ORACLE"

Oracle® Outside In HTML Export
Developer's Guide

Release 8.5.3

E12884-10

April 2016

Oracle Outside In HTML Export Developer's Guide, Release 8.5.3
E12884-10

Copyright © 2010, 2016, Oracle and/or its affiliates. All rights reserved.
Primary Author: Chaitra Ramaprasad

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless
otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates
will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party
content, products, or services, except as set forth in an applicable agreement between you and Oracle.

Preface

J AN S o 1<) Lol <IN
Related DOCUIMENTS........ooviiiiiieiieiiiceeeeeeeeee ettt

(@) 47753 41 T0) o 1= JEN SRRSO

Part | Getting Started with HTML Export

1

3

Introduction

What's New in this Releasecccevveveieieieenenisieesesesesveeeneas
Architectural OVeIVIEWccccevevierieieieieieeeieese e seesenens
Definition of TeIMS......cc.ccveviieiieiieecieceete et
Directory Structure ...

Installing Multiple SDKSs........cccccoooiiiiiiiiiiiic
How to Use HTML EXPOrt....ccooiviiiniiiiiiiiiiicciecce

Implementation Issues

Running in 24x7 ENvironmentsccocecveeeiiiniiinienicniicnns
Running in Multiple Threads or Processes............ccccceuiuiunuennnee.
HTML EXport ISSUes........cocueviviiiiiiiiciciiccicc
Relative URLs in Templates........c.ccccoovirieiniiiiciciiice,
Browser Caching..........cccccoceeueuiieciieiceceeeeceeeeeenenens
Errors Returned by HTML Export........cccccoeiiiiciiiicnnne.
CSS Considerations ...,

Archive SUPPOTt ...
Positional Frames SUppPort ...

Limitations of Multimedia File Supportcccccccerueuneeee.

Templates

What Is a Template? ...
The Included Sample Templatescccooeermiiriiiiniiiiiiceeene,
The Document Tree and Its Elements..........cccccceeievevencreneenenen.

Contents

.. 3-1

LA BLEIMOIES ..ottt ettt ettt e st e et e e sat e e aeesabeeaaeesasesateesasesaneesssesnneesaeean 3-5

Repeatable EIEMENLSccccoiiiiiiiiiiiciccccccccc e 3-5
Element Definitions.ccceueiiiiiiiiiiicicc e 3-5
Default NOAESc.oviiiiiiii et 3-16
MaCTO REfEIENCE. ... 3-16
Units: {## unit}, {## header}, and {## fOOtEI}.......ccevueviiiiieieiceceeeeeee e 3-17
Insert Element: (## INSEI] ..c..coviiuiiiieiciieeeee ettt ettt ettt et reereeeae s eeaeennes 3-18
Conditional: {## if}, {## elseif}, and {#H# €IS}cceoieeiiieeeeeeee e 3-22
Loop: (B TEPEAL] ..o 3-23
Linking with Structured Breaking: {## link].............ccooooiii 3-24
Linking with Content Size Breaking: {## anchor}...........cccccooeniiiiiiiiice, 3-27
Comment Put in the Output File: {## ignore}........cccoiiiiiiiiiiccceeee 3-28
Comment Not Put in the Output File: {## comment]...........ccccocoviiii, 3-29
Including Other Templates: {## include} ..o 3-29
Setting Options Within the Template: {## option}..........cccoooveiiiiiiiii 3-29
Copying Files: {## copy} (HTML EXport Only)........cccoccevviiiiiiiniiiniiceeennns 3-33
Deprecated Template Macros (HTML EXport Only) ..., 3-33
Breaking Documents by STIUCLUTEccccoviiiiiiiiiiiiiiiiiiii s 3-34
Indexes and Structure-Based Breaking ..o 3-36
Units - Breaking Documents by Content Sizecooooovoiiiiiiiii e, 3-38
A Sample Size Breaking Template ...t 3-39
Templates Without {## Unit] Macros ... 3-40
Indexes and Size-Based Breaking.............cccccooiiiiiiiiiiiiiiiii 3-40
Using Grids to Navigate Spreadsheet and Database Files ..., 3-41
Grid Support When Tables Are Not Available.........c.cccooiiiiii 3-43
Choosing @ TeMPLate.......c.coeuiiiiiiiiirieiceeee e aaes 3-43
Unicode TEMPIAtESc.oooiiiiiiiiiii e 3-44

4 Template Tutorials

Template COMMENLSc.coouiiiiiiiiiiiiiiiii s 4-1
Tutorial 1t SIMPLE ... 4-2
TULOTIAL 2: TOCT .eintieeiitieteeeetee ettt ettt et et et e e et et e e b e e teesaeeseessessaessesssesseessasseassansaassasseansenseensenses 4-2
TULOTIAL 32 TOC2 .einvieiieeieieeteste ettt ettt ettt e e et et e e s b e e seessesseessesseessesssesseessasseessaseensenseansenseensenses 4-3
TULOTIAL 4 UNL...eevieiiieieicieeee ettt ettt et e te et e st e s e s be s e b e bessessessessessesseseassesensassessensensersens 4-3
TUEOTIAL 5 TIUISCariviiuiietieieetieete ettt ettt ettt et e eete et e e beebeeteebeeraeseessesseesseseessenbeesseeseenseessenseenes 4-3
Tutorial 6: GridST . ..o s 4-4
Tutorial 7: @ridS2 ... e 4-4
TULOral 8: INTEINIALocvievieiieiieieiectee ettt ettt et ettt e b b et e b esbesbessessessesaeseeseeseesessessesessens 4-4

Part Il Using the C/C++ API

5 Windows Implementation Details
| Ty =11 =L o) o RSP TPTSRP 5-1

INSE SUPPOTE ..ottt 5-2

Libraries and SIUCHUTEccccccciiiiririiiiceeeeecceeeee et eees 5-2
APIDLLS ..ottt 5-2
SUPPOTE DLLS ..ottt 5-3
ENgine LiDIaries.......coooiiiiiiiiicie 5-4
Filter and Export Filter Libraries. ... 5-4
Premier Graphics FILLErs. ..o 5-5
AddIONAl FIIES ... 5-5

THE BASICS ...ttt 5-6
What You Need in Your Source Code.........couiiiiiiiiiiiiiiicccccnene 5-7
Options and Information StOragecooveiieiiieiiciiicc e 5-7
Structure ALGNIMENTc.coiiiiiiiiiiccccee e 5-8
CRATACEET SEES......eiiviiiietcc sttt sttt 5-8
Runtime Considerations..........cccccirriiiiiiiiiiiiiiiceee e 5-8

Default FONE ALIASEScueueveueieiiieieieieieieieieieteteeeieeetete ettt saees 5-8

Changing RESOUICESccciviiiiiiiiiiiiiieieeece s 5-9

UNIX Implementation Details

INSTALLATION 1.uvevvevieeieiieeietteite ettt ettt et et et et e st et eseesaesaeseeseeseebessessesbessassessessessassassasaaseasensessessensensessens 6-1
INSFE SUPPOTL...ooviiiiiiiiiticcc s 6-2
Libraries and STIUCUTEcc.ecvvieiieiiieiecieceeieetete ettt teeae e eteeraesae e st e sbeesaesbeesbesbeeasesseenseessenseenes 6-2
APT LIDTATIES ..vveevveieeiecieeteeteet ettt ettt et s e et s ta e bessa e beessasbessaaseessesseessesseessesssessesssesesssanseans 6-3
SUPPOIt LIDIaries. ..o 6-3
ENgine LIDTaries.......ccoiiiiiiiiiiiiiciccc et 6-4
Filter and Export Filter LIbraries...........ccooiiiiiiiiiiiiicccccccnccccccccceene 6-5
Premier Graphics Filters............ocoiiiiiiiiiiiiiiccc s 6-6
AdAIHONAL FILES ...oovviiiieeeeeeeeete ettt ettt sa e s ve b e s re b e s ra e be e b e beenbeaeens 6-6
TE BASICS .. veivieieetieiieiieieeteste ettt ettt e st e e et e e e st e beesb e saessesseesseeseesseaseessesssesseessasseessaseessenssensenseensenses 6-7
What You Need in YOur SOUTCe COde.......cviiiieieieieieeiniieesrestesiessessessessessessessessessssessessessessenns 6-8
INfOrmMation SEOTAGEcceuiviiiiiiieiice e 6-8
CRATACEET SELS ...viviiiietieieeeeeteet ettt ettt et e et e st e e aaesteesbeete e b e steenbeesaeseessesseessasbeessenseensesssanseessansennes 6-9
RuUntime CONSIAEIAtiONScccvivvieiiieieiicieieetesteetesteete st et e eteeae s e e sbeereessessaesseessasseessesseessesseessenseensenses 6-9
X Server ReQUIT@MENTcoiiiiiiniiiicc e 6-9
OLE2 ODJECLS ...ttt 6-9
Machine-Dependent Graphics ConteXxt..........cccoiiiiiiiiiiiiiiiiiiiicccans 6-10
Signal Handling ...t 6-10
Runtime Search Path and SORIGINc.oooouiiiiiiiiecee ettt et ettt eeaae s 6-11
ENvironment VAriablescocoiiiiiiiiiiciiieicieieietettette ettt te vttt sb e s esaesbesaesaeseessssesssesesens 6-11
Default FONt ALLASEScccveieeieiieiiitietisiestertetetet et etetesteseesessessessessessessessassessessessessessessessassesessessensensenns 6-12
Changing RESOUICESc.cccviiiiiiiiiiiiiiiii s 6-14
HP-UX Compiling and LINKINgcccoouiiiiiiiiicee e 6-14
HP-UX ON RISC....oouiiieiietieieeieeeeteeteete sttt ettt ettt ts e eteetaeteebestesbesbessassessessessessesseseessesseseeseses 6-15
HP-UX 01 RISC (64 DIt) c.veuvevieieiieiieiiiiietisieiesteieteiesteseeeeseeseetessessessessessessessessessessessesssssssessessenses 6-15

Vi

HP-UX 0on Ttanium (64 Dit)coooiieiiieeeeee ettt ettt s 6-15

IBM AIX Compiling and Linkingcccceveiiieiiiriiiiieeceeeeeeeeeeeeeeeeeeeeeee e eeaeeees 6-15
IBM AIX (32-Dit PSEIIES).....cuiuiuimimimiiiiiiiiiiiiiiiiiccct e 6-16
IBM AIX PPC (64-Dit)oucuiiiiiiiiiiiiiicicic s 6-16

Linux Compiling and LINKINGcoooceiiiiiiiiie e 6-16
Library Compatibilityccoooueiiiiiiieii 6-16
Compiling and LiNKIng ... 6-17

Oracle Solaris Compiling and LinKing ... 6-18
Oracle Solaris SPARC ..o 6-19
Oracle Solaris (SPARCQC) B4.......coccriiriirieinientnierneeeienteiestee st sttt re st see e neene 6-19
Oracle SOIArIS X80cvuiuiuiririiiiiiiciii s 6-19
Oracle SOLATIS XO4covivirimiiiiiiiiiieii e 6-19
Oracle Solaris X Server Display Memory ISSUEccccoeiiiiiiiniccieiceeccece 6-19

z/0S Compiling and LinKingcocouoiiiiiiiiiceec e 6-20

Data Access Common Functions

Deprecated FUNCHONS.........cc.ooiiiie e 7-1
DATNIEEX 1ttt ettt ettt et et e st esa e st eseeseetseteebeebessessesbesbessessessessessassassessesseseesessessensessens 7-2
LD AN D' USSR 7-3
DAOPENDOCUIMENL ..ottt 7-3

IOSPECLINKEDOBJECT SEIUCEUTIE ..ottt ettt ettt ee e eseeveeseereere s 7-5

IOSPECARCHIVEOBJECT SEUCHUTE ...cuviuviieiieeieeeteeeeett ettt ettt ettt eas e s eveeveeveeveeve v ans 7-5
DA CIOSEDOCUIMENTcuvieeieiieieetieteeeeteeteteete e ete e estessaessesseessesseessessaessesssessesssesseassessesssesseesenseensenses 7-5
DAREHEVEDOCHANAIEveeviiiiiciiieieeeeteete ettt sttt b b essesaessesaeseesassassessessassensens 7-6
DASELOPHION ..ottt 7-6
DASetFIleSPecOPHION. ...t 7-7
DAGEIOPHON ..ot 7-8
DAGELFILEIA. ... c.eouieeieiieiieieeteeteeee ettt ettt ettt teeteete et e e besbe s b e b e besbassessessessassasaeseesaesessesressassessens 7-8
DAGELFIEIAEX ...vvoviivieiieiieietieiee ettt ettt ettt tastesteeseebesbe s e s essassessessessessessassassassnsessessensensensens 7-9
DAGEtEITOISEIING ..ottt s 7-10
D A GEETIEECOUNLeieiieeieeieecieeceeete ettt et te e bt eeteesteessbe e teessbeebeesssaesseesssaesseesssessseasssessseesssesssennns 7-10
DAGEITIEERECOTA ..ottt ettt ettt et te et e e re e b e eseesbesaeasaeessesseessesseessessanssenseans 7-11

SCCDATREENODE SEIUCLULE........vectieiieeieieeeieteeteteetesteetesieesessessesseessesseessesseessesssessesssessenses 7-12
DAOPENTIEERECOTMoviiiiiiiiieie e 7-12
DASAVETTEERECOIAoevivienritietieteecie ettt ettt ettt et te ettt eete e beese e seessasseeasesseersesseensesssensenseensenseens 7-13
DACIOSETTEERECOIA ...ttt ettt ettt ettt ettt e b e e re e beeseesbeessesseesaesseessesseessessaensenseans 7-14
D ASESEAtCAIIDACK ... eetieeietieiieieeece ettt ettt et e st et e e e e b e eseesseesaesaeesaesseessesseessessaessenseens 7-14
DASEtFIleACCESSCAIIDACKcveeviivieiiieietet ettt ettt e et et e et sb et e e sbessesbessessessessesaassasessessessensenns 7-16

Export Functions

(@S TS =1 B bV aTed s (o) 1< TSROSO 8-1
EXOPENEXPOTT....oiiiiiiiiiiiiiiic s 8-1
EXCALLBACKPROC ...ttt e e eae e e et eeeaeseaeeseneseaeeseaeeeaeessaeseneesnenn 8-3

10

11

EXCIOSEEXPOItviiiiiiiiiiictitt ettt 8-4

EXRUNEXPOTT ...t 8-4
EXEXPOITStAtUS ...t 8-4
ANNOLATION FUNCHONSioiiiiiieiiee ettt te et e et e e s e e st e e bt e ssbeesseesasaeseesssaesssesssannns 8-6
EXHIIEETEXE .eouvieeieieeieteeteete ettt ettt et esve e e s te e b e sea e b e essesseesseseesaesseessesseessesssessesssessenssensanns 8-7
EXINSEIETEXL . ettt st ettt et e st e e bt e sabeebaesabeesbaessbeensaesssesnsaenssesnses 8-10
EXHIAETEXE ..uvinienieiieeieiieiieteiee ettt ettt e et et e st et est e st eseesa et eeseesessassassassassessessessessessaseasensensensenses 8-12

Redirected 10

Using Redirected IO ... 9-1
OPENINE FILEs......ooiiiiiiiiiiiiic s 9-2
TOCLOSE .ttt ettt ettt ettt et et e b e e ta e beesb e baesbeeseesseessenbeessesseersebeessebeens e beenseereenteeraenreeres 9-3
| (@) == o H USRS 9-3
TOWIILE ...ttt ettt e et e e e st et e e st et e e st e et e esseeseessesseessesssessesssasseessaseensenseansenseensenses 9-4
TOSEEK ...ttt et ettt ettt e st e et et e s b e st e st esa et e et e es e et e s e s e s e b esbessenbententenseste st ase et eeseeseereesesesens 9-4
TOTEIL ..ottt ettt ettt ettt ettt et st e e e b ese et e st ebaseebaseesa st ese s esessesessesaeseseesesaesanessansesansesansans 9-5
TOGELINTO ...ttt ettt ettt ettt e te e b e ebeesbeeteesbessaesseess e beessesseessassaessesssenseessansenses 9-5

IOGENSECONDARY and IOGENSECONDARYW Structures........ccccceeveeeeeerenenenenieneene 9-8

File Types That Cause IOGETINFO_GENSECONDARYcccccoimiiiiiiiiieeceeeeenne 9-10
IOSEEK64PROC / IOTELLO4APROCc.viieieieiieeeeeieetetesee sttt sttt stesse s sesaesaessesassessessansenns 9-10

TOSEEKOL ...ttt ettt ettt ettt ettt et s e b se b ese b ese e s e st et e st ebeseebe st ebe s esensesensens 9-10

TOTEILIOA ...ttt ettt ettt ettt ettt s et s et e se st eseebeseeseneeseneesensesansesansesansesensns 9-11

Callbacks

EX_CALLBACK_ID_CREATENEWEFILEccootiiietieiieteteeeeete ettt 10-1

EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures....... 10-4
EX_CALLBACK_ID_NEWTFILEINTFOccoeoiieieieieieiieteietesteste sttt sse s sessesaesassssssssessassenns 10-5
EX_CALLBACK_ID_ALTLINKcctiitetitetiieiietirtetirteeste e seseeseseeresaesesse s sse e se e sesessassesassesessesessens 10-5
EX_CALLBACK_ID_CUSTOMELEMENTLISTccoctetiteieteieieieieteieieete et 10-6
EX_CALLBACK_ID_ENTERARCHIVE.......cctttteiieiieiteteteteietetete ettt 10-6
EX_CALLBACK_ID_GRAPHICEXPORTFAILURE.......cccecteetreieteieeieere ettt 10-8
EX_CALLBACK_ID_LEAVEARCHIVE......cootiteieieieeeteteeeese ettt ettt sa s se e ss s 10-8
EX_CALLBACK_ID_OEMOUTPUT......ceotetiietiietiieeiieeietetetesteseseeresesese s sessesessesessaseesassesassesessens 10-9
EX_CALLBACK_ID_OEMOUTPUT_VERZ......ccoeotrieririeirieiereieieieteteete et eesesese s s sesse e s e ssens 10-9
EX_CALLBACK_ID_PROCESSELEMENTSTRcctsteirieirieirieinieieieesteteiete e esseeesens 10-10
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2ccooetriiirieirieirieieieieeieieieeeie e eevens 10-10
EX_CALLBACK_ID_PROCESSLINKcceiteieieieieieieteteeteesesresseste e ssesessessessessessessessssessessenses 10-12

Links That Reference Objects Using a Relative Path (HTML Export)ccccoooeviveiinnnnnnes 10-13
EX_CALLBACK_ID_REFLINKocciittititiirieieieieieietetetestesessesasseseesestesessesesesessesessesassesassessssessesenes 10-14

Sample Applications

Building the Samples on a Windows Systemcoiiiiiiiiciicec e 11-1
An Overview of the Sample APPLCatioNnsccoveviiciiiiiiiiiecc 11-1

Vii

FSAMPLE.....iiiiii s 11-2
exXpOrt (WINAOWS ONLY) ..o 11-2
EXSIIMIPLE .. 11-4
EXTOAIT ¢ 11-4
1S3 a5 o= Lot AT V (o] 41 A 74 < U 11-4
RXAIINO ..o 11-5
Accessing the SDK via a Java WIapPeT ...t 11-5
The ExJava Wrapper APL ... 11-5
The C-Based Exporter Applicationccouoiiiieiiiiiiciecc i 11-6
Compiling the EXecutables ... 11-6
The ExportTest Sample APPLiCation.........cccieiiiiiiiiiiiiicccccc e 11-6
An Example Conversion Using the ExJava Wrapperccccoiiiininnincccee, 11-7

12 HTML Export C/C++ Options

viii

Character Mapping.......ccccccvviiiiiiiiiiiiiiiiri s 12-2
SCCOPT_DEFAULTINPUTCHARSET ..ottt veeveesve e saeeenas 12-2
SCCOPT_EX_CHARBYTEORDERcocoietetietete ettt sreessesreesesvaesaesnnesaesnnas 12-2
SCCOPT_EX_OUTPUTCHARACTERSET ...ttt 12-3
SCCOPT_UNMAPPABLECHAR......ccc ittt ettt se e s et e sneesaesanensesnnes 12-6

OUEPUL o 12-7
SCCOPT_EX_CHANGETRACKINGueeotietietietete ettt etesteete e sesreessesreessesreesaessnessessnas 12-7
SCCOPT_EX_COLLAPSEWHITESPACE ...ttt e ete e s ereesae e saesenas 12-7
SCCOPT_EX_EXTRACTEMBEDDEDEFILES.........ccotoctiiteieeeieeeeeeeeeeee e 12-8
SCCOPT_EX_FLAVOR. ...ttt ettt ettt sttt te b te s e e sseensesseensesneensesnnensesnnan 12-9
SCCOPT_EX_INOSOURCEFORMATTING.......ocoiiteetirieteeteesteeteeete et eeesveeae e essesraesaeesnens 12-10
SCCOPT_EX_SHOWHIDDENSSDATA ...ttt ettt ae e sae e eve e esaesenens 12-11
SCCOPT_EX_SHOWHIDDENTEXToeoiitereeeceetesteteeteteetete et sreeaesseesae e ssesseessessnens 12-12
SCCOPT_EX_SIMPLESTYLENAMES.........oooeoteerteeseeteeteieetete st seeeee e eae e sesneesesnnens 12-12
SCCOPT_RENDERING_PREFER_OITccteoieieieieiieieieieeeeestesiesie ettt seeseseseessesessessens 12-14

Input HaNAIING.....c.coiiiiiiiiiiiiiiiiiii s 12-15
SCCOPT_FALLBACKFORMATc.etetieteteeteste ettt eteeteevesteeteereestesseesseeaesseesaesseessesssessessnens 12-15
SCCOPT _FIFLAGS ...ttt tteste et stesstesteeae s e e s essae s e essessesssessesssesseessesssessessesssensenns 12-16
SCCOPT_FORMATELAGS. ... oottt ettt sttt ssee e sseessesneessesaesseensesseensessnensesnsens 12-16
SCCOPT_SYSTEMELAGS. ...ttt ettt ettt ettt ettt et ereeaesreeaesreesesrsesessnens 12-17
SCCOPT_IGNORE_PASSWORDccotieiitieiecieeiecteeteeeete ettt ste e sveeaesveeaesseesesrsesesenens 12-17
SCCOPT_LOTUSNOTESDIRECTORYccveciiitieiecieeieciieieeeeteereesreeseesreesaesseessesseessessaessessnens 12-18
SCCOPT_PARSEXMPMETADATA ...ttt ste et ste st sseesaessaeaessnessesseessennnens 12-18
SCCOPT_PDF_FILTER_REORDER_BIDIcceectiteiieieieeeeieetenie et eeeseeeae e sse e sneens 12-19
SCCOPT_TIMEZONE.......ooottititeeieeteeete ettt ettt sttt e v eete e steessaeseessesssensesssesesssesessnens 12-19
SCCOPT_HTML_COND_COMMENT_MODEcooiiiiiietieiietieteeeeeteeee et ee e eenens 12-20
SCCOPT_PDF_FILTER_DROPHYPHENS.........cooiitetiieieeteteeeeteeetesre e sve e e sve e eenens 12-21
SCCOPT_ARCEFULLPATH ..ottt sttt sttt esesseesseeaesneesaesneessesssessansnens 12-21

SCCOPT_GENERATEEXCELREVISIONS.......ccccoiiiiiiiiiiiciiicccce s 12-22

SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS.........cccccooovviiiiniiiieiiinceieinnns 12-22
SCCOPT_PDF_FILTER_MAX_VECTOR_PATHScccecovviiiiiiiiceeecce e 12-23
SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION.........ccccceeosimniinimnrinniieeienieeeenen. 12-23
LAY OUL ..ottt s 12-24
SCCOPT_EX_FALLBACKFONTcccoiiiiiiiiiniiiccssssss s 12-24
SCCOPT_EX_FONTFLAGS ..ot s 12-25
SCCOPT_EX_GENBULLETSANDNUMS........cocoiiiiiiiiiineice s 12-26
SCCOPT_EX_GRIDADVANCEccooiiiiiiiiiiiice st 12-27
SCCOPT_EX_GRIDCOLSccviiiiiiiiiiiiiie s 12-28
SCCOPT_EX_GRIDROWS.ccoiiiiiiiiiiiiii s 12-29
SCCOPT_EX_GRIDWRAP.......ccoiiiiiiiiiii s 12-31
SCCOPT_EX_JAVASCRIPTTABS.......coiieriicieritceer et 12-31
SCCOPT_EX_PAGESIZEccoiiiiiiiiiiiiiiniieiiicce st 12-32
SCCOPT_EX_PREVENTGRAPHICOVERLARPccccecvuiiiiiiiiiiniiicnnsicnceninns 12-34
SCCOPT_EX_TEMPLATEcccviiiiiiiiiiii s 12-35
COMPIESSIONvviiiiiiiiii e 12-36
SCCOPT_FILTERJPG ..ottt 12-36
SCCOPT_FILTERLZW w......oiiiiiiiiiiiiiiiieitcciri st 12-37
GIAPIICS oot 12-38
SCCOPT_GIF_INTERLACEDccoiiiiiiiiniiiiiniiicis s 12-38
SCCOPT_GRAPHIC_HEIGHTLIMITcovoiiiiiiiieeiiccie e 12-38
SCCOPT_GRAPHIC_OUTPUTDRPL........ccceiiiiriiiicieieniieeriecenesetiee e 12-39
SCCOPT_GRAPHIC_SIZELIMITc.coiiiiiiiiiiiiiiiiin i 12-40
SCCOPT_GRAPHIC_SIZEMETHOD.........ccccoviiiiiiininiiiiiiesssssscnnnnis 12-41
SCCOPT_GRAPHIC_TRANSPARENCYCOLOR........cccccovimriiiiiiniiiiieincnnaes 12-42
SCCOPT_GRAPHIC_TYPE ..ot 12-42
SCCOPT_GRAPHIC_WIDTHLIMITcccoiiiiiiiiiiiieiiniiieriicerereee e 12-43
SCCOPT_JPEG_QUALITY ..ottt s 12-44
SCCOPT_RENDER_ENABLEALPHABLENDINGccccoeoviiiiiniiiiiiiicnnns 12-45
Spreadsheet and Database File ReNdering...........ccccccceeeiiiiiiiiiiiniiiciccceceeceeeeeeeeenes 12-45
SCCOPT_EX_SHOWSPREADSHEETBORDERccccecotviiiiiiiieieiceeecee s 12-45
SCCOPT_EX_SSDBBORDER.........cccccesiiiiiiiiiieiiiicieiesisieie st 12-46
SCCOPT_EX_SSDBROWCOLHEADINGSc.cooviiiriiniiiinicie e 12-48
Page ReNdEriNgccuoviiiiieiiie e 12-48
SCCOPT_WPEMAILHEADEROUTPUTcoooiiiiiiiiieiiiieiicescn e 12-48
SCCOPT_MAILHEADERVISIBLEccceoviiiiiiiiiieirrieierecene et sscnesensenns 12-49
SCCOPT_MAILHEADERHIDDEN........ccceceuiiiiiiiiiiiniiisiicene e 12-50
FONt RENAETING ..ottt 12-51
SCCOPT_DEFAULTPRINTEONT ..ot 12-51
SCCOPT_PRINTFONTALIAS.......cooiiiiiiiiiceie s 12-52
SCCOPT_STROKE_TEXTcoctiiiiiiiriiiiieiriniticieiriicie sttt se s 12-54
CAlIDACKS ..ot s 12-54

SCCOPT_EX_CALLBACKS ... 12-54

SCCOPT_EX_UNICODECALLBACKSTRocceviiiriiriicici e 12-56
FAIE SYSLEIML ..ottt 12-56
SCCOPT_IO_BUFEFERSIZEcooiiiiiiiieiiniiisiiessetc e 12-57
SCCOPT_TEMPDIR.........otiiiiiiiininiie et 12-58
SCCOPT_DOCUMENTMEMORYMODE..........cccooiiiiiiiniiiniieciecee e 12-59
SCCOPT_REDIRECTTEMPFILE..........ccooiiiiiiieiiieiinini e 12-60
Template-Only OPtionsccveeveiiiiieiiic s 12-61
EX_LINKTARGETooiiiiiiiiic s 12-61
EX_LINKTARGETOVERRIDEcoosiiiiiiiiiinic e 12-62
Old OPHIONS ..ottt 12-62
Discontinued OPtiONS........c.cccuiuiuiiiiiiiiciieeeeee et senes 12-62
SCCOPT_EX_COMPLIANCEFLAGScoviiriiiinininininiciicis s 12-63
Option Name Changescoccviiueieiiiiicieeccte s 12-63
#define Name Changes...........ccceueuiiiiiiiiie e 12-63

Part Il Using the Java API

13

14

Introduction to the Java API
ReQUITEIMENTES....coiiiiiiiiiii s 13-1
Getting Startedocuovi e 13-1
Configure the ENVITONIMENtcccciiiiiiiiiicccccceccc e 13-1
GENETALE COUE.. . euvenienieiieieieiee ettt sttt ettt et et et et e st et e esesse st e sassessensessensessessensaseessesessensenses 13-2
HTML Export Java Classes
ANNOLAION CLASS....uiitieiiitietiiieieeteteteiete ettt ettt et e teeseetessesseste s essessessensessessensensessessesessessensansessens 14-1
ATCRIVEINOAE CLASSviieviiieiectieieeeteteet ettt ettt et e s e etesee e beete e beessesbeesseseessasseessesseessesseensesssesseeneas 14-2
CaAlIDACK CLASS.....c.veevevietietietiettesteeeesteetesteetesteesestesssesseessassaessessaessasssasseessassesssassesssessesssesssessessenssensenns 14-3
CLEALEINEWEILE ...ttt ettt e e st et e e st e se e st e sseessesseessesnnessenseas 14-3
NEWEFILEINTO ...ttt ettt ettt et e et st e b e b e b e s essessessesbeseaseesensensessenss 14-4
OPENFILE ...t 14-5
createTemPIle.... ... 14-6
COLOTINTO CLASS...vieutiiieiiciieiiettete ettt ste et este et e s teebesbeesbesbe e bessaesseessessesseesseessasseessessesssesseessessanssanseans 14-6
EXPOrter INTeIfaceccvviiiiiiiiiii s 14-7
ANNOLAtabIe INTEITACE.......cveieireieiieiirieeteeeeee ettt sttt et e s et esaesaeseeseesaesansessensas 14-9
DocUmMENt INEEITACEccvecietieieeteeeeeee ettt ettt e re e ebeeaesreebesraebeesnens 14-11
SeekableByteChannel6 INterfacecooouoviiiiiiiicii 14-12
OptionsCache Classcocurueiiiiiiiieieici e 14-13
EXPOTESTAtUS CLaSSovviiieiieiicicieieccctete ettt aenees 14-42
FILEFOIMAt ClaSS....cueiieieieieiieiieiei ettt ettt et et e e eseeseesassesse s essessessessessessessensensessessesensensenss 14-43
FONEALASES CLASS ..uviveeetierietieeeete ettt ettt ettt e et e te et beesa e beeaseeseessesaeensesssesseessesseesseseenseseensenseenns 14-44
FONEINLO CLaASS.utitiiiictieiieiieteeeeete ettt ettt st et e et e be e b e beesa e beesbesseessesssessesssesseessassesssessesssenseessenseenes 14-44
FONELIST CLASS ..uvevieevieiieiieiietieteste ettt ete st ete st e e et e st e et ebeesbesseessesseessesseessesseessesssessasssessenssensenssensesnes 14-44

GridWrapInfo Classcoceiiueiiiiiieicee e 14-45

HighlightTextANNnotation Class.........ccccceriieiiiiiriiccceeeeeeeee et 14-46
MailHEAAETS CLASSvviiiiiiiiciiiicic e 14-47
OPtioN INEEITACE ... s 14-49
OULSIAEIN CLASS ... 14-50
OutsideINEXCePtion Class..........cccviiiiiiiiiiiiiiiiiiiiccie s 14-51

Part IV Using the .NET API

15

16

Introduction to the .NET API
ReQUITEMENTES....cociiiiiiiiiii e 15-1
Getting Startedcoveviiieicc s 15-1
Configuring your ENVIFONIMENtccccooiiiiiiiiiiiiciicccccc e 15-1
GENETALE COE.... ettt ettt et et e et ebe et e be et e beesbesseessesseesseeseenseesseseessenseeseas 15-1
Redirected I/O Support in INETcooooiiie i 15-3
HTML Export .NET Classes
ANNOTATION ClASS...ecutiitiiiiitieiectee ettt ettt et et e et e et esbe s e e beese e beesaebeessaseessasseessesssessesseansesssessesses 16-1
ATCRIVEINOAE CLASS ...c.veiuiieeieieeieieeteteet ettt ettt e s te e v e s teestesre e aesseesesssessesssasseessanseessesssessesssensesssessensees 16-2
CAlIDACK CIASS.. . euveurerieiieiieiietieteeteereetestestessetesbestessessestessesseseaseaseasessessassessassessassessassessassassassesessensensansenns 16-2
OPENFILE.....coiii e 16-3
CrEAtEINEWEILE ..ottt ettt ettt e st e et e be e b e be e s e eseenseesseseensenseeneas 16-3
INEWEILEINTO...cuviceeeteceeeeeee ettt et ettt et e et e e b e beesbesbeesseeseensessaessessnessensnas 16-5
CreateTemMPHILe........ooiiii s 16-5
COLOTINTO ClASS . cureuiiuieiieiieiietietietietieteste et esb et et e st e ssestesteseeseasesseesassessessessassessessessassessassassassssessensensensenns 16-5
EXPOTter INTeIfacecuoviiceiiice s 16-6
JANNOtAtable INEEITACE ...ovvivieeieieceeee ettt e re et e reeaeeaaeaeennas 16-9
DocUmMENt INEEITACEcvecietieiectieeeeee ettt ettt e ae e be e e sreesaeseeesbesrnessessnens 16-10
OptionSCache CIaSScceuiiiiiiiiiiiiieiie s 16-12
EXPOTtSTatUus ClLassc.c.cucuiueuiiiiiiiiiicieicicccee et 16-39
FAIEFOIINAL CLASS. . .cuvievietietieeteeeeete ettt ettt et ettt e et ve et eebeete e beeaseereesseeasesseeasesbeessebeessenseensenseensenseenns 16-40
FONEALASES CLASS ..uviveiutieeieieeeeete ettt ettt ettt et e e e s e teesa e beesbesseesaesaeassesssesseessesseesseseesseseensenseenns 16-41
FONIINEO CLaASS.utitiitieiieiieieitieteete ettt et ete st et e st esbe e aebeesaesseessesseessesseassesssessesssassaesseseassansenssensennes 16-41
FONELISE CLASS ..vvevtevietieiieiietietietiee et et et e sttt es b et e b e st e st eseesaesaeseeseesesseeseesessessessassassassassassassessassasseseasenss 16-42
GIIAWTAPINLO CLASSvviiiiicicicicieicccee e 16-42
HighlightTextAnnotation Class..........cccccciiiiiiiiiiiniiiiiiii s 16-43
MaAIIHEAAETS CLASScveevieeeeieeetecieeteettet ettt ettt ettt et e s e e besbeesbesbe e sasssesseessesseessesseessesssessesssensenseans 16-44
OPHON INEETTACE ... 16-46
OULSIAEIN ClASS ...vvnvieieiiieeieieetese et ete et te st e et e e e te e e st et e essesseessesseessesssessesssessesssensesssenseensenseenes 16-47
OutsideINCOoNSig CLasSccueviuiiiiiiiiiiciiiciccee e 16-47
OULSIAEINVETISION CLASSocovieveiiieiieieeiieteete ettt ettt ettt e te e e e tesreeseeraesbeesaebeesseseenseseensesseenns 16-48
OutsideInCastEXCePHON Class.........covrueiiiiiiiieieiicice e 16-48
OutsideINEXception Class..........ccueiiiuiiiiiiiiicicici e 16-48

Xi

Xii

Preface

This document describes the installation and usage of the Outside In HTML Export
Software Developer's Kit (SDK).

Audience

This document is intended for developers who are integrating Outside In HTML
Export into Original Equipment Manufacturer (OEM) applications.

Related Documents

For more information, go to:

htt p: //ww. oracl e. com t echnet wor k/ i ndexes/ documnent at i on/
i ndex. ht m #m ddl ewar e

and click on Outside In Technology.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Xiii

http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware
http://www.oracle.com/technetwork/indexes/documentation/index.html#middleware

Part |

Getting Started with HTML Export

This section provides an introduction to the HTML Export SDK.

Part I contains the following chapters:
¢ Introduction

¢ Implementation Issues

e Templates

¢ Template Tutorials

1

Introduction

This chapter is an introduction to HTML Export, a powerful SDK that allows an OEM
to translate almost any document, spreadsheet, presentation, or graphic into high
quality HTML.

HTML Export's primary goal is producing faithful representations of source files using
the HTML, GIF, JPEG and PNG formats. Using a C, Java or .NET AP]I, the developer
can set various options that affect the content and structure of the output.

There may be references to other Outside In Technology SDKs within this manual. To
obtain complete documentation for any other Outside In product, see:

http:/ /www.oracle.com/technetwork /indexes/documentation/
index.html#middleware

and click on Outside In Technology.

This chapter includes the following sections:

What's New in this Release
Architectural Overview
Definition of Terms

Directory Structure

How to Use HTML Export

What's New in this Release

The updated list of supported formats is linked from the page http://
www.outsideinsdk.com/. Look for the data sheet with the latest supported
formats.

The following new formats are supported:

— Microsoft Word 2016

— Microsoft Excel 2016

— Microsoft PowerPoint 2016

— MS Outlook 2011 for Mac (OLM and EML)
— Corel WordPerfect X7

— Corel Quattro Pro X7

— Corel Presentations X7

Introduction 1-1

http://www.outsideinsdk.com/
http://www.outsideinsdk.com/

Architectural Overview

— Corel Draw X7

- iWork KeyNote (text only)

- AutoCAD 2015

The following new options are introduced:

- A new option, SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS, is added
that allows you to limit the number of embedded objects produced in PDF files.

— A new option, SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS, is added that
allows you to limit the number of vector paths produced in PDF files.

- A new option, SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION, is
added. This allows you to control the spacing threshold in PDF input
documents.

Support for the following general accuracy and fidelity features is provided:
— MS Word table styles supported

— MBS Office Chart data label styles extended

— Font selection algorithm improvements implemented

— Outlook MSG “best body” algorithm implemented

— PPTX Master slide Transparency provided

— Four Color (CMYK) progressive JPEG supported

— Processing of very large spreadsheets containing large areas of white space are
optimized for improved performance supported

The following Operating System support is provided:
- Windows 10

- SLES12

The following .NET API changes are implemented:

— A new configuration object — OutsideInConfig

— Get method for options

— Redirected IO for temp files

The following Java API changes are implemented:

— Get method for options

— Redirected IO for temp files

Architectural Overview

The basic architecture of Outside In technologies is the same across all supported

platforms.

1-2 Developer's Guide

Definition of Terms

Filter/Module

Description

Input Filter

Export Filter

Chunker

Export

Data Access

The input filters form the base of the architecture. Each one reads
a specific file format or set of related formats and sends the data to
OIT through a standard set of function calls. There are more than
150 of these filters that read more than 600 distinct file formats.
Filters are loaded on demand by the data access module.

Architecturally similar to input filters, export filters know how to
write out a specific format based on information coming from the
chunker module. The export filters generate HTML, GIF, JPEG,
and PNG.

The Chunker module is responsible for caching a certain amount
of data from the filter and returning this data to the export filter.

The Export module implements the export API and understands
how to load and run individual export filters.

The Data Access module implements a generic API for access to
files. It understands how to identify and load the correct filter for
all the supported file formats. The module delivers to the
developer a generic handle to the requested file, which can then
be used to run more specialized processes, such as the Export
process.

Definition of Terms

The following terms are used in this documentation.

Term

Definition

Developer

Source File

Output File

Page

Data Access Module

Data Access Submodule
(also referred to as
"Submodule")

Document Handle (also
referred to as "hDoc")

Someone integrating this technology into another technology or
application. Most likely this is you, the reader.

The file the developer wishes to export.

The file being written: HTML, CSS, JavaScript, GIF, JPEG, and
PNG.

A single text and its associated graphics to make a page of output.
Pages have suggested lengths, but the actual length may be
greater or smaller than the suggested value. Page sizes count only
the bytes of visible text in the document, not markup.

The core of Outside In Data Access, in the SCCDA library.

This refers to any of the Outside In Data Access modules,
including SCCEX (Export), but excluding SCCDA (Data Access).

Note: HTML Export normally comes with only the SCCEX
Submodule.

A Document Handle is created when a file is opened using Data

Access (see Data Access Common Functions). Each Document
Handle may have any number of Subhandles.

Introduction 1-3

Directory Structure

Term Definition

Subhandle (also referred =~ Any of the handles created by a Submodule's Open function.

toas "hl t ent) Every Subhandle has a Document Handle associated with it. For
example, the hExport returned by EXCpenExport is a
Subhandle. The DASet Opt i on and DAGet Opt i on functions in
the Data Access Module may be called with any Subhandle or
Document Handle. The DARet r i eveDocHandl e function returns
the Document Handle associated with any Subhandle.

Directory Structure

Each Outside In product has an sdk directory, under which there is a subdirectory for
each platform on which the product ships (for example, hx/sdk/hx_win-x86-32_sdk).
Under each of these directories are the following three subdirectories:

¢ redist - Contains only the files that the customer is allowed to redistribute. These
include all the compiled modules, filter support files, .xsd and .dtd files,
cmmap000.bin, and third-party libraries, like freetype.

¢ sdk - Contains the other subdirectories that used to be at the root-level of an sdk
(common, lib (windows only), resource, samplefiles, and samplecode (previously
samples). In addition, one new subdirectory has been added, demo, that holds all
of the compiled sample apps and other files that are needed to demo the products.
These are files that the customer should not redistribute (.cfg files, exportmaps,
etc.).

In the root platform directory (for example, hx/sdk/hx_win-x86-32_sdk), there are
two files:

* README - Explains the contents of the sdk, and that makedemo must be run in
order to use the sample applications.

¢ makedemo (either .bat or .sh — platform-based) - This script will either copy (on
Windows) or Symlink (on Unix) the contents of .../redist into .../sdk/demo, so
that sample applications can then be run out of the demo directory.

Installing Multiple SDKs

If you load more than one OIT SDK, you must copy files from the secondary
installations into the top-level OIT SDK directory as follows:

¢ redist — copy all binaries into this directory.

* sdk - this directory has several subdirectories: common, demo, lib, resource,
samplecode, samplefiles. In each case, copy all of the files from the secondary
installation into the top-level OIT SDK subdirectory of the same name. If the top-
level OIT SDK directory lacks any directories found in the directory being copied
from, just copy those directories over.

How to Use HTML Export

Here's a step-by-step overview of how to export a source file to HTML.

1-4 Developer's Guide

How to Use HTML Export

1. Call DAIniExt to initialize the Data Access technology. This function needs to be
called only once per application. If using threading, then pass in the correct
ThreadOption.

2. Set any options that require a NULL handle type (optional). Certain options need
to be set before the desired source file is opened. These options are identified by
requiring a NULL handle type. They include, but aren't limited to:

¢ SCCOPT_FALLBACKFORMAT

e SCCOPT_FIFLAGS

e SCCOPT_TEMPDIR

e SCCOPT_EX_CALLBACKS

e SCCOPT_EX_UNICODECALLBACKSTR
e SCCOPT_UNMAPPABLECHAR

3. Open the source file. DAOpenDocument is called to create a document handle that
uniquely identifies the source file. This handle may be used in subsequent calls to
the EXOpenExport function or the open function of any other Data Access
Submodule, and will be used to close the file when access is complete. This allows
the file to be accessed from multiple Data Access Submodules without reopening.

4. Set the Options. If you require option values other than the default settings, call
DASetOption to set options. Note that options listed in the Options chapter as
having "Handle Types" that accept VTHEXPORT may be set any time before
EXRunExport is called. For more information on options and how to set them, see
DASetOption.

5. Open a Handle to HTML Export. Using the document handle, EXOpenExport is
called to obtain an export handle that identifies the file to the specific export
product. This handle will be used in all subsequent calls to the specific export
functions. The dwOutputld parameter of this function is used to specify that the
output file type should be set to FI_ HTML, FI. MHTML or FI_ XHTML.

6. Make Any Required Calls to Annotation Functions. This is the point at which any
calls to annotation functions (such as EXHiliteText, EXInsertText or EXHideText)
should be made.

7. Export the File. EXRunExport is called to generate the output file(s) from the source
file.

8. Close the Handle to HTML Export. EXCloseExport is called to terminate the export
process for the file. After this function is called, the export handle will no longer be
valid, but the document handle may still be used.

9. Close the Source File. DACloseDocument is called to close the source file. After
calling this function, the document handle will no longer be valid.

10. Close HTML Export. DADelnit is called to de-initialize the Data Access technology.

Introduction 1-5

How to Use HTML Export

1-6 Developer's Guide

2

Implementation Issues

This chapter covers some issues specific to using the Export products.

This chapter includes the following sections:
¢ Running in 24x7 Environments

¢ Running in Multiple Threads or Processes

e HTML Export Issues

Running in 24x7 Environments

To ensure robust 24x7 performance in server applications embedding the different
export products, it is strongly recommended that the technology be run in a process
separate from the server's primary process.

The file filtering technology underlying the technology represents almost a quarter of
a million lines of code. This code is expected to robustly deal with any stream of bytes,
of any length (any file), in all cases. Oracle has dedicated, and continues to dedicate,
significant effort into making this technology extremely robust. However, in real
world situations, expect that some small number of malformed files may force the
filters into unstable states. This generally results in either a memory exception (which
can be trapped and recovered from gracefully), infinite loop or a wild pointer that
causes the filter to write into memory that is part of the same process but does not
belong to the filter. In the latter situation, this wild pointer condition cannot be
trapped.

On the desktop this is not a significant problem since the number of files being dealt
with is relatively small. In a 24x7 server environment, however, a wild pointer can be
extremely disruptive to the server process and produce serious problems. The best
solution for dealing with this problem is to run any application that reads complex file
formats in a separate process. This solution protects the application from the
susceptibility of filtering technology to the unknown quality of input files.

It must be stressed that files that lead to wild pointers or infinite loops occur very
infrequently, usually as a result of a third-party conversion process or beta versions of
applications. Oracle is committed to addressing these issues and to updating and
expanding its testing tools and corpus of documents to proactively minimize this
"garbage in-garbage out" problem.

Running in Multiple Threads or Processes

On certain platforms, export products may be run in a multithreaded or
multiprocessing application. The thing to remember when doing so is that each thread
must go through all the steps listed in Introduction.

Implementation Issues 2-1

HTML Export Issues

HTML Export Issues

The following implementation issues apply to HTML Export.

Relative URLs in Templates
Consider the following:

<htm >

<body>

<p><ing src="imge. gi f"></p>

{## insert elenment=sections.1.body}
</ body></ ht ni >

In most reasonable implementations of HTML Export, the output files will probably
be stored in a totally different location than the template files. In this scenario, the
output files produced will have a reference to image.gif, which the browser will
assume has the same path as the output files. However, image.gif is usually placed in
the directory where the template file is located. This is a problem for anything
referenced in the template using a relative URL. There are several possible solutions to
this problem.

Guarantee the References Are Good

If the developer knows exactly which files all of the templates reference, the correct
files (such as image.gif) can be moved to or located in the output directory(s). This
solution requires the developer to have exact knowledge of the contents of the
templates and may propagate the same set of files into many output locations.

Use Absolute URLs

The developer can design templates to contain absolute URLs to any referenced files.
The template fragment in the example would then look something like this:

<inmg src="http://ww. oracl e. coml Export Maps/next.gif" />
<htm >

<body>

<p><ing src="http://ww.oracl e. com tenpl ates/i mage. gi f"></ p>
{## insert elenment=sections.l. body}

</ body>

</htm >

This solution has the drawback that the output files are tied to a certain domain,
requiring the developer to generate templates separately for each customer.

Generate Complete URLs Using {## insert oem=}

The developer can design templates to contain {## i nsert oenr} macros in front of
each reference and use the callback this generates to fill in the complete URL. The
template in the example would then look something like this.

<htm >

<body>

<p><imy src="{## insert oenrlnsertURL}i mage. gif"></p>
{## insert elenment=sections.l.body}

</ body>

</htm >

2-2 Developer's Guide

HTML Export Issues

The major drawback to this solution is the difficulty in generating templates like this
using HTML editor tools.

Use CGI and the <base> tag

At first glance, the base tag may seem an easy way out of this problem. The developer
can simply add it to all the templates as follows:

<htn >

<body>

<base href="http://ww:. outsi dei nsdk. conl t enpl ates/" >
<p><ing src="imge. gif"></p>

{## insert elenment=sections.l.body}

</ body>

</htm >

However, in this solution the source file may contain graphics (such as embedded
graphics in documents) that HTML Export must generate a separate GIF, JPEG, or
PNG file to produce. This file is stored by default in the same directory as the initial
output file, so the output file might look like this.

<htnl >

<body>

<base href="http://ww:. outsi dei nsdk. conl t enpl ates/" >
<p><ing src="imge. gif"></P>

This is a docunent.

This is a docunent.

Bel ow is a graphic.

<ing src="outputl.gif">

</ body>

</htm >

This output file will not work because the base tag makes the browser look for the file
output.gif in the http:/ /www.oracle.com/templates/ directory, which is not in the
same location as the output file.

Some applications may use HTML Export in such a way that all the output files are
accessed through CGI or a CGl-like construct (NSAPI, ISAPI, Java Servlet, etc.). For
instance, some developers may wish to use the
EX_CALLBACK_ID_CREATENEWFILE callback to store all the output files in a
database instead of a file system. If such redirection is already going on and the
developer is not relying on the standard relative URL to absolute URL translation that
takes place in the browser, then the base tag is irrelevant to the links generated by
HTML Export and the whole thing will work. The output file in this case might be
similar to this:

<htn >

<body>

<base href="http://ww:. outsi dei nsdk. conl t enpl ates/" >
<p><ing src="imge. gif"></p>

This is a docunent.

This is a docunent.

Bel ow is a graphic.

<ing src="/cgi-bin/nycgi.exe?125859458. ht ni' >

</ body>

</htm >

Have HX copy the files using {## copy}

The developer can have the template copy files to to the output directory by using the
{## copy} macro. The example template would then be similar to this:

Implementation Issues 2-3

HTML Export Issues

<htm >

<body>

{## copy file=imge.gif}

<p><ing src="inage. gi f"></p>

{## insert elenment=sections.l.body}
</ body>

</htm >

The drawback to this solution is that separate copies of the file being copied will be
placed in the output directory of EVERY conversion using the template. These
redundant copies waste disc space and increase conversion times.

Browser Caching

In the process of building and debugging templates, the developer is likely to run the
same source file through HTML Export repeatedly with slightly different templates.
Depending on how the developer is naming the output files, this may have a tendency
to produce the same set of file names repeatedly. In this scenario, especially if the
output is being read directly from a file system instead of a Web server, browsers will
have the tendency to show the old cached results instead of the new ones. The rule of
thumb is: "If it looks like bad output, click Refresh on every frame before deciding
whether it's a problem with the template or the software." It may be simpler to empty
and turn off caching in your browser while creating and testing your templates.

Errors Returned by HTML Export

The errors that are returned by HTML Export are defined in the file common/sccerr.h.
Errors may be added to this list or otherwise changed in future releases. To help
minimize the impact of these changes, developers are encouraged to use the

#def i nes for the errors rather than refer to errors by their numeric value.

CSS Considerations

The following information describes issues to consider when using Cascading Style
Sheets.

Customizing CSS Styles

One of the most powerful features of Cascading Style Sheets is the ability to override
the styles suggested in various ways. HTML Export has designed its CSS support to
permit users to override the style sheets that it produces. This in turn allows the user
to help blend documents from many authors into a collection that has a more unified
look.

In order to override styles, one first needs to understand the style names that can
appear in the HTML created by HTML Export, and where they are placed in the
output. Styles can be overridden if new style definitions with names that match those
generated by HTML Export are placed in the template files after the generated styles.
See the documentation for the template elements pragma.cssfile or
pragma.embeddedcss to understand how to control where generated styles will be
placed in the HTML output.

Style Names Used by HTML Export

Style names are taken from the original style names in the source document.
Unfortunately there is an inherent limitation in the style names the CSS standard
permits. That standard only permits the characters [a-z][A-Z][0-9] and "-". Source
document style names do not necessarily have this restriction. In fact they may even

2-4 Developer's Guide

HTML Export Issues

contain Unicode characters at times. For this reason, the original style names may need
to be modified to conform to this standard. To avoid illegal style names, HTML Export
performs the following substitutions on all source style names:

"non "n_n

1. If the character is a "-", then it is replaced wit .

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to My-0020Special-0020H1 --Style-0021.

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.
Developers should also appreciate the simplicity of the code needed to parse or create
these style names. Users who would prefer more human-readable style names should
use the SCCOPT_EX_SIMPLESTYLENAMES option.

In addition, HTML Export sometimes creates special character attribute-only versions
of styles. These have the same name as the style they are based on with "--Char"
appended to the end. These styles differ from their original counterparts in that they
contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Overriding HTML Export's Styles

Once style names are understood, it is possible to override the .css file produced by
HTML Export. In the template used to export files, follow the reference to
pragma.cssfile or pragma.embeddedcss with style definitions that match the names of
those styles you wish to redefine. This is possible only if you are aware of the
stylenames that will be found in the input document(s) to be exported.

Remember that many file formats allow styles to be based on other previously defined
styles. HTML Export supports this by nesting styles. In this way each nested style
inherits and may override items defined in the styles that surround it.

pragma.cssfile and {## link}

If an external .css file is being generated, one { ## i nsert

el ement =pr agma. cssfi | e} statement should appear at the top of each HTML
template file used for the export. It should be remembered that the { ## | i nk}
statement may be used to trigger the creation of additional HTML files. As a result,
each { ## | i nk} ed template will typically contain a <link> to the .css file generated.

It is possible, though, to { ## | i nk} to a template that does not have any { ##}
statements that would need to reference the .css file. In that case, the <link> to the .css
file may safely be omitted. For example, consider a template that has only two { ##}
statements, both { ## | i nks (perhaps to put the results into two separate <frame>s).
This template file would not need a <link> to the .css file.

Generally, only one .css file will be generated, regardless of how many HTML files are
produced by HTML Export (although certain input file types, such as archives, result
in output with several .css files). It is also worth repeating here that the <link> to

Implementation Issues 2-5

HTML Export Issues

the .css file must occur in the <head> of the document and each resulting HTML file
may have only one <head>.

XHTML

HTML Export is able to produce output that is XHTML-compliant. In order to have

this happen, the output format must be set to FI_ XHTML.

The XHTML 1.0 W3C recommendation lists three types of XHTML compliance:

Transitional, Frameset, and Strict. HTML Export is compliant with both XHTML

Transitional and XHTML Frameset. When using HTML Export to produce XHTML it

is important to remember that the template being used must be XHTML-compliant.

HTML Export's XHTML output has been tested to ensure compliance with the W3C

specification. This is meaningless, however, unless the template is also XHTML-

compliant. To assist with creating XHTML-compliant templates, the following list
indicates requirements for well-formed XHTML.

1. All tags must be properly nested.

2. All tags that are opened must also be closed. This includes tags that are not
normally thought of as needing closing tags, including <meta>, <link>, <frame>,
<hr> and
 tags.

3. Everything after an equals sign must be in double quotes. So is OK, but is not.

4. In order for to appear in a document, a <!DOCTYPE> statement must be
in the HTML. Since HTML Export cannot know if the template includes the <!
DOCTYPE> element, is used to render non-breaking spaces.

5. Characters in the range 0x80 - 0XFF are to be written in the form &#xxx;.

6. The only three character codes less than 0x20 allowed in a document are \t, \n
and \r.

7. All attributes of a tag must be followed by "=value." Thus the "nowrap" in <table
nowrap> is not well formed. HTML Export uses <table nowrap="nowrap">
instead.

Archive Support

The following information pertains to archive support in HTML Export.

Using Redirected 10 with Archive Files

When using redirected IO with input archive files, the OEM must be sure to fully
support the IOGetInfo call. It is used by HTML Export to obtain the name of the
archive. To that string, HTML Export appends the ItemNum value for use as a default
value when creating the reflink template element. HTML Export also executes a call to
IOGetInfo to implement pragma.sourcefilename.

Temporary File Creation

Whenever HTML Export needs to access data in a document in an archive file, it
extracts the contents of that archived file to a temporary file on the disk. Users should
be aware that this might pose a security threat if someone has access to the disk of the
machine running HTML Export. This is an issue even when using redirected I10O.

2-6 Developer's Guide

HTML Export Issues

Users of redirected IO should also be aware that the pSpec/dwSpecType are set to the
values for the temporary files. As a result, redirected IO is cut out of the picture and
the redirected 1O "file" is closed.

Temporary files are created in two cases. The first is when DAOpenDocument is called
on an entry in an archive. The second is when the following code is used to extract and
convert a file in the archive file:

{## link el enent=sections.current.deconpressedfil e}

Empty Directories in Archive Files

Entries for directories that do not contain files are allowed. Such entries will be
considered to have ItemNums, but not section numbers. Thus, when looping
(unsorted) through sections in an archive, there may be gaps in the ItemNums seen.
These gaps correspond to directories that do not contain files.

