There are a three ways to access the Data Control Manager:

1. Opening a data control .dcx file.

2. When creating a data control, the last page of the wizard has a check box that you
can select to open the data control manager.

3. If you are editing a ADF page, you can open the manager through the Data Palette
view: Palette > Data tab > right-click the control > Data Control Manager.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-13

Figure 2–4 shows the Data Control Manager with the Show structure definition link
available. When you select a data control object, with an editable structure definition,
this link changes to Edit structure definition as shown in Figure 2–5.

Clicking on the Edit structure definition link selects the appropriate structure
definition on the second tab of the Data Control Manager, as shown in Figure 2–6. In
this dialog, you can enter custom label and tool tip text used by a widget that is
rendering the selected data control object on a ADF web page. You can also create,
edit, or delete a list of values for the structure definition, as shown in. Use the list of
values to determine which values are available for the selected attribute defined by
either a collection accessor or an attribute of a collection accessor.

In the web page editor, when you select from a list of available widgets for an attribute
of a data control, OEPE determines whether the list of values can be used at runtime. If
yes, it displays the name of the list of values in the Edit List Binding dialog, as shown
in Figure 2–7.

Figure 2–4 Data Control Manager - Show Structure Definition

Working with the Oracle ADF Model Layer

2-14 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–5 Data Control Manager - Edit Structure Definition

Figure 2–6 Data Control Manager - Edit List of Values

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-15

Figure 2–7 Data Control Manager - Edit List Binding

2.2.4.3 Using the Data Palette to Create UI Components
OEPE provides you with a predefined set of UI components from which to choose for
each data control item you drop.

To use the Data Palette to create UI components:

1. Select an item in the Data Controls panel and drag it onto the editor for your page.
You can also drag it and drop it from the data palette to the Outline view.

2. From the ensuing context menu, select a UI component. When you drag an item
from the Data palette and drop it on a page or task flow, OEPE displays a context
menu of all the default UI components available. The UI components currently
supported are: Form, Graph, Navigation, Single Selection, and Table.

Depending on the component you select from the context menu, OEPE displays a
dialog that enables you to define how you want the component to look.

For example, if you select Form > ADF Form, the Create Form dialog is opened, as
shown in Figure 2–8, "Create Form Dialog". You can specify if you want it to be a
Read-Only Form. Additionally, you can edit the Fields table to change the Display
Label, Value Binding, and Component to Use elements. Additionally, you can
add or delete value bindings, and specify if you want to include navigation
controls and a submit button.

Working with the Oracle ADF Model Layer

2-16 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–8 Create Form Dialog

The resulting code appears in the source editor for your page.

3. You can click the Edit Component Definition toolbar button on the Properties
window to edit the properties of your UI component.

Note: This feature is currently supported only for ADF Table and
ADF DVT Graph components.

For more information using the data palette, see "Using ADF Data Controls" in
Developing Applications with Oracle ADF Data Control.

To run the ADF page containing your newly added component, right-click the page in
the Project Explorer and select Run As > Run on Server. For more information, see
Section 2.5, "Deploying an Oracle ADF Application."

Note: When running an ADF page from within OEPE, graph
components may render inconsistently in the Eclipse browser. Using
an external browser is recommended for best results.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-17

2.2.4.4 Using the Bindings Tab in the Properties Window
You can view the bindings associated with a page in the Bindings tab of the Properties
window. The tab provides contextual bindings information based on the tag currently
in focus in the editor, as shown in Figure 2–9, "Bindings tab in Properties Window".
The Bindings tab provides the following features:

■ If you place the cursor in the jsp:root tag of the page, the Bindings tab provides
an overview of all the bindings used in the page.

■ Each binding is listed along with its iterator and associated data control, in
addition to the tags it is used in.

■ Click on the binding id or iterator to open the item in the page definition editor.

■ Click on a tag to highlight that portion of the source code in the web page editor.

Figure 2–9 Bindings tab in Properties Window

2.2.4.5 Working with Page Definition Files
Page definition files define the binding objects that populate the data in UI
components at runtime. For every page that has ADF bindings, there must be a
corresponding page definition file that defines the binding objects used by that page.
Page definition files provide design time access to all the ADF bindings. At runtime,
the binding objects defined by a page definition file are instantiated in a binding
container, which is the runtime instance of the page definition file.

When you drag and drop an item from the Data Palette to the page, OEPE
automatically creates a page definition file for that page and adds definitions for each
binding object referenced by the component. For each subsequent databound
component you add to the page, OEPE automatically adds the necessary binding
object definitions to the page definition file. By default, the page definition files are
located in the view.PageDefs package in the adfmsrc directory of the web project.

OEPE names the page definition files using the following convention:

Working with the Oracle ADF Model Layer

2-18 Oracle Enterprise Pack for Eclipse User's Guide

pageNamePageDef.xml

where pageName is the name of the JSP page. For example, if the JSF page is named
home.jsp, the default page definition file name is homePageDef.xml.

2.2.4.6 Opening a Page Definition File in the Page Definition Editor
You can open a page definition file in the page definition editor using any of the
following ways:

■ Right-click the page in the Project Explorer and select Open Page Definition. If
the page does not have an associated page definition file, OEPE asks if you want to
create it.

■ With a page active in the editor, from the main menu, select Navigate > Go To >
Page Definition.

■ In the Bindings tab of the Properties view, click on a binding id to open it in the
page definition editor.

■ If the page definition file already exists, you can double-click it in the Project
Explorer.

2.2.4.7 Understanding the Page Definition Editor
The page definition editor allows you to view and configure bindings, as shown in
Figure 2–10, "Page Definition Editor". It consists of the following sections:

■ Outline: Shows three different types of objects: bindings, executables, and the data
controls in use. You can also add a new binding or executable using the New
button (green plus icon). When you click an item in the Outline section, its
corresponding details are shown in the right pane in the Binding (for bindings)
and Iterator Binding (for executables) section.

■ Binding: Displays information about the binding currently selected in the Outline
section.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-19

Figure 2–10 Page Definition Editor

■ Executable: Displays information about the executable currently selected in the
Outline section.

■ Iterator Binding: Displays information about the currently selected iterator in the
Outline section.

■ Usage: Displays usage information. For a binding, it displays the tags that use it.
For an executable, it displays the bindings that use it. For a data control, the
bindings and executables that use it are displayed.

■ Bindings Summary or Executable Summary, Validation Details, Usage Details:
These sections display summary information when the parent Bindings or
Executables folder is selected in the Outline section.

■ Data Control: Displays the Id and Type of the currently selected data control.

■ Data Control Child: Displays the Id and Type of the currently selected Data
Control child element.

The toolbar icons on the top right corner of the page definition editor are:

■ Open file_name: Click to open the associated JSP page, where file_name is the
name of the file.

■ Open 'adfmsrc/view/DataBindings.cpx': Click to open the DataBindings.cpx
file.

■ Open this page definition using the XML editor

■ Hide Outline: Click to hide the Outline section.

Working with the Oracle ADF Model Layer

2-20 Oracle Enterprise Pack for Eclipse User's Guide

The page definition editor is tolerant of artifacts that are not supported. For example,
in Figure 2–11, "Unsupported Artifact", the editor recognizes the tasteful executable
even though the artifact is not supported.

Figure 2–11 Unsupported Artifact

If a page definition file is modified outside of the page definition editor, the editor will
inform you via the External Changes Detected dialog. The contents of the file are then
reloaded. Additionally, the editor also supports Forward and Back navigation from the
Eclipse IDE. You can navigate previous selections using either the left and right arrows
on the Eclipse toolbar or the main menu items Navigate > Back and Navigate >
Forward.

2.2.4.8 Understanding Bindings and Executables
Declarative bindings abstract the details of accessing data from data collections in a
data control and of invoking its operations.

Bindings
There are three types of Bindings binding objects used to bind UI components to
objects on the data control:

■ Value: Displays data in UI components by referencing an iterator binding. Each
discrete UI component on a page that will display data from the data control is
bound to a value binding object. Value binding objects include:

– Attribute Values: Binds text fields to a specific attribute in an object (also
referred to as an attribute binding object.)

– List: Binds the list items to all values of an attribute in a data collection.

– Tree: Binds an entire table to a data collection and can also bind the root node
of a tree to a data collection.

– Button (boolean): Binds a checkbox to a boolean value for an attribute.

■ Method Action: Binds command components, such as buttons or links, to custom
methods on the data control. A method action binding object encapsulates the
details about how to invoke a method and what parameters (if any) the method is
expecting.

■ Action: Binds command components, such as buttons or links, to built-in data
control operations (such as, Commit or Rollback) or to built-in collection-level
operations (such as, Create, Delete, Next, or Previous).

■ Task Flow: A binding used to encapsulate a reusable portion or region of an
application. You can isolate a small, specific piece of application functionality as a
region that can be reused throughout the application. Task flow binding enables
you to extract, parameterize, and package

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-21

There are five types of supported executable binding objects:

■ Iterator: Binds to an iterator that iterates over view object collections. There is one
iterator binding for each collection used on the page. All of the value bindings on
the page must refer to an iterator binding in order for the component values to be
populated with data at runtime.

When you drop a collection or an attribute of a collection on the page, an iterator
binding is automatically added as an executable. Iterator binding objects bind to
an underlying ADF RowSetIterator object, which manages the current object and
current range information. The iterator binding exposes the current object and
range state to the other binding objects used by the page. The iterator range
represents the current set of objects to be displayed on the page. The maximum
number of objects in the current range is defined in the rangeSize attribute of the
iterator. For example, if a collection in the data control contains products and the
iterator range size is 25, the first 25 products in the collection are displayed on the
page. If the user scrolls down, the next set of 25 is displayed, and so on. If the user
scrolls up, the previous set of 25 is displayed. If your view object uses range
paging, then you can configure the iterator binding to return a set of ranges at one
time.

Note: If you have two pages each with an iterator binding bound to
the iterator on the same view object (which you will if you drop the
same collection, for example, on two different pages), then you should
ensure that the rangeSize attribute is the same for both pages' iterator
bindings. If not, the page with a smaller range size may cause the
iterator to re-execute, causing unexpected results on the other page.

■ Method Iterator: Binds to an iterator that iterates over the collections returned by
custom methods in the data control.

A method iterator binding is always related to a method action binding object. The
method action binding encapsulates the details about how to invoke the method
and what parameters (if any) the method is expecting. The method action binding
is itself bound to the method iterator, which provides the data.

You will see method iterator executable binding objects only if you drop a method
return collection or an attribute of a method return collection from a custom
method on the data control.

■ Variable Iterator: Binds to an iterator that exposes all the variables in the binding
container to the other bindings. While there is an iterator binding for each
collection, there is only one variable iterator binding for all variables used on the
page. (The variable iterator is like an iterator pointing to a collection that contains
only one data object whose attributes are the binding container variables.)

Page variables are local to the binding container and exist only while the binding
container object exists. When you use a data control method (or an operation) that
requires a parameter that is to be collected from the page, OEPE automatically
defines a variable for the parameter in the page definition file. Attribute bindings
can reference the page variables.

■ Accessor Iterator: Iterates over detail collections returned by accessor methods.
Accessor iterators are always related to a master iterator, which is a method
iterator. The accessor iterator returns the detail objects related to the current object
in the master (or method) iterator.

Working with the Oracle ADF Model Layer

2-22 Oracle Enterprise Pack for Eclipse User's Guide

■ Invoke Action: Binds to a method that invokes the operations or methods defined
in action or method action bindings during any phase of the page lifecycle.

2.2.4.9 Adding Bindings and Executables
Bindings are added on the Page Definition page, which can be accessed by
right-clicking your page in the Project Explorer, and choosing Open Page Definition.
For information on tree bindings see "Working with Tree Bindings".

To add a new binding:

1. In the Outline section, click the New icon and then select Binding.

2. In the New Binding dialog, select the type of the new binding, for example, list,
and enter the Id. Then click OK. The binding is added to the Outline section in the
page definition editor.

3. In the editor, specify binding attributes for the new binding that you just created.
For example, if you created a list binding, select the Target Attribute from the Edit
List Binding dialog, as well as a List Source Attribute. You can also add or delete
Field Mappings.

To add a new executable:

1. In the Outline section of the Page Definition editor, click the New icon and then
select Executable.

2. In the New Executable dialog, select the type of the new executable, for example,
methodIterator, and enter the Id. Then click OK. The executable is added to the
Outline section in the page definition editor.

3. In the editor, specify attributes for the executable that you just created. For
example, if you created a methodIterator, select a method action in the Binds
field and specify a Range Size.

2.2.4.10 Working with Tree Bindings
Tree bindings are used to display a collection of data in forms requiring a nested data
structure. For example, if you are displaying an organization chart, for the
organization entities such as Department, Location, and Employee, a tree binding is
used to display the parent and each child node using a unique type. So, if Department
is the root entity type, you can bind and show attributes of Department, such as
Department Name and ID, as well as show attributes for child entity types Location
and Employee.

The system adds the ADF Tree component for a tree or hierarchical format, or the ADF
Table component for a tabular display. For display such as organization charts or for
any nested structure, the Hierarchy Viewer component is used.

To add a new tree binding:

1. In the Outline section of the Page Definition editor, click the New icon and then
select Binding.

2. In the New Binding dialog, select Tree and enter the ID. Click OK. The binding is
added.

To add or change binding attributes for the new binding that you just created:

1. Add and edit attributes for new bindings on the right side of the Page Definition
editor. Click on the page icon for Target Attribute. In the Edit Tree Binding dialog,
select the data collection to bind. Click OK.

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-23

2. The editor displays the entity type of the data collection in the Hierarchy section
on the left.

3. Click Add (plus icon) in the Attribute Name section on the right to select the
attributes of the entity data type you added to the Hierarchy section.

4. Double-click on the newAttribute entry and click on the drop-down icon to select
the attribute.

Working with the Oracle ADF Model Layer

2-24 Oracle Enterprise Pack for Eclipse User's Guide

5. To add a new entity type as a child of the selected node, Click Add in the
Hierarchy section and select from the available type. Repeat steps 3-4 to select
attributes of the type.

Note: There are two categories of nodes in the Hierarchy section.
There are concrete categories which allow selection of attributes, and
virtual categories which have been defined previously in the tree
binding structure.

For more information about bindings and executables, see sections "Bindings Binding
Objects" and "Executable Binding Objects" in the "Using ADF Model in a Fusion Web
Application" chapter of Developing Fusion Web Applications with Oracle Application
Development Framework.

2.2.5 Adding Data Binding to Existing UI Components
While the Data Palette enables you to design and create bound components in a single
drag-and-drop action, in some cases, it may be preferable to create the basic UI
components first and add the bindings later. For example, you can first create an ADF
Faces component, and then bind it to the correct ADF control. Additionally, you can
also rebind a UI component to a different data control.

When designing web pages, keep in mind that ADF bindings can be added only to
certain ADF Faces tags. The following lists the ADF Faces tags to which you can add
ADF bindings.

■ Text Fields

Working with the Oracle ADF Model Layer

Oracle ADF Tools Support 2-25

– af:inputText

– af:outputText

– af:outputLabel

– af:inputDate

■ Tables

– af:table

■ Actions

– af:commandButton

– af:commandLink

– af:commandMenuItem

– af:commandToolbarButton

■ Selection Lists

– af:inputListOfValues

– af:selectOneChoice

– af:selectOneListbox

– af:selectOneRadio

– af:selectBooleanCheckbox

To apply ADF Model data binding to existing UI components:

1. In source editor for your page, select the UI component to which you want to add
ADF bindings. When you select a component in the editor, OEPE simultaneously
selects that component tag in the Outline window.

2. On the Properties pane, click the Bind to ADF Control toolbar button on the top
right.

Note: Your project must already contain data controls for the Bind to
ADF Control button to appear.

3. On the Select Data Control dialog, select an ADF Data Control or one of its
properties. You must select a compatible control or property to continue. Click
OK.

Working with the Oracle ADF Model Layer

2-26 Oracle Enterprise Pack for Eclipse User's Guide

To rebind an existing UI component:

1. In source editor for your page, select the UI component you want to rebind to a
different data control. When you select a component in the editor, OEPE
simultaneously selects that component tag in the Outline window.

2. On the Properties pane, click the Bind to ADF Control toolbar button on the top
right.

3. On the Select Data Control dialog, select the new data control or data control
property you want to bind the UI component to. You must select a compatible
control or property to continue. Click OK.

Depending on the UI component being rebound, OEPE displays a dialog where
you can re-enter properties for the component. For example, if you are rebinding
an ADF Table, the Edit Table dialog is displayed.

4. Specify properties for your component and click Finish to complete rebinding.

2.2.6 Debugging ADF Bindings
You can debug ADF bindings by setting breakpoints in the page definition editor. For
more information, see Section 2.6.4, "Setting and Using ADF Page Definition
Breakpoints.".

2.2.6.1 ADF Page Definition Artifact Validation
OEPE provides real-time and on-demand validation of your page definition files even
while the page definition editor is closed. Page definition validation warnings and
errors are reported in the Markers view under the section ADF Page Definition
Problems. You can set workspace preferences for ADF page definition validation from
the Preferences dialog.

To specify preferences for ADF page definition validation:

1. From the main menu, select Window > Preferences to open the Preferences dialog.

2. In the Preferences dialog, select ADF > Artifact Validation to open the Artifact
Validation page.

3. Specify validation options as per your preference:

■ Disable validation: Click to stop ADF page definition validation.

■ Reduce all validation errors to warnings: Selected by default. Deselect if you
want validation issues to be reported as errors, thereby preventing
deployment to WebLogic Server. This option is disabled if Disable validation
is selected.

■ Run Validation: Click to run a workspace-wide validation based on current
saved preferences. This option is disabled if Disable validation is selected.

■ On clicking OK or Apply:

– If Disable validation is unselected or the Reduce all validation errors to
warnings option was changed, a workspace-wide validation occurs.

– If Disable validation is selected, all ADF Validation Markers are deleted.

– Open page definition editors immediately reflect the changes.

Working with Oracle ADF Controller

Oracle ADF Tools Support 2-27

2.2.7 Refactoring ADF Bindings
You can perform several refactoring options on ADF data binding artifacts using the
AppXRay dependency engine. For more information, see Section 2.8.4, "Refactoring
ADF Data Binding Artifacts."

2.3 Working with Oracle ADF Controller
In the controller layer, where handling page flow of your web applications is a key
concern, ADF Controller provides an enhanced navigation and state management
model on top of JSF. OEPE allows you to declaratively create task flows where you can
pass application control between different types of activities, such as pages, methods
on managed beans, case statements, or calls to other task flows.

These task flows can be reused, and can also be nested, both within themselves and
within pages. Task flows nested in pages become regions that contain their own set of
navigable pages, allowing users to view a number of different pages and functionality
without leaving the main page.

2.3.1 Understanding ADF Task Flows
ADF task flows provide a modular approach for defining control flow in an ADF
application. Instead of representing an application as a single large JSF page flow, you
can break it up into a collection of reusable task flows. Each task flow contains a
portion of the application's navigational graph. The nodes in the task flows are
activities. An activity node represents a simple logical operation such as displaying a
page, executing application logic, or calling another task flow. The transitions between
the activities are called control flow cases.

For more information about ADF Task Flows, see the Introduction to ADF Task Flows
section in the "Getting Started with ADF Task Flows" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

2.3.2 Creating a New Task Flow
You can create a task flow.

To create a new task flow:

1. In the Project Explorer, right-click your web project and select ADF Task Flow in
the context menu. If the ADF Task Flow menu item is not visible, select Other, and
in the New Gallery, expand Application Development Framework and
double-click ADF Task Flow.

2. In the Create ADF Task Flow wizard, specify a file name (default: task-flow.xml)
and location (default: WebContent/WEB-INF folder of your web project) for the ADF
Task Flow. Then click Next.

3. On the Task Flow Options page, select options to specify the type of task flow you
want to create. The Create as Bounded Task Flow checkbox is selected by default.
Deselect it to create a source file that will be incorporated into the application's
unbounded task flow. Select Task flow will use page fragments if you want the
view activities that you add to the task flow to reference page fragments files
(.jsff). Leave it unselected if you want the view activities that you add to the task
flow to reference JSF pages. Then click Finish. The task flow that you created
opens by default in the Diagram view of the ADF Task Flow Editor.

4. After you create the task flow, you can update it using the Diagram, Overview, or
Source views. When you use the Design view, the Properties pane is

Working with Oracle ADF Controller

2-28 Oracle Enterprise Pack for Eclipse User's Guide

context-aware, making additional configuration for various activities easily
accessible without switching to the Overview pane.

A new XML source file is created every time you create a new ADF unbounded or
bounded task flow. By default, the XML source file for an ADF unbounded task flow is
called adfc-config.xml.

Note: Do not use the same name for more than one task flow in the
same workspace, even if the task flows belong to different projects.
Identical task flow names can cause unpredictable behavior while
debugging.

2.3.3 Adding Activities to a Task Flow
You can add activities to a task flow.

To add activities to a task flow:

Drag an activity from the Palette onto the ADF Task Flow. Normally, you would start
with a view activity.

■ If you drag a view activity onto the diagram, you can double-click it to display the
wizard for the page or page fragment that the task flow is configured to invoke.
Use the wizard to define characteristics for the page or page fragment.

■ If you drag a router activity onto the diagram, you can use the Properties pane to
create an expression whose evaluation will determine which control flow rule will
be followed.

■ If you drag a method call activity onto the diagram, you can use the Properties
pane to configure the method to be called.

■ If you drag a task flow call activity onto the diagram, you can double-click it to
display the Create Bounded Task Flow dialog where you can define settings for a
new bounded task flow.

■ If you are creating a bounded task flow, and you drag a task flow return activity
onto the diagram, you can use the Properties pane to configure the activity.

Note: The default activity is the first activity to execute in an ADF
bounded task flow. For example, the default activity always executes
first when a task flow call activity passes control to the ADF bounded
task flow. The first activity that you add to a new ADF bounded task
flow diagram is automatically identified as the default activity. A
green blob over a node indicates that it is the default activity.

For more information on activity types, see the Introduction to Activity Types section
in the "Working with Task Flow Activities" chapter of Developing Fusion Web
Applications with Oracle Application Development Framework.

2.3.4 Adding ADF Bindings to a Task Flow
Once you have created your task flow, you can add ADF bindings to the Router,
Method Call, and TaskFlow Call activities by creating Page Definitions. For more
information, see Section 2.3.2, "Creating a New Task Flow."

To create a Page Definition for binding task flow activities:

Working with Oracle ADF Controller

Oracle ADF Tools Support 2-29

1. Drop the activity onto the task flow page. ADF bindings can only be added to the
Method Call, Router, and TaskFlow Call activities on a task flow.

2. Mouse over the activity to view the Create Page Definition icon. Click on that icon
to create a new Page Definition, or to open an existing Page Definition.

3. Once you have a Page Definition for that activity, create a binding. For more
information, see Section 2.2.4.9, "Adding Bindings and Executables."

Figure 2–12 shows an example of a Method Call on a task flow page showing the
Create Page Definition option.

Figure 2–12 Method Call on a Task Flow Page

Figure 2–13 shows an example of a Router on a task flow page showing the Create
Page Definition option.

Figure 2–13 Router on a Task Flow Page

Figure 2–14 shows an example of a methodAction binding on the Page Definition that
can be bound to a method call activity.

Working with Oracle ADF Controller

2-30 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–14 methodAction binding on the Page Definition

To configure ADF bindings for Method Calls in a task flow:

1. Create a Page Definition for the Method Call, if you don't already have one, and
create a binding. For more information, see Section 2.3.4, "Adding ADF Bindings
to a Task Flow."

In the Task Flow editor, choose the Overview tab.

2. In the Outline panel on the left, select the activity for which your are going to
associate the method call to a binding.

3. In the Method Call Activity panel on the right, select the edit page icon next to the
Method field. The Choose Method dialog appears. The bindings available for that
method are shown.

4. Choose the appropriate binding and click OK.

Figure 2–15 shows an example of the Choose Method dialog for a Method Call
taskflow page definition.

Figure 2–15 Choose Method Dialog

To configure ADF bindings for Router activities in a task flow:

1. Create a Page Definition for the Router, if you don't already have one, and create a
binding. For more information, see Section 2.3.4, "Adding ADF Bindings to a Task
Flow."

In the Task Flow editor, choose the Overview tab.

Working with Oracle ADF Controller

Oracle ADF Tools Support 2-31

2. In the Outline panel on the left, select the activity for which you are going to
associate the Router to a binding.

3. In the Router Activity panel on the right, select the edit page icon next to the
Router field. The bindings available for that router are shown.

4. Choose the appropriate binding and click OK.

Figure 2–16 shows an example of an attribute binding to be used to bind a Router in a
taskflow.

Figure 2–16 Attribute Binding Used to Bind a Router in as Taskflow

Figure 2–17 shows an example showing the Choose Binding dialog for the Router
activity.

Working with Oracle ADF Controller

2-32 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–17 Choose Binding Dialog

2.3.5 Adding Control Flows to a Task Flow
A control flow case identifies how control passes from one activity to the next in the
application.

To add a control flow case:

1. In the Palette, select Control Flow Case.

2. On the diagram, click a source activity, for example a view, and then click the
destination activity.

3. Set the outcome value in the Properties pane, using either the From Action
attribute (if the outcome is to be determine by a method) or the From Outcome
attribute (if the outcome can be set as a String).

2.3.6 Using Task Flows as Regions
You can render a bounded task flow in a JSF page or page fragment (.jsff) by using an
ADF region. When first rendered, the ADF region's content is that of the first view
activity in the bounded task flow. The view activities used in the bounded task flow
must be associated with page fragments, not pages.

You can pass values to the ADF Region using task flow binding input parameters or
contextual events.

For more information on ADF Regions, see the Introduction to Using Task Flows in
ADF Regions section in the "Using Task Flows as Regions" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

Before you create an ADF region, you need to do the following:

Working with Oracle ADF Faces

Oracle ADF Tools Support 2-33

■ Create a bounded task flow with one or more view activities associated with page
fragments or one task flow call activity to a task flow with view activities.

■ Create a page to host the ADF region.

To create an ADF Region:

1. In the Project Explorer, drag the bounded task flow onto the JSF page and drop it
where you want to place the ADF region.

2. In the context menu, select Region.

3. Review or modify (as appropriate) the following properties which OEPE
automatically populates with default values in the Properties pane for the ADF
region:

■ Id: An ID that the JSF page uses to reference the ADF region.

■ Rendered: If selected (the default state), the ADF region renders when the JSF
page renders.

■ Value: An EL reference to the ADF region model, for example,
#{bindings.task_flow1.regionModel}. This is the region model that
describes the behavior of the region.

2.3.7 Running an ADF Task Flow
The procedure for running and debugging task flows differs depending on whether
the task flow is bounded or unbounded, whether it contains pages or page fragments.

To run or debug a bounded task flow that uses pages:

■ Right-click the bounded task flow in the Project Explorer and choose either Run
As or Debug As.

To run or debug a bounded task flow that uses page fragments:

1. Create a JSF page containing a region that is bound to the bounded task flow.
When you drop a bounded task flow containing page fragments onto a JSF page,
OEPE automatically prompts you to create a region.

2. Create a view activity in the project's unbounded task flow that refers to the page.

3. Right-click the view activity in the Project Explorer and choose Run.

For more information on running and debugging task flows, see the Testing ADF Task
Flows section in the "Getting Started with ADF Task Flows" chapter of Developing
Fusion Web Applications with Oracle Application Development Framework.

2.4 Working with Oracle ADF Faces
ADF Faces rich client (known also as ADF Faces) is a set of JavaServer Faces (JSF)
components that include built-in Asynchronous JavaScript and XML (AJAX)
functionality. While AJAX brings rich client-like functionality to browser-based
applications, using JSF provides server-side control, which reduces the amount of
JavaScript code that application developers need to write in order to implement
AJAX-based applications. In addition to providing a rich set of JSF components, the
ADF Faces rich client framework (RCF) provides a client-side programming model
familiar to developers accustomed to the JSF development model.

For more information on Oracle ADF Faces, see the "Introduction to ADF Faces Rich
Client" chapter of Developing Fusion Web Applications with Oracle Application
Development Framework.

Working with Oracle ADF Faces

2-34 Oracle Enterprise Pack for Eclipse User's Guide

2.4.1 About ADF Faces Configuration Files
A JSF web application requires a specific set of configuration files, namely, web.xml
and faces-config.xml. ADF applications also store configuration information in the
adf-config.xml and adf-settings.xml files. Because ADF Faces shares the same code
base with MyFaces Trinidad, a JSF application that uses ADF Faces components for the
UI also must include a trinidad-config.xml file, and optionally a trinidad-skins.xml
file.

For more information on ADF Faces configuration files, see the "ADF Faces
Configuration" appendix in Developing Fusion Web Applications with Oracle Application
Development Framework.

For more information on all Oracle ADF XML files generated by OEPE, see
Section 2.11, "Appendix A Oracle ADF XML Files."

2.4.2 About ADF Data Visualization Components
The ADF Data Visualization components provide significant graphical and tabular
capabilities for displaying and analyzing data, and support the use of ADF data
controls.

For more information regarding ADF Data Visualization Components, see the
"Introduction to ADF Data Visualization Components" chapter of Developing Fusion
Web Applications with Oracle Application Development Framework.

2.4.3 Working with ADF tags in JSP Pages
You can create JSP pages.

To create a JSP page:

1. In the Project Explorer, In your dynamic web project, right-click the WebContent
node, and select New > JSP File. Alternatively, from the main menu, click New >
Other, and choose JSP File under the Web node.

2. In the New JSP File dialog, enter or select the parent folder, and enter a file name,
for example, login.jspx, in the File name field. Then click Next.

3. On the Select JSP Template page, select a template and view the statements
generated for it in the Preview pane. A variety of JSP templates are available for
JSP, JSF, and ADF development. For ADF applications, you will need to select a
JSP template that supports XML style syntax, for example, New ADF Rich Faces
Page - Basic (xhtml, xml syntax).

4. Optionally, you can click the JSP Templates link at the bottom to customize
existing templates or create new ones.

5. Click Next. The page opens in the Web Page Editor.

2.4.4 Support for ADF Components in the Palette
The Palette pane displays all the available library components. You can click on an
item in the palette to expand it.

The ADF Data Visualizations node shows all the GUI components available to
represent data, for example, Bars, Pies, or Gauges. You can drag an item from the
Palette and drop it on the JSP page. The following figure shows the ADF Data
Visualizations node in the Palette.

Deploying an Oracle ADF Application

Oracle ADF Tools Support 2-35

The last item in the Palette is the Data Palette. Expand it to see content related to the
available variables. Variables displayed in the Data Palette range from local Page
Variables declared within the current JSP page to JSF Managed Beans available to the
whole application. The Data Palette enables easy navigation to variable and class
declarations as well as Drag and Drop onto the page.

2.4.5 Using the Tag Drop Editor for ADF Faces Components
You can set properties for ADF components.

To set properties for ADF components using the tag drop editor:

1. Select an ADF Faces component in the Palette, for example, Form.

2. Drag the selected component and drop it on to your JSP file.

3. In the dialog that opens, set properties for the ADF component. For example, if
you dropped the Form tag, you can specify the type of form to create, as well as
select properties that will be used as form fields.

Note: Some tags may not render correctly; rendering support for
these will be added in a future release.

2.4.6 Using the Smart Editor for ADF Components
The Properties pane provides a smart editor for ADF components where you can
review and update the properties of ADF tags and attributes.

To use the smart editor for an ADF component:

1. Click an ADF component, for example, af:form, either in the source view or
design view of the JSPX file.

2. Click the Properties pane.

3. In the Properties pane, you click any of the property categories, and review or
update the attributes. For example, if you are viewing the properties for the
af:form tag, you can click Common and edit the Id attribute. If you want to view
all attributes together, click All.

4. You can click on a hyperlinked field to open its value in the editor.

5. For documentation on a particular tag, press F1 from within the Properties pane.

2.5 Deploying an Oracle ADF Application
You can quickly deploy applications.

To run an ADF application on WLS:

1. Right-click the page you want to run, for example, login.jspx, and select Run As
> Run on Server.

2. In the Run on Server dialog, select Choose an existing server if you already have a
valid server connection to WLS 10.3.5. If you do not have an existing valid server
configuration, select Manually define a new server and follow the instructions.

Debugging an Oracle ADF Application

2-36 Oracle Enterprise Pack for Eclipse User's Guide

2.6 Debugging an Oracle ADF Application
Like any debugging task, debugging the web application's interaction with Oracle
Application Development Framework (Oracle ADF) is a process of isolating specific
contributing factors.

To identify and fix application problems, the ADF Debugger provides declarative
breakpoints that you can set at the ADF object level (such as task flows and ADF
lifecycle phases), as well as standard Java breakpoints. ADF declarative breakpoints
provide a high-level object view for debugging ADF applications. For example, you
can break before a task flow activity to see what parameters would be passed to the
task flow. To perform the same function using only Java breakpoints would require
you to know which class or method to place the breakpoint in. ADF declarative
breakpoints should be the first choice for ADF applications.

For more information about debugging an ADF application, see "Using the ADF
Declarative Debugger" in Developing Fusion Web Applications with Oracle Application
Development Framework.

2.6.1 Using ADF Source Code with the Debugger
If you have valid Oracle ADF support, you can obtain complete source code for Oracle
ADF by opening a service request with Oracle Worldwide Support. You can request a
specific version of the Oracle ADF source code. You may be given download and
password information to decrypt the source code ZIP file. Contact Oracle Worldwide
Support for more information.

Adding Oracle ADF source code access to your application debugging session will:

■ Enhance the use of Java code breakpoints by displaying the Oracle source code
that's being executed when the breakpoint is encountered. You can also set
breakpoints easier by clicking on the margin in the source code line you want to
break on. Without the source code, you will have to know the class, method, or
line number in order to set a breakpoint within Oracle code.

■ For Java code breakpoints set within the source code, you will be able to see the
values of all local variables and member fields in the debugger.

After you have received or downloaded the "outer" ZIP, unzip it with the provided
password to access the actual source code ZIP file. The ADF source code ZIP name
should be a variant of the ADF version number and build number. For example, the
ADF source ZIP may have a format similar to adf_vvvv_nnnn_source.zip, where vvvv
is the version number and nnnn is the build number. Extract the zip into a folder that
has the same name as the zip. For example, if the ADF zip is named adf_111150_6013_
source, extract it into a folder called adf_111150_6013_source.

To add an ADF source library to a project:

1. From the main menu, select Window > Preferences.

2. In the Preferences dialog, select ADF > ADF Source Code Location.

3. In the ADF Source Code Locations page, click Add.

4. In the Add ADF Source Bundle Location dialog, navigate to the ADF source
location by clicking Browse in the Location field. The Bundle information field is
populated. Then click OK.

5. Click OK in the Preferences dialog.

Note: When multiple versions of WLS (for example, 10.3.5 and
10.3.6) and ADF runtime are configured in OEPE, and the shared
libraries from these distributions have the same sub-version, only the
latest WAR/JAR from the latest WLS runtime will be registered in the
OEPE shared library registry. If the version of ADF source code (for
example, 11.1.1.6.0) provided to OEPE is targeted to an older
WLS/ADF runtime, it will not be mapped to the later version of the
runtime JAR.

Debugging an Oracle ADF Application

Oracle ADF Tools Support 2-37

2.6.2 Setting ADF Declarative Breakpoints
You use the ADF Declarative Debugger features in OEPE to declaratively set
breakpoints on ADF task flow activities, ADF bindings, and ADF lifecycle phases.
ADF declarative breakpoints provide a high-level object view for debugging ADF
applications. For example, you can break before a task flow activity to see what
parameters would be passed to the task flow. To perform the same function using only
Java breakpoints would require you to know which class or method to place the
breakpoint in. ADF declarative breakpoints should be the first choice for ADF
applications.

The ADF Declarative Debugger also supports standard Java code breakpoints. You can
set Java code breakpoints in any ADF application. You may be able to use Java code
breakpoints when an ADF declarative breakpoint does not break in the place you
want.

The ADF Declarative Debugger is built on top of the Java debugger, so it has the
features and behaviors of the Java debugger. But instead of needing to know the Java
class or method, you can set ADF declarative breakpoints in visual editors.

2.6.3 Setting and Using ADF Task Flow Breakpoints
You can add breakpoints to task flow activities in the task flow editor by selecting a
task flow activity and using the context menu to toggle or disable breakpoints on that
activity. After the application pauses at the breakpoint, you can view the runtime
structure of the objects as well as a list of data for a selected object in the ADF
Structure and Data window.

When an ADF declarative breakpoint is set, it appears as a red dot icon in the task flow
activity.

To set and use a breakpoint on a task flow activity:

1. Double-click the task flow in the Project Explorer to open in the task flow editor.

2. Right-click a task flow activity and choose Toggle Breakpoint from the context
menu.

A blue dot appears on the task flow activity, signifying that the breakpoint has
been set.

3. Start the debugging process. You can:

■ From the main menu, choose Run > Debug As, and then select the server.

■ From the Project Explorer, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug As, and then select
the server.

Debugging an Oracle ADF Application

2-38 Oracle Enterprise Pack for Eclipse User's Guide

4. When the application is paused at a breakpoint, a red triangle appears next to the
breakpoint icon on the task flow activity. You can now examine the application
using the ADF Structure and Data window or the Debug window.

5. The ADF Structure and Data window appears by default. You can use this
window to examine runtime structure and corresponding data values.

6. Select a node in the ADF structure in the left pane and view pertinent data in the
right pane. Task flow activity declarative breakpoints pause the application just
before the task flow activity is executed. You can use the Step Into (F5) function to
pause the application just prior to executing the called task flow default activity.

7. Continue debugging the application as required.

2.6.4 Setting and Using ADF Page Definition Breakpoints
You can add breakpoints to page definition executables and bindings in the page
definition editor by selecting a binding or executable item and using the context menu
to toggle or disable 'before' or 'after' breakpoints on that item. After the application
pauses at the breakpoint, you can view the runtime structure of the objects as well as a
list of data for a selected object in the ADF Structure and Data window.