Finding the Total Number of Files in an Archive

In order to determine the total number of files in an archive, write a template that
retrieves number=sections.count. The number of sections is equal to the number of
files in the archive, not the number of entries in the archive file.

Positional Frames Support

HTML Export uses DHTML to position objects with greater accuracy. However, only
two types of object positioning are supported: paragraph anchored objects and page
anchored objects. The following are notes about this initial support for positional
frames:

e HTML Export generates paragraph objects separately from page objects, even if it
appears that they should be placed in the same location.

e Transparency is not supported when separate graphics items are placed on top of
one another. The SCCOPT_EX_PREVENTGRAPHICOVERLAP option does not
apply to these graphics. The graphics will appear relative to where the anchor
point is, not relative to the text in the document. Additionally, HTML Export does
not support certain graphics effects, such as rotation or stretching.

* The SCCOPT_EX_GRAPHICOUTPUTDPI option must be set properly to achieve
best results.

¢ In some cases, HTML Export will produce output with inaccurately placed objects
when the input document features positional frame objects. We are implementing
this feature despite these occasional errors, as this end result is no worse than the
end result when handling positional frame objects in earlier versions of HTML
Export (the graphics would be placed in a long column).

¢ This feature only works in the 4.0 versions of HTML.

Limitations of Multimedia File Support

Support for the multimedia file type is rather limited at this time. Currently, only one
filter uses it (the id3 filter), which only supports MP3 files. From these files, only text
properties may be extracted. The named properties are:

® property.title

® property.album

Implementation Issues 2-7

HTML Export Issues

® property.artist

All other properties must be accessed via the property.all or property.others macros.
Since only text properties are supported, no embeddings (album cover graphics) are
available.

At this time, the body and title parts of these files are not supported. An example of
the unsupported body content would be the actual musical content of an MP3 file.
While title is not supported, property.title is, provided the information is present in
the source document. If a template attempts to insert sections.x.body, sections.x.title,
or any of their aliases or sub nodes, nothing will be inserted.

2-8 Developer's Guide

3

Templates

This chapter provides a description of HTML Export templates and how they are
used.

Much of the power, flexibility and complexity of Export products are realized through
its use of templates to drive the export process. Templates give the developer (or the
developer's customer) flexibility in the visual and navigational properties of the
resulting output. Templates also isolate the HTML Export code from the ever-
changing face of HTML and its associated plug-ins, components and scripting
languages.

The template macros and the elements they reference are so tightly intertwined that
discussing one without the other is almost impossible. Before either is read in-depth, it
is recommended that the reader skim The Included Sample Templates, and Macro
Reference.

This chapter includes the following sections:

e What Is a Template?

* The Included Sample Templates

¢ The Document Tree and Its Elements

* Macro Reference

® Breaking Documents by Structure

¢ Units - Breaking Documents by Content Size

e Using Grids to Navigate Spreadsheet and Database Files
¢ Choosing a Template

® Unicode Templates

What Is a Template?

A template is simply an HTML file that may include a special macro language. This
language allows the template writer to insert, repeat through, condition on, and link to
various elements in the source document.

The following is the code for a very simple template:

{## unit}{## header}

<htm >

<body>

{## [header}

<p>Here i s the docunment you requested
{## insert elenment=property.title} by
{## insert elenment=property.author}</p>

Templates 3-1

The Included Sample Templates

<p>Bel ow i s the docunent itself</p>
{## insert el enment=body}

{## footer}

</ body>

</htm >

{## [footer}{## /unit}

{## unit}{## header}

<htn >

<body>

{## [header}

<p>Here i s the docunent you requested
{## insert elenment=property.title} by
{## insert element=property.author}</p>

<p>Bel ow i s the docunent itself</p>
{## insert el ement=body}

{## footer}

</ body>

</htm>

{## [footer}{## /unit}

The {## unit}, {## /unit}, {## header}, {## /header}, {## footer} and {## /footer} macros
can be ignored for the moment. Their purpose is described in Units - Breaking
Documents by Content Size.

The remainder of the file is a regular HTML with the exception of three macros in the
form {## insert element=xxx}. HTML Export uses this template plus the source file to
create its output. To accomplish this, HTML Export reads through the template file,
writing it byte for byte to the output file unless character mapping is performed on the
template (for an explanation of template character mapping, see Unicode Templates).
This continues until the template contains a properly formatted macro. HTML Export
reads the macro and executes the macro's command. Usually this means inserting an
HTML version of some element from the source file into the output file. HTML Export
then continues reading the template and executing macros until the end of the
template file is reached.In the previous example, the first {## insert} macros use the
element syntax (described in Macro Reference) to insert the title of the document. The
second macro inserts the author of the document and the third macro inserts the entire
body of the document. The resulting HTML might look like this (HTML that is the
result of a macro is in bold):

<htm >

<body>

<p>Here i s the docunent you requested. </ p>
<p>A Poem by Phil Boutros</p>
<p>Bel ow i s the docunent itself</p>
<p>Roses are red</p>

<p>Violets are blue</p>

<p>l'ma progranmer</p>

<p>and so are you</p>

</ body>

</htm >

The Included Sample Templates

By default, the templates included with HTML Export convert files of type PR into
images that are always 640 pixels wide. Users who wish to change this setting will
need to edit the templates to remove the ## option macro that sets this limit.

3-2 Developer's Guide

The Document Tree and Its Elements

When you install HTML Export, a template directory is created that contains sample
templates. These templates (with the exception of those in the tutorial directory) are
tailored for publishing and indexing applications, and they are completely brandable.
To brand a template, you can alter its .CSS file so that the template's color scheme
matches your company's color scheme. You can also overwrite the existing logo.gif file
with your company's logo. Some of the template directories contain readme.txt files
that contain more information about modifying those templates.

The following is a list of templates contained in this directory:

¢ \template\HTML Export\standard: The standard template features convenient
navigation elements, including a table of contents and a preview window, to help
users quickly access a document's information.

e \template\HTML Export\navigation: The navigation template has many of the
same features as the standard template, such as convenient navigation elements,
and adds a drop-down table of contents.

¢ \template\HTML Export\newsletter: The newsletter template supports all
document types except archives. It displays the content in a style similar to a news
web site. The table of contents contains each top level heading (the "Heading 1"
style). When a user clicks these hyperlinks, the corresponding section's content fills
the main window.

e \template\HTML Export\noframes: The noframes template displays an entire
document in a single frame, with table-of-contents style navigation. It is ideal for
use in the most straightforward publishing applications.

¢ \template\HTML Export\tableofcontents: The tableofcontents template is simpler
than the standard or the navigation templates, and contains fewer navigation
elements. It shows a table of contents on the left side of the screen, and the selected
document content on the right.

e \template\HTML Export\textonly: The textonly template is designed for use by
developers wishing to convert documents for inclusion in an index for a search
engine. It should not be used in publishing applications. All of the document's
elements, including properties, headers and footers, are converted.

¢ \template\HTML Export\tutorial: This is a directory of templates containing
comment text intended to help users interested in more thoroughly understanding
the HTML Export template language.

The Document Tree and Its Elements

HTML Export uses the concept of a document tree to make various pieces and
attributes of the source file individually addressable from within a template. The
nodes of the document tree are used to generate a path to a specific element in the tree.
A period is used to separate the nodes in this path. For example, the path of the author
property of a document is property.author. There are two types of elements: leaf
elements and repeatable elements.

Templates 3-3

The Document Tree and lts Elements

Figure 3-1 The Document Tree

| Sections
Image

Bo
Title
Contents
Preface

%’?Oﬂmage

Contents
Preface
Headings
Body...
Footnotes...
Endnotes...

Annotations...

| Footnotes
Body
Reference
Content

| Endnotes
Body
Reference
Content
| Annotations
Body
| Grids
| Body
FullName
BaseName
Title
Path
ltemNum
RefLink
DecompressedFile
Size
Date
Footnotes
Body
Reference
Content
| Endnotes
Body
Reference
Content
| Annotations

Body

Body
Reference
Content

| Headers
| Body
| Footers
| Body
| Property
| Al

Name
Body

Author
Title
Subject
Keywords
Comment
Others
Name
Body
| Pragma
Charset
CSSFile
EmbeddedCSS
JSFile
SourceFileName

3-4 Developer's Guide

The Document Tree and Its Elements

Leaf Elements

Leaf elements are single identifiable pieces of the source file, like the author property
(property.author) or the preface of the document (body.contents.preface). This type of
element is a valid target for inserting, testing and linking using the {## insert}, {## if}
and {## link} macros. The last node in this type of path must be a valid leaf node in the
document tree. Valid leaf nodes are shown in italics.

Repeatable Elements

Repeatable elements have multiple instances associated with them, like the footnotes
in a document (sections.1.footnotes). This type of element may not be directly inserted,
tested or linked to but its instances may be looped through using the {## repeat}
macro. The last node in this type of path must be a valid repeatable node in the
document tree. Valid repeatable nodes are shown in bold.

Some templates use {## repeat} loops to generate one output file per repeatable
element. For example, a template may render a presentation file as a group of output
files, with one output file for each slide. When an input file contains an exceptionally
large number of sections, it is possible for an operating system to run out of file
handles. See your operating system's documentation or system administrator to find
out how many open file handles are allowed. To avoid this extremely rare problem, set
a value for the maxreps attribute of the {## repeat} macro or configure the operating
system to allow more file handles.

Element Definitions

The following is a list of all elements and a short description of each (for a description
of valid values for x, see Indexes and Structure-Based Breaking):

¢ sheets
Type: Repeatable

Description: See sections later in this list.

¢ slides
Type: Repeatable

Description: See sections later in this list.

* sections
Type: Repeatable

Description: Sections are used to represent the highest level of abstraction within
the source file. In general, word processor documents will have only one section,
the document itself. Spreadsheets have one section for each sheet or chart.
Presentations have one section for each slide. Archives have one section for each
item in the archive. Graphics generally have one section but may have more as in a
multi-page TIFF. For convenience and readability, sheets and slides are
synonymous with sections.

* sections.x.body
Type: Leaf

Description: This element represents the main textual area of the source file.

Templates 3-5

The Document Tree and lts Elements

3-6 Developer's Guide

For word processing documents, it includes the entire document excluding
footnote, endnotes, headers, footers and annotations. (Footnote/endnote references
are always included automatically in the body. If the template includes footnotes/
endnotes, then these references provide a link to the note. Annotation references
are not placed in the body unless the template includes annotations, in which case
they provide links to the annotations.)

For emails, this is the message itself.

For spreadsheets, it includes the entire sheet.

For graphics, it includes any text that actually appears as text in the file format.
For multimedia files, the body does not exist at this time.

For archive formats, the meaning is arctype-specific. When arctype is file, this is the
summation (as needed):

sections. x.path +

the directory separator character being used +

sections. x. basenane

Note that sections only exist for entries in the archive file that have files associated
with them. In particular, entries in the archive file that are for directories are
ignored.

Also note that directory separators are OS-dependent. For example, Windows uses
back slashes (\) and allows forward slashes (/), UNIX uses the forward slash, and
Macs use a colon (:). The directory separator being used depends on how the
directory separator is coded in the archive file.

When arctype is message, cal, task or journal, this is the subject of the file. When
arctype is contact, this is the name of the contact. When arctype is note, this is the
contents of the note. When arctype is attach, this is the filename of the attachment
or a link to the extracted and converted attachment. When arctype is fieldsfile, this
is the list of fields.

This element is empty when the input file is a multimedia file.

sections.x.to
Type: Leaf

Description: "To" addresses from an email or email archive.

sections.x.from

Type: Leaf

Description: "From" addresses from an email or email archive.
sections.x.cc

Type: Leaf

Description: "CC" addresses from an email or email archive.

sections.x.content

Type: Leaf

The Document Tree and Its Elements

Description: Same as sections.x.decompressedfile. For archive files, the meaning is
arctype-specific. When arctype is file, the file in the archive is extracted and
converted. For all other arctypes, this is the contents of the item.

Note that this element may not be inserted into a document. If it is used with the
{##insert} template macro, a template error will be returned.

sections.x.image
Type: Leaf

Description: This element represents a graphic image of the content of the section.
It is valid only for bitmap, drawing, chart and presentation sections.

sections.x.bodyorimage
Type: Leaf

Description: This element exists to make it easy to build templates that handle a
range of section types. In word processor documents, spreadsheet and database
sections, and archive elements, bodyorimage is synonymous with body. In bitmap,
drawing, multimedia, chart and presentation sections, bodyorimage is
synonymous with image. For multimedia files, bodyorimage does not exist at this
time.

sections.x.type
Type: Leaf

Description: This element is normally used only for query purposes, but it may be
inserted as well. For further details on how to use this in an {## if} macro, see
Conditional: {## if}, {## elseif}, and {## else}.

sections.x.arctype
Type: Leaf

Description: For archive formats, this describes what kind of archive. Currently
defined archive types include:

file
message
contact
cal

note
task
journal
attach
fieldsfile

sections.x.fullname

Type: Leaf

Description: This is the full name (including path, if applicable) of a file in an
archive if the arctype for the archive is file. For archive formats, this is synonymous
with body. For all other formats, it is not defined.

sections.x.basename

Templates 3-7

The Document Tree and lts Elements

3-8 Developer's Guide

Type: Leaf

Description: For archive formats where the arctype is file, this is the file name for
the item in the archive without any path info. This element is undefined for all
other input file types.

sections.x.title
Type: Leaf

Description: Same as sections.x.body.title. For word processor documents, this
element is the text marked with the title style. This may be different than the
property.title. For archive files, this is the same as sections.x.body. For all other
types, this element will be the "name" of the section. For example, if the source file
is a spreadsheet, this element will be the name of the sheet as it appears on the
spreadsheet application's navigation tabs.

For archive formats, this is synonymous with body.

For email and email archive sections, this is the subject of the subject field of the
email.

For multimedia files, this does not exist at this time.

sections.x.path
Type: Leaf

Description: For archive files where the arctype is file, this is any path information
provided for the current archive item. Does not include a trailing directory
separator character. This element may be the empty string (" "). This element is
undefined for all other input file types.

sections.x.itemnum
Type: Leaf

Description: For archive formats, this is the (unsorted) entry number of the current
file in the archive. The first entry is itemnum one ("1"), not zero ("0"). All entries in
archive files have an associated itemnum. However, not all entries in archive files
have an associated section number. This is because archive entries for directories
are skipped when sections are generated by HTML Export. Therefore, inserting this
element is not functionally equivalent to {## insert number=sections.x.value}. This
element is undefined for all other input file types.

sections.x.reflink

Type: Leaf

Description: For archive formats, this is a URL composed of
the input file name

n

the subdocument spec for the archive entry

The intent of this element is to provide a string that can be passed to
DAOpenDocument in a future export to a specific entry in the archive file currently
being exported. The target of the reflink is not necessarily converted into HTML. In
this usage scenario:

1. The original export is run producing the reflink.

The Document Tree and Its Elements

2. The user clicks on the reflink in the output document

3. The OEM's program interprets the reflink and passes it to a
DAOpenDocument. It then runs HTML Export and serves the output back to
the user.

Users of redirected 10 should also note that they must handle the IOGetInfo call for
IOGETINFO_PATHNAME. It must return a path name for the archive file that
HTML Export can use to build the reflink. In addition, the calling program will
need to be able to correctly interpret the resultant reflink to be sure it can
subsequently be passed to a future call to DAOpenDocument.

This element is undefined for all other input file types.

sections.x.decompressedfile
Type: Leaf

Description: For archive formats, this extracts the file in the archive and converts it.
Note that this element may not be inserted into a document. If it is used with {##
insert}, a template error will be returned.

This element is undefined for non-archive input file types.

For archive formats, this is arctype-specific. When arctype is file, the file is
converted to the designated output format. When arctype is message, this is the
contents of the email. When arctype is contact, this is the contents of the contact
info. When arctype is cal, this is the contents of the calendar entry. When arctype is
note, this is the contents of the note. When arctype is task, this is the contents of the
task. When arctype is journal, this is the contents of the journal entry. When
arctype is attach, this is the contents of the attachment. When arctype is fieldsfile,
this is the list of fields.

sections.x.size

Type: Leaf

Description: This applies to all archive types except those of type fieldslist.
This is the uncompressed file size of the entry in the archive.

This element is undefined for all other input file types.

sections.x.date
Type: Leaf

Description: For archive formats, this is arctype-specific. When arctype is file, this
is the file modification time stamp for this entry in the archive. When arctype is
message, this is the time the message was last modified. When arctype is cal, this is
the start time/date of the event. When arctype is task, this is the due date for the
task. When arctype is journal, this is the start time. When arctype is attach, this is
the date of the attachment. This value is undefined for the contact and note
arctypes.

For email sections, this is the submitted time field from the email.

This element is undefined for archives of type fieldsfile.

sections.x.mailfields

Type: Repeatable

Templates 3-9

The Document Tree and lts Elements

Description: For email sections, this is used to iterate through the complete set of
fields available in emails. This includes all of the named fields (like sections.x.date)
as well as fields that are not explicitly named (like "bec”). This is undefined for all
other section types.

* sections.x.mailfields.x.body
Type: Leaf

Description: For email sections, this element is the value of a field from the email.
This is undefined for all other section types.

e gections.x.mailfields.x.name
Type: Leaf

Description: For email sections, this element is the name of a field from the email.
This is undefined for all other section types.

* sections.x.body.title
Type: Leaf

Description: For word processor documents, this element is the text marked with
the title style. This may be different than the property.title.

For archive formats, this is synonymous with body.
For multimedia formats, this does not exist at this time.

For all other document types, this element will be the "name" of the section. For
example, if the source file is a spreadsheet, this element will be the name of the
sheet as it appears on the spreadsheet application's navigation tabs.

¢ sections.x.body.contents
Type: Leaf

Description: For word processor documents, this is the same as sections.x.body.
This is to maintain backwards compatibility with templates written before
sections.x.body.title was legal for word processor documents, a feature added in
the 7.0 release.

For multimedia files, this does not exist at this time.

For all other document types, this is the same as the body minus the title, if a title
exists.

* sections.x.body.contents.preface
Type: Leaf
Description: Text between the top of the body and the first heading.

¢ sections.x.body.contents.headings
Type: Repeatable

Description: Headings are labels in a word processor document inserted by the
author to give a document structure (for further details of headings, see Breaking
Documents by Structure). HTML Export reads this structure and, through the use
of the headings element, allows the developer to access it.

¢ sections.x.body.contents.headings.x.body...

Type: Leaf with Leafs and Repeatables below

3-10 Developer's Guide

The Document Tree and Its Elements

Description: Under each heading, the structure of a complete document from body
down is repeated. For more information on how these elements map to parts of a
document, see Breaking Documents by Structure.

sections.x.body.contents.headings.x.footnotes...
Type: Repeatable with Leafs below

Description: Only footnotes contained in this heading.

sections.x.body.contents.headings.x.endnotes...
Type: Repeatable with Leafs below

Description: Only endnotes contained in this heading.

sections.x.body.contents.headings.x.annotations...
Type: Repeatable with Leafs below

Description: Only annotations contained in this heading.

sections.x.grids
Type: Repeatable

Description: Only valid for spreadsheet and database formats. This permits access
to the "grids" inside a section or sheet of a spreadsheet or database file.

sections.x.grids.x.body
Type: Repeatable

Description: Only valid for spreadsheet and database formats. This permits access
to the "grids" inside a section or sheet of a spreadsheet or database file.

sections.x.arcfields
Type: Repeatable
Description: All of the supported fields in the archive including the named fields

such as sections.x.date and sections.x.basename. Each arcfield is a name/value
pair.
sections.x.arcfields.x.body

Type: Leaf

Description: Value of the data for a given field in an archive file. Not defined for
non-archive files.

sections.x.arcfields.x.name
Type: Leaf

Description: Name of the data field from an archive file. Not defined for non-
archive files.

sections.x.footnotes

Type: Repeatable
Description: All footnotes.
sections.x.footnotes.x.body

Type: Leaf

Templates 3-11

The Document Tree and lts Elements

Description: The complete footnote reference and content text.

* sections.x.footnotes.x.reference
Type: Leaf

Description: The reference number for the footnote.

® gsections.x.footnotes.x.content
Type: Leaf

Description: The content text for the footnote.

* sections.x.endnotes...
Type: Repeatable with Leafs below

Description: Same definitions as footnotes.

® sections.x.annotations
Type: Repeatable

Description: All annotations. In templates, the term "annotations" refers to
annotations made inside an authoring application (for example, "comments" in a
Microsoft Word document) and do not refer to the annotations created via the
Export Annotation APIL

* sections.x.annotations.x.body
Type: Leaf

Description: The complete annotation reference and content text.

e gsections.x.annotations.x.reference
Type: Leaf

Description: The reference text for the annotation.

® sections.x.annotations.x.content
Type: Leaf

Description: The content text for the annotation.

* sections.x.slidenotes
Type: Repeatable
Description: All slide notes.

It should be noted that exporting the slide notes will slow down the conversion
process for PowerPoint files.

* sections.x.slidenotes.x.body
Type: Leaf
Description: The notes for the current slide.

Developers are encouraged to write slide notes at the end of the output file for
performance reasons (PowerPoint files keep slide notes at the end of the file, not
next to each slide). Not doing so will slow conversion, as the technology will be
forced to perform excessive seeking in the input file.

e gections.x.slidenotes.x.reference

3-12 Developer's Guide

The Document Tree and Its Elements

Type: Leaf

Description: The slide note text for the annotation.

sections.x.slidenotes.x.content
Type: Leaf

Description: The content text for the slide note.

sections.x.headers
Type: Repeatable
Description: All headers.

sections.x.headers.x.body
Type: Leaf
Description: Text of the header.

sections.x.footers
Type: Repeatable

Description: All footers.

sections.x.footers.x.body
Type: Leaf

Description: Text of the footer.

property.all
Type: Repeatable

Description: This permits access to all properties including those specifically
accessible through property elements described in this table, and includes both the
"name" and the " body" of the property. The properties supported depend on file
format. See the Outside In Content Access Developer Guide for a list of possible
predefined properties. Some file formats also allow for additional user-definable
properties.

At this time, only properties may be extracted from multimedia files.

property.all.x.name

Type: Leaf

Description: Descriptive name for the property.
property.all.x.body

Type: Leaf

Description: Text of the property.
property.album

Type: Leaf

Description: Album property of the source file. Valid only for multimedia files.
property.artist

Type: Leaf

Templates 3-13

The Document Tree and lts Elements

Description: Artist property of the source file. Valid only for multimedia files.

® property.author

Type: Leaf

Description: Author property of the source file.
* property.title

Type: Leaf

Description: Title property of the source file.
® property.subject

Type: Leaf

Description: Subject property of the source file.
* property.keywords

Type: Leaf

Description: Keywords property of the source file.

® property.comment
Type: Leaf

Description: Comment property of the source file.

¢ property.others
Type: Repeatable

Description: This permits access to all properties not specifically accessible through
property elements described in this table, and includes both the "name" and the "
body" of the property. The other properties supported depend on file format. See
the Outside In Content Access Developer Guide for a list of possible predefined
properties. Some file formats also allow for additional user-definable properties.

At this time, only properties may be extracted from multimedia files.

® property.others.x.name
Type: Leaf

Description: Descriptive name for the property.

e property.others.x.body
Type: Leaf
Description: Text of the property.

* pragma.charset
Type: Leaf

Description: The text string associated with the character set of the characters that
HTML Export is generating. In order for HTML Export to correctly code the
character set into the output it generates, all templates should include a <meta> tag
that uses the {## insert} macro as follows:

<meta HTTP- EQU V="Cont ent - Type" CONTENT="text/htm ; charset={## insert
el ement =pr agma. charset}" />

3-14 Developer's Guide

The Document Tree and Its Elements

If the template does not include this line, the user will have to manually select the
correct character set in their browser.

pragma.cssfile
Type: Leaf

Description: This element is used to insert the name of the Cascading Style Sheet
(CSS) file into HTML documents. This name is typically used in conjunction with
an HTML <link> tag to reference styles contained in the CSS file generated by
HTML Export.

When used with the {## insert} macro, this pragma will generate the URL of the
CSS file that is created. This macro must be used with {# insert} inside every
template file that inserts contents of the source file and when the selected HTML
flavor supports CSS. The CSS file will only be created if the selected HTML flavor
supports CSS.

When used with the {## if} macro, the conditional will be true if the selected HTML
flavor supports Cascading Style Sheets or not.

NOTE: If CSS is required for the output, the following code must be used:
{## if element=pragma.embeddedcss}

or

{## if element=pragma.cssfile}

However, HTML Export does not differentiate between the two, as the choice of
using embedded CSS vs. external CSS is the template author's decision and the
author may even wish to mix the two in the output.

An example of how to use this pragma that works when exporting either CSS or
non-CSS flavors of HTML would be as follows:

{## if element=pragma.cssfile}
<link rel="stylesheet"
href="{## insert
element=pragma.cssfile}">
</link>
{## /if}

pragma.embeddedcss
Type: Leaf

Description: This element is used to insert CSS style definitions in a single block in
the <head> of the document.

When used with the {## insert} macro, this pragma will insert the block of CSS style
definitions needed for use later in the file. This macro must be used inside every
output HTML file where {## insert} is used to insert document content.

When used with the {## if} macro, the conditional will be true if the selected HTML
flavor supports CSS.

NOTE: If CSS is required for the output, the following code must be used:
{## if element=pragma.embeddedcss}

or

Templates 3-15

Macro Reference

Default Nodes

{## if element=pragma.cssfile}

However, HTML Export does not differentiate between the two, as the choice of
using embedded CSS vs. external CSS is the template author's decision and the
author may even wish to mix the two in the output.

If a style is used anywhere in the input document, that style will show up in the
embedded CSS generated for all the output HTML files generated for the input file.
Consider a template that splits its output into multiple HTML files. In this example,
the input file contains the "MyStyle" style. It does not matter if during the
conversion only one output HTML file actually references the "MyStyle" style. The
"MyStyle" style definition will still show up in the embedded CSS for all the output
files, including those files that never reference this style.

pragma jsfile
Type: Leaf

Description: This element is used to insert the name of the JavaScript file into
HTML documents. This name is typically used in conjunction with an HTML
<script> tag to reference JavaScript contained in the js file generated by HTML
Export.

When used with the {## insert} macro, this pragma will generate the URL of the
JavaScript file that is created. This macro must be used with {## insert} inside every
template file that inserts contents of the source file when:

The selected HTML flavor supports JavaScript.
The javaScriptTabs option has been set to true.

The JavaScript file will only be created if the selected HTML flavor supports
JavaScript.

When used with the {## if} macro, the conditional will depend upon whether the
selected HTML flavor supports JavaScript or not.

pragma.sourcefilename
Type: Leaf

Description: The name of the source document being exported. Note that this does
not include the path name. When exporting documents inside of archive files, this
is the name of the file inside the archive. For example, if the first file inside of
archive.zip is myfile.doc, then exporting archive.zip?item.1 would use myfile.doc
as the pragma.sourcefilename.

For convenience, certain nodes in an element path may be skipped because they
represent the obvious default behavior. These nodes include the sections node
(sections.current.body.title is equivalent to body.title), and the body and contents
nodes (body.contents.headings.1.body is equivalent to headings.1.body). Please note
that these nodes may not be skipped if they are the last node in the path (headings.
1.body is not equivalent to headings.1). For further examples, see Breaking Documents
by Structure.

Macro Reference

Macros are commands to HTML Export within the template. Despite their casual
similarity to HTML tags, they are not bound by any of the rules tags would usually

3-16 Developer's Guide

Macro Reference

follow inside an HTML file. Macros may appear anywhere in the template file, except
inside another macro.

In the documentation and examples, the pieces of a macro are always shown delimited
by spaces, however semicolons may also delimit them. This option was added to
accommodate certain editors. In these editors, URLs entered into dialog boxes may not
have non-quoted spaces. This makes it difficult or impossible to use the {## link}
macro in these situations.

For example:

{## insert elenment=sections.l.body}

may also be written

{##; i nsert; el ement =sections. 1. body}

Note that template macro string parameters and options support sprintf style escaped
characters. This means that characters such as \x22, \r and %% are supported. Also
note that most template attribute values may be quoted. The exception is template
element strings, which may not be quoted at this time.

For example:

{## anchor aref="next"
format="Next
\r\n"}

Units: {## unit}, {## header}, and {## footer}

If a template file is going to make use of the {## unit} macro at all, a {## unit} macro
must be the first macro in the template file. It delimits the beginning and end of each
unit. Unit boundaries are used when determining where to break the document when
breaking based on content size.

A unit consists of a header, a footer (both of which are optional), and a body (which
may be empty). To ensure that the header is the first item in the template and the
footer is the last item, text between the {## unit} tag and the {## header} tag will be
ignored, as will text between the {## /footer} tag and the {## /unit} tag, including
whitespace. The header and footer of a unit will be output in every page containing
that unit, enclosing that portion of the unit's body that is able to fit in a particular
page. The entire template is a unit that may contain additional units.

An overview of using units in templates with examples is provided in Units - Breaking
Documents by Content Size.

Syntax

{## unit [BREAK]}
[{## header}
any HTML
{## | header}]

any HTML
[{## footer}
any HTML

{## Ifooter}]
{## [unit}

Templates 3-17

Macro Reference

Attributes
BREAK

This optional attribute of the unit macro will force page actions in HTML Export and
non-page actions in other export products. It forces a break (page break in HTML
Export) before inserting the unit contents unless doing so would cause the body of the
first page to be empty. One situation where this attribute would be useful would be to
force a page break between each section of a document, perhaps to get one
presentation slide per page.

The {## unit} macro and its BREAK attribute are ignored when
SCCOPT_EX_PAGESIZE or pagesize (Transformation Server) is set to zero.

It is sometimes important to make sure that a break does not occur in the midst of text
that is intended to be on the same page. To prevent breaks like this from occurring,
enclose the text that should be kept on the same page inside a nested {## unit}{##
header} pair. For example, to prevent a page break from occurring while a link is being
created, the template author might write something like the following:

{## unit}{## header}
Li nk
{## [header}{## /unit}

Insert Element: {## insert}

This macro inserts an element of the source document into the output file at the
current location.

Syntax

{## insert [ELEMENT=el ement [W DTH=wi dth] [HElI GHT=hei ght]
[SUPPRESS=suppr ess] [TRUNCATE=truncate]] | [NUMBER=nunber]

[URLENCODE] }

Attributes
ELEMENT

This attribute describes which part of the source document should be placed in the
output file at the location of the macro. For the possible values for this attribute, see
The Included Sample Templates.

Note the name of the element being inserted may not be enclosed in quotes.
Example:

{## insert elenment=sections.l.body}

WIDTH

This optional attribute defines the width in pixels of the element being inserted. It is
currently only valid for the image element. If the WIDTH attribute is not present but
the HEIGHT attribute is, the width of the image will be calculated automatically based
on the shape of the element. If both the WIDTH and HEIGHT attributes are not
present, the image's original dimensions are used. If the image's original dimensions
are unknown, the defaults assume a HEIGHT and WIDTH of 200.

Example:

{## insert elenment=slides.1. imge w dth=400}

3-18 Developer's Guide

Macro Reference

HEIGHT

This optional attribute defines the height in pixels of the element being inserted. It is
currently only valid for the image element. If the HEIGHT attribute is not present, but
the WIDTH attribute is, the height of the image will be calculated automatically based
on the shape of the element.

Example:

{## insert element=slides.1. inmge height=400}

SUPPRESS

This optional attribute allows certain things to be suppressed from the output. This is
very useful if elements need to be inserted in contexts where HTML is not appropriate,
such as passing information to Java applets, ActiveX controls or populating parts of a
form.

Possible values are as follows:

¢ TAGS: Al HTML tags will be suppressed from the output of the element, however
the text may still contain HTML character codes like " or {

For embedded graphics such as those found in word processing sections and
spread sheets, both the URL and the tag will be suppressed. Because there
would be no way to access the resulting converted embedded graphic, conversion
of the graphic is not performed.

Example:

<f or m net hod="POST" >

<input type="text" size="20" name="author" val ue="{## insert
el ement =property. aut hor suppress=tags}">

</form

¢ BOOKMARKS: Turns off all bookmarks in the inserted section. Bookmarks
automatically precede many inserted elements so that other template elements may
link to them. suppress=bookmarks is provided to prevent problems with nested
<a> tags. Note that this represents a subset of the suppression behavior provided
by suppress=tags.

¢ INVALIDXMLTAGCHARS :Drops from the output all characters that are not
allowed in XML tag names. This is designed to allow template authors to {## insert}
custom document property names inside angle brackets ("<" and ">") to create
XML tags. Most characters in Unicode and its subset character sets may be used as
part of XML tag names. Illegal tag characters include "control" characters such as
line feed and carriage return. Additionally, there are special rules for what
characters can be the first character in a tag name. See the XML specification for a

description of legal tag name characters.
Example:

{## repeat sections.property.others}

<{## insert elenent=property.others.current.nanme
suppr ess=i nval i dxnl t agchar s} >

<{## insert elenent=property.others.current.body
suppr ess=i nval i dxnl t agchar s} >

</{## insert elenment=property.others.current.name
suppr ess=i nval i dxnl t agchar s} >

{/## repeat}

produces something similar to the following:

Templates 3-19

Macro Reference

<MyPropert y>PropertyVal ue</ MyProperty>
TRUNCATE

When set, this attribute forces a maximum length in characters for the inserted
element. This allows elements to be truncated rather than broken across pages when
the page size option is in use. Truncated elements will end with the truncation
identifier which is "..." (three periods). All elements that have a truncate value will be
no more than the specified number of characters in length including the length of the
truncation identifier. In HTML Export, elements are inserted in their entirety if no
truncation size is specified. The value of this attribute must be greater than or equal to
5 characters. In other products, elements are simply specified.

An example of a situation where element truncation is useful is to limit the size of
entries when building a table of contents.

The TRUNCATE attribute implies suppression of tags for the insert. It also auto
applies the no source formatting option for the insert.

Note that the TRUNCATE attribute cannot be used with custom elements, because the
custom element definition precludes the existence of any other attributes to {## insert}.

The TRUNCATE attribute has three special aspects to its behavior when grids are
being inserted:

e When truncation is in effect, the truncation size refers to the number of characters
of content in each cell - not the number of characters in the grid as a whole.

e While truncation normally causes all markup tags to be suppressed, when grids are
in use, the table tags are retained (assuming that the output flavor supports tables).

* Users are reminded that only one grid size may be selected for each spreadsheet
sheet or database inserted. The size of the grid will be based in part on the
TRUNCATE value if one or both the grid dimensions are not specified and the
SCCOPT_EX_PAGESIZE or pageSize option (Transformation Server) is in use. In
this situation, if a grid from a single sheet is inserted in more than one place in the
template, and there are differing TRUNCATE values, then the grid dimensions will
be based on the largest TRUNCATE value specified.

NUMBER

This attribute allows the developer to retrieve the total instance count or the current
index value of any repeatable element. This can be very useful for writing JavaScript,
BasicScript, etc. Four special keywords ("count", "countbQ", "value" and "valueb0")
don't appear in the document tree but can be used as nodes in the following special
cases:

¢ count / countb0: When appended to a repeating element and used with the
NUMBER attribute, these nodes allow the developer to insert a text representation
of the number of instances of the given repeatable element. count gives the count
assuming the first index is 1 and countb0 gives it assuming the first index is 0. For
example, if a presentation has three slides, the following template fragment:

<p>{## insert nunber=slides.count}</p>
<p>{## insert nunber=slides.countb0}</p>

will produce the following text:

<p>3</ p>
<p>2</ p>

3-20 Developer's Guide

Macro Reference

* value / valueb0O: When appended to a repeating element and used with the
NUMBER attribute these nodes allow the developer to insert a text representation
of the current value of the index of the given repeatable element. value gives the
count assuming the first index is 1 and valueb0 gives it assuming the first index is
0. For example, if the current value of the index on slides is 2, the following
template fragment:

<p>{## insert nunber=slides.current.value}</p>
<p>{## insert nunber=slides.current.val ueb0}</p>

will produce the following text:

<p>2</ p>
<p>1</p>

URLENCODE

This optional attribute causes the inserted element to be URL encoded. As such, it is
ignored unless it is specified as part of an insert that contains a file name. The
following elements may be URL encoded:

¢ pragma.sourcefilename
e pragma.cssfile
¢ pragma.embeddedcss

e pragma.jsfile (HTML Export only)

In addition, the following elements will be URL encoded when the section type is
"Archive" or "AR™:

e gections.x.fullname

sections.x.basename
® sections.x.body
® sections.x.title

® gsections.x.reflink

For all other {## insert}s, this attribute is ignored. As such, OEMs should note that
HTML Export does not modify any URLs coming out of the input documents being
converted. These URLs continue to be passed through as is. This attribute is also
ignored if the URL was created using the EX_CALLBACK_ID_CREATENEWFILE
callback. Such URLs are assumed to already be URL encoded.

A Note on Inserting Properties

Because of the special ways that properties are used in documents, property strings
are inserted into the output files a little differently than other {## insert} macros. First,
the property is always inserted as if the SCCOPT_EX_NOSOURCEFORMATTING or
noSourceFormatting (Transformation Server) option were set. This prevents
formatting characters such as newlines from interfering with the property strings.
Second, the property is always inserted as if the template specified suppress=tags.
This provides the template writer with maximum control over how property strings
are presented.

Templates 3-21

Macro Reference

Conditional: {## if}, {## elseif}, and {## else}

These macros allow areas of the template to be used or ignored based on information
about an element of the source file.

Syntax

{## if ELEMENT=el ement [CONDI TI ON=Exi st s| Not Exi st s]
[VALUE=val ue] }

any HTML
{## 1if}

or

{## if ELEMENT=el ement [[CONDI Tl ON=Exi sts| Not Exi sts] |
[VALUE=val ue]]}
any HTML
{## el se}
any HTML
{## 1if}

or

{## if ELEMENT=el ement [[CONDI Tl ON=Exi sts| Not Exi sts] |
[VALUE=val ue]]}
any HTML
{## el seif ELEMENT=el enent [[CONDI TI ON=Exi st s| Not Exi sts] |
[VALUE=val ue]]}}
any HTML
{## el se}
any HTM.
{## 1if}

Note that multiple instances of {## elseif} may be used after {## if}. In addition, {##
else} is not required when using {## elseif}.

Attributes
ELEMENT

This attribute describes which part of the source file should be tested. For the possible
values for this attribute, see The Document Tree and Its Elements. If neither the
CONDITION nor VALUE attribute exists, the element is tested for existence.

CONDITION

Defines the condition the element is tested for, possible values are Exists and
NotEXxists.

VALUE

Defines the values the element should be tested against. The VALUE attribute is
currently valid only for the sections.x.type element for testing of the type of a section
of the source file. Possible values include:

e ar: Archive
* bm: Bitmap

e ch: Chart

3-22 Developer's Guide

Macro Reference

e db: Database

¢ dr: Drawing

e em: Email

e mm: Multimedia
* pr: Presentation
® ss: Spreadsheet

* wp: Word processor document
Example 1:

{## if el ement=property.coment}

<p>Conmment property exists</p>
{## el se}

<p><i >Comment property does not exist</i></p>
{## 1if}

{## if el ement=sections. 1. type val ue=wp}
<p>The source file is a word processor file</hb></p>
{## 1if}

{## if el ement=sections.l. type val ue=ss}
<p>Spr eadsheet </ p>

{## el seif element=sections. 1. type val ue=ar}
<p>Ar chi ve</ p>

{## el seif elenment=sections. 1. type val ue=ch}
<p>Chart </ p>

{## el se}
<p>Not ss, ar, or ch</p>

{## 1if}

Example 2:

{## if el ement=sections.current.type val ue=pr
condi ti on=not exi st s}
<p>\ can do sonething here for all docunent types
other than presentations.</p>
{## el se}
<p>This is used only for presentations.</p>
{## 1if}

Loop: {## repeat}

This macro allows an area of the template to be repeated, once for each occurrence of
an element.

Syntax

{## repeat ELEMENT=el enent [MAXREPS=nmxreps] [SORT=sort]}
any HTM.
{## [repeat}

Attributes
ELEMENT

Templates 3-23

Macro Reference

This attribute describes which part of the source file should be repeated on. It must be
a repeatable element. For the possible values for this attribute, see The Document Tree
and Its Elements.

When using HTML Export, any HTML may be defined between the {## repeat} macro
and its closing {## /repeat} macro. This HTML will be repeated once for each instance
for the element specified. In addition, the index variable current may be used in any
other {##} macro as the element-index of the element being repeated. For instance, the
following HTML in the template will produce a list of the footnotes in a document:

<htn >
<body>
<p>Here are the footnotes</p>
{## repeat el ement =f oot not es}
{## insert el enent=footnotes.current.body}
{## [repeat}
<p>No nore footnotes</p>
</ body>
</htm>

Similarly, the following HTML in the template will insert the names of all the items in
an archive:

{## repeat el ement=sections}
{## insert el ement=sections.current.fullname}
{## [repeat}

MAXREPS

This attribute limits the total number of loops the repeat statement may make to the
value specified. It is useful for preventing exceptionally large documents from
producing an unwieldy amount of output.

SORT

This optional attribute defines whether to sort the output or not. This attribute is
ignored if the input file is not an archive file of arctype file. All sorts are done based on
the character encoding of the values in the input file. The sorts are also case insensitive
at this time. Valid values of the sort attribute are:

¢ fullname: Sort by sections.current.fullname
* basename: Sort by sections.current.basename

¢ none: No sorting is done. This is the default.

Linking with Structured Breaking: {## link}

This macro generates a relative URL to a piece of the document produced by HTML
Export. Normally this URL would then be encapsulated by the template with HTML
anchor tags to create a link. {## link]} is particularly powerful when used within a {##
repeat} loop.

Syntax
{## |ink ELEMENT=el enent [TOP]}

or

{## 1ink TEMPLATE=t enpl at e}

3-24 Developer's Guide

Macro Reference

or

{## |ink ELEMENT=el enent TEMPLATE=tenplate [TOP]}

Attributes
ELEMENT

Defines the element that is the target for the link. The URL that the {## link} macro
generates will point to the first instance of this element in the output file. If this
attribute is not present, the resulting URL will link to any output file that was
produced with the specified template. If such a file does not exist, the specified
template will be used to generate a file.

Remember that each element has one or more index values, some of which may be
variables. An example of this type of index variable is the "current" in
sections.current.body. Use of {## link} affects the value of those index variables, which
may cause subtle side effects in the behavior of the linked template file. For a
description of how {## link} affects the index of inserted elements, see Indexes and
Structure-Based Breaking.

TEMPLATE

The name of a template file which must exist in the same directory as the original
template file. If this attribute is not present, the current template will be used. If an
element was specified in the {## link}, then the template must contain a {## insert}
statement using that element.

It is important to note that while the template language is normally case insensitive,
the case of the template file names specified here is important. The file name specified
for the template is passed as is to the operating system. On operating systems such as
UNIX, if the wrong case is given for the template file name, the template file will not
be found and an error will be returned.

TOP

This attribute is only meaningful if an element is specified in the {## link} command.
When this attribute exists, the generated URL will not contain a bookmark, and
therefore the resulting link will always jump to the top of the HTML file (HTML
Export) or file containing the specified element. This is useful if the top of the template
has navigation or other information that the developer would like the user to see.

{## link} Usage Scenarios

Using the first syntax shown at the beginning of this section, a URL for the element
bookmark is inserted in the document. Normally this syntax is used to create
intradocument links to aid navigation. An example would be creating a link to the
next section of the document.

In the second syntax, a URL is created to an output file generated by the specified
template. This template is run on the same source document, but may extract different
parts of the document. Normally, in this syntax, the "main" template contains a link to
a second HTML file. This second file is generated using the template specified by the
{## link} command and contains other document elements. As an example, the "main"
template could produce a file containing the body of the document and a link to the
second HTML file, which contains the footnotes and endnotes.

The third and most powerful syntax also produces the URL of a file generated by the
specified template. This template is then expected to contain an insertion of the
specified element. Normally this syntax is used with repeatable elements. It allows the
author to generate multiple output files with sequential pieces of the document. As

Templates 3-25

Macro Reference

such it provides a way to break large documents up into smaller, more readable
pieces. An example of where this syntax would be used is a template that generates a
"table of contents" in one HTML file (perhaps a separate HTML frame). The entries in
the table are then links to other HTML files generated by different templates.

Note that a {## link} statement which specifies a template does not always result in a
new file being created. New files are only created if the target of the link does not exist
yet. So if for example two {## link} statements specify the same element and template,
only one HTML file is produced and the same URL will be used by both {## link}
statements.

{## link} Archive File Example

The following template generates a list of links to all the extracted and converted files
from the source archive file (represented by decompressedFile in the following
example):

{## repeat el ement=sections}

<p><a href="{## link

el ement =sect i ons. current. deconpressedFil e} ">

{## insert El enment=sections.current.fullname}</p>
{## |repeat}

{## link} Presentation File Example

The following example (template.htm) uses the first syntax to generate a set of HTML
files, one for each slide in a presentation. Each slide will include links to the previous
and next slides and the first slide. Note the use of {## if} macros so the first and last
slides do not have Previous and Next links respectively:

tenmpl ate. htm

<htm >
<body>
{## insert elenent=slides.current.imge w dth=300}
<hr />
{## if el ement=slides. previous.inmge}
<p>
previ ous</ a></ p>
{## 1if}
{## if el ement=slides.next.inmge}
<p><a href={## link el enent=
sl ides. next.image} >Next </ a></ p>
{## 1if}
</ body>
</htm >

Due to the side effects of {## link} using the element attribute, there can be some
confusion over what values "current”, "previous" and "next" have when each {## link]}
is processed. To better illustrate how this template works, consider running it on a

presentation that contains three slides:
First Output File

Because no template is specified in the {## link} statements, template.htm is (re)used as
the template for all {## link} statements. For the first slide, nothing interesting happens
until slides.next is encountered. Because slides.current is 1 in this case, slides.next
refers to slides.2 and the {## link]} is performed on slides.2.image. This {## link] fills in
the anchor tag with the URL for the output file containing the second slide. Because no
file containing slides.2 exists, {## link} opens a new file.

3-26 Developer's Guide

Macro Reference

Second Output File

For the second slide the template is rerun. slides.current now refers to slides.2,
slides.previous refers to slides.1 and slides.next refers to slides.3. The {## insert}
statement will insert the second slide.

The {## if} statement referring to slides.previous succeeds. Because the file containing
slides.1 already exists, no additional file is created. The anchor tag will be filled in with
the URL for the first output file.

The {## if} statement referring to slides.next also succeeds and the anchor tag will be
filled in with the URL for the output file containing the third slide. Because no file
containing slides.3 exists, {## link} opens a new file.

Third Output File

For the third slide the template is rerun. slides.current now refers to slides.3 and
slides.previous refers to slides.2. slides.next refers to slides.4, which does not exist. The
{## insert} statement will insert the third slide.

The {## if} statement referring to slides.previous succeeds. Because the file containing
slides.2 already exists, no additional file is created. The anchor tag will be filled in with
the URL for the second output file.

The {## if} statement referring to slides.next fails. At this point processing is essentially
complete.

Linking with Content Size Breaking: {## anchor}

This macro generates a relative URL to a piece of the document produced by HTML
Export when doing document breaking based on content size.

Syntax

{## anchor AREF=type [STEP=stepval] FORMAT="anchorfmt" [ALTLI NK="el enent"]
[ALTTEXT="text"]}

Attributes
AREF

Indicates the relation of the target of the link to the current file. Allowable values for
this attribute are:

e InsertStart: First page of the inserted element

¢ InsertEnd: Last page of the inserted element

e Next: Next page in the inserted element

¢ Prev: Previous page in the inserted element

o FirstFile: First page created for the entire document

¢ LastFile: Last page created for the entire document
STEP

This attribute is used to insert a link to "fast forward/rewind" through the output
pages. This attribute may only be used if AREF is "next" or "prev". It is specified as a
non-zero positive integer. For example, to insert a link to skip ahead 5 pages in a
document, the following statement could be used:

Templates 3-27

Macro Reference

{## unit aref="next" st ep:" 5"
format ="<p>Next </ a></ p>"}

If not specified, the default value of "step" is one (1), which corresponds to the next/
previous page. This attribute has no meaning when aref equals "insertstart”,
"insertend", "firstfile" or "lastfile".

FORMAT

This is an sprintf style format string specifying the text to output as the link. HTML
Export replaces the %url format specifier with the target URL into the format string.
For example:

{## anchor aref="next"
format="Next
\r\n"}

ALTLINK

An attribute used to specify the target of the anchor if it cannot be resolved based on
the anchor type. For example, the final file of a breakable element has no "next" file,
and thus would resolve to nothing. However, if the altlink attribute is specified, the
anchor will be generated using a URL to the first file found containing the specified
element.

Note that no EX_CALLBACK_ID_ALTLINK callback will be made if an
EX_CALLBACK_ID_ALTLINK attribute is specified in the {## anchor} statement.

For example:

{## anchor aref=next format="Next </ a>"
al t1ink=headi ngs. next. body}

ALTTEXT

Text to be output if the anchor cannot be resolved. If this attribute is not specified, no
text will be output if the anchor target does not exist. For example:

{## anchor aref=next format="Next </ a>"
al ttext="Next"}

Comment Put in the Output File: {## ignore}

This macro causes {##} statements in an area of the template file to be ignored by the
template parser. Any text between the {## ignore} and {## /ignore} tags will be written
to the output file as-is. This macro allows {##} statements in an area of the template to
be commented out for debugging purposes, or to actually write out the text of another
{##} macro. However, the browser will parse any HTML tags inside the ignored block
and the text will be formatted accordingly. This macro can ignore all {##} macros
except for an {## /ignore} macro. No escape sequence has been implemented for this
purpose. As a result, {## ignore} statements cannot be nested. If they are nested, a run
time template parser error will occur.

Syntax

{## ignore}
any HTM. or other {##} nmacros
{## [ignore}

To fully comment out a section of the template, surround the {## ignore} statements
with HTML comments.

For example:

3-28 Developer's Guide

Macro Reference

<I--{## ignore} everything between here and
the end HTM. comment will be commented out.
{/## ignore}-->

Comment Not Put in the Output File: {## comment}

The {## comment} macro allows the template writer to include comments in the
template without including them in the final output files. {## comment} provides the
functionality of {## ignore}, but the text inside the {## comment} block is not rendered
to the output files and is not included in page size calculations. Like {## ignore}, {##
comment} macros may not be nested.

Syntax

{## coment}
any HTM. or other {##} nmacros
{## | comment }

Including Other Templates: {## include}

This command allows other templates to be inserted into the current template. It
works in a manner similar to the C/C++ # include directive.

Syntax
{## include TEMPLATE=t enpl at e}

Attributes
TEMPLATE

This attribute gives the name of the template to insert.

Setting Options Within the Template: {## option}

This macro sets an option to a given value. All {## option} statements are executed in
the order in which they are encountered. Remember when using this template macro
that the {## unit} tag must be the first template macro in any template.

Options set in the template have template scope. This means that, for example, if a {##
link} macro references another template, options in the referenced template are not
affected by the option settings from the parent template. Similarly, when the files
contained in an archive file are converted, Export recursively calls itself to perform the
exports of the child documents in the archive. Each child document is converted using
a copy of the parent template, and that copy does not inherit the option values from
the parent template.

The strings used to specify options from inside templates correspond to the option
names. See the Options documentation for more details.

Options set using {## option} in the template are not inherited by the exports
performed on files within archives. Each child export receives a fresh copy of all
option values as originally set with DASetOption.

Remember that setting an option in the template overrides any option value set by an
application within the scope of the template.

See HTML Export C/C++ Options for a description of how to treat a hyperlink in a
Word input document, using the {## option} in the template.

Templates 3-29

Macro Reference

Syntax
{## option OPTI ON=val ue}

The supported OPTION attributes and their values are listed in a table in the
"Attributes" section that follows.

Attributes
OPTION

e graphic_type: Allows one to set the type of graphics produced. It may have the

following values: gif, jpeg, bmp, png, none, fi_gif, fi_jpegfif, fi bmp, fi_png,
fi_none.

Note:

Some of the Outside In Viewer Technology's import filters can be optimized to
ignore certain types of graphics. To take advantage of this optimization, the
option must be set before EXOpenExport is called. Setting this option via the
template will happen after EXOpenExport is called, and will therefore not
invoke this optimization. The only way to get the benefits of this optimization
is to use DASetOption for the SCCOPT_GRAPHIC_TYPE set to FI._ NONE.
This is described in SCCOPT_GRAPHIC_TYPE.

html_graphictype: This is a deprecated version of the graphic_type template
option. Note that it only supports values that start with "fi_:" fi_gif, fi_jpegfif,
fi_bmp, fi_png, fi_none.

gif interlaced: Allows one to set the GIF interlacing. The value can be one of the
following: 0, 1, true or false.

jpeg_quality: Allows one to set the quality of the JPEG images being created. The
quality can be from 1 to 100.

graphic_sizemethod: Allows one to set the type of graphic smoothing performed
when graphics are resized. The value can be: sccgraphic_quicksizing,
sccgraphic_smoothsizing, sccgraphic_grayscalesizing. For more information, see
SCCOPT_GRAPHIC_SIZEMETHOD.

graphic_outputdpi: Specifies the dots-per-inch, or dpi of graphics created for the
output. Can be from 0 to 2400. A value of 0 for the dpi means that the dpi of the
original graphic found in, or referenced by the input document is used.

graphic_sizelimit: Specifies the total number of pixels in the output's graphics. Can
be any value from 1 to 4,294,967,295. A value of 0 means that there is no size limit.
See SCCOPT_GRAPHIC_SIZELIMIT for more details.

graphic_widthlimit: Specifics the width, in pixels, of the output's graphics. Can be
any value from 1 to 4,294,967,295. A value of 0 means that there is no width limit.
See SCCOPT_GRAPHIC_WIDTHLIMIT for more details.

graphic_heightlimit: Specifics the height, in pixels, of the output's graphics. Can be
any value from 1 to 4,294,967,295. A value of 0 means that there is no height limit.
See SCCOPT_GRAPHIC_HEIGHTLIMIT for more details.

3-30 Developer's Guide

Macro Reference

This only sets the upper limit for the height of an image. Images with smaller
heights are not increased in size to match the height limit.

fontflags: Allows the template to suppress various font attributes, either singly, in
combination, all or none. The single flag suppression values are: suppress_size,
suppress_color, suppress_face. The combination suppression values are:
suppress_sizecolor, suppress_sizeface, suppress_colorface. The suppress all flags
value is suppress_all, and the suppress no flags value is suppress_none. See
SCCOPT_EX_FONTFLAGS for more details.

gridrows: Specifies the number of rows to a grid. Only applicable to spreadsheet
and database files used for input. Must be a number zero or greater. See
SCCOPT_EX_GRIDROWS for more details.

gridcols: Specifies the number of columns to a grid. Only applicable to
spreadsheets and databases used as an input file. Must be a number zero or greater.
See SCCOPT_EX_GRIDCOLS for more details.

gridadvance: Specifies how HTML Export outputs grids using input from a
spreadsheet or database input file. A value of "down" causes HTML Export to
output the next grid by traversing down a spreadsheet's columns. A value of
"across" causes the next grid to be output by traversing across the rows. See
SCCOPT_EX_GRIDADVANCE for more details.

gridwrap: Specifies how HTML Export reacts when reaching the edge of a
spreadsheet or database. This is used in conjunction with gridadvance. When the
traversal method specified by gridadvance reaches an edge, and there is more cells
to be traversed, then if this option is "true," HTML Export scans back to the
beginning of the next set of grids to output. If this option is "false," then no more
grids will be output. The value can be: 0, 1, false or true. See
SCCOPT_EX_GRIDWRAP for more details.

EX_LINKTARGET: Support for this option is limited to Microsoft Word
documents.

Some input documents contain links. Template authors may have a preference for
how the browser should select which frame or window to open those source
document links in. This option allows the template author to do so by specifying a
value to use for the target attribute of the links HTML Export generates in these
cases. This single target value will be applied to all such links encountered in the
source document. It does not affect the links generated by HTML Export for
navigation generated because of template macros.

If this option is not set, then no target attribute will be included in links from the
source document.

The value of the target attribute is expected to be able to be inserted by HTML
Export directly into the output of the conversion. Under some circumstances,
however, HTML Export may need to perform character mapping from the template
to the output character set:

— Templates written in a SBCS for conversions to DBCS will pad the text to form
WORD sized characters, but will not perform any character mapping. In the
unlikely event that this poses a problem, users should write their templates in
UTF-8 or Unicode.

— Templates written in Unicode for conversions will do character mapping to the
appropriate output character set.

Templates 3-31

Macro Reference

For example, consider a document that contains a link to www.outsideinsdk.com.
The template author wishes to change the browser's default behavior from opening
the link in the current window to opening the link in a new window. Therefore, the
template writer sets this option to _blank with the following line in the template:

{## option EX_LI NKTARGET=_bl ank}

HTML Export will then generate the following link to the Oracle web page when
the document is converted (HTML related to text formatting has been removed for
clarity):

wwv. out si dei nsdk. conx/ a>

The following are valid values for the target= attribute in HTML:

_blank: The user agent should load the designated document in a new,
unnamed window.

— _self: The user agent should load the document in the same frame as the
element that refers to this target.

— _parent: The user agent should load the document into the immediate
FRAMESET parent of the current frame. This value is equivalent to _self if the
current frame has no parent.

— _top: The user agent should load the document into the full, original window
(thus canceling all other frames). This value is equivalent to _self if the current
frame has no parent.

The default is for this option not to be set. In that case, no target= attribute will be
generated for links from the source document.

ex_linktargetoverride: Link target attribute values may be specified in both the
source document and in the template via the EX_LINKTARGET template-only
option. This option determines how to resolve such conflicts.

The option has two settings (neither is case-sensitive):

— Fallback: The value specified in the EX_LINKTARGET option is a fallback to use
when the source document does not specify a link target attribute value. This is
the default setting for this option if it is not set.

— Override: The value specified in the EX_LINKTARGET option will always be
used, overriding any link target attribute value(s) specified by the source
document.

Sample usage:
{## option EX_LI NKTARGET="_sel f"}{## option EX LI NKTARGETOVERI DE="CQverride"}
This option is ignored if the EX_LINKTARGET option has not been set. The default

for this option is to not be set. In that case, the value specified by the
EX_LINKTARGET option is used as a fallback.

ex_toc: Output the Word document's table of contents. This can have the value of:
0, 1, false or true. This only applies to input files that are Word documents, and
only if they contain a table of contents.

3-32 Developer's Guide

Macro Reference

Copying Files: {## copy} (HTML Export Only)

The {## copy} macro is used to copy extra, static files into the output directory along
with the output from the converted document. For example, if a template author has
added a company logo that was not in the original input document, {## copy} can be
used to make it a part of the converted output document. Other examples include
graphics used to mimic "buttons" for navigation, outside CSS files, or a piece of Java
code to be run.

Syntax
{## copy FILE=file}

Attributes
FILE

This is the name of the file to be copied. If a relative path name is specified as part of
the file, then it must be relative to the directory containing the root template file.

For example:

{## copy FILE=uparrow.gif}

The {## copy} macro may occur anywhere inside a template. If the {## copy} is inside a
{## if}, then the {## copy} will only be executed if the condition is TRUE. In {## repeat}
loops, the {## copy} will only be performed if the loop is executed one or more times.
In addition, if the {## repeat} loops more than once, HTML Export detects this and the
{## copy] is executed only once.

As its name suggests, the {## copy} macro is a straight file copy. Therefore, no
conversions are performed as part of the copy. For example, graphics formats are not
changed and graphics are not resized. Template authors should also remember to use
{## graphic} when graphics and other files are copied so that space will be created for
the external graphic in the text buffer size calculations.

Because the only action HTML Export takes is to copy the requested file, it is up to the
template author to make use of the copied file at another point in the template. For
example, a graphic file may be copied and then the template can use an tag
which references the copied graphic. The following snippet of template code would do
this:

{## copy FILE=Picture.JPG
{## graphi c PATH=Pi cture. JPG
<ing src="Picture.JPG >

The OEM should also know that if the file copy fails, HTML Export will continue and
no error will be reported back to the OEM.

Deprecated Template Macros (HTML Export Only)

Previous releases of HTML Export used different macro syntax where template
macros were expected to start with {Inso} rather than {##}. In addition some words that
had been abbreviated must now be spelled out ("insert" instead of "ins"). The old
syntax will continue to be supported for the foreseeable future. However, it has been
deprecated. The old Inso macros and their new equivalents are as follows:

¢ {insoins} is now {## insert}

Templates 3-33

Breaking Documents by Structure

{insoif} ... {/insoif} is now {## if} ... {## /if}

o l{insoelseif} ... {/insoelseif} is now {## elseif} ... {## /elseif}

e {insoelse} ... {/insoelse} is now {## else} ... {## /else}

¢ {insoignore} ... {/insoignore} is now {## ignore} ... {## /ignore}
e {insolink} is now {## link}

e {insorep} ... {/insorep} is now {## repeat} ... {## /repeat}

It should be noted that templates may not mix the old style of Inso macro in with the
new {##} style in the same template.

It should also be noted that no new or future features that export will include support
the old syntax. Thus for example, the old syntax has not been extended to include
support for the new {## unit} macros.

Breaking Documents by Structure

One of the most powerful features of the template architecture is the ability to break
long word processor documents up into logical pieces and create powerful navigation
aids to access them.

To understand how this is done, the developer must first understand the document
tree as it relates to word processor documents. The somewhat complex graphic that
follows attempts to show how the elements in the tree relate to a real-world document.

3-34 Developer's Guide

Breaking Documents by Structure

Figure 3-2 Correlation between Element Tree and Document

-
The History of Flight

Vingj orjio jtigoh jtugh jrufht jrufht jrufht deog ofiho kow x fiel eikyok

fieofoe fleofio eoffioe ofleo jioejof fj eofj effoje fleof fleoife jfo ejfole f

Preface

Title

Headings.1.Body
Title | Contents

Introduction
Vingj orjio jtigoh jtugh jrufht jrufht jrufht dieog oo kow x fiel eikyok
fleofioe fieofio eoffice ofieo jfoejof 1 eof] effoie flieoff fleoffe jfo effole f

Present Day
Vingj orfo jtigoh jtugh jufht jruht jrufit djeog ofiho kow x fiei elkyok
fieofoe fieafio ecifioe ofieo jfoejof f eof ejfoje fleoif fleoffe jfo efiofe f

Preface

Title
/\

Commercial

{ Vingi oo jigoh Jugh jufht jufht it decg offo kow x e

fleofoe fieofjo eojfioe offeo ffoejof § eof effofe fleaf fleoje jio e
eytuye eyt eyt ueyt ueyt uye ty e yiuey ytu ey t uyeyt eu tyw
Boeing
Vingj orjto figoh jtugh jruht jrufht jrufiht dieog oo kow x
fieofice fieofio ecjffoe oo ffoejof f eofj ejfoie fleoff feoffe

Headings.1.Body Preface

Title | Contents Title

Airbus

Vingj orto figoh jlugh jufht jrufht juht ceog ofiho kow x
fieofioe fieofio ecjffoe ofieo jfoejof fj edf effie fiedif feafe
wiwidw wiwidag wiwkoning wiwoadl winwk wikw wiw jw wi
cshp hesphc h schip shap shep hsep shpcs hpes pesh

Body.Contents

Headings.2.Body
Contents
A
Headings.1.Body
AL
Contents
A

Headings.2.Body
N

Contents

Title

McDonnell-Douglas

Vingj orjto jigoh jtugh jrufit jrufht jrufht dieog ofiho kow x
fiedfice fleofio ecffice ofeo joejof § edf efiole feoffleofe
eyluye eyt eyt ueyt ueyt uye ty e yiuey yiu ey tuyeyted

Headings.3.Body
v
Contents

Title
fA‘\

Military

Vingj orto figoh jtugh jrufhit jufht jufht dieog otio kow x fiel e
fieofjoe fieofjo ecjfioe ofieo ffoejof § eof gffofe fleoif fleoje jio €
wiwdw wiwhdwg wivwdowing windond wink wikow wiw w wilow v
cshp hosphe h schp shep shp hisep shps hpes pesh pstx

Headings.2.Body
A,

Contents

Title
A

Future
Vingj orjto jtigoh jtugh jrufht jrufht jrufit dieog ofho kow x fiei eikyo |
1 fieofice fieafio ecjfice ofieo jfoejof fj eof effoje fieof fleife jfo eifoje t

Headings.3.Body

Contents

Wi wiwidog windendng wiwkon wiwdc wikow whw jw wikw whow
cshp hesphe h schp shep shep hscp shipes hpos pesh pshophs |

\

The following are some examples of elements and the data they would produce if run
against the document shown in the preceding image. Note the omission of the default
nodes body and contents in the second two examples:

f

* body.contents.headings.2.body.title: would produce "Present Day."

* body.contents.headings.2.body.contents.headings.1.body.title: would produce
"Commercial."

Templates 3-35

Breaking Documents by Structure

* body.contents.preface: would produce "The History of Flight" and the text below it,
up to but not including "Introduction."

¢ headings.2.headings.1.headings.3.title: would produce "McDonnell-Douglas."

¢ headings.2.headings.1.headings.3.contents: would produce the text below
"McDonnell-Douglas" but above "Military."

Breaking documents requires that HTML Export understand the logical divisions in
the structure of a document. Currently the only formats that can give HTML Export
this information in an unambiguous manner are Microsoft Word 95 and higher and
WordPerfect 6.0 and higher. In these formats, the breaking information is available if
the author placed Table of Contents information in the document. Refer to the
appropriate software manual for information on the necessary procedure for including
this information. That is not to say that the document must have a TOC, only that the
information to build one must be present.

It should be noted that some word processing formats, including Microsoft Word 2002
(XP), allow users to specify TOC entries in multiple ways. HTML Export only
supports two of these methods if the TOC is specified through:

Applied heading styles: Yes

¢ Custom styles with outline levels: Yes

Outline level applied as a paragraph attribute: No

e TOC entries: No

Additionally, if a heading style is applied to text inside a table in the original
document, HTML Export will not break on that heading. This is because HTML
Export will not break within tables.

The sample templates that ship with the HTML Export SDK use document breaking
extensively and are probably the best way to understand the uses of the structure-
based breaking feature.

Indexes and Structure-Based Breaking

All repeatable nodes have an associated index variable that at any given time in the
export process has a current value. For elements that contain repeatable nodes as part
of their path, the instance of the repeatable element must be specified by using a
number or one of several index variable keywords. The possible values for this index
variable (referred to as x in Element Definitions) are as follows:

* A whole number (integer). HTML Export indexes begin counting with 1 (not 0).
® current

e next

® previous

o first

e Jast

For numeric values, the number is simply inserted as another node in the path. For
example, slides.1.image references the first slide in a presentation and footnotes.
2.body references the second footnote in a document.

3-36 Developer's Guide

Breaking Documents by Structure

Elements that cannot be guaranteed to be within the document to which the template
is applied should not be explicitly referenced. For example, referencing sections.
4.body may result in unexpected behavior in documents that have less than 4 sections.
Requesting a non-existent element won't cause an error in HTML Export; the insertion
will just be ignored. However, if other HTML surrounding the insertion depends on
the results of the insert, the output may be invalid HTML.

The current, next, previous, first and last keywords are fairly self-explanatory. For
example, slides.current.image references the current slide and slides.next.image refers
to the next slide. When the template is processed, the current, next, previous, first and
last variables are replaced with the appropriate index value.

next and previous do not change the value of the index, as was the case in versions of
HTML Export prior to the 1.2 release. As a result, the only places where the index is
changed are inside of a {## repeat} loop and as the result of a {## link} statement. For
more information, see Loop: {## repeat}, Linking with Structured Breaking: {## link},
and Breaking Documents by Structure.

{## repeat .}

The initial value of the index variable for any given repeatable element typically is 1.
For {## repeat} loops, the index is incremented with each iteration. Termination of a
{## repeat} loop resets the counter to its initial value. Actually, it is more accurate to
say that the scope of the index is the repeat loop.

The following template fragment uses current in a repeat loop, which outputs all the
footnotes in the source file:

{## repeat el ement=footnot es}
{## insert elenment=footnotes.current.body}
{## [repeat}

When a template containing a repeat statement is the target of a {## link} statement
that specifies the element to be used as the repeat element, the initial value of the
index will be determined by the {## link} processing.

{## 1ink.}

The {## link} statement does not affect the index variable in the context of the current
template. The {## link} statement can only affect index variables when both an element
and a template are specified. In this case only the index variables in the target for the
specified element are affected.

If the element specified in the {## link} contains a next or previous keyword, the value
of current in the target file will be affected. The initial value of current in the target
will be the value of (current in the source)+1 for next. Similarly, previous has the effect
of decrementing the value of current.

The following example uses a single template file and the {## link} macro to create a
set of HTML files, one for each slide in a presentation. The {## link} does the dual job
of driving the generation of the HTML files and providing a "next" link for navigation.
Notice the use of the next keyword in the {## if} macro that checks to see if there is a
next slide:

{## unit}

<htnl >

<body>

<I-- insert the current slide -->

{## insert elenment=slides.current.inmge w dth=300}
<hr />

<I-- |s there a next slide? -->

Templates 3-37

Units - Breaking Documents by Content Size

{## if el ement=slides.next.imge}
<I-- |f yes, generate a URL to an HTM. file containing
the next slide. The HTM. file is generated using
the current tenplate (because there is no tenplate
attribute). Wile generating the new HTM. file, the
val ue of the index on slides will be its current
val ue plus 1 once control returns to this tenplate
the value of the index on slides is unchanged. -->
<p><a href="{## link el enent=
slides. next.imge}">Next </ a></ p>
{## el se}
<I-- |f no, create a link to the HTM. containing the
first slide. -->
<p><a href="{## link el enent=
slides. 1.image}">First</p>
{## 1if}
</ body>
</htm>
{## [unit}

Units - Breaking Documents by Content Size

HTML Export has a system for breaking up documents. In addition to being able to
break documents according to their structure, template writers can now break
documents based on the amount of content to be placed in each output file or "page.”
Documents can even be broken based on both their structure and content size.

To break documents by content size, two things must be done. First, the
SCCOPT_EX_PAGESIZE (pageSize with Transformation Server) option must be set
(see the Options documentation for details). The second thing that must be done is
that the template used must be equipped with the {## unit} construct.

The basic idea behind the unit template construct is to tell Export what things should
be repeated on every "page" and what pieces should only be shown once. In other
words, the unit template construct provides a mechanism for grouping template text
and document elements. Unit boundaries are used when determining where to break
the document when spanning pages.

Here are some examples of the kinds of things the template author might want to
appear on every page:

¢ The <meta> tag inserting the output document character set.

* A company copyright message.

¢ Navigational elements to link the previous/next pages together.
Typical examples of things that wouldn't go on every page would be:
® The actual content of the document.

® Structural navigational elements like the links for a table of contents.

A unit consists of a header, a footer (both of which are optional), and a body. Items
that are to be repeated at the beginning or end of every unit should be placed in the
header or footer respectively.

A unit is delimited by the {## unit} template macro. Similarly, the {## header} and {##
footer} template macros delimit the header and footer respectively. The body is
everything that is left between the header and the footer. The {## unit} macro must be

3-38 Developer's Guide

Units - Breaking Documents by Content Size

the first macro in the template. The body frequently contains nested units. The body
may be empty.

To ensure that the header is the first item in the template and the footer is the last item,
text between the {## unit} tag and the {## header} tag will be ignored, as will text
between the {## /footer} tag and the {## /unit} tag, including whitespace. The header
and footer of a unit will be output in every page containing that unit, enclosing that
portion of the unit's body that is able to fit in a particular page. The entire template is a
unit that may contain additional units.

A Sample Size Breaking Template

By way of example, let's take another look at the very simple template from What Is a
Template? To make things more interesting, let's insert the character set into the
template with a <meta> tag. Let's also insert some better navigation to improve
movement between the pages. The modified version of the template is as follows:

{## unit}{## header}

<ht m ><head>

<nmeta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htn ;

charset ={## insert el enent =pragna. charset}" /></head>

<body>

{## anchor aref="prev" format="<p>Prev</p>"}
{## [header}

<p>Here i s the docunment you requested

{## insert element=property.title} by

{## insert elenment=property.author}</p>

<p>Bel ow i s the docunment itself</p>

{## insert el enment=body}

{## footer}

{## anchor aref="next" format="<p>Next </ a></p>"}
</ body>

</htm >

{## |footer}{## /unit}

A very small value (about 20 characters) is used for the page size option. The resulting
HTML might look like this (HTML that is the result of a macro is in bold):

filel.htm

<ht m ><head>

<neta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htnl; charset=
us- ASCl | "/ ></ head>

<body>

<p>Here is the docunent you requested. </ p>

<p>A Poem by Phil Boutros</p>

<p>Next </ a></ p>

</ body>

</htm >

file2.htm

<ht m ><head>

<neta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htm ; charset=us-ASCI|" /></head>
<body>

<p>Next </ a></ p>

<p>Bel ow i s the docunment itself</p>

<p>Roses are red</p>

<p>Violets are blue</p>

Templates 3-39

Units - Breaking Documents by Content Size

<p>Prev</p>
</ body>
</htm >

file3.htm

<ht m ><head>

<neta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htm ; charset=us-ASCI|" /></head>
<body>

<p>Prev</p>

<p>l"'ma progranmer</p>

<p>and so are you</p>

</ body>

</htm >

There are several things to note:

* The page size option value does not apply to the text from the template, only the
text inserted from the source document. Each page contains roughly 20 characters
of visible input document text.

e The {## insert} of the character set is part of the {## header} and therefore is inserted
into all the output pages.

* Text from the body of the unit is inserted sequentially. Thus "as is" template text
such as the line "<p>Below is the document itself</p>"is only inserted once.

¢ The {## anchor} tags only insert links to the previous/next page if there actually is a
previous/next page. Thus the first page does not have a link to the non-existent
previous page.

¢ Finally, the output of the document is split according to the page breaking rules.

Templates Without {## unit} Macros

The {## unit} macro is only required in templates that are designed to break pages
based on size using the SCCOPT_EX_PAGESIZEpageSize option. An example of a
template that would not perform any size-based breaking is one that defines an HTML
<frame>, but does not include any document content. Another example where size-
based breaking might not be desired is a table of contents page, even though a table of
contents page does contain document content.

A template that does not conform to the {## unit} format is a not a size-based breaking
template. Support for this type of template will continue for the indefinite future. The
template will be considered to not be a size-based breaking template if the first macro
tag encountered is something other than {## unit}. This means that there cannot be any
{## unit}, (## header} or {## footer} macros later in the template. The value of the
SCCOPT_EX_PAGESIZEpageSize option will be ignored for this type of template.

Indexes and Size-Based Breaking

All repeatable nodes have an associated index variable. For information about using
index variable keywords such as "Next" and "Last," see Indexes and Structure-Based
Breaking. In addition to those index variable keywords, repeatable grid elements have
four additional keywords. They are:

[] up

e down

3-40 Developer's Guide

Using Grids to Navigate Spreadsheet and Database Files

o Jeft
* right

These keywords may only appear immediately after the grids node in the document
tree. For example grids.up.body is legal, but sections.left.grids.1.body is not. Use of
these keywords is otherwise self-explanatory.

Note too that individual grids are only addressable relative to each other. In other
words, while it is possible to specify the "up" grid, it is not possible to arbitrarily
specify a grid directly (for example., "5, 7").

Using Grids to Navigate Spreadsheet and Database Files

In order to support spreadsheets (and database files, though they are not as common),
a new template-based navigation concept known as a "grid" has been introduced.
Grids offer a way to consistently navigate a spreadsheet or database in an intuitive
fashion.

Grids can be used to present the output of large spreadsheets in smaller pieces, so that
less scrolling is necessary. It can also be used to help prevent the HTML versions of
large spreadsheets from overwhelming browsers, potentially causing them to lock up.
Grids can also be used to halt processing of large spreadsheets before they waste too
much CPU time.

To use grids, the template author should use the new grid template element (see
Element Definitions). Grids may only be used in templates that have been enabled
with the {(## unit} template macro. It is also important to set the grid-related options.
See the Options documentation for details).

The grid support has some important limitations:

1. The output file format and flavor are expected to supports tables, although this is
not required.

2. Grids are only used when converting spreadsheets and database input files. Grids
are not available for word processing files at this time.

3. Due to size constraints, grid support works best if the contents of the cells in the
input file do not make use of a lot of formatting (bold, special fonts, text color,
etc.).

To further explain the grid system, consider a multi-sheet spreadsheet workbook as an
example. Each sheet in the spreadsheet workbook is broken into a collection of grids.
Each grid has a fixed maximum size and is a rectangular portion of the spreadsheet.
The size of the grid is specified as a number of spreadsheet cells. For example,
consider the following 7x10 spreadsheet:

Templates 3-41

Using Grids to Navigate Spreadsheet and Database Files

Figure 3-3 7x10 Spreadsheet

A1 B1 | C1 D1 E1 F1 G1
A2 B2 | C2 | D2 | E2 | F2 | G2
A3 B3 | C3 | D3 | E3 | F3 | G3
A4 B4 | C4 | D4 | E4 | F4 | G4
A5 B | C5 | D5 | ES | F5 | G5
A6 B6 | C6 | D6 | E6 | F6 | G6
A7 B7 | C7 | D7 | E7 | F7 | G7
A8 B8 | C8 | D8 | E8 | F8 | G8
A9 B | C9 | DS | EQ9 | F9 | GS
A10 | B10 |C10 | D10 |E10 |F10 | G10

If the OEM wanted to break it up into 3x4 grids, 9 grids would be produced as shown
in the following diagrams:

Figure 3-4 3x4 Grids

Al | B1 | C1 D1 | E1 | H1 G1
A2 | B2 | C2 D2 | E2 | F2 G2
A3 | B3 | C3 D3 | E3 | F3 G3
A4 | B4 | C4 D4 | E4 | F4 G4
AS | B5 | C5 D5 | ES | F5 G5
A6 | B6 | C6 D6 | E6 | F6 G6
A7 | B7 | C7 D7 | E7 | F7 G7
A8 | B8 | C8 D8 | E8 | F8 G8
A9 | B9 | C9 D9 | E9 | F9 G9
A10| B10 | C10 D10 | E10] F10 G10

Normally, all grids have the same number of cells. The exception is that grids at the
right or bottom edge of the spreadsheet may be smaller than the normal size. Grids
will never be larger than the requested size. For this reason, grids can easily be
navigated by using "up”, "down", "left" or "right". One thing that grids cannot do is
address individual cells in a spreadsheet (except, of course, in the degenerate case of a
grid whose size is 1 x 1).

HTML Export does not force deck/page breaks between each grid. Therefore, if the
template writer wants to limit each deck/page to only one grid, they should force the
break in the template.

3-42 Developer's Guide

Choosing a Template

Grid Support When Tables Are Not Available

Not all output flavors supported by HTML Export support the creation of tables. If the
output flavor does not support tables, HTML Export will still support grids. However,

HTML Export's normal non-table output will be what is presented in grid form. For
example, if "[A1]" represents the contents of cell A1, then we would export the
following for a grid of size (2x2):

If grids.1.body is:

[A1]

[A2]

[B1]

[B2]

then grids.right.body is:
[C1]

[C2]

[D1]

(D2]

and grids.down.body is:
[A3]

[A4]
[B3
[

]
B4]

Choosing a Template

Through the use of templates, HTML Export users have infinite flexibility in the way
they can present converted documents. Users typically use one of the following four

strategies to select a template:

1.

The simplest method is to use the internal template, which is built into HTML
Export. This is the template used when the SCCOPT_EX_TEMPLATE (using
Transformation Server, template) option is not set. This template produces a very
basic, rudimentary presentation of the input document. The template is an
external approximation of this internal document.

There are also sample templates shipped with HTML Export. These templates are
designed to meet different needs for HTML Export users (polished navigation,
simple HTML for document indexing engines, etc.).

With a bit more effort, the user can modify one of the sample templates shipped
with HTML Export. Simple changes, such as adding graphics or static text, should
be easily accomplished by someone with a willingness to experiment with these
templates.

Advanced users may choose to write a template of their own design, customized
specifically to their needs. Such templates can incorporate elements from a wide
range of Web standards, such as Java. Needless to say, users who go this route
should have strong technical skills at the outset. They should begin the process of

Templates 3-43

Unicode Templates

creating templates by reading through this chapter in its entirety and looking at
the template tutorial.

Unicode Templates

For non-Unicode templates, the content of the template is copied byte for byte to the
output files as needed. Of particular note is the fact that no character mapping takes
place on the text in the template file. However, this can create problems when the
source input document overrides the requested
SCCOPT_EX_OUTPUTCHARACTERSET (using Transformation Server,
outputCharacterSet) option setting. To solve this problem, users may use templates
written in Unicode.In order for HTML Export to know that a template is encoded in
Unicode, the template file must begin with the Unicode Byte Order Mark (BOM). All
files beginning with the BOM are assumed to be encoded in Unicode. HTML Export
automatically converts Unicode templates to the output character set as needed.

3-44 Developer's Guide

A

Template Tutorials

This chapter provides tutorials for using the HTML Export templates.

Before you begin this tutorial, it is recommended that you read and familiarize
yourself with Templates.

When you install this product, a set of tutorial templates in HTML format are installed
in templates\htmI\tutorial (HTML Export) or template\export\tutorial directory
(Transformation Server). These templates include in-depth commentary explaining
how they work. Aspiring template authors should examine the comments within these
templates to gain a fuller understanding of how to implement the template language.

This chapter includes the following sections:
e Template Comments

* Tutorial 1: simple

e Tutorial 2: tocl

e Tutorial 3: toc2

e Tutorial 4: unit

e Tutorial 5: misc

e Tutorial 6: grids1

e Tutorial 7: grids2

e Tutorial 8: internal

Template Comments

The template comments are contained within {## comment} macro statements, which
are themselves contained within standard HTML comment tags. The {## comment}
macro is used in the tutorial templates to prevent the software from writing the
template comments to the output file when these templates are used. The HTML
comment tags are included so that all comments will be highlighted when the
template is open in a syntax-coloring editor. The HTML comment tags are also useful
for masking the macros from HTML editors such as Microsoft FrontPage. A side effect
of adding the HTML comment tags outside of the {## comment} macros is that any
output generated using these templates will contain empty comment tags.

The following is an example of one of the comments in the templates:

<I--{## coment}

To tell the browser what character set the HTM. fileis
using, add a <meta> tag with the "content" attribute and
use the {## insert} macro to insert the pragma.charset

Template Tutorials 4-1

Tutorial 1: simple

element. Export will insert the name of the character set
speci fied by the SCCOPT_EX_OUTPUTCHARACTERSET
(Transformation Server: outputCharacterSet) option.

{## | coment}-->

The macro statements in the tutorial templates are formatted for readability. Because
the product does not ignore template whitespace, output generated from these
templates contains whitespace wherever there were macros in the templates. When
using {## repeat} loops, the amount of whitespace added to the output can be
substantial. Browsers ignore this whitespace, so from a viewing standpoint, it should
not be an issue. However, if you are concerned with file size or readability of the
output HTML, you should format the macros to minimize the amount of whitespace,
which includes both spaces and carriage returns.

The following sections offer an overview of these tutorial templates. The order in
which they are discussed is a recommended sequence for examining the templates and
learning about the template language and its implementation.

The actual template file is a .htm file and it is generally named based on the directory
in which it is found (i.e., the simple template is the file simple.htm in the \tutorial
\simple directory). However, if a template references other files within the same
directory, the primary template file for that directory is always called main.htm (for
examples, see Tutorial 3: toc2).

Tutorial 1: simple

The simple template, as its name implies, produces a simple, single-page rendition of
the source document without a table of contents.

This template is an introduction to the following techniques:
¢ The use of templates in general

* Simple inserts of document pieces

* The character set selection mechanism

* Use of CSS files

¢ Using the {## repeat} macro

® Setting the title of the HTML output file based on the input file's content

Tutorial 2: toct

Files generated with the tocl template are similar to those produced with the simple
template. However, the tocl template also creates a simple table of contents (TOC) that
displays hyperlink headers up to two levels deep at the start of the file. Clicking on a
header moves the browser to the corresponding section.

This template is an introduction to the following techniques:
¢ Generating a simple TOC

e Using {## link]} to create internal links

¢ Conditional statements based on input file type

e A more extensive introduction to elements in the Document Tree

4-2 Developer's Guide

Tutorial 3: toc2

¢ Integration of macros with HTML

Tutorial 3: toc2

This template creates a TOC in a separate frame to the left of the body text of the
document. As in the output generated when using the tocl template, the TOC is two
levels deep. As is the case with the tocl template, the headers shown in the TOC frame
are hyperlinks to the sections they reference. However, when these hyperlinks are
activated, the browser displays the relevant section of the document in the frame to
the right of the TOC frame.

The other thing to note about this template is that it is the first in the tutorial that
references other templates. The primary template file, main.htm, uses {## link}
statements to reference the other template files in the toc2 directory. The process of
evaluating the {## link} statements generates the remaining output files for the
document.

For the purposes of this tutorial, start by reading the comments in the main.htm file
and then read the comments in the referenced templates when they are discussed
within main.htm.

This template is an introduction to the following techniques:
* Using the {## option} macro
e {## link} statements involving elements, templates, or both elements and templates

® Archive files processed using this template output such that the archived file
names appear as links in the TOC frame (left) that point to that file's content, which
appears in the body frame (right)

Tutorial 4: unit

The unit template is capable of breaking a document into multiple output files based
on size. The size of the output files is determined by the value in the
SCCOPT_EX_PAGESIZE (Transformation Server: pageSize) option.

This template is an introduction to the following techniques:
e Using the {## unit}, {## header}, and {## footer} macros

¢ Using {## anchor} for navigation

¢ Using the truncate attribute of the {## insert} macro

* Archive files processed using this template output such that the archived file
names appear as links in the TOC frame (left) that point to that file's content, which
appears in the body frame (right)

Tutorial 5: misc

This tutorial template covers a variety of template features not covered in the
preceding tutorials. It is an introduction to the following techniques:

® JavaScript tab implementation

* Use of the step attribute to provide "fast-forward /rewind" capability

Template Tutorials 4-3

Tutorial 6: grids1

* Use of the {## copy} macro to copy files into the output directory (in this case, a .gif
image) (Embedded and standalone versions only)

¢ Processing the input document by iterating through the Document Tree, providing
a unique look into how the Document Tree handles the different parts of a
document

* Using the{## graphic} macro
¢ Using the{## include} macro

Transformation Server users should note that this template uses the {## copy} macro.
This macro is not recognized by Transformation Server and is ignored when
encountered in a template.

Tutorial 6: gridst

The gridsl directory contains a template that demonstrates one method for breaking
spreadsheet or database files based on size.

The grids1.htm template creates multiple output files that maintain the spatial
relationships of the original file. In other words, depending on how many rows and
columns make up a grid (set by the SCCOPT_EX_GRIDROWS (Transformation Server:
gridRows) and SCCOPT_EX_GRIDCOLS (Transformation Server: gridCols) options,
or in the template itself using {## option gridrows=value} or {## option
gridcols=value} statements), the template will create multiple files that can be
navigated using links in an "up/down/left/right" navigation table. For example, in a
spreadsheet that is 10 columns by 10 rows with a grid defined as 5 columns by 5 rows,
the main section of the output document will have links to view the grids to the right
(the next 5 columns) and down (the next 5 rows). The "up" and "left" navigation links
will be inactive in the main section.

Tutorial 7: grids2

The grids2 directory contains another template that demonstrates an alternate method
for breaking spreadsheet or database files based on size to the one used by the grids1
template.

The grids2.htm template creates multiple output files, but instead of maintaining the
spatial relationships of the original file, it simply adds "next" or "previous" links,
where applicable, above or below the currently displayed section of the document.
Whether the "next" and "previous" links traverse from left to right or up and down
through the grid is determined by the setting in the SCCOPT_EX_GRIDADVANCE
(Transformation Server: gridAdvance) option.

Tutorial 8: internal

The internal template produces output that is essentially identical to the output
created when no template is specified during an export.

4-4 Developer's Guide

Part Il

Using the C/C++ API

This section provides details about using the SDK with the C/C++ APL

Part II contains the following chapters:
¢ Windows Implementation Details
e UNIX Implementation Details

¢ Data Access Common Functions

¢ Export Functions

* Redirected IO

* Callbacks

e Sample Applications

¢ HTML Export C/C++ Options

5

Installation

Windows Implementation Details

This chapter describes the Windows implementation of the HTML Export SDK. The
Windows implementation of this software is delivered as a set of DLLs.

For a list of the currently supported platforms, see:

http:/ /www.oracle.com/technetwork /indexes/documentation/
index.html#middleware

Click on Outside In Technology, then click the Certification Information PDF.

This chapter includes the following sections:
¢ Installation

e Libraries and Structure

¢ The Basics

e Default Font Aliases

¢ Changing Resources

To install the demo version of the SDK, copy the contents of the ZIP archive (available
on the web site) to a local directory of your choice.

This product requires the Visual C++ libraries included in the Visual C+

+ Redistributable Package available from Microsoft. There is a version of this package
for the appropriate platform (x86 or x64) version of Windows. This can be
downloaded from www.microsoft.com, by searching on the site for the following
package:

e vcredist_x86.exe, or

e vcredist_x64.exe

The required download version is the "Visual C++ Redistributable Packages for Visual
Studio 2013."

Oracle Outside In requires the msvcr120.dll redistributable module.

The installation directory should contain the following directory structure.

Directory Description
\redist Contains a working copy of the Windows version of the
technology.

Windows Implementation Details 5-1

Libraries and Structure

Directory Description

\sdk\common Contains the C include files needed to build or rebuild the
technology.

\sdk\demo Contains the compiled executables of the sample applications.

\sdk\lib Contains the library (lib) files needed for the products.

\sdk\resource Contains localization resource files.

\sdk\samplecode Contains a subdirectory holding the source code for a sample
application.

\sdk\samplefiles Contains sample input files authored in a variety of popular

graphics, word processor, compression, spreadsheet and
presentation applications.

NSF Support

Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O, when an NSF file
is embedded in another file, or with IOTYPE_UNICODEPATH. Either Lotus Notes
version 8 or Lotus Domino version 8 must be installed on the same machine as OIT. A
32-bit version of the Lotus software must be used if you are using a 32-bit version of
OIT. A 64-bit version of the Lotus software must be used if you are using a 64-bit
version of OIT. On Windows, SCCOPT_LOTUSNOTESDIRECTORY should be set to
the directory containing the nnotes.dll. NSF support is only available on the Win32,
Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.

Libraries and Structure

The following is an overview of the files in the main installation directory for all five
Outside In export products.

APIDLLs

These libraries implement the API. They should be linked with the developer's
application. Files with a .lib extension are included in the SDK.

Library Description HTML Image PDF Search XML Web
Export Export Export Export Export View
Export
sceda.dll Data Access module X X X X X X
sccex.dll Export module X X X X X X
sccfi.dll File Identification X X X X X X

module (identifies
files based on their
contents).

5-2 Developer's Guide

Libraries and Structure

Support DLLs

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

The following libraries are used for support.

Library

Description

HTM
L

Imag PDF Searc XML Web
eExp Expo h Expor View

Expo ort rt Expor t Export

rt

t

ccflex.dll

libexpatw.d
11

ocemul.dll

oswin*.dll

sccanno.dll

sccca.dll

sccch.dll

sccdu.dll

sccexind.dll

sccfmt.dll

sccfut.dll

sccind.dll

scclo.dll

A data model adapter that
converts from stream model
utilized by Oracle Outside In
filters to the FlexionDoc Tree
model used as a basis by XML
Export.

A third-part XML parser

Output component emulation
module

Interface to the native GDI
implementation

oswin32.dll is the 32-bit version,
oswin64.dll is the 64-bit version

The annotation module

Content Access module
(provides organized chunker
data for the developer)

Chunker (provides caching of
and access to filter data for the
export engines)

Display Utilities module
(includes text formatting)

The core engine for all Search
Export formats: SearchText,
SearchHTML, SearchML and
PageML

Formatting module (resolves
numbers to formatted strings)

Filter utility module

Indexing engine. In Search
Export, it handles common
functionality.

Localization library (all strings,
menus, dialogs and dialog
procedures reside here)

X

X

Windows Implementation Details 5-3

Libraries and Structure

Library Description HTM Imag PDF Searc XML Web
L eExp Expo h Expor View
Expo ort rt Expor t Export
rt t
sccole2.dll OLE rendering module X X X X X X
scesd.dll Schema Definition Module X X
Manager (brokers multiple
Schema Definition Modules)
sccut.dll Utility functions, including IO X X X X X X
subsystem
scext.dll XTree module X
sdflex.dll Schema Definition module X X
(handles conversion of XML
string names and attribute
values to compact binary
representations and vice versa)
wvcore.dll The GDI Abstraction layer X X X X X
Engine Libraries
The following libraries are used for display purposes.
Library Description HTML Image PDF Searc XML Web
Expor Expor Export h Expor View
t t Expor t Export
t
debmp.dll Raster rendering engine X X
(TIFF, GIF, BMP, PNG,
PCX...)
devect.dll Vector/Presentation X X X X X
rendering engine
(PowerPoint, Impress,
Freelance...)
dess.dll Spreadsheet/Database X X X
(Excel, Calc, Lotus 123...)
detree.dll Archive (ZIP, GZIP, X X
TAR...)
dewp.dll Document (Word, Writer, X X X X

WordPerfect...)

Filter and Export Filter Libraries

The following libraries are used for filtering.

5-4 Developer's Guide

Libraries and Structure

Library Description HTM Imag PDF Sear XML Web
L e Expo ch Expo View
Expo Expo rt Expo rt Expo
rt rt rt rt

vs*.dll Filters for specific file types X X X X X X

(there are more than 150 of
these filters, covering more

than 600 file formats)
oitnsf.id Support file for the vsnsf filter. X X X X X X
exgdsf.dll Export filter for GIF, JPEG, and X X X
PNG graphics files
eximg.dll Extended image conversion X
module
exhb5.dll Export filter for HTMLS5 files X
exhtml.dll Export filter for HTML files X
exihtml.dll Export filter for SearchHTML X
exitext.dll Export filter for SearchText X
exixml.dll Export filters for XML files X
using the SearchML schema
expage.dll Export filter for XML files X
using the PageML schema
expagelayout.dl Page layout module X
1
exxml.dll XML Export module X
sccimg.dll Image conversion module X X X X

Premier Graphics Filters

The following are graphics filters.

Library Description HTML Image PDF Search XML Web
Export Export Export Export Export View
Export

i*2.dll Import filters for X X X X X X
premier graphics
formats

isgdi32.dll Interface to premier X X X X X X
graphics filters

Additional Files

The following files are also used.

Windows Implementation Details 5-5

The Basics

Library Description HTML Image PDF Search XML Web
Export Export Export Export Export View
Export

adinit.dat Support file for the X X X X X X
vsacad filter

cmmap000.bin Tables for character X X X X X X
mapping (all
character sets)

cmmap000.sbc Tables for character X X X X X X
mapping (single-byte

character sets). This
file is located in

the /sdk/common
directory.

cmmap000.dbc Identical to X X X X X X
cmmap000.bin, but
renamed for clarity
(.dbc = double-byte
character). This file is
located in the /sdk/
common directory.

exbf.dll Internal X

pageml.dtd The Document Type X
Definition for the
PageML schema

pageml.xsd The Extensible X
Schema Definition for
the PageML schema

searchml3.dtd The Document Type X
Definitions for the
SearchML schema

searchml3.xsd The Extensible X
Schema Definitions
for the SearchML
schema

flexiondoc.dtd The DTD version of X
the Flexiondoc
schema

flexiondoc.xsd The schema version X
of the Flexiondoc
schema

The Basics

The following is a discussion of some basic usage and installation features.

5-6 Developer's Guide

The Basics

All the steps outlined in this section are used in the sample applications provided with
the SDK. Looking at the code for the exsimple sample application is recommended for
those wishing to see a real-world example of this process.

What You Need in Your Source Code

Any source code that uses this product should #i ncl ude the file sccex.h and
#def i ne W NDOAS and W N32 or W N64. For example, a Windows application might
have a source file with the following lines:

#defi ne W NDOAS [* WII be automatically defined if your
conpi l er defines _WNDOAS */

#define WN32

#include <sccex. h>

The developer's application should be linked to the product DLLs through the
provided libraries.

Options and Information Storage

This software is based on the Outside In Viewer Technology (or simply "Viewer
Technology"). When using the Export products, a list of available filters and a list of
available display engines are built by the technology, usually the first time the product
runs. You do not need to ship these lists with your application. The lists are
automatically recreated if corrupted or deleted.

The files used to store this information are stored in an .oit subdirectory in
\Documents and Settings\user name\ Application Data.

If an .oit directory does not exist in the user's directory, the directory is created
automatically. The files are automatically regenerated if corrupted or deleted.

The files are:

e *f =Filter lists

¢ *.d = Display Engine lists
* *opt = Persistent options

Some applications and services may run under a local system account for which there
is no users "application data" folder. The technology first does a check for an
environment variable called OIT_DATA_PATH. Then it checks for APPDATA, and
then LOCALAPPDATA. If none of those exist, the options files are put into the
executable path of the UT module.

These file names are intended to be unique enough to avoid conflict for any
combination of machine name and install directory. This allows the user to run
products in separate directories without having to reload the files above. The file
names are built from an 11-character string derived from the directory the Outside In
technology resides in and the name of the machine it is being run on. The string is
generated by code derived from the RSA Data Security, Inc. MD5 Message-Digest
Algorithm.

The software still functions if these lists cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

Windows Implementation Details 5-7

Default Font Aliases

Structure Alignment

Outside In is built with 8-byte structure alignment. This is the default setting for most
Windows compilers. This and other compiler options that should be used are
demonstrated in the files provided with the sample applications in samples\win.

Character Sets
The strings passed in the Windows API are ANSI1252 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is now
included. The second bin file gives additional performance benefits for English
documents, but cannot handle DBCS documents. To use the new bin file, replace the
cmmap(000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and
cmmap000.dbc are located in the \sdk\common directory of the technology.

Note:

All of the Search Export flavors produce most text in UTF-8 encoded Unicode.
Two exceptions to this are the characters in <unmapped> elements and XMP
metadata (which is passed through without character mapping being applied).

Runtime Considerations

The files used by the product must be in the same directory as the developer's
executable.

Default Font Aliases

The technology includes the following default font alias map for Windows. The first
value is the original font, the second is the alias.

¢ Chicago = Arial

e Geneva = Arial

¢ New York = Times New Roman

e Helvetica = Arial

e Helv = Arial

¢ times = Times New Roman

* Times = Times New Roman

* Tms Roman = Times New Roman
¢ itc zapfdingbats = Zapfdinbats

¢ itc zapf dingbats = Zapfdinbats

5-8 Developer's Guide

Changing Resources

Changing Resources

Outside In HTML Export ships with the necessary files for OEMs to change any of the
strings in the technology as they see fit.

Strings are stored in the lodlgstr.h file found in the resource directory. The file can be
edited using any text editor.

Note:

Do not directly edit the scclo.rc file. Strings are saved with their identifiers in
lodlgstr.h. If a new scclo.rc file is saved, it will contain numeric identifiers for
strings, instead of their #define'd names.

Once the changes have been made, the updated scclo.dll file can be rebuilt using the
following steps:

1. Compile the .res file:
rc /fo ".\scclo.res" /i "<path to header (.h) files folder>" /d "NDEBUG' scclo.rc

2. Link the scclo.res file you've created with the scclo.obj file found in the resource
directory to create a new scclo.dll:

link /DLL /QUT:scclo.dll scclo.obj scclo.res

Note:

Developers should make sure they have set up their environment variables to
build the library for their specific architecture. For Windows x86_32, when
compiling with VS 2005, the solution is to run vsvars32.bat (in a standard VS
2005 installation, this is found in C:\Program Files\Microsoft Visual Studio
8\Common7\Tools\). If this works correctly, you will see the statement,
"Setting environment for using Microsoft Visual Studio 2005 x86 tools." If you
do not complete this step, you may have conflicts that lead to unresolved
symbols due to conflicts with the Microsoft CRT.

3. Embed the manifest (which is created in the \resource directory during step 2) into
the new DLL:

m -manifest scclo.dll.manifest -outputresource:scclo.dll;?2

If you are not using Microsoft Visual Studio, substitute the appropriate development
tools from your environment.

Note:

In previous versions of Outside In, it was possible to directly edit the
SCCLO.DLL using Microsoft Visual Studio. Outside In DLLs are now digitally
signed. Editing the signed DLL is not advisable.

Windows Implementation Details 5-9

Changing Resources

5-10 Developer's Guide

6

Installation

UNIX Implementation Details

This chapter describes the UNIX implementation of the HTML Export SDK. The UNIX
implementation of the Export product set is delivered as a set of shared libraries.

For a list of the currently supported platforms, see:

http:/ /www.oracle.com/technetwork /indexes/documentation/
index.html#middleware

Click on Outside In Technology, then click the Certification Information PDF.

This chapter includes the following sections:
¢ Installation

e Libraries and Structure

¢ The Basics

¢ Character Sets

¢ Runtime Considerations

e Environment Variables

e Default Font Aliases

¢ Changing Resources

e HP-UX Compiling and Linking

e [BM AIX Compiling and Linking

¢ Linux Compiling and Linking

¢ Oracle Solaris Compiling and Linking

e 7z/0S Compiling and Linking

To install the demo version of the SDK, copy the tgz file corresponding to your
platform (available on the web site) to a local directory of your choice. Decompress the
tgz file and then extract from the resulting tar file as follows:

gunzip tgzfile
tar xvf tarfile

The installation directory should contain the following directory structure:

UNIX Implementation Details 6-1

Libraries and Structure

Directory Description

/redist Contains a working copy of the UNIX version of the technology.

/sdk/common Contains the C include files needed to build or rebuild the
technology.

/sdk/demo Contains the compiled executables of the sample applications.

/sdk/resource Contains localization resource files. For more information, see

Changing Resources.

/sdk/samplecode Contains a subdirectory holding the source code for a sample
application. For more information, see Sample Applications.

/sdk/samplefiles Contains sample input files authored in a variety of popular
graphics, word processor, compression, spreadsheet and
presentation applications.

/sdk/template Contains a number of sample templates designed to exercise
HTML Export's template language. Some templates consist of
multiple files. When this is the case, main.htm is the file to which
the SCCOPT_TEMPLATE option should point.

NSF Support

Notes Storage Format (NSF) files are produced by the Lotus Notes Client or the Lotus
Domino server. The NSF filter is the only Outside In filter that requires the native
application to be present to filter the input documents. Due to integration with an
outside application, NSF support will not work with redirected I/O nor will it work
when an NSF file is embedded in another file. Lotus Domino version 8 must be
installed on the same machine as OIT. The NSF filter is currently only supported on
the Win32, Win x86-64, Linux x86-32, and Solaris Sparc 32 platforms.
SCCOPT_LOTUSNOTESDIRECTORY is a Windows-only option and is ignored on
Unix.

Additional steps must be taken to prepare the system. It is necessary to know the
name of the directory in which Lotus Domino has been installed. On Linux, this
default directory is /opt/ibm/lotus/notes/latest/linux. On Solaris, it is /opt/ibm/
lotus/notes/latest/sunspa.

® In the Lotus Domino directory, check for the existence of a file called "notes.ini". If
the file "notes.ini" does not exist, create it in that directory and ensure that it
contains the following single line:

[Notes]

¢ Add the Lotus Domino directory to the $LD_LIBRARY_PATH environment
variable.

¢ Set the environment variable $Notes_ExecDirectory to the Lotus Domino directory.

Libraries and Structure

On UNIX platforms the Outside In products are delivered with a set of shared
libraries. All libraries should be installed to a single directory. Depending upon your

6-2 Developer's Guide

Libraries and Structure

application, you may also need to add that directory to the system's runtime search
path. For more information, see Environment Variables.

The following is a brief description of the included libraries and support files. In
instances where a file extension is listed as .*, the file extension varies for each UNIX
platform (sl on HP-UX, so on Linux and Solaris).

API Libraries

These libraries implement the APL They should be linked with the developer's

application.

Library Description HTML Image PDF Search XML Web

Export Export Export Export Export View
Export

libsc_da.* Data Access module X X X X X X
libsc_ex.* Export module X X X X X X
libsc_fi.* File Identification X X X X X X

module (identifies
files based on their
contents).

The File ID Specification may not be used directly by any application or workflow
without it being separately licensed expressly for that purpose.

Support Libraries

The following libraries are used for support.

Library Description HTM Imag PDF Searc XML Web
L e Expo h Expor View
Expo Expo rt Expor t Expo
rt rt t rt
libccflex.* A data model adapter that X

converts from stream model
utilized by Outside In filters to the
FlexionDoc Tree model used as a

basis by XML Export.
libexpatw.* A third-party XML parser. X
liboc_emul. Output component emulation X X X X X X
* module
libos_gd.* The internal rendering GDI X X X X

implementation. This library is
only supported on Linux (32- and
64-bit Intel), Solaris (32-bit
SPARC), HP-UX (32-bit RISC),
and AIX (32-bit PPC).

libos_pdf.* PDF generation module X

UNIX Implementation Details 6-3

Libraries and Structure

Library Description HTM Imag PDF Searc XML Web
L e Expo h Expor View
Expo Expo rt Expor t Expo
rt rt t rt
libos_xwin. The native GDI implementation X X X X
*
libsc_anno.* The annotation module X X X X
libsc_ca.* Content Access module (provides X X X X
organized chunker data for the
developer)
libsc_ch.* Chunker (provides caching of and X X X X X X
access to filter data for the export
engines)
libsc_du.* Display Utilities module (includes X X X X X X
text formatting)
libsc_fmt* Formatting module (resolves X X X X X X
numbers to formatted strings)
libsc_fut.* Filter utility module X X X X X X
libsc_ind.* Indexing engine. In Search Export, X X X X X
it handles common functionality.
libsc_lo.* Localization library (all strings, X X X X X X
menus, dialogs and dialog
procedures reside here)
libsc_sd.* Schema Definition Module X
Manager (brokers multiple
Schema Definition Modules)
libsc_ut.* Utility functions, including IO X X X X X X
subsystem
libsc_xp.* XPrinter bridge X X X X
libsdflex.* Schema Definition module X
(handles conversion of XML
string names and attribute values
to compact binary representations
and vice versa)
libwv_core. The Abstraction layer X X X X X X
*
libwv_gdlib The GDI rendering module. This X X X X

.SO

library is only supported on Linux
(32- and 64-bit Intel), Solaris (32-
bit SPARC), HP-UX (32-bit RISC),
and AIX (32-bit PPC).

Engine Libraries

The following libraries are used for display purposes.

6-4 Developer's Guide

Libraries and Structure

Library Description HTM Imag PDF Searc XML Web
L e Expo h Expor View
Expo Expo rt Expor t Expo
rt rt t rt
libde_bmp. Raster rendering engine (TTFF, X X X
* GIF, BMP, PNG, PCX...)
libde_vect.* Vector/Presentation rendering X X X X X
engine (PowerPoint, Impress,
Freelance)
libde_ss.* Spreadsheet/Database (Excel, X X X
Calc, Lotus 123)
libde_tree* Archive (ZIP, GZIP, TAR...) X X
libde_wp.* Document (Word, Writer, X X X X
WordPerfect)

Filter and Export Filter Libraries

The following libraries are used for filtering.

libex_gdsf must be linked with libsc_img.* at compile time. This forces the filter to be
dependent on libsc_img.* at runtime, even though that module may not be used
directly. If you want to reduce your application's physical footprint, you can
experiment with unlinking libsc_img.*.

Library Description HTM Imag PDF Searc XML Web
L e Expo h Expor View
Expo Expo rt Expor t Expo
rt rt t rt

libvs_*.* Filters for specific file types (there X X X X X X

are more than 150 of these filters,
covering more than 600 file

formats)
libex_gdsf.* Export filter for GIF, JPEG, and X X X
PNG graphics files
libex_h5.* Export filter for HTMLS5 files X
libsc_img.* Image conversion module X X X X
libex_itext.* Export filter for SearchText X
libex_html.* Export filter for HTML files X
libex_img.* Extended image conversion X
module
libex_xml* Export filter for XML files using X
the Flexiondoc schema
libex_page. Export filter for XML files using X
* the PageML schema

UNIX Implementation Details 6-5

Libraries and Structure

Library

Description HTM Imag PDF Searc XML Web
L e Expo h Expor View
Expo Expo rt Expor t Expo
rt rt t rt
libex_pagel Page Layout module X
ayout.*
libex_ixml.* Export filters for XML files using X
the SearchML schema
libex_ihtml. Export filter for SearchHTML X
*
Premier Graphics Filters
The following are graphics filters.
Library Description HTML Image PDF Search XML Web
Export Export Export Export Export View
Export
libi*.* These files are the X X X X X X
import filters for
premier graphics
formats.
libis_unx2.* Interface to premier X X X X X X
graphics filters
Additional Files
The following files are also used.
Library Description HTML Image PDF Search XML Web
Export Export Export Export Export View
Export
adinit.dat Support file for the X X X X X X
vsacad and vsacd2
filters
ccbf.so Internal X
cmmap000.bin Tables for character X X X X X X
mapping (all
character sets)
cmmap000.sbc Tables for character X X X X X X

6-6 Developer's Guide

mapping (single-byte
character sets). This
file is located in the /
common directory.

The Basics

The Basics

Library

Description

Image PDF Search XML Web
Export Export Export Export Export View

Export

cmmap000.dbc

exbf.so

flexiondoc.dtd

flexiondoc.xsd

libfreetype.so.
6

oitnsf.id

pageml.dtd

pageml.xsd

searchml3.dtd

searchml3.xsd

Identical to
cmmap000.bin, but
renamed for clarity
(.dbc = double-byte
character). This file is
located in the
common directory.

Internal

The DTD version of
the Flexiondoc
schema

The schema version
of the Flexiondoc
schema

TrueType font
rendering module
for the GD output
solution. 32-bit
Linux and Solaris
Sparc only.

Support file for the
vsnsf filter.

The Document Type
Definition for the
PageML schema

The Extensible
Schema Definition
for the PageML
schema

The Document Type
Definitions for the
SearchML schema

The Extensible
Schema Definitions
for the SearchML
schema

X X X

Sample applications are provided with the SDK. These applications demonstrate most
of the concepts described in this manual. For a complete description of the sample
applications, see Sample Applications.

UNIX Implementation Details 6-7

The Basics

What You Need in Your Source Code

Any source code that uses this product should #i ncl ude the file sccex.h and
#def i ne UNIX. For example, a 32-bit UNIX application might have a source file with
the following lines:

#define UNI X
#i ncl ude <sccex. h>

and a 64-bit UNIX application might have a source file with the following lines:

#define UNI X
#define UNI X 64
#i ncl ude <sccex. h>

HTML Export can generate many open files at the same time, thereby hitting user/
system-defined limits. There are two UNIX solutions to this:

* Increase the maximum file count by using the ulimit console command. Consult
the UNIX man pages for your shell of choice (sh, ksh, bash) for the shell command
"ulimit."

¢ Make a system call in the code (before calling export functions):

setrlinit(RLIMT_NOFILE,...)

Consult the UNIX man pages for the system C function "setrlimit."

Information Storage

This software is based on the Outside In Viewer Technology (or simply "Viewer
Technology"). A file of default options is always created, and a list of available filters
and a list of available display engines are also built by the technology, usually the first
time the product runs (for UNIX implementations). You do not need to ship these lists
with your application.

Lists are stored in the SHOME/ .oit directory. If the SHOME environment variable is
not set, the files are put in the same directory as the Outside In Technology. If a /.oit
directory does not exist in the user's SHOME directory, the .oit directory is created
automatically by the technology. The files are automatically regenerated if corrupted
or deleted.

The files are:

e *f: Filter lists

e *d: Display engine list
* *.opt: Persistent options

The technology does not actually use the list of default options created by the Viewer
Technology.

The filenames are intended to be unique enough to avoid conflict for any combination
of machine name and install directory. This is intended to prevent problems with
version conflicts when multiple versions of the Viewer Technology and/or other
Viewer Technology-based products are installed on a single system. The filenames are
built from an 11-character string derived from the directory the Outside In technology

6-8 Developer's Guide

Character Sets

resides in and the name of the machine it is being run on. The string is generated by
code derived from the RSA Data Security, Inc. MD5 Message-Digest Algorithm.

The products still function if these files cannot be created for some reason. In that
situation, however, significant performance degradation should be expected.

Character Sets

The strings passed in the UNIX API are ISO8859-1 by default.

To optimize performance on systems that do not require DBCS support, a second
character mapping bin file, that does not contain any of the DBCS pages, is now
included. The second bin file gives additional performance benefits for English
documents, but cannot handle DBCS documents. To use the new bin file, replace the
cmmap(000.bin with the new bin file, cmmap000.sbc. For clarity, a copy of the
cmmap000.bin file (cmmap000.dbc) is also included. Both cmmap000.sbc and
cmmap000.dbc are located in the /sdk/common directory of the technology.

Runtime Considerations

The following is information to consider during run-time.

X Server Requirement

OLE2 Objects

Note:

The X Server requirement can be eliminated by setting the
SCCOPT_RENDERING_PREFER_OIT option to TRUE.

Access to a running X Windows server and the presence of Motif (or LessTif on Linux)
are required to convert from vector formats on UNIX systems. Examples of vector
graphics files include CAD drawings and presentation files such as Power Point 97
files. Bitmap graphic conversion (handled in XML Export by the libde_bmp.* engine)
does not require access to a running X Windows server. Examples of bitmap file
formats include GIF, JPEG, TIFF, and Windows BMP files.

A runtime check for the presence of X libraries is performed to accommodate system
with and without available X servers. This check looks on the system-specific library
path variable for the X libraries. If the X libraries are not found, this product does not
perform vector graphics conversion.

Be sure to set the $DISPLAY environment variable before running this product when
non-raster/vector graphic conversion is needed. This is especially important to
remember in situations such as CGI programs that start with a limited environment.

For example, when running the technology from a remote session, setting DISPLAY=:
0.0 tells the system to use the X Windows server on the console.

Some documents that the developer is attempting to convert may contain embedded
OLE2 objects. There are platform-dependent limits on what the technology can do
with OLE2 objects. However, Outside In attempts to take advantage of the fact that
some documents accompany an OLE2 embedding with a graphic "snapshot," in the
form of a Windows metafile.