To set and use ADF page definition breakpoints:

1. In the page definition editor, in the Outline section, right-click the binding or
executable you want to set the breakpoint on. From the context menu, select
Toggle Breakpoint Before or Toggle Breakpoint After or both depending on
where you want to place the breakpoint. A blue triangle appears on the item
indicating that the breakpoint has been set.

2. From the main menu, select Window > Open Perspective > Debug. The
Breakpoints window lists the breakpoints you have set selected by default. You
can deselect breakpoints in the Breakpoints window if you do not want them to be

Debugging an Oracle ADF Application

Oracle ADF Tools Support 2-39

considered by the debugger. Double-clicking a breakpoint in the Breakpoints
window opens the page definition editor with the particular binding or executable
in focus.

3. Start the debugging process. You can:

■ From the main menu, choose Run > Debug As, and then select the server.

■ From the Project Explorer, right-click the project or page and choose Debug
As, and then select the server.

4. When the application is paused at an ADF page definition breakpoint, a red
triangle appears on the impacted binding element in the page definition editor, as
shown in the following figure. You can now examine the application using the
debugging resources available.

5. The ADF Structure and Data window appears by default when you work in the
Debug perspective. You can use this window to examine runtime structure and
corresponding data values.

6. Select a node in the ADF structure and view pertinent data in the right pane.

7. Continue debugging the application as required.

2.6.5 Setting and Using ADF Lifecycle Phase Breakpoints
You can set Before and After breakpoints on all the ADF lifecycle phases in the ADF
Lifecycle diagram. For each phase, you can set Before only, After only, or both. You can
set breakpoints on as many phases as you want. The ADF Lifecycle diagram is
available from the Breakpoints window. You can set ADF lifecycle breakpoints on any
of the ADF lifecycle phases:

Debugging an Oracle ADF Application

2-40 Oracle Enterprise Pack for Eclipse User's Guide

■ JSF Restore View

■ Initialize Content

■ Prepare Model

■ JSF Apply Request Values

■ Apply Input Values

■ JSF Process Validations

■ Validate Input Values

■ Process Update Model

■ JSF Update Model Values

■ Validate Model Updates

■ JSF Invoke Application

■ Process Component Events

■ Metadata Commit

■ Prepare Render

■ JSF Render Response

To set and use ADF lifecycle phase breakpoints:

1. Select Window > Show View > Breakpoints to open the Breakpoints window.

2. In the Breakpoints window, click the Add ADF Lifecycle Breakpoints button in
the toolbar.

The ADF Lifecycle Diagram is displayed.

3. In the ADF Lifecycle Diagram, select the left checkbox to set a breakpoint before
the phase, or select the right checkbox to set a breakpoint after the phase, or select
both.

4. Start the debugging process. You can:

■ From the main menu, choose Run > Debug As, and then select the server.

■ From the Project Explorer, right-click the project, adfc-config.xml,
faces-config.xml, task flow, or page and choose Debug As, and then select
the server.

5. When the application is paused at an ADF lifecycle phase breakpoint, you can
examine the application using the debugging resources available.

6. The ADF Structure and Data window appears by default when you work in the
Debug perspective. You can use this window to examine runtime structure and
corresponding data values.

7. Select a node in the ADF structure and view pertinent data in the right pane.

8. Continue debugging the application as required.

2.6.6 Using the EL Expression Evaluator
When the application is paused at a breakpoint, you can use the EL expression
evaluator to enter an EL expression for evaluation. You can enter arbitrary EL
expressions for evaluation within the current context. If the EL expression no longer

Debugging an Oracle ADF Application

Oracle ADF Tools Support 2-41

applies within the current context, the value will be evaluated to null. The EL
Evaluator is available for debugging any JSF application.

To use the EL Evaluator:

1. Set a break point in the JSF application.

2. Start the debugging process.

3. When the breakpoint is reached, click the ADF EL Evaluator tab to bring it
forward.

4. Enter an EL expression in the Expression field.

When you click in the field after entering #{ or after a period, a discovery function
provides a selectable list of expression items. Auto-completion will be provided
for easy entry. You can evaluate several EL expressions at the same time by
separating them with semicolons.

5. When you finish entering the EL expression, click Evaluate and the expression is
evaluated.

2.6.7 Using the ADF Structure and Data Window
The ADF Structure and Data window displays the ADF structure on the left pane, and
relevant data for a given object in the right pane.

When you use the Debug perspective of OEPE, the ADF Structure and Data window
opens by default. To manually launch the ADF Structure and Data window, choose
Window from the main menu, and then select Show View > ADF Structure and Data.

2.6.7.1 Using the ADF Structure Pane
When the application is paused at a breakpoint, the ADF Structure pane displays a tree
structure of the ADF runtime objects and their relationships within the application. In
particular, it shows the hierarchy of view ports, which represent either the main
browser window or contained regions. When you select different items in the ADF
Structure pane, the data display in the accompanying ADF Data pane changes.

The roots of the hierarchy are the sibling nodes Scopes and ADF Context:

■ Scopes: Displayed at the top of the ADF Structure hierarchy above its sibling ADF
Context node. There is only one Scopes node in the ADF Structure hierarchy. You
can expand the Scopes node to show a list of child scope nodes (such as viewScope
and pageFlowScope). If you select a child scope node, the ADF Data pane displays
the variables and values for that scope.

■ ADF Context: Displayed as the root node of the ADF Structure hierarchy below its
sibling Scopes node. There will only be one ADF Context within the ADF
Structure hierarchy.

2.6.7.2 Using the ADF Data Pane
When an application is paused at an ADF declarative breakpoint, the ADF Data pane
(in the ADF Structure and Data window)s displays relevant data based on the
selection in the ADF Structure pane.

The ADF Data pane displays the following types of data:

■ You can inspect the values of requestScope, viewScope, pageFlowScope,
applicationScope, and sessionScope by expanding each corresponding node in the
ADF Structure pane.

Using AppXray for Oracle ADF Artifacts

2-42 Oracle Enterprise Pack for Eclipse User's Guide

■ When the ADF context is selected in the ADF Structure pane, the current value of
the ADF context variables will be displayed in the ADF Data pane.

■ Selecting a view port within the ADF Structure hierarchy will display the view
port's current view port details in the ADF Data pane.

■ In the ADF Structure pane, each individual ADF task flow within a page flow
stack hierarchy is selectable. An ADF task flow selected in the ADF Structure pane
will display the current task flow information in the ADF Data pane.

■ When you select a page or page fragment node in the ADF Structure hierarchy, the
corresponding UI component tree is displayed within the ADF Data pane.

2.7 Using AppXray for Oracle ADF Artifacts
AppXRay is a central feature of Oracle Enterprise Pack for Eclipse designed for
dependency tracking, validation, visualization, and refactoring support. In this release
of OEPE, AppXray is enabled for ADF components as well.

Some of the features in the source view of the Web Page editor that are driven by
AppXray are:

■ Hovering over a component displays the properties of the component. For
example, if you hover over a managed bean in source editor, its properties (Name,
Type, and Scope) are displayed.

■ Hovering over a component and pressing Ctrl + Space displays a popup with
possible code values.

■ Hovering over a component and pressing Ctrl results in a hyperlink that leads you
to the tag documentation.

■ Content assist for ADF bindings on a page as defined by the page definition file.

To use AppXaminer to view dependency relationships:

1. In the Project Explorer, right-click any file in your application, for example,
login.jspx, and select Show AppXray Dependencies from the context menu.

2. AppXaminer opens in the Editor displaying the relationship the selected page has
with other components. Numeric values indicate the number of references a
component has with another.

3. Expand a node to the relationship it has with other components.

4. Right-click a node and select Show Reference Detail from context, which invokes
a popup window displaying the detailed components involved. Alternatively,
select Open from the context menu to view the file in the editor.

2.8 Refactoring Oracle ADF Components
OEPE provides refactoring options to rename, move, and delete the ADF components
that your application uses. These refactoring options synchronize your changes with
other parts of the application that are dependent on the changes.

2.8.1 Refactoring ADF Pages
This section describes the refactoring options available for ADF pages. Table 2–1 lists
each refactoring operation and what components are consequently modified.

Table 2–1 Refactoring Options Available for ADF Pages

Refactoring Operation Components Modified

Renaming a page file ■ faces-config.xml

■ ADF task flow

■ databindings.cpx

Moving a page to a different
folder

■ faces-config.xml

■ ADF task flow

■ databindings.cpx

Deleting a page file The corresponding page definition file and the entry for the page
definition in the CPX file are deleted

Note: If there are invalid references, an error message is
displayed

Deleting a folder containing
a page

The corresponding page definition files and the entries for the
page definitions in the CPX file are deleted

Renaming a folder
containing a page

■ faces-config.xml

■ ADF task flow

■ corresponding page definition file

■ databindings.cpx

Refactoring Oracle ADF Components

Oracle ADF Tools Support 2-43

2.8.2 Refactoring ADF Task Flow configuration files
Table 2–2 describes the refactoring options available for ADF task flow configuration
files. The following content lists each refactoring operation and what components are
consequently modified.

Table 2–2 Refactoring Options for ADF Task Flow Configuration Files

Refactoring Operation Components Modified

Renaming the task-flow-id
tag of a bounded task flow

■ task-flow-call tag in the task flow configuration file

■ Page definition XML file of the page in which the task flow
is embedded

Renaming the task flow
configuration file

■ document tag in the task flow configuration file

■ Page definition XML file of the page in which the task flow
is embedded

Renaming the
task-flow-activity id
attribute for view and
taskflow call activities

References to task-flow-activity within the configuration file

Renaming task flow id ID reference in page definition

Renaming a folder
containing a task flow

■ document tag in task flow configuration file

■ Page definition XML file of the page in which the task flow
is embedded

Moving a task flow ■ document tag in the task flow configuration file

■ Page definition XML file of the page in which the task flow
is embedded

Deleting a task flow Entry in page definition file deleted

Refactoring Oracle ADF Components

2-44 Oracle Enterprise Pack for Eclipse User's Guide

2.8.3 Refactoring JSF/ADF Managed Beans
OEPE support for refactoring a Java class includes all changes except those noted in
Table 2–3, which lists each refactoring operation on managed beans and components
consequently modified.

Table 2–3 Refactoring Operations on Managed Beans

Refactoring operation on
Managed Bean Components Modified

Moving to a different
package

Class name in the managed bean definition in the corresponding
configuration file

Deleting the Java class ■ No change to the definition of the bean in the configuration
file

■ An error message warns you about invalid references

Renaming the name of the
managed bean in the
configuration file

References to the managed bean in all pages

Deleting the name of the
managed bean or the
managed bean itself

Reference to the managed bean in all pages

Renaming a property of the
managed bean

■ Method or field in the managed bean class that corresponds
to the property

■ Name of property in faces-config.xml

■ EL expression in JSP files

Renaming a Java class that
is the type for a managed
property in a JSF/ADF
managed bean

■ Accessors on the property

■ Reference to the managed bean in all pages

2.8.4 Refactoring ADF Data Binding Artifacts
This section describes the refactoring options available for ADF data binding artifacts.
Table 2–4 lists each refactoring operation and what components are consequently
modified.

Notes: ■All ADF Model files (.dcx, .cpx, page definitions) must
reside in the adfmsrc folder. The user can move the files to any
package under adfmsrc. To create a package, right-click the folder
and select New > Package.

■ Refactoring of Java files, for example, JPA entities and session
beans, does not change the corresponding entries in ADF Model
files.

Table 2–4 Refactoring Operations and Modified Components

Refactoring Operation Components Modified

Moving datacontrols.dcx to
another package under the
adfmsrc folder

■ datacontrolusages attribute in the DataBindings.cpx file

■ Reference to the .dcx file in META-INF/adfm.xml of the
Model project

■ package attribute in the file

Refactoring Oracle ADF Components

Oracle ADF Tools Support 2-45

2.8.5 Externalizing Strings
The string externalization feature in OEPE enables you to extract strings from JSF
pages and externalize them in resource bundles. The strings are then substituted by
the corresponding EL expression. By externalizing strings, the text can be translated in
different languages.

To externalize strings:

1. In the Project Explorer, right-click the page you want to extract strings from. In the
context menu, choose Source > Externalize Strings.

2. In the Externalize Strings dialog, select the strings you want to externalize. The
Externalize Strings dialog contains the following options:

■ Enter common prefix for generated keys: Specifies an optional prefix for all
newly generated key. A good practice is to use the name of the JSF page to
ensure that entries in the property files can be easily grouped.

■ Strings to externalize: Displays the list of all strings in the file.

■ Externalize: Marks the selected strings to be externalized. Externalized strings
will be placed in a property file. In the code, the string is substituted by its
corresponding EL expression.

■ Ignore: Marks the selected strings to be ignored from externalization.

■ Edit: Opens a dialog to enter a new value and key.

Renaming or moving a
folder containing a data
control file

■ datacontrolusages attribute in the DataBindings.cpx file

■ Reference to the .dcx file in META-INF/adfm.xml of the
Model project

■ package attribute in the file

Changing the Id within a
data control

■ path attribute in the data control usages section of the .cpx
file

Moving DataBindings.cpx ■ Reference to the .dcx file in META-INF/adfm.xml of the
Model project

■ package attribute in the file

Renaming or moving a
folder containing an ADFm
file (*.cpx)

■ Reference to the .dcx file in META-INF/adfm.xml of the
Model project

■ package attribute in the file

Changing the data control
ID in the data control usages
section of an ADFm file
(*.cpx)

■ DataControl attribute in associated page definition files

Renaming or moving a page
definition file

■ Id attribute in the root element

■ Reference to the page definition file in the .cpx file

■ package attribute in the file

■ Page definition Id

Renaming or moving a
folder containing a page
definition file

■ Reference to the page definition file in the .cpx file

■ package attribute in the file

■ Page definition Id

Table 2–4 (Cont.) Refactoring Operations and Modified Components

Refactoring Operation Components Modified

Reusing Oracle ADF Application Components

2-46 Oracle Enterprise Pack for Eclipse User's Guide

■ Context: Displays the occurrence of the string in the context of the page.

■ Bundle Property File: Select a property bundle file. If a properties file has not
been created previously, OEPE creates called messages.properties.

3. Click Next.

4. In the next page of the wizard, confirm the changes to be performed after
reviewing the original source and the refactored source.

5. Click Finish.

2.8.6 Adding and Refactoring ADF Tag IDs
If you have tags on your page with missing IDs, you can add and refactor your ADF
tags using the Fix ADF Component IDs feature from your page editor.

To add and refactor ADF tag IDs:

1. With the focus on your page, right-click and choose Source > Fix ADF
Component IDs.

2. A refactoring diff window comes up and shows you the code before and after the
refactor operation. Inspect the changes to ensure correctness, then click Finish.

2.9 Reusing Oracle ADF Application Components
OEPE and ADF enable you to package certain ADF components into the ADF Library
for reuse in applications. Reusable ADF components can be task flows and page
templates.

2.9.1 About ADF Library Support
ADF Library provides a convenient and practical way to create, deploy, and reuse
high-level components. When you first design your application, you design it with
component reusability in mind. If you created components that can be reused, you can
package them into JAR files and add them to a reusable component repository. If you
need a component, you may look into the repository for those components and then
add them into your project or application.

An ADF Library JAR contains ADF components and does not and cannot contain
other JARs. It should not be confused with OEPE library, Java EE library or Oracle
WebLogic shared library.

An ADF Library created in OEPE can be consumed by Oracle JDeveloper.

Note: OEPE does not support generating an ADF library from a
project that contains a reference to an external JAR file. In Oracle
JDeveloper, the file adflibREADME.txt contains references to external
JAR files. The ADF Library feature in OEPE does not create the
adflibREADME.txt file.

2.9.1.1 Naming Conventions
When you create reusable components, you should try to create unique and relevant
names for the application, project, task flow, connection, or any other file or
component. Do not accept the OEPE wizard default names such as
task-flow-definition.xml. You want to try to have unique names to avoid naming
conflicts with other projects, components, or connections in the application. Naming

Configuring and Using ADF with GlassFish Server

Oracle ADF Tools Support 2-47

conflicts could arise from components created in the consuming application and those
loaded from other JAR files.

For more information on best practices for naming reusable ADF components, see
"Naming Conventions" in Developing Fusion Web Applications with Oracle Application
Development Framework.

2.9.2 Creating an ADF Library
You can create ADF libraries.

To export ADF components to an ADF Library:

1. In the Project Explorer, right-click the Dynamic Web project and choose Export >
Export from the context menu.

2. On the Select page, choose Oracle > ADF Library.

3. On the Export ADF Library page, specify the Project (if different from the current
one), and the ADF Library you want to export to.

4. In the Dependent Projects field, select any dependent projects you want to add to
the ADF Library.

5. Click Finish.

2.10 Configuring and Using ADF with GlassFish Server
You can configure GlassFish Server to run your Oracle ADF applications, and
configure an ADF-enabled GlassFish Server run-time in your Java applications.

For a list of the supported Oracle ADF features for GlassFish, go to the OTN site at
http://www.oracle.com/technetwork/developer-tools/adf/overview/adfessentia
ls-1719844.html.

The following sections describe how to configure GlassFish Server for use with Oracle
ADF:

■ Section 2.10.1, "How to Download ADF Essentials."

■ Section 2.10.2, "How to Download and Install GlassFish Server."

■ Section 2.10.3, "How to Configure GlassFish for OEPE"

■ Section 2.10.4, "How to Configure GlassFish for ADF Essentials"

■ Section 2.10.5, "How to Register the ADF Essentials Client WAR Library in Your
Workspace"

■ Section 2.10.6, "How to Create an ADF Application that Uses GlassFish Runtime"

■ Section 2.10.7, "How to Create a Global JDBC Data Source"

■ Section 2.10.8, "Known Problems and Solutions"

For more information, see "Configuring GlassFish Server" in Administering Oracle ADF
Applications.

2.10.1 How to Download ADF Essentials
In order for a GlassFish Server to run Oracle ADF applications, you must download
the Oracle ADF Essentials files from the Oracle Technology Network at
http://www.oracle.com/technetwork/developer-tools/adf/downloads/adf-downlo
ad-1649592.html, as shown in Figure 2–18.

Configuring and Using ADF with GlassFish Server

2-48 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–18 Oracle ADF Essentials Download Page

Download the Oracle ADF Essentials file adf-essentials.zip to a temporary
location. You will install the ADF Runtime library files into the GlassFish installation
directory, as described in Section 2.10.3, "How to Configure GlassFish for OEPE."

Download the Oracle ADF Essentials Client files adf-essentials-client-ear.zip
and adf-essentials-client-war.zip to a temporary location and then extract the
files to flat-structured temporary directories, a separate directory for each download.

For instance, if you are using unzip, you can add the -j option to create a flat directory
structure that has no hierarchical folders.

unzip -j <file> -d <destination>

From adf-essentials-client-war.zip, you will create a user library which you will
use when you create an ADF Application, described in Section 2.10.6, "How to Create
an ADF Application that Uses GlassFish Runtime.".

Once you have created the ADF Application, you will import the files from
adf-essentials-client-ear.zip to the EarContent/lib folder of your application,
described in Section 2.10.6, "How to Create an ADF Application that Uses GlassFish
Runtime."

2.10.2 How to Download and Install GlassFish Server
For instructions on obtaining and installing GlassFish, see
http://glassfish.java.net/downloads/3.1.2-final.html.

If you install from Zip, after you have unzipped the files you can start the server using
<glassfish_install>/bin/asadmin start-domain. Alternatively, you can start and
stop the server from the Servers pane in OEPE once the server has been defined in
OEPE.

Configuring and Using ADF with GlassFish Server

Oracle ADF Tools Support 2-49

If you use the native installer, you can choose from Typical Installation or Custom
Installation. Custom Installation allows you to specify a domain name other than
domain1, and to choose to use different port numbers for the administration and HTTP
listener ports. At the end of installation, the server is started.

You can create a GlassFish domain by using the GlassFish Administration utility
asadmin. For more information see:

■ "Using the asadmin Utility" in Oracle GlassFish Server Reference Manual.

■ "create-domain" in Oracle GlassFish Server Reference Manual

2.10.3 How to Configure GlassFish for OEPE
You need to create a server configuration for GlassFish Server. It will be the link to the
GlassFish Server that you use to run your project.

To configure GlassFish:

1. From the main menu, select Window > Show View > Servers to open the Servers
pane.

2. In the Servers pane, right-click and select New > Server.

Alternatively if there are no servers defined, click the No servers are available.
Click this link to create new server. link.

3. On the Define a New Server page of the New Server wizard, expand GlassFish
and select the type of GlassFish server you are running, for example, GlassFish
3.1.2. Enter the server’s hostname, for example localhost and click Next.

4. On the server details page of the Define a New Server wizard the default domain
directory is displayed.

If necessary, click Browse next to Domain Directory to open the Browse for Folder
dialog. Navigate to the domain location which is typically at <glassfish_
install>/glassfish/domains and choose the domain. Click OK.

If necessary, enter the GlassFish Server Administrator Password, and click Finish.

5. The new server connection appears in the Servers pane. You can start and stop the
server from the right-mouse menu of the server node.

2.10.4 How to Configure GlassFish for ADF Essentials
Once you have create a server configuration for GlassFish server you can configure the
GlassFish domain for ADF Essentials. See:

■ Section 2.10.4.1, "Installing ADF Essentials on a Domain"

■ Section 2.10.4.2, "Installing ADF Essentials on a Domain With a Password"

2.10.4.1 Installing ADF Essentials on a Domain
If you are configuring a domain that does not use a password, you can use the server
adapter from within OEPE.

To configure a domain that does not use a password:

1. In OEPE, in the Servers pane, right-click the GlassFish server node and choose
GlassFish > Install ADF Essentials, as shown in Figure 2–19.

Configuring and Using ADF with GlassFish Server

2-50 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–19 GlassFish Menu in Servers Pane

2. Navigate to the adf-essentials.zip file that you downloaded from OTN and
click Open.

You can follow the installation in the console, Window > Show View > Console,
as shown in Figure 2–20.

Figure 2–20 Importing ADF Essentials Console

Check that the GlassFish server is not stopped in the server pane. This confirms
that ADF Essentials is configured correctly and running in the server instance. You
now have a connection to a GlassFish Server, which is configured for ADF
Essentials.

2.10.4.2 Installing ADF Essentials on a Domain With a Password
If you are installing ADF Essentials on a domain that has been configured to require a
password, you must manually configure the domain from the GlassFish console.

To configure a domain that does use a password:

1. Login to the GlassFish admin console, which is at http://<machine_name>:4848/.
For example, http://localhost:4848/ when the server runs on the local machine.

2. Navigate to Configurations > server-config > JVM Settings.

3. Select JVM Options and add the following JVM options:

■ -Doracle.mds.cache=simple

■ XX:MaxPermSize=512m

Configuring and Using ADF with GlassFish Server

Oracle ADF Tools Support 2-51

4. Once you have set the JVM parameters, restart the server.

Alternatively, you can set these as <jvm-options> entries in the domain.xml file for the
domain, <glassfish_install>\glassfish\domains\<domain>\config\domain.xml.

2.10.5 How to Register the ADF Essentials Client WAR Library in Your Workspace
In this procedure, you will add the ADF Essentials Client WAR files to a user library in
OEPE so that when you create an ADF Application you can add the user library.

To register your ADF essentials client libraries

1. In OEPE, go to Windows > Preferences. Search for "User", and select Java > Build
Path > User Libraries to display the User Libraries page of the Preferences dialog,
as shown in Figure 2–21.

Figure 2–21 User Libraries - Java

2. Click New to open the New User Library dialog. Enter a name for the new ADF
Essentials Client WAR library and click OK.

3. In the User Libraries page of the Preferences dialog, select the new library and
click Add External JARS.

Navigate to the location where you flat unzipped the
adf-essentials-client-war.zip. Select all the files and click Open.

The User Libraries page now shows the as shown in Figure 2–22.

Configuring and Using ADF with GlassFish Server

2-52 Oracle Enterprise Pack for Eclipse User's Guide

Figure 2–22 User Libraries - Java - Add External JARS

4. Click OK.

2.10.6 How to Create an ADF Application that Uses GlassFish Runtime
Now that you have installed GlassFish Server, configured a domain for ADF
Essentials, and added the ADF Essentials Client WAR library to your workspace, you
can create an ADF application.

To create a new ADF Application that uses GlassFish

1. In OEPE, go to File > New > ADF Application. The New Oracle ADF Application
wizard appears.

2. If you performed the previous procedures correctly, you will see that your
GlassFish server is listed in Target runtime with ADF extension. If your GlassFish
server is not listed, cancel the wizard, and go back and perform the procedures in
Section 2.10.3, "How to Configure GlassFish for OEPE" and Section 2.10.4, "How to
Configure GlassFish for ADF Essentials.".

Enter a name for your application.

3. Click New JPA Project to open the New JPA Project dialog. You use the JPA project
for access to the data for your application.

4. Click Next twice to display the JPA Facet page of the New JPA Project dialog, as
shown in Figure 2–23.

Configuring and Using ADF with GlassFish Server

Oracle ADF Tools Support 2-53

Figure 2–23 Defining the JPA Facet

If necessary, change the Platform. EclipseLink is the reference implementation of
JPA, and if you choose it you can take advantage of the EclipseLink shared
libraries. For more information, see the "EclipseLink User's Guide - Developing
JPA Projects" which is available on the Eclipse site at
http://wiki.eclipse.org/EclipseLink/UserGuide/Developing_JPA_Projects_
%28ELUG%29.

5. Choose from the list to use an existing database connection, or click Add
connection to create a new database connection.

Click Finish to return to the New Oracle ADF Application wizard.

6. In the New Oracle ADF Application dialog, click Next to open the ADF Library
page. You should be able to see the library that you defined in Section 2.10.5, "How
to Register the ADF Essentials Client WAR Library in Your Workspace".

If you have not yet downloaded the ADF Essentials Client files from OTN, you can
download them by clicking Download from OTN. Flat unzip the client Zip files to
a local location.

If you have downloaded the ADF Essentials Client files from OTN, but not already
created the user library for the War client files, click (Manage libraries) to open
the User Libraries dialog, where you can create a user library (under Java > Build
Path > User Libraries), to contain the flat unzipped content of
adf-essentials-client-war.zip.

Configuring and Using ADF with GlassFish Server

2-54 Oracle Enterprise Pack for Eclipse User's Guide

If the library is not already selected, select it as shown in Figure 2–24, and click
Finish.

Figure 2–24 ADF Library Page

7. In the New Oracle ADF Application, click Finish. The application is created, and
the generated projects are displayed in the Project Explorer.

8. The final step is to add the files contained in adf-essentials-client-ear.zip to
your new project.

In the Project Explorer, expand the <project_name> and EarContent nodes, as
shown in Figure 2–25.

Figure 2–25 ADF Project EAR Library Directory

Right-click lib and choose Import.

9. In the Import wizard, choose General > File System and click Next.

In the File System page of the Import wizard, browse to the location where you
flat unzipped adf-essentials-client-ear.zip.

Select all files and click Finish. If you see a dialog asking whether to overwrite a
file, select Yes to All.

Configuring and Using ADF with GlassFish Server

Oracle ADF Tools Support 2-55

2.10.7 How to Create a Global JDBC Data Source
To run an ADF application that uses JPA entities you first need to create a global JDBC
data source. You can do this in by running the GlassFish admin console in the Eclipse
browser.

Once you have created the JDBC connection pool, you can define a JDBC resource that
uses your new connection pool.

To create a Global JDBC Data Source

1. In OEPE from the Server view select GlassFish and right-click and choose
GlassFish > View > Admin Console.

The GlassFish admin server opens in the Eclipse browser.

2. Expand the Resources node and choose JDBC > JDBC Connection Pools. Click
New to open the new JDBC Connection Pool page.

3. Name your connection, choose Resource Type of javax.sql.XADataSource, and
choose the Database Driver Vendor Oracle. Make sure that Introspect is
unselected (introspection not enabled). Click Next.

4. In New JDBC Connection Pool (step 2 of 2), scroll to Additional Properties and
add your database information, as shown in Figure 2–26.

Figure 2–26 GlassFIsh Server Console - Additional Properties

For example, the values for Oracle XE running on the local machine are:

■ user = hr

■ Password = hr

■ databaseName = XE

■ ServerName = localhost

■ DriverType = thin

Configuring and Using ADF with GlassFish Server

2-56 Oracle Enterprise Pack for Eclipse User's Guide

■ PortNumber =1521

5. Click Finish. Check your connection by selecting the new JDBC connection pool
you have just created in the Tree, and clicking Ping on the General tab. If your
ping is successful, you next need to define a JDBC resource that uses your new
JDBC connection pool.

To define a JDBC resource that uses your new connection pool

1. In the admin console, go to Resources > JDBC > JDBC Resources>. Click New to
display the New JDBC Resource page, as show in Figure 2–27.

Figure 2–27 GlassFIsh Server Console - New JDBC Resource

2. Enter the JNDI name, for example jdbc/hr.

3. Select your new connection pool.

4. Click OK.

2.10.8 Known Problems and Solutions
The following are issues that you might encounter with your GlassFish installation
and runtime, and some solutions to address these issues.

1. ADF DVT components are not rendered.

If your ADF DVT components such as Graph are not rendered at runtime, the
issue is that the application is missing the dvt-as.jar and dvt-shared-js.jar. Do
the following steps to correct this issue:

1. Download the latest distribution of ADF Essentials and extract the JARs as
detailed in Section 2.10.1, "How to Download ADF Essentials".

2. Update the libraries in the Workspace User Library, as detailed in
Section 2.10.5, "How to Register the ADF Essentials Client WAR Library in
Your Workspace".

Appendix A Oracle ADF XML Files

Oracle ADF Tools Support 2-57

3. Remove the deployed application from the server and re-deploy the
application.

2. Content on a page failing to load.

If you get the error message "The content of this page failed to load as expected
because data transmission was interrupted. Please try again or contact your
system admin", follow the steps above for ADF DVT components are not
rendered.

3. Running the application gives the HTTP Status 500 -ADF_Faces-30200 error:

If you get the error message "HTTP Status 500 - ADF_FACES-30200:For more
information, see the server's error log for an entry beginning with: The
UIViewRoot is null. Fatal exception during PhaseId: RESTORE_VIEW 1."

Do the following steps:

1. Un-deploy the application.

2. Clean the server instance. With the server stopped, right-click and choose
Clean.

3. Re-deploy the application.

4. Unable to deploy an application that includes JPA Entities.

If you have trouble deploying your application that includes JPA entities, do the
following steps:

1. Define a JDBC DataSource in GlassFish, as described in Section 2.10.7, "How to
Create a Global JDBC Data Source".

2. Add the data source you just defined to your JPA persistence.xml.

2.11 Appendix A Oracle ADF XML Files
For more information about configuring GlassFish Server for Oracle ADF Essentials,
see "Configuring GlassFish Server" in Administering Oracle ADF Applications.

Metadata files in an Oracle ADF application are structured XML files used by the
application to:

■ Specify the parameters, methods, and return values available to your application's
Oracle ADF data control usages.

■ Define configuration information about the UI components in JSF and ADF Faces.

■ Define application configuration information for the Java EE application server.

The ADF metadata files created by OEPE are listed below.

2.11.1 Oracle ADF Data Binding Files
OEPE creates the following ADF data binding files:

■ adfm.xml: This file lists the DataBindings.cpx file that is available in the current
project. For more information about adfm.xml, see Section A.4, "adfm.xml" in
Developing Fusion Web Applications with Oracle Application Development Framework.

■ DataBindings.cpx: This file contains the page map, page definitions references,
and data control references. The file is created the first time you create a data
binding for a UI component. The DataBindings.cpx file defines the Oracle ADF
binding context for the entire application. The binding context provides access to

Appendix A Oracle ADF XML Files

2-58 Oracle Enterprise Pack for Eclipse User's Guide

the bindings and data controls across the entire application. See Section A.7,
"DataBindings.cpx" in Developing Fusion Web Applications with Oracle Application
Development Framework.

■ pagenamePageDef.xml:This is the page definition XML file. It associates web page
UI components with data, or data controls. OEPE creates this file each time you
design a new web page. These XML files contain the metadata used to create the
bindings that populate the data in the web page's UI components. For every web
page that refers to an ADF binding, there must be a corresponding page definition
file with binding definitions. See Section A.8, "pagenamePageDef.xml" in
Developing Fusion Web Applications with Oracle Application Development Framework.

2.11.2 Web Configuration Files
OEPE creates the following Oracle ADF web configuration files:

■ web.xml: Part of the application's configuration is determined by the contents of its
Java EE application deployment descriptor, web.xml. The web.xml file defines
everything about your application that a server needs to know. The file plays a
role in configuring the Oracle ADF data binding by setting up the
ADFBindingFilter. Additional runtime settings include servlet runtime and
initialization parameters, custom tag library location, and security settings.

An ADF Faces application typically uses its own set of configuration files in
addition to web.xml. For more information, see the "Configuration in
trinidad-config.xml" section in Developing Web User Interfaces with Oracle ADF
Faces.

■ adfc-config.xml: The configuration file for an ADF unbounded task flow. The
configuration file contains metadata about the activities and control flows
contained in the unbounded task flow. The default name for this file is
adfc-config.xml, but an end-user can change the name.

■ task-flow-definition.xml: The configuration file for an ADF bounded task flow.
The configuration file contains metadata about the activities and control flows
contained in the bounded task flow. The default name for this file can be
task-flow-defintion.xml or whatever an end user specifies when creating the
task flow. The same application can contain multiple task flow definition files.

For more information on Oracle ADF configuration files, see the Oracle ADF XML
Files appendix in Developing Fusion Web Applications with Oracle Application
Development Framework.

3

Oracle MAF Tools Support 3-1

3Oracle MAF Tools Support

[4] Oracle Enterprise Pack for Eclipse (OEPE) provides a set of plug-ins for the Eclipse
IDE designed to create, configure, and run Oracle Mobile Application Framework
(MAF) applications.

This document contains the following section about using Mobile Application
Framework with OEPE:

■ Developing with Oracle MAF

3.1 Developing with Oracle MAF
Oracle Enterprise Pack for Eclipse (OEPE) supports Oracle Mobile Application
Framework (MAF), a solution that enables you to create mobile applications that run
natively on both iOS and Android phones and tablets.

For more information, see Developing Mobile Applications with Oracle Mobile Application
Framework (OEPE Edition).

Developing with Oracle MAF

3-2 Oracle Enterprise Pack for Eclipse User's Guide

4

Oracle WebLogic Server Support 4-1

4Oracle WebLogic Server Support

[5] Oracle WebLogic Server Tools is a set of plugins for the Eclipse IDE designed to help
develop, deploy, and debug applications for Oracle WebLogic Server.

This document contains the following sections:

■ Feature Overview

■ WebLogic Shared Libraries

■ Support for WebLogic SCA

■ Support for WebLogic Scripting Tool (WLST)

■ Editing Deployment Descriptors

■ Using Deployment Plan Editor

4.1 Feature Overview
The information in this section describes how to use WebLogic Server with the Eclipse
IDE.

The following versions of Oracle WebLogic Server are supported:

■ 12c Release 1 (12.1.3)

■ 12c Release 1 (12.1.2)

■ 12c Release 1 (12.1.1)

■ 11g Release 1 (10.3.6)

■ 11g Release 1 (10.3.5)

■ 11g Release 1 (10.3.4)

■ 11g Release 1 (10.3.3)

■ 11g Release 1 (10.3.2)

■ 11g Release 1 (10.3.1)

■ 10g Release 3 (10.3.0)

■ 10.0

■ 9.2

WebLogic Shared Libraries

4-2 Oracle Enterprise Pack for Eclipse User's Guide

4.2 WebLogic Shared Libraries
A WebLogic Shared Library is an Enterprise Application Archive, a stand-alone EJB, a
Web Application module, or a JAR file that is registered with Oracle WebLogic Server
as a shared library. The library resources can be shared between multiple applications,
alleviating the need to have duplicate copies of the resources in each application. For
an overview of WebLogic Shared Libraries, see "Deploying Shared Java EE Libraries
and Dependent Applications" in Deploying Applications to Oracle WebLogic Server.

WebLogic shared libraries provide an easy way to share one or more types of Java EE
modules among multiple applications.

A shared library can be one of the following:

■ Stand-alone EJB module

■ Stand-alone Web application module

■ Multiple EJB modules packaged in an EAR file

■ Multiple Web application modules packaged in a WAR file

■ Single JAR file that is registered with the application container

After the library has been registered, you can deploy multiple applications that
reference the library. Each referencing application can use the library as if it were
packaged as part of the referencing application itself. The shared library classes are
added to the classpath of the referencing application, and the referencing application's
deployment descriptors are merged (in memory) with those of the library.

A registry of shared libraries can be viewed and edited using the workspace
Preference page at Window > Preferences > WebLogic > Shared Libraries. At run
time, the registry is described in the domain's config.xml file.

These are terms used when working with WebLogic Shared Libraries:

Library reference: WebLogic Shared Libraries are referenced indirectly by specifying
the name of the library, the specification version (optional), the implementation
version (optional) and whether a newer version of the library should be used if
present. The library references are used on the project classpath and in the deployment
descriptors (weblogic-application.xml and weblogic.xml). Library references are
resolved against the libraries registry when necessary.

Libraries registry (or registry): The list of known WebLogic Shared Libraries which is
used to resolve a library reference.

4.2.1 Common Operations
This section describes the following common operations associated with WebLogic
shared libraries.

4.2.1.1 Adding a New Library to the Registry
You can add new libraries to the registry.

To add a new library to the registry:

1. From the top-level menu, select Window > Preferences.

2. Find the WebLogic node in the tree on the left-hand-side of the dialog.

3. Select WebLogic > Shared Libraries from the list of preferences on the left.

4. Click Add.

WebLogic Shared Libraries

Oracle WebLogic Server Support 4-3

5. Click Browse to select the library location.

6. Find the library archive where it is located on the disk, and select the library.

7. Verify the information presented in the Attributes section of the Add WebLogic
Shared Library dialog. You can modify the library name, the specification version,
and implementation version by using the Attributes table as long as they are not
specified in the library's manifest.mf file.

8. Click OK.

4.2.1.2 Adding a Library Reference to the Project Classpath
You can add a library reference to the project classpath.

To add a library reference to the project classpath:

1. Right-click on the project in the Project Explorer view and select Properties from
the drop-down menu.This will open the Properties dialog.