UNIX Implementation Details 6-9

Runtime Considerations

On all platforms, when a metafile snapshot is available, the technology uses it to
convert the object. When a metafile snapshot is not available on UNIX platforms, the
technology is unable to convert the OLE2 object.

Machine-Dependent Graphics Context

The system uses a machine configuration dependent graphics context to render some
images. The number of colors available in the systems graphics context is a
particularly important limiting factor. For example, if the video driver for a system
running Outside In is set up to display 256 colors, images produced on that system
would be limited to 256 colors.

Signal Handling

For all vector image formats that HX converts, we require that the X11 display
support either 1 bit, 4 bits, 8 bits, 24 bits, or 32 bits.

If SCCOPT_RENDERING_PREFER_OIT = TRUE on UNIX then we're using
internal rendering of vector formats, and we don't use the X11 display.

Raster image formats when converted do not need the X11 display, so are not
sensitive to the bit depth of the display.

Note:

SCCOPT_RENDERING_PREFER_OIT is only supported on Linux x86-32 and
Solaris Sparc-32 platforms.

These products trap and handle the following signals:

SIGABRT
SIGBUS
SIGFPE
SIGILL
SIGINT
SIGSEGV
SIGTERM

Developers who wish to override our default handling of these signals should set up
their own signal handlers. This may be safely done after the developer's application
has called DAInitEx().

6-10 Developer's Guide

Environment Variables

Note:

The Java Native Interface (JNI) allows Java code to call and be called by native
code (C/C++ in the case of OIT). You may run into problems if Java isn't
allowed to handle signals and forward them to OIT. If OIT catches the signals
and forwards them to Java, the JVMs will sometimes crash. OIT installs signal
handlers when DAInitEx() is called, so if you call OIT after the JVM is created,
you will need to use libjsig. Refer here for more information:

http://ww. oracl e. com t echnet wor k/ j aval j avase/
i ndex-137495. ht

Runtime Search Path and $ORIGIN

Libraries and sample applications are all built with the $ORIGIN variable as part of
the binaries' runtime search path. This means that at runtime, OIT libraries will
automatically look in the directory they were loaded from to find their dependent
libraries. You don't necessarily need to include the technology directory in your
LD_LIBRARY_PATH or SHLIB_PATH.

As an example, an application that resides in the same directory as the OIT libraries
and includes $ORIGIN in its runtime search path will have its dependent OIT libraries
found automatically. You will still need to include the technology directory in your
linker's search path at link time using something like -L and possibly -rpath-link.

Another example is an application that loads OIT libraries from a known directory.
The loading of the first OIT library will locate the dependent libraries.

Note:

This feature does not work on AIX and FreeBSD.

Environment Variables

Several environment variables may be used at run time. Following is a short summary
of those variables and their usage.

Variable Description

$LD_LIBRARY_PATH (FreeBSD, HP- These variables help your system's dynamic loader
UX Itanium 64, Linux, Solaris) locate objects at runtime. If you have problems with
$SHLIB_PATH (HP-UX RISC 32) libraries failing to load, try adding the path to the

Outside In libraries to the appropriate environment
variable. See your system's manual for the dynamic
loader and its configuration for details.

Note that for products that have a 64-bit PA /RISC,

64-bit Solaris and Linux PPC/PPC64 distributable,
they will also go under $LD_LIBRARY_PATH.

$LIBPATH (ALY, iSeries)

$DISPLAY Must be set to point to a valid X Server to render
files, unless you plan to use the
SCCOPT_RENDERING_PREFER_OIT option. For
more information, see X Server Requirement.

UNIX Implementation Details 6-11

http://www.oracle.com/technetwork/java/javase/index-137495.html
http://www.oracle.com/technetwork/java/javase/index-137495.html

Default Font Aliases

Variable Description

$GDFONTPATH Must be set if you intend to use the
SCCOPT_RENDERING_PREFER_OIT option. This
variable includes one or more paths to fonts for use
with Outside In's internal graphics rendering code.

$HOME Must be set to allow the system to write the option,
filter and display engine lists. For more information,
see Information Storage.

Default Font Aliases

The technology includes the following default font alias map for UNIX platforms. The
first value is the original font, and the second is the alias.

e 61 = Liberation Sans

¢ Andale Mono = Liberation Sans

e Courier = Liberation Sans

e Courier New = Liberation Sans

e Lucida Console = Liberation Sans

e MS Gothic = Liberation Sans

e MS Mincho = Liberation Sans

¢ OCR A Extended = Liberation Sans

e (OCR B = Liberation Sans

* Agency FB = Liberation Sans

e Arial = Liberation Sans

e Arial Black = Liberation Sans

e Arial Narrow = Liberation Sans

e Arial Rounded MT = Liberation Sans
e Arial Unicode MS = Liberation Sans
¢ Berline Sans FB = Liberation Sans

e (alibri = Liberation Sans

¢ Frank Gothic Demi = Liberation Sans
e Frank Gothic Medium Cond = Liberation Sans
e Franklin Gothic Book = Liberation Sans
e Futura = Liberation Sans

e Geneva = Liberation Sans

6-12 Developer's Guide

Default Font Aliases

Gill Sans = Liberation Sans

Gill Sans MT = Liberation Sans

Lucida Sans Regular = Liberation Sans
Lucida Sans Unicode = Liberation Sans
Modern No. 20 = Liberation Sans
Tahoma = Liberation Sans

Trebuchet MS = Liberation Sans

Tw Cen MT = Liberation Sans
Verdana = Liberation Sans

Albany = Liberation Sans

Franklin Gothic = Liberation Sans
Franklin Demi = Liberation Sans

Franklin Demi Cond = Liberation Sans

Franklin Gothic Heavy = Liberation Sans

Algerian = Liberation Serif
Baskerville = Liberation Serif

Bell MT = Liberation Serif

Bodoni MT = Liberation Serif

Bodoni MT Black = Liberation Serif
Book Antiqua = Liberation Serif
Bookman Old Style = Liberation Serif
Calisto MT = Liberation Serif
Cambria = Liberation Serif

Centaur = Liberation Serif

Century = Liberation Serif

Century Gothic = Liberation Serif
Century Schoolbook = Liberation Serif
Elephant = Liberation Serif

Footlight MT Light = Liberation Serif
Garamond = Liberation Serif

Georgia = Liberation Serif

Goudy Old Style = Liberation Serif

UNIX Implementation Details 6-13

Changing Resources

* Lucida Bright = Liberation Serif
e MS Serif = Liberation Serif

e New York = Liberation Serif

e Palatino = Liberation Serif

® Perpetua = Liberation Serif

e Times = Liberation Serif

e times = Liberation Serif

e Times New Roman = Liberation Serif

Changing Resources

All of the strings used in the UNIX versions of Outside In products are contained in
the lodlgstr.h file. This file, located in the resource directory, can be modified for
internationalization and other purposes. Everything necessary to rebuild the resource
library to use the modified source file is included with the SDK.

In addition to lodlgstr.h, the scclo.o object file is provided. This is necessary for the
linking phase of the build. A makefile has also been provided for building the library.
The makefile allows building on all of the UNIX platforms supported by Outside In. It
may be necessary to make minor modifications to the makefile so the system header
files and libraries can be found for compiling and linking.

Standard INCLUDE and LIB make variables are defined for each platform in the
makefile. Edit these variables to point to the header files and libraries on your
particular system. Other make variables are:

e TECHINCLUDE: May need to be edited to point to the location of the Outside In /
common header files supplied with the SDK.

e BUILDDIR: May need to be edited to point to the location of the makefile,
lodlgstr.h, and scclo.o (which should all be in the same directory).

After these variables are set, change to the build directory and type make. The libsc_lo
resource library is built and placed in the appropriate platform-specific directory. To
use this library, copy it into the directory where the Outside In product is stored and
the new, modified resource strings are used by the technology.

Menu constants are included in lomenu.h in the common directory.

HP-UX Compiling and Linking

The libsc_ex.sl and libsc_da.sl libraries are the only ones that must be linked with your
application. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, shl_load).

To use HTML Export's annotation functions, you also must link to libsc_ca.sl,
requiring a separate license to Outside In Content Access or Search Export. Contact
your Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to

6-14 Developer's Guide

IBM AIX Compiling and Linking

ensure that the needed functions from these libraries are present before the product
libraries are used.

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. The command lines are separated into
sections for HP-UX and HP-UX on Itanium. This command line is only an example.
The actual command line required on the developer's system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file
path and /or -L library file path options, respectively, so that the compiler and linker can
locate all required files.

When using HTML Export, the libex_gdsf filter must link with libsc_img at compile
time. This forces the filter to be dependent on libsc_img at runtime, even though that
module may not be used directly. If you are looking to reduce your application's
physical footprint, you can experiment with unlinking libsc_img.

HP-UX on RISC
cCc -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c +DAportable -Ae -
I/usr/include -1../../comon -L../../demo -L/usr/lib -1sc_ex -1sc_da -W, +s,
+bh, ' SORIG N

HP-UX on RISC (64 bit)

cCc -w -0 ../exsinplelunix/exsinple ../exsinmplelunix/exsinple.c +DD64 -1/usr/include -
I../../common -L../../demo -L/usr/lib/pa20_64 -DUNI X 64 -Isc_ex -lsc_da -W, +s,
+h, " $ORIG N

HP-UX on Itanium (64 bit)

cCc -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c +DD64 -1../../commn -
L../../denp -1sc_ex -1sc_da -DUNI X 64 -W, +s, +b, ' $ORIG N

IBM AIX Compiling and Linking

All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Outside In technology.

Outside In technology has been updated to increase performance, at a cost of using
more memory. It is possible that this increased memory usage may cause a problem
on AIX systems, which can be very conservative in the amount of memory they grant
to processes. If your application experiences problems due to memory limitations with
Outside In, you may be able to fix this problem by using the "large page" memory
model.

If you anticipate viewing or converting very large files with Outside In Technology,
we recommend linking your applications with the -bmaxdata flag. For example:

cc -o foo foo.c -bmaxdata: 0x80000000

If you are currently seeing "illegal instruction” errors followed by immediate program
exit, this is likely due to not using the large data model.

To use the HTML Export annotation function, you must also link to libsc_ca.sl,
requiring a separate license to Outside In Content Access or Search Export. Contact
your Outside In sales representative for more information.

UNIX Implementation Details 6-15

Linux Compiling and Linking

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an example.
The actual command line required on the developer's system may vary. The example
assumes that the include and library file search paths for the technology libraries and
any required X libraries are set correctly. If they are not set correctly, the search paths
for the include and/or library files must be explicitly specified via the -I include file
path and/or -Llibrary file path options, respectively, so that the compiler and linker can
locate all required files. Developers need to pass -brtl to the linker to list libraries in the
link command as dependencies of their applications.

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even
though that module may not be used directly. If you are looking to reduce your
application's physical footprint, you can experiment with unlinking libsc_img.

Developers may need to use the -qcpluscmt flag to allow C++ style comments.

IBM AIX (32-bit pSeries)

gcc -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1../../comon -
L../../demo -Isc_ex -lsc_da - DFUNCPROTO -W, - brtl

IBM AIX PPC (64-bit)

gcc -w -0 ../ exsinplel/unix/exsinple ../exsinplel/unix/exsinple.c -maix64 -1../../
conmmon -L../../denp -1sc_ex -1sc_da -DUNI X 64 - DFUNCPROTO -W, -brtl

Linux Compiling and Linking

This section discusses issues involving Linux compiling and linking.

Library Compatibility

This section discusses Linux library compatibility issues.

Motif Libraries

Problems can be seen when using Export products and trying to convert graphics files.
For example, zero-byte graphics files are generated if the technology cannot find the
proper Motif library. You can check to see if this is the case by running the following
command:

I dd I'ibos_xwin.so

This prints a list of the dependencies that this library has. If the line for the Motif
library is similar to the following then your system may not have a compatible Motif
library:

l'ibXmso.3 => not found
The solution is to install a compatible Motif library and use it to build your
application. Often, the installation discs for your particular Linux platform have the

proper libraries. If your installation discs do not have the libraries, instructions for
downloading a binary rpm can be found at ht t p: // r pnf i nd. net /I i nux/ RPM

6-16 Developer's Guide

http://rpmfind.net/linux/RPM

Linux Compiling and Linking

If you are doing development, you must use the proper header files, as well.

The following is a list of the Motif library versions used by Oracle when building and
testing the Outside In binaries.

* x86 Linux - OpenMotif v. 2.2.3
® zSeries Linux - OpenMotif v. 2.2.3

¢ Itanium Linux - OpenMotif v. 2.1.30

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even
though that module may not be used directly. If you want to reduce your application's
physical footprint, you can experiment with unlinking libsc_img.

GLIBC and Compiler Versions

The following table indicates the compiler version used and the minimum required
version of the GNU standard C library needed for Outside In operation.

Distribution Compiler Version GLIBC Version

x86 Linux 3.3.2 libc.s0.6 (2.3.2 or newer)

[tanium Linux 3.32 libc.s0.6 (2.3.2 or newer)

zSeries Linux 3.3.6 libc.s0.6 (2.3.2 or newer)
Other Libraries

In addition to libc.so.6, Outside In is dependent upon the following libraries:

e libXm.so0.3 (in particular, libXm.s0.3.0.2 or newer, due to issues in OpenMotif 2.2.2)
e libXt.s0.6

¢ libstdc++.50.6

e libgcc_so.1

libgcc_s.so0.1 was introduced with GCC 3.0, so any distribution based on a pre-GCC 3.0
compiler does not include libgcc_s.so.1.

Compiling and Linking

The libsc_ex.so and libsc_da.so are the only libraries that must be linked with your
applications. They can be loaded when your application starts by linking them directly
at compile time or they can be loaded dynamically by your application using library
load functions (for example, dlopen).

To use HTML Export annotation functions, you must also link to libsc_ca.so, requiring
a separate license to Outside In Content Access or Search Export. Contact your
Outside In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

UNIX Implementation Details 6-17

Oracle Solaris Compiling and Linking

The following are example command lines used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary.

The example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and /or -L library file path options, respectively, so the compiler and
linker can locate all required files.

The -L/usr/X11R6/lib option is also available.

Linux 32-bit, including Linux PPC

gcc -w -0 ../ exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1/usr/local/include
-1../../common -L../../demo -L/usr/local/lib -Isc_ex -lsc_da -W,-rpath,../../dem -
W, -rpath,' ${ORIG N}’

Linux 64-bit

gcc -w -0 ../ exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1/usr/local/include
-1../../common -L../../demo -L/usr/local/lib -1sc_ex -Isc_da -DUNIX 64 -W, -
rpath,../../denmo -W,-rpath,' ${ORIAN}"

Linux zSeries

gcc -w -0 ../ exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1/usr/local/include
-1../../common -L../../demo -L/usr/local/lib -Isc_ex -lsc_da -W,-rpath,../../denm -
W, -rpath,' ${ORIG N}’

Oracle Solaris Compiling and Linking

Note:

These products do not support the "Solaris BSD" mode.

All libraries should be installed into a single directory. The libsc_ex.so, and libsc_da.so
libraries must be linked with your application. It can be loaded when your application
starts by linking them directly at compile time or they can be loaded dynamically by
your application using library load functions (for example, dlopen).

To use HTML Export annotation functions, you must link to libsc_ca.sl, requiring a
separate license to Outside In Content Access or Search Export. Contact your Outside
In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path> and/or -L library file path options, respectively, so that the compiler
and linker can locate all required files.

6-18 Developer's Guide

Oracle Solaris Compiling and Linking

When using HTML Export, the libex_gdsf filter must be linked with libsc_img at
compile time. This forces the filter to be dependent on libsc_img at runtime, even
though that module may not be used directly. If you want to reduce your application's
physical footprint, you can experiment with unlinking libsc_img.

Developers may need to use the -xcc flag to allow C++ style comments.

Oracle Solaris SPARC
cC -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1/usr/include -
I /usr/dt/share/include -1../../common -L../../demo -L/usr/lib -L/lib -lsc_ex -lsc_da

-W,-R../../dem -W,-R"'${ORIG N

Note: When running the 32-bit SPARC binaries on Solaris 8 or 9 systems, you may see
the following error:

Id.so.1: sinple: fatal: libmso.1: version "SUNW1.1.1" not found
(required by file ./libsc_vw. so)

This is due to a missing system patch. Please apply one of the following patches (or its
successor) to your system to correct.

e For Solaris 8 - Patch 111721-04

e For Solaris 9 - Patch 111722-04

Oracle Solaris (SPARC) 64

cCc -w -0 ../exsinmplelunix/exsinple ../exsinplelunix/exsinple.c -xtarget=generic64 -
I/usr/include -1/usr/dt/share/include -1../../comon -L../../demo -L/usr/lib -L/lib -
Isc_ex -lsc_da -DUNIX 64 -W,-R ../../demp -W,-R'${ORIGN}'

Oracle Solaris x86

Note:

Your system will require Solaris patch 108436, which contains the C++ library
libCstd.so.1.

cCc -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c -1/usr/include -
| /usr/dt/share/include -1../../comon -L../../demo -L/usr/lib -L/lib -Isc_ex -Isc_da
-W,-R../../demp -W,-R"${ORIGN}'

Oracle Solaris x64

cC -w -0 ../exsinplelunix/exsinple ../exsinplelunix/exsinple.c -xtarget=native64 -
[/usr/include -1/usr/dt/share/include -1../../common -L../../demo -L/usr/lib -L/lib -
Isc_ex -Isc_da -DUNIX 64 -W,-R,../../dem0 -W,-R'${ORIGAN}'

Oracle Solaris X Server Display Memory Issue

On some Solaris systems, the X Server does not free the memory for a display until the
last close display call is made on that display. This problem is limited strictly to the
Oracle Solaris OS and does not affect any other platforms, UNIX or otherwise. It also
does not affect HTML Export when graphics conversions are turned off.

UNIX Implementation Details 6-19

z/0OS Compiling and Linking

This problem is most noticeable when doing large amounts of graphics processing,
when system memory usage can grow without bound. This memory can only be freed
by shutting down the X Windows display the user pointed the technology to use via
the DISPLAY environment variable. If that display is the "console" display, the user
must log out of the console in order to free the memory. Users may be able to avoid
this problem by choosing a display that they can close periodically.

z/0S Compiling and Linking

The libsc_ex.x and libsc_da.x libraries must be linked with your application. They can
be loaded when your application starts by linking them directly at compile time or
they can be loaded dynamically by your application using library load functions (for
example, dlopen).

To use HTML Export's annotation functions, link to libsc_ca.x, which requires a
separate license to Outside In Content Access or Search Export. Contact your Outside
In sales representative for more information.

The shared libraries are dependent on the presence of the X libraries Xm, Xt and X11 if
vector graphics support is required. It is the application developer's responsibility to
ensure that the needed functions from these libraries are present before the product
libraries are used.

All libraries should be installed into a single directory and the directory must be
included in the system's shared library path ($LIBPATH). $LIBPATH must be set and
must point to the directory containing the Outside In technology.

The following is an example command line used to compile the sample application
exsimple from the /sdk/samplecode directory. This command line is only an
example. The actual command line required on the developer's system may vary. The
example assumes that the include and library file search paths for the technology
libraries and any required X libraries are set correctly. If they are not set correctly, the
search paths for the include and/or library files must be explicitly specified via the -I
include file path and/or -L library file path options, respectively, so the compiler and
linker can locate all required files.

c89 -0 ../exsinplelunix/exsinple -1/usr/include/X11 -1/usr/local/include -1../../
common -W'c, ASCl |, LANGLVL(ANSI, LONGLONG)' - D ZOS SOURCE - D XOPEN SOURCE=500 -
W, DLL, XPLINK -L../../denp -L/usr/local/lib -L/usr/local/lib/loivt ../../denmo/
libsc_fa.x ../../demo/libsc_ex.x ../../denmo/libsc_da.x ../exsinplelunix/exsinple.c

6-20 Developer's Guide

v

Data Access Common Functions

The Data Access module is common to all Outside In technologies. It provides a way
to open a generic handle to a source file. This handle can then be used in the functions
described in this chapter.

This chapter contains the following sections:
® Deprecated Functions
e DAInitEx

¢ DADelnit

¢ DAOpenDocument

¢ DACloseDocument

¢ DARetrieveDocHandle
* DASetOption

* DASetFileSpecOption
¢ DAGetOption

e DAGetFileld

¢ DAGetFileldEx

¢ DAGetErrorString

¢ DAGetTreeCount

e DAGetTreeRecord

¢ DAOpenTreeRecord

e DASaveTreeRecord

¢ DACloseTreeRecord

e DASetStatCallback

e DASetFileAccessCallback

Deprecated Functions

DAlInit and DaThreadlInit have both been deprecated. DAInitEx now replaces these
two functions. All new implementations should use DAInitEX, although the other two
functions will continue to be supported.

Data Access Common Functions 7-1

DAInitEx

DAInitEx

This function tells the Data Access module to perform any necessary initialization it
needs to prepare for document access. This function must be called before the first
time the application uses the module to retrieve data from any document. This
function supersedes the old DAInit and DAThreadInit functions.

Note:

DAInitEx should only be called once per application, at application startup
time. Any number of documents can be opened for access between calls to
DAInitEx and DADelnit. If DAInitEx succeeds, DADelnit must be called
regardless of any other API calls.

If the ThreadOption parameter is set to something other than
DATHREAD_INIT_NOTHREADS, then this function's preparation includes setting
up mutex function pointers to prevent threads from clashing in critical sections of the
technology's code. The developer must actually code the threads after this function has
been called. DAInitEx should be called only once per process and should be called
before the developer's application begins the thread.

Note:

Multiple threads are supported for all Windows platforms, the 32-bit versions
of Linux x86 and Solaris SPARC, Linux x64 and Solaris SPARC 64. Failed
initialization of the threading function will not impair other API calls. If
threading isn't initialized or fails, stub functions are called instead of mutex
functions.

Prototype
DAERR DAI ni t Ex(VTSHORT ThreadOpti on, VTDWORD dwFl ags);

Parameters
e ThreadOption: can be one of the following values:
- DATHREAD_INIT_NOTHREADS: No thread support requested.
- DATHREAD_INIT_PTHREADS: Support for PTHREADS requested.

- DATHREAD_INIT_NATIVETHREADS: Support for native threading
requested. Supported only on Microsoft Windows platforms and Oracle Solaris.

¢ dwFlags: can be one or more of the following flags OR-ed together
— OILINIT_DEFAULT: Options Load and Save are performed normally
— OI_INIT_NOSAVEOPTIONS: The options file will not be saved on exit

- OILINIT_NOLOADOPTIONS: The options file will not be read during
initialization.

7-2 Developer's Guide

DADelnit

DADelnit

Return Values

¢ DAERR_OK: If the initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

This function tells the Data Access module that it will not be asked to read additional
documents, so it should perform any cleanup tasks that may be necessary. This
function should be called at application shutdown time, and only if the module was
successfully initialized with a call to DAInitEx.

Prototype
DAERR DADel ni t () ;

Return Values

e DAERR_OK: If the de-initialization was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

DAOpenDocument

Opens a source file to make it accessible by one or more of the data access
technologies. If DAOpenDocument succeeds, DACloseDocument must be called
regardless of any other API calls.

The software now allows you to specify a file within an archive as the source for a
conversion. A "subdocument specification” has been defined that allows the caller to
identify the item within the archive that they wish to convert. The subdocument
specification has the form item.number, where number identifies a particular item
within the archive (item numbers must be non-zero, positive integers and the
enumeration of items in the archive starts with "1"). Nested archives are supported,
meaning that if the archived item is itself also an archive, you can specify an item
within it as the "true" target file. This is accomplished by appending another number
to the subdocument specification, delimited by another dot. For example, to specify
item number 3 within an archive, the subdocument specification is item.3. If item
number 3 is an archive file itself, and you wish to specify the fourth item within it, the
subdocument specification is item.3.4. Any level of nesting is supported, up to the
maximum length of a subdocument specification, which is DA_MAXSUBDOCSPEC.

For IO types other than IOTYPE_REDIRECT, the subdocument specification may be
specified as part of the file's path. This is accomplished by appending a question mark
delimiter to the path, followed by the subdocument specification. For example, to
specify the third item within the file c:\docs\file.zip, specify the path c:\docs\file.zip?
item.3 in the call to DAOpenDocument. DAOpenDocument always attempts to open
the specification as a file first. In the unlikely event there is a file with the same name
(including the question mark) as a file plus the subdocument specification, that file is
opened instead of the archive item.

To take advantage of this feature when providing access to the input file using
redirected IO, a subdocument specification must be provided via a response to an
I0GetInfo message, IOGETINFO_SUBDOC_SPEC. To specify an item in an archive,
first follow the standard redirected IO methods to provide a BASEIO pointer to the
archive file itself. To specify an item within the archive, a redirected IO object must
respond to the IOGETINFO_SUBDOC_SPEC message by copying to the supplied

Data Access Common Functions 7-3

DAOpenDocument

buffer the subdocument specification of the archive item to be opened. This message is
received during the processing of DAOpenDocument.

Prototype

DAERR DAGpenDocunent (
VTLPHDOC | phDoc,
VTDWORD dwSpecType,
VILPVO D pSpec,
VTDWORD dwFl ags) ;

Parameters

7-4 Developer's Guide

IphDoc: Pointer to a handle that will be filled with a value uniquely identifying the
document to data access. The developer uses this handle in subsequent calls to data
access to identify this particular source file. This is not an operating system file
handle.

dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the source file.

Note:

The values used within IOTYPE_ARCHIVEOBJECT,
IOTYPE_LINKEDOBJECT, and IOTYPE_OBJECT may change if different
options are applied, with different versions of the technology, or after patches
are applied.

Must be one of the following values:

IOTYPE_ANSIPATH: Windows only. The pSpec points to a NULL-terminated
full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS
(Win32 and Win64) file name conventions.

IOTYPE_UNICODEPATH: Windows only. The pSpec points to a NULL-
terminated full path name using the Unicode character set and NTFS (Win32
and Win64) file name conventions.

IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-
terminated full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

IOTYPE_REDIRECT: All platforms. The pSpec points to a developer-defined
struct that allows the developer to redirect the IO routines used to read the file.
For more information, see Redirected IO.

IOTYPE_ARCHIVEOBJECT: All platforms. Opens an embedded archive object
for data access. The pSpec points to a structure IOSPECARCHIVEOBJECT (see
IOSPECARCHIVEOBJECT Structure) that has been filled with values returned
in a SCCCA_OBJECT content entry from Content Access.

IOTYPE_LINKEDOBJECT: All platforms. Opens an object specified by a linked
object for data access. The pSpec points to a structure IOSPECLINKEDOBJECT
(see IOSPECLINKEDOBJECT Structure) that has been filled with values

DACloseDocument

returned in an SCCCA_BEGINTAG or SCCCA_ENDTAG with a subtype of
SCCCA_LINKEDOBJECT content entry from Content Access.

e pSpec: File location specification.

* dwFlags: The low WORD is the file ID for the document (0 by default). If you set
the file ID incorrectly, the technology fails. If set to 0, the file identification
technology determines the input file type automatically. The high WORD should
be set to 0.

Return Values

e DAERR_OK: Returned if the open was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

IOSPECLINKEDOBJECT Structure

Structure used by DAOpenDocument.

Prototype

typedef struct | OSPECLI NKEDOBJECTt ag
{
VTDWORD dwStruct Si ze;
VTSYSPARAM hDoc;
VTDWORD dwlbjectld; /* Cbject identifier. */
VTDWORD dwType; /* Linked Qbject type */
/* (SO _LOCATORTYPE *) */
VTDWORD dwPar ant; /* paraneter for DoSpecial call */
VTDWORD dwPar an®; /* paraneter for DoSpecial call */
VTDWORD dwReservedl; /* Reserved. */
VTDWORD dwReserved2; /* Reserved. */
} 1 OSPECLI NKEDOBJECT, * Pl OSPECLI NKEDOBJECT;

IOSPECARCHIVEOBJECT Structure

Structure used by DAOpenDocument.

Prototype

typedef struct | OSPECARCH VEOBJECTt ag
{
VTDWORD dwSt ruct Si ze;
VTDWORD hDoc; /* Parent Doc hDoc */
VTDWORD dwhNodel d; /* Node ID */
VTDWORD dwSt r eand d;
VTDWORD dwReservedl; /* Mist always be 0 */
VTDWORD dwReserved2; /* Mist always be 0 */
} 1 OSPECARCH VEOBJECT, * PI OSPECARCH VEOBJECT;

DACloseDocument

This function is called to close a file opened by the reader that has not encountered a
fatal error.

Data Access Common Functions 7-5

DARetrieveDocHandle

Prototype

DAERR DAC oseDocunent (
VTHDOC hDoc);

Parameters

* hDoc: Identifier of open document. Must be a handle returned by the
DAOpenDocument function.

Return Value

e DAERR_OK: Returned if close succeeded. Otherwise, one of the other DAERR_
values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DARetrieveDocHandle

This function returns the document handle associated with any type of Data Access
handle. This allows the developer to only keep the value of hltem, instead of both
hltem and hDoc.

Prototype

DAERR DARet ri eveDocHandl e(
VTHDCC hitem
VTLPHDOC phDoc);

Parameters

¢ hltem: Identifier of open document. May be the subhandle returned by the
DAOpenDocument or DAOpenTreeRecord functions in the data access submodule.
Passing in an hDoc created by DAOpenDocument for this parameter results in an
error.

¢ phDoc: Pointer to a handle to be filled with the document handle associated with
the passed subhandle.

Return Value

¢ DAERR_OK: Returned if the handle in phDoc is valid. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DASetOption

This function is called to set the value of a data access option.

Prototype

DAERR DASet Opti on(
VTHDOC hDoc,
VTDWORD dwOpt i onl d,
VTLPVO D pVal ue,
VTDWORD dwval ueSi ze);

7-6 Developer's Guide

DASetFileSpecOption

Parameters

¢ hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

If this parameter is NULL, then setting the option affects all documents opened
thereafter. Once an option is set using the NULL handle, this option becomes the
default option thereafter. This parameter should only be set to NULL if the option
being set can take that value.

* dwOptionld: The identifier of the option to be set.
¢ pValue: Pointer to a buffer containing the value of the option.

* dwValueSize: The size in bytes of the data pointed to by pValue. For a string value,
the NULL terminator should be included when calculating dwValueSize.

Return Value

e DAERR_OK: Returned if DASetOption succeeded. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

DASetFileSpecOption

This function is called to set the value of an option that takes a spec and spec type as
parameters. It is currently only implemented for use in setting the template option in
HTML Export. This function only needs to be used if the developer wishes to use
Redirected IO on the template files. It may be used to set the template option even if
the developer does not wish to use redirected 10, although DASetOption may also be
used in this situation.

Prototype

DAERR DASet Fi | eSpecOpt i on(
VTHDOC hDoc,
VTDWORD dwOpt i onl d,
VTDWORD dwSpecType,
VTLPVO D pSpec);

Parameters

* hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Setting an
option for a VTHDOC affects all subhandles opened under it, while setting an
option for a subhandle affects only that handle.

¢ dwOptionld: The identifier of the option to be set. Currently only implemented for
the option SCCOPT_EX_TEMPLATE.

* dwSpecType: The spec type of the file. Should be set to one of the valid spec types.

e pSpec: File location specification.

Data Access Common Functions 7-7

DAGetOption

Return Value

¢ DAERR_OK: Returned if DASetFileSpecOption succeeded. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

DAGetOption

This function is called to retrieve the value of a data access option. The results of a call
to this option are only valid if DASetOption has already been called on the option.

Prototype

DAERR DAGet Opti on(
VTHDOC hitem
VIDWORD dwOpti onl d,
VTLPVO D pVal ue,
VTLPDWORD pSi ze);

Parameters

¢ hltem: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.). Getting an
option for a VTHDOC gets the value of that option for that handle, which may be
different than the subhandle's value.

¢ dwOptionld: The identifier of the option to be returned.
e pValue: Pointer to a buffer containing the value of the option.

¢ pSize: This VTDWORD should be initialized by the caller to the size of the buffer
pointed to by pValue. If this size is sufficient, the option value is copied into
pValue and pSize is set to the actual size of the option value. If the size is not
sufficient, pSize is set to the size of the buffer needed for the option and an error is
returned.

Return Value

* DAERR_OK: Returned if DAGetOption was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAGetFileld

This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with.

Note: in cases where File ID returns a value of FI_UNKNOWN, then this function will
apply the Fallback Format before returning a result.

Prototype
DAERR DACGet Fi | el d(
VTHDCC hDoc,

VILPDAORD pduFi | el d) ;

7-8 Developer's Guide

DAGetFileldEx

Parameters

¢ hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, a VTHEXPORT returned by the EXOpenExport
function, or the subhandle returned by the DAOpenDocument or
DAOpenTreeRecord functions (VTHEXPORT, VTIHCONTENT, VTHTEXT, etc.).

¢ pdwtFileld: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

Return Value

e DAERR_OK: Returned if DAGetFileld was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

DAGetFileldEx

This function allows the developer to retrieve the format of the file based on the
technology's content-based file identification process. This can be used to make
intelligent decisions about how to process the file and to give the user feedback about
the format of the file they are working with. This function has all the functionality of
DAGetFileID and adds the ability to return the raw FI value; in other words, the value
returned by normal FI, without applying the FallbackFI setting.

Prototype

DAERR DAGet Fi | el dEx(
VTHDOC hDoc,
VTLPDWORD pdwFi | el d,
VTDWORD dwFl ags) ;

Parameters

* hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHEXPORT, VTHCONTENT, VTHTEXT, etc.).

¢ pdwFileld: Pointer to a DWORD that receives a file identification number for the
file. These numbers are defined in sccfi.h.

* dwFlags: DWORD that allows user to request specific behavior.

— DA_FILEINFO_RAWFEFI: This flag tells DAGetFileldEx() to return the result of
the File Identification operation before Extended File Ident. is performed and
without applying the FallbackFI value.

Return Value

e DAERR_OK: Returned if DAGetFileIdEx was successful. Otherwise, one of the
other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned. See the following tables for examples of expected output depending on
the value of various options.

Data Access Common Functions 7-9

DAGetErrorString

Values with RAWFI turned off

Input file type ExtendedFl FallbackID DAGetFileld DAGetFileldEx
true binary off fallback value fallback value fallback value
true binary on fallback value fallback value fallback value
true text off fallback value fallback value fallback value
true text on fallback value 40XX 40XX

Values with RAWFI turned on

Input file type ExtendedFl FallbackID DAGetFileld DAGetFileldEx
true binary off fallback value fallback value 1999
true binary on fallback value fallback value 1999
true text off fallback value fallback value 1999
true text on fallback value 40XX 1999

DAGetErrorString

This function returns to the developer a string describing the input error code. If the
error string returned does not fit the buffer provided, it is truncated.

VTVO D DAGet Error String(
DAERR deError,
VILPVO D pBuffer,
VTDWORD dwBuf Si ze) ;

Parameters

¢ Error: Error code passed in by the developer for which an error message is to be
returned.

e pBuffer: This buffer is allocated by the caller and is filled in with the error message
by this routine. The error message will be a NULL-terminated string.

¢ dwBufSize: Size of what pBuffer points to in bytes.

Return Value

® none

DAGetTreeCount

This function is called to retrieve the number of records in an archive file.

DAERR DAGet Tr eeCount (
VTHDOC hDoc,
VTLPDWORD | pRecor dCount);

7-10 Developer's Guide

DAGetTreeRecord

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by any of the
DAOpenDocument or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT,
etc.).

IpRecordCount: A pointer to a VTLPDWORD that is filled with the number of
stored archive records.

Return Value

DAERR_OK: DAGetTreeCount was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

DAGetTreeRecord

This function is called to retrieve information about a record in an archive file.

DAERR DAGet TreeRecor d(

VTHDOC hDoc,
PSCCDATREENCDE pTr eeNode) ;

Parameters

hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle by any of the DAOpenDocument or
DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

pTreeNode: A pointer to a PSCCDATREENODE structure that is filled with
information about the selected record.

Return Values

DAERR_OK: DAGetTreeRecord was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

DAERR_BADPARAM: The selected file does not contain an archive section, or the
requested record does not exist.

DAERR_EMPTYFILE: Empty file.
DAERR_PROTECTEDFILE: Password protected or encrypted file.
DAERR_SUPFILEOPENFAILS: Supplementary file open failed.

DAERR_FILTERNOTAVAIL: The file's type is known, but the appropriate filter is
not available.

DAERR_FILTERLOADFAILED: An error occurred during the initialization of the
appropriate filter.

Data Access Common Functions 7-11

DAOpenTreeRecord

SCCDATREENODE Structure

This structure is passed by the OEM through the DAGetTreeRecord function. The
structure is defined in sccda as follows:

typedef struct SCCDATREENCDEt ag{
VIDWORD dwSi ze;
VIDWORD dwiNode;
VTBYTE szName[1024] ;
VIDWORD dwFi | eSi ze;
VIDWORD dwTi ng;
VIDWORD dwFl ags;
VIDWORD dwChar Set ;
} SCCDATREENODE, * PSCCDATREENCDE;

Parameters
¢ dwSize: Must be set by the OEM to sizeof(SCCDATREENODE).

¢ dwNode: The number of the record to retrieve information about. The first node is
node 0.

¢ szName: A buffer to hold the name of the record.
¢ dwtFileSize: Returns the file size, in bytes, of the requested record.
¢ dwTime: Returns the timestamp of the requested record, in MS-DOS time.

* dwFlags: Returns additional information about the node. It can be a combination of
the following;:

- SCCDA_TREENODEFLAG_FOLDER: Indicating that the selected node is a
folder and not a file.

- SCCDA_TREENODEFLAG_SELECTED: Indicating that the node is selected.
— SCCDA_TREENODEFLAG_FOCUS: Indicating that the node has focus.

- SCCDA_TREENODEFLAG_ENCRYPT: Indicating that the node is encrypted
and can not be decrypted.

- SCCDA_TREENODEFLAG_ARCKNOWNENCRYPT: indicating that the node
is encrypted with an unknown encryption and can not be decrypted.

— SCCDA_TREENODEFLAG_BUFFEROVERFLOW: the name of the node was
too long for the szName field.

e dwCharSet: Returns the SO_* (charsets.h) character set of the characters in szName.
The output character set is either the default native environment character set or
Unicode if the SCCOPT_SYSTEMFLAGS option is set to
SCCVW_SYSTEM_UNICODE.

DAOpenTreeRecord

This function is called to open a record within an archive file and make it accessible by
one or more of the data access technologies.

Search Export Only: Search Export's default behavior is to automatically open and
process the contents of an archive. Use DAOpenTreeRecord and

7-12 Developer's Guide

DASaveTreeRecord

SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete
processing of each document in an archive is desired.

DAERR DAQpenTr eeRecor d(
VTHDOC hDoc,
VTLPHDOC | phDoc,
VTDWORD dwRecor d) ;

IphDoc is not a file handle.

Parameters

¢ hDoc: Identifier of open document. May be a VTHDOC returned by the
DAOpenDocument function, or the subhandle returned by the DAOpenDocument
or DAOpenTreeRecord functions (VTHCONTENT, VTHTEXT, etc.).

¢ IphDoc: Pointer to a handle that is filled with a value uniquely identifying the
document to data access. The developer uses this handle in subsequent calls to data
access to identify this particular document.

® dwRecord: The record in the archive file to be opened.

Return Value

¢ DAERR_OK: Returned if DAOpenTreeRecord was successful. Otherwise, one of
the other DAERR _ values in sccda.h or one of the SCCERR _ values in sccerr.h is
returned.

DASaveTreeRecord

This function is called to extract a record in an archive file to disk.

DAERR DASaveTr eeRecor d(
VTHDCC hDoc,
VTDWORD dwRecord,
VTDWORD dwSpecType,
VTLPVO D pSpec,
VTDWORD dwFl ags) ;

Parameters

¢ hDoc: Handle that uniquely identifies the document to data access. This is not an
operating system file handle.

e dwRecord: The record in the archive file to be extracted.

* dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the source file to which the file will be extracted. Must be
one of the following values:

- IOTYPE_ANSIPATH: Windows only. pSpec points to a NULL-terminated full
path name using the ANSI character set and FAT 8.3 (Win16) or NTFS (Win32
and Win64) filename conventions.

— IOTYPE_REDIRECT: Specifies that redirected I/O will be used to save the file.

Data Access Common Functions 7-13

DACloseTreeRecord

- TOTYPE_UNICODEPATH: Windows only. pSpec points to a NULL-terminated
full path name using the Unicode character set and NTFS (Win32 and Win64)
file name conventions.

- IOTYPE_UNIXPATH: UNIX platforms only. pSpec points to a NULL-
terminated full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTEF-8 encoded path with IOTYPE_UNIXPATH.

® pSpec: File location specification. See the descriptions for individual dwSpecType
values.

¢ dwrFlags: Currently not used. Should be set to 0.

Return Values

¢ DAERR_OK: Returned if the save was successful. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is returned.

e DAERR_UNSUPPORTEDCOMP: Unsupported Compression Encountered.
e DAERR_PROTECTEDFILE: The file is encrypted.

e DAERR_BADPARAM: The request option is invalid. The record is possibly a
directory.

Otherwise, one of the other DAERR_ values in sccda.h is returned.

Currently, only extracting a single file is supported. There is a known limitation where
files in a Microsoft Binder file cannot be extracted.

DACloseTreeRecord

This function is called to close an open record file handle.

Search Export Only: Search Export's default behavior is to automatically open and
process the contents of an archive. Use DACloseTreeRecord and
SCCOPT_XML_SEARCHML_FLAGS to change the default behavior if discrete
processing of each document in an archive is desired.

DAERR DAC oseTr eeRecor d(
VTHDOC hDoc) ;

Parameters

¢ hDoc: Identifier of open record document.

Return Value

e DAERR_OK: Returned if DACloseTreeRecord was successful. Otherwise, one of
the other DAERR_ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

DASetStatCallback

This function sets up a callback that the technology will periodically call into to verify
that the file is still being processed. The customer can use this with a monitoring

7-14 Developer's Guide

DASetStatCallback

process to help identify files that may be hung. Since this function will be called more
frequently than other callbacks, it is implemented as a separate function.

Use of the Status Callback Function

An application's status callback function will be called periodically by Outside In to
provide a status message. Currently, the only status message defined is
OIT_STATUS_WORKING, which provides a "sign of life" that can be used during
unusually long processing operations to verify that Outside In has not stopped
working. If the application decides that it would not like to continue processing the
current document, it may use the return value from this function to tell Outside In to
abort.

The status callback function has two return values defined:

e OIT_STATUS_CONTINUE: Tells Outside In to continue processing the current
document.

¢ OIT_STATUS_ABORT: Tells Outside In to stop processing the current document.
The following is an example of a minimal status callback function.

VTIDWORD MySt at usCal | back(VTHANDLE hUni que, VTDWORD dwl D, VTSYSVAL
pCal | backData, VTSYSVAL pAppDat a)

{
if(dw D == O T_STATUS_WORKI NG
{
i f(checkNeedToAbort(pAppData))
return (O T_STATUS ABORT);
}
return (O T_STATUS_CONTI NUE) ;
}
Prototype

DAERR DASet St at Cal | back(DASTATCALLBACKFN pCal | back)

Parameters

e pCallback: Pointer to the callback function.

e dwlID: Handle that indicates the callback status.
- OIT_STATUS_WORKING
- OIT_STATUS_CONTINUE
- OIT_STATUS_ABORT

e pCallbackData: Currently always NULL

Return Values

e DAERR_OK: If successful. Otherwise, one of the other DAERR_ values in sccda.h
or one of the SCCERR_ values in sccerr.h is returned.

Data Access Common Functions 7-15

DASetFileAccessCallback

DASetFileAccessCallback

This function sets up a callback that the technology will call into to request
information required to open an input file. This information may be the password of
the file or a support file location.

Use of the File Access Callback

When the technology encounters a file that requires additional information to access
its contents, the application's callback function will be called for this information.
Currently, only two different forms of information will be requested: the password of
a document, or the file used by Lotus Notes to authenticate the user information.

The status callback function has two return values defined:
® SCCERR_OK: Tells Outside In that the requested information is provided.

¢ SCCERR_CANCEL: Tells Outside In that the requested information is not
available.

This function will be repeatedly called if the information provided is not valid (such as
the wrong password). It is the responsibility of the application to provide the correct
information or return SCCERR_CANCEL.

Prototype
DAERR DASet Fi | eAccessCal | back (DAFI LEACCESSCALLBACKFN pCal | back) ;

Parameters

e pCallback: Pointer to the callback function.

Return Values

e DAERR_OK: If successful. Otherwise, one of the other DAERR_ values defined in
sccda.h or one of the SCCERR _ values in sccerr.h is returned.

The callback function should be of type DAFILEACCESSCALLBACKEN. This
function has the following signature:

typedef VIDWORD (* DAFI LEACCESSCALLBACKFN) (VTDWORD dwi D, VTSYSVAL pRequest Dat a,
VTSYSVAL pReturnData, VTDWORD dwRet ur nDat aSi ze) ;

e dwlD - ID of information requested:
- OIT_FILEACCESS_PASSWORD - Requesting the password of the file
— OIT_FILEACCESS_NOTESID - Requesting the Notes ID file location

* pRequestData — Information about the file.

typedef struct {

VIDWORD dwSi ze; /* size of this structure */
VTWORD wWFl | d; [* Fl id of reference file */
VIDWORD dwSpecType; /* file spec type */

VIVOD *pSpec; /* pointer to a file spec */
VIDWORD dwRoot SpecType; /* root file spec type */

VIVO D *pRoot Spec; /* pointer to the root file spec */

VIDWORD dwAt t enpt Nunber; /* The number of tines the call back has */

7-16 Developer's Guide

DASetFileAccessCallback

/* already been called for the currently */
I* requested itemof information */
} | OREQUESTDATA, * Pl OREQUESTDATA,

* pReturnData — Pointer to the buffer to hold the requested information — for
OIT_FILEACCESS_PASSWORD and OIT_FILEACCESS_NOTESID, the buffer is an
array of WORD characters.

e dwReturnDataSize — Size of the return buffer.

Note:

Not all formats that use passwords are supported. Only Microsoft Office
binary (97-2003) Microsoft Office 2007, Microsoft Outlook PST 97-2013, Lotus
NSF, PDF (with RC4 encryption), and Zip (with AES 128 & 256 bit, ZipCrypto)
are currently supported.

Passwords for PST/OST files must be in the Windows single-byte character
set. For example, Cyrillic characters should use the 1252 character set. For
PST/OST files, Unicode password characters are not supported.

Data Access Common Functions 7-17

DASetFileAccessCallback

7-18 Developer's Guide

8

Export Functions

This chapter outlines the basic functions used to initiate the conversion of documents
using the product APIL

This chapter covers the following types of functions:
* General Functions

e Annotation Functions

General Functions
The following functions are general functions used in most products:
e EXOpenExport
¢ EXCALLBACKPROC
¢ EXCloseExport
¢ EXRunExport

e EXExportStatus

EXOpenExport

This function is used to initiate the export process for a file that has been opened by
DAOpenDocument. If EXOpenExport succeeds, EXCloseExport must be called
regardless of any other API calls.

Note:

SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption) before
the call to EXOpenExport. Otherwise, the
SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the PDF filter
is not set. This will result in slower exports of PDFs when graphic output is
not required.

Prototype

SCCERR EXOpenExport (
VTHDCC hDoc,
VTDWORD dwQut put 1 d,
VTDWORD dwSpecType,
VTLPVO D pSpec,
VTDWORD dwFl ags,

VTSYSPARAM dwReser ved,

Export Functions 8-1

General Functions

VTLPVA D pCal | backFunc,
VTSYSPARAM dwCal | backDat a,
VTLPHEXPORT phExport);

phExport is not a file handle.

Parameters

* hDoc: A handle that identifies the source file, created by DAOpenDocument.
HTML Export does this internally (when exporting graphics). Knowledge of this
should only affect OEMs under the most unusual of circumstances.

dwOutputld: File ID of the desired format of the output file. This value must be set
to FI_HTML, FI MHTML or FI_ XHTML.

dwSpecType: Describes the contents of pSpec. Together, dwSpecType and pSpec
describe the location of the initial output file. Must be one of the following values:

IOTYPE_ANSIPATH: Windows only. The pSpec points to a NULL-terminated
full path name using the ANSI character set and FAT 8.3 (Win16) or NTFS
(Win32 and Win64) file name conventions.

IOTYPE_UNICODEPATH: Windows only. The pSpec points to a NULL-
terminated full path name using the Unicode character set and NTFS file name
conventions.

Note:

If you are using IOTYPE_UNICODEPATH as a file spec type, if the calling
application is providing an export callback function, you should set the option
SCCOPT_EX_UNICODECALLBACKSTR to TRUE. Refer to the
documentation on callbacks such as EX_CALLBACK ID_CREATENEWFILE
and the EXURLFILEIOCALLBACKDATAW structure for details.

IOTYPE_UNIXPATH: UNIX platforms only. The pSpec points to a NULL-
terminated full path name using the system default character set and UNIX path
conventions. Unicode paths can be accessed on UNIX platforms by using a
UTF-8 encoded path with IOTYPE_UNIXPATH.

IOTYPE_REDIRECT: All platforms. The pSpec may be NULL, and all file
information specified in the callback routine. This allows the developer to
redirect the IO routines used to write the files. For more information, see
Redirected IO.

® pSpec: Initial output file location specification. This is either a pointer to a buffer or
NULL.

8-2 Developer's Guide

If the pointer is not NULL, the file referred to by the pSpec is assumed to be
already open and the buffer's contents are based on the value of the
dwSpecType parameter. See the descriptions for individual dwSpecType values
in the preceding list.

Passing NULL indicates the developer will use the
EX_CALLBACK_ID_CREATENEWFILE callback to specify the initial output
file instead of specifying it here. When this parameter is NULL, the developer

General Functions

must handle the EX_CALLBACK_ID_CREATENEWFILE callback or
EXOpenExport returns an error.

dwFlags: Must be set by developer to 0.
dwReserved: Reserved. Must be set by developer to 0.

pCallbackFunc: Pointer to a function of the type EXCALLBACKPROC. This
function is used to give the developer control of certain aspects of the export
process as they occur. For more information, see the definition for
EXCALLBACKPROC in EXCALLBACKPROC. This parameter may be set to NULL
if the developer does not wish to handle callbacks.

dwCallbackData: This parameter ispassed transparently to the function specified
by pCallbackFunc. The developer may use this value for any purpose, including
passing context information into the callback function.

phExport: Pointer to a handle that receives a value uniquely identifying the
document to the product routines. If the function fails, this value is set to
VTHDOC_INVALID.

Return Values

SCCERR_OK: If the open was successful. Otherwise, one of the other SCCERR _
values in sccerr.h is returned.

EXCALLBACKPROC

Type definition for the developer's callback function.

Prototype

DAERR (DA_ENTRYMODPTR EXCALLBACKPROC) (

VTHEXPORT hExport,

VTSYSPARAM dwCal | backDat a,
VTDWORD dwCommandCr | nf ol d,
VTLPVO D pCommandOr | nf oDat a) ;

Parameters

hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

dwCallbackData: This value is passed to EXOpenExport in the dwCallbackData
parameter.

dwCommandOrInfold: Indicates the type of callback. For information about
supported callbacks, see Callbacks.

pCommandOrInfoData: Data associated with dwCommandOrInfold. For
information about supported callbacks, see Callbacks.

Return Values

SCCERR_OK: Command was handled by the callback function.

SCCERR_BADPARAM: One of the function parameters was invalid.

Export Functions 8-3

General Functions

e SCCERR_NOTHANDLED: Callback function did not handle the command. This
return value must be the default for all values of dwCommandOrInfold the
developer does not handle.

EXCloseExport

This function is called to terminate the export process for a file.

Prototype

SCCERR EXC oseExport (
VTHEXPORT ~ hExport);

Parameters

e hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

e SCCERR_OK: Returned if the close was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

EXRunExport

This function is called to run the export process.

Prototype

SCCERR EXRunExport (
VTHEXPORT hExport);

Parameters

* hExport: Export handle for the document. Must be a handle returned by the
EXOpenExport function.

Return Values

¢ SCCERR_OK: Returned if the export was successful. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

e SCCERR_BI_NOTEMPLATE: Returned if the primary template, or one of its sub-
templates is inaccessible. Here inaccessible could mean the pathname, or filename
of the template is incorrect, or the template does not exist, or that the pathname, or
filename is correct, but that process or application running HTML Export does not
have permission to read the template, or sub-template.

EXExportStatus

This function is used to determine if there were conversion problems during an
export. It returns a structure that describes areas of a conversion that may not have
high fidelity with the original document.

8-4 Developer's Guide

General Functions

Prototype
SCCERR EXExport St at us(VTHEXPORT hExport, VTIDWORD dwSt at usType, VTLPVO D pSt at us)

Parameters
e hExport: Export handle for the document.
e dwsStatusType: Specifies which status information should be filled in pStatus.

- EXSTATUS_SUBDOC - fills in the EXSSUBDOCSTATUS structure (only
implemented in Search Export and XML Export)

— EXSTATUS_INFORMATION - fills in the EXSTATUSINFORMATION
structure.

e pStatus: Either a pointer to a EXSUBDOCSTATUS or EXSTATUSINFORMATION
data structure depending on the value of dwStatusType.

Return Values

SCCERR_OK: Returned if there were no problems. Otherwise, one of the other
SCCERR_ values in sccerr.h is returned.

EXSUBDOCSTATUS Structure
The EXSUBDOCSTATUS structure is defined as follows:

typedef struct EXSUBDOCSTATUSt ag

{
VIDWORD dwSi ze; /* size of this structure */

VIDWORD dwSucceeded; /* nunber of sub documents that were converted */
VTDWORD dwFai | ed; /* nunber of sub documents that were not converted */
} EXSUBDCCSTATUS;

EXSTATUSINFORMATION Structure
The EXSTATUSINFORMATION structure is defined as follows:
typedef struct EXSTATUSI NFORMATI ONt ag

VTDWORD dwMer si on; /* version of this structure, currently
EXSTATUSVERSI ON1 */

VTBOOL bM ssi nghap; /* a PDF text run was missing the toUnicode table
*|

VTBOOL bVerti cal Text; /* a vertical text run was present */

VTBOOL bText Ef fects; /* unsupported text effects applied (i.e.Wrd
Art)*/

VTBOOL bUnsupportedConpression; /* a graphic had an unsupported conpression */
VTBOOL bUnsupportedCol or Space; /* a graphic had an unsupported col or space */

VTBOCL bFor rs; /* a sub docunents had forms */

VTBOOL bRi ght ToLeft Tabl es; /* atable had right to left colums */

VTBOOL bEquat i ons; I* a file had equations*/

VTBOOL bAl i asedFont; /* A font was missing, but a font alias was used */

VTBOOL bM ssi ngFont ; /* The desired font wasn't present on the system*/

VTBOOL bSubDocFai | ed; /* a sub docunent was not converted */

VTBOOL bTypeThreeFont ; /* a Type 3 Font was encountered */

VTBOOL bUnsupport edShadi ng; /* an unsupported shading pattern was
encountered */

VTBOCL bl nval i dHTM,; [* An HTM. parse error, as defined by the

WBC, was encountered. */

Export Functions 8-5

Annotation Functions

VTBOOL bVectorChjectLimt; [* This does not apply to HTM. Export */
VTBOCOL bl nval i dAnnot ati onNot Applied; /* This does not apply to HTM. Export */
} EXSTATUSI NFORMATI ON;

#define EXSTATUSVERSION2 0X0002

Note:

When processing the main document, Search Export, HTML Export, and XML
Export never use fonts, so bAliasedFont and bMissingFont will never report
TRUE; however, when doing graphics conversions XML Export and HTML
Export may use fonts, so bAliasedFont and bMissingFont may report TRUE.

bVectorObjectLimit applies only to WebView Export, and
bInvalid AnnotationNotApplied applies only to Image Export, PDF Export,
and Web View Export.

Annotation Functions

Annotations are a way to highlight, insert, or delete text in product output, without
modifying the original document.

The follow functions are described in this section:
e EXHiliteText
e EXInsertText

e EXHideText

Examples of ways annotations can be used by developers include:
¢ highlighting search hits
* inserting notes to comment on text in the original document

¢ deleting sensitive information not intended for viewing

Other Outside In products are required to ascertain the proper character positions
where the developer wishes to make annotations. Currently, only Content Access and
the SearchML output format (available in Search Export) can be used to get these
positions. Although the Content Access module is included with the product, license
to use the Content Access API is not automatically granted with the purchase of the
Export software.

A separate license for Content Access or Search Export is required to enable use of any
of the annotation features that are supported by HTML Export. Contact your Outside
In sales representative for more information.

The following notes should be considered when using annotations:
¢ Processing annotations slow down the conversion process to some extent.

e While other products in the Outside In family support annotations, not all products
support all types of annotations.

¢ The ACC acronym (Actual Character Count) is used in the following function
descriptions. ACCs represent the location of text in the source document data

8-6 Developer's Guide

Annotation Functions

EXHiliteText

stream. They represent a marker just before the location of text, and this marker is
zero-based.

This is why startACC parameters should be set to an ACC value that represents the
position just prior to the first character and end ACC parameters should be set to an
ACC value that represents the position just past the last character in the range. For
this reason, users should make sure end ACC values are 1 greater than the ACC of
the last character in the desired range of annotation.

¢ Calling EXCloseExport causes all annotations set so far to be cleared.

This function allows the developer to change select text attributes on a range of
characters from the input document. For more information, see HTML Export Usage
Notes.

The colors set by this option can be overridden by the equivalent settings in the
ExInsertText function.

Prototype

DAERR EXHi | i t eText (
VTHEXPORT hExport,
PEXANNCHI LI TETEXT ~ pHiliteText);

Parameters

e hExport: Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

e pHiliteText: Pointer to a structure containing the information on what to highlight

and how to highlight it.

Structure
A C data structure defined in sccex.h as follows:

typedef struct EXANNCHI LI TETEXTt ag

{
VTDWORD dwsi ze;
VTDWORD dwst ar t ACC;
VTDWORD dwEndACC, /* Last char to highlight +1 */
VTLPBYTE pBooknar k; /* HTM. Export Only */
VTLPBYTE pHyperlink; /* HTM. Export Only */
VTDWORD dwOpt i ons;

SCCWACOLORREF sFor egr ound;

SCCWACOLORREF sBackgr ound;

VTWORD wChar Attr;

VTWORD wChar At t r Mask;
} EXANNCHI LI TETEXT;

¢ dwSize: Must be set by the developer to sizeof(EXANNOHILITETEXT).
e dwStartACC: The ACC of the first character to be highlighted.

¢ dwEndACC: ACC of the last character to be highlighted +1. Ranges for annotations
have their end point set one past the ACC of the last character in the range. For
example, to highlight a single character at ACC position 5, dwStartACC would be
set to 5, and dWEndACC would be set to 5+1=6.

Export Functions 8-7

Annotation Functions

e pBookmark: (HTML Export only): The URL for an optional bookmark to be
included before the highlighted text. Specified as a URL encoded byte string. If set
to NULL, no bookmark is created.

e pHyperlink: (HTML Export only): The URL for an optional hyperlink to be created
on the highlighted text. Specified as a URL encoded byte string. If set to NULL, no
hyperlink is created.

¢ dwOptions: Flags that provide highlight options. The default is all flags set to off.
The valid flags are:

- SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

- SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

— SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

— sForeground: Defines the foreground text color to be used if the
SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter -- if it is set, the color must be specified.

— sBackground: Defines the background text color to be used if the
SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default
value for this parameter. If it is set, the color must be specified.

— wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR
is set in dwOptions. Only bits with the corresponding bits set in
wCharAttrMask are affected. To turn off all character attributes, set this to
SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1.
Otherwise, set this to any of the following character attributes OR-ed together:

¢ SCCVW_CHARATTR_UNDERLINE
¢ SCCVW_CHARATTR_ITALIC
¢ SCCVW_CHARATTR_BOLD
¢ SCCVW_CHARATTR_STRIKEOUT

¢ SCCVW_CHARATTR_SMALLCAPS: Not supported in HTML Export
unless a CSS flavor is selected.

¢ SCCVW_CHARATTR_OUTLINE: Not currently supported.
¢ SCCVW_CHARATTR_SHADOW: Not currently supported.
¢ SCCVW_CHARATTR_CAPS: Not currently supported.

¢ SCCVW_CHARATTR_SUBSCRIPT

¢ SCCVW_CHARATTR_SUPERSCRIPT

8-8 Developer's Guide

Annotation Functions

¢ SCCVW_CHARATTR_DUNDERLINE: Currently supported as single
underline in HTML Export.

¢ SCCVW_CHARATTR_WORDUNDERLINE

¢ SCCVW_CHARATTR_DOTUNDERLINE: Currently supported as single
underline.

e wCharAttrMask: Defines which character attributes to change based on the settings
of the bits in wCharAttr. Uses the same bit flags defined above for wCharAttr.
Only attributes whose flag is set in this mask are modified to match the state
specified by wCharAttr. This mask provides a way to distinguish between bits
being set in wCharAttr because the developer wants to force a change to the
character attributes and bits in wCharAttr that the developer would rather set to
"inherit from the source document."

The following are real-world examples of these interactions (all examples assume
that SCCVW_USECHARATTR is set in dwOptions):

— Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

— Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

— Example 3: wCharAttr is set to 0 and wCharAttrMask is set to
SCCVW_CHARATTR_BOLD. This results in bold being forced off in the
annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are
ignored.

Return Values

¢ DAERR_OK: Returned if the annotation was successfully added. Otherwise, one of
the other DAERR _ values in sccda.h or one of the SCCERR_ values in sccerr.h is
returned.

HTML Export Usage Notes

Attributes that may be changed include foreground and background text color, as well
as various character level text attributes such as bold, italic and underline. The user
may also choose to insert a bookmark before the highlighted text. If the highlighted
text appears in a graphic created by HTML Export, then the bookmark is place
immediately before the tag for that graphic. The highlighted text may also be
turned into a hyperlink (this is not supported in HTML Export graphics conversions).

Source document text may appear in more than one place in the converted document,
for example in a template-created TOC as well as in the body of the document. Text in
the TOCs created by HTML Export's templates is not affected by this option. This is
because the TOC text has all text attributes and hyperlinks stripped out as part of the
TOC creation. Highlights appear in the document body content however, the same
way normal paragraph text is affected.

Highlights are not applied to text from the template.

Export Functions 8-9

Annotation Functions

EXInsertText

This function inserts a text string at a specified point in the document. The developer
may also change character attributes or foreground or background colors. These
settings override any provided by ExHiliteText.

In HTML Export, the developer may also choose to insert a bookmark before the
inserted text. If the inserted text appears in a graphic created by HTML Export, then
the bookmark is placed immediately before the tag for that graphic. The
inserted text may also be turned into a hyperlink (not supported in HTML Export
graphics conversions). Inserted text inherits the text attributes of the text that
immediately precedes it.

Prototype

DAERR EXI nsert Text (
VTHEXPORT hExport,
PEXANNO NSERTTEXT ~ pl nsert Text);

Parameters

¢ hExport: Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

¢ plnsertText: Pointer to a structure containing the information on the text to insert.
Structure

A C data structure defined in sccex.h as follows:

typedef struct EXANNO NSERTTEXTt ag

{
VTDWORD dwsi ze;
VTDWORD dwText ACC,
VTLPWORD pText;
VTLPBYTE pBooknar k; /* HTM. Export Only */
VTLPBYTE pHyperlink; /* HTM. Export Only */
VTDWORD dwOpt i ons;

SCCWACOLORREF sFor egr ound;

SCCWACOLORREF sBackgr ound;

VTWWORD wChar At tr;

VTWORD wChar At t r Mask;
} EXANNO NSERTTEXT;

* dwSize: Must be set by the OEM to sizeof(EXANNOINSERTTEXT).

¢ dwTextACC: Place to insert the string pointed to by pText. The string is inserted
before the character normally at this ACC position. By default, the inserted string
inherits the text attributes of the character at this position in the input document.

e pText: The text to be inserted. Specified as a Unicode string.

¢ pBookmark: The URL for an optional bookmark to be included before the inserted
text. Specified as a URL-encoded byte string. If set to NULL, no bookmark is
created.

¢ pHyperlink: The URL for an optional hyperlink to be created on the inserted text.
Specified as a URL encoded byte string. If set to NULL, no hyperlink is created.

8-10 Developer's Guide

Annotation Functions

dwOptions: This parameter sets flags that provide highlight options. The default is
all flags off. The flags are:

- SCCVW_USEFOREGROUND: Indicates that sForeground defines the
foreground text color to apply to highlights.

- SCCVW_USEBACKGROUND: Indicates that sBackground defines the
background text color to apply to highlights.

— SCCVW_USECHARATTR: Indicates that wCharAttr defines the character
attributes to apply to highlights.

sForeground: Defines the foreground text color to be used if the
SCCVW_USEFOREGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default value
for this parameter -- if it is set, the color must be specified.

sBackground: Defines the background text color to be used if the
SCCVW_USEBACKGROUND flag is set in dwOptions. Set this value with the
SCCANNORGB(red, green, blue) macro. The red, green and blue values are
percentages of the color from 0-255 (with 255 being 100%). There is no default value
for this parameter. If it is set, the color must be specified.

wCharAttr: Defines the character attributes to use if SCCVW_USECHARATTR is
set in dwOptions. Only bits with the corresponding bits set in wCharAttrMask are
affected. To turn off all character attributes, set this to
SCCVW_CHARATTR_NORMAL (the default) and set wCharAttrMask to -1.
Otherwise, set this to any of the following character attributes OR-ed together:

- SCCVW_CHARATTR_UNDERLINE
— SCCVW_CHARATTR_ITALIC

- SCCVW_CHARATTR_BOLD

- SCCVW_CHARATTR_STRIKEOUT

- SCCVW_CHARATTR_SMALLCAPS: Not currently supported in Image Export
or PDF Export. Not supported in HTML Export unless a CSS flavor is selected.

- SCCVW_CHARATTR_OUTLINE: Not currently supported.

- SCCVW_CHARATTR_SHADOW: Not currently supported.

- SCCVW_CHARATTR_CAPS: Not currently supported.

- SCCVW_CHARATTR_SUBSCRIPT: SCCVW_CHARATTR_SUPERSCRIPT

- SCCVW_CHARATTR_DUNDERLINE: Currently supported as single
underline.

- SCCVW_CHARATTR_WORDUNDERLINE:
SCCVW_CHARATTR_DOTUNDERLINE: Currently supported as single
underline in HTML Export due to limitations of HTML.

wCharAttrMask: Defines which character attributes to change based on the settings
of the bits in wCharAttr. Uses the same bit flags defined above for wCharAttr.
Only attributes whose flag is set in this mask are modified to match the state

Export Functions 8-11

Annotation Functions

EXHideText

specified by wCharAttr. This mask provides a way to distinguish between bits
being set in wCharAttr because the developer wants to force a change to the
character attributes, and bits in wCharAttr that the developer would rather set to
"inherit from the source document." The following are real-world examples of these
interactions (all examples assume that SCCVW_USECHARATTR is set in
dwOptions):

— Example 1: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to SCCVW_CHARATTR_BOLD. This results in bold
being forced on in the annotation.

— Example 2: wCharAttr is set to SCCVW_CHARATTR_BOLD and
wCharAttrMask is set to 0. This results in bold being left the way it was in the
source document in the annotation.

— Example 3: wCharAttr is set to 0 and wCharAttrMask is set to
SCCVW_CHARATTR_BOLD. This results in bold being forced off in the
annotation.

The default value for this is 0, meaning that all the flags in wCharAttr are ignored.

Return Values

e DAERR_OK: The annotation was successfully added. Otherwise, one of the other
DAERR_ values in sccda.h or one of the SCCERR _ values in sccerr.h is returned.

This function removes the selected range of characters in the input document from the
output. Users may also choose to insert a bookmark before the hidden text. If the
hidden text appears in a graphic created by HTML Export, the bookmark is be placed
immediately before the tag for that graphic.

The hidden text does not appear in any form in the final converted document.

If all of the text from a paragraph that would normally form an entry in a template-
created TOC is deleted, then the entire TOC entry that would have otherwise
appeared will be missing from the converted document along with the corresponding
body text.

Prototype

SCCERR EXHi deText (
VTHEXPORT hExport,
PEXANNCHI DETEXT ~ pHi deText)

Parameters

e hExportL Export handle for the document. Must be the handle returned by the
EXOpenExport() function.

¢ pHideText: Pointer to an EXANNOHIDETEXT structure containing the
information on the section of text to hide.

EXANNOHIDETEXT Structure

A C data structure defined in sccex.h as follows:

8-12 Developer's Guide

Annotation Functions

typedef struct EXANNCH DETEXTt ag

{
VTDWORD dwsi ze;
VTDWORD dwst ar t ACC;
VTDWORD dwEndACC, /* Last char to hide +1 */
VTLPCHAR pBookmark; /* HTML Export Only */
} EXANNCHI DETEXT;

* dwSize: Must be set by the OEM to sizeof(EXANNOHIDETEXT).
e dwStartACC: Position of the first character to be hidden.
¢ dwEndACC: Position of the last character to be hidden, plus one.

¢ pBookmark: The URL for an optional bookmark to be included before the
highlighted text. Specified as a URL encoded byte string. If set to NULL, no
bookmark is created.

Return Values

¢ SCCERR_OK: Returned if the annotation was successfully added. Otherwise, one
of the other SCCERR_* values in sccerr.h is returned.

Export Functions 8-13

Annotation Functions

8-14 Developer's Guide

9

Redirected 10

This chapter describes Redirected 10. Anywhere a file specification (dwSpecType and
pSpec parameters) is passed to a function in the product, the developer may use
Redirected IO to completely take over responsibility for the low level IO calls of that
particular file. The source file template files and all output files can be redirected in
this way.

Redirected IO allows the developer great flexibility in the storage of, and access to,
converted documents. For example, documents may be stored on file systems not
supported natively by the software, or in a unique directory tree structure determined
by the type of file.

When using HTML Export, redirected 1O can also be used in conjunction with
callbacks (discussed in Callbacks).

This chapter contains the following sections:
e Using Redirected 10

* Opening Files

¢ JOClose

* JORead

e JOWrite

e JOSeek

e IOTell

* JOGetInfo

e IOSEEK64PROC / IOTELL64PROC

Using Redirected 10

A developer can redirect the IO for an input or output file by providing a data
structure that contains pointers to custom IO routines for reading and writing. This
data structure is passed in place of a typical file specification. The developer must set
the dwSpecType parameter of the DAOpenDocument call to IOTYPE_REDIRECT
when the DAOpenDocument call is sent.

When dwSpecType is set this way, the pSpec element must contain a pointer to a
developer-defined data structure that begins with a BASEIO structure (defined in
baselO.H). The BASEIO structure contains pointers to the basic IO functions for the IO
system such as Read, Seek, Tell, etc. The developer must initialize these function
pointers to their own functions that perform IO tasks. Beyond the BASEIO element,

Redirected 10 9-1

Opening Files

the developer may place any data he or she likes. For instance, a developer's structure
may be similar to the following:

typedef struct MYFILEtag

{
BASEI O sBasel O /* must be the first elenment */
VIDWORD dw nf o1;
VIDWORD dwMyl nf 02;

} MYFILE

Because the pSpec passed is essentially the "file handle" used by the software, the
developer can redirect the IO on a file-by-file basis while still exporting "regular" disk-
based files.

The BASEIO structure is defined as follows:

typedef struct BASEI Ot ag
{
| OCLOSEPRQC pd ose;
| OREADPRCC pRead;
| OARI TEPROC pWi te;
| OSEEKPROC pSeek;
| OTELLPRQC pTel | ;
| OGETI NFOPROC pGet I nf o;
| COPENPROC pQpen; /* pOpen *MUST* be set to NULL. */
#i fndef NLM
| OSEEK64PROC pSeek64;
| OTELL64PROC pTel | 64;
#endi f
VTVO D *abumy[3];
} BASEIO * PBASEIQ

The developer must implement the Close, Read, Write, Seek, Tell and GetInfo
routines. The Open routine must be set to NULL. The first parameter to each of these
routines is called hFile and is of the type HIOFILE. HIOFILE is simply the VTLPVOID
to your data structure that was passed in the pSpec parameter of the
DAOpenDocument call.

The sample source code for a simple implementation of Redirected IO is in the
samples directory. This sample redirects the technology's 10 through the fopen, fgetc,
fseek, ftell and fclose run-time library routines.

Note:

Redirected IO does not cache the whole file. Seeks can occur throughout the
file during the course of conversion. If the developer is implementing
redirected IO on a slow or sequential link, it is the developer's responsibility to
cache the file locally.

Opening Files

The developer does not see a call to pOpen when using redirected I0. When
IOTYPE_REDIRECT is used, the structure passed in pSpec is defined to represent a
file that is already open. The software can immediately call the pRead, pSeek, pTell
and pWrite functions.

9-2 Developer's Guide

IOClose

I0Close

IORead

Files specified as using redirected IO must be open by the time they are handed off to
the software.

Closes the file identified by hFile and cleans up all memory associated with the file.

If you dynamically allocate your own file structures (MYFILE in the preceding
discussion) it is required that the memory allocated be freed inside the call to IOClose
or sometime thereafter.

Prototype

| OERR | 1 ose(
H OFILE hFile);

Parameters

¢ hFile: Identifies the file to be closed. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

Return Values
e JOERR_OK: Close was successful.

e JOERR_UNKNOWN: Some error occurred on close.

Reads data from the current file position forward and resets the position to the byte
after the last byte read.

Prototype

| CERR | ORead(
HI CFI LE hFi | e,
VTBYTE * pDat a,
VTDWORD dwsi ze,
VTDWORD * pCount);

Parameters

* hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

¢ pData: Points to the buffer into which the bytes should be read. Will be at least
dwSize bytes big.

* dwSize: Number of bytes to read.

¢ pCount: Points to the number of bytes actually read by the function. This value is
only valid if the return value is IOERR_OK.

Return Values

¢ IOERR_OK: Read was successful. pCount contains the number of bytes read and
pData contains the bytes themselves.

Redirected 10 9-3

IOWrite

IOWrite

10Seek

* JOERR_EOF: Read failed because the file pointer was beyond the end of the file at
the time of the read.

e JOERR_UNKNOWN: Read failed for some other reason.

Writes data from the current file position forward and resets the position to the byte
after the last byte written.

Prototype

I CERR | OWite(
H OFI LE hFi l e,
VTBYTE * pData,
VTDWORD dwsi ze,
VTDWORD * pCount);

Parameters

¢ hFile: Identifies the file where the data is to be written. Should be cast into a pointer
to your data structure (MYFILE in the preceding discussion).

¢ pData: Points to the buffer from which the bytes should be written. It must be at
least dwSize bytes big. It is good practice to treat the data passed in by pData as
"read only." This helps prevent unexpected behavior elsewhere in the system.

* dwSize: Number of bytes to write.

¢ pCount: Points to the number of bytes actually written by the function. This value
is only valid if the return value is IOERR_OK.

Return Values
¢ JOERR_OK: Write was successful, pCount contains the number of bytes written.

e JOERR_UNKNOWN: Write failed for some reason.

Moves the current file position.

Prototype

| OERR | OSeek(
H OFILE hFile,
VTWORD WFr om
VTLONG | OFfset);

Parameters

* hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

¢ wFrom: One of the following values:

9-4 Developer's Guide

|OTell

|0Tell

10GetiInfo

— IOSEEK_TOP: Move the file position 10ffset bytes from the top (beginning) of
the file.

- IOSEEK_BOTTOM: Move the file position 10ffset bytes from the bottom (end)
of the file.

— TOSEEK_CURRENT: Move the file position 10ffset bytes from the current file
position.

¢]Offset: Number of bytes to move the file pointer. A positive value moves the file
pointer forward in the file and a negative value moves it backward. If a requested
seek value would move the file pointer before the beginning of the file, the file
pointer should remain unchanged and IOERR_UNKNOWN should be returned.
Seeking past EOF is allowed. In that case IOERR_OK should be returned. IOTell
would return the requested seek position and IORead should return IOERR_EOF
and 0 bytes read.

Return Values
e JOERR_OK: Seek was successful.

e JOERR_UNKNOWN: Seek failed for some reason.

Returns the current file position.

Prototype
| ERR | OTel | (
H OFI LE hFi | e,
VTDWORD * pOfset);
Parameters

¢ hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the preceding discussion).

e pOffset: Points to the current file position returned by the function.

Return Values
e JOERR_OK: Tell was successful.
e JOERR_UNKNOWN: Tell failed for some reason.

Returns information about an open file.

Prototype

| OERR | OGet | nf of
H OFI LE hFi | e,
VTDWORD dwi nf ol d,
VTVO D * plnfo);

Redirected 10 9-5

|0GetInfo

Parameters

9-6 Developer's Guide

hFile: Identifies the file to be read. Should be cast into a pointer to your data
structure (MYFILE in the previous discussion).

dwlInfold: One of the following values:

IOGETINFO_FILENAME: pInfo points to a string that should be filled with the
base file name (no path) of the open file (for example TEST.DOC). If you do not
know the file name, return IOERR_UNKNOWN. Certain file types (such as
DataEase) must know the original file name in order to open secondary files
required to correctly view the original file. If you return IOERR_UNKNOWN,
these file types do not convert. See IOGENSECONDARY and
IOGENSECONDARYW Structures.

IOGETINFO_PATHNAME: pInfo points to a string that should be filled with
the fully qualified path name (including the file name) of the open file. For
example, C:\MYDIR\TEST.DOC. If you do not know the path name, return
IOERR_UNKNOWN.

IOGETINFO_PATHTYPE: pInfo points to a DWORD that should be filled with
the IOTYPE of the path returned by IOGETINFO_PATHNAME. For instance, if
you return a DOS path name in the Unicode character set, you should return
IOTYPE_UNICODEPATH. Even if redirected IO is in use, this should not be set
to IOTYPE_REDIRECT. The value should reflect the style of path to be returned
or any other values detailed in EXOpenExport..

IOGETINFO_ISOLE2STORAGE: Must return IOERR_FALSE. pInfo is not used.

IOGETINFO_GENSECONDARY: pInfo points to a structure of type
IOGENSECONDARY. Some file types require supporting files to be opened.
These supporting files may contain formatting information or extra data. When
using HTML Export, templates may link to other templates, and the paths to
those templates must be resolved. Correct handling of
IOGETINFO_GENSECONDARY is critical to the operation of the Outside In
technology. For a list of these file types, see File Types That Cause
IOGETINFO_GENSECONDARY.

Because the developer is in total control of the IO for the primary file, the
technology does not know how to generate a path to these secondary files or
even if the secondary files are accessible through the regular file system. The
IOGETINFO_GENSECONDARY call gives the developer a chance to resolve
this problem by generating a new 1O specification for the secondary file in
question. The developer gets just the base file name (often embedded in the
original document or generated from the primary file's name) of the secondary
file.

The developer may either use one of the standard Outside In IO types or totally
redirect the IO for the secondary file, as well. For more details, see
IOGENSECONDARY and IOGENSECONDARYW Structures.

IOGETINFO_SUBDOC_SPEC: This message should be handled only if the
currently open file is an archive and a particular item within the archive is
intended to be specified as the input file in a call to DAOpenDocument. In this
case, pInfo points to a single-byte character string that should be filled with the
subdocument specification of an item within the open file. For example, item.2
specifies item 2 within the archive file. When specifying a subdocument

|0GetInfo

specification, return IOERR_OK. Any other return values cause the results of
this message to be ignored.

IOGETINFO_64BITIO: For redirected I/0O that wishes to use 64-bit seek/tell
functions, your IOGetInfo function must respond IOERR_TRUE to this
dwinfold. In addition, the pSeek64/pTell64 items in the baseio structure must
be valid pointers to the proper function types.

IOGETINFO_DPATHNAME: pInfo points to a structure of type DPATHNAME,
which should be filled with the fully qualified path name (including the file
name) of the open file, for example, C:\MYDIR\TEST.DOC. If you do not know
the path name, return IOERR_UNKNOWN. The dwPathLen element contains
the size of the buffer pointed to by the pPath element. If the buffer size is too
small to contain the full path, modify dwPathLen to be the correct size of the
buffer required to hold the path name in its IOTYPE character width including
the NULL terminator and return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct DPATHNAMEt ag

{
VTDWORD dwPat hLen;

VIVO D *pPath;
} DPATHNAME, * PDPATHNAME;

Parameters

dwPathLen: Will be set to the number of bytes in the buffer pointed to by pPath.
If the size of the buffer is insufficient, reset this element to the number of bytes
required and return IOERR_INSUFFICIENTBUFFER.

pPath: Points to the buffer to be filled with the path name.

IOGETINFO_GENSECONDARYDP: pInfo points to a structure of type
IOGENSECONDARYDP. The dwSpecLen element contains the size of the
buffer pointed to by the pSpec element. If the buffer size is too small to contain
the spec, modify dwSpecLen to be the correct size of the buffer required to hold
the path in its IOTYPE character width including the NULL terminator and
return IOERR_INSUFFICIENTBUFFER.

The following is a C data structure defined in SCCIO.H:

typedef struct | OGENSECONDARYDPt ag
{

VTDWORD dwsi ze;
VTVa D * pFi | eNare;
VTDWORD dwSpecType;
VTVO D * pSpec;
VTDWORD dwSpecLen;
VTDWORD dwOpenFl ags;

} 1 OGENSECONDARYDP, * Pl OGENSECONDARYDP,

Parameters
dwSize: Will be set to sizeof IOGENSECONDARYDP)

pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It is usually a name stored in the primary file (such
as MYSTYLE.STY for a Word for DOS file) or a name generated from the
primary file name. The primary file for a DataEase database has a .dba
extension. The secondary name is the same file name but with a .dbm extension.

Redirected 10 9-7

|OGetInfo

dwSpecType: The developer must fill this with the IOSPEC for the secondary
file.

pSpec: On entry, this pointer points to an array of bytes or may be NULL (see
dwSpecLen below). If the dwSpecType is set a regular IOTYPE such as
IOTYPE_ANSIPATH, the developer may fill this array with the path name or
structure required for that IOTYPE. If the developer is redirecting access to the
secondary file, then dwSpecType will be IOTYPE_REDIRECT and the developer
should replace pSpec with a pointer to a developer-defined structure that begins
with the BASEIO structure (see Using Redirected IO).

The file is supposed to be opened by the OEM's redirected 10 code by the time
they return the BASEIO struct. This is because the pOpen routine in the BASEIO
struct is supposed to be NULL.

dwSpecLen: On entry, this is set to the size of the pSpec buffer. If the size of the
buffer is insufficient, replace the value with the number of bytes required and
return JIOERR_INSUFFICIENTBUFFER.

dwOpenkFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

- IOOPEN_READ: The secondary file should be opened for read.

- IOOPEN_WRITE: The secondary file should be opened for write. If the
specified file already exists, its contents are erased when this flag is set.

- IOOPEN_CREATE: The secondary file should be created (if it does not already
exist) and opened for write.

Any other value should return IOERR_BADINFOID.

¢ plnfo: The size of the pInfo buffer depends on the dwInfold selected. For

IOGETINFO_FILENAME and IOGETINFO_PATHNAME, the buffer is of size
MAX_PATH characters (each character is either one byte or two, depending on
PATHTYPE). The IOGETINFO_PATHTYPE buffer is the size of a VIDWORD.

Return Values

IOERR_OK: GetInfo was successful.

IOERR_TRUE: Affirmative response from a true or false GetInfo.
IOERR_FALSE: Negative response from a true or false GetInfo.
IOERR_BADINFOID: dwinfold can not be handled by this file type.
IOERR_INVALIDSPEC: The file spec is bad for this type.

IOERR_UNKNOWN: GetInfo failed for some other reason.

IOGENSECONDARY and IOGENSECONDARYW Structures

These structures are passed to the developer through the IOGetInfo function. They
allow the developer to tell the technology where a secondary file, needed by the
conversion process, is located.

The SpecType of the original file determines which of these two structures is used. If
the SpecType is IOTYPE_UNICODEPATH, IOGENSECONDARYW is used.
pFileName points to a Unicode string terminated with a NULL WORD. For all other

9-8 Developer's Guide

|0GetInfo

SpecTypes, IOGENSECONDARY is used and pFileName points to a string terminated
with a NULL BYTE.

When using HTML Export, consider the situation where the software must access a
secondary template file. In that case, the SpecType of the original template specified
by the option SCCOPT_EX_TEMPLATE determines which of the two structures is
used.

The following is a C data structure defined in SCCIO.H:

typedef struct

{
VTDWORD dwsSi ze;
VTLPBYTE pFi | eNane;
VTDWORD dwSpecType;
VTLPVO D pSpec;
VTDWORD dwQOpenFl ags
} | OGENSECONDARY, * Pl OGENSECONDARY;

typedef struct

{
VTDWORD dwsSi ze;
VTLPWORD pFi | eNane;
VTDWORD dwSpecType;
VTLPVO D pSpec;
VTDWORD dwQOpenFl ags
} | OGENSECONDARYW * Pl OGENSECONDARYW

Parameters

e dwsSize: Will be set to sizeof IOGENSECONDARY) or
sizeof (IOGENSECONDARYW) (both of these values are the same).

¢ pFileName: A pointer to a string representing the file name of the secondary file
that the technology requires. It is usually a name stored in the primary file (such as
MYSTYLE.STY for a Word for DOS file) or a name generated from the primary file
name. The primary file for a DataEase database has a .dba extension. The
secondary name is the same file name but with a .dbm extension.

* dwSpecType: The developer must fill this with the IOSPEC for the secondary file.

¢ pSpec: On entry, this pointer points to an array of 1024 bytes. If the dwSpecType is
set a regular IOTYPE such as IOTYPE_ANSIPATH, the developer may fill this
array with the path name or structure required for that IOTYPE. If the developer is
redirecting access to the secondary file, then dwSpecType will be
IOTYPE_REDIRECT and the developer should replace pSpec with a pointer to a
developer-defined structure that begins with the BASEIO structure (see Using
Redirected 10).

The file is supposed to be opened by the OEM's redirected IO code by the time they
return the BASEIO struct. This is because the pOpen routine in the BASEIO struct
is supposed to be NULL.

¢ dwOpenFlags: Set by the technology. A set of bit flags describing how the
secondary file should be opened. Multiple flags may be used by bitwise OR-ing
them together. The following flags are currently used:

— IOOPEN_READ: The secondary file should be opened for read.

Redirected 10 9-9

IOSEEK64PROC / IOTELL64PROC

— IOOPEN_WRITE: The secondary file should be opened for write. If the specified
file already exists, its contents are erased when this flag is set.

— IOOPEN_CREATE: The secondary file should be created (if it does not already
exist) and opened for write.

File Types That Cause IOGETINFO_GENSECONDARY
The following file types cause IOGETINFO_GENSECONDARY:

* Microsoft Word for DOS Versions 4, 5 and 6: Used to open and read the style sheet
file associated with the document. The filter degrades if the style sheet is not
present.

e Harvard Graphics DOS 3.x: Used to open and read the individual slides within
ScreenShow and palette files. Files with the extension .ch3 are individual graphics
or slides that can be opened using no secondary files. Files with the extension .sy3
are ScreenShows that reference a list of .ch3 files via the secondary file mechanism.
There is also an optional palette file that can be referenced from a .ch3 file, but the
filter degrades if the palette file is not present.

¢ R:Base: Used to open and read required schema file. The R:Base data files are
named ????2.rbf but the data is useless without the schema file named ????1.rbf.
There is also a ????3.rbf file associated with each database, but it is not used.

e Paradox 4.0 and Above: Used to open and read memo field data file. Paradox uses
a separate file for all memo field data larger than 32 bytes.

¢ DataEase: Used to open and read the data file. DataEase databases include a .dba
file that contains the schema (the file that the technology can identify as DataEase)
and a .dbm file that contains the actual data.

e Templates (HTML Export): Any template that contains a { ## | i nk} will need to
open the linked files. Additionally, when the root template is opened using
redirected IO, each { ## copy} macro in the template will result in a
IOGETINFO_GENSECONDARY call, as well.

IOSEEK64PROC / IOTELL64PROC

These functions are for seek/tell using 64-bit offsets. These functions are not used by
default. Rather, they are used if the IOGETINFO_64BITIO message returns
IOERR_TRUE. This is so redirected I/O using strictly 32-bit I/O is unaffected.

I0Seek64

Moves the current file position.

Prototype

| OERR | OSeek64(
H OFI LE hFil e,
VTWORD wFr om
VTOFF_T of fset);

Parameters

The parameter information is the same as for IOSeek(). However, the size of the
VTOFE_T offset for IOSeek64() is 64-bit unlike the 32-bit offset in IOSeek().

9-10 Developer's Guide

IOSEEK64PROC / IOTELL64PROC

|0Tell64

Returns the current file position.

Prototype

| CERR | OTel | 64(

H OFI LE hFile,
VTOFF_T * pOfset);
Parameters

The parameter information is the same as for IOTell(). The only change is the use of a
pointer to a 64-bit parameter for returning the offset.

Redirected 10 9-11

IOSEEK64PROC / IOTELL64PROC

9-12 Developer's Guide

10

Callbacks

Callbacks allow the developer to intervene at critical points in the export process. Each
heading in this chapter is a possible value for the dwCommandOrInfold parameter
passed to the developer's callback.

Read more about the callback procedure and the EXOpenExport function call in
Export Functions.

The new SCCOPT_EX_CALLBACKS option allows developers to enable or disable
some or all of these callbacks. See the Options documentation for details.

This chapter describes callbacks set in EXOpenExport. A second callback function,
DASetStartCallback, can provide information about the progress of a file conversion.
For more details, see Data Access Common Functions.

The following callbacks apply to HTML Export:

¢ EX_CALLBACK_ID_CREATENEWFILE

¢ EX_CALLBACK_ID_NEWFILEINFO

¢ EX_CALLBACK_ID_ALTLINK

¢ EX_CALLBACK_ID_CUSTOMELEMENTLIST

¢ EX_CALLBACK_ID_ENTERARCHIVE

¢ EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
¢ EX_CALLBACK_ID_LEAVEARCHIVE

¢ EX_CALLBACK_ID_OEMOUTPUT

¢ EX_CALLBACK_ID_OEMOUTPUT_VER2

¢ EX_CALLBACK_ID_PROCESSELEMENTSTR

¢ EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2
¢ EX_CALLBACK_ID_PROCESSLINK

¢ EX_CALLBACK_ID_REFLINK

EX_CALLBACK_ID_CREATENEWFILE

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to execute routines before each new file is created.

It allows the developer to override the standard naming for a file or to redirect entirely
the IO calls for a file. This callback is made for all output files that are created.

Callbacks 10-1

EX_CALLBACK_ID_CREATENEWFILE

These include all output text and graphics files that are created. However, it does not
include the already open initial file passed to EXOpenExport, unless of course
redirected IO is in use with a pSpec of NULL.

If redirected IO is being used on output files, this callback must be implemented.

For this callback, the pCommandOrInfoData parameter points to a structure of type
EXFILEIOCALLBACKDATA:

typedef struct EXFI LEI OCALLBACKDATAt ag

{

H OFI LE hParentFil e;
VTDWORD dwPar ent Qut put | d;
VTDWORD dwAssoci ati on;
VTDWORD dwQut put | d;
VTDWORD dwFl ags;
VTDWORD dwSpecType;
VILPVO D pSpec;
VILPVO D pExport Dat a;
VTILPVO D pTenpl at eNane;

} EXFI LEI OCALLBACKDATA;

¢ hParentFile: Handle to the initial output file with which the new file is associated.
The dwAssociation describes the relationship. This handle is not intended for use
by the developer. Set by caller.

¢ dwParentOutputld: Set by caller. The type of the parent file. This is one of three
values, depending on which output format is being produced. It can be FI_HTML,
FI_MHTML, or FI_ XHTML.

¢ dwAssociation: One of the following values:

10-2 Developer's Guide

CU_ROQT: For the initial output file.

CU_SIBLING: For new files that are not somehow owned by the parent file. This
can be additional HTML output files created as the result of template directives.

CU_CHILD: For new files (usually GIFs, JPEGs, or PNGs) that are embedded in
the parent file.

CU_COPY: For files that are being copied as the result of a template
{## copy} macro.

The OEM should be aware that each time the { ## copy} macro causes a file to
be copied, the EX_CALLBACK_ID_CREATENEWFILE callback is called. To
indicate the callback happened as a result of the { ## copy} macro, the
dwAssociation field is set by HTML Export to CU_COPY. In addition, the OEM
should also be aware that the dwOutputld field will be set by HTML Export to
FI_UNKNOWN.

OEMs using { ## copy} and redirected IO should be aware that copied files
are considered to be loosely associated with the template. As such, if redirected
IO is being used for the root template, HTML Export allows the copied files to
be handled through redirected 10, as well. For each { ## copy} instance, an
IOGetInfo call is made, requesting IOGETINFO_GENSECONDARY.

The IOGETINFO_GENSECONDARY call for redirected 10 should have opened
the file to be copied, so this call is entirely informational in this situation. The
OEM may then return redirected IO information in the IOGENSECONDARY /
IOGENSECONDARYW structure, as needed. If redirected IO is not needed for
the file to be copied, HTML Export attempts to open the file locally. OEMs

EX_CALLBACK_ID_CREATENEWFILE

should also be aware that { ## copy} results in a IOGENSECONDARY call
with dwOpenFlags set to IOOPEN_WRITE.

dwAssociation used in conjunction with dwOutputld can be used to segregate
various types of files. For instance, the developer might want to place all GIFs in a
sub-directory named GRAPHICS. Set by caller.

dwOutputld: The outputID will reflect the type of file that the export wants to
create at the time of the callback. The outputID will match the output format of the
export (HTML, MHTML, or XHTML) when it is creating an output file of that type.
It will be one of: FI_HTML, FI_ MHTML, or FI_XHTML.

When the export is creating an associated file to go along with the main output file,
such as a graphic, Javascript, CSS, etc., then the outputID will reflect the type of
this file. It could one of the following: FI_ HTML_CSS, FI_JAVASCRIPT, FI_GIF,
FI_JPEGFIF or FI_PNG.

dwFlags: Reserved

dwSpecType: 10 specification type. For details about 1O specifications, see Data
Access Common Functions.

This member in conjunction with pSpec allows the developer to choose any
location for the new file or even redirect its IO calls entirely. For more information,
see Redirected I0. When the developer receives this callback, the value of this
element is undefined. Must be set by developer if this callback returns
SCCERR_OK.

pSpec: This field holds the IO specification of the output file to be created. pSpec
points to a buffer that is 1024 bytes in size. If your application needs to set the
specification of the output file, it may do so by either writing new data into this
buffer, or by changing the value of pSpec to point to memory owned by your
application. If pSpec is set to a new value, then your application must ensure that
this memory stays valid for an appropriate length of time, at least until the next
callback message is received, or EXRunExport returns.

If the current export operation is using redirected IO, your application must create
a redirected IO data structure for the new file and set pSpec to point to it. This
pointer must stay valid until the structure's pClose function is called.

If your application sets dwSpecType to IOTYPE_UNICODEPATH, the specification
must contain UCS-2 encoded Unicode characters.

When the developer receives this callback, the bytes in the buffer pSpec points to
are undefined. Must be set by the developer if this callback returns SCCERR_OK.

pExportData: Pointer to data specific to the individual export. In this case, always a
pointer to either an EXURLFILEIOCALLBACKDATA structure or an
EXURLFILEIOCALLBACKDATAW structure. The
EXURLFILEIOCALLBACKDATAW struct is only used when the
SCCOPT_UNICODECALLBACKSTR option is set to TRUE. These two structures
are defined in EXURLFILEIOCALLBACKDATA /
EXURLFILEIOCALLBACKDATAW Structures. Set by caller.

pTemplateName: Pointer to a NULL-terminated string containing the name of the
template responsible for opening the new output file. If a template uses the

{## |ink} command, a new output file may be created to hold the linked-to
output. When this happens, this field contains the name of the template being
parsed in order to create the output. Whether this is a string of WORDs or BYTEs is
dependent on the SCCOPT_UNICODECALLBACKSTR option. If this option is set

Callbacks 10-3

EX_CALLBACK_ID_CREATENEWFILE

to TRUE, it is a pointer to an array of WORDs. Otherwise, it is a pointer to an array
of BYTEs.

Because historically the SCCOPT_EX_TEMPLATE option was not set until after the
original output file had been opened, a change was made to allow this option to be
set before the call to EXOpenExport. If this option is set before EXOpenExport, the
pTemplateName field is a valid string. Otherwise, it is NULL for the original
output file.

EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

These are new, more generic names for the old EXHTMLFILEIOCALLBACKDATA
and EXHTMLFILEIOCALLBACKDATAW structures. The old names continue to be
supported indefinitely to maintain backwards compatibility.

The EXURLFILEIOCALLBACKDATA and EXURLFILEIOCALLBACKDATAW
structures are defined as follows:

typedef struct EXURLFI LEI OCALLBACKDATAt ag

{
VIDWORD dwSi ze;

VTBYTE SzURLString[VI_MAX_URL] ;
VIDWORD dwFi | el D;
} EXURLFI LEI OCALLBACKDATA;

typedef struct EXURLFI LEI OCALLBACKDATAW ag

{
VIDWORD dwSi ze;

VTWWORD wzURLSt ring[VT_MAX_URL];
VIDWORD dwFi | el D;
} EXURLFI LEI OCALLBACKDATAW

e dwsSize: Set to sizeof(EXURLFILEIOCALLBACKDATA) or
sizeof(EXURLFILEIOCALLBACKDATAW).

e szURLString / wzURLString: This parameter can be set by the developer to a new
URL that references the newly created file. This parameter is optional unless the
pSpec provided by the developer points to something that cannot be used as a URL
(as when using redirected IO, for example). In that case, this parameter must be set.

This string is written into any output file that needs to reference the newly created
file, with appropriate conversions between single and double byte output. Because
this parameter is a URL, it is assumed to be URL encoded. When used in
conjunction with dwSpecType and pSpec, this parameter can be used to generate
almost any structure or location for the output files, including things like writing
the output files into a database and then using a CGI mechanism to retrieve them.

The current size limitation is 2048 characters. If the size exceeds this limit, the URL
will be truncated and rendered useless.

¢ dwFilelD: Set by the product. This is used as a unique identifier for each output file
generated. It may be used for an OEM-specific purpose. This identifier is always set
to zero when this callback is made as the result of a { #%# copy} statement in the
template.

Return Value

¢ SCCERR_OK: dwSpecType, pSpec and szURLString (or wzZURLString) have been
populated with valid values.

10-4 Developer's Guide

EX_CALLBACK_ID_NEWFILEINFO

e SCCERR_NOTHANDLED: Default naming should be used.

¢ SCCERR_FILEOPENFAILED: Some error was encountered creating a new output.

EX_CALLBACK_ID_NEWFILEINFO

This informational callback is made just after each new file has been created. Like the
EX_CALLBACK_ID_CREATENEWFILE callback, the pExportData parameter points
to an EXURLFILEIOCALLBACKDATA or an EXURLFILEIOCALLBACKDATW
structure, but in this case the structure should be treated as read-only and the
dwSpecType, pSpec and szURLString (or wzURLString) will be filled in.

This callback occurs for every new file. If the developer has used the
EX_CALLBACK_ID_CREATENEWFILE notification to change the location of (or to
set up redirected IO for) the new file, the data structure echoes back the information
set by the developer during the EX_CALLBACK_ID_CREATENEWFTILE callback.

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. Return value is currently
ignored.

EX_CALLBACK_ID_ALTLINK

This callback is made when a { # anchor } macro that would be used for navigating
between output files cannot be resolved to a location in the set of output files. The two
cases that result in this callback are a "previous" link from the first output file, or a
"next" link from the last output file. Responding to this callback allows the endpoints
of the next/previous links in a set of output pages to point to locations outside of the
converted document itself.

This callback only occurs if the altlink= attribute is missing in the { ## anchor }
statement or is invalid.

The pCommandOrInfoData parameter points to a structure of type
EXALTLINKCALLBACKDATA:

typedef struct EXALTLI NKCALLBACKDATA

{
VTDWORD dwType;
VILPVO D pA tURLStr;

* dwType: Set by HTML Export to the type of link that couldn't be resolved, either
EX_ALTLINK_PREV or EX_ALTLINK_NEXT.

e pAItURLStr: Set by HTML Export to a buffer of size 1024 bytes. The developer
should write to this buffer a null terminated string representing the URL to be used
as the alternate link. The character size of the string is based on the value of the
SCCOPT_UNICODECALLBACKSTR option.

If a buffer larger than 1024 bytes is required, the developer may assign this pointer
to a new buffer. In this case the new buffer must be guaranteed to exist until the
next callback message is received for the current hExport, or EXRunExport returns.

Unlike the other callbacks that use the SCCOPT_UNICODECALLBACKSTR option,
EX_CALLBACK_ID_ALTLINK does not have separate normal and wide structures.

Callbacks 10-5

EX_CALLBACK_ID_CUSTOMELEMENTLIST

EX_CALLBACK_ID_CUSTOMELEMENTLIST

This callback works in conjunction with the
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER? callback to allow the OEM to
extend the template document tree. The callback is made at the beginning of
processing to get a pointer to the list of OEM-defined custom elements. These
elements are referenced from the template with { ## i nsert el ement =}. When one
of these elements is found in the template, the
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER? callback is triggered. If that
callback returns SCCERR_NOTHANDLED, then the
EX_CALLBACK_ID_PROCESSELEMENTSTR callback is triggered. For more
information, see EX_CALLBACK_ID_PROCESSLINK.

Note:

Oracle reserves the right to add any string(s) to the list of supported elements.
It is therefore recommended that great care be exercised when selecting
element names. One method of reducing this risk may be to use your
company's name in the element name keyword. Due to this potential for
future naming conflicts, the "oem="mechanism is still the preferred method
for generating callbacks based on template elements.

The pCommandOrInfoData field is a pointer that is expected to be filled in with the
address of an array of NULL-terminated strings, where the last string is a NULL
string. This array is provided by the OEM and is not allocated or freed by HTML
Export. This list is used to determine if an unexpected element found in a template is
valid.

If the SCCOPT_UNICODECALLBACKSTR option is set to TRUE, it is assumed this
list contains Unicode strings. If the option is set to FALSE, it is assume the list contains
ASCII strings. Each string is limited to 64 characters in length (128 bytes for Unicode)
including NULL-terminator. Elements are case insensitive, as is the template language.

HTML Export only allows Unicode or 7bit ASCII for the custom element values when
this option is set.

An example of declaring the list of strings would be the following:

char * CustonEl ementList[] = {
"stringl",
"string2",
"string3",

NULL,

¥

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. If SCCERR_OK is
returned, the pCommandOrInfoData field must contain a valid pointer.

EX_CALLBACK_ID_ENTERARCHIVE

This callback is made when the template begins the following construct:

{## link el ement=sections. current.deconpressedfil e}

10-6 Developer's Guide

EX_CALLBACK_ID_ENTERARCHIVE

This callback provides a way for the OEM to change the pSpec and dwSpecType used
for the output of the conversion of the archive entry. For the remainder of the
conversion of the archive entry, the default output file names generated by HTML
Export are based on the pSpec and dwSpecType returned here. By default, the OEM
may leave these unchanged and use names generated by HTML Export. The callback
also provides the OEM with information about the archive entry to be converted. This
information could be used for things such as putting the output of each archive entry
into a directory separate from the output of the original output file(s).

When this callback happens, HTML Export internally recursively calls itself on the
target archive file entry. As such, any options set in the parent export are inherited by
the child export. However, any options set by the OEM or the templates while
processing is being done inside the child export, revert to their original settings upon
completion of the child export. In addition, any callbacks HTML Export would
normally make are percolated up from the child export to the OEM's program. Note
that options cannot be set via this callback for child exports.

The pCommandOrInfoData parameter points to a structure of type
EXENTERARCHIVECALLBACKDATA:

typedef struct EXENTERARCH VECALLBACKDATAt ag

{
VTDWORD dwSpecType;
VTLPVO D pSpec;
VTLPWORD wzFul | Nane;
VTDWORD dwl t emNum

} EXENTERARCHI VECALLBACKDATA,

* dwSpecType: Describes the contents of pSpec. Together dwSpecType and pSpec
describe the location of the initial output file for the archive entry. A default value
is filled in by HTML Export based on the next output file name HTML Export
would normally use. Must be one of the values allowed for the dwSpecType
passed to EXOpenExport.

* pSpec: File location specification for the first output file generated by the
conversion of the archive entry. This parameter is either a pointer to a buffer or
NULL. If the pointer is not NULL, the buffers contents are based on the value of
the dwSpecType parameter. See the descriptions under the individual
dwSpecTypes listed for EXOpenExport.

Passing NULL indicates the developer will use the
EX_CALLBACK_ID_CREATENEWFILE callback to specify the initial output file
instead of specifying it here. When this parameter is NULL, the developer must
handle the EX_CALLBACK_ID_CREATENEWFILE callback or EXOpenExport will
return an error. For more information, see
EX_CALLBACK_ID_CREATENEWFILE.

A default value is filled in by HTML Export based on the next output file name
HTML Export would normally use. In other words, if the original output file
created was main.htm, and main0001.htm - main0003.htm have been created, then
the first file created for the file in the archive is main0004.htm.

¢ wzFullName: Filled in by HTML Export with a NULL-terminated Unicode string
representing the name of the file entry in the archive. This name includes any path
information provided in the archive file. Similar to sections.current.fullname in the
template language.

¢ dwltemNum: The item number of the entry in the archive file. Similar to
sections.current.itemnum in the template language.

Callbacks 10-7

EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. The return value is
currently ignored.

EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

This callback only occurs when an error is encountered exporting a graphic. It allows
the OEM to customize their handling of this type of error. This callback does not occur
for graphics exports that are successful. It also does not occur for graphics that cannot
be converted due to the lack of an appropriate type of import filter. If the appropriate
import filter is not present, EXOpenExport returns SCCERR_NOFILTER.

The pCommandOrInfoData field points to a structure of type
EXGRAPHICEXPORTINFO:

typedef struct EXGRAPHI CEXPORTI NFQx ag

{
HIOFILE hFile;

VTLPDWORD pXSi ze;
VTLPDWORD pYSi ze;
VTDWORD dwQut put | d;
SCCERR Export Graphi ¢St at us;
VTLPDWORD pl magesi ze;
} EXGRAPHI CEXPORTI NFO,

¢ hFile: A handle to the current graphic output file. An OEM can substitute their own
graphic by writing the desired graphic image to the beginning of the hFile (via an
IOSEEK (hFile, IOSEEK_TOP, OL), etc. The export function closes the file when
control is returned from the callback. The contents of hFile on entry to the callback
handler are unpredictable.

* pXSize/pYsize: Pointers to the dimensions of the image that would have been
exported. An OEM can set and use these values to control the image size displayed
by browsers. These dimensions are placed in the associated tag.

e dwOutputld: The type of graphics file that was being created (FI_GIF, FI_JPEGFIF,
or FI_PNG).

¢ ExportGraphicStatus: The error code from the operation that caused the graphic
image conversion to fail.

* plmageSize: The maximum size for the image in bytes is filled in by HTML Export
here (0 = no limit). If this callback is handled, on return the OEM should set this
field to the size of the image the OEM created. This image should be no larger than
the maximum size HTML Export entered into this variable.

Return Value

The callback handler should return SCCERR_NOTHANDLED unless the OEM has
written an image to hFile in which case a value of SCCERR_OK should be returned.

EX_CALLBACK_ID_LEAVEARCHIVE

This callback is made when the template finishes the following:

{## link el enent=sections.current.deconpressedfil e}

10-8 Developer's Guide

EX_CALLBACK_ID_OEMOUTPUT

Links of this nature are handled by Export internally as a recursive call to HTML
Export on the target archive file entry. As such, any errors returned by the conversion
of the { ## | i nk} target are not reflected in the error code returned by EXRunExport.
In addition, conversion of the target archive entry may fail, but export of the archive
file continues. This callback provides the error code generated by the conversion of the
archive file entry.

The pCommandOrInfoData parameter points to a structure of type
EXLEAVEARCHIVECALLBACKDATA:

typedef struct EXLEAVEARCHI VECALLBACKDATAt ag

{
SCCERR ExportResul t;
} EXLEAVEARCHI VECALLBACKDATA,

¢ ExportResult

Filled in by HTML Export with SCCERR_OK or the error code generated by the
conversion of the archive file entry.

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. The return value is
currently ignored.

EX_CALLBACK_ID_OEMOUTPUT

This callback has been deprecated. While this callback continues to be supported,
users are encouraged to use the new EX_CALLBACK_ID_OEMOUTPUT_VER2
callback. The new version supports mapping the output for this callback to the output
character set. This is especially important given that HITML Export sometimes
overrides the output character set indicated by the
SCCOPT_EX_OUTPUTCHARACTERSET option.

For now, HTML Export only makes this callback if
EX_CALLBACK_ID_OEMOUTPUT_VER2 returns SCCERR_NOTHANDLED.

EX_CALLBACK_ID_OEMOUTPUT_VER2

This callback is made in response to a { ## i nsert oen¥} macro inside a template
file. When this callback occurs, the developer may return a string to be inserted into
the output file. Multiple { ## i nsert oenr} macros are differentiated by the value
of the "oem="string. For example, { ## i nsert oenrphone} could be used to
trigger this callback so that a phone number could be extracted from a database and
inserted into the output file at this point.

This callback differs from the EX_CALLBACK_ID_OEMOUTPUT callback in that it
correctly handles character mapping of the string to be inserted into the output file. It
does this by mapping the string pointed to in pwBulffer from the character set given by
dwCharset to the output character set used by HTML Export. This is especially
important given that HTML Export sometimes overrides the output character set
indicated by the SCCOPT_EX_OUTPUTCHARACTERSET option. With this callback,
the string pointed to in pwBuffer is mapped from the character set given by
dwCharset to the output character set used by HTML Export. The correctly mapped
character string is then written by HTML Export to the output file.

The EX_CALLBACK_ID_OEMOUTPUT callback is not made unless this callback
returns SCCERR_NOTHANDLED.

Callbacks 10-9

EX_CALLBACK_ID_PROCESSELEMENTSTR

The pCommandOrInfoData parameter points to a structure of type
EXOEMOUTCALLBACKDATA_VER2:

typedef struct EXCEMOUTCALLBACKDATA VER2t ag

{
VIDWORD dwSi ze;

VIDWORD dwChar set;
VIDWORD dwiengt h;
VTLPVO D pCEMStTri ng;
VTLPWORD pwBuf f er;

} EXCEMOUTCALLBACKDATA VERZ;

e dwsSize: sizeof(EXOEMOUTCALLBACKDATA_VER?2)

¢ dwCharset: The character set of the string contained in pwBuffer. This may not be
set to SO_UTEFS.

* dwLength: The length of the string contained in pwBuffer.

e pOEMString: Pointer to a Unicode string that represents the value of the oem
attribute of the { ## i nsert} macro. For example, if the macro is { ## i nsert
oenrphone}, pPOEMString points to the NULL-terminated Unicode string
"phone."

e pwBuffer: Pointer to the string which the OEM wants to insert. This is a WORD
buffer, and it is the OEM's responsibility to convert their string to a NULL-
terminated WORD string regardless of the character set specified by dwCharset.
This means that single-byte character strings must be expanded into one character
per WORD.

For double-byte character set strings, the lead byte and trail byte should occupy the
same WORD value, with the lead byte in the high order byte of the WORD.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED.

EX_CALLBACK_ID_PROCESSELEMENTSTR

This callback has been deprecated. While this callback continues to be supported,
users are encouraged to use the new
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER?2 callback. The new version
supports mapping the output for this callback to the output character set. This is
especially important given that HTML Export sometimes overrides the output
character set indicated by the SCCOPT_EX_OUTPUTCHARACTERSET option.

For now, HTML Export only makes this callback if the
EX_CALLBACK_ID_PROECESSSELEMENTSTR_VER?2 callback returns
SCCERR_NOTHANDLED.

EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2

This callback works in conjunction with the
EX_CALLBACK_ID_CUSTOMELEMENTLIST callback to allow the OEM to extend
the template document tree. The callback is made when a custom element is found in a
template. A custom element is verified by comparing it against the list of custom
elements defined by the EX_CALLBACK_ID_CUSTOMELEMENTLIST callback. For
more information, see EX_CALLBACK_ID_CUSTOMELEMENTLIST.

10-10 Developer's Guide

EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2

This callback differs from the EX_CALLBACK_ID_PROCESSELEMENTSTR callback
in that it correctly handles character mapping of the string to be inserted into the
output file. It does this by mapping the string pointed to in pwBuffer from the
character set given by dwCharset to the output character set used by HTML Export.
This is especially important given that HTML Export sometimes overrides the output
character set indicated by the SCCOPT_EX_OUTPUTCHARACTERSET option. With
this callback, the string pointed to in pwBuffer is mapped from the character set given
by dwCharset to the output character set used by HTML Export. The correctly
mapped character string is then written by HTML Export to the output file.

The EX_CALLBACK_ID_PROCESSELEMENTSTR callback will not be made unless
this callback returns SCCERR_NOTHANDLED.

The pCommandOrInfoData field points to a structure of type
EXCUSTOMELEMENTCALLBACKDATA_VER2:

typedef struct EXCUSTOMVELEMENTCALLBACKDATA VER2t ag

{
VTDWORD dwsi ze;

VTDWORD dwChar set ;
VTDWORD dwLengt h;
VILPVO D pKeyStr;
VILPVO D pEl ement Str;
VTLPWORD pwBuffer;
} EXCUSTOVELEMENTCALLBACKDATA VERZ;

e dwsSize: sizeof(EXCUSTOMELEMENTCALLBACKDATA_VER?)

* dwCharset: The character set of the string contained in pwBuffer. This may not be
set to SO_UTFS.

¢ dwLength: Set by the OEM to the number of characters, not bytes, in the string
contained in pwBulffer.

¢ pKeyStr: Pointer to a string that represents the keyword value of the custom
element. The representation of the string is defined by the value set by the
SCCOPT_EX_UNICODECALLBACKSTR option. The keyword is the text following
the "=", up to the next separator character, either a space or a period. This is the
string used for determining if the element is a valid custom element, based on the
list of valid elements given by the EX_CALLBACK_ID_CUSTOMELEMENTLIST
callback. For example, if the macro is { ## i nsert el enent =phone hel p},
pKeyStr points to the NULL-terminated string "phone."