2. In the Properties dialog, select the Java Build Path from the list of properties.

3. In the Java Build Path part of the dialog, select the Libraries tab.

4. Click Add Library.

5. Select WebLogic Shared Library, and then click Next.

6. Click Browse, and choose the library that you want to reference.

7. Modify the reference information, if necessary.

8. Click Finish.

4.2.1.3 Modifying a Library Reference on the Project Classpath
You can modify library references.

To modify a library reference on the project classpath:

1. Select the project in the Project Explorer view.

2. Choose Project > Project Properties.

3. Locate the Java Build Path node in the tree on the left-hand-side of the dialog and
select it.

4. Open the Libraries tab.

5. Find the entry in the list of libraries called Shared Library library-name and select
it.

6. Click Edit.

7. Review the library reference. If any changes are necessary, make the changes and
click Finish.

4.2.1.4 Removing a Library Reference from the Project Classpath
You can remove library references.

To remove a library reference from the project classpath:

1. On the Properties dialog, select the Java Build Path from the list of properties.

2. On the Java Build Path part of the dialog, select the Libraries tab.

3. Find the entry in the list of libraries called Shared Library library-name, and then
select it.

WebLogic Shared Libraries

4-4 Oracle Enterprise Pack for Eclipse User's Guide

4. Click Remove.

4.2.2 Validation Problems
This section lists error and warning messages that may appear in the Problems view.
Resolutions are provided for each error/warning message.

4.2.2.1 Validation Errors
■ Unable to resolve library reference on project classpath

■ Unable to resolve library reference in the deployment descriptor

■ Library on classpath but not in weblogic-application.xml

■ Library on classpath but not in weblogic.xml

■ Web library referenced by a non-Web project

■ Non-Web library referenced in weblogic.xml

■ Project must be part of an EAR to use this library

■ Project must be part of a web application to use this library

Unable to resolve the reference to "<library-name>" library on project classpath.
Problem: The library reference to a WebLogic Shared Library on the project classpath
cannot be resolved using the workspace libraries registry. The project cannot be build.

Resolution 1: Add the appropriate library to the libraries registry. For instructions on
how to do this, see Adding a new library to the registry.

Resolution 2: Modify the library reference to match what is present in the registry. For
instructions on how to do this, see Modifying a library reference on the project
classpath.

Resolution 3: Remove the library from the project classpath. For instructions on how
to do this, see Removing a library reference from the project classpath.

Unable to resolve the reference to "<library-name>" library in the deployment
descriptor.
Problem: The library reference to a WebLogic Java EE Library in the deployment
descriptor (the weblogic.xml or weblogic-application.xml file depending on project
type) cannot be resolved using the workspace libraries registry. The project many not
run once deployed.

Resolution: Add the appropriate library to the libraries registry. For instructions on
how to do this, see Section 4.2.1.1, "Adding a New Library to the Registry."

"<library-name>" library is on the classpath of this project, but is not in the
weblogic-application.xml file of the EAR project "<EAR-project-name>".
Problem: The project contains a reference to a WebLogic Shared Library, but the
weblogic-application.xml file of the EAR project that this project belongs to does not
reference the library. This could lead to problems at run time since Oracle WebLogic
Server will not know how to make this library available for use by this module.

Resolution: Remove the library from the project classpath. For instructions on how to
do this, see Section 4.2.1.4, "Removing a Library Reference from the Project Classpath."

WebLogic Shared Libraries

Oracle WebLogic Server Support 4-5

"<library-name>" library is on the classpath of this project, but is not in the
weblogic.xml file.
Problem: The project contains a reference to a WebLogic Shared Library, but the
weblogic.xml file does not reference this library. This could lead to problems at run
time since Oracle WebLogic Server will not know how to make this library available
for use by this module.

Resolution: Remove the library from the project classpath. For instructions on how to
do this, see Section 4.2.1.4, "Removing a Library Reference from the Project Classpath."

"<library-name>" library is a web library and cannot be referenced by this
project.
Problem: Oracle WebLogic Server only allows classes in a WAR-type WebLogic Shared
Library to be visible to Web modules. While an EAR can reference such a library in the
weblogic-application.xml, none of the classes in the referenced library will be visible to
the classes in the EAR.

Resolution: Remove the library from the project classpath. For instructions on how to
do this, see Section 4.2.1.4, "Removing a Library Reference from the Project Classpath."

"<library-name>" library reference is not allowed in the weblogic.xml file. Only
WAR libraries are allowed.
Problem: Oracle WebLogic Server only supports WAR libraries to be referenced from
the weblogic.xml deployment descriptor. A non-WAR library has been referenced in
the descriptor.

Resolution: Remove the library from the weblogic.xml deployment descriptor.

This project must be part of an EAR in order to use "<library-name>" library.
Problem: The library referenced on the classpath of this project can only be accessed at
run time if this project is part of an EAR and the EAR’s weblogic-application.xml
deployment descriptor references this library.

Resolution 1: Remove the library from the project classpath. For instructions on how
to do this, see Section 4.2.1.4, "Removing a Library Reference from the Project
Classpath."

Resolution 2: Create a new EAR project (or use an existing one). In the EAR project’s
Properties (right-click the EAR and select Properties) select the page labeled Java EE
Module Dependencies. Select the project from the list, and then click Finish to
associate the project with the EAR project.

This project must be part of a web application in order to use "<library-name>"
library.
Problem: The library referenced on the classpath of this project can only be accessed at
run time if this project is part of a Web application, and the Web application's
weblogic.xml deployment descriptor references this library.

Resolution 1: Remove the library from the project classpath. For instructions on how
to do this, see Section 4.2.1.4, "Removing a Library Reference from the Project
Classpath."

Resolution 2: Create a new Dynamic Web project (or use an existing one). In the Web
project’s Properties (right-click the Web project, and select Properties) select the page
labeled Java EE Module Dependencies. Select the Web Libraries tab. Select the project
from the list, and then click Finish to associate the project with the Web project.

Support for WebLogic SCA

4-6 Oracle Enterprise Pack for Eclipse User's Guide

4.2.2.2 Validation Warnings
This section lists warning messages that may appear in the Problems view. Resolutions
are provided for each warning message.

■ Classpath reference differs from weblogic-application.xml

■ Classpath reference differs from weblogic.xml

The reference to the "<library-name>" library on this project's classpath differs
from the reference to this library in the weblogic-application.xml file of the EAR
project "<EAR-project-name>".
Problem: The library reference on the module project's classpath differs from the
library reference in the weblogic-application.xml file of the EAR project that this
module project belongs to. This could lead to problems at run time, because the project
could be compiled against a different version of the library than what will be used at
run time.

Resolution: Modify the library reference on the project classpath so it matches the
library reference in the EAR project’s weblogic-application.xml file. For instructions on
how to do this, see Section 4.2.1.3, "Modifying a Library Reference on the Project
Classpath."

The reference to the "<library-name>" library on this project's classpath differs
from the reference to this library in the weblogic.xml file.
Problem: The library reference on this project's classpath differs from the library
reference in the weblogic.xml file. This could lead to problems at run time, because
the project could be compiled against a different version of the library than what will
be used at run time.

Resolution: Modify the library reference on the project classpath so it matches the
library reference in the weblogic.xml file. For instructions on how to do this, see
Section 4.2.1.3, "Modifying a Library Reference on the Project Classpath."

4.3 Support for WebLogic SCA
OEPE provides support for WebLogic SCA container. You use it to populate the Spring
context file and bundle as part of any regular Java EE deployment bundles, such as
EAR or WAR.

Note: Prior to using OEPE support for WebLogic SCA in your
Eclipse project, you need to configure Oracle WebLogic Server 11g
Release 1 (10.3.2) or later at localhost.

4.3.1 Configuring Projects to Use WebLogic SCA
You enable your project for WebLogic SCA by adding a facet provided by OEPE.

To configure a project:

1. Create a dynamic Web project by right-clicking the Project Explorer and choosing
New > Dynamic Web Project. This opens the New Dynamic Web Project dialog:

■ Specify the name for your project.

■ Set the dynamic Web module version.

■ Set the target runtime to Oracle WebLogic Server 11gR1 (10.3.2) or later.

Support for WebLogic SCA

Oracle WebLogic Server Support 4-7

■ Select Add project to an EAR and provide a new EAR name.

■ Click Modify on the Configuration field to open the Project Facets page of the
Properties dialog:

– Ensure that WebLogic Web App Extensions facet is selected.

– Select Spring facet with version 2.0 or later.

– Select WebLogic SCA facet, and then click OK to close the Project Facets
dialog.

2. Click Next on the New Dynamic Web Project dialog.

3. You may accept or modify default settings on the next New Dynamic Web Project
> Web Module screen, and then click Next. This opens the New Dynamic Web
Project > Spring screen.

4. If you do not see Spring Framework 2.5.6 listed, click Download Library. On the
Download Library dialog, select Spring Framework 2.5.6 library provided by
Oracle, and then click Next. Accept the terms of the Apache License, and then click
Finish.

Note: If your machine is located inside of a network which requires a
proxy to access outside resource such as the Internet, the download
may fail due to the fact that Eclipse IDE includes a Web browser to let
you access the Internet from within the IDE. In this case, reconfigure
your Eclipse IDE proxy settings using Window > Preferences >
General > Network Connections, and try again.

5. Upon the completion of the Spring library download, make sure the Spring
Framework 2.5.6 library is selected on the New Dynamic Web Project > Spring
dialog. You may choose to select Create a Spring bean definitions file to
generated the applicationContext.xml file and trigger the update of web.xml file
to load the Spring bean configuration file, and then click Next.

6. Click Finish on the New Dynamic Web Project > WebLogic SCA screen that to
complete your configuration.

Upon the completion of the configuration, OEPE adds WebLogic SCA shared library
and Spring library to your project, as well as creates the spring-context.xml file in
your project's META-INF/jsca directory.

You can open the spring-context.xml file either in source view by double-clicking the
file name in the Project Explorer, or in graphical view by right-clicking the file name
and selecting Open Graph from the drop-down menu.

You use the spring-context.xml file to define new beans, specify services, bindings, and
so on. OEPE provides templates to facilitate these definitions. For more information,
see Section 4.3.3, "Creating Complex Properties Using XML Template."

4.3.2 Using Context Help for WebLogic SCA XML Attributes
OEPE provides context help for each SCA XML element and attribute. To access help
topics, hover the mouse over elements in the XML editor.

Support for WebLogic SCA

4-8 Oracle Enterprise Pack for Eclipse User's Guide

4.3.3 Creating Complex Properties Using XML Template
OEPE provides a set of XML templates that you can use to populate a predefined
group of XML elements. This facilitates creating of complex properties in binding
specification, such as, for example, the PolicyReference.

To invoke an XML template, you type the name of the template (for example, "SCA"),
and then press CTRL+Space.

You can use the following XML templates for creating WebLogic SCA definitions:

■ SCA service with Web services binding

■ SCA service with EJB binding

■ SCA reference with Web services binding

■ SCA reference with EJB binding

Inside of WebLogic SCA Service with Web services binding, you can invoke the
PolicyReference template to further customize the binding security setting, as follows:

■ PolicyReference: Username token with message protection: WSS 1.0 X509 with
asymmetric binding.

■ PolicyReference: Username token with message protection: WSS 1.1 symmetric
binding and authentication with plain-text Username Token which is encrypted
and signed using the Symmetric key.

■ PolicyReference: X509 certificate authentication with message protection (WSS 11).

■ PolicyReference: Anonymous with message protection (WSS 11).

■ PolicyReference: ID Propagation using SAML token [sender-vouches] with
message protection (WSS 11).

■ PolicyReference: Username token over SSL.

■ PolicyReference: SAML token (Sender Vouches) over SSL.

Applicable to both WebLogic SCA Service and SCA Reference, the Property template
is also available to further customize the binding security setting, as follows:

■ Property: SDO schema file location.

■ Property: External customization file.

■ Property: WSDL cache timeout. Note that this Property
(weblogic.sca.binding.ws.referenceWsdlCacheTimeoutMins) applies to
references only.

■ Property: Enable using Owsm policies.

4.3.4 Creating WebLogic SCA Data-Binding Customization Descriptor
With OEPE, you can create WebLogic SCA data-binding customization descriptor for
which the schema file is bundled. This descriptor defines the external mapping
metadata for the data-binding framework. The data is used to define the attributes of a
particular Java Web service endpoint interface. Each change that you make to the XML
will be validated against the schema.

To create a WebLogic SCA data-binding customization descriptor:

1. In the Project Explorer, right-click a Java directory in within your Web project and
select New > Other from the drop-down menu to open the Select a wizard dialog.

Support for WebLogic Scripting Tool (WLST)

Oracle WebLogic Server Support 4-9

2. From the list of available wizards, select WebLogic Configuration Files >
WebLogic SCA Databinding Customization Descriptor, and then click Next.

3. In the New WebLogic SCA Databinding Customization Descriptor dialog, provide
the name for the descriptor, specify the Java type by completing the Select Java
Type, then click Finish.

The databinding_cust.xml file is added to your project.

4.3.5 Deploying a WebLogic SCA Application
You use Oracle WebLogic Server 11g Release 1 (10.3.2) or later to deploy your dynamic
Web project configured for WebLogic SCA.

To deploy the dynamic Web project:

1. Start an instance of Oracle WebLogic Server 11g Release 1 (10.3.2) or later at
localhost.

2. Open the server configuration (Overview) page by double-clicking on the server
name in the Servers view. Ensure that the information is correct. Notice that the
domain area does not contain your project's name.

3. Add your configured project's EAR to the server. To do so, right-click Oracle
WebLogic Server 12c (12.1.1) at localhost in Servers view, select Add and Remove
Projects from the drop-down menu, find your the EAR in the list of projects, and
then click Add followed by Finish on the Add and Remove Projects dialog.

Now the server configuration page displays the project and its EAR under the base_
domain.

The server console displays the deployment logging information.

4.3.6 Running a WebLogic SCA Application
After deploying the application, you can run it.

To run the application:

■ In the Project Explorer, right-click a sca:service node listed under beans in the
spring-context.xml file and choose Run As > Run On Server.

Upon completion of the Run On Server dialogs, a WSDL file, which you can use with
other OEPE features, is created by the WebLogic SCA deployment process and loaded
in a browser.

4.4 Support for WebLogic Scripting Tool (WLST)
WLST is a scripting tool for monitoring, managing, and configuring Oracle WebLogic
Server from the command line. WLST is based on Jython programming language with
WebLogic WLST libraries. The execution can happen in the following three modes:
scripting, interactive, and embedded. WLST can be enabled for online and offline
connection modes and can act as a JMX client.

OEPE provides tooling for WLST that enable editing, executing, debugging, WebLogic
MBean access and navigation, as well as a built-in help for WLST commands.

4.4.1 Configuring Projects for WLST
Using OEPE, you can add WLST facet to your Java projects that run on Oracle
WebLogic Server. Note that Utility projects are most suitable for this functionality.

Support for WebLogic Scripting Tool (WLST)

4-10 Oracle Enterprise Pack for Eclipse User's Guide

To configure your project for WLST:

1. Either add the WLST facet when you create a faceted project, or add the facet to an
existing project by right-clicking your project in the Project Explorer and selecting
Properties from the drop-down menu. This opens the Properties dialog.

2. In the Properties dialog, select Project Facets on the left panel, and then select
WLST from the Project Facet list.

3. Optionally, click Further configuration available to open the Configure WebLogic
Scripting Tools dialog. This dialog allows you to configure WLST script source
path and targeted runtime. When you have finished, click OK.

4. To complete adding WLST support to your project click Apply > OK on the
Properties dialog.

4.4.2 Creating New WLST Files
You can create a new WLST script as follows:

1. In the Project Explorer, right-click your WLST-enabled project and select New >
Other from the drop-down menu.

2. On the New dialog, select WebLogic > WLST Script and then click Next to open
the WLST Script dialog.

3. Specify the location for the new WLST file.

4. To specify the template to use, click Browse to open the TemplateName dialog,
where you can choose one of the standard templates such as a default one, or
specify a custom template of a module scope that you defined yourself. For more
information, see Section 4.4.4, "Adding WLST Templates."Click OK.

5. In the WLST dialog click Finish.

A new WLST script file is created in the specified location. You can execute this file, as
well as edit it using either the source editor, or a WLST file editor provided by OEPE.
For more information, see Section 4.4.7, "Executing WLST" and Section 4.4.3, "Editing
WLST Script."

4.4.3 Editing WLST Script
OEPE provides an editor for WLST files. The editor features the following:

■ Syntax highlighting.

■ Code completion for Jython and WLST built-in functions.

■ WLST Help view that includes detailed WLST command reference materials.

To edit a WLST script:

■ In the Project Explorer, double-click the WLST file. It opens in the editor.

4.4.4 Adding WLST Templates
OEPE provides templates that you can use to create WLST files.

To add a new WLST template:

1. Select Window > Preferences from the top-level menu to open the Preferences
dialog.

Support for WebLogic Scripting Tool (WLST)

Oracle WebLogic Server Support 4-11

2. On the Preferences dialog expand the Pydev > Editor node, and then select
Templates to open the list of available templates.

3. Click New on the Preferences > Templates screen to open the New Template
dialog.

4. Enter the following information about your new template:

■ The template's name.

■ The template's scope: editor or module. If you select the module scope, your
new template will appear in the selection list of templates when you create a
new WLST script.

■ A brief description.

■ A pattern on which to base the template. You can define a custom pattern, or
select one from the list of predefined patterns by clicking Insert Variable.

5. Click OK to close the completed New Template dialog.

Notice that your new template is now listed in the Preferences > Templates dialog.

6. Click Apply > OK on the Preferences > Templates dialog.

4.4.5 Navigating MBean Structures
When writing WLST script, you often need to navigate WebLogic runtime MBean
structures. OEPE enables you to view the MBean hierarchy in the Servers pane.

To add or generate WLST code from MBean Hierarchy:

1. Open your WSLT file.

2. Click the Servers tab to open the Servers pane.

3. Start WLS by choosing Start from the context menu.

4. In the Servers view, expand the MBean Hierarchy node.

5. Right-click any child node and select Generate WSLT Code from the context
menu.

Note: This menu item is enabled only when the WSLT file is in focus.

4.4.6 Using WLST Console
You can launch WLST in interactive mode in the Console view. This allows you to
manage the Oracle WebLogic Server life cycle, monitor the server status, and
prototype WLST script using WLST commands in the command line.

You use WLST console, activate the Console tab, and then select WLST > Oracle
WebLogic Server Version from the tab menu.

To interact with the server, type WLST commands, for example help().

To stop WLST, click Terminate on the Console menu.

4.4.7 Executing WLST
To execute the WLST script, right-click the file in the Project Explorer, and select Run
As > WLST Run.

WLST will be launched and the output displayed on the Console view.

Editing Deployment Descriptors

4-12 Oracle Enterprise Pack for Eclipse User's Guide

4.4.8 Debugging WLST Script
To debug the WLST script, right-click the file in the Project Explorer, and then select
Debug As > WLST Run.

WLST debugger will start and the output will be displayed on the Console view.

The Pydev debugger allows you to do the following:

■ Set break point in the WLST source file.

■ Step over.

■ Examine variables using the Variables view.

Note: The WLST script is executed with Jython interpreter in debug
mode, as opposed to the weblogic.WLST interpreter.

4.4.9 Importing Existing WLST Script into OEPE
If you import wlstModule into default name space using the from wlstModule import
* statement, the global object cmo will not be available in this mode. You can work
around this condition by either importing wlstModule with its own namespace:

import wlstModule as wl

or by creating a local cmo object from the return of cd() statement:

cmo=cd(MBEAN_PATH)

When importing existing WLST scripts into OEPE, be aware of the fact that Eclipse
may flag WLST commands with "undefined variable" error.

To work around this problem, add following conditional import statement in the
beginning of the file:

if __name__ == '__main__':
 from wlstModule import *

This statement is intended to help the builder to locate the WLST command. The
wlstModule will be imported only when the script is executed with Jython interpreter.

4.4.10 Known Issues and Limitations
If you use WebLogic Server 9.2 on Windows Vista or Windows 7 operating system,
you should avoid using Jython variable os.environ in your WLST script. Instead, you
have to manually change the value of BEA_HOME and WL_HOME variables in the generated
WLST script.

4.5 Editing Deployment Descriptors
OEPE provides a graphical design view that you can use to edit Oracle WebLogic
Server-specific deployment descriptors in the form of weblogic.xml,
weblogic-application.xml, weblogic-ejb-jar.xml, and NN-jms.xml files.

4.5.1 Using Deployment Descriptor Editors
To open your deployment descriptor files in the editor, either double-click on the file
name, or right-click the file and select one of the following from the drop-down menu:

Editing Deployment Descriptors

Oracle WebLogic Server Support 4-13

■ Open With > WebLogic Web Module Deployment Descriptor Editor to open
weblogic.xml.

■ Open With > WebLogic Application Deployment Descriptor Editor to open
weblogic-application.xml.

■ Open With > WebLogic Application Client Deployment Descriptor Editor to
open weblogic-application-client.xml.

■ Open With > WebLogic EJB Jar Editor to open weblogic-ejb-jar.xml.

■ Open With > WebLogic JDBC Configuration Editor to open weblogic-jdbc.xml.

■ Open With > JMS Descriptor Editor to open NN-jms.xml.

You can specify values, as well as enable or disable various descriptor elements by
making selections on the Outline pane, and then modifying values on the right side of
the editor. To obtain information about fields and possible settings for each of them,
consult the online help by moving the focus to the subject field, and then pressing F1.

Note: The setting in the Server version field in the General section of
the editor is particularly important to the rest of the editor: some
functionality in the editor may be enabled or disabled depending on
which Oracle WebLogic Server version you specify, so you must be
accurate in setting your target environment.

The descriptor editor has the following features:

■ Every field is enabled for online help, which you can access by moving the focus
to the subject field and pressing F1.

■ There is a field-level validation on every field.

■ Clicking on a linked field name takes you to the element or object (such as a class,
for example) that is entered in this field.

■ You can restore default settings by clicking the Restore Defaults button located at
the top right corner of the editor.

■ Table cells are equipped with a cell editor: when working with tables in the editor,
double-clicking on a cell activates a cell editor. Some cells have a browse button
when the cell is in the edit mode.

■ A limited keyboard navigation is enabled on the editor.

4.5.1.1 Editor Keyboard Navigation
The deployment descriptor editors allow you to use the following keys or key
combinations to perform some of the operations that can also be done through mouse
actions.

Tab Navigates through editor fields.

Arrow Keys Navigate through the content outline and tables.

ESC Closes many of the dialogs opened by the editor, including the property editor
assistance popup.

Enter Selects items in combo boxes and deactivates cell editors in tables.

Ctrl+L Opens the Browse dialog when focus is on a browsable field.

Ctrl+I Opens the property editor assistance popup.

Using Deployment Plan Editor

4-14 Oracle Enterprise Pack for Eclipse User's Guide

Ctrl+J Jumps to the entity referenced by the value contained in the current field. The
value can be a class name, a file path, etc.

Ctrl+Up Moves the selected entity towards the head of the list by one position.

Ctrl+Down Moves the selected entity towards the tail of the list by one position.

4.5.2 Creating JMS Descriptors
You can create a JMS descriptor for Oracle WebLogic Server by following this
procedure:

1. Ensure that the EAR project to which you are planning to add a JMS descriptor has
a WebLogic EAR Extensions facet enabled. If the facet is disabled, enable it as
follows:

a. Right-click the project in the Project Explorer.

b. Select Properties from the drop-down menu.

c. Select Project Facets from the list of properties.

d. Select WebLogic EAR Extensions.

e. Click Apply and OK to finalize your configuration.

2. In the Project Explorer, right-click your EAR project and select New > Other from
the drop-down menu. On the New dialog, select WebLogic Descriptors >
WebLogic JMS Descriptor, and then click Next. This will open the New WebLogic
JMS Descriptor > File Name and Location dialog.

3. On the New WebLogic JMS Descriptor > File Name and Location dialog, set the
following:

■ select the parent folder for your descriptor;

■ make an appropriate selection in the Register a corresponding JMS module in
weblogic-application.xml field: if you enable this option, the following code
will be added to your project's weblogic-application.xml source file:

<wls:module>
 <wls:name>module-jms</wls:name>
 <wls:type>JMS</wls:type>
 <wls:path>../module-jms.xml</wls:path>
</wls:module>

4. Click Finish.

Upon completion, your new JMS descriptor opens in the appropriate editor view.

4.6 Using Deployment Plan Editor
Using a deployment plan, you can optionally define or override Oracle WebLogic
Server tuning parameters to optimize the use of resources in the target environment.

4.6.1 Creating a New Deployment Plan
Using OEPE, you can create a new deployment plan by following this procedure:

1. Open the Java EE perspective by selecting Window > Open Perspective > Other >
Java EE from the Eclipse IDE main menu.

Using Deployment Plan Editor

Oracle WebLogic Server Support 4-15

2. Right-click the Project Explorer and select New > Other from the drop-down
menu. On the New dialog, select WebLogic Descriptors > WebLogic Deployment
Plan, and then click Next. This opens the File Name and Location dialog.

3. On the File Name and Location dialog, select the parent folder and provide the
name for your deployment plan, and then click Next.

4. On the next Target Application and Options screen, select the target application,
target Oracle WebLogic Server runtime, optionally specify whether or not to
invoke weblogic.PlanGenerator to generate default variable definitions, and then
click Finish.

For more information about weblogic.PlanGenerator, see
"weblogic.PlanGenerator Command Line Reference" in Deploying Applications to
Oracle WebLogic Server.

Upon the completion, the New WebLogic Deployment Plan wizard opens the
deployment plan in the deployment plan editor for further modifications.

4.6.2 Editing a Deployment Plan
OEPE provides a graphical design view that you can use to edit your WebLogic
deployment plan.

The editor consists of the following parts:

■ A tree control on the left.

■ An edit page on the right - when you select a node in the tree, the editor will
display an appropriate edit page.

The tree control is represented by the following main nodes:

■ General - lets you modify the application name, server and deployment plan
versions, the external configuration root, and provide the deployment plan
description.

■ Variable Definitions - lets you define new variables. To create a new variable,
select the Variable Definitions node, and then click + (Add) on the edit page to
expand the area

■ Modules - lets you specify existing or add new modules by clicking Add a module
override.

Click Browse next to the Module Name field to open the Module Name dialog. Select
an existing module or add a module override to the deployment plan.

To add a deployment descriptor, click Add a descriptor on the Modules editor page.

Specify the descriptor URI by clicking Browse next to the URI field on the Descriptor
editor page. This will display the Select the URI of the descriptor dialog,.

Using the Select the URI of the descriptor dialog, select the weblogic.xml file, and then
click OK.

To add a new variable assignment, click + (Add) on the Variable Assignments >
Specify the XPath area.

Use the XPath Expression Builder dialog to navigate the element that you want to
override in the descriptor, and then click OK to select the XPath.

Click Browse next to the Variable name field to display the Variable Name dialog and
select the variable name to assign.

Select the Replace operation on the Variable Assignments edit page.

Using Deployment Plan Editor

4-16 Oracle Enterprise Pack for Eclipse User's Guide

Use the Clean Up Deployment Plan utility to remove unassigned variables from your
plan's XML file. To do so, click the Clean Up button represented by a green check
mark icon located in the top right corner of the editor. Make your selection from the
list of the potential clean up candidates, and then click Finish to remove these
elements from your deployment plan.

You can also switch to the source view of your WebLogic deployment plan to edit it
manually.

4.6.3 Using an Existing Deployment Plan to Configure an Application
You can use an existing deployment plan from the command line, or from the IDE.

To use a generated deployment plan from the command line use the following syntax
in a prompt:

java weblogic.Deployer -adminurl t3://localhost:7001 -username weblogic -password
weblogic7001 -plan plan.xml -deploy MyNewWSProjectEAR.ear

To deploy your application from the IDE to WebLogic either locally or remotely, go to
Server Properties > WLS, expand WebLogic Publishing and choose Advanced.

5

Integrating Oracle Cloud Services 5-1

5Integrating Oracle Cloud Services

[6] Oracle Cloud Service enables you to use the cloud to develop, collaborate, and deploy
your OEPE applications from one central source.

Currently OEPE supports only the Java Cloud Service, which includes the WebLogic
server, and optional Oracle Cloud database services.

For more information about Oracle Cloud, or to open an Oracle Cloud account, visit
http://cloud.oracle.com.

This document contains the following:

■ Adding Your Oracle Cloud Services

■ Getting up and Running with Your Java Cloud Service

■ Validating with the Whitelist Scan

■ Deploying to the Cloud

■ Oracle Developer Cloud Service

5.1 Adding Your Oracle Cloud Services
To add an Oracle Cloud Service to your application use the Cloud view, from the Java
EE perspective.

To add a Cloud Service:

1. In the OEPE application Cloud view, choose Connect. The Oracle Cloud dialog
appears, as shown in Figure 5–1.

2. Enter the details in the dialog fields. When you sign up for an Oracle Cloud
Service, the configuration details are emailed to you.

3. Click Test Connection. You can also test with Perform whitelist scan prior to
publish. This does a local test to determine if your application deploys
successfully to Oracle Cloud.

4. Click Finish.

Adding Your Oracle Cloud Services

5-2 Oracle Enterprise Pack for Eclipse User's Guide

Figure 5–1 Oracle Cloud Connection - Add Details

5.1.1 Using the Cloud View
Add and manage your cloud services using the Cloud view. Right clicking from the
Cloud node gives you options to open your browser-based cloud portals, as well as
Cloud connection properties, as shown in Figure 5–2 and Figure 5–3.

Right-clicking from your service node gives you access to a variety of features
including Service Instances, Service Jobs, and the Service web-based console, as shown
in Figure 5–4. For more information see Viewing the Java Cloud Service Jobs Log, and
Viewing the Java Cloud Service Instance Log.

Figure 5–2 Cloud View - Right-Click Server Instance Options

Getting up and Running with Your Java Cloud Service

Integrating Oracle Cloud Services 5-3

Figure 5–3 Cloud View And Corresponding Cloud Service Portal

Figure 5–4 Cloud View - Right-Click Java Service Options

5.2 Getting up and Running with Your Java Cloud Service
With the Oracle Java Cloud Service you can manage the backend infrastructure of your
OEPE applications without exposing the runtime to its service users. When you sign
up for the Java Oracle Cloud Service, you get a deployment target for your OEPE
application using a set of Java EE release 5, Java EE release 6, and Oracle WebLogic
Server capabilities, in addition to a My Services web-based interface to manage your
cloud tools.

For more information on the Java Cloud Service see, http://cloud.oracle.com.

Getting up and Running with Your Java Cloud Service

5-4 Oracle Enterprise Pack for Eclipse User's Guide

To add Java Cloud Service to your OEPE application:

1. Subscribe to the Java Cloud Service at http://cloud.oracle.com. You will get an
email with the service details, which you will need to configure your OEPE
application for the cloud.

2. Open your application.

3. Follow the steps in Adding Your Oracle Cloud Services.

5.2.1 Viewing the Java Cloud Service Jobs Log
The Oracle Java Cloud Service Jobs log, shown in Figure 5–5, provides comprehensive
information on the jobs being executed by the Java Cloud Service, including Id, status,
duration, and nature of your operation.

Figure 5–5 Oracle Java Cloud Service - Jobs Window

To view the Oracle Java Cloud Service - Jobs log:

Right-click your service in the Servers view and select Java Cloud Service Instance
Log.

You can filter jobs shown in the window by clicking the Filter icon in the toolbar to
open the Jobs Filter, shown in Figure 5–6.

Figure 5–6 Jobs Filter Dialog

Getting up and Running with Your Java Cloud Service

Integrating Oracle Cloud Services 5-5

5.2.2 Viewing the Java Cloud Service Instance Log
The Oracle Java Cloud Service Instance log provides detail on the performance of your
services, as shown in Figure 5–7.

Figure 5–7 Oracle Java Cloud Service Instance Log

To view the Oracle Java Cloud Service Jobs log:

Right-click your service in the Servers view and select Java Cloud Service Jobs.

You can select the Filter icon in the toolbar to filter service instances using the Events
Filter dialog, shown in Figure 5–8.

Figure 5–8 Events Filter - Service Instances

Validating with the Whitelist Scan

5-6 Oracle Enterprise Pack for Eclipse User's Guide

5.3 Validating with the Whitelist Scan
The whitelist scan feature enables you to locally ensure that your application is valid
for deployment to Oracle Cloud. Whitelist scanning can be invoked in three ways:

■ As you Type whitelist scan: Occurs on source files that are currently open in the
workspace, for example, Java class, or JSF/JSP pages.

■ Whitelist Builder: When you select File > Save, the Whitelist Builder validates all
files in the project, and reports violations in the Markers View, Problems View, and
Whitelist Problems View.

■ On Demand whitelist scan: To perform an on demand whitelist scan, right-click
the project in the Project Explorer and select Oracle Cloud Whitelist Scan. An On
Demand whitelist scan adds an additional level of scanning to everything on the
project build path, for example, jar files. This type of scan is also automatically
performed before deployment. Because it is a more expansive operation, it does
not occur automatically during file operations like edit, save, or build.

5.4 Deploying to the Cloud
OEPE enables you to deploy your project to Oracle Cloud or Oracle WLS, depending
on your preference.

To deploy to Oracle Cloud, use one of the following methods:

■ Right-click the project you want to deploy, and select Run As > Run on Server.
Then select Oracle Cloud on the Run on Server page and click Finish.

■ Right-click the Oracle Cloud configuration in the Servers view and select Add and
Remove to add the project you want to deploy to Oracle Cloud.

5.5 Oracle Developer Cloud Service
OEPE includes integration for Oracle Developer Cloud Service, which exposes the
most common development tasks from the cloud directly from within the application.
Oracle Developer Cloud Service is a collection of software and services hosted on the
Oracle Cloud. It is a cloud-based software development Platform as a Service (PaaS)
and a hosted environment for your application development infrastructure. It provides
open-source, standards-based solutions to develop, collaborate, and deploy
applications within Oracle Cloud.

Oracle Developer Cloud Service integration with OEPE includes the following:

■ A dedicated Oracle Cloud view that displays Oracle Developer Cloud Service
projects that you are a member of.

■ Integration with Eclipse Mylyn and Oracle Developer Cloud Service Tasks system.

■ Source Control System integration with Oracle Developer Cloud Service GIT
repository.

5.5.1 Logging In to Oracle Developer Cloud Service
You can log in to Oracle Developer Cloud Service from Oracle Cloud view.

To open Oracle Cloud view:

1. Click Window > Show View > Oracle Cloud.

Oracle Developer Cloud Service

Integrating Oracle Cloud Services 5-7

If the Oracle Cloud option is not available in the Show View submenu, click Other
and choose Oracle Cloud > Oracle Cloud in the Show View dialog.

2. Click Connect.

Tip: The Oracle Cloud view is available in Java EE perspective, by
default. To open the Java EE perspective, select Window > Open
Perspective > Java EE.

If you are connecting to Oracle Developer Cloud Service for the first time, click the
Connect link. In the Oracle Cloud Service Connection dialog, enter the following:

■ Data Center: Select the Oracle Cloud data center.

■ Identity Domain: Enter the identity domain of Oracle Developer Cloud Service.

■ Username and Password: Enter the user name and password.

■ Connection Name: Enter a name for the service instance, if required. By default,
the connection name is set to the identity domain name.

After validating credentials, you are logged in to Oracle Developer Cloud Service from
OEPE. After you log in, Oracle Cloud view displays all projects that are assigned to
you.

5.5.2 Getting Up and Running with Your Developer Cloud Service
To log in to Oracle Developer Cloud Service from OEPE, open the Oracle Cloud view
and click New Cloud Connection Wizard. The Oracle Cloud view is available in Java
EE perspective. To open Java EE perspective, select Window > Open Perspective >
Java EE.

To add Developer Cloud Service to your OEPE application:

1. Subscribe to the Developer Cloud Service at http://cloud.oracle.com. You will
get an email with the service details, which you will need to configure your OEPE
application for your cloud service.

2. Open your application.

3. Follow the steps in Section 5.1, "Adding Your Oracle Cloud Services". Choose the
Developer Cloud Service from the server list.

5.5.3 Using the Oracle Developer Services Cloud View
Oracle Cloud View displays all your projects, and links to the common features of
your service.

You can have multiple Oracle Developer Cloud Service accounts in the Oracle Cloud
view. To add another account, select Oracle Public Cloud in Oracle Cloud view,
right-click, and select New. Select the data center, enter the identity domain, user
name and credentials, and click Finish.

Oracle Cloud view enables you to run the following actions for each project:

■ Import projects from Oracle Developer Cloud Service, and export projects to
Oracle Developer Cloud Service (see Section 5.5.6, "Using eGit for DCS Source
Control and Versioning")

■ Search and manage tasks (see Section 5.5.11, "Updating Tasks")

■ Monitor builds of your project (see Section 5.5.12, "Monitoring Hudson Builds")

Oracle Developer Cloud Service

5-8 Oracle Enterprise Pack for Eclipse User's Guide

5.5.4 Importing an Oracle Developer Cloud Service Project
Importing a project from Oracle Developer Cloud Service to OEPE Workspace creates
a local clone of Oracle Developer Service Git repository. After creating the local Git
clone, Eclipse projects can be imported into the workspace.

To import a Project from Oracle Developer Cloud Service to OEPE Workspace:

1. In the Oracle Cloud view, expand the project, and select the Git repository from
the Source node.

2. Double-click the selected Git repository to clone it to local machine.

A dialog appears informing that Git repository is ready for cloning. Click OK.

3. The cloned repository will be visible in Git Repositories view. If the view is not
visible, open it from Window > Show View > Git Repositories.

4. Right-click the repository name in the Git Repositories view, and choose Import
Projects.

5. Select a wizard to use for importing projects page of Import Projects from Git
Repository dialog, choose the desired option, and click Next.

If you are not sure which option to select, select the Import as General Project
option.

6. In the Import Project page of Import Projects from Git Repository dialog, verify the
project name and directory, and click Finish.

5.5.5 Exporting a Project from OEPE to Oracle Developer Cloud Service
Exporting a project from OEPE workspace to Oracle Developer Cloud Service is useful
if you already have an active local Git repository and want to push the source to the
hosted Git repository.

To export a Project from OEPE Workspace to Oracle Developer Cloud Service:

1. Select the project in Project Explorer, right-click, and choose Team > Share Project.

2. In the Share Project wizard, select Git as the repository type, and click Next.

3. In the Configure Git Repository page, select the remote Git repository you would
want to export the project to, and click Finish.

4. In Project Explorer, select the project, right-click, and choose Team > Commit.

5. In the Commit Changes dialog, enter commit description, select the files you want
to commit, and click Commit and Push.

6. In the Push Results dialog, click OK to export the project to Oracle Developer
Cloud Service.

5.5.6 Using eGit for DCS Source Control and Versioning
OEPE uses eGit for source control and version on DCS projects. EGit is an Eclipse
Team provider for Git. Git is a distributed SCM, which means every developer has a
full copy of all history of every revision of the code, making queries against the history
very fast and versatile. For more information in eGit, see
http://www.eclipse.org/egit/.

To open a Git repository view in OEPE, select Window > Show View > Git
Repositories.

In some cases, the Git option my be under other...

Oracle Developer Cloud Service

Integrating Oracle Cloud Services 5-9

On the right side of the Git view is a toolbar with the icons that you click to manage
your Git features. Icon actions include:

■ Collapse all

■ Add an existing local repository

■ Clone a Git repository

■ Create a new Git repository

■ Refresh your repository

■ Adjust layout preferences

■ Display latest branch commits

5.5.7 Using Git Tools in OEPE
Using the Team context menu in Project Explorer, you can perform various Git actions
such as commit a project to Git repository, commit file changes, merge, branch, and
push changes to the hosted Git repository.

To add a project to Local Git Clone:

1. Right-click the project, and select Team > Share Project.

2. In the Share Project wizard, select Git from the list of available source control
systems, and click Next.

3. In Configure Git Repository page, select the Git repository, and click Finish.

5.5.8 Committing Changes to Oracle Developer Cloud Service Git Repository
Committing changes to the Oracle Developer Cloud Service Git repository is a
two-step process: committing to the local Git clone or branch, and then pushing the
changes to the cloud repository

To commit changes to Oracle Developer Cloud Service Git Repository:

1. To commit a change, right click the file, directory, or project and select Team >
Commit.

2. In the Commit Changes dialog, add a commit message and select the files to be
committed to the local repository, and click Commit.

Notes:

■ If you have an Active Task, the Task ID and URL are automatically
added to your commit message. For more information, see
Associating a Task with a Commit Transaction.

■ All committed changes appear in the home page of Browse
module and the Activity Feed of Oracle Developer Cloud Service
web interface.

Oracle Developer Cloud Service

5-10 Oracle Enterprise Pack for Eclipse User's Guide

5.5.9 Pushing Changes From the Local Git Repository to Oracle Developer Cloud
Service Git Repository

To push latest updates from the local cloned Git repository to the Git cloud repository,
use the Push command.

To push changes to Oracle Developer Cloud Service Git Repository

1. Open the Git Repositories view.

2. Right-click the repository, and then select Push Upstream.

3. In Push Results dialog, verify the message details, and then click OK.

5.5.10 Managing Documentation
You can also add wiki pages to your project from OEPE. Select and expand the project
in Oracle Cloud view, select Documentation, right-click, select Open in Browser. The
Wiki module home page opens in the web browser

From the Wiki home page, you can add or edit wiki pages of the project. If you have
administrative privileges of a project, you can change the wiki markup type.

For more information about managing documentation and wiki pages, see
Section 5.5.10, "Managing Documentation".

5.5.11 Updating Tasks
By default, following task queries are available in the Tasks node of Oracle Cloud
view:

■ All: Lists all tasks of the project

■ Mine: Lists all tasks assigned to you

■ Open: Lists all open tasks

■ Recent: Lists all recently changed tasks

■ Related: Lists all tasks related to you

Double-click a query to run it, and then double-click a task to open it in the Task
Editor.

You can also perform the following tasks related actions from OEPE:

■ Create a new query and import tasks, features, and defects from Oracle Developer
Cloud Service

■ Update imported tasks from OEPE

■ Create local tasks and export them to Oracle Developer Cloud Service

5.5.11.1 Importing Tasks from Oracle Developer Cloud Service With a Custom
Query
To import tasks from Oracle Developer Cloud Service, you would need to create a
search query. For example, you can create a query to import all open defects assigned
to you.

To import tasks with a custom query:

1. Select Tasks node of your project in Oracle Cloud view.

2. Right-click, and choose New Query.

Oracle Developer Cloud Service

Integrating Oracle Cloud Services 5-11

3. In the Oracle Developer Cloud Service Tasks Query dialog, enter the search
criteria.

For example, if you want to import all open defects assigned to you, enter the
name of the query, select your name from the Person list, select Defect as Type,
and Assigned as Status.

4. Click Finish.

All tasks matching the specified criteria will get imported to Task List view. To open
Task List view, select Window > Show View > Task List. You can create multiple
queries as per your requirement.

5.5.11.2 Creating a Local Task
To create a task, click the New Task icon in the Task List toolbar. When you create a
Task, you can choose the repository as a local repository, or your project’s repository
on Oracle Developer Cloud Service.

If you choose Oracle Developer Cloud Service as the repository, the task will be
automatically added to Oracle Developer Cloud Service and reflected in Tasks home
page of the web interface.

5.5.11.3 Editing a Task
To view and edit a specific task, double-click the task in the Task List view to load it in
the Task Editor. Update the task, and click Submit. If it is a local task, it will be
updated in local task repository. If it is a Oracle Developer Cloud Service task, it will
be automatically updated in Oracle Developer Cloud Service task repository.

5.5.11.4 Synchronizing Tasks with Oracle Developer Cloud Service
To synchronize a task (or a query) between OEPE and Oracle Developer Cloud Service,
right-click the task (or the query) in Task List view, and choose Synchronize.

5.5.11.5 Associating a Task with a Commit Transaction
If you want to associate a task with a commit transaction, you should activate the task
first. To activate a task, select and right-click the task in Task List view, and choose
Activate.

OEPE also provides integration with Mylyn. Activating a task enables Mylyn to track
which files are related to the current task. Mylyn automatically hides files that are not
related to the active task. When committing changes to Git for the Active task, your
commit message automatically references the Task ID in Oracle Developer Cloud
Service. This effectively creates a link between the code commit and the task allowing
for easy traceability. Links between source commits and Tasks are also reflected in the
web interface of Oracle Developer Cloud Service.

You can find more information about working with Mylyn Tasks and the Tasks user
interface in the Mylyn User Guide at the following URL:

http://wiki.eclipse.org/Mylyn_User_Guide

5.5.12 Monitoring Hudson Builds
To view all jobs of the Hudson builds, expand the Build node of a project in Oracle
Cloud view. To perform any action, select the job (or the build) and click Open in
Browser. The Builds module of Oracle Developer Cloud Service opens in the web
browser.

Oracle Developer Cloud Service

5-12 Oracle Enterprise Pack for Eclipse User's Guide

6

Maven Support 6-1

6Maven Support

[7] Maven is an open source build management tool that is central to project build tasks
such as compilation, packaging, and artifact management. Maven uses a strict
XML-based ruleset to promote consistency while maintaining flexibility. Most
Java-centric continuous integration systems integrate well with Maven, making it a
good choice for an underlying build system. This chapter describes how use Maven
for Oracle Enterprise Pack for Eclipse (OEPE).

This document contains the following sections:

■ Using Maven with OEPE

■ Setting up Your Maven Environment

■ Creating a Maven Settings File

■ Populating the Maven Repository

■ Installing the Maven Archetypes

■ Creating ADF Applications with Maven Integration

■ Importing Maven Projects

■ Using Maven to Deploy to a WebLogic Server

6.1 Using Maven with OEPE
Maven is installed with your Fusion Middleware in your Oracle home at ORACLE_
HOME/oracle_common/modules/org.apache.maven_3.0.4. This is a copy of the
standard Maven 3.0.4 release, without any modifications. You can also get Maven from
the Apache website.

To use Maven as the build tool for developing ADF applications in OEPE, you need to
populate the Maven repository with Oracle artifacts. For populating the repository, a
Maven Synchronization plug-in is provided, which allows you to populate a local or
shared Maven repository from an Oracle home. When you install a Fusion Middleware
12c product, the Maven archetypes, plug-ins, and Project Object Models (POMs) are
installed with the product where the synchronization plug-in can find them.

Using Maven with OEPE requires you to configure and setup the maven environment
using the following steps:

1. How to Set Up Your Maven Environment

2. How to Create Your Maven Settings File

3. How to Use the Oracle Maven Synchronization Plug-In

4. How to Install the Maven Archetypes

Setting up Your Maven Environment

6-2 Oracle Enterprise Pack for Eclipse User's Guide

For further information see Developing Applications Using Continuous Integration.

Note: After you patch your Oracle home, you should run the plug-in
again to ensure that your Maven repository matches Oracle home.
This ensures that your builds use correct versions of all artifacts in that
particular environment. For information on patching, see Chapter 5,
"Installing and Configuring Maven for Build Automation and
Dependency Management" in Developing Applications Using Continuous
Integration.

6.2 Setting up Your Maven Environment
Once you have Maven installed, either as part of a Fusion Middleware package, or
from the Apache website, you need to perform a few initial steps to set up your
environment.

6.2.1 How to Set Up Your Maven Environment
The first thing you need to do to use Maven is to set your environment variables.

To set up your environment on Unix:

1. Add Maven to your operating system's PATH:

■ Update your shell startup script, your .profile or .bash_profile, to update
the path. For example, if you have installed Oracle WebLogic Server in
/u01/fmwhome and you are using the bash shell, then add the following to the
PATH environment variable:

export M2_HOME=/u01/fmwhome/oracle_common/modules/org.apache.maven_
3.0.4

export PATH=${M2_HOME}/bin:$PATH

2. Set the JAVA_HOME environment variable to point to your JDK installation, for
example, export JAVA_HOME=u01\jdk1.7.0

To set up your environment on Windows:

1. Edit your PATH environment variable and add the correct Maven directory path at
the beginning of the PATH environment variable. For example, if you have
installed your Fusion Middleware in C:\fmwhome, then add the following:

C:\fmwhome\oracle_common\modules\org.apache.maven_3.0.4\bin

2. Set the JAVA_HOME environment variable to point to your JDK installation, for
example, export JAVA_HOME=C:\Oracle\Middleware\jdk1.7.0

3. Add the M2_HOME environment variable by opening up the system properties
(WinKey + Pause), selecting the Advanced tab, then the Environment Variables
button. Add the M2_HOME variable in the user variables with the value
C:\<ORACLE_HOME>\oracle_ common\modules\org.apache.maven_3.0.4\bin\. If
you installed Maven from the Apache website, the value will be C:\Program
Files\Apache Software Foundation\apache-maven-3.0.5.

4. In the same dialog, add the user variable with the value %M2_HOME%\bin.

5. Open a new command prompt (Winkey + R then type cmd) and run mvn
--version to verify that it is correctly installed.

Creating a Maven Settings File

Maven Support 6-3

6. If you have any issues with this process, you can go to this Apache page to
problem solve:
https://cwiki.apache.org/confluence/display/MAVEN/NoPluginFoundForPrefi
xException.

6.3 Creating a Maven Settings File
To use Maven you will need a settings file, if any of the following are true:

■ You have installed Maven for the first time.

■ You are working behind a firewall or proxy server.

■ Your organization has its own internal Maven Repository Manager.

6.3.1 How to Create Your Maven Settings File
To create a Maven settings file, create a XML file called settings.xml. If your user
name is Bob, then the directory path for the settings.xml file should be the following:

/home/bob/.m2/settings.xml.

For Windows, If your user name is Bob then the directory path for the settings.xml
file should be the following:

/users/bob/.m2/settings.xml.

You are going to add the following information to your settings file:

■ Proxy - sets the HTTP proxy server that is required to access Maven repositories
on the Internet.

■ Servers - sets the credentials for the Maven repository, so that you do not have to
enter them every time you want to access the repository.

■ Mirrors - directs that instead of trying to access the Maven central repository
directly, it should use your internal Maven repository manager as a mirror (cache)
of Maven central repository.

Add these settings as shown in Example 6–1.

Example 6–1 Maven Settings File

<settings>
 <proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>proxy.mycompany.com</host>
 <port>8080</port>
 <nonProxyHosts>mycompany.com</nonProxyHosts>
 </proxy>
 </proxies>
 <servers>
 <server>
 <id>maven.mycompany.com</id>
 <username>me@mycompany.com</username>
 <password>{COQLCE6DU6GtcS5P=}</password>
 </server>
 </servers>
 <mirrors>
 <mirror>

Populating the Maven Repository

6-4 Oracle Enterprise Pack for Eclipse User's Guide

 <id>archiva</id>
 <name>Internal Archiva Mirror of Central</name>
 <url>http://archiva.mycompany.com/repositories/internal</url>
 <mirrorOf>central</mirrorOf>
 </mirror>
 </mirrors>
</settings>

For more information about available Maven settings, see the Apache Maven
documentation at, http://maven.apache.org/settings.html

6.4 Populating the Maven Repository
The next step is populating your Maven repository with the Oracle artifacts. The
Oracle Maven Synchronization plug-in populates a local or shared Maven repository
from an Oracle home. When you run the plug-in, it finds the Oracle artifacts and
transfers them to a Maven repository.

6.4.1 How to Use the Oracle Maven Synchronization Plug-In
To use the plug-in start by specifying the location of the Oracle home and the location
of the Maven repository using either a file system path, or a URL. The plug-in checks
for all Maven artifacts in the Oracle home, then ensures that the artifacts are installed
in the specified Maven repository, and that the versions match. This ensures the
version numbers and the files match at the binary level, and that all patched files are
reflected accurately in the Maven repository.

The plug-in is located in your ORACLE_HOME directory path and consists of two
files:

■ The Maven POM file that describes the plug-in, which is located at ORACLE_
HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3/oracle-m
aven-sync.12.1.3.pom

■ The JAR file that contains the plug-in, which is located at ORACLE_HOME/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3/oracle-m
aven-sync.12.1.3.jar

To run the plug-in you first need to install it on your Maven repository. You can install
it into your local repository on your computer, or you can deploy it into a remote
shared internal repository.

To install the plug-in to a local repository using the command line:

1. In a command prompt, navigate to the location of your Maven plug-in jar located
at ORACLE_COMMON/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3

2. Run the following command to install to the default repository:

mvn install:install-file -DpomFile=oracle-maven-sync.12.1.3.pom
-Dfile=oracle-maven-sync.12.1.3.jar

Run the following command to install to a specified directory:

mvn install:install-file -DpomFile=oracle-maven-sync.12.1.3.pom
-Dfile=oracle-maven-sync.12.1.3.jar -Dmaven.repo.local=<path to local
repository>

Populating the Maven Repository

Maven Support 6-5

Figure 6–1 Using the Oracle Maven Synchronization Plug-In Install Command

To install the plug-in to a shared internal repository using the command line:

1. In a command prompt, navigate to the location of your plug-in jar at ORACLE_
COMMON/oracle_
common/plugins/maven/com/oracle/maven/oracle-maven-sync/12.1.3

2. Run the following command: mvn deploy:deploy-file
-DpomFile=oracle-maven-sync-12.1.3.pom
-Dfile=oracle-maven-sync-12.1.3.jar
-Durl=http://servername/archiva/repositories/internal
-DrepositoryId=internal

For information about the deploy command see the Maven documentation at,
http://maven.apache.org/plugins/maven-deploy-plugin/deploy-file-mojo.ht
ml

6.4.2 Running the Oracle Maven Synchronization Plug-in
The Oracle Maven Synchronization plug-in supports two Maven goals:

■ Help - prints out help information. Execute the help goal by running mvn
com.oracle.maven:oracle-maven-sync:help

■ Push - populates a repository. Goal semantics depend on how you define your
plug-in parameters.

To populate your repository, run the plug-in using the push goal. The push goal
requires you define your plug-in parameters. You can populate a local or a remote
repository using the push goal.Push goal parameters are defined in Table 6–1. You can
specify the parameters either in your command line or in your POM file.

Table 6–1 Push Goal Parameters and Descriptions

Features Description

ServerID A pointer to the server entry in your Maven settings.xml file.
This is required only if you intend to deploy to a remote
repository. The settings.xml should provide the remote artifact
repository deployment information, such as URL, user name,
and password.

oracleHome The path to the Oracle home that you wish to populate the
Maven repository from.

Populating the Maven Repository

6-6 Oracle Enterprise Pack for Eclipse User's Guide

6.4.2.1 Populating a Local Repository
If you are populating a local repository, specify oracleHome and testingOnly=false.

The localRepository element in your settings.xml file indicates the location of your
local Maven repository. If you exclude the localRepository element in your in
settings.xml, the default location is in the ${HOME}/.m2/repository directory.

If you want to override the localRepository value, then you must specify the override
location on the command line as a Maven option, for example,

mvn com.oracle.maven:oracle-maven-sync:push
-Doracle-maven-sync.oracleHome=/path/to/oracleHome
-Dmaven.repo.local=/alter/nate/path

To specify the parameters in your POM file, you must add a plug-in entry similar to
the following in your POM file, as shown in Table 6–2.

Example 6–2 Plug-in Parameters in Your POM File

<plugin>
<groupID>com.oracle.maven</groupID>
<artifaceID>oracle-maven-sync</artifactID>
<version>12.1.3</version>
<configuration>/home/<name>/Oracle/Middleware</oracleHome>
</configuration>
</plugin>

To populate a local repository:

1. Open the command prompt and navigate to the following directory in your OEPE
install: {install}/plugins/oracle.eclipse.tools.adf/maven/ADF Basic
Application Archetype.

2. Run the following command if you HAVE NOT defined the parameters in your
POM file:

mvn com.oracle.maven:oracle-maven-sync:push
-Doracle-maven-sync.oracleHome=/path/to/oracleHome-Doracle-maven-sync.t
estingOnly=false

Run the following command if you HAVE defined the plug-in parameters in your
POM file:

mvn com.oracle.maven:oracle-maven-sync:push

testingOnly This controls whether the plug-in attempts to publish the
artifacts to the repository. If you test this to true, which is the
default value, then the push goal will find all of your POM files
and print out details of what it would have done if this is set to
false. However, it does not publish any artifacts or make any
change to the system.

failOnError If you set this property to false and the plug-in fails to process a
resource, it continues to process all resources. Failures are logged
as warnings, but the process completes successfully.

If you set this property to true, when it encounters the first
problem the plug-in will immediately exit with an error.This is
the default.

Table 6–1 (Cont.) Push Goal Parameters and Descriptions

Features Description

Populating the Maven Repository

Maven Support 6-7

6.4.2.2 Populating a Remote Repository
If you are populating a remote repository, specify serverId and oracleHome on the
command line or in the plug-in configuration. You must also have a repository
configuration in your settings.xml that matches the server Id you provide to the
plug-in. If authentication is required for deployment, you must also add a server entry
to your Maven settings.xml,.for example:

mvn com.oracle.maven:oracle-maven-sync:push
-Doracle-maven-sync.oracleHome=/path/to/oracleHome
-Doracle-maven-sync.serverId=internal

In your settings.xml file, you must define the target repository in a profile, and
activate that profile using the activeProfiles tag as shown in Example 6–3.

Specify an encrypted password in the server section. For details on how to encrypt the
server passwords, see the Apache website at
http://maven.apache.org/guides/mini/guide-encryption.html#How_to_encrypt_
server_passwords

Example 6–3 Maven setting.xml with Authentication Details

<profiles>
 <profile>
 <id>default</id>
 <repositories>
 <repository>
 <releases>
<enabled>true</enabled>
<updatePolicy>always</updatePolicy>
<checksumPolicy>warn</checksumPolicy>
 </releases>
<snapshots>
 <enabled>true</enabled>
 <updatePolicy>never</updatePolicy>
 <checksumPolicy>fail</checksumPolicy>
</snapshots>
 <id>internal</id>
 <name>Team Internal Repository</name>
<url>http://some.host/maven/repo/internal</url>
<layout>default</layout>
</repository>
</repositories>
</profile>
</profiles>
...
<server>
<id>internal</id>
 <username>deployer</username>
<password>welcome1</password>
 <password>welcome1</password>
 </server>
...
<activeProfiles>
 <activeProfile>default</activeProfile>
</activeProfiles>

To specify the parameters in your POM, add a plug-in entry similar to Example 6–4.

Installing the Maven Archetypes

6-8 Oracle Enterprise Pack for Eclipse User's Guide

Example 6–4 POM File Parameters

<plugin>
<groupId>com.oracle.maven</groupId>
 <artifactId>oracle-maven-sync</artifactId>
 <version>12.1.3</version>
 <configuration>
 <serverId>internal</serverId>
<oracleHome>/path/to/oracleHome</oracleHome>
 <testOnly>false</testOnly>
 </configuration>
</plugin>
To populate a remote repository:

1. Open the command prompt and navigate to the following directory in your
Maven install: {install}/plugins/oracle.eclipse.tools.adf/maven/ADF
Basic Application Archetype.

2. Run the following command:

mvn com.oracle.maven:oracle-maven-sync:push

6.4.2.3 What Happens When You Run a Push Goal to Populate a Repository?
When you run the push goal, the following actions are completed:

■ Checks the Oracle home you have provided and makes a list of all of the Maven
artifacts inside that Oracle home. This is done by looking for POM files in the
ORACLE_HOME/oracle_common/plugins/maven dependencies directory and its
subdirectories, recursively and in the ORACLE_HOME/PRODUCT_HOME/plugins/maven
directory and its subdirectories recursively for each PRODUCT_HOME that exists in the
ORACLE_HOME.

■ Checks if the JAR file referred to by each POM file is available in the Oracle home.

■ Calculates a SHA1 checksum for the JAR file.

■ Attempts to publish the JAR, POM, and SHA1 files to the repository that you have
provided.

The following types of Maven artifacts are installed into your repository:

■ Maven dependencies provided by Oracle, which includes the following:

– Client API classes

– Compilation, packaging, and deployment utilities, for example, appc and wlst

– Component JARs that must be embedded in the application

– Client-side runtime classes, for example, t3 and JAX-WS client runtimes

■ Maven plug-ins provided by Oracle that handle compilation, packaging, and
deployment

■ Maven archetypes provided by Oracle that provide project templates

6.5 Installing the Maven Archetypes
To populate your repository with the Maven archetypes, run the clean install, and
archetype update local catalog commands, as shown in Figure 6–2 and Figure 6–3.

Creating ADF Applications with Maven Integration

Maven Support 6-9

6.5.1 How to Install the Maven Archetypes
Install the Maven archetypes from the command line.

To install the Maven archetypes:

1. Open a command prompt and navigate to the archetype directory of your plugins
install: {OEPE install}/plugins/oracle.eclipse.tools.adf/maven/ADF Basic
Application Archetype

2. Run the following command:

mvn clean install

3. Run a second command:

mvn archetype:update-local-catalog

Figure 6–2 Maven Archetype Maven Clean Install Command

Figure 6–3 Maven Archetype Update Local Catalog Command

6.6 Creating ADF Applications with Maven Integration
You can create an ADF application with Maven integration in the following ways:

■ From a command-line using the OEPE provided ADF Application Archetype

Creating ADF Applications with Maven Integration

6-10 Oracle Enterprise Pack for Eclipse User's Guide

■ From OEPE using the New Maven Project and using the ADF application
Archetype

■ From OEPE using the New ADF Application Wizard

6.6.1 How to Create an ADF Application with Maven Integration from the Command
Line

You can create an ADF application using the command line.

To create an ADF application from the command line:

1. Open a command prompt and navigate to your project location.

2. Run the following command:

mvn archetype:generate -DarchetypeGroupId=com.oracle.adf.archetype
-DarchetypeArtifactId=adf-basic-application
-DarchetypeVersion=12.1.3-0-0

3. Enter the appropriate required values for groupId, artifactId, version, and
package, as shown in Figure 6–4.

4. Change directory to newly-created top-level Maven project folder.

5. Execute the following command:

mvn clean install

Figure 6–4 Running the Generate Basic Maven Application Command

6.6.2 How to Create an Maven Project with Maven integration from the Wizard
You can create a Maven application using the Maven Project wizard.

To create a Maven application from the application wizard:

1. In your OEPE Eclipse application go to File > New > Project. In the New Project
dialog expand the Maven directory and select Maven Project and click Next.

2. In the New Maven Project dialog, select your project name and location, as shown
in Figure 6–5.

3. Click Next. The Select an Archetype dialog appears. Select the ADF archetype
called com.oracle.adf.archetypes, as shown in Figure 6–6. Type "adf" as a filter
to filter out the many other options.

Creating ADF Applications with Maven Integration

Maven Support 6-11

4. Select the ADF archetype and click Next.

5. Enter your values in the dialog fields, as shown in Figure 6–7.

6. Click Finish. The new Maven application appears in your Project Explorer
window.

Figure 6–5 Creating a New Maven Project - Filename and Location

Figure 6–6 Creating a New Maven Project - Selecting the ADF Archetype

Creating ADF Applications with Maven Integration

6-12 Oracle Enterprise Pack for Eclipse User's Guide

Figure 6–7 Creating a New Maven Project - Specifying the Archetype Parameters

6.6.3 How to Add Maven Integration to New ADF Application Projects
OEPE provides the option to add Maven capabilities to projects in your new ADF
application.

To add Maven integration to new ADF application projects:

1. Go to File > New > ADF Application. You are creating an ADF application in
which you will add Maven capabilities to the application projects.

2. Add the information required for you new ADF application on the first two
wizard pages.

3. The third wizard page is the Maven Integration Page, as shown in Figure 6–8.

4. Check the Add Maven (m2e) capabilities to projects box. This adds Maven
capabilities.

5. Click Finish.

Importing Maven Projects

Maven Support 6-13

Figure 6–8 Add Maven Integration Page in New ADF Application Wizard

6.7 Importing Maven Projects
In OEPE you can import your existing Maven projects into your working application.
ADF applications can be imported as well as any J2EE Maven application built outside
the OEPE framework.

To import an existing Maven project:

1. In your OEPE application choose File > Import > Maven > Existing maven
projects.

2. Click Next. the Select Maven Projects dialog appears. Enter the root directory for
the Maven project you are importing, and select your project, as shown in
Figure 6–9.

3. Click Next. The connectors dialog appears. Setup your Maven plugin connectors,
as shown in Figure 6–10.

4. Click Finish.

Importing Maven Projects

6-14 Oracle Enterprise Pack for Eclipse User's Guide

Figure 6–9 Importing Maven Projects _ Available Projects

Using Maven to Deploy to a WebLogic Server

Maven Support 6-15

Figure 6–10 Importing Maven Projects - Connectors

6.8 Using Maven to Deploy to a WebLogic Server
Use the Maven plug-in to deploy, redeploy applications built using Maven to
WebLogic Server from within the Maven environment.

6.8.1 How to Deploy using Maven to a Running WebLogic Server
Use the command line to deploy using Maven to a running WebLogic server instance.

To Use the Command Line to Deploy using Maven to a Running WebLogic Server:

1. Open a command prompt and navigate to …/{artifactId}/App, where
{artifactId} is the name specified during archetype creation.

2. Run the following command:

mvn com.oracle.weblogic:weblogic-maven-plugin:redeploy
-Dwls.adminurl=t3://localhost:7001 -Dwls.user=weblogic
-Dwls.password=welcome1

Using Maven to Deploy to a WebLogic Server

6-16 Oracle Enterprise Pack for Eclipse User's Guide

7

Web Services Support 7-1

7Web Services Support

[8] OEPE lets you to build enterprise-class Web services that employ standard Web service
technologies, such as XML, SOAP, and WSDL. OEPE simplifies Web service
development by allowing you to focus on application logic, rather than the complex
implementation details traditionally required by these technologies.

This document contains the following sections:

■ Starting Points of Web Services Development with OEPE

■ Creating Web Services Projects

■ Generating Client Code for Web Services

■ Generating JAXB Types

■ Using Client Proxy Templates

■ Using WebLogic Web Services Annotations View

■ Validating Web Services Projects

■ Generating Web Services for Spring Service Beans

■ Configuring HTTPS Client Credentials

7.1 Starting Points of Web Services Development with OEPE
This section describes how to get started with developing web services.

7.1.1 Generating a Web Service From a WSDL File
Using OEPE, you can generate a Web service from a WSDL file. The resulting Web
service class will contain the public endpoint interface described by the WSDL without
the implementation. After the Web service has been generated, you have to fill in the
Web service implementation details.

To generate a Web service from a WSDL:

1. Create a new WSDL file or import an existing WSDL file into your project. For
more information, see Section 7.1.6, "Creating a New WSDL File" and Section 7.1.5,
"Imported WSDL Files."

2. In the Project Explorer, right-click the WSDL file and select WebLogic Web
Services > Generate Web Service.

This opens the New Web Service from WSDL dialog that lets you specify many
parameters for the generated Web service, including the port, the output locations,
and Ant script generation options.

Starting Points of Web Services Development with OEPE

7-2 Oracle Enterprise Pack for Eclipse User's Guide

Selecting Keep generated Ant Script saves an Ant file for modification and reuse
of the generation process.

In addition to the Web service implementation class, this will create a JAR file that
contains a Web service interface class, as well as types referenced in the original
WSDL file. The default location for the JAR file is the project's WEB-INF/lib
directory. If you select a different location that is not on the class path, your Web
service is unlikely to function properly.

You can test your Web service using the Test Client. For more information,
see Section 7.1.8, "Testing Web Services."

You can also customize your Web service. For more information, see Section 7.1.1.1,
"Customizing a Web Service."

7.1.1.1 Customizing a Web Service
You can customize your Web Service using the JAX-WS bindings file that points to an
appropriate WSDL file.

A JAX-WS bindings file lets you change the shape of the Java Web service artifacts
generated through WSDLC. The bindings allow you to modify class and method
names, method signatures (wrapper versus non-wrapper), add Javadoc, and attach
handlers. Sources of information on the bindings file specifications with examples can
be found in the references section.

To create a bindings file:

1. Right-click in the Project Explorer and select New > Other from the drop-down
menu. This opens the New dialog that lets you select a wizard to use.

2. Select Oracle > WebLogic > Web Services > JAX-WS Bindings Customization,
and then click Next. This opens the New JAX-WS Bindings File wizard.

3. Specify the name and location for your bindings file, and click Next. This opens
the New JAX-WS Bindings File dialog. Select the file from the list of WSDL files
available in the project in which the bindings file will be generated.

4. Click Finish on the New JAX-WS Bindings File dialog to complete generation of
the bindings file in the specified location.

Upon the completion, the new bindings open in the JAX-WS Bindings editor. The
contents of the file is a basic bindings file shell with a wsdlLocation element pointing
to the identified WSDL file.

Once created, you can customize the bindings file using the customizations editor. For
more information, see Section 7.1.1.1, "Customizing a Web Service."

The customizations editor lets you define the contents of a JAX-WS external bindings
file (not embedded in the WSLD file), while providing information on the possible
XML elements within the file. Using the editor, you can specify a variety of
customization options based on the shape of the generated Java code. Note that the
editor allows you to define both server-side and client-side customization options.

The customizations editor shows which classes, methods, and parameters will be
generated when you apply a particular bindings file's customizations.

You can use the to modify the following types of files:

■ A single WSDL file: the editor supports having all WSDL information defined
within a single WSDL file. The editor will not load a secondary WSDL file
imported through WSDL import or include mechanisms.

Starting Points of Web Services Development with OEPE

Web Services Support 7-3

■ External bindings files: even though you can define JAX-WS bindings elements
either within a WSDL file, or in an external file, the customizations editor only
supports external bindings files, ignoring the JAX-WS bindings elements within
the WSDL file. Note that, although ignored by the editor, those elements will not
be ignored by the artifact generation tooling. Also note that you can use the editor
to modify only one external bindings file at one time.

You can use the external bindings file to customize the shape of the generated Web
service, customize specifics of the generated Web service client (for example,
enable asynchronous clients), and add JAX-WS handlers.

■ Schema configurations: JAX-WS uses W3C Schema (XSD) elements to define the
JAXB types that will be used by the generated Service Endpoint Interface-based
Java Web service. You can include the schema information in the WSDL file either
in line, or through different import or include mechanisms. The customization
editor supports having WSDL type information defined through inline schemas,
as well as external schemas imported using the schema import mechanism.

This example shows how inline types define the JAXB type information in an
embedded schema element in the types section of the WSDL file.

This example demonstrates the case of imported schemas, where the
customizations editor supports importing schemas directly from the WSDL file
using the schema import mechanism. The import element must define a
namespace and a schemaLocation attribute. Note that imports in the imported
schemas will not be followed.

The customization editor consists of the following parts:

■ A tree control on the left - its nodes represent a combination of the WSDL and the
Java artifacts that will be generated.

■ An edit page on the right - when you select a node in the tree, the editor will
display an appropriate edit page where you can edit the properties (supported
customization options), as follows:

– The Global node and the corresponding page let you specify the following
settings that apply to the editor in global scope (for example, to all generated
Java artifacts):

* WSDL URI - the URI to the WSDL file that this bindings file customizes.
Note that, even though the JAX-WS 2.1 specification states that the URI
can specify a local WSDL or a remote WSDL file, this editor supports only
local WSDL files.

* Package name and JavaDoc - the package name for the generated Java
artifacts. A light-gray value in the name setting means that the default
package name will be used. This default value is determined by the WSDL

Starting Points of Web Services Development with OEPE

7-4 Oracle Enterprise Pack for Eclipse User's Guide

file's target namespace. The JavaDoc can only be specified if a package
name other than the default is specified.

* Wrapper Style (enableWrapperStyle customization option) - the wrapper
style setting for Java method generation. Accepting the default value of
true will result in wrapper style method generation only if the rules are
satisfied, as defined in section 2.3.1.2 of the JAX-WS 2.1 specification,
available at
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.htm
l. This value applies to all endpoint interfaces and methods, however,
each endpoint interface or method can override this setting.

* Async Mapping (enableAsyncMapping customization option) - the async
mapping setting for asynchronous method generation on the endpoint
interfaces. The default value is true. The generated asynchronous methods
can only be used on the client side. This value applies to all endpoint
interfaces and methods, however, each endpoint interface or method can
override this setting. For more information, see section 2.3.4.2 of the
JAX-WS 2.1 specification, available at
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.htm
l.

* MIME content (enableMIMEContent customization option) - the MIME
content setting for the use of the mime:content information. The default
value is true. The client- and server-side settings must match. This value
applies to all endpoint interfaces and methods, however, each endpoint
interface or method can override this setting. For more information, see
section 2.6.3.1 of the JAX-WS 2.1 specification, available at
http://jcp.org/aboutJava/communityprocess/mrel/jsr224/index2.htm
l.

– The Handler Chains node and the corresponding page, shown in the following
figure, display existing, or let you define new handler chains consisting of
either logical handlers, SOAP handlers, or a combination of both types. Note
that Handler Chains sections on each page (if applicable) provide the same
options. You can specify the following:

* Type - A handler chain can apply to everything (Global), Services, Ports,
or Protocol bindings. While this field is not editable in the editor design
view, it can be changed in the source view, and the source changes will be
reflected in the editor.

* Applies To - the specific pattern (Services, Ports), bindings (Protocol), or
global (All) to which this handler chain applies. While this field is not
editable in the editor design view, you can modify it in the source view,
and the source changes will be reflected in the editor.

* Class name - Java class that implements LogicalHandler interface (for
logical handlers), or SOAPHandler interface (for SOAP handlers).

* Handler name - the name of the Handler that is unique within the
module.

* Initialization parameters for the Handler with editable names and values

* Connection and/or binding setting

* SOAP handler settings:

SOAP headers - information to identify which SOAP headers will be pro-
cessed by the SOAP Handler.

Starting Points of Web Services Development with OEPE

Web Services Support 7-5

SOAP roles - SOAP roles for the SOAP Handler. For more information, see
section 10.1.1.1 of the JAX-WS 2.1 specification, available at
http://jcp.org/aboutJava/communitypro-
cess/mrel/jsr224/index2.html.

– The Endpoint Interface node and the corresponding page, shown in the next
figure, represent the endpoint interface that will be generated from a WSDL
Port Type after running WSDLC. This node lets you specify:

* Interface name and JavaDoc - the name for the generated Java interface. A
light-gray value in the name setting means the default interface name is
being used. This default value is determined by a WSDL Port Type. You
can only specify the JavaDoc if the specified interface name is other than
the default.

* Wrapper Style (enableWrapperStyle customization option) - the wrapper
style setting for Java method generation on a specific endpoint interface.
The default value is determined by the Wrapper Style setting on the
Global node. This value applies to a particular endpoint interface and its
methods, however, each method can override this setting.

* Async Mapping (enableAsyncMapping customization option) - the async
mapping setting for asynchronous method generation on a specific
endpoint interfaces. The default value is determined by the Async
Mapping setting on the Global node. This value applies to a particular
endpoint interface and its methods, however, each method can override
this setting.

* Services - represents the implementing class that will be generated from a
WSDL Port after running WSDLC:

Service class name and JavaDoc - the name for the generated Java class. A
light-gray value in the name setting means the default class name is being
used. This default value is determined by a WSDL Port Type. You can only
specify the JavaDoc if the specified interface name is other than the
default.

MIME content (enableMIMEContent customization option) - the MIME
content setting for the use of the mime:content information on the specific
Service. The default value is determined by the MIME Content setting on
the Global node. The value in the editor screen applies to the particular
Service only.

– The Method node and the corresponding page, shown in the next figure,
represent the method that will be generated from a WSDL operation after
running WSDLC. This node lets you specify:

* Method name and JavaDoc - the name for the generated Java method. A
light-gray value in the name setting means the default method name is
being used. This default value is determined by a WSDL operation. You
can only specify the JavaDoc if the specified method name is other than
the default.

* Wrapper Style (enableWrapperStyle customization option) - the wrapper
style setting for Java method generation on a specific method. The default
value is determined by the Wrapper Style setting on a parent Endpoint
Interface node. This value applies to a particular method only.