* pElementStr: Pointer to a string that represents the keyword value of the custom
element. The representation of the string is defined by the value set by the
SCCOPT_EX_UNICODECALLBACKSTR option. This is the text after the keyword
up to the closing "}". This string may be NULL. For example, if the macro is
{## insert el ement=phone hel p}, pElementStr points to the NULL-
terminated string "help."

e pwBuffer: Pointer to the string that the OEM wants to insert into the output file(s).
This is a WORD buffer, and it is the OEM's responsibility to convert their string to a
NULL-terminated WORD string regardless of the character set specified by
dwCharset. This means that single-byte character strings must be expanded into
one character per WORD.

When HTML Export makes this callback, pwBuffer points to a buffer that is 512
WORD:s in size. If this is not enough room, the OEM may set pwBuffer to point to a
different buffer allocated (and later freed) by the OEM. The OEM should NOT free

Callbacks 10-11

EX_CALLBACK_ID_PROCESSLINK

or realloc the buffer provided by HTML Export. In addition, the OEM's buffer must
be valid until the next call from HTML Export is received, or EXRunExport returns.

For double-byte character set strings, the lead byte and trail byte should occupy the
same WORD value, with the lead byte in the high order byte of the WORD.

Return Value
Must be either SCCERR_OK or SCCERR_NOTHANDLED.

EX_CALLBACK_ID_PROCESSLINK

Currently, this advanced callback is available only for links to images. It is made in
response to a link to a file or URL from inside the file being converted. It allows the
developer to choose how this link should be handled. There are essentially four ways
to deal with a link:

1.

The developer may request that the link be handled by having HTML Export
attempt to follow the link, convert it to the selected image type, and insert the
converted object (this is the default behavior).

The developer may have an image tag created which uses a specified string as the
source attribute (for example, as).

The developer may ignore the link altogether.

The developer may return SCCERR_NOTHANDLED, in which case HTML
Export will use the original URL string.

The pCommandOrInfoData parameter points to a structure of type
EXPROCESSLINKCALLBACKDATA:

typedef struct EXPROCESSLI NKCALLBACKDATAt ag

{

VILPVO D pLocatorStr;
VTDWORD dwLocat or St r Char set ;
VTDWORD dwbj ect Fi l el d;
VTDWORD dwAct i on;

VTDWORD dwLi nkFl ags;
VTHANDLE = hReserved;

} EXPROCESSLI NKCALLBACKDATA;

pLocatorStr: Pointer to a string containing the linked object location information
(such as a file path or URL). The buffer containing this string is 1024 bytes in size.
The developer may use this buffer to change the object location string or provide a
new one.

If the developer wishes, the pointer can be changed to point to a buffer of the
developer's choosing. However, if this is done, the pointer provided must be valid
until the next EX_CALLBACK_ID_PROCESSLINK callback is made, or
EXRunExport returns.

If the string is changed, it only has an effect if the developer is requesting that it be
used as the SRC parameter in the resultant image tag (for example, dwAction =
EX_ACTION_CREATELINK). The size of a character in the string (BYTE or
WORD) is resolved by the dwLocatorStrCharset field.

dwLocatorStrCharset: Character set of the string pointed to by pLocatorStr. The
value corresponds to the character set defines in vtchars.h. If the string pointed to

10-12 Developer's Guide

EX_CALLBACK_ID_PROCESSLINK

by pLocatorStr is changed, this value must also be changed if the character set of
the new string is different than the original.

¢ dwObjectFileld: The type of the object pointed to by the link. The value
corresponds to the FI value defines found in sccfi.h. If the value is FI_NONE, the
linked object could not be found.

¢ dwAction: Must be set by the callback routine. The value tells HTML Export how
to deal with this link and can be one of the following values:

- EX_ACTION_CONVERT: Default behavior occurs. HITML Export attempts to
follow the link, convert it to the selected image type, and insert that object into
the resultant output file.

— EX_ACTION_SKIP: The link is to be skipped. No image tag is to be produced.
SCCERR_OK must be returned in order for the value of this field to have an
effect.

¢ dwLinkFlags: Contains a set of flags that provide information about the link.

- EX_FLAG_USEOUTPUTCHARSET: Set by the callback routine to indicate that
dwLocatorStrCharset specifies the character set of pLocatorStr.

— EX_FLAG_PUTATTRIBUTES: Set by the callback routine to indicate that image
attributes, such as the width and height of the image, should be output in the
 tag.

- EX_FLAG_DIMENSIONSKNOWN: Set by HTML Export to indicate whether
the dimensions of the graphic are known. If this flag is set and the callback
routine sets EX_FLAG_PUTATTRIBUTES, the width and height of the image
will be output in the tag.

e hReserved: Field reserved for future use.

Return Value

Must be either SCCERR_OK or SCCERR_NOTHANDLED. If the return value is
anything other than SCCERR_OK, the default behavior will be performed.

Links That Reference Objects Using a Relative Path (HTML Export)

As of this release, there are three working directories associated with HTML Export:

® The location of the document being converted
® The location of the output directory

* The location that contains the HITML Export technology

When a document being converted has a link to an object through a relative path,
some unexpected results may occur due to differences in these working directories.
Namely, a browser displaying the resultant HTML file if the relative path is not also
valid for the directory containing the HTML file will not find relative links processed
with the EX_ACTION_CREATELINK action. Furthermore, relative links processed
using the default action (EX_ACTION_CONVERT) will result in an output document
with image tags that reference empty files unless the relative path for the original
objects is also valid for the directory containing the HTML Export technology.

Callbacks 10-13

EX_CALLBACK_ID_REFLINK

Some browsers do not recognize <drive>:\<path>\<file> as an absolute path. A
possible solution may be to use UNIX path notation instead if this is a problem (/
drive | /path/file).

EX_CALLBACK_ID_REFLINK

HTML Export's support for archive files includes the ability to generate links to items
within an archive. This is accomplished using the { ## i nsert} element reflink.
Because the OEM's application will later be the recipient of requests to open these
links, HTML Export provides a mechanism through which the OEM can specify
exactly how these links are to be written to the output file.

When creating a link to an item within an archive, HTML Export will use the
EX_CALLBACK_ID_REFLINK callback to provide the OEM with the subdocument
specification of the item within the archive. The OEM can then format the URL to be
used when writing this link to an output file. Then, upon receipt of a request to open
this link, the OEM's application will be able to provide HTML Export with the
specification and subdocument specification needed to open the item within the
archive.

For example, when exporting the archive c:\docs\file.zip, the particular template
being used includes reflink insertions that generate links to each item within file.zip.
Each time HTML Export is about to write such a link to the output file, it will use the
callback function SCCEX_CALLBACK ID_REFLINK to allow the OEM to format the
link. When the request to open the link is received by the application, the developer
will be able to provide the appropriate file and subdocument specifications to HTML
Export to resolve the link to the archive item.

If this callback is not handled, HTML Export will generate a default URL. The default
URL will be of the form NameOfArchiveFile?SubdocSpec. This callback is particularly
important to OEMs using redirected IO, since when redirected IO is in use, the default
URL generated by HTML Export is unlikely to be what is desired.

The pCommandOrInfoData parameter points to a structure of type
EXREFLINKCALLBACKDATA:

typedef struct EXREFLI NKCALLBACKDATAt ag

{
VTLPSTR pSubdocSpec;

VICHAR URL[VT_MAX_URL];
VTLPWORD wzFul | Nane;
} EXREFLI NKCALLBACKDATA,

* pSubdocSpec: Filled in by HTML Export with a subdocument specification for the
current archive entry. The subdocument specification is a single-byte character
string that specifies the referenced item within the archive file. To resolve this link,
the subdocument specification should be provided (unmodified) to HTML Export
in a subsequent call to DAOpenDocument.

¢ URL: Filled in by the OEM with the complete URL that HTML Export should use in
response to the { ## i nsert}. This URL will later be returned to the OEM's
application when the link is used. The OEM will need to interpret this URL and use
it to provide the file and subdocument specifications to DAOpenDocument during
the export of the subdocument. This URL will not be modified or encoded by
HTML Export, but written to the output file exactly as you specify. Therefore, the
string returned is expected to be URL encoded. Since URLs are 7-bit ASCII, the
value passed in here is a NULL-terminated, single-byte character string.

10-14 Developer's Guide

EX_CALLBACK_ID_REFLINK

e wzFullName: This parameter is populated with the value of the sections.x.fullname
template element, which is the full name (including path, where applicable) of the
file in the archive.

Return Value
* SCCERR_OK: If the OEM is providing the URL for HTML Export to use.
¢ SCCERR_NOTHANDLED: If HTML Export should generate the URL to be used.

Callbacks 10-15

EX_CALLBACK_ID_REFLINK

10-16 Developer's Guide

11

Sample Applications

Each of the sample applications included in this SDK is designed to highlight a specific
aspect of the technology's functionality. We ship built versions of these sample
applications. The compiled executables should be in the root directory where the
product is installed.

The following copyright applies to all sample applications shipped with this product:
Copyright © Oracle 1993, 2015
All rights reserved.

You have a royalty-free right to use, modify, reproduce and distribute the Sample
Applications (and/or any modified version) in any way you find useful, provided
that you agree that Oracle has no warranty obligations or liability for any Sample
Application files.

This chapter includes the following sections:
¢ Building the Samples on a Windows System
* An Overview of the Sample Applications

® Accessing the SDK via a Java Wrapper

Building the Samples on a Windows System

Microsoft Visual Studio project files are provided for building each of the sample
applications. For 32-bit versions of Windows, versions of the project files are provided
for Visual Studio 6 (.dsp files) and Visual Studio 2005 (.vcproj files).

Because .vcproj files may not pick up the right compiler on their own, you need to
make sure that you are building with the Win64 configuration in Visual Studio 2005.
For 64-bit versions of Windows, only the Visual Studio 2005 versions are available.

The project files for the sample applications can be found in the samplecode\win
subdirectory of the Outside In SDK.

For specific information about building the sample applications on your UNIX OS, see
UNIX Implementation Details.

An Overview of the Sample Applications

Here's a quick tour of the sample applications provided with this product. Not all of
the sample applications are provided for both the Windows and UNIX platforms. See
the heading of each application's subsection for clarification.

This section describes the following sample applications.

® batch_process_hx

Sample Applications 11-1

An Overview of the Sample Applications

* *sample

e export (Windows Only)
* exsimple

o exredir

e extract_archive

e hxanno

batch_process_hx

*sample

batch_process_ca demonstrates running HTML Export in a separate process on
multiple input files. It also allows the timing of each run.

The application is executed from the command line and takes several possible
parameters:

batch_process_hx -f inputfile -o outputfile or [-d inputdir -0 outputdir]
[-i iterations] [-q[2]] [-D]

o -f specifies the name of a single input file.
* -d specifies the name of an input directory of files.

® -0 specifies the name of an output file if -f is being used, or the name of an output
directory if -d is being used.

® -iis an optional parameter specifying the number of iterations to perform.
® -qand -q2 diminish the output to the screen.

* -bincreases the amount of content in the output including processing tags and sub-
documents.

The name of this sample application varies according to product (hxsample for HTML
Export).

The following is a basic implementation that uses the default settings for every option.

hxsanple Inputfile Qutputfile tenplate

You can use the option template parameter and specify a template to override the
default option settings.

This sample is provided for instructional value rather than functionality. As an
exercise, you may want to try changing the SCCOPT_GRAPHIC_TYPE option so it
outputs a different graphic type.

export (Windows Only)

This application was designed to facilitate the testing of the software and should not
be assumed to be of commercial quality.

11-2 Developer's Guide

An Overview of the Sample Applications

Note:

No default options are set at initial runtime. The time the software is used,
click the Options button and set the options. Failure to do this generates
export errors.

The application allows the user to run a single source file. The user can choose the
source file, an output file and set the various options.

The export Main Window

The following figure shows the Main Window for the export application.

Figure 11-1 export Main Window for HTML Export

. Export Sample Application - II:Ilil

Output Format: Export |
HT ML - Options |

Source document:

Export to:

Status:

Delate

[V After expart, view output file with default application

The Main Window is composed of several elements, discussed here.

Output Format menu: This menu allows the user to select the type of output to
generate. An entry for the format(s) you license will appear in this drop-down
menu

Options button: This opens up a new dialog with one or more tabs exposing the
options for the selected product.

Source document field: This is the document to be exported. Click the Browse
button to pick the source file, or type in the path name.

'Export to' Field: This is the initial resulting output file. Type in a file name or click
the Browse button to choose a file. Other output files are named based on the one
chosen here.

Delete button: Clicking this button deletes all files generated by the last export,
listed in the Status: field. This is useful when multiple output files are produced
because the default naming rules do not overwrite an existing file. If you run
Export over and over again with the same output file name, you can produce a
large number of files. Clicking Delete before each export solves this problem.

'After Export, view output file with default application' checkbox: If the export was
successful, checking this box launches the initial output file in the application
associated with the output flavor's default extension.

Sample Applications 11-3

An Overview of the Sample Applications

exsimple

exredir

¢ Export button: Click this button to start the export process once you've determined
the export settings.

¢ Exit button: Close the Export application.

This simple command line driven program allows the user to run a single source file
through the software. The user can choose the source file, an output file and set the
various options.

Note:

This macro is not supported for templates used to create MHTML output.

To run the program, type:

exsinmple in_file out_file config_ file

* in_file is the input file to be converted
* out_file is the output location

* config_file is the configuration file that sets the conversion options. If no
configuration file is specified, default.cfg in the current directory is used.

The configuration file is a text file used to set the conversion options. We recommend
reading through the configuration file for more information about valid options and
their values (use of invalid options results in exsimple not producing output).

Follow these instructions to set configurable options.
* Set the following configuration options before running the software:

— outputid: This is the output ID (corresponding to the dwOutputld parameter of
the EXOpenExport function). It is required and must not be commented out.

— template: This corresponds to the SCCOPT_EX_TEMPLATE option, and
indicates the template file to be used. If this option is not set, HTML Export uses
the internal standard template.

This sample application is based on the exsimple sample application. It is designed to
demonstrate how to use redirected IO and callbacks when using the software. It takes
the same arguments and command line structure as exsimple and the same
configuration files can be used. For more information, see exsimple.

extract_archive

extract_archive demonstrates using the DATree API to extract all nodes in an archive.

The application is executed from the command line and takes two parameters, the
name of the input file and the name of an output directory for the extracted files:

extract _archive input_file output_directory

11-4 Developer's Guide

Accessing the SDK via a Java Wrapper

hxanno

This sample application is provided more for the instructional value its sample code
offers than for the functionality it provides when executed. It primarily works as an
example of how to integrate Content Access with HTML Export. This particular
application does search hit highlighting. However, the general principles of how to get
ACC text positions from Content Access should be evident from perusing the source
code.

This command takes the following parameters:

¢ InputFile

¢ OutputFlle

e HiliteString

The following sample command line demonstrates this command:

hxanno InputFile QutputFile HiliteString

A license for Content Access or Search Export is required to enable use of any of the
annotation features supported by HTML Export. Contact your Outside In sales
representative for more information.

Accessing the SDK via a Java Wrapper

The ExJava Java wrapper, working in tandem with the exporter sample application,
provides a working example of one method of interfacing with Oracle's C-based SDK
products from a Java application. Export.jar is a Java API wrapper used by a Java
application to control the exporter executable and set conversion options. exporter is a
C-based executable which performs conversions using the modules in the Outside In
SDK.

The exporter executable should be placed in the root directory of the Outside In SDK
being used. If more than one Outside In SDK is being used, the contents of each SDK
should be unpacked to the same root directory. Export.jar should be placed
somewhere in your classpath.

On UNIX systems this sample application must be run from the directory containing
the Outside In technology.Java version 1.6 or higher is required to run this sample
application.

The ExJava Wrapper API

The JavaDocs documentation for the Java APl is provided in the /sdk/samplecode/
ExJava/docs directory. Conversion options are set using the ExportProperties.

Additionally, the appropriate .cfg file for the ExportTest sample application found in
the Examples/ExportTest directory may provide further insight as to what properties
are available and how they correspond to options and values for options.

The Export.jar and its source code can be found in the Java API directory. Place
Export.jar somewhere in your classpath. In order to use the ExportTest sample
application (which demonstrates how a Java application can use the ExJava API)
without modifying your system configuration or the ExJava sample application, you
should place the Export.jar file in the root directory of the Outside In SDK product you
are using.

Sample Applications 11-5

Accessing the SDK via a Java Wrapper

The C-Based Exporter Application

This is a standalone executable that runs out of process from the Java API. The Java
API controls the conversion through command line parameters that are passed to the
executable. After the conversion completes, the executable returns a conversion status
code to the Java API. The command line parameters are base-64 encoded to allow for
the use of Unicode encoded paths.

As the exporter executable is a C-based application, you will need to make sure the
Java API can find the version of exporter appropriate for the platform you are using.
Generally, and specifically for the purpose of using the ExportTest sample application,
the correct executable should be copied to the root directory of the Oracle export SDK
product you are using.

A compiled version of the C exporter program is included in the SDK with the rest of
the Outside In binaries. The source for exporter is located in the /sdk/samplecode/
ExJava/exporter directory.

The current implementation of ExJava may not produce an error if it cannot find the
exporter application. This known issue may be corrected in a future version of ExJava.

Compiling the Executables

A Microsoft Visual Studio 6.0 project file and a UNIX makefile are provided in
Exporter/Win and Exporter/Unix, respectively, so that you can modify the Exporter
executable or compile it for a platform other than those for which compiled versions of
exporter are provided. If you unpacked the ExJava package into the root directory of
one of Oracle's export SDK products, you should be able to use the Visual Studio
Project and makefile as is. Otherwise, you will need to edit them in order to provide
paths to the Oracle export SDK include and library files.

If you are compiling ExJava for use on the Solaris platform, make sure your
LD_LIBRARY_PATH contains the Outside In SDK path before trying to build the
Exporter module.

The ExportTest Sample Application

ExportTest is an example of how a Java developer could use the ExJava wrapper to
use one of the Outside In SDKs. The following is a list of the components that should
be placed in the root directory of the Outside In SDK you are using in order to run this
sample application:

1. Exportjar (from the Java API directory)

2. Exporter module for the platform you wish to use (located in the /sdk/
samplecode/ExJava/Exporter/Win or /sdk/samplecode/ExJava/Exporter/Unix
directory, depending on which platform you are using)

3. hx.cfg (also in Examples/ExportTest directory)

4. If you are running ExportTest on a UNIX system, make sure to edit the .cfg file so
it reflects the correct name of the exporter module you renamed.

5. ExportTest.jar (also in Examples/ExportTest directory)

6. The appropriate batch file to run the ExportTest application (ExportTest.bat for
Windows and ExportTest.sh for UNIX, both located in the Examples/ExportTest
directory)

11-6 Developer's Guide

Accessing the SDK via a Java Wrapper

Once these files are properly copied, execute the batch file with the name/path of an
input file to convert, the name for the base output file and the name of the
configuration file to use for setting conversion options.

ExportTest.jar uses the contents of the configuration file to determine what option/
value pairs it should use when doing the conversion. It is not necessary to use a
configuration file when developing your own application if you so choose not to.

An Example Conversion Using the ExJava Wrapper

This is a simple outline of the steps for using the ExJava wrapper on a Windows
system to convert a Word document called MyWordDoc.Doc. For information about
properly setting up your environment to use the Outside In SDK in a UNIX system,
see UNIX Implementation Details.

1. Edit the .cfg file and make sure outputid is set to the FI* value appropriate for the
Outside In product you've licensed. Alter any other parameters in the .cfg file as
needed then save the file.

2. Execute the following command. The sample command below assumes HTML as
the export type. Change this type accordingly:

Export Test. bat nywor ddoc. doc output.htm hx.cfg

Sample Applications 11-7

Accessing the SDK via a Java Wrapper

11-8 Developer's Guide

12

HTML Export C/C++ Options

Options are parameters affecting the behavior of an export or transformation. This
chapter presents the C/C++ options relevant to the HTML Export product.

While default values are provided, users are encouraged to set all options for a
number of reasons. In some cases, the default values were chosen to provide
backwards compatibility. In other cases, the default values were chosen arbitrarily
from a range of possibilities.

One reason that users may want to avoid using the default value for an option is that
the default value may change from one release to the next. This is because as
standards evolve over time, defaults may be updated to reflect the current status of the
technology.

These options are available to the developer when using the export engine.

Options are set using the DASetOption call. It is recommended that developers
familiarize themselves with all of the options available.

Options may be Local, in which case they only affect the handle for which they are set,
or Global, in which case they automatically affect all handles associated with the hDoc
and must be set before the call to DAOpenDocument.

Of course some options are more important than others. Casual users of this API
should focus on the following (in rough order of importance):

e SCCOPT_EX_FLAVOR

e SCCOPT_GRAPHIC_TYPE

e SCCOPT_EX_TEMPLATE

o SCCOPT_EX_OUTPUTCHARACTERSET

The following types of options are covered:
¢ Character Mapping

e OQOutput

¢ Input Handling

¢ Layout

¢ Compression

® Graphics

® Spreadsheet and Database File Rendering

e Page Rendering

HTML Export C/C++ Options 12-1

Character Mapping

* Font Rendering

¢ C(Callbacks

¢ File System

e Template-Only Options
¢ Old Options

Character Mapping

This section discusses character mapping options.

SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is encoded
in the character set specified by this option. This is most often used when reading
plain-text files, but may also be used when reading HTML or PDF files. The possible
character sets are listed in charsets.h.

When "extended test for text" is enabled (see SCCOPT_FIFLAGS), this option will still
apply to plain-text input files that are not identified as EBCDIC or Unicode.

This option supersedes the SCCOPT_FALLBACKFORMAT option for selecting the
character set assumed for plain-text files. For backwards compatibility, use of
deprecated character-set -related values is still currently supported for
SCCOPT_FALLBACKFORMAT, though internally such values will be translated into
equivalent values for the SCCOPT_DEFAULTINPUTCHARSET. As a result, if an
application were to set both options, the last such value set for either option will be the
value that takes effect.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTDWORD

Default

e CS_SYSTEMDEFAULT: Query the operating system.

Data
The data types are listed in charsets.h.

SCCOPT_EX_CHARBYTEORDER

This option determines the byte order of Unicode characters in the output files when
Unicode is chosen as the output character set.

12-2 Developer's Guide

Character Mapping

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

One of the following values:

¢ SCCEX_CHARBYTEORDER_BIGENDIAN: Big-Endian byte ordering is common
on RISC and Motorola processors. The ISO 10646 standard, the Unicode Standard
and the W3C recommend Big-Endian Unicode. It also corresponds to network byte
order.

e SCCEX_CHARBYTEORDER_LITTLEENDIAN: Little Endian is common on Intel
processors.

e SCCEX_CHARBYTEORDER_TEMPLATE: This value will cause the output to use
the byte ordering used in the main template file, if the template is written in
Unicode. If the template is not written in Unicode, Big-Endian byte order is used.

Default
SCCEX_CHARBYTEORDER_TEMPLATE

SCCOPT_EX_OUTPUTCHARACTERSET

This option allows the developer to specify which character set should be used in the
output file. The technology will then translate or "map" characters from the input
document's character set to the output character set as needed. Naturally, export
process does not translate content from one language to another. This character
mapping is also clearly limited by the need for the character to be in both the input
and the output character sets. If a character cannot be mapped, the character will show
up in the output as the "unmappable character.” The default unmappable character
used is the asterisk (*). The character used may be changed by setting the
SCCOPT_UNMAPPABLECHAR option. If the resulting output contains an excessive
number of asterisks, selecting a more appropriate output character set should improve
the situation.

The technology reserves the right to override this option. The option will be
overridden if ANSI Double-Byte Character Set (DBCS) characters are detected in the
source document and a single-byte character set is chosen as the output character set.
If the option is overridden, this change will affect the entire output document. The
technology uses the first DBCS character set it finds in the document as the basis for its
decision about which output character set to choose as its override.

Note that special character set override rules apply when the input document uses the
HWP (Hangul 97) filter. For these documents, the output character set will be forced to
SO_ANSI949 (euc-kr) unless the user has selected euc-kr, Unicode or UTF-8 output.
These override rules do not apply to the HWP2 (Hangul 2002) filter, as it uses Unicode
exclusively.

HTML Export C/C++ Options 12-3

Character Mapping

Source documents in Unicode will not override this option. This is especially
important to remember as some important file formats store text in Unicode including
Microsoft Office.

The markup standards currently supported by HTML Export limit documents to a
single character set. That character set is specified in an output file using the
CONTENT attribute of the <meta> tag. This limits what the technology can do with
documents that have multiple character sets. In general, documents that are a mix of a
single Asian language and English characters will translate correctly (although with
some possible loss of non-alphanumeric characters) if the appropriate DBCS, UTF-8 or
Unicode output character set is selected. This is because most DBCS character sets
include the standard 7-bit Latin 1 characters. Documents that contain more than one
DBCS character set or a DBCS character set and a non-English character set (such as
Cyrillic) may not export with all the character glyphs intact unless Unicode or UTF-8 is
used.

Source documents that contain characters from many character sets will look best only
when this option is set to Unicode or UTF-8. This is because the Unicode and UTF-8
character sets contain almost all characters for the most common languages.

While the W3C recommends using Unicode, there is a downside to it at this time. Not
all systems have the appropriate fonts needed for using Unicode or UTF-8. Many
editors do not understand these character sets, as well. In fact, while HTML Export can
read Unicode source documents, it cannot read UTF-8 source documents. In addition,
there are some differences in the way browsers interpret the byte order of 2-byte
Unicode characters. For additional details about the byte ordering issue, see
SCCOPT_EX_CHARBYTEORDER.

An additional HTML browser idiosyncrasy affects the Netscape 4.0 — 6.0 browsers.
While these browsers properly render Unicode HTML, they seem to be unable to
read .css files that are written in Unicode. For this reason, if the output character set is
Unicode and the HTML flavor (described in SCCOPT_EX_FLAVOR) being generated
is Netscape 4.0 or the common 4.0 flavor, the associated .css file will be written in
UTE-8.

In order for HTML Export to correctly place the character set into the output file it
generates, all templates should include a statement that uses the { ## i nsert} macro
to insert the character set into the document, as in the following example:

<neta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htni;
charset ={## insert el enent=pragna. charset}" />

If the template does not include this line, the user may have to manually select the
correct character set in the user's browser.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VITDWORD

12-4 Developer's Guide

Character Mapping

Data

One of the following values:

Value Description
CS_DOS_437 us.
CS_DOS_737 Greek
CS_DOS_850 Latin-1
CS_DOS_852 Latin-2
CS_DOS_855 Cyrillic
CS_DOS_857 Turkish
CS_DOS_860 Portuguese
CS_DOS_863 French Canada
CS_DOS_865 Denmark, Norway-DAT
CS_DOS_866 Cyrillic
CS_DOS_869 Greece
CS_WINDOWS_874 Thailand
CS_WINDOWS_932 Japanese
CS_WINDOWS_936 Chinese GB

CS_WINDOWS_949
CS_WINDOWS_950
CS_WINDOWS_1250
CS_WINDOWS_1251
CS_WINDOWS_1252
CS_WINDOWS_1253
CS_WINDOWS_1254
CS_WINDOWS_1255
CS_WINDOWS_1256
CS_WINDOWS_1257
CS_UNICODE
CS_UTEF8
CS_1508859_1

CS_ISO8859_2

Korea (Wansung)

Hong Kong, Taiwan

Windows Latin 2 (Central Europe)
Windows Cyrillic (Slavic)
Windows Latin 1 (ANSI)
Windows Greek

Windows Latin 5 (Turkish)
Windows Hebrew

Windows Arabic

Windows Baltic

Unicode

UTF-8

Latin-1 - this is a subset of Windows 1252

Latin-2

HTML Export C/C++ Options 12-5

Character Mapping

Value Description
CS_ISO8859_3 Latin-3
CS_ISO8859_4 Latin-4
CS_ISO8859_5 Cyrillic
CS_ISO8859_6 Arabic
CS_ISO8859_7 Greek
CS_IS0O8859_8 Hebrew
CS_ISO8859_9 Turkish

Default

e CS_WINDOWS_1252

SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Note that when exporting to the 4.0 and higher flavors, HTML Export will not have
any unmappable characters in its HTML. Instead, it will write the unmapped character
out in &#....; notation using the decimal representation of the character's Unicode
value. Newer browsers support this representation and will convert it to the
appropriate character if it is available in the font being used. If the character is not
available in that font, the browser's unmappable character symbol (typically a
rectangular box) will be seen. Also note that there may still be unmapped characters in
text rendered to graphics. This is because the graphic file is generated by HTML
Export at conversion time rather than being rendered by the browser.

Care should be taken in choosing which character to use for the unmappable
character. The character should be one that will create minimal confusion between
those characters that were correctly mapped, and characters that were unmapped. Not
only does such confusion make reading the document more difficult, it can cause
additional problems as well. For example, if the unmappable character is also a
character in the name of a font being used in the output, HTML Export may become
unable to use that font. In general, letters and numbers make poor choices for the
value of this option.

Handle Types
VTHDOC

Scope

Local

Data Type
VTWORD

12-6 Developer's Guide

Output

Output

Data

The Unicode value for the character to use.

Default

e (x002a ="*"

This section describes output options.

SCCOPT_EX_CHANGETRACKING

The setting for this option determines whether or not change tracking information in
input documents will be written into the output via the <ins> and HTML tags.
When the option is set to FALSE, no change tracking information will be written into
the output. When set to TRUE, the <ins> and tags will be used as appropriate.

Previous versions of HTML Export included change tracking text in comments.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Default
FALSE

SCCOPT_EX_COLLAPSEWHITESPACE

This is an advanced option that casual users of HTML Export may safely ignore.

When set, this option deletes whitespace from the output document. Two types of
textual whitespace are removed: redundant whitespace characters and contiguous
newline characters. Only textual content is affected. Non-textual entities, such as
empty spreadsheet cells, whitespace in graphics, presentation formats, or charts, will
not be affected by this option. This option is intended for situations where bandwidth
and screen space are limited.

The HTML standard specifies that the browser will collapse a sequence of whitespace
characters into a single whitespace character. Therefore, having HTML Export remove
these redundant whitespace characters has no effect on the final view of the document.
Removing them benefits the document in reducing the overall size of the output files
generated and thereby saves bandwidth and decreases file transmission times. While
HTML Export makes an effort to remove as much redundant whitespace as possible,
there will be cases where some extra spacing appears in the output.

On the other hand, removing vertical whitespace, also known as blank lines or
contiguous newlines, does affect the look of the document in the browser. When
possible, HTML Export preserves vertical spacing between elements. However, when

HTML Export C/C++ Options 12-7

Output

this option is set, textual vertical whitepace is removed, resulting in a more compact
view. Empty rows of cells are not affected, nor are vertical blank areas of graphics,
presentations, or charts affected.

Please note that the collapse white space option does not affect whitespace coming

from the template.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data

One of the following values:
¢ TRUE: Whitespace is removed.

e FALSE: Whitespace is left intact.

Default
FALSE

SCCOPT_EX_EXTRACTEMBEDDEDFILES

This option controls the extraction of attachments to email documents. The input
document must be an email document in order for this option to take effect.

e When set to SCCEX_EXTRACT_BINARY, the attachment will be extracted in its
native format, allowing it to be read by the authoring application.

e When set to SCCEX_EXTRACT_CONVERT, the attachment will be extracted as
HTML.

* When set to SCCEX_EXTRACT_OFF, the attachment will be ignored.

The SCCEX_EXTRACT_BINARY option is not compatible with MHTML, and
therefore embeddings will always be converted when exporting to MHTML unless
SCCOPT_EX_EXTRACTEMBEDDEDFILES is set to SCCEX_EXTRACT_OFF.

This option is only valid for UUE, MIME and MSG files and not for general purpose
file attachments.

Data Size
VIDWORD

Handle Types
VTHDOC, VTHEXPORT

12-8 Developer's Guide

Output

Data
¢ SCCEX_EXTRACT_OFF: Embeddings are skipped.
e SCCEX_EXTRACT_CONVERT: Embeddings are converted.

¢ SCCEX_EXTRACT_BINARY: Embeddings are extracted in their native file format.

Default
SCCEX_EXTRACT_OFF

SCCOPT_EX_FLAVOR

Each Web browser forms a de facto HTML standard. This is because each browser has
a unique collection of HTML tags and tag attributes it does or does not support. Thus,
there are a large number of browser-based variations on the official HTML standards
that are referred to here as "flavors" of HTML.

This option allows the developer to tailor the output generated to a specific browser or
for a specific minimum browser. This allows HTML Export to produce the best
possible rendering of the source document given the tags available in the target flavor.
It also gives the OEM the ability to specify which standard their product will adhere
to, rather than having that standard be dictated by HTML Export.

HTML Export currently supports a large number of flavors. While some flavors are
targeted at specific browsers, other flavors are designed for a more abstract target. The
"generic" and "HTML 2.0" flavors provide "lowest common denominator” flavors. The
HTML produced by these flavors is very simple and should work in almost any
browser. The primary difference between these two flavors is that the generic flavor
supports tables and the HTML 2.0 flavor does not.

At other times, it is desirable to have the ability to create HTML that simply supports
"the major x.0 and later browsers." For this purpose, there are the "greatest common
denominator” flavors. They are the "3.0" and "4.0" flavors. The "3.0" flavor should be
used to create HTML that will look good in Netscape Navigator 3.0 or later and in
Microsoft Internet Explorer 3.0 or later. The "4.0" flavor is defined to look good in
Netscape Navigator 4.0 or later and in Microsoft Internet Explorer 4.0 or later. Note
that upon examining the capabilities of these browsers after the 4.0 versions, it was
determined that while they offer many new features, they do not have any .html

or .css extensions that are useful to HTML Export at this time.

Naturally, support for a particular HTML flavor does not mean that HTML Export
will generate all the tags and tag attributes that flavor supports. There are many tags
and attributes that cannot sensibly be used in an automated conversion setting. Such
tags require more information about the author's intent than is available in the source
document.

Exporting a document to a particular HTML flavor also does not mean that the
resulting HTML will be limited to only the tags and tag attributes supported by that
flavor. In many cases, HTML Export will write out extra "safe" tags to the document.
The target browser will safely ignore this extra HTML. However, should the converted
document be viewed in a more sophisticated browser, this extra information will be
used to produce a more accurate view of the document.

What support for a particular HTML flavor does mean is that the HTML generated
will look as good as possible when viewed in the appropriate browser.

Note that support for the following flavors have been deprecated and now
automatically map to SCCEX_FLAVOR_GENERICHTML:

HTML Export C/C++ Options 12-9

Output

SCCEX_FLAVOR_MO21
SCCEX_FLAVOR_NS11
SCCEX_FLAVOR_NS20
SCCEX_FLAVOR_MS15
SCCEX_FLAVOR_MS20

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VITDWORD

Data

One of the following values (flavors marked with "(CSS)" require a separate or
embedded .css file to be created as part of the document conversion):

SCCEX_FLAVOR_GENERICHTML: General purpose, simple HTML support that
should look good in any browser that supports tables.

SCCEX_FLAVOR_HTML20: HTML 2.0. Based on the official HTML 2.0 standard,
this provides minimal HTML support and per that standard, it does not support
tables.

SCCEX_FLAVOR_HTML30: Should look good in both Netscape Navigator 3.0 or
later and Microsoft Internet Explorer 3.0 or later.

SCCEX_FLAVOR_HTMLA40: Should look good in both Netscape Navigator 4.0 or
later and Microsoft Internet Explorer 4.0 or later (CSS).

SCCEX_FLAVOR_NS30: Netscape Navigator 3.0
SCCEX_FLAVOR_NS40: Netscape Navigator 4.0 (CSS)

SCCEX_FLAVOR_MS30: Microsoft Internet Explorer 3.0. Note that while this
flavor has limited CSS support, it does not create a separate or embedded .css file.

SCCEX_FLAVOR_MS40: Microsoft Internet Explorer 4.0 (CSS)

Default

SCCEX_FLAVOR_HTML40

SCCOPT_EX_NOSOURCEFORMATTING

This is an advanced option that casual users may safely ignore.

This option turns off writing of characters that are produced strictly to make the
output more readable and visually appealing. Currently, those formatting characters

12-10 Developer's Guide

Output

are limited to newlines, carriage returns and spaces. This option is of benefit primarily
to users who perform special automated processing on the text produced by the
technology. For these users, even benign non-markup text not originally in the source
document constitutes a source of extra headaches for their processing. Setting this
option excludes all formatting characters from appearing in the generated markup.

It is important to note the things that setting this option does not do:

¢ While setting this option will make it very difficult for a human to read the
generated markup in a text editor, it does not affect the browser's rendering of the
document.

¢ This option does not affect the contents of the .css files since they do not contain
any text from the source document.

¢ The option does not affect spaces or newlines copied from the template as the
contents of the templates are already under the control of the customer.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data

One of the following values:
e TRUE: Do not output formatting characters.

e FALSE: Include formatting characters in the output.

Default

e FALSE

SCCOPT_EX_SHOWHIDDENSSDATA

The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to FALSE
(the default), the hidden elements are not written. When set to TRUE, they are placed
in the output in the same manner as regular spreadsheet data.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

HTML Export C/C++ Options 12-11

Output

Data Type
VTBOOL

Data
e TRUE: Allow hidden data to be placed in the output.

¢ FALSE: Prevent hidden data from being placed in the output.

Default
FALSE

SCCOPT_EX_SHOWHIDDENTEXT

This option will force HTML Export to place all hidden text in line with surrounding
text.

Please note that enabling this option will not display hidden cells, hidden rows or
hidden sheets in spreadsheet documents. Also note that when graphic documents
(such as faxes) are processed by OCR software and converted to PDF, the optically
recognized text may be rendered as a layer of hidden text behind the original image.
In order to properly export such PDF documents, this option must be enabled.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data
e TRUE: Allow hidden text to be placed in the output.

e FALSE: Prevent hidden text from being placed in the output.

Default
FALSE

SCCOPT_EX_SIMPLESTYLENAMES

This option is for use by people who intend to read or change the CSS style names
generated by HTML Export.

By default, HTML Export creates unique style names based on the style names used in
the original document. Unfortunately, there is an inherent limitation in the style
names the CSS standard permits. That standard only permits the characters [a-z][A-Z]
[0-9] and "-". Source document style names do not necessarily have this restriction. In
fact they may even contain Unicode characters at times. For this reason, the original
style names may need to be modified to conform to this standard. To avoid illegal

12-12 Developer's Guide

Output

style names, HTML Export performs the following substitutions on all source style
names:

"nn "n_n

1. If the character is a "-", then it is replaced with

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to:

My- 0020Speci al - 0020H1--St y! e- 0021

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.
Developers should also appreciate the simplicity of the code needed to parse or create
these style names.

In addition, HTML Export will sometimes create special character attribute-only
versions of styles. These have the same name as the style they are based on with "--
Char" appended to the end. These styles differ from their original counterparts in that
they contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Because of these CSS limitations, the SCCOPT_EX_SIMPLESTYLENAMES option was
created. Setting this option to TRUE causes HTML Export to generate style names that
are easy to read but are not guaranteed to be unique. It does this by discarding all
characters in the original style name that are not legal in CSS style names. As one
would expect, this may lead to naming collisions.

An example of a naming collision caused by setting this option can be seen if you look
at source document styles named MyStyle and My $ Style. When exported with this
option, both would become MyStyle. This in turn may generate confusion when
viewing the document in the browser. This is because the browser will look upon the
second style as being a redefinition of the first.

With the option set to FALSE this is not a problem. The two styles would be converted
to MyStyle and My-0020-0024-0020Style respectively. Because the style names are
unique, the browser will not see the second style as a redefinition of the first.

As this contrived example indicates, naming collisions should be rare for most U.S.
documents.

If a style name consists of nothing but illegal characters, HTML Export will create a
style name for it. This style name is of the form UnnamedStyleX where X is a count of
styles encountered so far that did not have style names for one reason or another. This
behavior is expected to be very common when converting international documents in
languages that are not based on 7-bit ASCIIL.

Handle Types
VTHDOC, VTHEXPORT

HTML Export C/C++ Options 12-13

Output

Scope

Local

Data Type
VTBOOL

Data

One of the following values:

¢ TRUE: Generate names that may not be unique, but are easy to read.
e FALSE: Generate unique style names that are difficult to read.

Default
FALSE

SCCOPT_RENDERING_PREFER_OIT

This option is valid on 32-bit Linux (Red Hat and Suse), Linux x86-64, Solaris Sparc,
IBM AIX 32-bit, and HP-UX RISC 32-bit platforms.

When this option is set to TRUE, the technology will attempt to use its internal
graphics code to render fonts and graphics. When set to FALSE, the technology will
render images using the operating system's native graphics subsystem (X11 on UNIX/
Linux platforms). Note that this option only works when at least one of the
appropriate output solutions is present. For example, if the UNIX $DISPLAY variable
does not point to a valid X Server, but the OSGD and/or WV_GD modules required
for the Outside In output solution exist, Outside In will default to the Outside In
rendering code. The option will fail if neither of these output solutions is present.

It is important for the system to be able to locate useable fonts when this option is set
to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure
that the system can find them, make sure that the environment variable
GDFONTPATH includes one or more paths to these files. If the variable
GDFONTPATH can't be found, the current directory is used. If fonts are called for and
cannot be found, HTML Export will exit with an error. Oracle does not provide fonts
with any Outside In product.

Note:

Please note that the maximum total path size for paths included in
GDFONTPATH is 256 characters - paths longer than this will be truncated and
will result in fonts not being discovered by HTML Export.

Handle Types
NULL, VTHDOC

Scope
Global

12-14 Developer's Guide

Input Handling

Data Type
VTBOOL

Data

One of the following values:

e TRUE: Use the technology's internal graphics rendering code to produce bitmap
output files whenever possible.

¢ FALSE: Use the operating system's native graphics subsystem.

Default
FALSE

Input Handling

This section describes input handling options.

SCCOPT_FALLBACKFORMAT

This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified
as having been created by a known application, it is treated as a plain-text file.

This option must be set for an hDoc before any subhandle has been created for that
hDoc.

A number of values that were formerly allowed for this option have been deprecated.
Specifically, the values that selected specific plain-text character sets are no longer to
be used. Instead, applications should use the SCCOPT_DEFAULTINPUTCHARSET
option for such functionality.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VITDWORD

Data

The high VIWORD of this value is reserved and should be set to 0, and the low
VTWORD must have one of the following values:

e FI_TEXT: Unidentified file types will be treated as text files.

e FI_NONE: Outside In will not attempt to process files whose type cannot be
identified. This will include text files. When this option is selected, an attempt to
process a file of unidentified type will cause Outside In to return an error value of
DAERR_FILTERNOTAVAIL (or SCCERR_NOFILTER).

HTML Export C/C++ Options 12-15

Input Handling

Default

e FI_TEXT

SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VITDWORD

Data

One of the following values:

e SCCUT_FI_NORMAL: This is the default value. When this is set, standard file
identification behavior occurs.

e SCCUT_FI_EXTENDEDTEST: If set, the File Identification code will run an
extended test on all files that are not identified.

Default

e SCCUT_FI_NORMAL

SCCOPT_FORMATFLAGS

This option allows the developer to set flags that enable options that span multiple
export products.

Handle Types
VTHDOC

Scope

Local

Data Type
VITDWORD

12-16 Developer's Guide

Input Handling

Data

¢ SCCOPT_FLAGS_ISODATETIMES: When this flag is set, all Date and Time values
are converted to the ISO 8601 standard. This conversion can only be performed
using dates that are stored as numeric data within the original file.

e SCCOPT_FLAGS_STRICTFILEACCESS: When an embedded file or URL can't be
opened with the full path, OIT will sometimes try and open the referenced file from
other locations, including the current directory. When this flag is set, it will prevent
OIT from trying to open the file from any location other than the fully qualified
path or URL.

Default
0: All flags turned off

SCCOPT_SYSTEMFLAGS
This option controls a number of miscellaneous interactions between the developer

and the Outside In Technology.

Handle Type
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

¢ SCCVW_SYSTEM_UNICODE: This flag causes the strings in SCCDATREENODE
to be returned in Unicode.

Default
0

SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

As of Release 8.4.0, only the PST and MDB Filters support this option.

Scope
Global

Data Type
VTBOOL

HTML Export C/C++ Options 12-17

Input Handling

Data
¢ TRUE: Ignore validation of the password

e FALSE: Prompt for the password

Default
FALSE

SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll

Note:

Please see section 2.1.1 for NSF support on Win x86-32 or Win x86-64 or
section 3.1.1 for NSF support on Linux x86-32 or Solaris Sparc 32.

Handle Types
NULL

Scope
Global

Data Type
VTLPBYTE

Data
A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

SCCOPT_PARSEXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Handle Types
VTHDOC

12-18 Developer's Guide

Input Handling

Scope

Local

Data Type
VTBOOL

Data
¢ TRUE: This setting enables parsing XMP.
e FALSE: This setting disables parsing XMP.

Default
FALSE

SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

Handle Types
VTDOC, NULL

Scope
Global

Data Type
VTDWORD

Data
e SCCUT_FILTER_STANDARD_BIDI
e SCCUT_FILTER_REORDERED_BIDI

Default
SCCUT_FILTER_STANDARD_BIDI

SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

HTML Export C/C++ Options 12-19

Input Handling

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the msg
file is created.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTLONG

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

e (0: GMT time

SCCOPT_HTML_COND_COMMENT_MODE

Some HTML includes a special type of comment that will be read by particular
versions of browsers or other products. This option allows you to control which of
those comments are included in the output.

Handle Type
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

® One or more of the following values OR-ed together:

e HTML_COND_COMMENT_NONE: Don't output any conditional comments.
Note: setting any other flag will negate this.

e HTML_COND_COMMENT IE5: include the IE 5 comments

e HTML_COND_COMMENT_IEé6: include the IE 6 comments

12-20 Developer's Guide

Input Handling

e HTML_COND_COMMENT_IE7: include the IE 7 comments
e HTML_COND_COMMENT_IES8: include the IE 8 comments
e HTML_COND_COMMENT_IE9: include the IE 9 comments
¢ HTML_COND_COMMENT_ALL: include all conditional comments including the

versions listed above and any other versions that might be in the HTML.

Default
HTML_COND_COMMENT_NONE

SCCOPT_PDF_FILTER_DROPHYPHENS

This option controls whether or not the PDF filter will drop hyphens at the end of a
line. Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated word.
When this option is set to TRUE, all hyphens at the end of lines will be dropped from
the extracted text.

Note:

When this option is TRUE, the character counts for the extracted text may not
match the counts used for rendering where the hyphens are required for
rendering. This will affect annotations in rendering APIs.

Handle Types
VTHDOC

Scope
Global

Data Type
VTBOOL

Data
¢ TRUE: This setting drops hyphens from the end of all lines.

¢ FALSE: This setting retains hyphens at the end of all lines.

Default
FALSE

SCCOPT_ARCFULLPATH

In the Viewer and rendering products, this option tells the archive display engine to
show the full path to a node in the szNode field in response to a
SCCVW_GETTREENODE message. It also causes the name fields in
DAGetTreeRecord and DAGetObjectInfo to contain the full path instead of just the
archive node name.

HTML Export C/C++ Options 12-21

Input Handling

Data Type
VTBOOL

Data
e TRUE: Display the full path.
¢ FALSE: Do not display the path.

Default
FALSE

SCCOPT_GENERATEEXCELREVISIONS

This option enables you to extract tracked changes from Excel. Extracted content shall
include location (worksheet, row, column), author, date, and time. Please note that
Excel has an option to display the changes inline or on a different sheet. Either case
should be extracted along with where the comments are displayed in the Excel file
(inline or separate sheet). Revisions are always displayed in a table following the final
sheet in the document.

Handle Types
VTHDOC

Scope
Global

Data Type

VTBOOL

Data

e TRUE: The setting enables generating Excel revision data

¢ FALSE: This setting disables generating Excel revision data

Default
FALSE

SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS

PDF files sometimes have a very large number of embedded objects. This option
allows the user to limit the number of embedded objects that are produced in a PDF
file. Setting this option to 0 produces an unlimited number of embedded objects.

Handle Types
VTHDOC

Scope

Local

12-22 Developer's Guide

Input Handling

Data Type
VTDWORD

Data

The maximum number of embedded objects to produce in PDF output.

Default
0

SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS

PDF files sometimes have a very large number of vector paths. This option allows the
user to limit the number of vector paths that are produced in a PDF file. Setting this
option to 0 produces an unlimited amount of vector paths.

Handle Types
VTHDOC

Scope

Local

Data Type
VTDWORD

Data

The maximum number of vector paths to produce in PDF output.

Default
0

SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of the
same word and no word break is inserted.

Handle Types
NULL, VTHDOC

Scope

Local

HTML Export C/C++ Options 12-23

Layout

Layout

Data Type
VTFLOAT

Data

A fraction representing the percentage of the space character used to trigger a word
break. Valid values are O<value<=2.

Default
0.85

This section describes layout options.

SCCOPT_EX_FALLBACKFONT

Determines what font will be used when the font specified by the document is not
available.

Currently this option is only used in certain situations where a CSS flavor of HTML is
in use. Specifically, this option helps to avoid problems in some browsers where
symbol fonts like Wingdings are used for the bullets in lists, and the body of the list is
in a font the browser cannot find. In this case, specifying a fallback font prevents the
browser from using/cascading the Wingdings font into the text of the list when the
browser cannot find the font specified for the list text.

To turn off the fallback font, this option must be explicitly set to an empty string ().
While turning off the fallback font is not recommended, it will result in a minor
reduction in the size of the HTML and CSS generated.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
SCCUTFALLBACKFONT structure

Data
The name of the fallback font and the character set of that font.

Default
If this option is not set, "Arial" is used as the default fallback font.

SCCUTFALLBACKFONT Structure

typedef struct

{
VILPVO D pNane;

12-24 Developer's Guide

Layout

VTWWORD wType;
} SCCUTFALLBACKFONT, * LPSCCUTFALLBACKFONT;

Parameters

e pName: Points to the name of the font. The font name may be up to
SCCUT_MAXFALLBACKFONTLEN characters in length including the NULL
terminator.

¢ wType: Specifies if the string pointed to by pName is string of single or double-
byte characters. To specify the fallback font name with a single-byte character
string, set wType to SCCEX_FALLBACKFONT_SINGLEBYTE. Set wType to
SCCEX_FALLBACKFONT_DOUBLEBYTE to specify the font name with a double-
byte character string.

SCCOPT_EX_FONTFLAGS

This option is used to turn off specified font-related markup in the output. Naturally,
if the requested output flavor or other option settings prevent markup of the specified
type from being written, this option cannot be used to turn it back on. However,
specifying the size, color and font face of characters may all be suppressed by bitwise
OR-ing together the appropriate combination of flags in this option.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
DWORD

Data
Zero or more of the following flags bitwise OR-ed together:

¢ SCCEX_FONTFLAGS_SUPPRESSSIZE: Turns off any character-sizing information
supported in the output flavor. As an example, this flag could be useful when
exporting presentation files where the author specified a very large font.

e SCCEX_FONTFLAGS_SUPPRESSCOLOR: Suppresses specifying the color of text.
This is particularly useful for exports of documents containing white text.

¢ SCCEX_FONTFLAGS_SUPPRESSFACE: Prevents the technology from requesting
a specific font (e.g. "Arial", "Courier", etc.) name for text. This can be useful if the
template author feels that the original document font is not likely to be available to
those who are viewing the converted document.

Default

* (: No font information is suppressed.

HTML Export C/C++ Options 12-25

Layout

SCCOPT_EX_GENBULLETSANDNUMS

Turning this option on causes the technology to generate list numbers and/or bullets
as needed rather than using list markup tags. While this violates the spirit of what
markup languages should do, it does cause the browsers to render the lists in a way
that is more faithful to the original look of the document. An example of a list that
does not view well with this option turned off is the following;:

Figure 12-1 List Example

1. ltem 1
1.1 ltem 1.1
1.1.1 ltem 1.1.1

This is an example of how today's most popular browsers would render the preceding
list:

Figure 12-2 Browser-rendered List

1 ltem 1
1 [tem 1.1
1 ltem 1.1.1

This is due to the way browsers render tags. The HTML standards currently do
not allow any way to specify outline style list numbering.

One limitation when using this option is that standard list indentation may not be
possible due to the limits of the selected output HTML flavor. At this time, only the
HTML flavors where CSS is available support the kind of hanging indents normally
associated with lists.

If a bullet character needs to be generated, Unicode character 0x2022 will be used.
Note that many character sets do not contain this character, so the unmappable
character ("*") would be used in that case.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data
One of the following values:
e TRUE: Generate list item numbers and bullets.

* FALSE: Use list markup tags.

12-26 Developer's Guide

Layout

Default

e FALSE

SCCOPT_EX_GRIDADVANCE

Options related to grids have no effect on the output unless a template that has been
enabled with the { ## uni t} template macro is in use.

This option allows the developer to specify how the "previous" and "next"
relationships will work between grids. As such, it is only useful when a grid-enabled
template has been selected with the SCCOPT_EX_TEMPLATE option.

Setting this option to SCCEX_GRIDADVANCE_ACROSS causes the grids.next.body
template element to traverse the input spreadsheet or database by rows:

Figure 12-3 Traverse Input By Rows

Grid 1 Grid 2 Grid 3
Grid 4 Grid 5 Grid 6
Grid 7 Grid 8 Grid 9

Setting this option to SCCEX_GRIDADVANCE_DOWN causes the grids.next.body
template element to traverse the input spreadsheet or database by columns:

Figure 12-4 Traverse Input By Columns

Grid 1 Grid 4 Grid 7
Grid 2 Grid 5 Grid 8
Grid 3 Grid 6 Grid 9

This option has no effect on up/down or left/right navigation.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

One of the following values:

¢ SCCEX_GRIDADVANCE_ACROSS: To traverse by rows.
e SCCEX_GRIDADVANCE_DOWN: To traverse by columns.

HTML Export C/C++ Options 12-27

Layout

Default

SCCEX_GRIDADVANCE_DOWN

SCCOPT_EX_GRIDCOLS

Options related to grids have no effect on the output unless a template that has been
enabled with the { ## uni t} template macro is in use.

This option allows the developer to specify the number of columns that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the
SCCOPT_EX_TEMPLATE option.

Setting this option to zero ("0") means that no limit is placed on the number of
columns in the grid. However, the settings of the SCCOPT_EX_PAGESIZE,
SCCOPT_EX_GRIDCOLS and SCCOPT_EX_GRIDROWS options must all be taken
into account when determining the actual dimensions of the grids used during an
export. The following table describes the interaction of these options when a template

is using grids:

Table 12-1 Determining Grid Dimensions
___|

Grid Row/Col Value

Page Size is 0

Page Sizeis not 0

Grid Rows and Grid Cols are
both 0.

Grid Rows is 0. Grid Cols is
not 0 or the default value.

Grid Rows is not 0 or the
default value. Grid Cols is 0.

Grid Rows and Grid Cols are
both not set to 0 or their
default values.

Grid Rows and Grid Cols are
both set to their default
values.

The entire spreadsheet is
exported.

The table is broken into grids
that are Grid Cols wide. Each
grid contains all rows.

The table is broken into grids
that are Grid Rows wide.
Each grid contains all
columns.

The table is broken into grids

of the requested size.

The table is broken into grids
of the default size.

The grid size is determined
based on the Page Size.

The number of rows in the
grid are determined by the
Page Size.

The number of columns in
the grid are determined by
the Page Size.

The table is broken into grids
of the requested size.

The table is broken into grids
of the default size.

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the
SCCOPT_EX_PAGESIZE option will not cause content to be truncated if it exceeds the
10 characters of content expected in a given cell. Note that the pageSize option is never
used to force a grid to break into pages. Thus, once the grid dimensions have been
established, no page breaking is performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid rows option value, the default grid dimensions

12-28 Developer's Guide

Layout

represent the largest table size HTML Export can produce that will not result in
browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page
breaking is in effect:

¢ If page breaking is being used, use the maxreps attribute of the { ## r epeat}
macro to prevent large files from becoming unmanageable.

e If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a { ## r epeat }
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If this
grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when outputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in
significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

Number of columns in the grid. Use "0" (zero) to not limit the number of columns in
the grid.

Default

e EX_GRIDCOLS_DEFAULT: The default value for this setting is currently 100, but it
is subject to change.

SCCOPT_EX_GRIDROWS

Options related to grids have no effect on the output unless a template that has been
enabled with the { # uni t} template macro is in use.

This option allows the developer to specify the number of rows that each template
"grid" (applicable only to spreadsheet or database files) should contain. As such, it is
only useful when a grid-enabled template has been selected with the
SCCOPT_EX_TEMPLATE option.

Setting this option to zero ("0") means that no limit is placed on the number of rows in
the grid. However, the settings of the SCCOPT_EX_PAGESIZE,
SCCOPT_EX_GRIDCOLS and SCCOPT_EX_GRIDROWS options must all be taken
into account when determining the actual dimensions of the grids used during an
export.

HTML Export C/C++ Options 12-29

Layout

Also note that once the grid size has been established for a sheet in a spreadsheet or
database, the sheet cannot be re-exported with different grid dimensions. The sheet
may be re-exported, however, if grids are disabled using sections.current.body.

Size calculations are performed using approximations. It is expected that each cell in
the grid will contain roughly 10 characters of content. Therefore, the number of cells in
the grid will be roughly the page size divided by 10. Setting the pageSize option will
not cause content to be truncated if it exceeds the 10 characters of content expected in a
given cell. Note that the pageSize option is never used to force a grid to break into
pages. Thus, once the grid dimensions have been established, no page breaking is
performed on the grid.