* Async Mapping (enableAsyncMapping customization option) - the async
mapping setting for asynchronous method generation on a specific
method. The default value is determined by the Async Mapping setting on

Starting Points of Web Services Development with OEPE

7-6 Oracle Enterprise Pack for Eclipse User's Guide

a parent Endpoint Interface node. This value applies to a particular
method only.

* Method parameters - represents the method's parameters and the
customization that will apply on the parameter name. Only the name is
editable.

■ The Faults node and the corresponding page will only appear if there are Faults on
the WSDL operation. This node serves as a grouping node to show a list of all the
defined Faults.This node lets you specify:

– Fault Class name and JavaDoc - the name for the generated Java class. A
light-gray value in the name setting means the default class name is being
used. This default value is determined by a WSDL fault. You can only specify
the JavaDoc if the specified class name is other than the default.

Notice that the editor pages open with default values already specified.

7.1.2 Generating a Web Service From Java
OEPE lets you generate Web services from Java using the following starting points:

■ From a Java class

■ From nothing

7.1.2.1 Creating a Web Service from a Java Class
You can develop a JAX-WS-enabled Web service as a Java class, with methods
becoming Web service operations, and method parameters and return types being Java
beans. To indicate what methods should be exposed and to set other properties for the
service, you use annotations.

To create a Web service from a Java class:

1. Right-click the class file, and select WebLogic Web Services > Generate Web
Service. This opens the Generate Web Service from Existing Java Class wizard.

2. On the New JAX-WS Web Service page, enter the Web Service Name
(corresponding to the @WebService serviceName attribute), the Port Name
(corresponding to the @WebService portName attribute), and select Add SEI to
optionally generate the endpoint interface.

3. On the Message Format page, select the SOAP Binding (default: 1.1), the SOAP
Message Format (default: Document/Literal/Wrapped), and select Enable
MTOM to optionally implement MTOM binary encoding.

4. On the Methods page, select methods for the web service to expose.

5. On the Selection WebLogic Web Service Policies page, select either No Policies,
OWSM Web Service Policies, or WebLogic Service Policies.

Note: You cannot mix OWSM and WebLogic Policies.

The Description section provides information about the currently selected policy.
As you select available policies, they are validated against each other for
compatibility. If incompatible policies are selected, a validation error is displayed.
If you click on the error marker, text describing the validation error is displayed.
Then click Finish.

Starting Points of Web Services Development with OEPE

Web Services Support 7-7

See Section 7.1.7, "Understanding Policy Stores" for more information on configuring
policy stores.

See Section 7.6, "Using WebLogic Web Services Annotations View" for information on
adding and removing OWSM Web Service Policies and WebLogic Service Policies.

Having followed the preceding procedure, you created a Web service from a Java class.
The resulting generated code has imports added, and the class annotated
corresponding to wizard choices. You can run it by right-clicking the new class, and
then selecting Run As > Run on Server from the drop-down menu.

Web services without security policies can be tested using the Test Client. For more
information, see Section 7.1.8, "Testing Web Services"

7.1.2.2 Creating a Web Service From Scratch Using Java
Using OEPE, you can create a JAX-WS-enabled Web service for your Java project
without taking any prior steps.

To create a Web service from scratch:

1. Create a new Web service project.

2. Right-click the project name in the Project Explorer and select New > Other from
the drop-down menu. This will open the New wizard. Select Oracle > WebLogic >
Web Services > WebLogic Web Service, and then click Next to open the New Web
Service wizard.

3. On the Web Service page, provide a Package name and enter a Name for your new
Web service. Optionally, click Enable MTOM to implement binary encoding.
Optionally, click Generate Service Endpoint Interface to generate an endpoint
interface. Click Next.

4. On the Selection WebLogic Web Service Policies page, select either No Policies,
OWSM Web Service Policies, or WebLogic Service Policies.

Note: You cannot mix OWSM and WebLogic Policies.

The Description section provides information about the currently selected policy.
As you select available policies, they are validated against each other for
compatibility. If incompatible policies are selected, a validation error is displayed.
If you click on the error marker, text describing the validation error is displayed.
Then click Finish.

See Understanding Policy Stores for more information on configuring policy stores.

7.1.3 Generating a WSDL File
Using OEPE, you can generate a WSDL file from a Java class for your project.

To generate a WSDL:

1. Create new or use an existing Web service project.

2. Right-click a Java class in your Web service project in the Project Explorer, and
select WebLogic Web Services > Generate WSDL from the drop-down menu.

This generates a WSDL file in the same package as the Java class that you used as a
starting point.

Starting Points of Web Services Development with OEPE

7-8 Oracle Enterprise Pack for Eclipse User's Guide

7.1.4 Contents of a WSDL File
Files with the WSDL extension contain Web service interfaces expressed in the Web
Service Description Language (WSDL). WSDL is a standard XML document type
specified by the World Wide Web Consortium (W3C). For more information, see
http://www.w3.org/TR/wsdl.

WSDL files communicate interface information between Web service producers and
consumers. A WSDL description allows a client to utilize a Web service's capabilities
without knowledge of the implementation details of the Web service.

A WSDL file contains the following information necessary for a client to invoke the
methods of a Web service:

■ The data types used as method parameters or return values.

■ The individual methods names and signatures (WSDL refers to methods as
operations).

■ The protocols and message formats allowed for each method.

■ The URLs used to access the Web service.

7.1.5 Imported WSDL Files
When you want to use an external Web service from within Eclipse, you should first
obtain the WSDL file for the service you want to use, as follows:

■ For public Web services, the WSDL file will typically be available on the Web site
of the organization that publishes the Web service.

■ For private Web services, contact the organization that supports the Web service to
obtain the WSDL file.

WSDL files can also be found through both public and private UDDI registries. For
more information about UDDI, see http://uddi.xml.org/.

Once you have the WSDL file, you may use Eclipse to create a Web service.

Some Web service tools produce WSDL files that do not contain an XML declaration.
The XML declaration is just the first line of an XML file of the following form:

<?xml version="1.0" encoding="utf-8" ?>

If you receive a WSDL file that does not contain an XML declaration, you must add a
declaration to the file using a text editor before you can use the WSDL file in Eclipse.

Note: The encoding attribute is not required. If an encoding attribute
is not present, the default encoding is utf-8.

7.1.6 Creating a New WSDL File
To create a WSDL file to use in your project:

1. Right-click the project in the Project Explorer and select New > Other from the
drop-down menu. This opens the New dialog.

2. In the New dialog, select Web Services > WSDL, and then click Next. The New
WSDL File dialog opens.

3. On the New WSDL File dialog, provide a name for the WSDL file, click Next, and
then click Finish. This creates a WSDL file for your project.

Note: For a JAX-WS Web service project, you enable the Standard
Annotated Web Services project facet option by right-clicking the
project in the Project Explorer, selecting Properties from the
drop-down menu, and then selecting Project Facets > Oracle
WebLogic Web Services.

Starting Points of Web Services Development with OEPE

Web Services Support 7-9

7.1.7 Understanding Policy Stores
Use to specify the policy store location for the WS Policy Store, which is where the
Oracle Web Services Manager (Oracle WSM) policies are defined.

Policies, which are used to provide management and security functionality, are created
and managed centrally in an organization by the web service policy manager or
security architect, who provisions a set of policies using Oracle WSM. Policies can be
updated without needing to modify the web services that use the policies.

OEPE comes with a default file-based policy store, which is part of Oracle WebLogic
Server, which means that you can use policies out of the box. You apply policies in the
Create Web Services wizards.

To configure the policy store in OEPE:

1. From the main menu, select Window > Preferences to open the Preferences dialog.

2. In the Preferences dialog, select WebLogic > WS Policy Store.

3. On the WS Policy Store page:

■ Click a Runtime to configure its corresponding policy store.

■ File Store: Click to use the default file-based policy store.

■ Override: Click to enter or browse to the fully-qualified path to the location of
the policy store to be used in place of the default policy store, in the Override
Location field.

■ Remote WebLogic: Click to enter the remote location of the WebLogic Server
instance that contains the policy store.

Fore more information on policies in other contexts, see Securing WebLogic Web Services
for Oracle WebLogic Services.

7.1.8 Testing Web Services
As you develop a Web service, you can test it directly by using the test client. The test
client provides a user interface through which you can test Web service operations
with parameter values you choose.

Using the test client, you can do the following:

■ Test a Web service from the project tree: When you test Web services with Eclipse,
consider the following steps that launch the test client with a visual interface for
invoking the Web service's operations:

1. Expand the project tree to display the Web service source file.

2. Right-click the source file, then click Run > Run on Server.

3. When the test client is displayed, choose the operation you want to test by
clicking the button labeled with the operation's name. If the operation has
parameters, the test client provides boxes for you to enter the values to test

Creating Web Services Projects

7-10 Oracle Enterprise Pack for Eclipse User's Guide

with. If an operation includes complex types as parameters, the test client will
display an XML template with placeholders for your test values.

4. Examine the result of the test by looking at generated messages. When you
execute an operation, the test client refreshes to display information about the
message exchanged by the operation. The user interface provides a summary
of message values, as well as the message XML itself. When an exception
occurs, a fault message is displayed.

5. Use the Message Log list to view the results of multiple tests.

6. Click Show Operations to begin another test.

■ View the WSDL file for the Web service you are currently testing: click the
WSDL URL provided at the top of the test client window.

■ Choose another Web service to test: You can test another Web service without
closing the test client by clicking the Choose Another WSDL link at the top of the
test client window. The test client will display a page with a box where you enter
the WSDL URL, then click Test to display the test form for that Web service.

Alternatively, you can launch the test client without using Eclipse IDE by launching
the client through a Web browser, as follows:

1. With the Oracle WebLogic Server running, open a browser window and navigate
to http://localhost:7001/wls_utc to start the test client.

2. In the Enter WSDL URL box, enter the URL for the WSDL of the Web service you
want to test, and then click Test.

7.2 Creating Web Services Projects
Use web service projects to develop web services that conform to standards, such as
SOAP for message exchange, XML for messages to or from the service, and a WSDL
that specifies the web service's public interface.

Each Web service project produces a JEE module, each of which is included in the
complete Eclipse application's EAR file when you build your application for
deployment.

The contents of Web service projects are accessed through the test client which allows
you to access each operation of the Web service by clicking on a button. For more
information, see Section 7.1.8, "Testing Web Services.".

7.2.1 Creating a new Web Service Project
Using OEPE, you can create a Web service project.

To create a Web service project:

1. Right-click the Project Explorer and select New > Project from the drop-down
menu. This opens the New Project dialog.

2. Select WebLogic > Web Services > Web Service Project from the list, and then
click Next.

3. On the New Web Service Project dialog, provide a name and location for your
project, select and configure your target runtime, specify your EAR and working
sets settings, and then click Finish.

Generating Client Code for Web Services

Web Services Support 7-11

7.2.2 Creating a Web Service Project From an Existing Dynamic Web Project
Using Eclipse IDE and Oracle WebLogic Server, you can create a Web service project
from an existing dynamic Web project by adding a Web Services facet.

Dynamic Web projects are used to create Web applications.

User interface components are constructed from Java Server Pages (JSPs), which are
Web pages that can interact with server resources to produce dynamic content.

Each dynamic Web project ultimately produces a J2EE module. Each J2EE module is
included in the complete application's EAR file when the application is built for
deployment.

The contents of Web projects are accessed through URLs.

A dynamic Web project has two core facets: the Dynamic Web Module (the enable
facet) and the WebLogic Web App Extensions facets. This project may contain a
number of optional facets, one of which is the Web Service facet.

To create a Web service project from an existing dynamic Web project:

1. Open your dynamic Web project in Project Explorer.

2. Right-click on the project name and select Properties from the drop-down menu.
This will open the Properties dialog.

3. Select Project Facets from the tree-control on the dialog's left panel.

4. Select WebLogic Web Services from the Project Facet list on the dialog's right
panel.

5. Click Apply.

7.3 Generating Client Code for Web Services
You can generate client code to use with web services.

7.3.1 Generating Client Code From a WSDL File
Using OEPE, you can generate the client code for the following types of projects:

■ Web service project

■ Dynamic Web project

■ EJB project

To generate the client code for your Web service:

1. Create new, or obtain an existing WSDL file for your target Web service project.

For more information, see the following:

■ Creating a new WSDL File

■ Generating a Web Service from a Java Class for JAX-WS

2. Create another Web service project, which will be your client project.

3. Copy the WSDL file (from step 1) located in the WebContent folder of your target
Web service into the WebContent folder of your client project (from step 2).

4. Generate the client code as follows:

Generating Client Code for Web Services

7-12 Oracle Enterprise Pack for Eclipse User's Guide

■ In the Project Explorer, right-click your client project's WSDL file, and then
select WebLogic Web Services > Generate Web Service Client from the
drop-down menu. This will open the New Web Service Client dialog.

■ On the New Web Service Client dialog, specify the service name, the output
location of the generated JAR file, as well as Ant script generation options, and
then click Next.

■ On the next New Web Service Client > Customization Options screen, you
may choose to specify additional options, and then click Finish.

Upon completion of the preceding procedure, Eclipse does the following:

■ Creates the client JAR file in your client Web service project's WebContent/WEB-INF
directory.

■ Modifies properties of your target Web service project, as necessary (sets the
project facet, classpath, and so on).

If you deploy and run both your target and client Web service projects, your generated
client code will successfully call your target Web service.

Note: Nondeployment-based applications, such as Java applications,
may require additional manual configuration.

You can reference the client from the target Web service using the template-based code
snippets.

7.3.2 Generating Client Code from a Java Class
You can generate client code from Java classes.

To generate client code from a Java class:

1. Choose File > New > Other. In the New Dialog expand Oracle > WebLogic > Web
Services and choose Web Service Client Invocation.

2. On the Web Service Proxy Client Generation page, populate the following fields:

■ Project: Choose the project that will contain the proxy class as well as the class
you want to generate the client invocation code from.

■ Client Proxy Class: Browse the current project for an existing WebService
client, or choose to create a new webservice client using a local or remote
WSDL.

■ Invocation Class: Choose a class file that you want to generate the client
invocation into, or browse for an existing class.

■ Invocation Method: Choose the corresponding method that will contain the
client invocation. The resulting code block will be generated at the end of the
method block. You can also browse for existing methods.

3. On the Selection WebLogic Web Service Policies page, select either No Policies,
OWSM Web Service Policies, or WebLogic Service Policies.

Note: You cannot mix OWSM and WebLogic Policies.

Within the OWSM policy panel, you can choose compatible client policies based
on a resolved WSDL location. The WSDL location is based on the client service

Generating Client Code for Web Services

Web Services Support 7-13

selection specified in the previous page (Web Service Proxy Client Generation). If
the WSDL is packaged with the service, OEPE evaluates the WSDL for policy
declarations and a compatible client list is displayed. Otherwise, you are presented
with the entire client store of policies.

As you select available policies, they are validated against each other for
compatibility. If incompatible policies are selected, a validation error is displayed.
If you click on the error marker, text describing the validation error is displayed.
You will be required to resolve the validation errors prior to selecting Finish.

7.3.3 Alternative Ways to Generate the Client Code
There are alternative entry points to the client code generation wizard. Instead of
right-clicking your client project's WSDL file, and then selecting WebLogic Web
Services > Generate Web Service Client from the drop-down menu, you can also
right-click the Project Explorer area, select New > Other > WebLogic Web Services >
Web Service Client, and then click Next. This opens the ClientGen Wizard > WSDL
File dialog.

Using this dialog, select the WSDL file from which you want to generate the Web
service client indicating if this file is local or remote (in this case, enter a remote URL),
and then proceed with your other settings.

7.3.4 Deploying Java Web Service Applications to Oracle WebLogic Server
Typically, Eclipse builds your files automatically and you can deploy your application
at any time. Note that in order to deploy, you must have a successful build completed.

You can start Oracle Weblogic Server in either development or production mode: in
development mode, the server behaves in ways that make it easier to iteratively
develop and test applications (for example, the server automatically deploys the
current application in an exploded format and relaxes certain security restrictions on
deployment); in production mode, WebLogic Web Service test client is not deployed.
For more information, see Testing Web Services.

Application deployment consists of the following three steps:

1. Compilation of the Web service.

2. Publishing the files to the server.

3. Running the application.

Usually these steps are done seamlessly, by explosion of the WAR file.

When you deploy, all open projects associated with the server are deployed. To
undeploy a project or prevent it from being deployed, remove it from the server.
Alternatively, you can close projects by selecting Project > Close Projects from the
menu. You can also specify working sets (see Eclipse help system in the Workbench
User Guide) to control how many artifacts to build and deploy.

However, even though an entire application or group of projects was deployed, only
the file or folder that you clicked on to trigger the deployment will display its results.
When you deploy your Web service, the test client page for that Web service will run
in a new tab in the editor area - you can use it to specify the parameters to an
operation and make a request to that operation. The response from the operation is
displayed in the same tab. If the page flow or Web service relies on other Web services
to run correctly, it will still work because all components are deployed.

To deploy your Web service application, do one of:

Generating JAXB Types

7-14 Oracle Enterprise Pack for Eclipse User's Guide

■ Right-click your project in the Project Explorer and select Run As > Run on Server
from the drop-down menu to start the server in normal mode (if it has not been
started). This will deploy the application to its associated server; if the project is
not associated with a server, make a server selection using the displayed dialog,
and then run the application.

■ Right-click your project in the Project Explorer and select Debug As > Debug on
Server from the drop-down menu to start the server in debug mode (if it is not
already started), and run the application.

If you wish to simply publish your files to the server, you can use the Servers view by
selecting Window > Show View > Servers from the main menu.

Note: This view also lets you undeploy applications from the server.

After you deploy your application, the Servers view is displayed automatically.

7.4 Generating JAXB Types
Using OEPE, you can generate JAXB classes from an existing XML schema for your
Web service project.

To generate JAXB classes:

1. In the Project Explorer, right-click the schema file (XSD file) in your Web service
project, and then select WebLogic Web Services > Generate JAXB Types from the
drop-down menu. This will open the New JAXB Types > Generated Artifacts
dialog.

2. On the New JAXB Types > Generated Artifacts dialog, specify the output location
of the generated JAR file, as well as the Ant script generation options, and then
click Next.

Note: You can also save the generated Ant script for future
modifications to the generation of the JAXB artifacts. To do so, select
Keep generated Ant script to save the file.

3. On the next New JAXB Types > Customization Options screen, you may choose to
specify additional options, and then click Finish.

Upon completion of the preceding procedure, Eclipse creates the JAXB type JAR file in
your Web service project's WebContent/WEB-INF/lib directory.

For information on using generated JAXB types with your Web service, see Web
Services Development: Starting Points for JAX-WS.

7.5 Using Client Proxy Templates
OEPE provides a set of ready-to-use common code snippets that you can access
through templates and insert in your JAX-WS-enabled Web services Java code. This is
useful when you instantiate a Web service client.

To insert a code snippet:

1. Within your Web service project, open a Java file to which you want to add the
code.

Using Client Proxy Templates

Web Services Support 7-15

2. Place the cursor at a particular location, and then press Ctrl+Space. This opens a
descriptive list of titles of the code snippets available for your code. To display a
detailed description and the snippet itself, select an item from the list.

3. Double-click the snippet title to insert it in your code.

Using the following automatically-generated code snippets, you can reference new or
modify an existing Web service client:

■ Default WSDL location client Web service - use this option to create a basic Web
service client reference.

The generated code will be of the following format:

 SomeService service = new SomeService();
 SomePortType port = service.getSomePort();
 port.someOperation();

■ Specify WSDL location client Web service - use this option to create a basic Web
service client reference, with the local declaration allowing for the URL
specification.

The generated code will be of the following format:

 // variable declaration - implementation injected by container

@WebServiceRef(wsdlLocation="http://localhost:7001/SomeProject/SomeService?wsdl
")
 SomeService service;

 // Web service call in the method block
 SomePortType port = service.getSomePort();
 port.someOperation();

■ Web service reference client service - use this option to create a basic Web service
client reference field declaration, where you will be required to specify the URL.

The generated code will be of the following format:

 SomePortType port = service.getSomePort();

 Binding binding = port.getBinding();

 // can create new list or use existing one
 List handlerList = binding.getHandlerChain();

 handlerList.add(new HandlerChainImplementation());
 binding.setHandlerChain(handlerList);
 port.someOperation();

■ Attach programmatic client-side handler chain - use this option to attach a handler
chain programmatically for a locally declared client service.

The generated code will be of the following format:

 SomePortType port = service.getSomePort();

 Binding binding = port.getBinding();

 // can create new list or use existing one
 List handlerList = binding.getHandlerChain();

 handlerList.add(new HandlerChainImplementation());
 binding.setHandlerChain(handlerList);

Using WebLogic Web Services Annotations View

7-16 Oracle Enterprise Pack for Eclipse User's Guide

 port.someOperation();

■ Web service reference client service with a handler chain - use this option to create
a basic Web service client reference field declaration, where you will be required to
specify the URL and a handler chain file location.

The generated code will be of the following format:

 // variable declaration - implementation injected by container
 @javax.jws.HandlerChain(file="myhandler.xml")

@WebServiceRef(wsdlLocation="http://localhost:7001/SomeProject/SomeService?wsdl
")
 SomeService service;

 // Web service call in the method block
 SomePortType port = service.getSomePort();
 port.someOperation();

Note: With the exception of the template that you use to
programmatically attach a handler chain for a locally declared client
service, all other templates require a WebLogic Web service-generated
client JAR with attached source located in the
WebContent/WEB-INF/lib directory.

7.6 Using WebLogic Web Services Annotations View
You use the WebLogic Web Services Annotation view to add new and edit existing
annotations of a Java Web service within projects configured with WebLogic Web
Services or WebLogic Web Service Clients facet. This view allows you to add
annotations and their attributes without knowing the detailed information about
which annotations and attributes are supported.

7.6.1 Activating the WebLogic Web Services Annotations View
To activate the WebLogic Web Services Annotation view:

1. In the Project Explorer, open one of the source Java files from your project that
contains a Web service. Use the Java code editor to open the file.

2. Select Window > Show View > Other from the top menu to open the Show View
dialog. Select Web Services > WebLogic Web Service Annotations from the list, and
then click OK to open the view.

The figure below shows the activated WebLogic Web Service Annotations view that
makes the annotation selected in the Java source available for editing.

7.6.2 Using the WebLogic Web Services Annotations View
You use the WebLogic Web Services Annotations view as you would any other editor.

When using the WebLogic Web Services Annotations view, consider the following
features:

■ When you select a valid Java element in the Java editor, a set of tabs is displayed,
with each tab representing a supported annotation.

Using WebLogic Web Services Annotations View

Web Services Support 7-17

■ When you select an annotation in the Java editor, the corresponding tab is
activated.

■ Each tab provides a property editor pertaining to the attributes for that particular
annotation:

– Each tab displays a link action to either Add or Remove the annotation from
the Java source.

– Annotations are automatically added when you start to edit an attribute on
the property editor.

– Annotations are automatically removed if all attributes are cleared from the
property editor.

■ When you edit an attribute, the changes are immediately reflected in the Java
source editor.

■ Edits in the Java source editor are immediately reflected in the WebLogic Web
Services Annotations view's property editor.

■ You can clear the value or return to a default value by using the light bulb icon
next to a field.

■ Default values are displayed in grey.

7.6.3 Supported Annotations
You can use the WebLogic Web Services Annotations view to edit the following
annotations:

■ Class-level annotations:

– WebService

– SOAPBinding

– HandlerChain

– WebFault

– ServiceMode

– WebServiceClient

– WebServiceProvider

– BindingType

– WebServiceRefs

– SecurityPolicies

– SecurityPolicy

– Policies

– Policy

■ Field-level annotations:

– WebServiceRef

– HandlerChain

■ Method-level annotations:

– SOAPBinding

Validating Web Services Projects

7-18 Oracle Enterprise Pack for Eclipse User's Guide

– WebMethod

– Oneway

– WebResult

– WebEndpoint

– RequestWrapper

– ResponseWrapper

■ Parameter-level annotations:

– WebParam

Note: You can use some annotations, such as WebService, WebMethod,
and Oneway, as marker annotations (no attributes are required when
the annotation is specified).

7.7 Validating Web Services Projects
OEPE provides a validation utility for your WebLogic Web services projects that you
develop in Eclipse IDE. Subject to validation are various artifacts and associations
within the project, including compliance with specifications (for example, JSR-224),
verification of referenced resources (for example, local and remote), and so on. The
validation occurs by the means of a standard Eclipse validator that indicates errors in
the Problems view, in the Project Explorer, and as markers in the source view, as Figure
1 and Figure 2 show.

7.7.1 Validated Resources
When working with Java Web services in wls.web faceted projects, you can expect the
following types of errors to be validated:

■ References:

– annotations, with the following validation notes:

* WebService - 1) Evaluate if name is specified as an attribute, in case of
explicit service endpoint interface; 2) Evaluate if wsdlLocation declared
differently on service endpoint interface and service implementation; 3)
Evaluate if the referenced endpoint interface has the WebService
annotation; 4) Evaluate if the referenced endpoint interface is an interface.

* WebMethod - 1) Methods are not overridden; 2) Methods are public; 3)
Method return type is not XmlBeans; 4) Method parameters are not
XmlBean; 5) Non-WebMethod with WebService annotations;

* SoapBinding - RPC encoded is not supported.

* Exclude - Evaluate methods with this annotation for exclusion from
WebMethod validation.

* BindingType - HTTPBinding specified.

* WebServiceProvider - Attribute wsdlLocation is required for
Provider-based Web service when HTTPBinding type is not specified.

■ Runtime artifacts (context path):

– Oracle WebLogic Server-specific errors.

Generating Web Services for Spring Service Beans

Web Services Support 7-19

■ Generated artifacts in synchronization.

7.7.2 Configuring Project Validation
To enable or disable validation:

1. Right-click your Web services project in the Project Explorer and select Properties
from the drop-down menu. This opens the Properties dialog, as Figure 3 shows.

2. In the Properties dialog, expand the Validation node. The editor pane on the right
displays all available validators whose settings you can modify (notice Web
Services for WebLogic). From this pane, you can do the following:

■ Enable settings specific to your project.

■ Enable each particular setting.

■ Enable or disable all validators from the list.

■ Suspend validation.

■ Configure your workspace settings: this option becomes available if you select
Suspend all validators, and then click Configure Workspace Settings. This
opens the expanded Preferences > Validation dialog that Figure 4 shows.

Note: The default validation filters enable validation of Web services
within a WebLogic Web services project (for example, those with the
oracle.weblogic.webservices and
oracle.weblogic.webservice.clients facets).

7.8 Generating Web Services for Spring Service Beans
You can generate a WebLogic Web Service from an existing Spring service bean for
your JAX-WS Web service project.

To generate the Web service:

1. Add the WebLogic Web Services facet to an Eclipse project configured with the
Spring 2.5 facet and containing Spring service beans. For more information about
configuring projects for Spring, see Generating Spring Artifacts.

2. In the Project Explorer, right-click your project, select New > Other from the
drop-down menu, and then select Oracle > WebLogic > WebLogic Web Service
for Spring Beans on the New dialog. This opens the Select Spring Service Bean
dialog.

3. On the Select Spring Service Bean dialog, specify the Spring bean configuration.
The list will be populated with Spring service beans defined in the configuration
file. Select a service bean and service methods from the service interface that you
want to expose as WebLogic Web Service, and then click Next.

Note: While one service bean can implement multiple interfaces, you
can only select methods from one interface at a time. To expose
methods in other interfaces, you need to generate a separate Web
service. Also note that Spring ORM service beans implemented in
Spring 1.n-style based on the JpaTemplate and
TransactionProxyFactoryBean are not supported, therefore it is
recommended that you upgrade your service bean to Spring 2.0-style
using annotation-based transaction management.

Configuring HTTPS Client Credentials

7-20 Oracle Enterprise Pack for Eclipse User's Guide

4. On the next page, Web Service Class Name dialog, shown in Figure 4, you may
choose to specify the Web service class name, package name and output directory,
and then click Finish.

Upon completion of the preceding procedure, Eclipse creates the WebLogic Web
Service class which is automatically wired up with Spring bean and delegate service
calls to the Spring bean implementation.

7.9 Configuring HTTPS Client Credentials
Use the HTTPS Client Credentials page to specify the keystores Eclipse should use
when handling HTTPS traffic.

HTTPS encrypts an HTTP message prior to transmission and decrypts it upon arrival.
It uses a public key certificate signed by a trusted certificate authority. Use the HTTP
Client Credentials tab to enter details of the certificate keystore for the client. The client
keystore identity is used for configuring HTTPS.

For more information about keystores and keystore providers, see Understanding
Security for Oracle WebLogic Server.

To configure credentials:

1. From the main menu, choose Window > Preferences.

2. In the Preferences dialog, select WebLogic > Credentials.

3. On the Credentials page, select a WebLogic Server runtime to configure its
keystore and credential information or add a new runtime.

4. With a runtime selected, configure its HTTPS Client Credential information in the
HTTPS Client Credentials section:

■ Client Trusted Certificate Keystore: Enter, or browse to, the location of the
client certificate keystore.

■ Client Trusted Keystore Password: Enter the password for the client keystore.
The default is DemoTrustKeyStorePassPhrase.

■ Edit Keystore: Click to add or remove entries in the keystore.

■ Client Keystore: Enter or browse to the location of the client keystore.

■ Client Keystore Password: Enter the password for the client keystore.

■ Client Private Key Password: Enter the client private key password.

– Append default CA certificates: Select to add the CA certificates.

■ Restore Defaults: Click to restore default settings.

8

REST Web Services Support 8-1

8REST Web Services Support

[9] This chapter describes how to create and run web services in OEPE which conform to
the Representational State Transfer (REST) architectural style using Java API for
RESTful Web Services (JAX-RS).

This document contains the following sections:

■ Getting Started with REST Web Services

■ Creating Projects Configured for REST

■ Creating a REST Web Service

■ Mapping Incoming Requests to Java Methods

■ Customizing Media Types for the Request and Response Messages

■ Validation and Quick Fix

■ Content Assist

■ Run-AS JAX-RS Support

■ Generate a Java REST Client from a WADL

8.1 Getting Started with REST Web Services
OEPE provides tools to create Representational State Transfer (REST or RESTful)
projects, configure Java projects for REST and build REST web services for your
projects. REST describes any simple interface that transmits data over a standardized
interface (such as HTTP) without an additional messaging layer, such as SOAP.

REST provides a set of design rules for creating stateless services that are viewed as
resources, or sources of specific information, and can be identified by their unique
URIs.

There are a couple steps to enabling REST web services in your OEPE applications:

1. Create a web project:

■ How to Create a Dynamic Web Project that is Configured for REST

■ How to Configure a Java Project for REST

2. Creating a REST Web Service

For complete details about developing REST web services and clients using JAX-RS,
see the following Oracle documentation:

■ Developing and Securing RESTful Web Services for Oracle WebLogic Server

Creating Projects Configured for REST

8-2 Oracle Enterprise Pack for Eclipse User's Guide

■ Jersey: RESTful Web services made easy, at
https://wikis.oracle.com/display/Jersey/Main

8.2 Creating Projects Configured for REST
To use REST in OEPE, first create a project that is configured to support REST (JAX-RS)
services. You can do this in a couple steps using the web project wizards in the OEPE
interface.

There are two types of projects that you can configure to use REST:

■ How to Create a Dynamic Web Project that is Configured for REST

■ How to Configure a Java Project for REST

8.2.1 How to Create a Dynamic Web Project that is Configured for REST
When you create a dynamic web project that is configured for REST, the system adds a
web.xml file and a weblogic.xml file that contain the REST servlet and servlet
mapping detail that your project uses at runtime, as shown in Example 8–1 and
Example 8–2.

Example 8–1 web.xml configured for REST

<display-name>REST Project</display-name>
 <servlet>
<description>JAX-RS Tools Generated - Do not modify</description>
<servlet-name>JAX-RS Servlet</servlet-name>
<servlet-class>com.sun.jersey.spi.container.servlet.ServletContainer</servlet-clas
s>
<load-on-startup>1</load-on-startup
 </servlet>
 <servlet-mapping>
<servlet-name>JAX-RS Servlet</servlet-name>
<url-pattern>/jaxrs/*</url-pattern>
 </servlet-mapping>
</web-app

Example 8–2 weblogic.xml configured for REST

<wls:weblogic-version>12.1.3</wls:weblogic-version
 <wls:context-root>REST_Project</wls:context-root>

To create a dynamic web project configured for REST

1. Create a WebLogic runtime. Both Weblogic 11g and 12c versions are supported, as
well as Glassfish. These steps are for Weblogic 12c. For Weblogic 11g, the wizard
interface is slightly different, and adds a weblogic.xml file with a jax library
reference <wls:library-name> jax-rs</wls:library-name>.

2. In the OEPE application, choose File > New > Web > Dynamic Web Project.

3. Click Next. The New Dynamic Web Project dialog appears, as shown in
Figure 8–1. Add the project detail, and choose the target runtime. The target
runtime is shown in the Configuration field.

4. Next to the Configuration field, click Modify to choose what capabilities to enable
for your project. The Project Facets dialog appears, as shown in Figure 8–2.

5. Select JAX-RS (REST Web Services). Click OK.

Creating Projects Configured for REST

REST Web Services Support 8-3

6. Click Next. The JAX-RX Capabilities dialog appears with the default servlet and
container details. If you accept the defaults click Finish.

Note: When you change the class or project class path in the run
configuration wizard, be sure to manually stop the JAXRS application
and restart it to reflect your changes. Unless it is stopped and started
again, it will not reflect the changes.

Figure 8–1 New Dynamic Web Project

Creating Projects Configured for REST

8-4 Oracle Enterprise Pack for Eclipse User's Guide

Figure 8–2 REST Project Facets

8.2.2 How to Configure a Java Project for REST
To use REST with your Java web project you need to add the JAX-RS library bundle.
To do this, convert your Java project to a JAX-RS faceted project.

Note: JAX-RS tooling in a Java Project does not currently work with
a Glassfish Runtime Specific Library Provider. Currently, Glassfish
requires a Dynamic Web Project for deployment and to access the
JAX-RS Implementation library provider.

To convert a Java project for REST

1. Select your Java project. Right-click and choose Configure > Convert to Faceted
Form.

2. In the Facet Page select JAX-RS, and choose the appropriate runtime version, as
shown in Figure 8–3.

3. Notice the "Require Further Configuration" link highlighted in the lower part of
the dialog. Click Require Further Configuration to continue to the JAX-RS Facet
Install page, as shown in Figure 8–4.

4. In the JAXRS Facet Install page, select User Library.

5. Select the download button, or select from the previously configured user libraries
available for your JAX-RS Runtime, as displayed in the libraries window. The
Jersey Download is now available.

6. Click OK.

Creating a REST Web Service

REST Web Services Support 8-5

Figure 8–3 Convert a Java Project for REST - Project Facets

Figure 8–4 Convert a Java Project for REST - JAX-RS Capabilities

8.3 Creating a REST Web Service
Once you have configured your project for REST, you are ready to create your REST
web service.

You can create a new REST web service class or generate a REST web service from an
existing Java class using the Create RESTful Service wizard. The wizard creates the

Creating a REST Web Service

8-6 Oracle Enterprise Pack for Eclipse User's Guide

deployment files for you. After you create your web service, the final step is to deploy
it.

When you create a RESTful web service, the JAX-RS Jersey library is automatically
added to your REST project.

You can create are two types of REST web services in OEPE:

■ How to Create a Patterned REST Web Service.

■ How to Create a POJO REST Web Service.

8.3.1 How to Create a Patterned REST Web Service
There are three options to choose from for your patterned REST web services:

■ Single Source, - Creates a root-level JAX-RS resource class with GET and PUT
methods.

■ Resource/sub-resources - Creates a pair of JAX-RS resource classes. The 'item'
class represents individual resources in a collection, the other class is for the
container that houses the collection. If the item resource URI is determined by the
client, the item class is created using the PUT method in the item class, instead of
the POST method.

■ Entities Access - Creates JAX-RS compliant web services from JPA entity classes.

To create a Single Source REST web service using the wizard:

1. In the OEPE application choose New > Other > Web Services > REST Web
Service. The Web Service Pattern dialog appears, as shown in Figure 8–5.

2. The dialog has three REST pattern types from which to choose. Choose the Single
Source pattern type and click Next, if you want to configure the REST methods, or
click Finish to use the defaults.

3. If you chose Next, the Web Service Structure dialog appears with the REST Java
class and the methods, as shown in Figure 8–7. You can accept the root path
default or change it. Under Consumes/produces, choose the format to use to
when your REST methods are consumed or produced for the root resource class.
For more information see, Section 8.5, "Customizing Media Types for the Request
and Response Messages".

4. Click Next. The Rest Application Class dialog appears. Choose to accept the
default, or specify the Package and Class name added to the REST configuration,
which is used at runtime to locate all the web services in the project.

Creating a REST Web Service

REST Web Services Support 8-7

Figure 8–5 REST Create Patterned Web Service - Single Root Resource

Figure 8–6 REST Create Patterned Web Service - Configure Methods

To create a Resource/Sub-Resources REST web service:

1. In the OEPE application choose New > Other > Web Services > REST Web
Service. The Web Service Pattern dialog appears, as shown in Figure 8–7.

2. The dialog has three REST pattern types from which to choose. Choose the
Resource/sub-resources pattern type and click Next, to configure the REST
methods, or Finish to use the defaults.

3. If you chose Next, the Web Service Structure dialog appears with the REST Java
class and the methods, as shown in Figure 8–7. You can accept the root path
default or change it. Under Consumes/produces, choose the format in which you
want your REST methods to be consumed or produced for the root resource class.
For more information see, Section 8.5, "Customizing Media Types for the Request

Creating a REST Web Service

8-8 Oracle Enterprise Pack for Eclipse User's Guide

and Response Messages".

Figure 8–7 REST Create Patterned Web Service - Resource/sub-resources

To create a Entities Access REST web service

1. In the OEPE application choose New > Other > REST Web Service. The Web
Service Pattern dialog appears.

2. The dialog has three REST pattern types from which to choose. Choose the Entities
Access pattern type and click Next, if you want to configure the REST methods, or
Finish to use the defaults.

3. If you chose Next, the Web Service Structure dialog appears with the REST Java
class and the methods, as shown in Figure 8–7. You can accept the root path
default or change it. Under Consumes/produces, choose the format in which you
want your REST methods to be consumed or produced for the root resource class
For more information see, Section 8.5, "Customizing Media Types for the Request
and Response Messages".

8.3.2 How to Create a POJO REST Web Service
Once your project is configured for REST (see Section 8.2, "Creating Projects
Configured for REST"), you can use annotations on your POJOs to define your REST
web service URIs. You can either do this directly on the file, or using the Rest
AnnotationProperties window. The @Path annotation defines the relative URI path for
the resource, and can be defined as a constant or variable value (referred to as "URI
path template"). You can add the @Path annotation at the class or method level.

To create REST web services in the Java source editor:
To define the URI as a constant value, pass a constant value to the @Path annotation.
Preceding and ending slashes (/) are optional, as shown in Example 8–3.

Example 8–3 Using Annotations to Define the Resource Class URI as a Constant

package samples.helloworld;

Creating a REST Web Service

REST Web Services Support 8-9

import javax.ws.rs.Path;
...
// Specifies the path to the RESTful service
@Path("/helloworld")
public class helloWorld {. . .}

In Example 8–4 shows the relative URI for the resource class defined using a variable,
enclosed in braces.

Example 8–4 Using Annotations to Define the Resource Class URI as a Variable

package samples.helloworld;
import javax.ws.rs.Path;
...
// Specifies the path to the RESTful service
@Path("/users/{username}")
public class helloWorld {. . .}
}
To create REST web services using the Annotation view

1. Create a POJO.

2. Open the Annotations view.

3. Put Cursor on the type declaration, this will orient the available annotations to this
location.

4. Add the @Path Annotation, specify the value of your path, which is the URI for
your resource class. This enable this class as a REST resource, as shown in
Figure 8–8.

5. Select applicable methods and annotate with the appropriate @Path, @Get, @Put,
@Post, @Delete.

Figure 8–8 Add REST to POJO - Annotations View

Mapping Incoming Requests to Java Methods

8-10 Oracle Enterprise Pack for Eclipse User's Guide

8.4 Mapping Incoming Requests to Java Methods
JAX-RS uses Java annotations to map an incoming HTTP request to a Java method.
The process for mapping HTTP Requests/Responses will is a function of the
MediaTypes designated by the consumes/produces.

For more information on annotations and mapping, see Mapping Incoming HTTP
Requests to Java Methods, in Developing and Securing RESTful Web Services for Oracle
WebLogic Server.

8.4.1 How to Map an HTTP Request to Java Methods in the REST Generation Wizard
A request method designator annotations are runtime annotations, defined by JAX-RS,
and which correspond to the similarly named HTTP methods. Within a resource class
file, HTTP methods are mapped to Java programming language methods using the
request method designator annotations. The behavior of a resource is determined by
which of the HTTP methods the resource is responding to. Jersey defines a set of
request method designators for the common HTTP methods: @GET, @POST, @PUT,
@DELETE, @HEAD.

To map an HTTP Request to a Java method in the REST wizard
These steps assume that you have a JPA faceted project with generated entities. You
will also need to have the JAX-RS facet enabled. (See Chapter 8.2, "Creating Projects
Configured for REST".)

1. Select File > New > Other > Web Services > Rest Web Services.

2. Select Entities. The HTTP Type is designated given the following rules:

■ PUT- method to create or update a storage container.

■ GET - Requests data from a specified resource.

■ POST-Submits data to be processed to a specified resource.

■ DELETE-Deletes the specified resource.

■ HEAD-Same as GET but returns only HTTP headers and no document body.

3. Open your POJO in the source editor.

4. Open the REST Annotations View.

5. Place your cursor on the Class Type and Specify the @Path Annotation, making
this a JAX-RS.

6. Place your cursor on the given method and add the appropriate JAX-RS request
method designator annotation as defined by the HTTP type rules.

8.4.2 How to Map HTTP Requests to Java Methods in the Java Class
The javax.ws.rs.GET annotation transmits a representation of the resource identified
by the URI to the client. The format or the representation returned in the response
entity body cant be HTML, plain text, JPEG, or another form. Example 8–5 shows how
to map an HTTP GET Request to a Java method in a class called BookmarksResource.

Example 8–5 Mapping the HTTP GET Request to a Java Method

import javax.ws.rs.GET;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;
...

Customizing Media Types for the Request and Response Messages

REST Web Services Support 8-11

public class BookmarksResource {
...
 @Path("{bmid: .+}")
 public BookmarkResource getBookmark(@PathParam("bmid") String bmid) {
 return new BookmarkResource(uriInfo, em,
userResource.getUserEntity(), bmid);
 }
 @GET
 @Produces("application/json")
 public JSONArray getBookmarksAsJsonArray() {
 JSONArray uriArray = new JSONArray();
for (BookmarkEntity bookmarkEntity : getBookmarks()) {
UriBuilder ub = uriInfo.getAbsolutePathBuilder();
 URI bookmarkUri = ub .
 path(bookmarkEntity.getBookmarkEntityPK().getBmid()).
build();
 uriArray.put(bookmarkUri.toASCIIString());
}
return uriArray;
}
...
}

8.4.3 How to Map HTTP Requests to Java Methods in the Annotations View
Use the Annotations view to add your request and response requests to your POJOs.

To create REST web services using the Annotation view

1. Create a POJO.

2. Open the Annotations view.

3. Put cursor on the type declaration, this will orient the available annotations to this
location.

4. For the request customization, add the @Consumes annotation and specify the
value. This sets the value of the media type for that annotation. Note that when
@Consumes is applied at the method level, it overrides any @Consumes
annotations applied at the class level.

For the response customization, select the @Produces annotation in the properties
view. Select the appropriate media type for your response. Note: If it is applied at
the method level, it overrides any @Produces annotations applied at the class
level.

8.5 Customizing Media Types for the Request and Response Messages
Add the javax.ws.rs.Consumes or javax.ws.rs.Produces annotation at the class or
method level of the resource to customize the media type of the request and response
messages, respectively. More than one media type can be declared in each case.

With OEPE, you can customize message types for request and response using one of
the following options:

■ How to Create a Patterned REST Web Service

■ How to Customize Media Types in the Java Source Editor

■ How to Customize Media Types in the Annotations View for a Java Class

Customizing Media Types for the Request and Response Messages

8-12 Oracle Enterprise Pack for Eclipse User's Guide

8.5.1 How to Customize Media Types in the Java Source Editor
Customize media types for your REST web service by adding the @Produces or
@Consumes annotation at the class or method level of the resource. Then you can
input the media types values for your produces and consumes attributes, as shown in
Example 8–6.

Example 8–6 Customizing the Media Types for the Response using @Produces
Annotation

package samples.produces;
import javax.ws.rs.Produces;
import javax.ws.rs.Path;

@Path("/myResource")
@Produces("text/plain")
public class GetDogTreats {
@GET
public String doGetAsPlainText() { ... }
@GET
@Produces("text/html")
public String doGetAsHtml() { ... }
}

8.5.2 How to Customize Media Types in the Annotations View for a Java Class
Use the Annotations view to add your media type annotations and properties to your
Java classes.

Note: Explicit use of the javax.ws.rs.core.MediaType String constants
is not directly supported through the annotations view.

To create REST web services using the Annotations view

1. Create a POJO.

2. Open the Annotation view.

3. Put cursor on the type declaration, this will orient the available annotations to this
location.

4. Add the @Consumer or the @Produces annotation, and specify the value of your
annotation.

5. Specify the resource value of your annotation. Choose from the available values
for that annotation. For example @Produces("text/plain"), as shown in
Figure 8–9.

Validation and Quick Fix

REST Web Services Support 8-13

Figure 8–9 Adding Media Type REST Annotations in the Annotations View

8.6 Validation and Quick Fix
REST services are validated based on the REST annotations present at the class,
method, and method parameters level. The validation is done in the REST annotation
processor.

To see the validation messages on a REST service, turn on annotation processing at the
project level, through the project properties dialog. By default, annotation processing
on a project is not enabled.

There is a quick fix bulb icon on the validation output window which you can select to
resolve the following:

■ Issues with the values in the PathParam annotation.

■ Issues related to converting a non-public resource method to a public method.

To show annotation validations:

1. Go to File > Properties.

2. Select Java Compiler > Annotation Processing.

3. Select Enable project specific settings, and Enable annotation processing.

Content Assist

8-14 Oracle Enterprise Pack for Eclipse User's Guide

Figure 8–10 Properties - Annotations

8.7 Content Assist
For annotations that require values, the Produces and Consumers annotations, for
example, you can use Content Assist to show you the available options and choose
your value. To use the Content Assist, from the annotations view click the Add
symbol. Then select the <empty> field. This enables the value field below under
Details. Click the page icon. This brings up a list of available values for that
annotations shown in Figure 8–11

Figure 8–11 Content Assist Annotations Values

8.8 Run-AS JAX-RS Support
There are two types of server scenarios to run your REST projects.

■ Run on Server - deploys the REST application to the Project Targeted Runtime
J2EE Server.

Run-AS JAX-RS Support

REST Web Services Support 8-15

■ Run on a JAX-RS Resource Application - deploys to a lightweight built-in HTTP
Server that designed to quickly deploy a simple JAX-RS resource.

Note: When you change the class or project class path in the run
configuration wizard, you need to manually stop the JAXRS
application and start to persist changes. Unless it is stopped and
started again, it will not reflect the changes.

8.8.1 How to Deploy to a Targeted Runtime J2EE Server
To use the run-as feature, your project needs to have an implementation class
annotated with @Path that is packaged with a servlet specified in the web.xml
deployment descriptor.

To Run-As > Run On Server to deploy to a targeted J2EE runtime:
Navigate to the implementation class, right-click and choose Run-as > Run On Server.
This publishes the application to the server. Once successfully deployed, the Browser
is launched with a url specified to target the application.wadl that corresponds to
this packaged resource.

The targeted browser can be controlled through the Eclipse Workbench by selecting
Window > Preferences > General > Web Browser.

Note: Advanced packaging through the application subclass is not
supported, as well as the. @Path REST resources specified on super
types.

8.8.2 How to Deploy to a Basic HTTP Lightweight Server
Use the Run-As > JAX-RS Resource feature to run a basic HTTP Server.

Note: The REST web service is a lightweight HTTP Server, used for
running simple REST compliant POJOs. It is not a fully compliant
J2EE server. For complex JAXB, JPA, EJB implementations please defer
to the project target J2EE runtime container, per the steps in "How to
Deploy to a Targeted Runtime J2EE Server"

To Run-AS > JAX-RS Resource Application
On your JAX-RS annotated simple POJO, right-click and select Run-As > JAX-RS
Resource Application. This will launch the Jersey HTTP Server, and by default will
direct the browser launch to the application.wadl. By default it uses port 8080, if this
port is already in use, you can define another port by doing the following.

1. Right-click your POJO again, and choose Run As > Run Configurations.

2. Select the JAX-RS Application with the corresponding class name, as shown in
Figure 8–12. Under the Query URL, add your port configuration, as shown in
Figure 8–13.

3. In the JAX-RS Application Run Configuration dialog, create a new configuration
by selecting the project and JAX-RS annotated resource. Use the browse and search
options to find your available resources.

Run-AS JAX-RS Support

8-16 Oracle Enterprise Pack for Eclipse User's Guide

4. Change the default Query Url options to customize the browser target url launch
behavior. Use the additional tabs to customize the Java runtime behavior,
including the VM arguments, environment variables, JRE, classpath, and common.

Figure 8–12 Run Configuration - Resources

Generate a Java REST Client from a WADL

REST Web Services Support 8-17

Figure 8–13 Run Configuration - Query URL

8.9 Generate a Java REST Client from a WADL
The Web Application Description Language (WADL) is an XML-based file format that
describes your REST web services application. By default, a basic WADL is generated
at runtime and can be accessed from your REST web service by adding a GET to the
/application.wadl resource at the base URI of your REST application. For example: GET
http://<path_to_REST_app>/application.wadl.

You can also use the options method to return the WADL for particular resource, as
shown in Example 8–7.

Example 8–7 WADL Describing a REST Web Service

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://research.sun.com/wadl/2006/10">
 <doc xmlns:jersey="http://jersey.dev.java.net/"
jersey:generatedBy="Jersey: 0.10-ea-SNAPSHOT 08/27/2008 08:24 PM"/>
 <resources base="http://localhost:9998/">
 <resource path="/helloworld">
<method name="GET" id="sayHello">
 <response>
 <representation mediaType="text/plain"/>
 </response>
 </method>
 </resource>
 </resources>
</application>

Generate a Java REST Client from a WADL

8-18 Oracle Enterprise Pack for Eclipse User's Guide

9

Oracle Database Support 9-1

9Oracle Database Support

[10] The OEPE database support lets you easily connect to, create, explore, and query
Oracle databases. Support includes a graphic editor for SQL schemas, and DDL
generation.

This document contains the following sections:

■ Getting Started with the Oracle Database Plugin for Eclipse

■ Using the RDB Schema Editor

9.1 Getting Started with the Oracle Database Plugin for Eclipse
Welcome to the first step towards supporting the Eclipse Data Tool Platform (DTP) by
Oracle. This document provides a high-level tour through each of the Oracle Database
Plugin features.

9.1.1 Using the Database Explorer
The Database Explorer is the Datasource View provided by the DTP. You use it to
create Database connections and to navigate the database.

9.1.1.1 Creating a Connection to a Database
You can create a connection to a database.

To create a connection to a database using the Data Source Explorer view:

1. To open the Database Development perspective, click Windows > Open
Perspective > Other from the Main menu, and then select Database Development
from the Open Perspective dialog. This perspective opens the Data Source
Explorer (DSE) view.

2. Right click on the Databases node in DSE and select New to create a database
connection.

3. Select Oracle Database Connection from the list and provide a name for the
connection. Click Next to proceed to the next step.

4. Complete the rest of the dialog as follows:

■ Select either Oracle Database 10g Driver Default or Oracle Database 11g
Driver Default from the drop-down list of drivers.

■ If the default settings are not appropriate for your configuration, change the
following information on the Properties > General tab of the New Connection
Profile dialog:

Getting Started with the Oracle Database Plugin for Eclipse

9-2 Oracle Enterprise Pack for Eclipse User's Guide

– In the SID field, replace xe with the Service Name (or SID) of the Database
Service.

– In the Host field, replace server with the hostname or IP address of the
Oracle Database server (possibly localhost).

– In the Port number field, replace 1521 with the port number of the Oracle
Database Listener service.

– Provide the database user name and password for the connection.

Note that the Connection URL field reflects your changes.

– Select a use group in the Catalog field.

■ On the Properties > Optional tab, set the following optional properties, if
required:

– autocommit=false

By default, autocommit is set to true, which results in immediate commit
of the operations from SQL Editor. When set to false, you need to execute
the explicit COMMIT to commit the changes. See Oracle Database SQL
Reference for more information.

– sysdba=true

Use this property to login with SYSDBA account.

– sysoper=true

Use this property to login with SYSOPER account.

■ Click Test Connection to test the connectivity. If this fails, try restarting
Eclipse with -clean command option.

■ Select Connect when the wizard completes checkbox to enable the database
connection.

5. Select Finish to complete the wizard.

9.1.1.2 Working with a Database Connection
The open database connection allows you to navigate through the database objects.

9.1.1.3 Editing Data in a Table
With the enabled database connection, you can edit the table data in the Data Source
Explorer (DSE). Note that, for comprehensive editing capabilities, it is recommended
that you install Data Tools Platform SQL Development Tools Data Functions feature.

To install the Data Tools Platform SQL Development Tools Data Functions feature:

1. If your machine is located inside of a network, which requires a proxy to access
outside resource such as the Internet, the configuration (download) may fail due to
the fact that Eclipse IDE includes a Web browser to let you access the Internet from
within the IDE. In this case, reconfigure your Eclipse IDE proxy settings using
Window > Preferences > General > Network Connections.

2. Select Help > Software Updates from the main menu.

3. Open the Available Software tab on the Software Updates and Add-ons dialog.

4. Click Add Site to install the feature provided by OEPE from OEPE's update site.
To do so, enter

Getting Started with the Oracle Database Plugin for Eclipse

Oracle Database Support 9-3

http://www.oracle.com/technology/software/products/oepe/oepe_12g.html
in the Location field of the Add Site dialog, and then click OK.

5. Expand the Ganymede Update Site node, and then expand the Database
Development node. Select Data Tools Platform SQL Development Tools Data
Functions, and then click Install.

To edit a table data:

1. Navigate to the table you want to edit in the DSE, then right-click the table, and
select Data > Edit. This opens the table data in the editor.

2. Make changes to the table data by right-clicking on a table cell and using the
popup menu. When you have finished editing, click Save to save the changes to
the database.

9.1.1.4 Loading Data into a Table
You can load data from a text file into a table using the DSE.

To load data into a table:

1. In the DSE, navigate to the table into which you want to load data. Right-click the
table, and select Data > Load from the drop-down menu This opens the Load Data
dialog.

2. Complete fields on the dialog, and then click Finish. Validation is performed
before the data is loaded.

9.1.1.5 Extracting Data from a Table
To extract data from a table to a text file using the DSE.

To extract the data:

1. In the DSE, navigate to the table from which you want to extract data. Right-click
the table and select Data > Extract from the drop-down menu. This opens the
Extract Data dialog, as Figure 11 shows. Complete fields on the dialog, and then
click Finish.

2. Complete fields on the dialog, and then click Finish.

9.1.1.6 Generating DDL
You can use the Generate DDL option on most database objects to create or drop the
object.

To generate DDL:

1. If necessary, create a project in order to save the generated DDL Script.

2. In the DSE, navigate to the object you want to create or drop, right-click the object,
and select Generate DDL from the drop-down menu to create a DDL script.

The DDL is generated.

9.1.2 SQL Tools
SQL Tools enable you to edit and run stored procedures and functions, as well as
execute the so-called explain plans in either graphic or text mode.

Getting Started with the Oracle Database Plugin for Eclipse

9-4 Oracle Enterprise Pack for Eclipse User's Guide

9.1.2.1 Using SQL Editor
The SQL Editor enables standard text-based editing of SQL statements, provides
syntax color, and multiple statement support.

To use a SQL Editor:

1. In the DSE, navigate to the procedure or function you want to edit.

2. Right-click the procedure or function and select Edit from the drop-down menu.
The procedure or function opens in the SQL Editor.

9.1.2.2 Executing a Stored Procedure or Function
You can execute stored procedures and functions.

To execute a stored procedure or function:

1. In the DSE, navigate to the procedure or function you want to run.

2. Right-click the procedure or function and select Run from the drop-down menu.

3. If the procedure or function has any input parameters, the Configure Parameters
dialog appears.

Enter input values and click OK to run the procedure or function.

9.1.2.3 Executing Explain Plans
You can use explain plans to optimize your code.

To execute the explain plan:

1. In the Navigator or DSE, navigate to the script containing the SQL statement for
which you want to execute an explain plan.

2. Right-click on the script and select either Execute Text Explain Plan or Execute
Graphic Explain Plan from the drop-down menu.

For example, open the views.sql file that you created in the Generating DDL
section. Highlight the SELECT statement block. Right-click and select Execute
Graphic Explain Plan from the drop-down menu. This opens the execution plan
in graphic mode in the Execution Plan view.

Alternatively, if you select Execute Text Explain Plan from the drop-down menu, it
will result in a text version of the execution plan.

9.1.3 Granting and Revoking Privileges
To grant specific database privileges to a specific user:

1. In the DSE, navigate to the element (such as a table, for example) for which you
want the user to have certain privileges.

2. Right-click the element and select Grant Privileges from the drop-down menu.
This opens the Grant Privileges dialog.

3. Select one of the privileges from the list and click OK.

To revoke specific database privileges from a specific user:

1. In the DSE, navigate to the element (such as a table, for example) for which you
want to revoke the user privileges.

2. Right-click the element and select Revoke Privileges from the drop-down menu.
This opens the Revoke Privileges dialog.

Getting Started with the Oracle Database Plugin for Eclipse

Oracle Database Support 9-5

3. Select one of the privileges from the list and click OK.

9.1.4 Creating Tables
Using the tool, you can create new database tables by declaring new columns, defining
primary, unique, and foreign keys, as well as adding checked constraints and indices.

To create a new database table, follow this procedure:

1. In the DSE, navigate to the Tables element.

2. Right-click the element and select New Table from the drop-down menu. This
opens the Create Table dialog.

Even though by default the table is created using the schema of the user who
established the connection, you can change the database schema. If the user who
established the connection does not have privileges to create a new table in
another schema, the SQL Result view will display an error message after the
wizard completes.

3. Using the Create Table dialog, specify the following:

■ The name for your table.

■ One or more table columns: to define a column, click Add, and then provide
the column's name, select the type using the Type dialog, and specify whether
or not the value can be null.

You can reorder the table columns using the Move Up and Move Down
buttons.

■ Click Next on the Create Table dialog to open the Create Table > Primary Key
dialog. On this dialog, select Add primary key, and then define the name and
select one or more columns that make up the primary key. If a column type is
not suitable as a primary key column, a validation error will be displayed.
Proceed by clicking Next.

■ On the next Create Table > Unique Constraints dialog, define unique
constraints for the table by clicking Add. When defined, click Next to proceed.

There are three types of validation for the unique constraints:

– Each column must be suitable for unique constraints. For example, a
column of type CLOB is not suitable as a column in unique constraints.

– A unique constraint must not contain the same columns as the primary
key.

– A unique constraint must not contain the same columns as another unique
constraint.

■ On the next Create Table > Foreign Keys dialog, define foreign keys for the
table by clicking Add.

Note: Foreign keys can reference the primary key of a table which
resides in another schema. You can switch schemas by clicking
Browse for the Referenced schema field. By clicking Browse for the
Referenced table field you can switch to different tables in the
referenced schema. When the referenced table is selected, the wizard
will look up its primary key and fill the Referenced constraint field if
the primary key exist. It will also try to match the columns in the
referenced table with columns in the new table based on their types.
Matched columns will show in the Associations table. If there are
multiple columns that match a column in the referenced table, the
wizard will choose the first one it finds, which you can change.

Getting Started with the Oracle Database Plugin for Eclipse

9-6 Oracle Enterprise Pack for Eclipse User's Guide

4. When finished, click Next.

5. Using the next Create Table > Check Constraints dialog, add checked constraints
for the new table by clicking Add.

Note: The Condition field is represented by a free-formatted text
area. When using it, you have to ensure that the text for the checked
constraints conforms to PL/SQL syntax. Otherwise, you will not be
able to set the condition successfully.

6. When finished, click Next.

7. Use the next Create Table > Indices dialog to add create indices for the new table
by clicking Add, and then click Next.

8. The next Create Table > DDL dialog shows summarizes the DDL used to create the
new table. You can make changes to the DDL before it is executed. Note that if you
do make changes to the DDL, and then go back to previous dialogs and decide to
add a new column, then your changes to the DDL will be lost and a new DDL will
be generated.

9. Click Finish to complete the wizard.

Upon completion, the table creation DDL is sent to the JDBC driver and executed
there. If the execution is successful, a new table with all the specified constraints will
be created. You can examine the result of new table creation from the SQL Result view
that opens.

Note: The table creation DDL is not executed as a single SQL
statement. For any constraint, an ALTER TABLE statement is executed.
If any of the ALTER TABLE statements fails, you have the option on
whether or not to continue to execute subsequent statements.

If the newly created table is not displayed in the Tables node in Data Source Explorer,
you will need to refresh the view.

9.1.5 Troubleshooting

Unable to sort folders
This issue results in an inability to sort the nodes on Data Source Explorer (DSE) in an
order that is consistent with how it is displayed in Oracle SQL Developer.

Using the RDB Schema Editor

Oracle Database Support 9-7

9.2 Using the RDB Schema Editor
OEPE allows you to examine and edit your database schema using the RDB Schema
Editor that displays tables and the relationships between them, as shown in
Figure 9–1.

The editor displays tables as table nodes. Each node lists all the columns in a table and
shows column data types. The node also provides primary and foreign key indicators
in a form of icons. Foreign key relationships between tables are represented by links in
a form of arrows.

Figure 9–1 Database Objects in RDB Schema Editor

9.2.1 How to Display a Database Schema in the Editor
Before you can use the RDB Schema Editor you must set up and configure a database
connection. For more information, see Section 9.1.1.1, "Creating a Connection to a
Database."

You can open the editor from:

■ A schema

■ A table in the schema. In this case, the table is selected in the editor when it opens.

To open the RDB Schema Editor:

1. Choose Window > Show View > Data Source Explorer from the top-level menu.
This opens the Data Source Explorer view.

Using the RDB Schema Editor

9-8 Oracle Enterprise Pack for Eclipse User's Guide

2. Expand the database connection node to the database, and then to the schema or a
particular table in the schema.

3. Right-click on the schema or table name, and choose edit. OEPE builds a graphical
model for the database schema and opens the editor to display the tables in the
schema and their relationships.

9.2.2 Working with RDB Schema Editor Features
The schema editor gives you a visual view of your database schema and the
relationships between the tables. In the editor, you can:

■ Manipulate the layout of the schema in the editor. Select one table using the Select
tool in the Palette, or a group of tables by selecting the Marquee tool in the Palette
and drawing around the tables you want.

Move tables by selecting one or more of them and dragging to a new position.
Move foreign keys by clicking on the line to create a bend point, then drag the
bend point to the new location.

When the editor is saved, the layout is also saved so that the next time the editor is
launched from the same schema the saved layout is used.

■ When you select a single table some editing tools become available, as shown in
Figure 9–2.

Figure 9–2 Table Editing Tools

– To add a column, click + and edit the new column entry in the table.

– To delete a column, select it and click X.

– To show the table properties, click Show in Properties View. The Properties
window, which opens by default under the schema editor, displays detailed
information about the selected table, column or foreign key. You can edit any
fields in the Properties window.

– To save changes to the table, click Save.

■ Edit table names, column names, column types and other column constraints such
as size and scale. When the editor is saved, all the tables on the diagram are
compared against the database. Where there have been changes to tables, the
database version of the table is dropped and recreated using the version in the
editor.

■ Edit table names, column names, column types and other column constraints such
as size and scale. When the editor is saved, all the tables on the diagram are
compared against the database. If a table is found to be different than what is in
the database, either:

Using the RDB Schema Editor

Oracle Database Support 9-9

– An ALTER TABLE statement is used to update the table in the database.

– If that is not appropriate, for example, when columns are reordered, the table
will be dropped and recreated. OEPE will warn you if the table being dropped
contains data.

■ You can create foreign keys using (Foreign Key) in the Palette. Click on the
source table then on the destination table. The Define Foreign Key wizard opens
where you can specify the column mappings. When you click Finish in the wizard,
the foreign key is created.

■ You can drop foreign keys by choosing the Select tool from the Palette, selecting
the foreign key and pressing delete.

The context menu of the editor allows you to perform the following:

■ Refresh the schema in the editor.

■ Add a new table.

■ Select all tables.

■ Select all nodes.

■ Show a grid.

■ Show guides.

■ Automatically adjust the layout horizontally or vertically.

■ Zoom in, zoom out, or zoom to the actual size.

■ Save the layout as a PNG image file.

■ Send the layout to a printer.

Using the RDB Schema Editor

9-10 Oracle Enterprise Pack for Eclipse User's Guide

10

Object-Relational Mappings Support 10-1

10Object-Relational Mappings Support

[11] Object-Relational Mapping Tools are designed to help develop, deploy, and debug
ORM JPA applications for Oracle WebLogic Server.

This document contains the following sections about configuring the persistence
provider for JPA projects:

■ Configuring a JPA Project to Use EclipseLink Persistence Provider

■ Configuring a JPA Project to Use Kodo Persistence Provider

■ Oracle WebLogic Server Support for Persistence Provider Libraries and
Deployment

10.1 Configuring a JPA Project to Use EclipseLink Persistence Provider
EclipseLink is an open source persistence provider contributed to Eclipse by Oracle.

For more information, see the "EclipseLink User's Guide - Developing JPA Projects"
which is available on the Eclipse site at
http://wiki.eclipse.org/EclipseLink/UserGuide/Developing_JPA_Projects_
%28ELUG%29.

OEPE provides an EclipseLink project facet that you can use in your Eclipse JPA
project. When selected, the following happens:

■ The project build path is automatically configured to include EclipseLink
persistence provider JAR files shipped with Oracle WebLogic Server 11gR1.

Note: Even though the library files are not shipped with earlier
version of Oracle WebLogic Server, you can download them using the
facet configuration wizard. For more information, see Section 10.3,
"Oracle WebLogic Server Support for Persistence Provider Libraries
and Deployment."

■ The database connection properties specific to EclipseLink can be automatically
configured in the persistence.xml file of your Eclipse JPA project.

Oracle WebLogic Server releases prior to 11gR1, as well as third-party J2EE application
servers, support EclipseLink persistence provider through the user library provider
mechanism. For more information, see Section 10.3, "Oracle WebLogic Server Support
for Persistence Provider Libraries and Deployment."

To configure your Eclipse JPA project to use EclipseLink as a persistence provider, use
one of the methods described below.

Configuring a JPA Project to Use EclipseLink Persistence Provider

10-2 Oracle Enterprise Pack for Eclipse User's Guide

To automatically configure your JPA project to use EclipseLink persistence provider
shipped with Oracle WebLogic Server 11gR1:

1. If necessary, create a new JPA project. From the main menu, select File > New >
JPA Project.

In the New JPA Project dialog, choose the Oracle WebLogic Server 11gR1 as the
Target Runtime and complete the details on the New Server Runtime
Environment dialog.

2. Click Modify in the Configuration portion on the New JPA Project > JPA Project
dialog. This opens the Project Facets dialog.

3. Select Java Persistence Library (EclipseLink) from the Project Facet list, and then
click OK to apply your selection and close the Project Facets dialog.

4. Click Next on the New JPA Project > JPA Project dialog.

5. On the next, JPA Facet screen of the New JPA Project dialog, select EclipseLink as
the platform for your project.

6. Specify the database connection in the Connection field.

7. In the JPA implementation portion of the New JPA Project dialog, select Use
implementation provided by server runtime, and then click Next. This opens the
New JPA Project > EclipseLink screen.

8. Select EclipseLink version-number, and then click Finish. Note that if the
EclipseLink library is not listed, you need to click Download library. If your
machine is located inside of a network, which requires a proxy to access outside
resource such as the Internet, the download may fail due to the fact that Eclipse
IDE includes a Web browser to let you access the Internet from within the IDE. In
this case, reconfigure your Eclipse IDE proxy settings using Window >
Preferences > General > Network Connections, and try again.

If you expand your JPA project node in the Project Explorer, and then expand the
EclipseLink node, you will find the EclipseLink persistence provider library, as well as
Java persistence library.

The persistence.xml file of your JPA project now contains EclipseLink persistence
provider settings.

To manually configure a Java user library which includes the EclipseLink JAR files that
you downloaded separately:

1. When creating a new JPA project, select Oracle WebLogic Server 11gR1 as your
target runtime.

2. Click Modify in the Configuration portion on the New JPA Project > JPA Project
dialog. This opens the Project Facets dialog.

3. Select Java Persistence Library (EclipseLink) from the Project Facet list, and
then click OK to apply your selection and close the Project Facets dialog.

4. On the next, JPA Facet screen of the New JPA Project dialog, select EclipseLink as
the platform for your project, and then specify the database connection in the
Connection field.

5. In the JPA implementation portion of the New JPA Project > JPA Facet dialog,
leave the default selection of Use implementation provided by server runtime,
and then click Next. This opens the New JPA Project > EclipseLink dialog. Click
Download library. This opens the Download Library dialog. Select the
EclipseLink library you would like to use, and click Next. Note that if your
machine is located inside of a network, which requires a proxy to access outside

Configuring a JPA Project to Use Kodo Persistence Provider

Object-Relational Mappings Support 10-3

resource such as the Internet, the download may fail due to the fact that Eclipse
IDE includes a Web browser to let you access the Internet from within the IDE. In
this case, reconfigure your Eclipse IDE proxy settings using Window >
Preferences > General > Network Connections, and try again.

6. Add the EclipseLink library to your Eclipse JPA project's build path.

10.2 Configuring a JPA Project to Use Kodo Persistence Provider
Oracle Kodo is the default persistence provider for Oracle WebLogic Server 10n. OEPE
enables automatic configuration and deployment of Eclipse JPA projects that use Kodo
as their persistence provider on Oracle WebLogic Server.

OEPE provides Oracle Kodo facet that allows you to configure your JPA project to use
Oracle Kodo as the persistence provider. When selected, the following happens:

■ The project build path is automatically configured to include Oracle Kodo
persistence provider JAR files shipped with Oracle WebLogic Server.

■ The database connection properties specific to Oracle Kodo can be automatically
configured in the persistence.xml file of your Eclipse JPA project.

Note: Earlier versions of Kodo require a build-time class
enhancement process. OEPE triggers execution of a Kodo-specific
class enhancer on your Kodo JPA project when deployed to Oracle
WebLogic Server 10.0. For more information, see Section 10.3, "Oracle
WebLogic Server Support for Persistence Provider Libraries and
Deployment."

To configure your Eclipse JPA project to use Oracle Kodo as a persistence provider:

1. When creating a new JPA project, or configuring a Web project or utility with a JPA
facet, click Modify next to Configuration on the New JPA Project dialog. This
opens the Project Facets dialog.

2. Select WebLogic Utility Module Extensions and Java Persistence Library (Oracle
Kodo) from the Project Facet list, and then click OK to apply your selection and
close the Project Facets dialog.

3. Click Next on the New JPA Project > JPA Project dialog.

4. On the next, New JPA Project > JPA Facet screen of the New JPA Project dialog,
select Generic as the platform for your project.

5. Specify the database connection in the Connection field, and then click Next. This
opens the New JPA Project > Kodo dialog. Select Weblogic System Library
(Oracle Kodo 4.2) from the Library > Type combo box.

6. Click Finish.

If you expand your JPA project node in the Project Explorer, and then expand the
WebLogic System Libraries node, you will find the Oracle Kodo persistence provider
library, as well as Java persistence library, at the end of the list.

The persistence.xml file of your JPA project now contains Oracle Kodo persistence
provider settings.

Oracle WebLogic Server Support for Persistence Provider Libraries and Deployment

10-4 Oracle Enterprise Pack for Eclipse User's Guide

10.3 Oracle WebLogic Server Support for Persistence Provider Libraries
and Deployment

Oracle WebLogic Server 12c (12.1.3) supports the EclipseLink persistence provider.

The following table maps the current version of Oracle WebLogic Server and
supported persistence libraries.

Table 10–1 Supported Persistence Libraries

Oracle WebLogic Server
Version EclipseLink JPA

12c (12.1.3) EclipseLink version 2.5.2 and earlier downloadable libraries

11

Spring Support 11-1

11Spring Support

[12] Using OEPE, you can generate Spring configuration and beans from persistence
mappings.

This document contains the following sections:

■ Generating Spring Artifacts

■ Generating Web Services for Spring Service Beans

11.1 Generating Spring Artifacts
You can use OEPE to automatically generate Spring configuration and beans from
persistence mappings.

OEPE supports Spring IDE 2.0 and Spring Framework 2.5.

To generate Spring artifacts, such as the DAO interface and its implementation, the
service interface and its implementation, and configuration files, you have to perform
the following steps:

■ Configure your project for Spring.

■ Generate the Spring files and update the configuration.

To configure your project for Spring:

1. Either add the Spring facet when you create a project, or add the facet to an
existing project by right-clicking your project in the Project Explorer and selecting
Properties from the drop-down menu. This opens the Properties dialog.

Note that the Spring facet is available to Web projects, EJB projects and utility
projects. Adding the Spring facet to an EJB project requires special attention.

2. In the Properties dialog, select Project Facets on the left panel, and then select
Spring from the Project Facet list.

To configure your project to use Spring Framework 2.5 Runtime library, select the
Spring Framework 2.5 facet, and then click Further configuration required. This
opens the Modify Faceted Project > Spring dialog.

Accept the default selections and click OK.

If you select either the Spring Framework 2.0 or 2.5 facet on the Properties dialog,
and you wish to either use your own Spring runtime installation or download a
copy of Spring libraries hosted by Oracle or SpringSource, select User Library in
the Library Type field of the Modify Faceted Project > Spring dialog.

You can also click the Manage User Library icon to select a Java User Library
pointing a proper local Spring runtime installation.

Generating Spring Artifacts

11-2 Oracle Enterprise Pack for Eclipse User's Guide

3. Click Download Library icon to indicate your intention to obtain Spring libraries.
This will open the Download Library dialog.

4. To use this dialog to download the Spring libraries, make appropriate selections,
and then click Finish to trigger the download.

5. Optionally, you may click Manage libraries icon to open the Preferences > User
Libraries dialog to fine-tune your Spring library configuration. Note that by
default, the entire library represented by the spring.jar file is included.

6. Click OK on the Modify Faceted Project > Spring Facet dialog.

7. By clicking Apply > OK on the Properties dialog, you will complete the
configuration of the Spring Framework library for your project.