The default value for this option was chosen to prevent problems with large
spreadsheets, which can consume conversion time while creating unmanageable
output. Together with the default grid columns option value, the default grid
dimensions represent the largest table size HTML Export can produce that will not
result in browsers locking up when they try to read the file.

The solution to this large spreadsheet problem depends on whether or not page/deck

breaking is in effect:

¢ If page breaking is being used, use the maxreps attribute of the { ## r epeat}
macro to prevent large files from becoming unmanageable.

e If page breaking is NOT being used, spreadsheets should be exported by inserting
only the first grid of the spreadsheet (grids.1.body). Don't use a { ## r epeat }
loop to get all the grids. Test for the existence of a second grid (grids.2.body). If this
grid exists, then have the template write out a message indicating that the
spreadsheet's contents were truncated on export.

Implementing support for spreadsheets in this manner rather than by inserting
sections.current.body improves performance only when inputting very large
spreadsheets. In these special cases, only the first grid is exported, resulting in
significant performance savings. This savings also has the side benefit of producing an
output file that most Web browsers will have little trouble displaying.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

Number of rows in the grid. Use "0" (zero) to not limit the number of rows in the grid.

Default

e EX_GRIDROWS_DEFAULT: The default value for this setting is currently 5000, but
it is subject to change.

12-30 Developer's Guide

Layout

SCCOPT_EX_GRIDWRAP

Options related to grids have no effect on the output unless a template that has been
enabled with the { ## uni t} template macro is in use.

This option allows the developer to specify how the "previous" and "next"
relationships will work between grids at the edges of the spreadsheet or database. As
such, it is only useful when a grid-enabled template has been selected with the
SCCOPT_EX_TEMPLATE option.

This option is best explained by example. Consider a spreadsheet that has been broken
into 9 grids by HTML Export as follows:

Figure 12-5 Spreadsheet Broken into Grids

Grid 1 Grid 2 Grid 3
Grid 4 Grid 5 Grid 6
Grid 7 Grid 8 Grid 9

¢ If this option is set to TRUE, then the grids.next.body value after Grid 3 will be
Grid 4. Likewise, the grids.previous.body value before Grid 4 will be Grid 3.

e [f this option is set to FALSE, then the grids.next.body after Grid 3 will not exist as
far as template navigation is concerned. Likewise, the grids.previous.body before
Grid 4 will not exist as far as template navigation is concerned.

In other words, this option specifies whether the "previous” and "next" relationships
"wrap" at the edges of the spreadsheet or database.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data
* TRUE: To continue past the edge of the spreadsheet.

e FALSE: To stop at the edge of the spreadsheet.

Default
TRUE

SCCOPT_EX_JAVASCRIPTTABS

Tab support is available by setting this option to TRUE. When active, this option uses
JavaScript to calculate tab stops and position blocks of text accordingly. Potential side

HTML Export C/C++ Options 12-31

Layout

effects of this include delays in loading the pages in the browser and seeing the text
initially with no whitespace at all followed by a pause and then all of the tabs popping
into place. In addition, this support is limited to only left tabs.

In order to take advantage of this option the following additional steps must be taken:

1. The template must contain a <script> tag. Something similar to the following code
fragment is recommended:

{## if el ement=pragma.jsfile}

<script language="Javascriptl.2" src="{## insert
el ement =pragnma. j sfile}"></script>

{## 1if}

2. The template must also run the DoTabStops routine in the <body> of the HTML.
A span tag used to define the value of oneinch should follow this. Something
similar to the following code snippet is recommended to accomplish this:

{## i f elenment=pragma.jsfile}
<body onl oad="DoTabSt ops()">

{## el se}
<body>
{## 1if}
3. A flavor of HTML that supports CSS must be used.

4. The user's browser must support JavaScript and this support must be enabled.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data
One of the following values:

¢ TRUE: Use JavaScript to create tabs.

e FALSE: No tab support.

Default

e FALSE

SCCOPT_EX_PAGESIZE

This option sets a suggested page size for the output generated. This means that the
text of the document is broken up into "pages" of approximately the requested size.
Each page is stored as a separate output file.

12-32 Developer's Guide

Layout

This feature is particularly useful when converting documents that are poorly
structured. Many documents lack the kind of style information HTML Export
normally uses to break the document into pieces based on things like headings. By
setting this option, the exported document can be presented as a set of more
manageable pieces rather than a single giant output file. It is also useful with
documents that are structured but have large pieces in the structure.

If page breaking is activated (set to a non-zero value), HTML Export will buffer the
entire output document in memory during conversion. Conversion times and memory
requirements will increase accordingly in this case.

The size specified by this option is given in characters of text. Only text inserted from
the input document is counted in the page size. Thus, "as is" text from the template is
not counted against the page size. Also, markup tags are not counted in the page size.
In addition, some template inserts are normally used as attributes to markup tags, and
as such they are not counted in page size calculations no matter how they are actually
used. Those template inserts are:

* pragma.charset

® pragma.jsfile

® pragma.cssfilename
® sections.x.itemnum

e gsections.x.reflink

A page size of zero ('0") indicates that this option is turned off and no page breaking is
done.

When this option is turned on, the page breaking rules are as follows:

¢ Hard page breaks in the document always trigger a page break. Soft page breaks
are ignored.

¢ A page break may be specified in the template with the { ## unit br eak} macro.

* A page boundary will never be created in the middle of a paragraph. As many
paragraphs as possible will be written without exceeding the requested page size.
Page sizes are not hard limits on content however. One situation where the page
size could be exceeded would be if a single paragraph exceeds the page size.

¢ When grid-enabled templates are in use, the exported grids are not broken based
on the setting of this option. However, this option may affect the size of grids
generated. FOr more information, see SCCOPT_EX_GRIDCOLS, or
SCCOPT_EX_GRIDROWS.

* Use of this option will not cause the contents of cells within a grid to be truncated.

¢ When grids are not in effect, spreadsheets and databases will be broken based on
page size. For these section types, checks for page breaks will be made after each
full row from the spreadsheet or database is written.

It is up to the template author to then connect these pieces with the appropriate links.
In order to use this option, the template must be equipped to use the { ## uni t}
syntax.

Note that templates enabled with the { ## uni t} syntax may be mixed with
templates that do not contain { ## uni t } macros. In this case, page breaking will only
occur in the template that is enabled with { ## uni t } macros. An example of where

HTML Export C/C++ Options 12-33

Layout

this would be desirable is a "table of contents" template that uses two sub templates to
each fill in the contents of a frame. The frame containing the actual table of contents
could avoid being broken into pages by not containing any { #%# uni t} macros. The
frame containing the actual document contents could then support paging by using
{## unit} macros.

Handle Types
VTHDOC, VTHEXPORT

Data Type
VTDWORD

Data

Approximate page size in characters.

Default

* (: No page size limit.

SCCOPT_EX_PREVENTGRAPHICOVERLAP

Most browsers support flowing text around images. Unfortunately, even the most
popular browsers also have bugs in their support for this feature that occasionally
result in document elements overlapping. This option allows users of HTML Export to
choose if they would rather have text flowing around graphics or if they are willing to
sacrifice that feature in order to prevent browser overlap bugs.

When this option is turned on (set to TRUE), HTML Export prevents browsers from
causing graphic overlap problems by surrounding all tags with <div> tags. The
overlap problems occur most frequently when the browser is displaying a document
that has a mix of left- and right-aligned graphics in close proximity to each other.
Resizing the browser window horizontally will sometimes expose this problem if it
does not appear initially.

Because these browser bugs are infrequently seen, this option is turned off (set to
FALSE) by default. However, setting this option to FALSE does not guarantee that text
will be able to flow around graphics in the browser the same way it does in the
original document. There are two problems which can prevent this from occurring.

The first problem is that when objects are placed using positional frames.
Unfortunately, most new word processing formats do this automatically. When
positional frames are used, each object exists in its own frame. HTML Export converts
each frame as a single paragraph. Therefore, the objects are written one after the other
even if they were originally placed side by side in the source document.

The second problem is associated with image alignment. For some images, HTML
Export is unable to obtain the alignment of the image, so the alignment of the
paragraph it is contained in is used instead. The reason HTML Export uses this
alignment, which is not necessarily 100% correct, is because without adding "align="
in the tag, text does not wrap around images in browsers.

Handle Types
VTHDOC, VTHEXPORT

12-34 Developer's Guide

Layout

Scope

Local

Data Type
VTBOOL

Data
¢ TRUE: Allow text flow around graphics.

e FALSE: Prevent browser image overlap problems.

Default
FALSE

SCCOPT_EX_TEMPLATE

This option allows the developer to specify the template file that the technology uses
to generate its output.

There are two ways to specify the template. One method is to set the
SCCOPT_EX_TEMPLATE option with DASetOption. The other is to set it using
DASetFileSpecOption. The second method is for use with redirected IO and/or
Unicode with template files. Developers should use DASetOption or
DASetFileSpecOption to set this option, but not both. The following two sections
describe both methods.

Using DASetOption to Specify the Template

You can use DASetOption to specify the template.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type

This is the size of the buffer containing a NULL-terminated string.

Data

A complete path to the template file in the local file system or a pointer to a developer-
defined data structure to be used for redirected IO.

Default

If no template file is specified, a standard template is used.

Using DASetFileSpecOption to Specify the Template
You can use DASetFileSpecOption to specify the template.

HTML Export C/C++ Options 12-35

Compression

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Parameters

¢ dwSpecType: The spec type of the file. Should be set to one of the valid spec types.
® pSpec: File location specification.

Default

If no template is specified, a standard template is used.

Compression

This section pertains to compression options.

SCCOPT_FILTERJPG

This option can disable access to any files using JPEG compression, such as JPG
graphic files or TIFF files using JPEG compression, or files with embedded JPEG
graphics. Attempts to read or write such files when this option is enabled will fail and
return the error SCCERR_UNSUPPORTEDCOMPRESSION if the entire file is JPEG
compressed, and grey boxes for embedded JPEG-compressed graphics.

The following is a list of file types affected when this option is disabled:
e JPG files
e Postscript files containing JPG images

¢ PDFs containing JPEG images

Note that the setting for this option overrides the requested output graphic format
when there is a conflict. In the case of HTML Export, the output graphic type is set to
FI_NONE in these situations.

Handle Types
VTHDOC, HEXPORT

Scope
Global

Data Type
VIDWORD

Data

e SCCVW_FILTER_JPG_ENABLED: Allow access to files that use JPEG compression

12-36 Developer's Guide

Compression

e SCCVW_FILTER_JPG_DISABLED: Do not allow access to files that use JPEG
compression

Default
SCCVW_FILTER_JPG_ENABLED

SCCOPT_FILTERLZW

This option can disable access to any files using Lempel-Ziv-Welch (LZW)
compression, such as .GIF files, .ZIP files or self-extracting archive (.EXE) files
containing "shrunk" files. Attempts to read or write such files when this option is
enabled will fail and return the error SCCERR_UNSUPPORTEDCOMPRESSION if the
entire file is LZW compressed, and grey boxes for embedded LZW-compressed
graphics.

The following is a list of file types affected when this option is disabled:

e GIF files

e TIF files using LZW compression

¢ PDF files that use internal LZW compression

* TAZ and TAR archives containing files that are identified as FI_ UNIXCOMP
¢ ZIP and self-extracting archive (.EXE) files containing "shrunk" files

e Postscript files using LZW compression

Although this option can disable access to files in ZIP or EXE archives stored using
LZW compression, any files in such archives that were stored using any other form of
compression will still be accessible.

The setting for this option overrides the requested output graphic format when there
is a conflict. In the case of HTML Export, the output graphic type is set to FI_NONE in
these situations.

Handle Types
VTHDOC, VTHEXPORT

Scope
Global

Data Type
VTDWORD

Data

e SCCVW_FILTER_LZW_ENABLED: LZW compressed files will be read and written
normally.

e SCCVW_FILTER_LZW_DISABLED: LZW compressed files will not be read or
written.

HTML Export C/C++ Options 12-37

Graphics

Graphics

Default
SCCVW_FILTER_LZW_ENABLED

This section discusses graphics options.

SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the graphicType option is set to FI_GIF.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Data

One of the following values:
e TRUE: Produce interlaced GIFs.

e FALSE: Produce non-interlaced GIFs.

Default
TRUE

SCCOPT_GRAPHIC_HEIGHTLIMIT

This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how tall in pixels an exported graphic may be. Any
images taller than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_WIDTHLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the height of graphics by
using HEIGHT=1in a { ## i nsert} statement in the template in two ways:

1. This option sets an upper limit on the image height. Images larger than this limit
will be reduced to the limit value. However, images smaller than this height will
not be enlarged when using this option. Setting the height using the height
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified height.

12-38 Developer's Guide

Graphics

2. This option works for embedded images as well as non-embedded images. Setting
a height using HEIGHT=in a { ## i nsert} statement in the template causes
only non-embedded images to be of the specified height.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

The maximum height of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default

¢ SCCGRAPHIC_NOLIMIT: No absolute height limit specified.

SCCOPT_GRAPHIC_OUTPUTDPI

This is an advanced option that casual users of this technology may safely ignore.

While this option is used to help compute table sizes, it is primarily a graphics option.
Early browsers and versions of the HTML standard limit the specification of image
sizes to dimensions in pixels. For images in particular, this is somewhat natural as GIF,
JPEG, and PNG are bitmap formats whose sizes are defined in pixels. However, many
of the source graphics and tables converted by HTML Export specify their size in
physical units such as inches or centimeters, and there is no way for HTML Export to
know how big a pixel is on the target device for the converted document. In fact, a
single document may ultimately be viewed on many devices, each with a different
number of pixels or dots per inch (DPI). Knowing this information can be important. If
graphics are converted to be too small, image detail will be lost. Conversely, if the
graphics are converted to be too large, files will take longer to download than is
desired.

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (SCCOPT_GRAPHIC_OUTPUTDPI is set to 50). In this case, the size of the
resulting WBMP, TIFF, BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth

HTML Export C/C++ Options 12-39

Graphics

consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The
discrepancy occurs when the output format uses metric units (DPM, or dots per meter)
instead of English units (DPI, or dots per inch). Depending on how the graphics
application performs rounding on meters to inches conversions, the DPI value
reported may be 1 unit more than expected. An example of a format which may
exhibit this problem is PNG.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VITDWORD

Data

The DPI to use when exporting graphic images. The maximum value allowed is
SCCGRAPHIC_MAX_SANE_BITMAP_DPI, which is currently defined to be 2400 DPI.

Default

¢ SCCGRAPHIC_DEFAULT_OUTPUT_DPI: Currently defined to be 96 dots per
inch.

SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

SCCOPT_GRAPHIC_SIZELIMIT takes precedence over all other options and settings
that affect the size of a converted graphic. For example, if the template specifies image
dimensions that exceed this size, those dimensions will be used only to calculate the
aspect ratio of the final image. The image's dimensions will be restricted to produce a
graphic no larger than this limit allows.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

12-40 Developer's Guide

Graphics

Data Type
VTDWORD

Data

The total number of pixels in the output graphic. A value of zero ("0"), which is
equivalent to SCCGRAPHIC_NOLIMIT, causes this option to be ignored.

Default

¢ SCCGRAPHIC_NOLIMIT: Option is turned off.

SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics,
though the quality of the converted graphic will be somewhat degraded. The smooth
sizing option results in a more accurate representation of the original graphic, as it
uses anti-aliasing. Antialiased images may appear smoother and can be easier to read,
but rendering when this option is set will require additional processing time. The
grayscale only option also uses antialiasing, but only for grayscale graphics, and the
quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

One of the following values:
* SCCGRAPHIC_QUICKSIZING: Resize without antialiasing
¢ SCCGRAPHIC_SMOOTHSIZING: Resize using antialiasing

¢ SCCGRAPHIC_SMOOTHGRAYSCALESIZING: Resize using antialiasing for
grayscale graphics only (no antialiasing for color graphics)

Default
SCCGRAPHIC_SMOOTHSIZING

HTML Export C/C++ Options 12-41

Graphics

SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color" in the
output graphic file. Naturally, this option is only used when the selected output
graphic file format supports transparency (GIF and PNG only). If the option is not set,
the default behavior is to use the same color value that the input file used as the
transparency color.

Use the SCCVWRGB(r, g, b) macro to create the color value to pass to this option. The
red, green and blue values are percentages of the color from 0-255 (with 255 being
100%). Note that this macro should be used to set a variable of type
SCCVWCOLORREF and that variable should then be passed to the set option routine
(instead of trying to use the macro as part of the set option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set
the option to SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR if they wish to
revert to the default behavior.

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type
SCCVWCOLORREF

Data
An RGB color value created with the SCCVWRGB(r, g, b) macro.

Default

¢ SCCGRAPHIC_DEFAULTTRANSPARENCYCOLOR: Use the same transparency
color as the source document.

SCCOPT_GRAPHIC_TYPE

This option allows the developer to specify the format of the graphics produced by the
technology.

¢ When setting this option, remember that the JPEG file format does not support
transparency.

¢ Though the GIF file format supports transparency, it is limited to using only one of
its 256 available colors to represent a transparent pixel ("index transparency").

* PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This is
achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
FI_NONE. Some of the Outside In Viewer Technology's import filters can be

12-42 Developer's Guide

Graphics

optimized to ignore certain types of graphics. To take advantage of this optimization,
the option must be set before EXOpenExport is called.

Note:

SCCOPT_GRAPHIC_TYPE = FI_NONE must be set (via DASetOption) before
the call to EXOpenExport. Otherwise, the
SCCUT_FILTEROPTIMIZEDFORTEXT speed enhancement for the PDF filter
is not set. This will result in slower exports of PDFs when graphic output is
not required.

It should be noted that unpredictable and potentially undesirable output will occur if
this option is set to FI_NONE when EXOpenExport is called and the template then
attempts to use the { ## opti on} macro to turn graphics back on. Users who wish to
turn graphics on and off from the template should set this option after the call to
EXOpenExport.

The settings for options in Compression (see Compression) may force an override of
the value for this option.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data

One of the following values:

e FI_GIF: GIF graphics

e FI_JPEGFIF: JPEG graphics
e FI_PNG:

e FI_NONE: Graphic conversion will be turned off

Default
FI_JPEGFIF

SCCOPT_GRAPHIC_WIDTHLIMIT

This is an advanced option that casual users of this technology may safely ignore. It
allows a hard limit to be set for how wide in pixels an exported graphic may be. Any
images wider than this limit will be resized to match the limit. It should be noted that
regardless whether the SCCOPT_GRAPHIC_HEIGHTLIMIT option is set or not, any
resized images will preserve their original aspect ratio.

HTML Export C/C++ Options 12-43

Graphics

Note that this option differs from the behavior of setting the width of graphics by
using WIDTH=ina {## i nsert} statement in the template in two ways:

1. This option sets an upper limit on the image width. Images larger than this limit
will be reduced to the limit value. However, images smaller than this width will
not be enlarged when using this option. Setting the width using the width
attribute in the template causes all non-embedded images to be reduced or
enlarged to be of the specified width.

2. This option works for embedded images as well as non-embedded images. Setting
a width using WIDTH=in a { ## i nsert} statement in the template causes only
non-embedded images to be of the specified width.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VIDWORD

Data

The maximum width of the output graphic in pixels. A value of zero is equivalent to
SCCGRAPHIC_NOLIMIT, which causes this option to be ignored.

Default
¢ SCCGRAPHIC_NOLIMIT: No absolute width limit specified.

SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the graphicType option is set to FI_JPEGFIF.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VITDWORD

Data

A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

12-44 Developer's Guide

Spreadsheet and Database File Rendering

Default
100

SCCOPT_RENDER_ENABLEALPHABLENDING

This option allows the user to enable alpha-channel blending (transparency) in
rendering vector images when using an X-Windows output solution. This may
improve fidelity on documents that use these transparent images, but will result in
performance degradation. This option does not affect Microsoft Windows or Unix
implementations where SCCOPT_RENDERING_PREFER_OIT is set to TRUE.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Default

False

Spreadsheet and Database File Rendering

This section pertains to spreadsheets and database options.

SCCOPT_EX_SHOWSPREADSHEETBORDER

This option has been deprecated beginning with the 8.2 version of the product. Please
use the SCCOPT_EX_SSDBROWCOLHEADINGS and SCCOPT_EX_SSDBBORDER
options instead.

This option affects database files the same way it affects spreadsheets.

This option allows users to speed up the conversion of large, sparse spreadsheets by
turning off the table borders HTML Export generates by default (TRUE is the default
setting for this option). Setting this option to FALSE turns off table border generations,
reducing the amount of HTML written and enabling rowspan and colspan table tag
attributes so that empty cells can be skipped. For large, mostly empty spreadsheets,
this can result in greatly reduced conversion time and output file size(s). The output
appears in a format similar to that used by the original application when printing the
file.

The default is to show borders (option set to TRUE). This prevents problems with
most browsers, which tend to render the text in a way that makes adjacent cells hard
to distinguish. This output appears in a browser in a format similar to that used by the
original application when displaying the file on-screen.

This option must be set to the default value when the output format does not support
tables.

When the option is set to FALSE, the following caveats apply:

HTML Export C/C++ Options 12-45

Spreadsheet and Database File Rendering

o [f the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets) rather than by column (such as Quattro files), additional
optimizations are possible. The technology will use colspan to shrink the output
when two or more adjacent cells in a row are empty. When two or more adjacent
rows are completely empty, they are ignored and not included in the output.

* Note that if there are merged cells in the input document, the technology will not
produce perfectly optimized output. Instead, rowspan and colspan will not be used
to compress empty cells until after the merged cells are processed.

* This option disables the creation of Row and Column headings ("1", "2","3" / "A",
”B”, "C").

Handle Types

VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Default
TRUE

SCCOPT_EX_SSDBBORDER

This option supersedes some of the functionality from the now discontinued
SCCOPT_EX_SHOWSPREADSHEETBORDER option.

This option determines how borders will be handled for spreadsheet and database
files.

There are three valid values for this option:

SCCEX_SSDBBORDERS_CREATEIFMISSING: If a CSS output flavor is in use, this
forces borders to be created if none are present in the (entire) table. By default, most
apps do not include borders when creating these types of files. When needed, HTML
Export will generate thin borders between cells. Otherwise, the borders specified in
the table are used.

Using borders makes it easier to read the output data by preventing values from
running together when there is not much space between cells. This output appears in a
browser in a format similar to that used by the original application when displaying
the file on-screen.

The behavior of this setting matches the old default border behavior of the
discontinued SCCOPT_EX_SHOWSPREADSHEETBORDER option.

If a CSS output flavor is not in use, then borders are put around all cells no matter how
the input document is formatted. This is because individual cell border information
may not be specified in HTML without CSS.

This is the default behavior for this option.

12-46 Developer's Guide

Spreadsheet and Database File Rendering

SCCEX_SSDBBORDERS_OFF: This setting forces the borders always to be off,
regardless of borders specified in the source document. This option setting does not
distinguish between CSS and non-CSS output flavors being used. Turning borders
off has the following advantages:

It allows HTML Export to use optimizations that speed up the conversion of
large, sparse files. It does this by enabling rowspan and colspan table tag
attributes to be used to span empty cells. It also reduces the amount of HTML
needed to be written for individual cells. For large, mostly empty spreadsheets,
this can result in greatly reduced conversion time and output file size(s). The
output appears in a format similar to that used by the original application when
printing the file.

For left aligned text and data cells, a special optimization has been made to
merge those cells with any empty cells on the right.

The following caveats apply to the optimization:

If the spreadsheet being processed stores data by row (such as Microsoft Excel
spreadsheets with portrait page orientation) rather than by column (such as
Quattro files), additional optimizations are possible. The technology will use
colspan to shrink the output when two or more adjacent cells in a row are
empty. When two or more adjacent rows are completely empty, the rows are
skipped, and the row height of the next non-empty row is increased.

Note that if there are merged cells in the input document, the technology will
not produce perfectly optimized output. Instead, colspan will not be used to
compress empty cells until after the merged cells are processed.

The behavior of this option setting matches the old border behavior of the now
discontinued SCCOPT_EX_SHOWSPREADSHEETBORDER option when it was
set to FALSE. However, this option does not disable the creation of Row and
Column headings ("1","2","3" / "A", "B", "C"). To do that, use the new
SCCOPT_EX_SSDBROWCOLHEADINGS option.

If the current row has frames in it, we will not span those cells.

SCCEX_SSDBBORDERS_USESOURCE: If a CSS output flavor is being used, then
this value sets the borders according to what is specified in the source document.

If a CSS output flavor is not in use, then borders are put around all cells no matter
how the input document is formatted. This is because individual cell border
information may not be specified in HTML without CSS.

Local

Handle Types
VTHDOC, VTHEXPORT

Scope

Data Type
VITDWORD

HTML Export C/C++ Options 12-47

Page Rendering

Data

¢ SCCEX_SSDBBORDERS_CREATEIFMISSING: Use source document borders. If no
borders are in the table, automatically create borders.

e SCCEX_SSDBBORDERS_OFEF: Do not write any table borders.
e SCCEX_SSDBBORDERS_USESOURCE: Use source document borders.

Default

e SCCEX_SSDBBORDERS_CREATEIFMISSING

SCCOPT_EX_SSDBROWCOLHEADINGS

When this option is set to TRUE, row and column headings ("1", "2","3" / "A", "B", "C")
are included in the output for spreadsheet and database files. When set to FALSE, no
row and column headings are created. The default for this option is TRUE.

This option supersedes some of the functionality from the now discontinued
SCCOPT_EX_SHOWSPREADSHEETBORDER option.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTDWORD

Data
e TRUE: Show row and column headings.

e FALSE: Do not show row or column headings.
Default

e TRUE

Page Rendering

This section discusses page rendering options.

SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Scope
Global

12-48 Developer's Guide

Page Rendering

Data Type
VTDWORD

Data

One of these values:

e SCCUT_WP_EMAILHEADERSTANDARD: Displays "To," "From," "Subject," "CC,"
"BCC," "Date Sent," and "Attachments" header fields only. The filter outputs any
fields not listed above as hidden fields, so they will not display.

¢ SCCUT_WP_EMAILHEADERNONE: Displays no email header fields.
e SCCUT_WP_EMAILHEADERALL: Displays all available email headers.

Default
SCCUT_WP_EMAILHEADERSTANDARD

SCCOPT_MAILHEADERVISIBLE

Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting of
SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email
headers for display, your code should first set the
SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers, then
use these options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope
Global

Data Type
SCCUTEMAILHEADERINFO structure

SCCUTEMAILHEADERINFO structure

This structure is used by the SCCOPT_WPMAILHEADERVISIBLE /
SCCOPT_WPMAILHEADERHIDDEN options to specify the headers to show or hide.

typedef struct SCCUTEMAI LHEADERI NFCt ag
{
VTDWORD dwHeader | D;
VTDWORD dwSubt ypel D;
VTWORD wsM neHeader Name[SCCUT_MAI L_NAMELENGTH] ;
VTWORD wsM neHeader Label [SCCUT_MAI L_NAMELENGTH] ;
} SCCUTEMAI LHEADERI NFO, * PSCCUTEMAI LHEADERI NFO,

Parameters:

HTML Export C/C++ Options 12-49

Page Rendering

dwHeaderID

Either the ID of a predefined email header field, found in sccca.h (for example
SCCCA_MAIL_TO), or an identifer between

NONSTANDARD_HEADER_ID_BASE and NONSTANDARD_HEADER_ID_TOP
for tracking a user-defined header.

dwSubTypelD

The type(s) of documents in which to either show or hide this header. These can be
joined with a bitwise OR operator. Available subtypes are:

SCCUT_MAILTYPE_EMAIL
SCCUT_MAILTYPE_JOURNAL
SCCUT_MAILTYPE_CONTACT
SCCUT_MAILTYPE_NOTE
SCCUT_MAILTYPE_APPOINTMENT
SCCUT_MAILTYPE_TASK
SCCUT_MAILTYPE_POST
SCCUT_MAILTYPE_DISTROLIST

wsMimeHeaderName

A Unicode string containing the value of a user-specified MIME header name. This
value is only used when the dwHeaderld field contains a user-defined ID value
between NONSTANDARD_HEADER_ID_BASE and
NONSTANDARD_HEADER_ID_TOP.

wsMimeHeaderLabel

Unicode string that will be used as the label for a user-defined MIME header. This
value is only used for user-defined headers.

Note:

Support for user-defined MIME headers is intended to allow Outside In to
selectively display MIME headers that are not included in the predefined set
of email headers known to Outside In. It is likely that most developers using
Outside In will not need to specify user-defined MIME headers. Knowledge of
the particular MIME headers present in the input email files is necessary in
order to take advantage of this capability.

Default
Not used

SCCOPT_MAILHEADERHIDDEN

Along with SCCOPT_MAILHEADERHIDDEN, these options exist to allow the
developer fine-grained control over what email headers are rendered. These options
modify which email headers are displayed, and are based on the most recent setting of
SCCOPT_WPEMAILHEADEROUTPUT. To implement a fully customized set of email
headers for display, your code should first set the

12-50 Developer's Guide

Font Rendering

SCCOPT_WPEMAILHEADEROUTPUT option to select a baseline set of headers, then
use these options to selectively add or remove headers from that set.

Setting a header to be visible means that it will be rendered when that header is found
in a document of the appropriate type. Selected headers that are not present in the
input file will not have any corresponding output created for them (no 'empty' headers
will be created). Setting a header to be hidden means that it will not be rendered for
the document types specified.

Scope
Global

Data Type
See SCCUTEMAILHEADERINFO structure under SCCOPT_MAILHEADERVISIBLE

Default
Not used

Font Rendering

This section discusses font rendering options.

SCCOPT_DEFAULTPRINTFONT

This is an advanced option that casual users of HTML Export may ignore.

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in an embedding is not available on the
system performing the conversion.

This option only affects the conversion of vector graphic images. It does not affect in
any way the tags used for text markup in the output.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
SCCVWFONTSPEC Structure

SCCVWFONTSPEC Structure

This structure is used by various options to specify a font.
SCCVWFONTSPEC is a C data structure defined in sccvw.h as follows:

typedef struct
{
VTTCHAR szFace[40];
VIWORD wHei ght;
VIWORD WwAttr;

HTML Export C/C++ Options 12-51

Font Rendering

VTWORD wType;
} SCCWIFONTSPEC, * LPSCCVWFONTSPEC,

Parameters

® szFace: The name of the font. For example, "Helvetica Compressed.” The default is
"Arial", however this default is constrained by the fonts available on the system.

¢ wHeight: Size of the font in half points. For example, a value of 24 will produce a
12-point font. This size is only applied when the font size is not known. The default
is 10-point, however this default is constrained by the font sizes available on the
system. Please note that this only affects the size of fonts in embedded vector
images in the rare case where a default font size is not specified in the embedding.

e wAttr: The attributes of the font. This parameter is used primarily by the Outside
In Viewer Technology and is currently ignored by HTML Export.

¢ wType: Should be set to 0.

SCCOPT_PRINTFONTALIAS

This is an advanced option that casual users of HTML Export may ignore.

This option sets or gets printer font aliases according to the SCCVWFONTALIAS
structure.

This option only affects the conversion of vector graphic images when the font
specified in the original document is not available on the system doing the conversion.
It does not affect in any way the tags used for text markup in the output.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
The SCCVWFONTALIAS structure.

SCCVWFONTALIAS Structure
This structure is used in the SCCOPT_PRINTFONTALIAS option.
SCCVWFONTALIAS is a C data structure defined in sccvw.h as follows:

typedef struct SCCVWFONTALI ASt ag
{

VTDWORD dwSi ze;

VTDWORD dwAl i asl D,

VTIDWORD dwHl ags;

VTWORD szwQri gi nal [SCCVW FONTNAMEMAX 1;

VTWORD szwAl i as| SCCVW FONTNAMEMAX * SCCVW MAXALI ASES]
} SCCWAFONTALI AS, * PSCCVWFONTALI AS;

Parameters

* dwSize: Must be set by the developer to sizeof(SCCVWFONTALIAS).

12-52 Developer's Guide

Font Rendering

dwAliasID: ID of the aliasing in the current list of aliases.

dwFlags: The usage of these flags depends on whether this structure is being used
with the DASetOption or DAGetOption message. It should be set to one of the
following;:

- SCCVW_FONTALIAS_COUNT (DAGetOption)dwAliasID will be filled with
the count of current font aliases for that device.

- SCCVW_FONTALIAS_ALIASNAME (DASetOption): The alias of szwAlias for
szwQriginal will be used when szwOriginal is not available on the device.
When a font alias is added to the list, this can affect the alias count. If an alias
already exists for szwOriginal, the new szwAlias will replace it.

- SCCVW_FONTALIAS_ALIASNAME (DAGetOption): szwAlias will be filled if
there is an alias in the alias list for the font in szwOQOriginal on that device.

- SCCVW_FONTALIAS_GETALIASBYID (DAGetOption): szwAlias and
szwQriginal will be filled by the technology for the alias in the numbered slot
identified by the ID.

- SCCVW_FONTALIAS_GETALIASID (DAGetOption): dwAliasID will be set for
the font in szwOriginal. If none exists, the dwAliasID will be OxFFFFFFE.

- SCCVW_FONTALIAS_REMOVEALIASBYID (DASetOption): The alias in that
slot will be removed if one exists. When a font alias is removed from the list,
this can affect the other alias IDs.

- SCCVW_FONTALIAS_REMOVEALIASBYNAME (DASetOption): The alias for
the font szwOriginal will be removed from the alias list if one exists. When a
font alias is removed from the list, this can affect the other alias IDs.

- SCCVW_FONTALIAS_REMOVEALL (DASetOption): The alias list will be
cleared out and the count will be zero.

- SCCVW_FONTALIAS_USEDEFAULTS (DASetOption): This clears the existing
alias list and sets it to a list of default aliases that is variable by platform.

szwOriginal: This represents the original name of a font that will be mapped when
this font is not available. This name should be a Unicode string.

szwAlias: This represents the new name of a font that will be used as a replacement
for the unmapped font named in szwOriginal. This name should be a Unicode
string.

Data

The technology assumes the following default mappings. The first value is the
szwOriginal Value, the second is the szwAlias Value.

Chicago = Arial

Geneva = Arial

New York = Times New Roman
Helvetica = Arial

Helv = Arial

HTML Export C/C++ Options 12-53

Callbacks

¢ times = Times New Roman

¢ Times = Times New Roman

¢ Tms Roman = Times New Roman
¢ Symbol = Symbol

¢ itc zapfdingbats = Zapfdingbats

e itc zapf dingbats = Zapfdingbats

SCCOPT_STROKE_TEXT

This option is used to stroke out (display as graphical primitives) text in an AutoCAD
file. Setting this option to FALSE would improve performance, but the visual fidelity
may be compromised.

¢ If the export for the conversion is text only, text is never stroked out.

e If the export is not text only, and the drawing is perspective, text will always be
stroked out (regardless of this option). This is due to the fact that in non-text only
situations visual fidelity is of importance, and handling of textual objects in
perspective drawings is more accurate with stroked out text. If the conversion is
non-text only and the drawing is not perspective, this option determines if text
should be stroked.

Note that when this option is TRUE, some special characters appear as asterisks or
question marks due to limited support of characters for stroking out text.

Handle Types
VTHDOC, VTHEXPORT

Scope

Local

Data Type
VTBOOL

Default
TRUE

Callbacks

This section discusses callback options.

SCCOPT_EX_CALLBACKS

This is an advanced option that casual users of HTML Export may ignore.

This option is used to disable callbacks being made from HTML Export. Callbacks that
are disabled will behave as if they were made and the developer had returned
SCCERR_NOTHANDLED.

12-54 Developer's Guide

Callbacks

The option takes a VTDWORD field of flags. When the flag is set, the callback is
enabled. By default, all callbacks are enabled. You can activate multiple callbacks by
bitwise OR-ing them together. You can also disable multiple callbacks by bitwise &-
ing the SCCEX_CALLBACKFLAG_ALLENABLED value with the one's complement
of the corresponding callback flags. The following #defines are to be used for enabling

the various callbacks:

Flag

Associated Callbacks

SCCEX_CALLBACKFLAG_CREATENEWFILE
SCCEX_CALLBACKFLAG_NEWFILEINFO
SCCEX_CALLBACKFLAG_PROCESSLINK

SCCEX_CALLBACKFLAG_CUSTOMELEMENT

SCCEX_CALLBACKFLAG_GRAPHICEXPORTFAILU
RE

SCCEX_CALLBACKFLAG_OEMOUTPUT

SCCEX_CALLBACKFLAG_ALTLINK

SCCEX_CALLBACKFLAG_ARCHIVE

EX_CALLBACK_ID_CREATENEWFILE
EX_CALLBACK_ID_NEWFILEINFO
EX_CALLBACK_ID_PROCESSLINK

EX_CALLBACK_ID_CUSTOMELEMENTLIST
EX_CALLBACK_ID_PROCESSELEMENTSTR
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2

EX_CALLBACK_ID_GRAPHICEXPORTFAILURE

EX_CALLBACK_ID_OEMOUTPUT
EX_CALLBACK_ID_OEMOUTPUT_VER2

EX_CALLBACK_ID_ALTLINK

EX_CALLBACK_ID_ENTERARCHIVE
EX_CALLBACK_ID_LEAVEARCHIVE
EX_CALLBACK_ID_REFLINK

In addition, the following two special values are available:

¢ SCCEX_CALLBACKFLAG_ALLDISABLED: Disables the receipt of all callbacks.
Additionally, bitwise OR-ing this value with one or more flags enables the
corresponding callbacks. For example, SCCEX_CALLBACKFLAG_ALTLINK |
SCCEX_CALLBACKFLAG_CREATENEWFILE enables the ALTLINK and
CREATENEWFILE callbacks, but disables all others.

¢ SCCEX_CALLBACKFLAG_ALLENABLED: Enables the receipt of all callbacks.
Additionally, bitwise &-ing this value with the one's complement of one or more
flags disables the corresponding callbacks. For example,
SCCEX_CALLBACKFLAG_ALLENABLED& (~SCCEX_CALLBACKALTLINK &
~SCCEX_CALLBACKFLAG_CREATENEWFILE) disables the ALTLINK and
CREATENEWTFILE callbacks, but enables all others.

Handle Types
VTHDOC

Scope

Local

Data Type
VITDWORD

HTML Export C/C++ Options 12-55

File System

Data
One or more of the valid flags, bitwise OR-ed together

Default

e SCCEX_CALLBACKFLAG_ALLENABLED: All callbacks are available to the
developer.

SCCOPT_EX_UNICODECALLBACKSTR

This option determines the format of strings used in the callback functions. For those
structures that contain a field of type BYTE or LPBYTE, a comparable structure has
been added which has a similar field of type WORD or LPWORD. These structures
will have the same name as the original structure, with the addition of a "W" at the
end.

When this option is set to TRUE, any time a callback uses a structure with a string, it
will use the new structure. Also, any strings that the callback function returns will be
expected to follow the same guidelines. If the option is set to FALSE, all callbacks will
use single-byte character strings.

For example, if this option is set to TRUE, and the
EX_CALLBACK_ID_CREATENEWFILE callback is called, the pExportData parameter
to the callback will point to an EXURLFILEIOCALLBACKDATAW structure. If the
option is set to FALSE, the pCommandOrInfoData parameter will point to an
EXURLFILEIOCALLBACKDATA structure.

This option should be set before EXOpenExport is called.

Handle Types
VTHDOC

Scope

Local

Data Type
VTBOOL

Data
One of the following values:
e TRUE: Use Unicode strings in callbacks.

* FALSE: Do not use Unicode strings in callbacks.

Default
FALSE

File System

This section pertains to file system options.

12-56 Developer's Guide

File System

SCCOPT_IO_BUFFERSIZE

This set of three options allows the user to adjust buffer sizes to tailor memory usage
to the machine's ability. The numbers specified in these options are in kilobytes. These
are advanced options that casual users of HTML Export may ignore.

Handle Type
NULL, VTHDOC

Scope
Global

Data Type
SCCBUFFEROPTIONS structure

Data

A buffer options structure

SCCBUFFEROPTIONS Structure

typedef struct SCCBUFFEROPTI ONSt ag

{

VTDWORD dwReadBuf f er Si ze; /* size of the |/0 Read buffer
in KB */

VTDWORD dwMVapBuUf f er Si ze; /* maximum size for the I/0
Memory Map buffer in KB */

VTDWORD dwTenpBuf f er Si ze; [* maxi mum si ze for the menory-
mapped temp files in KB */

VTDWORD dwFl ags; [* use flags */

} SCCBUFFEROPTI ONS, *PSCCBUFFERCPTI ONS;

Parameters

dwReadBufferSize: Used to define the number of bytes that will read from disk
into memory at any given time. Once the buffer has data, further file reads will
proceed within the buffer until the end of the buffer is reached, at which point the
buffer will again be filled from the disk. This can lead to performance
improvements in many file formats, regardless of the size of the document.

dwMMapBufferSize: Used to define a maximum size that a document can be and
use a memory-mapped I/O model. In this situation, the entire file is read from disk
into memory and all further I/O is performed on the data in memory. This can lead
to significantly improved performance, but note that either the entire file can be
read into memory, or it cannot. If both of these buffers are set, then if the file is
smaller than the dwMMapBufferSize, the entire file will be read into memory; if
not, it will be read in blocks defined by the dwReadBufferSize.

dwTempBufferSize: The maximum size that a temporary file can occupy in
memory before being written to disk as a physical file. Storing temporary files in
memory can boost performance on archives, files that have embedded objects or
attachments. If set to 0, all temporary files will be written to disk.

dwFlags

HTML Export C/C++ Options 12-57

File System

— SCCBUFOPT_SET_READBUFSIZE 1
- SCCBUFOPT_SET_MMAPBUFSIZE 2
— SCCBUFOPT_SET_TEMPBUFSIZE 4

To set any of the three buffer sizes, set the corresponding flag while calling
dwSetOption.

Default

The default settings for these options are:
¢ #define SCCBUFOPT_DEFAULT_READBUFSIZE 2: A 2KB read buffer.

¢ #define SCCBUFOPT_DEFAULT_MMAPBUFSIZE 8192: An 8MB memory-map
size.

e #define SCCBUFOPT_DEFAULT_TEMPBUFSIZE 2048: A 2MB temp-file limit.

Minimum and maximum sizes for each are:

e SCCBUFOPT_MIN_READBUFSIZE 1: Read one Kbyte at a time.

¢ SCCBUFOPT_MIN_MMAPBUFSIZE 0: Don't use memory-mapped input.
e SCCBUFOPT_MIN_TEMPBUEFSIZE 0: Don't use memory temp files

e SCCBUFOPT_MAX_READBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_MMAPBUFSIZE 0x003fffff,
SCCBUFOPT_MAX_TEMPBUEFSIZE 0x003fftff: These maximums correspond to the
largest file size possible under the 4GB DWORD limit.

SCCOPT_TEMPDIR

From time to time, the technology needs to create one or more temporary files. This
option sets the directory to be used for those files.

It is recommended that this option be set as part of a system to clean up temporary
files left behind in the event of abnormal program termination. By using this option
with code to delete files older than a predefined time limit, the OEM can help to
ensure that the number of temporary files does not grow without limit.

Note:
This option will be ignored if SCCOPT_REDIRECTTEMPFILE is set.

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
SCCUTTEMPDIRSPEC structure

12-58 Developer's Guide

File System

SCCUTTEMPDIRSPEC Structure
This structure is used in the SCCOPT_TEMPDIR option.
SCCUTTEMPDIRSPEC is a C data structure defined in sccvw.h as follows:

typedef struct SCCUTTEMPDI RSPEC

{
VIDWORD dwSi ze;

VIDWORD dwSpecType;
VIBYTE szTenpDi r Name[SCOUT_FI LENAVEMAYX] ;
} SCCUTTEMPDI RSPEC, * LPSCCUTTEMPDI RSPEC;

There is a limitation in the current release. dwSpecType describes the contents of
szTempDirName. Together, dwSpecType and szTempDirName describe the location
of the source file. The only dwSpecType values supported at this time are:

¢ IOTYPE_ANSIPATH: Windows only. szTempDirName points to a NULL-
terminated full path name using the ANSI character set and FAT 8.3 (Win16) or
NTES (Win32 and Win64) file name conventions.

e JOTYPE_UNICODEPATH: Windows only. szZTempDirName points to a NULL-
terminated full path name using the Unicode character set and NTFS file name
conventions. Note that the length of the path name is limited to
SCCUT_FILENAMEMAX bytes, or (SCCUT_FILENAMEMAX / 2) double-byte
Unicode characters.

¢ IOTYPE_UNIXPATH: UNIX platforms only. szTempDirName points to a NULL-
terminated full path name using the system default character set and UNIX path
conventions.

Specifically not supported at this time is IOTYPE_REDIRECT.

Users should also note that temporary files created by the technology are not subject to
callbacks (such as EX_CALLBACK_ID_CREATENEWFILE) normally made when files
are created.

Parameters
e dwsSize: Set to sizeof(SCCUTTEMPDIRSPEC).

* dwSpecType: IOTYPE_ANSIPATH, IOTYPE_UNICODEPATH, or
IOTYPE_UNIXPATH

¢ szTempDirName: The path to the directory to use for the temporary files. Note that
if all SCCUT_FILENAMEMAX bytes in the buffer are filled, there will not be space
left for file names.

Default

The system default directory for temporary files. On UNIX systems, this is the value of
environment variable $TMP. On Windows systems, it is the value of environment
variable %TMP%.

SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

HTML Export C/C++ Options 12-59

File System

Handle Types
NULL, VTHDOC

Scope
Global

Data Type
VTDWORD

Parameters

¢ SCCDOCUMENTMEMORYMODE_SMALLEST (4MB)
¢ SCCDOCUMENTMEMORYMODE_SMALL (16MB)

e SCCDOCUMENTMEMORYMODE_MEDIUM (64MB)
¢ SCCDOCUMENTMEMORYMODE_LARGE (256MB)

e SCCDOCUMENTMEMORYMODE_LARGEST (1 GB)

Default
SCCDOCUMENTMEMORYMODE_LARGE (256MB)

SCCOPT_REDIRECTTEMPFILE

This option is set when the developer wants to use redirected IO to completely take
over responsibility for the low level IO calls of the temp file.

Handle Types
NULL, VTHDOC

Scope
Global (not persistent)

Data Type

VTLPVOID: pCallbackFunc

Function pointer of the redirect IO callback.
Redirect call back function:

t ypedef

{
VTDWORD (* REDI RECTTEMPFI LECALLBACKPROC)

(H OFI LE *phFile,
VTVA D *pSpec,
VTDWORD dwki | eFl ags) ;

There is another option to handle the temp directory, SCCOPT_TEMPDIR. Only one
of these two can be set by the developer. The SCCOPT_TEMPDIR option will be
ignored if SCCOPT_REDIRECTTEMPFILE is set. These files may be safely deleted
when the Close function is called.

12-60 Developer's Guide

Template-Only Options

Template-Only Options

The options discussed in this section are only settable via the { ## opti on} macroin
the template.

EX_LINKTARGET

Support for this option is limited to MIcrosoft Word documents.

Some input documents contain links. Template authors may have a preference for
how the browser should select which frame or window to open those source
document links in. This option allows the template author to do so by specifying a
value to use for the target attribute of the links HTML Export generates in these cases.
This single target value will be applied to all such links encountered in the source
document. It does not affect the links generated by HTML Export for navigation
generated because of template macros.

If this option is not set, then no target attribute will be included in links from the
source document.

The value of the target attribute is expected to be able to be inserted by HTML Export
directly into the output of the conversion. Under some circumstances, however,
HTML Export may need to perform character mapping from the template to the
output character set:

e Templates written in a SBCS for conversions to DBCS will pad the text to form
WORD sized characters, but will not perform any character mapping. In the
unlikely event that this poses a problem, users should write their templates in
UTE-8 or Unicode.

* Templates written in Unicode for conversions will do character mapping to the
appropriate output character set.

For example, consider a document that contains a link to www.outsideinsdk.com. The
template author wishes to change the browser's default behavior from opening the
link in the current window to opening the link in a new window. Therefore, the
template writer sets this option to _blank with the following line in the template:

{## option EX_LI NKTARGET=_bl ank}

HTML Export will then generate the following link to the Oracle web page when the
document is converted (HTML related to text formatting has been removed for
clarity):

ww. out si dei nsdk. conx/ a>

The following are valid values for the target= attribute in HTML:

¢ _blank: The user agent should load the designated document in a new, unnamed
window.

o _self: The user agent should load the document in the same frame as the element
that refers to this target.

e _parent: The user agent should load the document into the immediate FRAMESET
parent of the current frame. This value is equivalent to _self if the current frame has
no parent.

HTML Export C/C++ Options 12-61

Old Options

e _top: The user agent should load the document into the full, original window (thus
canceling all other frames). This value is equivalent to _self if the current frame has
no parent.

The default is for this option not to be set. In that case, no target= attribute will be
generated for links from the source document.

EX_LINKTARGETOVERRIDE

Old Options

Link target attribute values may be specified in both the source document and in the
template via the EX_LINKTARGET template-only option. This option determines how
to resolve such conflicts.

The option has two settings (neither is case-sensitive):

¢ Fallback: The value specified in the EX_LINKTARGET option is a fallback to use
when the source document does not specify a link target attribute value. This is the
default setting for this option if it is not set.

* Override: The value specified in the EX_LINKTARGET option will always be used,
overriding any link target attribute value(s) specified by the source document.

Sample usage:

{## option EX_LI NKTARGET="_sel f"}
{## option EX_LI NKTARGETOVERI DE="Overri de"}

This option is ignored if the EX_LINKTARGET option has not been set.

The default for this option is to not be set. In that case, the value specified by the
EX_LINKTARGET option is used as a fallback.

As the HTML Export product family continues to evolve, it has sometimes become
necessary to change options that are no longer supported. In addition, the names of
some of the options and option values have also been changed to help create a more
consistent API. In all cases, the old names and options will continue to compile. Old
options will simply cease to have an effect on output. Old option and value names are
mapped to the new names. OEMs are encouraged to use the new names wherever
possible.

Discontinued Options

The following options have been discontinued. For the foreseeable future, HTML
Export will continue to support calls to set these options. While setting these options
will not cause an error, they will have no effect on the output produced by HTML
Export.

SCCOPT_GIF_SPLASHPALETTE

Introduced in the 1.1.0 release. The option has been discontinued due to performance
enhancements in the HTML Export 1.1.1 release that made the fast, but lower quality
setting for this option unnecessary. Superior quality palettes are now generated so
quickly that there is no need to generate lower quality palettes.

12-62 Developer's Guide

Old Options

SCCOPT_EX_COMPLIANCEFLAGS

This option has been discontinued as of release 8.5.0. This is due to the addition of
FI_XHTML as a supported output format, and the fact that HTML output with these
options set violates the specs for the other HTML flavors.

Option Name Changes

While the old option names will continue to be supported for the foreseeable future,
OEMs are encouraged to use the new names for options and their values from this
point forward. The following is a list of old names and their new counterparts:

Old Name New Name
SCCOPT_CHARBYTEORDER SCCOPT_EX_CHARBYTEORDER
SCCOPT_GRAPHICSIZEMETHOD SCCOPT_GRAPHIC_SIZEMETHOD
SCCOPT_HTML_FLAGS SCCOPT_EX_COMPLIANCEFLAGS
SCCOPT_HTML_FLAVOR SCCOPT_EX_FLAVOR

SCCOPT_HTML_GENBULLETSANDNUMS SCCOPT_EX_GENBULLETSANDNUMS
SCCOPT_HTML_GRAPHICTYPE SCCOPT_GRAPHIC_TYPE

SCCOPT_HTML_OUTPUTCHARACTERSET SCCOPT_EX_OUTPUTCHARACTERSET

SCCOPT_HTML_SIMPLESTYLENAMES SCCOPT_EX_SIMPLESTYLENAMES
SCCOPT_HTML_TEMPLATE SCCOPT_EX_TEMPLATE
SCCOPT_NO_SOURCEFORMATTING SCCOPT_EX_NOSOURCEFORMATTING
SCCOPT_OUTPUTCHARACTERSET SCCOPT_EX_OUTPUTCHARACTERSET
SCCOPT_SIMPLESTYLENAMES SCCOPT_EX_SIMPLESTYLENAMES
SCCOPT_UNICODECALLBACKSTR SCCOPT_EX_UNICODECALLBACKSTR

#define Name Changes

The following #define names have been changed. The old #defines will continue to be
supported for the foreseeable future. However, OEMs are encouraged to use the new
names for options and their values from this point forward. What follows is a list of
old names and their new counterparts:

Old Name New Name
SCCHTML_FLAG_STRICTDTD SCCEX_CFLAG_STRICTDTD
SCCHTML_FLAG_WELLFORMED SCCEX_CFLAG_WELLFORMED

SCCOPT_CHARBYTEORDER_BIGENDIAN SCCEX_CHARBYTEORDER_BIGENDIAN

SCCOPT_CHARBYTEORDER_LITTLEENDI SCCEX_CHARBYTEORDER_LITTLEENDIA
AN N

HTML Export C/C++ Options 12-63

Old Options

Old Name

New Name

SCCOPT_CHARBYTEORDER_TEMPLATE

SCCOPT_EX_FALLBACKFONT_SINGLEBY
TE

SCCOPT_EX_FALLBACKFONT_DOUBLEB
YTE

SCCHTML_FLAVOR_GENERIC
SCCHTML_FLAVOR_20
SCCHTML_FLAVOR_30
SCCHTML_FLAVOR_40
SCCHTML_FLAVOR_MO21
SCCHTML_FLAVOR_NS11
SCCHTML_FLAVOR_NS20
SCCHTML_FLAVOR_NS30
SCCHTML_FLAVOR_NS40
SCCHTML_FLAVOR_MS15
SCCHTML_FLAVOR_MS20
SCCHTML_FLAVOR_MS30

SCCHTML_FLAVOR_MS40

SCCEX_CHARBYTEORDER_TEMPLATE

SCCEX_FALLBACKFONT_SINGLEBYTE

SCCEX_FALLBACKFONT_DOUBLEBYTE

SCCEX_FLAVOR_GENERICHTML
SCCEX_FLAVOR_HTML20
SCCEX_FLAVOR_HTML30
SCCEX_FLAVOR_HTML40
SCCEX_FLAVOR_MO21
SCCEX_FLAVOR_NS11
SCCEX_FLAVOR_NS20
SCCEX_FLAVOR_NS30
SCCEX_FLAVOR_NS40
SCCEX_FLAVOR_MS15
SCCEX_FLAVOR_MS20
SCCEX_FLAVOR_MS30

SCCEX_FLAVOR_MS40

12-64 Developer's Guide

Part Il

Using the Java API

This section provides details about using the HTML Export SDK with the Java APL

Part III contains the following chapters:
e Introduction to the Java API

¢ HTML Export Java Classes

13

Introduction to the Java API

This chapter provides an introduction to getting started with the Java API. The Java
APl is an add-on to the Outside In Export SDKs that enables developers to use Java to
create applications using Outside In Technology.

The following topics are covered:
* Requirements

* Getting Started

Requirements

To use the API, the following set of modules and tools are required:
e Java JDK 6 or later
® The Outside In developer's redistributable modules for your product(s)
¢ The APl libraries:
— oilink jar - The Java library to access the Outside In technologies

— oilink (on Unix)/oilink.exe (on Windows) - The bridge modules between Java
and the C-APIs.

All of the Outside In modules should be in the same directory as oilink jar.

The SDK includes sample source code to demonstrate how such web applications may
be written. These sample applications are written as simply and generically as
possible, and will not fill all of the needs of your particular application. They are
intended for instructional purposes only.

Getting Started

There are two steps in developing applications using the APIs. In the first step, you
configure the environment to create your application (typical programming tasks not
directly related to these APIs); and in the second step, you generate code to utilize the
functionality of these libraries.

Configure the Environment

To set up the environment to create a Java application, you need to add the oilink jar
library to your project. (This can be done in Eclipse in the Project Properties dialog by
selecting Java Build Path properties > Libraries tab > Add external J[ARs > browse to
oilink.jar.)

Introduction to the Java APl 13-1

Getting Started

Generate Code

Sample application code included with the SDK, OITSample, is a minimal
demonstration of how to use this API.

All the functionality required to perform a conversion is provided in an Exporter
object. The basic process of exporting a file involves the following tasks:

1. Create an Exporter object.

2. Configure the export.

3. Set the source and primary destination files.
4. Set the output type.

5. (Optional) Provide a callback handler.

6. Run the export.
Tasks 2 through 5 can be done in any order between the first and last task.

Create an Exporter Object

To obtain access to the Outside In functionality, you should call the utility function in
the "Outsideln" class. This will provide you an instance of an Exporter Object.

Exporter exporter = Qutsideln.newlLocal Exporter();

Configure the Output

The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter. set PerfornExt endedFl (true);
int timezoneOffset = exporter.getTi meZonef fset();

Set the Source and Primary Destination Files

You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter.set SourceFile(inputFile);
exporter.setDestinationFile(outputFile);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and
an email message saved as a .msg file may contain attachments. The API provides the
means of opening these types of embedded documents. This can be done by opening
the parent document and then the embedded document can be opened through this
exporter object.