If you added the Spring facet to a Web project, the project's web.xml file will be
updated to include the context listener for loading the Spring context at the Web
application's start time, as the following example shows:

<context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEBINF/applicationContext.xml</param-value>
</context-param>
<listener>

<listener-class>org.springframework.web.context.ContextLoaderListener</listener-cl
ass>
</listener>

If you are creating Spring service beans and bean configurations for an EJB project,
you should keep in mind that, unlike a Web project, there is no standard way to
automatically load Spring bean configuration. In this case, a common practice is to
define a Web project to help initialize the application context. Consider the following
project set-up:

■ [EAR project]

■ [EJB with Spring facet]

■ [Web project with Spring]

It is assumed that the EJB project includes the Spring service beans and bean
configuration under the META-INF/bean.xml file. In the Web project, find the default
WEB-INF/applicationContext.xml file created during the addition of the Spring facet,
and add a factory bean looking for other bean configurations in the classpath, as
follows:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi=""http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans/xsd">
 <bean id="bean.factory"
 class="org.springframework.context.support/classPathXmlApplicationContext">
 <constructor-arg>
 <list>
 <value>META-INF/bean.xml</value>
 </list>
 </constructor-arg>
 </bean>
</beans>

Generating Spring Artifacts

Spring Support 11-3

With this setting, the client code (such as a servlet, for example) in the JSP can access
the Spring beans residing in the EJB project. Consider the following code sample from
a JSF Web application:

ApplicationContext context =
FacesContextUtils.getRequiredWebApplicationContext(FacesContext.getCurrentInstance
());

ApplicationContext jpaCtx = (ApplicationContext)context.getBean("bean.factory");

//now there is an access to service beans
ICustServService srv = (ICustServService)jpaCtx.getBean("CustServService");

List<Customer> list = srv.findAllCustomers();

To generate the Spring files and update the configuration:

1. To initiate the Spring artifact generation, right-click on the project name in the
Project Explorer, and select New > Generate Spring ORM Classes. This opens the
New Spring ORM Classes > Spring Services Definition wizard page.

Notice that the Spring bean configuration file field has been filled in when you
added the Spring facet to your project. If you wish to use another file, click
Manage Spring bean configuration, and then make your selection.

2. Click Add on the New Spring ORM Classes > Spring Services Definition dialog.
This opens the New ORM Service dialog.

3. On the New ORM Service dialog, provide the following information:

■ Enter the service name.

■ Specify your project in Persistence unit. Note that you can select the
persistence unit only when the service is created for the first time. Once
created, you can add or remove entities from the existing persistence unit, but
cannot switch to another persistence unit. To access another persistence unit,
you create a new Spring Bean configuration and add a new service to it.

■ Select one or more entities from the ORM entities list.

■ Specify the exception that will be thrown by the service methods.

■ Provide the package information for the service and DAO classes and
interfaces.

■ Specify the name for the service and DAO classes and interfaces (you may
want to accept default values).

4. Click OK to continue.

5. Verify that the New Spring ORM Classes > Spring Services Definition dialog
correctly displays the service name and the entities that you selected in the
previous step, and then click Next. This opens the New Spring ORM Classes >
Implementation Strategy wizard.

6. Select the implementation strategy for your Spring ORM service and DAO classes,
and then click Finish.

The Spring classes are generated in the package that you specified. The bean classes
contain methods for standard create, read, update, and delete operations.

Note that only the DAO implementation class is dependent on a specific framework.
This lets you change ORM frameworks quickly, without rewriting client code.

Generating Web Services for Spring Service Beans

11-4 Oracle Enterprise Pack for Eclipse User's Guide

11.2 Generating Web Services for Spring Service Beans
You can generate a WebLogic web service from an existing Spring service bean for
your JAX-WS Web service project.

To generate the web service:

1. Add the WebLogic Web Services facet to an Eclipse project configured with the
Spring 2.5 facet and containing Spring service beans.

For more information, see Section 11.1, "Generating Spring Artifacts.".

2. In the Project Explorer, right-click your project, select New > Other, and then
select Oracle > WebLogic > WebLogic Web Service for Spring Beans on the New
dialog. This opens the Select Spring Service Bean dialog.

3. On the Select Spring Service Bean dialog, specify the Spring bean configuration.
The list is populated with Spring service beans defined in the configuration file.
Select a service bean and service methods from the service interface that you want
to expose as WebLogic Web Service, and then click Next.

Note: While one service bean can implement multiple interfaces, you
can only select methods from one interface at a time. To expose
methods in other interfaces, you need to generate a separate Web
service. Also, Spring ORM service beans implemented in Spring
1.n-style based on the JpaTemplate and
TransactionProxyFactoryBean are not supported, therefore it is
recommended that you upgrade your service bean to Spring 2.0-style
using annotation-based transaction management.

4. On the Web Service Class Name page, you may choose to specify the Web service
class name, package name and output directory, and then click Finish.

Upon completion, Eclipse creates the WebLogic Web Service class which is
automatically wired up with Spring bean and delegate service calls to the Spring bean
implementation.

12

Coherence Support 12-1

12Coherence Support

[13] Coherence provides replicated and distributed (partitioned) data management and
caching services on top of a peer-to-peer clustering protocol.

OEPE provides support for Oracle Coherence. For more information, see the
Coherence information, which is available on Oracle Technology Network at
http://www.oracle.com/technetwork/middleware/coherence.

This document contains the following sections:

■ Coherence Tooling: Configuring Projects for Coherence

■ Working with Coherence (GAR) Applications

12.1 Coherence Tooling: Configuring Projects for Coherence
This section describes how to work with Coherence facets.

12.1.1 Configuring Coherence Facet
Use the context menu and the properties dialog to add and configure your facets.

To configure your project for Coherence:

1. If you didn’t add the Coherence facet when you create a project, you can add the
facet to an existing project by right-clicking your project in the Project Explorer
and selecting Properties from the drop-down menu. This opens the Properties
dialog.

2. In the Properties dialog, select Project Facets on the left panel, and then select
Oracle Coherence from the Project Facet list.

Click Further configuration required to open the Modify Faceted Project >
Coherence dialog.

If the Coherence library is listed as a user library, proceed as follows:

■ Select the Coherence library from the list.

■ Accept default settings.

■ Click OK.

If you are using Oracle WebLogic Server 12c (12.1.3) runtime, Coherence might
already be installed on your machine if you chose this option when you installed.
In this case, the Coherence Library in Fusion Middleware Install option is
available in the Library > Type list.

Coherence Tooling: Configuring Projects for Coherence

12-2 Oracle Enterprise Pack for Eclipse User's Guide

If the Coherence library is not listed, you need to either point to an existing
installation, or download the library.

To point to an already downloaded Oracle Coherence library:

a. Click Manage User Library to open the Preferences > User Libraries dialog.

b. Select a Java user library in the form of the coherence.jar, which represents
the entire library.

Note that the Coherence JAR files reside in the \coherence\lib directory of
the Oracle Coherence installation. Also note that the same dialog allows you to
fine tune your Coherence library configuration.

c. To obtain the Coherence library, click Download Library. This opens the
Download Library dialog.

3. Click OK on the Modify Faceted Project > Coherence dialog.

4. Click Apply > OK to complete the configuration.

12.1.2 Editing Coherence Launch Configuration
The Coherence launch configuration editor sets the most commonly used Coherence
command line arguments.

To modify the Coherence launch configuration for your project configured with the
Coherence facet:

1. Right-click your project in the Project Explorer, and then select Run As > Run
Configurations from the drop-down menu to open the Run Configurations dialog.

2. Select Coherence Launch Configuration from the list. The right pane of the Run
Configurations dialog displays instructions on how to use this dialog to configure
Coherence launch settings. You follow these instructions by right-clicking the
configuration node on the left pane and making an appropriate choice.

3. When a new configuration is created and selected, you can edit settings from the
right pane as follows:

■ On the Main tab, define your project and its main class. Note that the Project
and Main class fields are populated with default values and cannot be left
empty.

■ On the Coherence tab, define all the general, XML, and other system
properties:

– The General subtab lets you define properties related to topology, logging,
and network configurations.

– The XML subtab lets you set the management type (such as local or
remote), as well as configure JMX RMI, HTTP, and the refresh options.

– The Other subtab lets you set a variety of properties.

The Coherence launch configuration is populated with default settings from
the tangosol-coherence.xml file in the coherence.jar file merged with the
tangosol-coherence-override.xml file currently in the classpath, and, finally,
with the VM arguments.

■ Complete the remaining tabs of the Run Configurations dialog.

■ Click Apply > Run on the Run Configurations dialog to complete the
procedure. The Console view will display the Coherence run output.

Working with Coherence (GAR) Applications

Coherence Support 12-3

The created Coherence XML files, such as coherence-cache-config.xml,
pof-config.xml, and tangosol-coherence-override.xml, reside in your project's src
directory.

12.1.3 Editing Coherence Operational Configuration
OEPE provides an editor that you can use to modify the generated
tangosol-coherence-override.xml Oracle Coherence deployment descriptor.

To modify operational configuration elements defined in the
tangosol-coherence-override.xml file:

1. In the Project Explorer, right-click src/tangosol-coherence-override.xml, and
select Open With > Coherence Override to open the Coherence Override editor.

2. In the editor, select the following settings to modify:

■ Cluster

■ Logging

■ Configurable Cache Factory

■ Management

■ Security

For information on Oracle Coherence operational configuration deployment
descriptors and their elements, see "Operational Configuration Elements" in Developing
Applications with Oracle Coherence.

12.1.4 Editing Coherence Cache Configuration
OEPE provides an editor that you can use to modify the generated
coherence-cache-config.xml Oracle Coherence deployment descriptor.

To modify cache configuration elements defined in the coherence-cache-config.xml
file:

1. In the Project Explorer, right-click coherence-cache-config.xml, and select Open
With > Coherence Cache Configuration to open the Coherence Cache
Configuration editor.

2. In the Coherence Cache Configuration editor, you can modify the following
settings:

■ General

■ Cache Scheme Mappings

■ Caching Schemes

For more information on Oracle Coherence cache configuration elements, see "Cache
Configuration Elements" in Oracle Coherence Developer's Guide.

12.2 Working with Coherence (GAR) Applications
This section describes how to create Coherence applications, export them, deploy
them, and locate deployed Coherence applications.

Working with Coherence (GAR) Applications

12-4 Oracle Enterprise Pack for Eclipse User's Guide

12.2.1 Creating Coherence Applications
With the release of WebLogic 12.1.3, Eclipse now supports the GAR (GridArchive)
mechanism, a new packaging mechanism for Coherence cache configurations and
classes.

You can create a new Coherence application using the Oracle Coherence Application
wizard. The wizard creates a Coherence GAR project and gives you to option to add it
to a J2EE EAR project.

To create a Coherence Application:

1. Choose File > New > Other > Oracle > Coherence > Oracle Coherence
Application. The Oracle Coherence Application dialog appears.

a. Enter the project name. The project name is the name of the GAR project
module in the application. The project name you enter here will be the name
of the application. If you choose to add the project to the EAR, the EAR name
will be generated based on the GAR project name.

b. Select your target runtime and server configuration details. The Coherence
application requires that you use the Oracle WebLogic server 12.1.3.

c. Check to add the GAR project to the EAR. If you choose to add the GAR
project module to EAR, a reference of the GAR module will be added to
weblogic-application.xml in the EAR. Adding the project to the EAR allows
the GAR module access to resources defined in the EAR, as well as other J2EE
modules such as WAR and EJB.

Note: Only one GAR module can exist in an EAR project. Only
Coherence configuration and classes can be included in GAR. No EJBs
are allowed in GAR.

d. Check to add the project to working sets. Working sets help you contextually
organize resources across projects. Working sets are a subset of
files/classes/folders/projects and represent development workflows.

2. Click Next. The Java Configure project for building a Java application dialog
appears. Add or edit the source path.

3. Click Next. The Coherence library configuration page appears. You have the
option to change the Coherence library type to a user library, by specifying an
Eclipse User Library containing the coherence.jar. Specifying the user library
compiles the GAR project against the user library, instead of against the JARs from
the WebLogic server, or Fusion Middleware installation. You can also select which
default Coherence configuration files to create. When configuration files are
created as part of the GAR, files such as coherence-cache-config.xml and
pof-config.xml are placed in the root directory. For an overview of the Coherence
default configuration files, see Developing Applications with Oracle Coherence.

12.2.2 Exporting a Coherence Application
You can export your Coherence project as either an EAR or a GAR file using the
right-click context menu.

To export a Coherence Application:

1. Select your Coherence or EAR project node.

2. Right-click and select Export. The Export dialog appears.

Working with Coherence (GAR) Applications

Coherence Support 12-5

3. Select an export destination and click Next.

4. Complete the destination details and click Finish.

12.2.3 Deploying a Coherence Application
You can deploy your Coherence application to a WebLogic server directly from OEPE,
or you can export the application in an EAR or GAR and then deploy it to the
WebLogic server with the Admin console, WLST, and weblogic.Deployer.

To deploy a Coherence Application:

1. Select your Coherence GAR or EAR project node.

2. Right-click and select Run As > Run On Server. The Run On Server dialog
appears.

3. Select your server. Click Next.

4. Add or remove projects. Click Finish.

5. Once deployed successfully to the WebLogic server, the GAR application can be
found under WLS server instance in the Servers View, under the Published
Module node.

Note: Standalone GAR projects (not part of an EAR) require
changing WLS Server publishing mode to the Exploded Archive
Mode, in the server properties page.

12.2.4 Locating Your Deployed Coherence Application
To locate your deployed Coherence Application:

1. Select the WebLogic server instance in the servers view.

2. Expand the Published Modules, under the WebLogic server and locate the newly
deployed Coherence application.

Or

Select the WebLogic server, right click and select Goto > Admin Console and
locate the Coherence application.

Working with Coherence (GAR) Applications

12-6 Oracle Enterprise Pack for Eclipse User's Guide

13

Web Application Development Support 13-1

13Web Application Development Support

[14] Web Application Development Tools is a set of plugins for the Eclipse IDE designed to
help develop, deploy, and debug Web applications for Oracle WebLogic Server.

This document contains the following sections:

■ Using AppXray Technology

■ Configuring JSF Projects

■ Configuring JSTL Projects

■ Configuring Projects for Apache Trinidad

■ Configuring Projects with External Resources

■ Creating a JSF Project From an Existing Web Project

■ Using the Web Page Editor

■ Editing Tags Using Property Sheets

■ Using the Web Page Editor Palette

■ Enabling Localization in the Web Page Editor

■ Creating JSF HTML Tags

■ Generating Struts Artifacts

■ Supported Versions

13.1 Using AppXray Technology
AppXray technology analyzes the JSP pages, Java source files, resource bundles, and
Web configuration files of your application and uses this information to provide
validation and consistency checking across many layers of the application, as well as
source code completion and hyperlink navigation.

You can enable AppXray for your existing Web projects, or use it with your new
dynamic Web projects for which it is enabled by default. Once available, AppXray will
build its application database that allows it to track artifacts and populate it. If you
have created a project using standard Web technologies, or if your project is JSP or
JSF-enabled, those artifacts will be detected and added to the database. If you have
enabled AppXray on an existing project, then artifacts in that project will be detected
and added to the database. AppXray then uses this database for validation. As you
work with your application, AppXray will automatically maintain the application
database. If this degrades performance, you can selectively disable automatic
maintenance and rebuild the application database as required.

Using AppXray Technology

13-2 Oracle Enterprise Pack for Eclipse User's Guide

Errors detected by AppXray are displayed in the Problems view, whereas
dependencies are graphically displayed in AppXaminer.

AppXray collects information about the following:

■ The project's web.xml file

■ Faces configuration

■ JSP pages

■ JSP artifacts

■ JSF configuration artifacts

■ Resource bundles

■ CSS

■ Image files

13.1.1 Enabling and Disabling AppXray
To enable or disable AppXray:

1. Right-click your project in the Project Explorer and select Properties from the
drop-down menu. This opens the Properties dialog.

2. In the Properties dialog, select the AppXray node. On the editor pane on the right,
click Configure workspace settings, and then use the expanded Preferences >
AppXray dialog to enable settings specific to your project, as well as fine-tune the
technologies that you want AppXray to include in dependency discovery and
collection, both of which are AppXray features used for finding missing resources,
as well as collecting information about them (collection):

■ The role of discovery is to find variables in JSP pages. For example, disabling
JSF discovery will cause managed beans to no longer appear in the Data
Palette view.

■ Collection deals with all items that are available in the AppXaminer view
(such as broken links, missing resources, JSP variables) and provides the
navigation between files (for example, from a JSF commandLink tag to the
section of the faces-config.xml file that defines the navigation rule.

You can disable collection and leave discovery enabled for a particular technology,
but not vice versa.

Note: You cannot modify default project-level settings.

13.1.2 Visualizing AppXray Dependencies
With AppXray, you can expect to have a view of all Web project dependencies. By
viewing these interrelationships graphically, missing resources and broken links
become immediately apparent and application structure diagrams can be created by
drilling down through the layers of your application.

To view dependencies for a Web project:

1. Right-click your Web project in the Project Explorer and choose Show AppXray
Dependencies from the drop-down menu. This opens the AppXaminer view.

AppXaminer analyzes page, action, class, and many other dependency types.
Initially all dependency types are active but can be easily reduced. AppXaminer

Configuring JSF Projects

Web Application Development Support 13-3

displays a graph of dependencies between technology-specific artifacts in the
project. You can drill down into additional detail on particular references: each
dependency link has a number that indicates how many references the focal node
contains to the referenced file, with upstream dependency nodes having an
indicator on the source end of the link, and downstream nodes having the
indicator on the destination end of the link. By clicking the number, you bring up a
detail showing the nature of each reference.

By clicking one of the references you navigate to the corresponding reference
location in the referring file.

You can also right-click on a resource displayed in the AppXaminer diagram and
select one of the following options from the drop-down menu:

■ Open - to open the default editor on the file represented by the resource node.

■ Show AppXray Dependencies - to refocus the view on the selected node.
Note that this option is disabled for the focal node.

■ Expand All and Collapse All - to expand or collapse nodes. Note that only
one or the other is ever enabled, depending on the corresponding state of the
node's expand/collapse button. If the node does not have an expand/collapse
button, both options are disabled. Since the focal node potentially has two
expand/collapse buttons, the options will affect both.

2. To display the chain of dependencies for the application, in AppXaminer view
click the plus signs next to a dependency to drill down into the project and reveal
the page structure of the application. Note that the Eclipse Outline view (which
you open by selecting Window > Show View > Outline from the top-level menu)
is synchronized with AppXaminer. If the AppXaminer diagram becomes too big,
you can use the Outline view to scroll around the diagram.

3. You can filter dependencies by clicking the Filter Dependency button located in
the upper right-hand corner of AppXaminer to list the types of dependencies that
can be tracked. This opens the Filter Dependency dialog which lets you filter
either the project technology-specific artifacts, or artifacts by file extension.

You can define your custom filter extensions on the Filter Dependency > File
Extensions dialog. By filtering out dependencies, you reduce the number of
dependencies displayed in the diagram.

Notes: ■The artifact types available for display and filtering depend
on the technologies used in the project.

■ All artifact types are shown by default.

■ All filter settings persist across invocations, for each technology
type.

13.2 Configuring JSF Projects
OEPE provides a JSF project facet with the following functionality that you can use to
configure your JSF projects:

■ Support for Oracle WebLogic Server shared library

■ Support for downloadable user library

■ Library version validation

■ JSP templates

Configuring JSF Projects

13-4 Oracle Enterprise Pack for Eclipse User's Guide

■ Notification that files will be deleted during uninstall of the facet

To add JSF capabilities to your Web project with Oracle Weblogic Server runtime
support:

1. Right-click your Web project in Project Explorer, select Properties from the
drop-down menu, and then select Targeted Runtimes from the list on the
Properties dialog. Ensure that you are using Oracle WebLogic Server 11gR1 (10.3.2)
or later as your target runtime.

2. On the Properties dialog, highlight Project Facets node and select JavaServer
Faces facet from the list, specifying either version 1.2 or 1.1.

3. On the same Properties dialog, ensure that WebLogic Web App Extensions facet
with one of 1.3.2, 1.3.1 or 1.3 versions is selected, and then click Further
configuration available. This opens the Modify Faceted Project > JSF
Capabilities dialog.

4. Complete this dialog by specifying JSF implementation library information, as
well as configuration file name and servlet parameters.

When competing the Modify Faceted Project > JSF Capabilities dialog, you have
the following two options with regards to which JSF implementation library to
add to your project:

a. WebLogic Shared Library - this option is available only when your project is
configured with WebLogic Web App Extensions facet. If you click Manage
WebLogic Shared Libraries, a Preferences > Shared Libraries dialog opens
allowing you to modify library information, as well as to remove existing and
add new libraries to your project.

b. User Library - allows you to either download a specific version of the JSF
library (you will be prompted to accept an appropriate license), or add the
library from a local install (JAR file).

The system validates the selected library and will notify you if any of the
following occurs:

■ The required JSF class cannot be found in the library (for example, if you select
a non-JSF user library).

■ The selected library version and the facet version are not compatible (for
example, if a JSF 1.1 library is selected for a JSF 1.2 facet).

■ The library version cannot be read.

You can click Download library to initiate the download of the user library of
your choice. Note that if your machine is located inside of a network, which
requires a proxy to access outside resource such as the Internet, the download may
fail. In this case, reconfigure your Eclipse IDE proxy settings using Window >
Preferences > General > Network Connections, and try again.

If you select Include libraries with this application, the libraries will be copied to
your project's WEB-INF/lib directory at publish time.

5. Click OK on the Modify Faceted Project > JSF Capabilities dialog to save your
changes.

Upon completion, the following configurations of your project have taken place:

■ web.xml has been configured depending on whether you chose Sun-RI or Apache
MyFaces implementation.

■ The following JSF templates are installed:

Configuring JSF Projects

Web Application Development Support 13-5

– faces-config.xml configuration file in your project's
WebContent/WEB-INF/config directory.

– index.jsp JSP file in your project's WebContent directory.

– application.properties resource bundle in your project's src/resources
directory.

■ faces-config.xml file is configured as follows:

13.2.1 Supported JSF Libraries and Versions
OEPE provides support for JSF 1.2 and 1.1 versions.

Table 13–1 maps the supported JSF versions to three types of libraries:

Table 13–1 Supported JSF Versions

Supported JSF Version
Oracle WebLogic Server
Shared Library Downloadable Lib

JSF 1.2 Supported Supported: MyFaces, Sun-RI

JSF 1.1 Supported Supported: MyFaces, Sun-RI

13.2.2 Creating a Faces Configuration File
OEPE provides support for Faces configuration resource file by allowing you to create
and edit a Faces Configuration File.

To create a new Faces configuration file for your JSF dynamic Web project:

1. Right-click the Project Explorer and choose New > Other. Alternatively, choose
select New > Other from the top-level menu's File or from the AppXplorer view
drop-down menu. This opens the New dialog.

2. On the New JSF Configuration File > JSF Configuration File Properties dialog
specify the location for your new file (in the WebContent/WEB-INF folder) and
provide a file name.

3. Click Finish to save your changes.

A new Faces configuration XML file containing the faces-config declaration is
created with the given name and in the specified location.

The project's web.xml file is updated with a new path string in the value of the
javax.faces.CONFIG_FILES context parameter. If the javax.faces.CONFIG_FILES
context parameter does not exist, it is created.

Alternatively, in the Project Explorer you may right-click your JSF project's Faces
Configuration directory and choose New JSF Configuration File from the drop-down
menu.

13.2.3 Using the Faces Configuration Node
Using your JSF dynamic Web project's Faces Configuration node, you can create the
following:

■ Managed beans

■ Navigation rules

■ Converters

■ Validators

Configuring JSF Projects

13-6 Oracle Enterprise Pack for Eclipse User's Guide

13.2.3.1 Creating a New Managed Bean
You can create s managed bean in your Web application to bind the bean properties
and business logic to the user interface components.

To create a managed bean:

1. In the Project Explorer, expand your JSF dynamic Web project's Faces
Configuration node, right-click Managed Beans, and then select New Managed
Bean. This opens the New Managed Bean Wizard dialog which allows you to
create a managed bean from an existing or a newly created Java class.

2. If you choose to create a managed bean from an existing class:

a. On the New Managed Bean Wizard > Java Class Selection dialog click Browse
to open the Select Type dialog. In this dialog, start typing the bean class name
in the Select entries field, then select the class from the list and click OK.

b. Proceed by clicking Next on the New Managed Bean Wizard > Java Class
Selection dialog to open the New Managed Bean Wizard > Managed Bean
Configuration dialog.

c. Click Next to review the summary page, and then click Finish. Notice that
your new bean has been added under the Faces Configuration > Managed
Beans node.

3. If you choose to create a new Java class for your managed bean:

a. On the New Managed Bean Wizard > Java Class Selection dialog select Create
a new Java class, and then click Next to open the New Managed Bean Wizard
> Java Class dialog.

b. Complete this dialog, and then click Next to open the New Managed Bean
Wizard > Managed Bean Configuration dialog. On this dialog, click Next to
proceed to the summary page, and then click Finish. Notice that your new
bean has been added under the Faces Configuration > Managed Beans node

13.2.3.2 Creating a New Navigation Case
You create navigation rules to link Web pages. Each navigation rule can contain one or
more navigation cases.

To define navigation rules and cases:

1. In Project Explorer, expand your JSF dynamic Web project's Faces Configuration
node, right-click Navigation Rules, and then select New Navigation Rule. This
opens the New Navigation Rule dialog which allows you to create a new
navigation rule by providing an either new or existing JSP source page, and then
defining destination pages.

2. If you choose to create your navigation rule using an existing JSP page as a source
page:

a. On the New Navigation Rule dialog click Browse for JSP to open the Select
JSP File dialog and select the page.

b. Define one or more navigation cases from the source page by clicking New on
the New Navigation Rule dialog to open the New Navigation Case dialog.

Note that the destination page for your new navigation case can be an existing
JSP page that you select using the Select JSP File dialog, or a new JSP page.

c. If you need to, create a new JSP. Click Create a New JavaServer Page on the
New Navigation Case dialog to open the New JavaServer Page > JavaServer

Configuring JSF Projects

Web Application Development Support 13-7

Page dialog. Using this dialog, select a package and provide a name for your
new JSP page, and then click Next.

d. On the next New JavaServer Page > Select JSP Template dialog select a
template to serve as initial content of your new JSP page, and then click
Finish.

Click OK on the New Navigation Case dialog.

3. If you choose to create your navigation rule using a newly create JSP page as a
source page, click Create a New JavaServer Page on the New Navigation Rule
dialog to open the New JavaServer Page > JavaServer Page dialog.

Notice that your new navigation rule has been added under the Faces
Configuration > Navigation Rules node.

13.2.3.3 Creating a New Converter
You can create a converter for your Web application. A converter is used in the
conversion model, where each component can be associated with the server-side
model object data. The component data can have two views: model and presentation.
You can enable conversion of the data between the model view and the presentation
view.

To create a converter:

■ In the Project Explorer, expand your JSF dynamic Web project's Faces
Configuration node, right-click Converters, and then select New Converter. This
opens the New Converter dialog where you can define a new converter.

Notes: ■The implementation class of your converter must be an
extension of the javax.faces.convert.Converter.

■ The implementation class of your converter must be an extension
of the javax.faces.convert.Converter.

13.2.3.4 Creating a New Validator
To create a validator for your JSF project:

1. In the Project Explorer, expand your JSF dynamic Web project's Faces
Configuration node.

2. Right-click Validators, and then select New Validator. This opens the New
Validator dialog where you define the new validator.

Note: The implementation class of your validator must be an
extension of the javax.faces.validator.Validator.

13.2.4 Using the Faces Configuration Editor
The Faces configuration editor allows you to modify the faces-config.xml file to
define and edit page navigations, managed beans, components, converters, validators,
render-kit, as well as to perform other element configurations.

You use the editor as follows:

In the Project Explorer, right-click your JSF dynamic Web project's Faces Configuration
node, and select Open. This opens the Faces Configuration Editor' start page. This
page enables access to useful resources such as documentation and help topics.

Configuring JSTL Projects

13-8 Oracle Enterprise Pack for Eclipse User's Guide

Use the following tabs to edit the Faces configuration:

■ Overview tab that Figure 26 shows offers the compact presentation of all editable
information. Double-clicking an element opens a relevant editor tab to enable
editing.

■ Overview tab that Figure 26 shows offers the compact presentation of all editable
information. Double-clicking an element opens a relevant editor tab to enable
editing.

You can create navigation rules by dragging and dropping JSP pages onto the
canvas in one of the following ways:

– Directly from the Project Explorer.

– From the Palette by selecting Nodes > Page to open the Select JSP File dialog
that Figure 28 shows.

To draw links between pages, use the Palette's Link tool.

You can reposition elements on the canvas. In addition, you can modify the
elements' properties using the Quick Edit editor that displays properties of the
selected element.

■ Managed Bean tab allows you to modify configuration of managed beans in your
project.

■ Component tab enables editing of information about components, converters,
validators, and render kits that you defined for your project.

■ Others tab lets you edit various Faces configurations that are not covered in any of
the other tabs.

■ Source tabs provides access to the faces-config.xml file itself.

13.2.5 Understanding JSF Resource Bundles
If you would like your JSF application to use a resource bundle, you need to register it
with the application. For JSF projects, when they are configured with the JSF facet, an
application.properties file is automatically created in the src/resources folder. As one
of the uses of a resource bundle is to enable localization, a loadBundle tag is typically
added to each JSP page you want to localize:

<f:loadBundle basename="resources.application" var="bundle"/>

13.3 Configuring JSTL Projects
OEPE provides a JSTL project facet. You can add JSTL support to a new or existing
Web project with Oracle Weblogic Server runtime support.

To add JSTL support:

1. Right-click your Web project in Project Explorer, select Properties from the
drop-down menu, and then select Targeted Runtimes from the list on the
Properties dialog. Ensure that you are using Oracle WebLogic Server 11gR1 (10.3.2)
or later as your target runtime.

2. On the Properties dialog, highlight Project Facets node and select JSTL facet from
the list, specifying either version 1.2 or 1.1.

3. On the same Properties dialog, ensure that WebLogic Web App Extensions facet
with one of 1.3.2, 1.3.1 or 1.3 versions is selected, and then click Further

Configuring Projects for Apache Trinidad

Web Application Development Support 13-9

configuration available. This opens the Modify Faceted Project > JSTL Library
dialog.

4. Complete this dialog by specifying JSTL library information.

When completing the Modify Faceted Project > JSTL Library dialog, you have the
following two options with regards to what type of JSTL library to add to your
project:

■ WebLogic Shared Library - this option is available only when your project is
configured with WebLogic Web App Extensions facet. If you click Manage
WebLogic Shared Libraries, a Preferences > Shared Libraries dialog opens
allowing you to modify library information, as well as remove existing and
add new libraries to your project.

■ User Library - allows you to either download a specific version of the JSTL
library (you will be prompted to accept an appropriate license), or add the
library from a local install (JAR file).

The system validates the selected library and will notify you if any of the
following occurs:

■ The required JSTL class cannot be found in the library (for example, if you
select a non-JSTL user library).

■ The selected library version and the facet version are not compatible (for
example, if a JSTL 1.1 library is selected for a JSTL 1.2 facet).

■ The library version cannot be read.

You can click Download library to initiate the download of the user library of
your choice. Note that if your machine is located inside of a network, which
requires a proxy to access outside resource such as the Internet, the download may
fail. In this case, reconfigure your Eclipse IDE proxy settings using Window >
Preferences > General > Network Connections, and try again.

5. Click OK on the Modify Faceted Project > JSTL Library dialog to save your
changes.

Upon completion, your project's web.xml will be configured.

13.3.1 Supported JSTL Libraries and Versions
OEPE provides support for JSTL 1.2 and 1.1 versions.

The following table maps the supported JSTL versions to three types of libraries:

Table 13–2 Supported JSTL Versions

Supported JSTL
Version

Oracle WebLogic Server Shared
Library

Downloadable
Library User Library

JSTL 1.2 Supported Supported Supported

JSTL 1.1 Supported Supported Supported

13.4 Configuring Projects for Apache Trinidad
OEPE provides an Apache Trinidad project facet with the following functionality that
you can use to configure your JSF projects:

■ Support for downloadable user library

■ Library version validation

Configuring Projects for Apache Trinidad

13-10 Oracle Enterprise Pack for Eclipse User's Guide

■ JSP templates

■ Notification that files will be deleted during uninstall of the facet

To configure your Web project for Apache Trinidad:

1. Either add the Trinidad facet when you create the project, or add the facet to an
existing project by right-clicking your project in the Project Explorer and selecting
Properties from the drop-down menu. This will open the Properties dialog, as
Figure 1 shows.

2. On the Properties dialog, select Project Facets on the left panel, and then select
Trinidad from the Project Facets list. Note that the Trinidad 1.2 facet requires
JavaServer Faces version 1.2.

To configure your project to use Trinidad 1.2 library, select the Trinidad 1.2 facet,
and then click Further configuration required. This will open the Modify Faceted
Project > Trinidad Library dialog, as Figure 2 shows. If Trinidad 1.2 is not listed,
then click Download Library icon to indicate your intention to obtain the library.
This will open the Download Library dialog, as Figure 3 shows.

3. Select Trinidad 1.2 library and the destination folder, and then click Next. Note
that if you select a library other than Trinidad, or a mismatch between a Trinidad
facet version and library version is detected, a notification message will be
displayed alerting you of the error.

4. On the next screen, accept the term of the Apache license, and click Finish to
trigger the download. Figure 4 shows Modify Faceted Project > Trinidad Library
dialog after the Trinidad library has been downloaded.

Upon completion, the following configurations of your project have taken place:

■ web.xml has been modified.

■ index.jsp JSP file has been installed in your project's WebContent directory;

■ application.properties resource bundle was installed in your project's
src/resources directory.

■ faces-config.xml file has been configured as follows:

<application>

<default-render-kit-id>org.apache.myfaces.trinidad.core</default-render-kit-id>
</application>

13.4.1 Trinidad Library Support by the Trinidad Facet
OEPE provides support for Trinidad 1.2 and 1.0 versions.

The following table associates the supported Trinidad versions with JSF versions:

Table 13–3 Supported Trinidad Versions

Supported Trinidad
Version Associated JSF Version

1.2 1.2

1.0 1.1

Configuring Projects with External Resources

Web Application Development Support 13-11

13.5 Configuring Projects with External Resources
If you have a project that uses external resources, for example Java classes and web
resources such as JSP files, which are present outside of your workspace, or from other
projects, you can configure the project so that WebLogic looks up these resources at
runtime.

The features that you can use are:

■ Using a wrapper dynamic Web project

■ Using linked resources

■ Configuring a deployment assembly

13.5.1 Using a Dynamic Project
If your project is not an Eclipse WTP project you need wrap it with a dynamic web
project in order to deploy it to Oracle WebLogic Server. Once you have created the
skeleton web project, you can use the linked resources technique (below) to link web
resources to the corresponding Web content or Java source folder in the dynamic Web
project. This project may contain a number of optional facets, one of which is the Web
Service facet. Each dynamic Web project ultimately produces a J2EE module, and each
J2EE module is included in the complete application's EAR file when the application is
built for deployment. The contents of Web projects are accessed through URLs.

For more information, see "Creating a dynamic Web project" which is available in the
Web Tools Platform User Guide in the Eclipse documentation.

13.5.2 Using Linked Resources
Linked resources are files and folders stored in a different location but which can be
linked to your project. You can link both Web content such as JSP files and HTML files,
folders or Java source folders into a web project using this method. For more
information, see Linked resources which is available in the Workbench User Guide in
the Eclipse documentation. For information about using linked resources, see Creating
linked resources, in the Workbench User Guide in the Eclipse documentation.

13.5.3 Configuring a Deployment Assembly
The types of external resource you can configure using deployment assembly are:

■ Archives available via a path variable, or on the local file system, or in the current
workspace.

■ Folders in the current workspace.

■ Java build path entries.

■ Projects in the current workspace.

To configure a project to use external resources:

1. Right-click your Web project in Project Explorer, select Properties from the
drop-down menu, and then select Deployment Assembly from the list on the
Properties dialog.

Figure 1 shows a web content folder from linked resources and an external JAR
have been added to the deployment assembly.

2. Click Add to open the New Assembly Directive dialog, where you specify the
external resources to be configured with your project.

Creating a JSF Project From an Existing Web Project

13-12 Oracle Enterprise Pack for Eclipse User's Guide

3. Choose the type of external resource you want to add on this page and click Next.

4. On the next page, navigate to the specific external resource you want and click
Finish.

13.6 Creating a JSF Project From an Existing Web Project
Using OEPE, you can create a new JSF project from an existing Web project if the
existing project meets the following criteria:

■ The source project is a non-Eclipse project and does not contain any
Eclipse-specific files or folders.

■ The source project's WebContent folder is not the project root.

■ Somewhere in its directory hierarchy the source project contains a directory with a
subdirectory called WEB-INF, which in turn contains a file called web.xml.

To create your project:

1. Right-click the Project Explorer and select New > Project from the drop-down
menu. This opens the New Project dialog.

2. Select Web > Dynamic Web Project from Existing Source from the list, as Figure 1
shows, and then click Next. This opens the New Web Project dialog.

3. On the New Web Project > Project Location dialog that Figure 2 shows, specify
your existing project's location, provide a name for your new project, select the
compiler compliance level, select Oracle WebLogic Server 11gR1 (10.3.2) or later as
your target runtime, and then click Next to continue.

4. On the next New Web Project > Java Settings screen that Figure 3 shows, either
accept the default Java settings for your project or customize them, and then click
Finish.

Upon completion, the new project from the existing source is created and is configured
with the following facets:

■ JSF 1.2

■ JSTL 1.2

■ jst.web 2.5 (depends on the version set in web.xml)

■ jst.java 5.0 (depends on the compiler compliance level selected)

■ wls.web 10.3 (depends on the server selected)

13.7 Using the Web Page Editor
You use the Web Page Editor to edit JSP and HTML files. It is a multi-page editor that
provides the following:

■ Design page that supports visual development.

■ Source page that lets you edit text.

■ Preview page

Using its toolbar, you can configure the editor to display both a Design and a Source
page of the current document in either horizontal or vertical split modes, as Figure 1
shows. You can also configure it to display only either the Design or the Source page.
Note that the currently-selected element is synchronized between all pages and views.

The following views are associated with the Web Page Editor:

Using the Web Page Editor

Web Application Development Support 13-13

■ Properties view that enables editing of the most common attributes of tags using
choice dialogs.

■ Palette view that allows you to edit and create tags, such as HTML, JSP, and JSF.

■ Outline view

The Web Page Editor also includes the Preview tab and a toolbar. The toolbar enables
the following:

■ Display of horizontally-split Design and Source pages

■ Display of vertically-split Design and Source pages

■ Display of Design page only

■ Display of Source page only

■ Underlining selected text

■ Bolding selected text

■ Italicizing selected text

■ Making selected text appear small

■ Making selected text appear large

To access the Editor, from your Web project open in the Project Explorer, right-click a
page which you are planning to edit, and then select Open With > Web Page Editor
from the drop-down menu, as Figure 2 shows.

13.7.1 Using the Design View
The Design view is editable and allows you to select elements and move them around
on the page, display an element's properties in the properties editor, drop tags from
the Palette onto the page, edit elements using the context menu, and so on.

Figure 3 shows a JSP page displayed in the design view with an input text selected and
its properties displayed in the properties editor.

Note that some elements enable tag-specific editing through the context menu.

The Design view provides tooltips with the information on which element will be
selected upon a mouse click.

In addition, the Design view allows you to visually inspect and select nonvisual child
components, such as converters and validators. To do so, float the cursor over an
element, and you will see these nonvisual child components as semitransparent icons
at the top-right of the element.

Selecting the element and then clicking the "pin" icon that appears at the top-right of
the element will then let you select the nonvisual child component by clicking the
component's icon.

13.7.2 Using the Preview Tab
he Preview tab represents a non-editable view that closely emulates the Web page as it
will be rendered at run time.

Figure 6 shows a preview of a JSP page.

Editing Tags Using Property Sheets

13-14 Oracle Enterprise Pack for Eclipse User's Guide

13.7.3 Using the Source View
The Source view is editable and allows you to select elements, display an element's
properties in the properties editor, drop tags from the Palette onto the page, and so on.
Figure 7 shows a JSP page displayed in the Source view with an output text selected
and its properties displayed in the properties editor.

13.7.3.1 Using the Content Assist
You can use the content assist feature of the Source view that lets you select tags from a
list of available tags with descriptions. You activate the content assist by pressing
Ctrl+Space key combination.

13.7.3.2 Using HyperLink
You can use the HyperLink feature of the Source view to open a managed bean's code.
To do so, press Ctrl+Click key combination on the value attribute of a tag.

13.7.3.3 Using HoverHelp
The Source view offers the HoverHelp that displays information about the page
elements, or on how to use them.

You can zoom in to the help topic by pressing F2.

13.7.4 Using the Outline View
The Outline view (see Figure 6) allows you to do the following:

■ Visually inspect the document structure

■ Change the selection of the current element

■ Drag and drop elements within the view

■ Modify elements and attributes using the context menu

13.8 Editing Tags Using Property Sheets
You use property sheets to quickly edit the most common attributes of various tags
with assistance of choice dialogs. Property sheets offer collapsible sections and provide
buttons that enable choice of values and binding to dynamic values.

The Property sheet (view) displays attributes and their values for a tag selected in the
Design or Source page. The Property view consists of two tabs:

■ All tab shows all attributes of a tag.

■ General tab shows the most commonly used attributes of a tag, assuming this tag
is one of JSF, JSP, JSTL core, JSTL formatting or HTML. For each attribute shown in
the General tab, OEPE provides custom dialog editors that guide you in setting the
values of the attribute by doing the following:

– Choosing binding

– Choosing a method

– Selecting a navigation case

– Selecting a file

– Choosing a style class

– Defining CSS style

Editing Tags Using Property Sheets

Web Application Development Support 13-15

– Choosing a resource bundle

– Choosing a validator

– Choosing a converter

The General tab also provides hyperlink on select attributes that help you navigate
to the target resource.

You open a Property sheet (see Figure 1) by selecting Window > Show View >
Properties from the top-level menu. By selecting a tag in the Source or Design view
and then clicking on buttons located to the right of attribute edit fields on the Property
sheet displays editor dialogs.

13.8.1 Choosing Binding
You use the Choose Binding dialog to create bindings to dynamic values. Figure 2 and
Figure 3 show the Variables and Resources tabs of this dialog.

The Resources tab allows you to do the following:

■ Select the resource bundle, if more than one exists.

■ Select the resource key.

■ Select whether the dialog should display the resource key or value. You use the
View combo box to make this choice.

■ Add a resource key by clicking the New Resource Key.

13.8.2 Choosing a Method
You use the Choose Method dialog that Figure 4 shows to select an existing or create a
new method in the selected managed bean.

To create a new method, click New Validator Method, and then complete the New
Method dialog.

13.8.3 Selecting a Navigation Case
You use the Select Navigation Case dialog that Figure 6 shows to specify a navigation
case outcome. If there are no existing navigation cases listed, you may click New
Navigation Case to open a dialog that will let you define a new navigation case
(action) and either select an existing JSP page in the project, or create a new destination
JSP page for your new navigation case.

13.8.4 Selecting a File
You use the File Selection dialog to select the source of a file, such as an image, CSS, or
a JSP file. To open the dialog, click Select File.

13.8.5 Selecting a Style Class
You use the Choose Style Class dialog to select a style class for the selected tag.

13.8.6 Defining CSS Style
You use the CSS Style Definition dialog to define a CSS to apply to the tag. Using this
dialog, you can define all elements of a style sheet.

Note that for the style to be applied, you need to register it with the application.

Using the Web Page Editor Palette

13-16 Oracle Enterprise Pack for Eclipse User's Guide

13.8.7 Choosing a Resource Bundle
You use the Resource Bundle Selection dialog to choose a resource bundle for your
application (as defined by the basename attribute). The dialog displays a list of
available resource bundles including the following:

■ Resource bundles that reside in your project's src directory.

■ Resource bundles in JAR files in your project's WEB-INF/lib directory.

■ Resources bundles in JAR files in Shared Libraries.

■ Resources bundles in JAR files in User Libraries.

Note that this dialog allows you to set the resource bundle defined by the basename
attribute of the JSF Core loadBundle and JSTL Formatting setBundle tags.

Also note that if the basename attribute contains a valid value, it will be selected in the
dialog by default.

13.8.8 Choosing a Validator
You use the Validator Id Selection dialog to choose a validator from a list of available
validators, which includes the standard JSF validators and any validators that are
defined in the faces-config.xml file. Note that through this dialog you set the value
of the validatorId attribute of the JSF Core validator tag.

If the validatorId attribute already contains a valid value, this value is displayed
separately at the top of the dialog.

13.8.9 Choosing a Converter
You use the Converter Id Selection dialog to choose a converter from a list of available
converters, which includes the standard JSF converters and any converters that are
defined in the faces-config.xml file. Note that through this dialog you set the value of
the following attributes:

■ converterId attribute of the JSF Core converter tag.

■ converter attribute of JSF HTML inputText and outputText tags.

If the converterId or converterId attribute already contains a valid value, this value is
displayed separately at the top of the dialog.

13.9 Using the Web Page Editor Palette
You use the Web Page Editor Palette to edit and create a variety of tags, such as HTML,
JSP, JSF, and so on.

In addition to standard HTML and JSP tags, the Palette displays an item for each tag in
the JSP tag libraries that are on the application's classpath. You drag and drop tags on
to the Design or Source view to design Web pages. You can pin the Palette to be open,
or set to automatically expand when the cursor is placed over it while it is in its
collapsed state.

To access the Palette, from your Web project open in the Project Explorer, right-click a
page on which you are planning to drop or edit tags, and then select Open With >
Web Page Editor from the drop-down menu.

With the page open in the editor view, click Show Palette (a gray triangular button
located at the top right corner of the editor) to display the Palette.

Using the Web Page Editor Palette

Web Application Development Support 13-17

13.9.1 Displaying the Palette in External View
You can display the Palette outside of the Web Page Editor. To do so, right-click the
Palette and select Options > Show as External Palette from the drop-down menu

To reverse the external view display and have the Palette displayed as a part of the
Web Page Editor, click the Close button.

Notice that the external view allows you to filter the tag library nodes to define which
ones the Palette should display. To do so, enter the filter text in the filter field.

13.9.2 Editing Tag Library Entries in the Palette
To add a tag, you select it from the library and then drag it from the Palette and drop
onto the JSP page that is open in either the Design or Source view in the Web Page
Editor. You can enter values for the tag attributes using the corresponding dialog that
pops up upon the drop.

Alternatively, you can use a property sheet to add and edit tags.

13.9.3 Using the Data Palette
The Data Palette is a part of the Web Page Editor Palette and is always the last list item
in the tag library list.

The Data Palette displays variables in scope for the page, as follows:

■ Variables are displayed as children of a group and grouped by Page Variables and
External Variables. If a group does not contain any member variables, the group is
not displayed. The scope of a variable is indicated by an icon (green square for the
application scope, blue triangle for the session scope, orange rectangle for the
request scope, and blue circle for the page scope), as well as by the tool tip text that
also provides information about the variable type, name, and data type.

■ Fields are displayed as children of a variable and include fields with accessor
methods indicated by a green circle and a tool tip text that lists the field name and
data type.

■ Fields of fields are displayed as children of the fields.

Note: The Data Palette automatically refreshes itself when variables
are discovered. Also note that when the Palette is displayed as an
external view and you have the ability to use filters, you can filter by
"used variable only".

The Data Palette allows you to do the following:

■ Add a variable to a page by right-clicking a variable and selecting Insert in the
page from the drop-down menu.

This opens the Insert Fields dialog that lets you select a generator for content
creation choose fields that you would like to generate and define the order in
which they should appear.

■ Navigate to a variable declaration by right-clicking the variable and selecting
Open Declaration from the drop-down menu.

This opens the editor with the position of the variable declaration highlighted.

Using the Web Page Editor Palette

13-18 Oracle Enterprise Pack for Eclipse User's Guide

■ Navigate to the value reference type declaration by right-clicking the variable and
selecting Open Type from the drop-down menu.

This opens the appropriate Java class in the source editor or, if the source is not
available, in the read-only Class File Editor.

Notes: ■If the type is an array type, the component type is used. For
example, if it is java.lang.String[], you would navigate to
java.lang.String.

■ If the type is a collection type, the container type is used.

■ The navigation is not available for primitive types.

■ Create new external (artificial) variables by right-clicking a variable group node
and selecting New Artificial Variable from the drop-down menu. This opens the
New Artificial Variable dialog. You create a variable by entering its name and
providing its data type.

13.9.4 Customizing the Palette
To customize the way the Palette displays tags, right-click a specific tag library node
and select Options > Customize.

This opens the Customize Palette dialog.

Using this dialog, you can modify names and descriptions of tag library nodes, specify
whether or not a particular node should be displayed, as well as import or export tag
libraries.

You can also modify the Palette settings by right-clicking a specific tag library node
and selecting Options > Settings to open the Palette Settings dialog.

Using this dialog, you can specify the font, layout, and icon size for a tag library node,
as well as define drawer options.

13.9.5 Docking and Undocking the Palette
When the Palette is displayed as an external view, you may choose to change the
display to the docked view in the Web Page Editor. To do so, click on the Palette tab
and select Fast View from the drop-down menu.

Notice the Palette icon at the bottom left corner of the main IDE window.

13.9.6 Modifying the Display of the Palette
In addition to performing the Palette customization using the Customize Palette and
Palette Settings dialogs, you can modify the way the Palette and its tag library nodes
are displayed within the Web Page Editor as follows:

■ Move it to the left or right side of the Web Page Editor by clicking the top area and
dragging the cursor to the left or right.

Alternatively, you can move the Palette by right-clicking the top area and selecting
Dock On > Left or Dock On > Right from the drop-down menu.

■ Change the width of the Palette by right-clicking the top area and selecting Resize
from the drop-down menu.

Creating JSF HTML Tags

Web Application Development Support 13-19

■ Use the marquee tool. To do so, click the Marquee button located on the Palette
toolbar.

■ Apply the following changes to a tag library node by making selections from the
drop-down menu with the cursor positioned on a particular node:

– Expand the size of a tag library node to the size of the Palette by selecting
Maximize.

– Remove a tag library node from the Palette view by selecting Hide.

– Undo the preceding changes by selecting Restore.

■ Change the Palette layout or the size of icons for a tag library node by selecting
appropriate options from the drop-down menu.

13.10 Enabling Localization in the Web Page Editor
To localize your Web application:

1. Register the application's resource bundle. For localization to take effect, you
define multiple properties files (one for each language), such as application_
fr.properties or application_it.properties, for example, in your project's
srs/resources directory.

2. Localize the JSP page by binding the attributes of tags that display text on the
page, as follows:

■ Select a tag in the JSP file and open a property sheet to display the tag's
attributes in editable mode.

■ Click Bind to a dynamic value button located to the right of the field that you
are editing to open the Choose Binding dialog, and then open the Resources
tab.

The Resources tab displays either the available resource keys or their
corresponding values (you set the display mode by making selection in the
View box).

■ Using this dialog, you can create a new resource key in the bundle by clicking
New Resource Key button a dialog that allows you to define a key and value
combination to be added to the resource bundle.

For example, if the entered key is welcome.back with the value "Please, come
back", the newly created resource would be displayed in the Choose Binding
dialog,.

3. You can visualize the resources in different locales in the Web Page Editor. To set
the design-time locale for your project, use the Resource Locale dialog that you
open by selecting a text in the Web Page Editor, and then selecting Text > Resource
Locale from the top-level menu.

Once you choose a new locale and define a new resource key, the new key will be
saved in the locale-specific properties file.

13.11 Creating JSF HTML Tags
OEPE provides tag drop support for JSF Web projects. This OEPE feature is made
available through a series of wizard-style dialogs that are displayed during "specialty"
drops that require not just simple tag editors, but tag-addition guides that assist you
by offering appropriate attribute editors and default values. Note that you cannot use
these editors to modify tags, but only to add panelGrid, dataTable, and form tags.

Creating JSF HTML Tags

13-20 Oracle Enterprise Pack for Eclipse User's Guide

To access this OEPE functionality, open your JSF Web project in Project Explorer,
right-click a JSP page on which you are planning to drop tags, and select Open With >
Web Page Editor from the drop-down menu.

With the page open in the editor view, click Show Palette (a gray triangular button
located at the top right corner of the editor) to display the Palette.

To add tags, you drag one of Panel Grid, Data Table, or Form components from the
Palette to the body of your JSP page in the editor and complete New dialogs.

Note that you have an option of binding dialogs' fields to beans or bean properties by
clicking buttons located to the right of most fields.

13.11.1 Adding a PanelGrid Tag
You add a panelgrid tag using the New Panel Grid dialog that provides tag attribute
editors.

Using this dialog, in the Generation options field, specify whether you are adding a
new panelGrid tag, or generating one and its content from data. If you choose the
former, proceed with the following:

■ In the Columns field, enter a number of columns.

■ In the Width field, specify the width as an integer.

■ In the Table Class field, specify the table style class.

If you choose the latter, the New Panel Grid dialog will change and you proceed as
follows:

1. Specify the bean property by clicking Select a Variable button located to the right
of the Bean property field to open the Choose Bean/Bean Property dialog.

2. Click OK on the Choose Bean/Bean Property dialog, and then click Next on the
New Panel Grid dialog to open the New Panel Grid > Choose Fields dialog.

3. On the New Panel Grid > Choose Fields dialog, you may select the fields that you
want to generate for your panel grid, and then click Next.

4. On the next New Panel Grid > Choose Field Components, Labels and Ordering
dialog, you may select components to represent fields and the labels for these
fields. In addition, you may define the order in which the fields will appear by
clicking Up and Down buttons located to the right of the Field Selection area.

5. You may click Next to open the New Panel Grid > Choose Options dialog. On
this dialog, define if your panel grid should have a header and a footer, and
whether or not validation messages should be displayed for input fields, and if so,
choose their style by clicking a button to the right of Style class field to open the
Choose CSS Style Class dialog.

6. Upon completion, in the body element of your JSP page an empty h:panelGrid tag
with the specified parameters is added.

13.11.2 Adding a dataTable Tag
You add a dataTable tag using the New Data Table dialog.

Using this dialog, in the Generation options field specify whether you are adding a
new dataTable tag, or generating one and its content from data. If you choose the
former, proceed with the following:

Creating JSF HTML Tags

Web Application Development Support 13-21

■ In the Data Table area, provide the table ID, as well as to which UI component this
table is to be bound by clicking the Bind to a dynamic value button located to the
right of the Binding field and making selection of either variables or resources on
the Choose Binding dialog.

■ In the Data Table area, provide the table ID, as well as to which UI component this
table is to be bound by clicking the Bind to a dynamic value button located to the
right of the Binding field and making selection of either variables or resources on
the Choose Binding dialog.

■ In the Table Properties area, you may set the table's width and border size as
integers, as well as specify classes for the table, row and column.

If you are generating a dataTable and its content from data, the New Data Table dialog
will change and you proceed as follows:

■ Specify the enumerable bean property by clicking Select an Enumeration button
located to the right of the Enumerable field to open the Choose Enumerable Bean
Property dialog.

■ Enter the iteration variable name and type by completing appropriate dialogs. You
may also choose the enumerable fields to generate and define their order, as well
as insert a header and footer for your table. For information on how to do this, see
Section 13.11.1, "Adding a PanelGrid Tag."

Upon completion, a h:dataTable tag with the specified parameters is added within
the body element of your JSP page.

13.11.3 Adding a form Tag
You add a form tag using the New Form dialog.

Using this dialog, in the Generation options field specify whether you are adding a
new form tag, or generating one and its content from data. If you choose the former,
proceed with the following:

■ In the Id field, enter the form ID.

■ In the Binding field, specify to which UI component this form is to be bound by
either entering the value, or clicking the Bind to a dynamic value button located to
the right of the Binding field and making selection of either variables (of type
javax.faces.component.UIComponent) or resources on the Choose Binding dialog.

If you choose to generate a dataTable and its content from data, the New Form dialog
will change, and you proceed as follows:

■ Specify an existing JSF managed bean by clicking the Select a Variable button
located to the right of the Form bean field to open the Choose Bean/Bean Property
dialog.

Click OK on the Choose Bean/Bean Property dialog.

■ Optionally, you can specify a form action, such as a navigation case outcome or a
method binding, by clicking button to the right of the Form action field. Clicking
Select a value will open the Select Navigation Case dialog. If there are no existing
navigation cases listed, you may click New Navigation Case to open the dialog
that will let you to define a new action (navigation case).

To specify a method binding, click Bind to a dynamic value button located to the right
of the Form action to open the Choose Method dialog that will let you select a method,
if available, or add a new method in the selected bean.

Generating Struts Artifacts

13-22 Oracle Enterprise Pack for Eclipse User's Guide

You can either click Finish on the New Form dialog, or click Next sequentially to
provide the following optional configurations:

■ Fields - from the list of fields with accessor methods, select fields to generate.

Notes: ■Fields of fields are displayed recursively as children.

■ Non-complex" first-level fields are selected by default; other
fields, such as enumerated types and dates, are not selected
because they are considered "complex".

■ Field Components, Labels and Ordering - select components to represent fields
and the labels for these fields. In addition, you may define the order in which the
fields will appear by clicking Up and Down buttons located to the right of the
Field Selection area.

■ Options - define if your form should have a header and a footer, and whether or
not validation messages should be displayed for input fields, and if so, choose
their style by clicking a button to the right of Style class field to open the Choose
CSS Style Class dialog.

13.12 Generating Struts Artifacts
You can use OEPE to automatically generate various Struts artifacts for your dynamic
Web project. To do so, perform the following steps:

■ Make sure you are using supported versions of Oracle WebLogic Server and
Struts.

■ Configure your project for Struts.

■ Generate Struts files and update the configuration.

13.12.1 Configuring a Project for Struts
To configure your dynamic Web project for Struts:

1. Either add the Struts facet when you create the project, or add the facet to an
existing project by right-clicking your project in the Project Explorer and selecting
Properties from the drop-down menu. This will open the Properties dialog.

2. In the Properties dialog, select Project Facets on the left panel, and then select
Struts from the Project Facet list. Note that the Struts facet requires dynamic Web
module version 2.3 or later.

To configure your project to use Struts 1.3 library, select the Struts 1.3 facet, and
then click Further configuration required... link. This will open the Modify
Faceted Project > Struts dialog. If Struts 1.3 is not listed, then click Download
Library icon to indicate your intention to obtain the library. This will open the
Download Library dialog.

Note that you can either add the library from the local installation, or you can
select a shared library provided by Oracle WebLogic Server (if this option is
supported).

Select Struts 1.3 library and the destination folder, and then click Next. Note that if
you select a library other than Struts, or a mismatch between a Struts facet version
and library version is detected, a notification message will be displayed alerting
you of the error.

Supported Versions

Web Application Development Support 13-23

On the next screen, accept the term of the Apache license, and click Finish to
trigger the download.

3. Click OK on the Modify Faceted Project > Struts Facet dialog.

4. To complete the configuration of the Struts library for your project, click Apply >
OK on the Properties dialog.

13.12.2 Generating Struts Files and Updating the Configuration
When added to your dynamic Web project, the Struts facet automatically generates the
following artifacts and preforms the following configurations:

Configures the web.xml file, as follows:

■ Adds an action servlet in a form of the
org.apache.struts.action.ActionServlet.

■ Adds a servlet-mapping (using the URL *.do pattern).

■ Adds a config parameter for struts-config.xml.

■ Adds Struts-specific configuration files, such as struts-config.xml and others, in
your project's WEB-INF/config directory.

■ Adds JSP template files and resource bundles containing the sample Struts code
that you can deploy out of the box.

13.13 Supported Versions
OEPE provides support for various Oracle WebLogic Server versions, as well as the
following Apache Struts versions:

■ 1.3

■ 1.2

■ 1.1

The following table maps supported versions of Struts libraries and Oracle WebLogic
Server shared libraries:

Table 13–4 Supported Versions of Struts Libraries

Struts Library
Oracle WebLogic
Server Shared Library

Downloadable
Library User Library

Struts 1.3 Not supported Supported Supported

Struts 1.2 Oracle WebLogic
Server versions 10.0
and 9.2 are supported

Supported Supported

Struts 1.1 Oracle WebLogic
Server versions 10.0
and 9.2 are supported

Supported Supported

Supported Versions

13-24 Oracle Enterprise Pack for Eclipse User's Guide

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Oracle Enterprise Pack for Eclipse User's Guide
	1.1 Oracle Application Development Framework Support
	1.2 Oracle Mobile Application Framework Support
	1.3 Oracle WebLogic Server Support
	1.4 Integrating Oracle Cloud Services
	1.5 Maven Support
	1.6 Web Services Support
	1.7 REST Web Services Support
	1.8 Oracle Database Support
	1.9 Object-Relational Mappings Support
	1.10 Spring Support
	1.11 Coherence Support
	1.12 Web Application Development Support

	2 Oracle ADF Tools Support
	2.1 Getting Started with Oracle ADF
	2.1.1 Understanding the Oracle ADF Architecture
	2.1.2 Configuring Oracle WebLogic Server
	2.1.3 Creating an Oracle ADF Application

	2.2 Working with the Oracle ADF Model Layer
	2.2.1 Creating the JPA Model Project
	2.2.2 Creating JPA Entities from Tables
	2.2.3 Working with Session Beans
	2.2.3.1 Generating a Session Bean on Selected JPA Entities
	2.2.3.2 Generating a JSF Managed Bean
	2.2.3.3 Generating a Session Bean and a JSF Managed Bean using the Data Components Model Wizard
	2.2.3.4 Editing a Session Bean

	2.2.4 Working with ADF Model Data Binding
	2.2.4.1 Creating ADF Data Controls
	2.2.4.2 Using the ADF Data Control Manager
	2.2.4.3 Using the Data Palette to Create UI Components
	2.2.4.4 Using the Bindings Tab in the Properties Window
	2.2.4.5 Working with Page Definition Files
	2.2.4.6 Opening a Page Definition File in the Page Definition Editor
	2.2.4.7 Understanding the Page Definition Editor
	2.2.4.8 Understanding Bindings and Executables
	2.2.4.9 Adding Bindings and Executables
	2.2.4.10 Working with Tree Bindings

	2.2.5 Adding Data Binding to Existing UI Components
	2.2.6 Debugging ADF Bindings
	2.2.6.1 ADF Page Definition Artifact Validation

	2.2.7 Refactoring ADF Bindings

	2.3 Working with Oracle ADF Controller
	2.3.1 Understanding ADF Task Flows
	2.3.2 Creating a New Task Flow
	2.3.3 Adding Activities to a Task Flow
	2.3.4 Adding ADF Bindings to a Task Flow
	2.3.5 Adding Control Flows to a Task Flow
	2.3.6 Using Task Flows as Regions
	2.3.7 Running an ADF Task Flow

	2.4 Working with Oracle ADF Faces
	2.4.1 About ADF Faces Configuration Files
	2.4.2 About ADF Data Visualization Components
	2.4.3 Working with ADF tags in JSP Pages
	2.4.4 Support for ADF Components in the Palette
	2.4.5 Using the Tag Drop Editor for ADF Faces Components
	2.4.6 Using the Smart Editor for ADF Components

	2.5 Deploying an Oracle ADF Application
	2.6 Debugging an Oracle ADF Application
	2.6.1 Using ADF Source Code with the Debugger
	2.6.2 Setting ADF Declarative Breakpoints
	2.6.3 Setting and Using ADF Task Flow Breakpoints
	2.6.4 Setting and Using ADF Page Definition Breakpoints
	2.6.5 Setting and Using ADF Lifecycle Phase Breakpoints
	2.6.6 Using the EL Expression Evaluator
	2.6.7 Using the ADF Structure and Data Window
	2.6.7.1 Using the ADF Structure Pane
	2.6.7.2 Using the ADF Data Pane

	2.7 Using AppXray for Oracle ADF Artifacts
	2.8 Refactoring Oracle ADF Components
	2.8.1 Refactoring ADF Pages
	2.8.2 Refactoring ADF Task Flow configuration files
	2.8.3 Refactoring JSF/ADF Managed Beans
	2.8.4 Refactoring ADF Data Binding Artifacts
	2.8.5 Externalizing Strings
	2.8.6 Adding and Refactoring ADF Tag IDs

	2.9 Reusing Oracle ADF Application Components
	2.9.1 About ADF Library Support
	2.9.1.1 Naming Conventions

	2.9.2 Creating an ADF Library

	2.10 Configuring and Using ADF with GlassFish Server
	2.10.1 How to Download ADF Essentials
	2.10.2 How to Download and Install GlassFish Server
	2.10.3 How to Configure GlassFish for OEPE
	2.10.4 How to Configure GlassFish for ADF Essentials
	2.10.4.1 Installing ADF Essentials on a Domain
	2.10.4.2 Installing ADF Essentials on a Domain With a Password

	2.10.5 How to Register the ADF Essentials Client WAR Library in Your Workspace
	2.10.6 How to Create an ADF Application that Uses GlassFish Runtime
	2.10.7 How to Create a Global JDBC Data Source
	2.10.8 Known Problems and Solutions

	2.11 Appendix A Oracle ADF XML Files
	2.11.1 Oracle ADF Data Binding Files
	2.11.2 Web Configuration Files

	3 Oracle MAF Tools Support
	3.1 Developing with Oracle MAF

	4 Oracle WebLogic Server Support
	4.1 Feature Overview
	4.2 WebLogic Shared Libraries
	4.2.1 Common Operations
	4.2.1.1 Adding a New Library to the Registry
	4.2.1.2 Adding a Library Reference to the Project Classpath
	4.2.1.3 Modifying a Library Reference on the Project Classpath
	4.2.1.4 Removing a Library Reference from the Project Classpath

	4.2.2 Validation Problems
	4.2.2.1 Validation Errors
	4.2.2.2 Validation Warnings

	4.3 Support for WebLogic SCA
	4.3.1 Configuring Projects to Use WebLogic SCA
	4.3.2 Using Context Help for WebLogic SCA XML Attributes
	4.3.3 Creating Complex Properties Using XML Template
	4.3.4 Creating WebLogic SCA Data-Binding Customization Descriptor
	4.3.5 Deploying a WebLogic SCA Application
	4.3.6 Running a WebLogic SCA Application

	4.4 Support for WebLogic Scripting Tool (WLST)
	4.4.1 Configuring Projects for WLST
	4.4.2 Creating New WLST Files
	4.4.3 Editing WLST Script
	4.4.4 Adding WLST Templates
	4.4.5 Navigating MBean Structures
	4.4.6 Using WLST Console
	4.4.7 Executing WLST
	4.4.8 Debugging WLST Script
	4.4.9 Importing Existing WLST Script into OEPE
	4.4.10 Known Issues and Limitations

	4.5 Editing Deployment Descriptors
	4.5.1 Using Deployment Descriptor Editors
	4.5.1.1 Editor Keyboard Navigation

	4.5.2 Creating JMS Descriptors

	4.6 Using Deployment Plan Editor
	4.6.1 Creating a New Deployment Plan
	4.6.2 Editing a Deployment Plan
	4.6.3 Using an Existing Deployment Plan to Configure an Application

	5 Integrating Oracle Cloud Services
	5.1 Adding Your Oracle Cloud Services
	5.1.1 Using the Cloud View

	5.2 Getting up and Running with Your Java Cloud Service
	5.2.1 Viewing the Java Cloud Service Jobs Log
	5.2.2 Viewing the Java Cloud Service Instance Log

	5.3 Validating with the Whitelist Scan
	5.4 Deploying to the Cloud
	5.5 Oracle Developer Cloud Service
	5.5.1 Logging In to Oracle Developer Cloud Service
	5.5.2 Getting Up and Running with Your Developer Cloud Service
	5.5.3 Using the Oracle Developer Services Cloud View
	5.5.4 Importing an Oracle Developer Cloud Service Project
	5.5.5 Exporting a Project from OEPE to Oracle Developer Cloud Service
	5.5.6 Using eGit for DCS Source Control and Versioning
	5.5.7 Using Git Tools in OEPE
	5.5.8 Committing Changes to Oracle Developer Cloud Service Git Repository
	5.5.9 Pushing Changes From the Local Git Repository to Oracle Developer Cloud Service Git Repository
	5.5.10 Managing Documentation
	5.5.11 Updating Tasks
	5.5.11.1 Importing Tasks from Oracle Developer Cloud Service With a Custom Query
	5.5.11.2 Creating a Local Task
	5.5.11.3 Editing a Task
	5.5.11.4 Synchronizing Tasks with Oracle Developer Cloud Service
	5.5.11.5 Associating a Task with a Commit Transaction

	5.5.12 Monitoring Hudson Builds

	6 Maven Support
	6.1 Using Maven with OEPE
	6.2 Setting up Your Maven Environment
	6.2.1 How to Set Up Your Maven Environment

	6.3 Creating a Maven Settings File
	6.3.1 How to Create Your Maven Settings File

	6.4 Populating the Maven Repository
	6.4.1 How to Use the Oracle Maven Synchronization Plug-In
	6.4.2 Running the Oracle Maven Synchronization Plug-in
	6.4.2.1 Populating a Local Repository
	6.4.2.2 Populating a Remote Repository
	6.4.2.3 What Happens When You Run a Push Goal to Populate a Repository?

	6.5 Installing the Maven Archetypes
	6.5.1 How to Install the Maven Archetypes

	6.6 Creating ADF Applications with Maven Integration
	6.6.1 How to Create an ADF Application with Maven Integration from the Command Line
	6.6.2 How to Create an Maven Project with Maven integration from the Wizard
	6.6.3 How to Add Maven Integration to New ADF Application Projects

	6.7 Importing Maven Projects
	6.8 Using Maven to Deploy to a WebLogic Server
	6.8.1 How to Deploy using Maven to a Running WebLogic Server

	7 Web Services Support
	7.1 Starting Points of Web Services Development with OEPE
	7.1.1 Generating a Web Service From a WSDL File
	7.1.1.1 Customizing a Web Service

	7.1.2 Generating a Web Service From Java
	7.1.2.1 Creating a Web Service from a Java Class
	7.1.2.2 Creating a Web Service From Scratch Using Java

	7.1.3 Generating a WSDL File
	7.1.4 Contents of a WSDL File
	7.1.5 Imported WSDL Files
	7.1.6 Creating a New WSDL File
	7.1.7 Understanding Policy Stores
	7.1.8 Testing Web Services

	7.2 Creating Web Services Projects
	7.2.1 Creating a new Web Service Project
	7.2.2 Creating a Web Service Project From an Existing Dynamic Web Project

	7.3 Generating Client Code for Web Services
	7.3.1 Generating Client Code From a WSDL File
	7.3.2 Generating Client Code from a Java Class
	7.3.3 Alternative Ways to Generate the Client Code
	7.3.4 Deploying Java Web Service Applications to Oracle WebLogic Server

	7.4 Generating JAXB Types
	7.5 Using Client Proxy Templates
	7.6 Using WebLogic Web Services Annotations View
	7.6.1 Activating the WebLogic Web Services Annotations View
	7.6.2 Using the WebLogic Web Services Annotations View
	7.6.3 Supported Annotations

	7.7 Validating Web Services Projects
	7.7.1 Validated Resources
	7.7.2 Configuring Project Validation

	7.8 Generating Web Services for Spring Service Beans
	7.9 Configuring HTTPS Client Credentials

	8 REST Web Services Support
	8.1 Getting Started with REST Web Services
	8.2 Creating Projects Configured for REST
	8.2.1 How to Create a Dynamic Web Project that is Configured for REST
	8.2.2 How to Configure a Java Project for REST

	8.3 Creating a REST Web Service
	8.3.1 How to Create a Patterned REST Web Service
	8.3.2 How to Create a POJO REST Web Service

	8.4 Mapping Incoming Requests to Java Methods
	8.4.1 How to Map an HTTP Request to Java Methods in the REST Generation Wizard
	8.4.2 How to Map HTTP Requests to Java Methods in the Java Class
	8.4.3 How to Map HTTP Requests to Java Methods in the Annotations View

	8.5 Customizing Media Types for the Request and Response Messages
	8.5.1 How to Customize Media Types in the Java Source Editor
	8.5.2 How to Customize Media Types in the Annotations View for a Java Class

	8.6 Validation and Quick Fix
	8.7 Content Assist
	8.8 Run-AS JAX-RS Support
	8.8.1 How to Deploy to a Targeted Runtime J2EE Server
	8.8.2 How to Deploy to a Basic HTTP Lightweight Server

	8.9 Generate a Java REST Client from a WADL

	9 Oracle Database Support
	9.1 Getting Started with the Oracle Database Plugin for Eclipse
	9.1.1 Using the Database Explorer
	9.1.1.1 Creating a Connection to a Database
	9.1.1.2 Working with a Database Connection
	9.1.1.3 Editing Data in a Table
	9.1.1.4 Loading Data into a Table
	9.1.1.5 Extracting Data from a Table
	9.1.1.6 Generating DDL

	9.1.2 SQL Tools
	9.1.2.1 Using SQL Editor
	9.1.2.2 Executing a Stored Procedure or Function
	9.1.2.3 Executing Explain Plans

	9.1.3 Granting and Revoking Privileges
	9.1.4 Creating Tables
	9.1.5 Troubleshooting

	9.2 Using the RDB Schema Editor
	9.2.1 How to Display a Database Schema in the Editor
	9.2.2 Working with RDB Schema Editor Features

	10 Object-Relational Mappings Support
	10.1 Configuring a JPA Project to Use EclipseLink Persistence Provider
	10.2 Configuring a JPA Project to Use Kodo Persistence Provider
	10.3 Oracle WebLogic Server Support for Persistence Provider Libraries and Deployment

	11 Spring Support
	11.1 Generating Spring Artifacts
	11.2 Generating Web Services for Spring Service Beans

	12 Coherence Support
	12.1 Coherence Tooling: Configuring Projects for Coherence
	12.1.1 Configuring Coherence Facet
	12.1.2 Editing Coherence Launch Configuration
	12.1.3 Editing Coherence Operational Configuration
	12.1.4 Editing Coherence Cache Configuration

	12.2 Working with Coherence (GAR) Applications
	12.2.1 Creating Coherence Applications
	12.2.2 Exporting a Coherence Application
	12.2.3 Deploying a Coherence Application
	12.2.4 Locating Your Deployed Coherence Application

	13 Web Application Development Support
	13.1 Using AppXray Technology
	13.1.1 Enabling and Disabling AppXray
	13.1.2 Visualizing AppXray Dependencies

	13.2 Configuring JSF Projects
	13.2.1 Supported JSF Libraries and Versions
	13.2.2 Creating a Faces Configuration File
	13.2.3 Using the Faces Configuration Node
	13.2.3.1 Creating a New Managed Bean
	13.2.3.2 Creating a New Navigation Case
	13.2.3.3 Creating a New Converter
	13.2.3.4 Creating a New Validator

	13.2.4 Using the Faces Configuration Editor
	13.2.5 Understanding JSF Resource Bundles

	13.3 Configuring JSTL Projects
	13.3.1 Supported JSTL Libraries and Versions

	13.4 Configuring Projects for Apache Trinidad
	13.4.1 Trinidad Library Support by the Trinidad Facet

	13.5 Configuring Projects with External Resources
	13.5.1 Using a Dynamic Project
	13.5.2 Using Linked Resources
	13.5.3 Configuring a Deployment Assembly

	13.6 Creating a JSF Project From an Existing Web Project
	13.7 Using the Web Page Editor
	13.7.1 Using the Design View
	13.7.2 Using the Preview Tab
	13.7.3 Using the Source View
	13.7.3.1 Using the Content Assist
	13.7.3.2 Using HyperLink
	13.7.3.3 Using HoverHelp

	13.7.4 Using the Outline View

	13.8 Editing Tags Using Property Sheets
	13.8.1 Choosing Binding
	13.8.2 Choosing a Method
	13.8.3 Selecting a Navigation Case
	13.8.4 Selecting a File
	13.8.5 Selecting a Style Class
	13.8.6 Defining CSS Style
	13.8.7 Choosing a Resource Bundle
	13.8.8 Choosing a Validator
	13.8.9 Choosing a Converter

	13.9 Using the Web Page Editor Palette
	13.9.1 Displaying the Palette in External View
	13.9.2 Editing Tag Library Entries in the Palette
	13.9.3 Using the Data Palette
	13.9.4 Customizing the Palette
	13.9.5 Docking and Undocking the Palette
	13.9.6 Modifying the Display of the Palette

	13.10 Enabling Localization in the Web Page Editor
	13.11 Creating JSF HTML Tags
	13.11.1 Adding a PanelGrid Tag
	13.11.2 Adding a dataTable Tag
	13.11.3 Adding a form Tag

	13.12 Generating Struts Artifacts
	13.12.1 Configuring a Project for Struts
	13.12.2 Generating Struts Files and Updating the Configuration

	13.13 Supported Versions