/] subdocld is the sequential number of the node in the archive file
Exporter exporterNode = exporter. newAr chi veNodeExport er (subdocl d);

13-2 Developer's Guide

Getting Started

Set the Output Type
In this step, you specify the output format.

exporter. set DestinationFormat (FileFormt.Fl_HTM);

Provide a Callback Handler

Outside In Technology provides callbacks that allow the developer to intervene at
critical points in the export process. To respond to these callbacks, you have to
subscribe to any messages that you are interested in by overriding the message
handlers from the Callback class. After creating an object of this class, set the callback
option to this object and the messages will be passed to your object.

class Cal | backHandl er extends Cal | back
..Il inplenmentation of messages to handle - described in the APl docunentation

}
Cal | backHandl er cal | back = new Cal | backHandl er () ;
exporter. set Cal | backHandl er (cal | back) ;

Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter.export();

Introduction to the Java APl 13-3

Getting Started

13-4 Developer's Guide

14

This chapter provides detailed descriptions of HTML Export Java classes.

HTML Export Java Classes

The following classes are covered:

Annotation Class
ArchiveNode Class
Callback Class
ColorInfo Class
Exporter Interface
ExportStatus Class
FileFormat Class
FontAliases Class
FontInfo Class
FontList Class
GridWraplnfo Class
HighlightTextAnnotation Class
MailHeaders Class
Option Interface
Outsideln Class

OutsideInException Class

Annotation Class

Annotation is an abstract base class for the Annotation objects.

Namespace

com.oracle.outsidein.annotations

Accessors

* Height (long) Height of area in coordinates or rows

voi d set Hei ght (1 ong)

| ong get Hei ght ()

HTML Export Java Classes 14-1

ArchiveNode Class

¢ Left (long) Leftmost coordinate or column

voi d setLeft(long)
| ong getLeft()

¢ Opacity (float) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0 makes
the annotation invisible

voi d setOpacity(float) throws Qutsidel nException
float getOpacity()

* SectionIndex (long) 0-based page/sheet/image/slide index

voi d set Secti onl ndex(| ong)
I ong get Secti onl ndex()

¢ Top (long) Top coordinate or row

voi d set Top(| ong)
I ong get Top()

® Units (Annotation.UnitTypeValue) Unit type

voi d set Units(Annotation. UnitTypeVal ue)
Annot ati on. Uni t TypeVal ue get Units()

¢ Userld (long) User Data

voi d set Userld(I ong)
I ong getUserld()

¢ Width (long) Width of area in coordinates or columns

voi d set Wdth(long)
long getWdth()

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation
positions can be described in.

* Pixels: Units specified in Pixels
¢ Twips: Units specified in Twips (1/1440th of an inch)

¢ Cells: Units specified in cell positions

ArchiveNode Class

ArchiveNode provides information about an archive node. This is a read-only class
where the technology fills in all the values.

Namespace

com.oracle.outsidein

Accessors
¢ boolean isFolder() - A value of true indicates that the record is an archive node.

¢ int getFileSize() - File size of the archive node

14-2 Developer's Guide

Callback Class

* java.util.Date getTime() - Time the archive node was created
¢ int getNodeNum() - Serial number of the archive node in the archive

* String getNodeName() - The name of the archive node

Callback Class

Callback messages are notifications that come from Outside In during the export
process, providing information and sometimes the opportunity to customize the
generated output.

Namespace
com.oracle.outsidein

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can
implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has two methods that you can override: createNewFile and newFileInfo.

createNewFile

Creat eNewFi | eResponse creat eNewri | e(Fil eFormat parentQutputld, FileFormat outputld,
Associ ationVal ue association, String path) throws |OException

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named,
and the URL (if any) used to reference the file.

Parameters
e parentOutputld: File format identifier of the parent file
¢ outputld: File format identifier of the file created

® association: An AssociationValue that describes relationship between the primary
output file and the new file.

e path: Full path of the file to be created

Return Value

To take action in response to this notification, return a CreateNewFileResponse object
with the new file information. If you wish to accept the defaults for the path and URL,
you may return null.

CreateNewFileResponse Class

This is a class to define a new output file location in response to a CreateNewFile
callback. If you do not wish to change the path to the new output file, you may use the
path as received. If you do not wish to specify the URL for the new file, you many
specify it as null.

HTML Export Java Classes 14-3

Callback Class

newFilelnfo

Constructor

Creat eNewFi | eResponse(File file, String url) throws |OException

e file: File object containing the full path to the new file

¢ url: Anew URL that references the newly created file. This parameter can be null.

Cr eat eNewFi | eResponse(Seekabl eByt eChannel 6 redirect, String url) throws |COException

¢ redirect: Object that will be written to as the destination of the transform

¢ url: A new URL that references the newly created file.This parameter can be null.

AssociationValue Enumeration

This enumeration defines, for a new file created by an export process, the different
possible associations between the new file and the primary output file. Its value may
be one of the following;:

e ROOT - indicates the primary output file

¢ CHILD - a new file linked (directly or indirectly) from the primary output file
e SIBLING - indicates new files not linked from the primary output file

¢ COPY - the file was copied as a part of a template macro operation.

e REQUIREDNAME - not used

Note that some of these relationships will not be possible in all Outside In Export
SDKs.

voi d newFilelnfo(FileFormat parentCQutputld, FileFormat outputld,
Associ ationVal ue association, String path, String url) throws |CException

This informational callback is made just after each new file has been created.

Parameters
e parentOutputld: File format identifier of the parent file
¢ outputld: File format identifier of the file created

¢ association: An AssociationValue that describes relationship between the primary
output file and the new file.

¢ path: Full path of the file created

* url: URL that references the newly created file

Example

Here is a basic callback handler that notifies an application that it has received
newFilelnfo notifications.

public static class CallbackHandl er extends Cal | back
{

14-4 Developer's Guide

Callback Class

openFile

myAppl i cation m theApp;

public Call backHandl er (nyApplication app)
{

m t heApp = app;
}
public void newFil el nfo(FileFormat parentCQutputld,

Fi | eFormat outputld, AssociationValue association,
String path, String url) throws | OException

{
i f(association == Associ ationVal ue. ROOT)
m t heApp. pri maryQut put | sReady(true);

m t heApp. newQut put Fi | e(path);
}
}

QpenFi | eResponse openFi | e(Fil eTypeFal ue fileType, String fileName) throws
| OException

This callback is made any time a new file needs to be opened.

Parameters
¢ fileType: Type of file being requested to be opened

¢ fileName: Name of the file to be opened

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

e INPUT: File to be opened (path unknown)

e TEMPLATE: Template file to be opened

e PATH: Full file name of the file to be opened
e OTHER: Not used

OpenFileResponse Class

This is a class to define a new file or redirected I/O object in response to an openFile()
callback.

Constructors

penFi | eResponse(File file)

¢ file: File object with full path to the new file
OpenFi | eResponse(Seekabl eByt eChannel 6 redirect)

HTML Export Java Classes 14-5

Colorinfo Class

* redirect: A redirected I/O object to which the file data will be written

createTempFile

Creat eTenpFi | eResponse createTenpFile() throws | OException

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse object
with the temporary file information.

CreateTempFileResponseClass

This is a class to define a new redirected I/O object in response to a createTempFile()
callback.

Constructors

Cr eat eTenpFi | eResponse(Seekabl eByt eChannel 6 redirect)

¢ redirect: A redirected I/O object to which the file data will be written and read
from

Colorinfo Class

ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace

com.oracle.outsidein

Constructors

Col or I nfo()

Initializes a ColorInfo object to use the default color.

public Colorlnfo(byte red,
byte green,
byte bl ue)

Initializes a ColorInfo object with the specified RGB values.

Accessors

* byte getBlue() - Blue component of the color

* byte getGreen() - Green component of the color
* byte getRed() - Red component of the color

® boolean isDefaultColor() - Returns true if the default color is used

14-6 Developer's Guide

Exporter Interface

Exporter Interface

This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter
Interface. The object returned by Outsideln class is an implementation of this interface.
This class derives from the Document Interface, which in turn is derived from the
OptionsCache Interface.

Namespace

com.oracle.outsidein

Methods

¢ getExportStatus
Export Status get Export Status()

This function is used to determine if there were conversion problems during an
export. The ExportStatus object returned may have information about sub-
document failures, areas of a conversion that may not have high fidelity with the
original document. When applicable the number of pages in the output is also
provided.

¢ newSubDocumentExporter

Exporter newSubDocument Exporter (

int SubDocl d,

SubDocunent | denti fier TypeVal ue i dType
) throws Qutsidel nException

Create a new Exporter for a subdocument.
SubDocld: Identifier of the subdocument
idType: Type of subdocument

SubDocumentldentifierTypeValue: This is an enumeration for the type of
subdocument being opened.

- XMLEXPORTLOCATOR: Subdocument to be opened is based on output of
XML Export (Subdocld is the value of the object_id attribute of a locator
element.)

- ATTACHMENTLOCATOR: Subdocument to be opened is based on the locator
value provided by the one of the Export SDKs.

- EMAILATTACHMENTINDEX: Subdocument to be opened is based on the
index of the attachment from an email message. (Subdocld is the zero-based
index of the attachment from an email message file. The first attachment
presented by Outsideln has the index value 0, the second has the index value 1,
etc.)

Returns: A new Exporter object for the subdocument

¢ newSubObjectExporter

Exporter newSubQhj ect Exporter (
SubQbj ect TypeVal ue obj Type,

HTML Export Java Classes 14-7

Exporter Interface

int datal,
int data2,
int datas3,
int datad
) throws Qutsidel nException

Create a new Exporter for a subobject.

objType: Type of subobject

datal: Data identifying the subobject from SearchML
data2: Data identifying the subobject from SearchML
data3: Data identifying the subobject from SearchML
data4: Data identifying the subobject from SearchML
Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.
— LinkedObject
- EmbeddedObject

— CompressedFile
- Attachment

newArchiveNodeExporter

Exporter newArchi veNodeExporter (
int dwRecordNum
) throws Qutsidel nException

Create a new Exporter for an archive node. You may get the number of nodes in an
archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
getArchiveNodeCount.

Returns: A new Exporter object for the archive node

newArchiveNodeExporter with Search Export Data

Exporter newArchi veNodeExporter (
int flags,
int paransl,
int parans2

) throws Qutsidel nException

Create a new Exporter for an archive node. To use this function, you must first
process the archive with Search Export and save the Node data for later use in this
function.

Flags: Special flags value from Search Export
Paramsl: Datal from Search Export
Params2: Data2 from Search Export

Returns: A new Exporter object for the archive node

14-8 Developer's Guide

Exporter Interface

* export
voi d export() throws Qutsidel nException
Perform the conversion and close the export process keeping the source document
open.
voi d export (bool ean bLeaveSourceQpen) throws CQutsidel nException
Perform the conversion and keep the source document open or close it based on the
value of bLeaveSourceOpen.

bLeaveSourceOpen: If set to true, keeps the source document open for next export
process.

Note: Before Release 8.5.3, calling Export() with no parameters, would leave
the source document open. The default behavior starting with Release 8.5.3 is
to close the document after exporting the file. If you would like to keep the file
open for other conversions, use this method with "bLeaveSourceOpen" set to
true.

setDestinationFile

OptionsCache setDestinationFil e(
String filenane
) throws CQutsidel nException

Set the location of the destination file
filename: Full path to the destination file

Returns: The updated options object

¢ setExportTimeout

Opti onsCache set Export Ti nmeout (int mllisecondsTi neout)

This method sets the time that the export process should wait for a response from
the Outside In export engine to complete the export of a document, setting an
upper limit on the time that will elapse during a call to export(). If the specified
length of time is reached before the export has completed, the export operation will
be terminated and an OutsideInException will be thrown. If this option is not set,
the default timeout is 5 minutes.

e newLocalExporter

static Exporter newLocal Exporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The
source and destination file information will not be copied.

Annotatable Interface

All of the Outside In annotation-related methods are accessed through the
Annotatable Interface.

HTML Export Java Classes 14-9

Exporter Interface

NameSpace

com.oracle.outsidein.annotations

Methods

¢ addTextHighlight

voi d addText Hi ghli ght (
H ghl i ght Text Annot ati on textanno

)

Highlight text in a document.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

addTextHighlight and Add Annotation Properties

voi d addText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
Map<String, String> Properties

)

Highlight text in a document and associate properties with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Properties: Key value pairs of name/value of properties associated with this
annotation

addTextHighlight and Associate a Comment

voi d addText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
String Comment

)

Highlight text in a document and associate a comment with the highlight.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

addTextHighlight with Comment and Properties to Annotation

voi d addText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
String Comment,
Map<String, String> Properties

)

Highlight text in a document and provide comment text and properties to be
associated with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

Properties: Key value pairs of name/value of properties associated with this
annotation

14-10 Developer's Guide

Exporter Interface

Document Interface

All of the Outside In document-related methods are accessed through the Document
Interface.

Namespace

com.oracle.outsidein

Methods

close

voi d close()

Closes the currently open document.

getArchiveNodeCount
int get Archi veNodeCount () throws Qutsidel nException

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

getFileld

Fil eFormat getFileld(FileldlnfoFlagVal ue dwFl ags) throws Qutsidel nException

Gets the format of the file based on the technology's content-based file
identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended
Test

Returns the format identifier of the file.

getArchiveNode
Archi veNode get Archi veNode(int nNodeNum) throws CQutsidel nException

Retrieves information about a record in an archive file. You may get the number of
nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node
is node 0.

Return Value: An ArchiveNode object with the information about the record

saveArchiveNode

voi d saveAr chi veNode(
int nNodeNum
File file) throws Qutsidel nException

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first
node is node 0.

file: The destination file to which the file will be extracted.

HTML Export Java Classes 14-11

Exporter Interface

¢ saveArchiveNode with Search Export Flags

voi d saveAr chi veNode(
int flags,
int paransl,
int parans2,
File file) throws Qutsidel nException

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export
params]: Datal from Search Export
params2: Data2 from Search Export

file: The destination file to which the file will be extracted

e setSourceFile

OptionsCache set SourceFile(String filename) throws Qutsidel nException

Set the source document.
filename: Full path of the source document

Returns: The options cache object associated with this document

SeekableByteChannel6 Interface

Enables API users to handle I/O for the source and destination documents. Implement
this interface to control I/O operations such as reading, writing, and seeking. This
interface mimics the java.nio.channels.SeekableByteChannel interface which is only
available in Java 7 and later. Note that SeekableByteChannel6 will be removed in favor
of java.nio.channels.SeekableByteChannel if support for Java 6 is dropped in a future
release of the Outside In Java APL Until then, this interface must be used if redirected
I/0O is required.

Namespace

com.oracle.outsidein

Methods
* Get position
| ong position()
Returns this channel's position.
¢ Set position
Seekabl eByt eChannel 6 position(long newPosition)
Sets this channel's position.

e read

int read(java.nio.ByteBuffer dst)

14-12 Developer's Guide

Exporter Interface

Reads a sequence of bytes from this channel into the given buffer. Bytes are read
starting at this channel's current position, and then the position is updated with the
number of bytes actually read.

* size

I ong size()
Returns the current size of the entity to which this channel is connected.

® truncate

Seekabl eByt eChannel 6 truncate(l ong size)

Truncates the entity, to which this channel is connected, to the given size. Never
invoked by Outside In and may be implemented by just returning this.

* write

int wite(java.io.nio.ByteBuffer src)

Writes a sequence of bytes to this channel from the given buffer. Bytes are written
starting at this channel's current position. The entity to which the channel is
connected is grown, if necessary, to accommodate the written bytes, and then the
position is updated with the number of bytes actually written.

e close

voi d close()

Closes this channel. If this channel is already closed then invoking this method has
no effect.

¢ isOpen
bool ean i sOpen()

Tells whether or not this channel is open.

OptionsCache Class
This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace
com.oracle.outsidein.options
Methods

¢ OptionsCache setSourceFile(File file) throws OutsideInException
Sets the source document to be opened.

file: Full path to source file

HTML Export Java Classes 14-13

Exporter Interface

OptionsCache setSourceFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document. Exporting a file using this method may have issues with files that
require the original name of the file (examples: if the extension of the file is needed
for identification purposes or if the name of a secondary file depends on the name/
path of the original source file).

redirect: Object implementing SeekableByteChannel6 to be used to read the source
data containing the input file

OptionsCache setSourceFile(SeekableByteChannel6 redirect, String filename)
throws OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the source
document and provides information about the filename.

redirect: Object implementing SeekableByteChannel6 to be used to read the source
data containing the input file

filename: A fully qualified path or file name that may be used to derive the
extension of the file or name of a secondary file that is dependent on the name/
path of the source file

OptionsCache addSourceFile(File file) throws OutsideInException

Sets the next source document file to be exported in sequence. This allows multiple
documents to be exported to the same output destination.

file: Full path to source file

OptionsCache setSourceFormat(FileFormat fileld)

Sets the source format to process the input file as, ignoring the algorithmic
detection of the file type.

fileld: the format to treat the input document as.

OptionsCache addSourceFile(SeekableByteChannel6 redirect)

Set a redirected channel as the next source document to be exported to the original
destination file. This method has the same limitations as the similar
setSourceFile(SeekableByteChannel6 redirect) method.

OptionsCache addSourceFile(SeekableByteChannel6 redirect, String Filename)

Set a redirected channel as the next source document to be exported to the original
destination file. The file name provided is used as in the method
setSourceFile(SeekableByteChannel6 redirect, String Filename)

OptionsCache setDestinationFile(File file) throws OutsideInException
Sets the location of the destination file.

file: Full path to the destination file

OptionsCache setDestinationFile(SeekableByteChannel6 redirect) throws
OutsideInException

Sets an object that implements SeekableByteChannel6 to be used as the destination
document. An Exporter.export() operation will write the output data to the
provided SeekableByteChannel6 object.

14-14 Developer's Guide

Exporter Interface

redirect: Object implementing SeekableByteChannel6 to be used as the destination
document written during an Exporter.export() operation

OptionsCache setDestinationFormat(FileFormat fileld)
Sets the destination file format to which the file should be converted.

fileId: the format to convert the input document(s) to.

OptionsCache setCallbackHandler(Callback callback)
Sets the object to use to handle callbacks.
callback: the callback handling object.

OptionsCache setPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The
technology will cycle through this list until a successful password is found or the
list is exhausted.

Passwords: List of strings to be used as passwords.

OptionsCache setLotusNotesld(String NotesldFile)
Sets the Lotus Notes ID file location.
NotesldFile: Full path to the Notes ID file.

OptionsCache setOpenForNonSequential Access(boolean
bOpenForNonSequential Access)

Setting this option causes the technology to open archive files in a special mode
that is only usable for non-sequential access of nodes.

bOpenForNonSequential Access : If set to true would open the archive file in the
special access mode. Note that turning this flag on a non-archive file will throw an
exception at RunExport time.

BorderMode

Option to determines how borders will be handled for spreadsheet and database files.

Data Type
BorderModeValue

BorderModeValue Enumeration

CREATEIFMISSING: Use source document borders. If no borders are in the table,
automatically create borders.

OFF: Do not write any table borders

USESOURCE: Use source document borders

Default
CREATEIFMISSING

HTML Export Java Classes 14-15

Exporter Interface

CollapseWhiteSpace

This is an advanced option that casual users of HTML Export may safely ignore. When
set, this option deletes whitespace from the output document. Two types of
whitespace are removed: redundant whitespace characters and vertical whitespace.

This option is intended for situations where bandwidth and screen space are limited.

The HTML standard specifies that the browser will collapse a sequence of whitespace
characters into a single whitespace character. Therefore, having HTML Export remove
these redundant whitespace characters has no effect on the final view of the document.

Removing them benefits the document in reducing the overall size of the output files
generated and thereby saves bandwidth and decreases file transmission times. While
HTML Export makes an effort to remove as much redundant whitespace as possible,
there will be cases where some extra spacing appears in the output.

Removing vertical whitespace, on the other hand, does affect the look of the document
in the browser. When possible, HTML Export preserves vertical spacing between
elements. However, when this option is set, vertical whitespace is removed, resulting
in a more compact view.

Please note that the collapse white space option does not affect whitespace coming
from the template.

Data Type

boolean

Data

One of the following values:
e true: Whitespace is removed.

e false: Whitespace is left intact.

Default

false

DefaultinputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is encoded
in the character set specified by this option. This is most often used when reading
plain-text files, but may also be used when reading HTML or PDF files.

Data Type
DefaultInputCharacterSetValue

DefaultinputCharacterSetValue Enumeration
DefaultInputCharacterSetValue can be one of the following enumerations:

SYSTEMDEFAULT

14-16 Developer's Guide

Exporter Interface

UNICODE
BIGENDIANUNICODE
LITTLEEENDIANUNICODE
UTEF8

UTF7

ASCII

UNIXJAPANESE
UNIXJAPANESEEUC
UNIXCHINESETRAD1
UNIXCHINESEEUCTRAD1
UNIXCHINESETRAD2
UNIXCHINESEEUCTRAD?2
UNIXKOREAN
UNIXCHINESESIMPLE
EBCDIC37

EBCDIC273

EBCDIC274
EBCDIC277
EBCDIC278

EBCDIC280

EBCDIC282

EBCDIC284

EBCDIC285
EBCDIC297
EBCDIC500
EBCDIC1026

DOS437

DOS737

DOS850

DOS852

DOS855

DOS857

DOS860

DOS861

DOS863

DOS865

DOS866

HTML Export Java Classes 14-17

Exporter Interface

DOS869
WINDOWSS874
WINDOWS932
WINDOWS936
WINDOWS949
WINDOWS950
WINDOWS1250
WINDOWS1251
WINDOWS1252
WINDOWS1253
WINDOWS1254
WINDOWS1255
WINDOWS1256
WINDOWS1257
ISO8859_1
1SO8859_2
1SO8859_3
ISO8859_4
ISO8859_5
ISO8859_6
ISO8859_7
ISO8859_8
1SO8859_9
MACROMAN
MACCROATIAN
MACROMANIAN
MACTURKISH
MACICELANDIC
MACCYRILLIC
MACGREEK
MACCE
MACHEBREW
MACARABIC
MACJAPANESE
HPROMANS
BIDIOLDCODE
BIDIPCS8

14-18 Developer's Guide

Exporter Interface

BIDIEO
RUSSIANKOI8
JAPANESEX0201

Default
SYSTEMDEFAULT

DefaultRenderFont
OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in source file is not available on the
system performing the conversion.

Class members:
string strFaceName

Ulnt16 FontHeight

DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Data

e SMALLEST: 1-4MB
e SMALL:2-16MB

e MEDIUM: 3 - 64MB
e LARGE: 4 - 256MB

e LARGEST:5-1GB

Default
LARGE: 4 - 256MB

DropPDFHyphens

This option controls whether or not the PDF filter will drop hyphens at the end of a
line. Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated
word.When this option is set to true, all hyphens at the end of lines will be dropped
from the extracted text.

Data Type

boolean

HTML Export Java Classes 14-19

Exporter Interface

Default

false

EmailHeaders
OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data

e ALL: Displays all available email headers.

e STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and
"Attachments" header fields only. The filter outputs any fields not listed above as
hidden fields, so they will not display.

¢ NONE: Displays no email header fields.
* CUSTOM

Default
STANDARD

EnableAlphaBlending

This option allows the user to enable alpha-channel blending (transparency) in
rendering vector images. This is primarily useful to improve fidelity when rendering
with a slower graphics engine, such as X-Windows over a network when performance
is not an issue.

Data

Boolean

Default

False

ExtractEmbeddedFiles

This option controls the extraction of attachments to email documents. The input
document must be an email document in order for this option to take effect.

¢ When set to BINARY, the attachment will be extracted in its native format allowing
it to be read by the authoring application.

e When set to CONVERT, the attachment will be extracted as HTML.

e When set to OFF, the attachment will be ignored.

The BINARY option is not compatible with MHTML, and therefore embeddings will
always be converted when exporting to MHTML unless this option is set to OFF.

This option is only valid for UUE, MIME and MSG files and not for general purpose
file attachments.

14-20 Developer's Guide

Exporter Interface

Data Type
ExtractEmbeddedFilesValue

ExtractEmbeddedFilesValue Enumeration
* OFF - Embeddings are skipped
¢ CONVERT - Embeddings are converted

e BINARY - Embeddings are extracted in their native file format

Default
OFF

FallbackFormat

This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified
as having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified
binary files as though they were text, which could generate many pages of "garbage"
output.

Data Type
FallbackFormatValue

FallbackFormatValue Enumeration
¢ TEXT: Unidentified file types will be treated as text files.
* NONE: Outside In will not attempt to process files whose type cannot be identified

Default
TEXT

FontAliasList

This option enables the capability to specify which font on the system should be used
when a specific font referenced in the original file is not available. A different alias can
be set for each font desired to be mapped.

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings.

Default
Windows and Unix PrintAlias defaults

HTML Export Java Classes 14-21

Exporter Interface

GenerateBulletsAndNumbering

Turning this option on causes the technology to generate list numbers and/or bullets
as needed rather than using list markup tags. While this violates the spirit of what
markup languages should do, it does cause the browsers to render the lists in a way
that is more faithful to the original look of the document. One use is based on the way
browsers render tags. The HTML standards currently do not allow any way to
specify outline style list numbering.One limitation when using this option is that
standard list indentation may not be possible due to the limits of the selected output
HTML flavor. At this time, only the HTML flavors where CSS is available support the
kind of hanging indents normally associated with lists. If a bullet character needs to be
generated, Unicode character 0x2022 will be used.Note that many character sets do not
contain this character, so the unmappable character ("*") would be used in that case.

Data Type

boolean

Default

false

GenerateJavascriptTabs

Tab support is available by setting this option to true. When active, this option uses
JavaScript to calculate tab stops and position blocks of text accordingly. Potential side
effects of this include delays in loading the pages in the browser and seeing the text
initially with no whitespace at all followed by a pause and then all of the tabs popping
into place. In addition, this support is limited to only left tabs.

In order to take advantage of this option the following additional steps must be taken:

1. The template must contain a <script> tag. Something similar to the following code
fragment is recommended:

{## if el ement=pragnma.jsfile}

<script |anguage="Javascriptl.2" src="{## insert
el ement =pragma. j sfile}"></script>

{## if}

2. The template must also run the DoTabStops routine in the <body> of the HTML.
A span tag used to define the value of oneinch should follow this. Something
similar to the following code snippet is recommended to accomplish this:

{## if el ement=pragnma.jsfile}
<body onl oad="DoTabSt ops()" >

{## el se}
<body>
{## if}

3. Aflavor of HTML that supports CSS must be used.
4. The user's browser must support JavaScript and this support must be enabled.

Data Type

boolean

14-22 Developer's Guide

Exporter Interface

Default

false

GraphicHeightLimit
OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that
it sets an upper limit on the image height. Images larger than this limit will be reduced
to the limit value. However, images smaller than this height will not be enlarged when
using this option. Setting the height using GraphicHeight causes all output images to
be reduced or enlarged to be of the specified height.

Data Type
long

GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (GraphicOutputDPl is set to 50). In this case, the size of the resulting TIFF,
BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The
discrepancy occurs when the output format uses metric units (DPM, or dots per meter)
instead of English units (DPI, or dots per inch). Depending on how the graphics
application performs rounding on meters to inches conversions, the DPI value
reported may be 1 unit more than expected. An example of a format which may
exhibit this problem is PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPIL

Data Type
long

HTML Export Java Classes 14-23

Exporter Interface

GraphicSizeLimit
OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of a
converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not
a pixel limit on the entire output file.

Data Type
long

GraphicSizeMethod
OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics,
though the quality of the converted graphic will be somewhat degraded. The smooth
sizing option results in a more accurate representation of the original graphic, as it
uses anti-aliasing. Antialiased images may appear smoother and can be easier to read,
but rendering when this option is set will require additional processing time. The
grayscale only option also uses antialiasing, but only for grayscale graphics, and the
quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Data

¢ QUICKSIZING

e SMOOTHSIZING

¢ SMOOTHGRAYSCALESIZING

GraphicWidthLimit
OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic
may be. Any images wider than this limit will be resized to match the limit. It should
be noted that regardless whether the GraphicHeightLimit option is set or not, any
resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by
using GraphicWidth in that it sets an upper limit on the image width. Images larger
than this limit will be reduced to the limit value. However, images smaller than this
width will not be enlarged when using this option. Setting the width using
GraphicWidth causes all output images to be reduced or enlarged to be of the
specified width.

14-24 Developer's Guide

Exporter Interface

Data Type
long

GridWrap

Option to specify whether the "previous” and "next" relationships "wrap" at the edges
of the spreadsheet or database.

Data Type
GridWraplnfo

Data
A GridWraplnfo object describing the grid output properties.

Default

Wrapping enabled with 5000 rows and 100 columns with the AdvanceMode set to
AdvanceModeValue. DOWN

HTMLFlavor

Each Web browser forms a de facto HTML standard. This is because each browser
hasa unique collection of HTML tags and tag attributes it does or does not support.
Thus, there are a large number of browser-based variations on the official HTML
standards that are referred to here as "flavors" of HTML.

This option allows the developer to tailor the output generated to a specific browser or
for a specific minimum browser. This allows HTML Export to produce the best
possible rendering of the source document given the tags available in the target flavor.

It also gives the OEM the ability to specify which standard their product will adhere
to, rather than having that standard be dictated by HTML Export. HTML Export
currently supports a large number of flavors. While some flavors are targeted at
specific browsers, other flavors are designed for a more abstract target. The "generic"
and "HTML 2.0" flavors provide "lowest common denominator" flavors. The HTML
produced by these flavors is very simple and should work in almost any browser. The
primary difference between these two flavors is that the generic flavor supports tables
and the HTML 2.0 flavor does not.

At other times, it is desirable to have the ability to create HTML that simply supports
"the major x.0 and later browsers." For this purpose, there are the "greatest common
denominator” flavors. They are the "3.0" and "4.0" flavors. The "3.0" flavor should be
used to create HTML that will look good in Netscape Navigator 3.0 or later and in
Microsoft Internet Explorer 3.0 or later. The "4.0" flavor is defined to look good in
Netscape Navigator 4.0 or later and in Microsoft Internet Explorer 4.0 or later. Note
that upon examining the capabilities of these browsers after the 4.0 versions, it was
determined that while they offer many new features, they do not have any .html

or .css extensions that are useful to HTML Export at this time.

Naturally, support for a particular HTML flavor does not mean that HTML Export
will generate all the tags and tag attributes that flavor supports. There are many tags
and attributes that cannot sensibly be used in an automated conversion setting. Such
tags require more information about the author's intent than is available in the source
document.

Exporting a document to a particular HTML flavor also does not mean that the
resulting HTML will be limited to only the tags and tag attributes supported by that

HTML Export Java Classes 14-25

Exporter Interface

flavor. The target browser will safely ignore this extra HTML. However, should the
converted document be viewed in a more sophisticated browser, this extra
information will be used to produce a more accurate view of the document.

What support for a particular HTML flavor does mean is that the HTML generated
will look as good as possible when viewed in the appropriate browser.

Data Type
HTMLFlavorValue

HTMLFlavorValue Enumeration
One of the following values (flavors marked with "(CSS)" require a separate or

embedded .css file to be created as part of the document conversion):

¢ GENERICHTML: General purpose, simple HTML support that should look good
in any browser that supports tables.

e HTML20: HTML 2.0. Based on the official HTML 2.0 standard, this provides
minimal HTML support and per that standard, it does not support tables.

¢ HTML30: Should look good in both Netscape Navigator 3.0 or later and Microsoft
Internet Explorer 3.0 or later.

e HTML40: Should look good in both Netscape Navigator 4.0 or later and Microsoft
Internet Explorer 4.0 or later (CSS).

¢ NS30: Netscape Navigator 3.0
® NS40: Netscape Navigator 4.0 (CSS)

¢ MS30: Microsoft Internet Explorer 3.0. Note that while this flavor has limited CSS
support, it does not create a separate or embedded .css file.

e MS40: Microsoft Internet Explorer 4.0 (CSS)

Default
HTML40

HTMLOutputFormatting
This is an advanced option that casual users may safely ignore.

This option turns off writing of characters that are produced strictly to make the
output more readable and visually appealing. Currently, those formatting characters
are limited to newlines, carriage returns and spaces. This option is of benefit primarily
to users who perform special automated processing on the text produced by the
technology. For these users, even benign non-markup text not originally in the source
document constitutes a source of extra headaches for their processing. Setting this
option excludes all formatting characters from appearing in the generated markup. It
is important to note the things that setting this option does not do:

¢ While setting this option will make it very difficult for a human to read the
generated markup in a text editor, it does not affect the browser's rendering of the
document.

* This option does not affect the contents of the .css files since they do not contain
any text from the source document.

14-26 Developer's Guide

Exporter Interface

* The option does not affect spaces or newlines copied from the template as the
contents of the templates are already under the control of the customer.

Data Type

boolean

Default

false

IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML
comments that mark areas of HTML to be interpreted in specific versions of Internet
Explorer, while being ignored by other browsers. This option allows you to control
how the content contained within conditional comments will be interpreted by
Outside In's HTML parsing code.

Data

¢ NONE: Don't output any conditional comment
e JE5: Include the IE5 comments

e JE6: Include the IE6 comments

e JE7: Include the IE7 comments

e JE8: Include the IE8 comments

e JE9: Include the IE9 comments

e ALL: Include all conditional comments

IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type

boolean

InterlacedGiFs
OIT Option ID: SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the dwOutputID parameter of the EXOpenExport function
is set to FI_GIF.

HTML Export Java Classes 14-27

Exporter Interface

Data Type

boolean

InternalRendering
OIT Option ID: SCCOPT_RENDERING_PREFER_OIT

This option is valid on 32- and 64-bit Linux, 32-bit SunOS SPARC, 32-bit HP-UX RISC,
and 32-bit AIX PPC.

When this option is set to TRUE, the technology will attempt to use its internal
graphics code to render fonts and graphics. When set to FALSE, the technology will
render images using the operating system's native graphics subsystem (X11 on UNIX/
Linux platforms). This requires that there be an X11 display and a valid DISPLAY
variable, regardless of the type of input document.

It is important for the system to be able to locate useable fonts when this option is set
to TRUE. Only TrueType fonts (*.ttf or *.ttc files) are currently supported. To ensure
that the system can find them, make sure that the environment variable
GDFONTPATH includes one or more paths to these files. If the variable
GDFONTPATH can't be found, the current directory is used. If fonts are called for and
cannot be found, Image Export will exit with an error. Oracle does not provide fonts
with any Outside In product.

Note:

Note that the maximum total path size for paths included in GDFONTPATH
is 256 characters - paths longer than this will be truncated and will result in
fonts not being discovered.

Data Type

boolean

ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601 standard.
This conversion can only be performed using dates that are stored as numeric data
within the original file.

Data Type

boolean

Default

false

JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the dwOutputID parameter of the EXOpenExport function is set
to FI_JPEGFIF.

14-28 Developer's Guide

Exporter Interface

Data Type
long

Data

A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default
100

LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dIl

Type (Common): String

Data
A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

OutputChangeTracking

The setting for this option determines whether or not change tracking information in
input documents will be written into the output via the <ins> and HTML tags.
When the option is set to FALSE, no change tracking information will be written into
the output. When set to TRUE, the <ins> and tags will be used as appropriate.
Previous versions of HTML Export included change tracking text in comments.

Data Type

boolean

Default

false

OutputCharacterSet

This option allows the developer to specify which character set should be used in the
output file. The technology will then translate or "map" characters from the input
document's character set to the output character set as needed. Naturally, export
process does not translate content from one language to another. This character
mapping is also clearly limited by the need for the character to be in both the input
and the output character sets. If a character cannot be mapped, the character will show
up in the output as the "unmappable character." The default unmappable character
used is the asterisk (*). The character used may be changed by setting the
UnmappableCharacter option. If the resulting output contains an excessive number of

HTML Export Java Classes 14-29

Exporter Interface

asterisks, selecting a more appropriate output character set should improve the
situation.

The technology reserves the right to override this option. The option will be
overridden if ANSI Double-Byte Character Set (DBCS) characters are detected in the
source document and a single-byte character set is chosen as the output character set.
If the option is overridden, this change will affect the entire output document. The
technology uses the first DBCS character set it finds in the document as the basis for its
decision about which output character set to choose as its override.

Note that special character set override rules apply when the input document uses the
HWP (Hangul 97) filter. For these documents, the output character set will be forced to
SO_ANSI949 (euc-kr) unless the user has selected euc-kr, Unicode or UTF-8 output.
These override rules do not apply to the HWP2 (Hangul 2002) filter, as it uses Unicode
exclusively.

Source documents in Unicode will not override this option. This is especially
important to remember as some important file formats store text in Unicode including
Microsoft Office.

The markup standards currently supported by HTML Export limit documents to a
single character set. That character set is specified in an output file using the
CONTENT attribute of the <meta> tag. This limits what the technology can do with
documents that have multiple character sets. In general, documents that are a mix of a
single Asian language and English characters will translate correctly (although with
some possible loss of non-alphanumeric characters) if the appropriate DBCS, UTF-8 or
Unicode output character set is selected. This is because most DBCS character sets
include the standard 7-bit Latin 1 characters. Documents that contain more than one
DBCS character set or a DBCS character set and a non-English character set (such as
Cyrillic) may not export with all the character glyphs intact unless Unicode or UTF-8 is
used.

Source documents that contain characters from many character sets will look best only
when this option is set to Unicode or UTF-8. This is because the Unicode and UTF-8
character sets contain almost all characters for the most common languages.

While the W3C recommends using Unicode, there is a downside to it at this time. Not
all systems have the appropriate fonts needed for using Unicode or UTF-8. Many
editors do not understand these character sets, as well. In fact, while HTML Export can
read Unicode source documents, it cannot read UTF-8 source documents. In addition,
there are some differences in the way browsers interpret the byte order of 2-byte
Unicode characters. For additional details about the byte ordering issue, see the
section for "UnicodeByteOrder."

In order for HTML Export to correctly place the character set into the output file it
generates, all templates should include a statement that uses the {## insert} macro to
insert the character set into the document, as in the following example:

<meta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htni;
charset ={## insert el enent=pragna. charset}" />

If the template does not include this line, the user may have to manually select the
correct character set in the user's browser.

Data Type
OutputCharacterSetValue

14-30 Developer's Guide

Exporter Interface

OutputCharacterSetValue Enumeration

This enumeration contains the possible values for OutputCharacterSet:

DOS437: U.S.

DOS737: FREEK

DOS850: LATIN-1

DOS852: LATIN-2

DOS855: CYRILLIC

DOS857: TURKISH

DOS860: PORTUGESE

DOS863: FRENCH CANADA

DOS865: DENMARK, NORWAY-DAT

DOS866: CYRILLIC

DOS869: GREECE

WINDOWSS874: THAILAND

WINDOWS932: JAPANESE

WINDOWS936: CHINESE GB

WINDOWS949: KOREA (WANSUNG)
WINDOWS950: HONG KONG, TAIWAN
WINDOWS1250: WINDOWS LATIN 2 (CENTRAL EUROPE)
WINDOWS1251: WINDOWS CYRILLIC (SLAVIC)
WINDOWS1252: WINDOWS LATIN 1 (ANSI)
WINDOWS1253: WINDOWS GREEK
WINDOWS1254: WINDOWS LATIN 5 (TURKISH)
WINDOWS1255: WINDOWS HEBREW
WINDOWS1256: WINDOWS ARABIC
WINDOWS1257: WINDOWS BALTIC
UNICODE: UNICODE

UTEF8: UTF-8

ISO8859_1: LATIN-1 - subset of WINDOWS1252
ISO8859_2: LATIN-2

ISO8859_3: LATIN-3

ISO8859_4: LATIN-4

ISO8859_5: CYRILLIC

ISO8859_6: ARABIC

ISO8859_7: GREEK

ISO8859_8: HEBREW

ISO8859_9: TURKISH

HTML Export Java Classes 14-31

Exporter Interface

Default
WINDOWS1252

OutputGraphicType
OIT Option ID: SCCOPT_GRAPHIC_TYPE

This option allows the developer to specify the format of the graphics produced by the
technology.

¢ When setting this option, remember that the JPEG file format does not support
transparency.

¢ Though the GIF file format supports transparency, it is limited to using only one of
its 256 available colors to represent a transparent pixel ("index transparency").

* PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This is
achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HTML Export can make when this option is set to
None. Some of the Outside In Viewer Technology's import filters can be optimized to
ignore certain types of graphics.

Data Type
OutputGraphicTypeValue

OutputGraphicTypeValue Enumeration
These are the possible values for OutputGraphicType:

GIF: Create GIF images

JPEG: Create JPEG/JFIF images

PNG: Create PNG images

NONE: Turn off graphic conversions

Default
JPEG

PageBreakLimit

This option sets a suggested page size for the output generated. This means that the
text of the document is broken up into "pages" of approximately the requested size.
Each page is stored as a separate output file.

This feature is particularly useful when converting documents that are poorly
structured. Many documents lack the kind of style information HTML Export
normally uses to break the document into pieces based on things like headings. By
setting this option, the exported document can be presented as a set of more
manageable pieces rather than a single giant output file. It is also useful with
documents that are structured but have large pieces in the structure.

If page breaking is activated (set to a non-zero value), HTML Export will buffer the
entire output document in memory during conversion. Conversion times and memory
requirements will increase accordingly in this case.

14-32 Developer's Guide

Exporter Interface

The size specified by this option is given in characters of text. Only text inserted from
the input document is counted in the page size. Thus, "as is" text from the template is
not counted against the page size. Also, markup tags are not counted in the page size.

In addition, some template inserts are normally used as attributes to markup tags, and
as such they are not counted in page size calculations no matter how they are actually
used. Those template inserts are:

* pragma.charset

® pragma.jsfile

® pragma.cssfilename
® sections.x.itemnum

e gsections.x.reflink

A page size of zero ('0") indicates that this option is turned off and no page breaking is
done.

When this option is turned on, the page breaking rules are as follows:

¢ Hard page breaks in the document always trigger a page break. Soft page breaks
are ignored.

¢ A page break may be specified in the template with the {## unit break} macro.

* A page boundary will never be created in the middle of a paragraph. As many
paragraphs as possible will be written without exceeding the requested page size.
Page sizes are not hard limits on content however. One situation where the page
size could be exceeded would be if a single paragraph exceeds the page size.

¢ When grid-enabled templates are in use, the exported grids are not broken based
on the setting of this option. However, this option may affect the size of grids
generated. For more information, see the section on "GridWrap."

* Use of this option will not cause the contents of cells within a grid to be truncated.

¢ When grids are not in effect, spreadsheets and databases will be broken based on
page size. For these section types, checks for page breaks will be made after each
full row from the spreadsheet or database is written.

It is up to the template author to then connect these pieces with the appropriate links.
In order to use this option, the template must be equipped to use the {## unit} syntax.

Note that templates enabled with the {## unit} syntax may be mixed with templates
that do not contain {## unit} macros. In this case, page breaking will only occur in the
template that is enabled with {## unit} macros. An example of where this would be
desirable is a "table of contents" template that uses two sub templates to each fill in the
contents of a frame. The frame containing the actual table of contents could avoid
being broken into pages by not containing any {## unit} macros. The frame containing
the actual document contents could then support paging by using {## unit} macros.

Data Type
long

Default
0 (off)

HTML Export Java Classes 14-33

Exporter Interface

ParseXMPMetadata
OIT Option ID: SCCOPT_PARSEXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Data Type

boolean

Data
¢ true: This setting enables parsing XMP.

e false: This setting disables parsing XMP.

Default

false

PDFInputMaxEmbeddedObjects
This option allows the user to limit the number of embedded objects that are produced

in a PDF file.

Data Type
long

Data

The maximum number of embedded objects to produce in PDF output. Setting this to
0 would produce an all embedded objects in the input document.

Default

0 — produce all objects.

PDFInputMaxVectorPaths

This option allows the user to limit the number of vector paths that are produced in a
PDF file.

Data Type
long

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would
produce an all vector objects in the input document.

14-34 Developer's Guide

Exporter Interface

Default

0 — produce all vector objects.

PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration
This enumeration defines the type of Bidirection text reordering the PDF filter should
perform.

e STANDARDBIDI: Do not attempt to reorder bidirectional text runs.

¢ REORDEREDBIDI: Attempt to reorder bidirectional text runs.

PDFWordSpacingFactor

This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of the
same word and no word break is inserted.

Data Type
float

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Default
0.85

PerformExtendedFlI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

HTML Export Java Classes 14-35

Exporter Interface

Data Type

boolean

Data

One of the following values:
¢ false: When this is set, standard file identification behavior occurs.

e true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

® true

PreventGraphicOverlap

Most browsers support flowing text around images. Unfortunately, even the most
popular browsers also have bugs in their support for this feature that occasionally
result in document elements overlapping. This option allows users of HTML Export to
choose if they would rather have text flowing around graphics or if they are willing to
sacrifice that feature in order to prevent browser overlap bugs.

When this option is turned on (set to true), HTML Export prevents browsers from
causing graphic overlap problems by surrounding all tags with <div> tags. The
overlap problems occur most frequently when the browser is displaying a document
that has a mix of left- and right-aligned graphics in close proximity to each other.

Resizing the browser window horizontally will sometimes expose this problem if it
does not appear initially.

Because these browser bugs are infrequently seen, this option is turned off (set to false)
by default. However, setting this option off does not guarantee that text will be able to
flow around graphics in the browser the same way it does in the original document.
There are two problems which can prevent this from occurring.

¢ The first problem is when objects are placed using positional frames.
Unfortunately, most new word processing formats do this automatically. When
positional frames are used, each object exists in its own frame. HTML Export
converts each frame as a single paragraph. Therefore, the objects are written one
after the other even if they were originally placed side by side in the source
document.

® The second problem is associated with image alignment. For some images, HTML
Export is unable to obtain the alignment of the image, so the alignment of the
paragraph it is contained in is used instead. The reason HTML Export uses this
alignment, which is not necessarily 100% correct, is because without adding
"align="in the tag, text does not wrap around images in browsers.

Data Type

boolean

Default

false

14-36 Developer's Guide

Exporter Interface

RenderEmbeddedFonts

This option allows you to disable the use of embedded fonts in PDF input files. If the
option is set to true, the embedded fonts in the PDF input are used to render text; if the
option is set to false, the embedded fonts are not used and the fallback is to use fonts
available to Outside In to render text.

Data Type

boolean

Default

true

ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchivevNodelnfo"
and "GetObjectInfo".

Data Type

boolean

Data
¢ true: Provide the full path.

¢ false: Do not provide the path.

Default

false

ShowColumnHeadings

When this option is set to true, row and column headings ("1", "2", "3" / "A", "B", "C")
are included in the output for spreadsheet and database files. When set to false, no
row and column headings are created. The default for this option is true.

Data Type

boolean

Default

true

ShowHiddenSpreadSheetData

The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to false (the
default), the hidden elements are not written. When set to true, they are placed in the
output in the same manner as regular spreadsheet data.

HTML Export Java Classes 14-37

Exporter Interface

Data Type

boolean

Default

false

ShowHiddenText

This option will force HTML Export to place all hidden text in line with surrounding
text.

Please note that enabling this option will not display hidden cells, hidden rows or
hidden sheets in spreadsheet documents. Also note that when graphic documents
(such as faxes) are processed by OCR software and converted to PDF, the optically
recognized text may be rendered as a layer of hidden text behind the original image.
In order to properly export such PDF documents, this option must be enabled.

Data Type

boolean

Data
e true: Allow hidden text to be placed in the output.

e false: Prevent hidden text from being placed in the output.

Default

false

SimpleStyleNames

This option is for use by people who intend to read or change the CSS style names
generated by HTML Export.

By default, HTML Export creates unique style names based on the style names used in
the original document. Unfortunately, there is an inherent limitation in the style
names the CSS standard permits. That standard only permits the characters [a-z][A-Z]
[0-9] and "-". Source document style names do not necessarily have this restriction. In
fact they may even contain Unicode characters at times. For this reason, the original
style names may need to be modified to conform to this standard. To avoid illegal
style names, HTML Export performs the following substitutions on all source style
names:

"non

1. If the character is a "-", then it is replaced with "--".

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to:

14-38 Developer's Guide

Exporter Interface

My-0020Special-0020H1--Style-0021

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.

Developers should also appreciate the simplicity of the code needed to parse or create
these style names.

In addition, HTML Export will sometimes create special character attribute-only
versions of styles. These have the same name as the style they are based on with "--
Char" appended to the end. These styles differ from their original counterparts in that
they contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Because of these CSS limitations, this option was created. Setting this option to true
causes HTML Export to generate style names that are easy to read but are not
guaranteed to be unique. It does this by discarding all characters in the original style
name that are not legal in CSS style names. As one would expect, this may lead to
naming collisions.

An example of a naming collision caused by setting this option can be seen if you look
at source document styles named MyStyle and My $ Style. When exported with this
option, both would become MyStyle. This in turn may generate confusion when
viewing the document in the browser. This is because the browser will look upon the
second style as being a redefinition of the first.

With the option set to false this is not a problem. The two styles would be converted to
MyStyle and My-0020-0024-0020Style respectively. Because the style names are
unique, the browser will not see the second style as a redefinition of the first.

As this contrived example indicates, naming collisions should be rare for most U.S.
documents.

If a style name consists of nothing but illegal characters, HTML Export will create a
style name for it. This style name is of the form UnnamedStyleX where X is a count of
styles encountered so far that did not have style names for one reason or another. This
behavior is expected to be very common when converting international documents in
languages that are not based on 7-bit ASCIIL.

Data Type

boolean

Data
¢ true: Generate names that may not be unique, but are easy to read.

* false: Generate unique style names that are difficult to read.

Default

false

StrictFile

When an embedded file or URL can't be opened with the full path, OutsideIn will
sometimes try and open the referenced file from other locations, including the current
directory. When this option is set, it will prevent Outsideln from trying to open the file
from any location other than the fully qualified path or URL.

HTML Export Java Classes 14-39

Exporter Interface

Data Type

boolean

Default

false

SuppressFontAttributes

This option is used to turn off specified font-related markup in the output. Naturally,
if the requested output flavor or other option settings prevent markup of the specified
type from being written, this option cannot be used to turn it back on. However,
specifying the size, color and font face of characters may all be suppressed by
combining together the appropriate combination of flags in this option.

Data Type

EnumSet<SuppressFontAttributeValues>

SuppressFontAttributeValues Enumeration

The following set of flags:

e SUPPRESSSIZE: Turns off any character-sizing information supported in the
output flavor.

e SUPPRESSCOLOR: Suppresses specifying the color of text.

e SUPPRESSFACE: Prevents the technology from requesting a specific font name for
text.

Default
EnumSet.noneOf(SuppressFontAttributeValues.class)

TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the msg
file is created.

Data Type
long

14-40 Developer's Guide

Exporter Interface

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

e (0: GMT time

TransparencyColor
OIT Option ID: SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color” in the
output graphic file. Naturally, this option is only used when the selected output
graphic file format supports transparency (GIF and PNG only). If the option is not set,
the default behavior is to use the same color value that the input file used as the
transparency color.

Use the (r, g, b) macro to create the color value to pass to this option. The red, green
and blue values are percentages of the color from 0-255 (with 255 being 100%). Note
that this macro should be used to set a variable and that variable should then be
passed to the set option routine (instead of trying to use the macro as part of the set
option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set
the option to DefaultTransparencyColor if they wish to revert to the default behavior.

Class members:
byte Red

byte Green
byte Blue

Data
ColorInfo
Default

¢ new ColorInfo(): Use the same tranparency color as the source document.

UnicodeByteOrder

This option determines the byte order of Unicode characters in the output files when
Unicode is chosen as the output character set.

Data Type
UnicodeByteOrderValue

UnicodeByteOrderValue Enumeration

The following set of values:

¢ BIGENDIAN: Big-Endian byte ordering is used to output characters in output file.

HTML Export Java Classes 14-41

ExportStatus Class

e LITTLEENDIAN: Little-Endian byte ordering is used to output characters in
output file.

¢ FROMTEMPLATE: Use the byte ordering used in the main template file

Default
FROMTEMPLATE

UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Data Type

int

Data

The Unicode value for the character to use.

Default

e (x002a ="*"

ExportStatus Class

The ExportStatus class provides access to information about a conversion. This
information may include information about sub-document failures, areas of a
conversion that may not have high fidelity with the original document. When
applicable the number of pages in the output is also provided.

Namespace

com.oracle.outsidein

Accessors

* long getPageCount() - A count of all of the output pages produced during an
export operation.

¢ EnumSet<ExportStatusFlags> getStatusFlags() - Gets the information about
possible fidelity issues with the original document.

¢ long getSubDocsFailed() - Number of sub documents that were not converted.

* long getSubDocsPassed() - Number of sub documents that were successfully
converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an
export process.

14-42 Developer's Guide

FileFormat Class

¢ NolnformationAvailable: No Information is available
¢ MissingMap: A PDF text run was missing the toUnicode table
¢ VerticalText: A vertical text run was present

o TextEffects: A run that had unsupported text effects applied. One example is Word
Art

* UnsupportedCompression: A graphic had an unsupported compression

* UnsupportedColorSpace: A graphic had an unsupported color space

* Forms: A sub documents had forms

* RightToLeftTables: A table had right to left columns

¢ Equations: A file had equations

¢ AliasedFont: The desired font was missing, but a font alias was used

* MissingFont: The desired font wasn't present on the system

® SubDocFailed: A sub-document was not converted

¢ TypeThreeFont: A type 3 font was encountered.

* UnsupportedShading: An unsupported shading pattern was encountered.

¢ InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

FileFormat Class

This class defines the identifiers for file formats.

Namespace

com.oracle.outsidein

Methods

¢ GetDescription
String GetDescription()

This method returns the description of the format.

e Getld
int Getld()
This method returns the numeric identifier of the format.
e Forld
Fi |l eFormat Forld(int id)
This method returns the FileFormat object for the given identifier.

id: The numeric identifier for which the corresponding FileFormat object is
returned.

HTML Export Java Classes 14-43

FontAliases Class

FontAliases Class

FontAliases is a class for providing font matching of unknown fonts.

Namespace

com.oracle.outsidein.options

Constructor

Font Al i ases(bool ean clearDefaults, Map<String, String> aliasList)

useDefaul ts Option whether to initialize the list to a set of platform
specific default aliases (true) or to an enpty list (false)

al i asLi st Aliases list as a key-value pair with original name as key

Accessors
* Map<String, String> getAliasList() - List of font aliases set.

* Map<String, String> getDefaultAliases() - List of platform-specific default font
aliases that are applied when "true" is passed as the first argument of the
constructor.

FontInfo Class

FontInfo is a class to define a font for use in the Outsideln API.

Namespace

com.oracle.outsidein.options

Constructors

FontInfo(String fontface, int height)
fontface The name of the font
hei ght Size of the font in half points
Font I nfo()

Constructs a FontInfo object with a 10 point Arial Font.

Accessors
* String getFontface() - The name of the font

¢ int getHeight() - Size of the font in half points

FontList Class

FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

com.oracle.outsidein.options

14-44 Developer's Guide

GridWraplnfo Class

Constructor

Font Li st (bool ean i sExclusion, String[] fonts)
I sExclusion |f set then acconpanying list is an exclusion |ist
fonts List of fonts to include or exclude

Accessors
* boolean isExcludeList() - If set, then accompanying list is an exclusion list.

* String[] getFontsList - List of fonts to include or exclude.

GridWraplnfo Class

The GridWraplnfo class is a data class used to define the grid wrapping options to be
used.

Namespace

com.oracle.outsidein.options

Constructors

GidWapl nfo()

Default constructor with default values.

G i dWapl nf o(bool ean Enabl e)

Initializes a new instance of the GridWraplInfo class to enable or disable grid wrapping
Enable: Option to enable or disable grid wrapping

GidWapl nf o(
bool ean Enabl e,
| ong Rows,
| ong Col umms,
GidWapl nf o. AdvanceMbdeVal ue Advance)

Create an instance of a GridWrapInfo object with all properties initialized.

Enable: Option to enable or disable grid wrapping

Rows: The maximum number of rows that each template "grid" should contain.
Columns: The maximum number of columns that each template "grid" should contain.

Advance: Option to specify how the "previous" and "next" relationships will work
between grids.

Accessors

Gi dW apl nf 0. AdvanceMbdeVal ue Advancelbde

Option to specify how the "previous" and "next" relationships will work between
grids.

| ong get MaxCol ums()
voi d set MaxCol urms(| ong col unms)

The number of columms that each template "grid" (applicable only to spreadsheet or
database files) should contain.

HTML Export Java Classes 14-45

HighlightTextAnnotation Class

| ong get MaxRows()
voi d set MaxRows(| ong rows)

The number of rows that each template "grid" (applicable only to spreadsheet or
database files) should contain.

bool ean i sW appi ngEnabl ed

This option specifies whether the "previous" and "next" relationships "wrap" at the
edges of the spreadsheet or database.

AdvanceModeValue Enumeration

This enumeration is used to set how spreadsheet is traversed.
¢ DOWN: Traverse by columns

* ACROSS: Traverse by rows

HighlightTextAnnotation Class

HighlightTextAnnotation is a class for defining Text highlighted Annotations. This
class derives from the Annotation class.

Namespace

com.oracle.outsidein.annotations

Constructors

H ghl i ght Text Annot ation(l ong Start Char Count,

I ong EndChar Count,

EnunBet <Char At t ri but eVal ues> CharAttrs,

Enunset <Char At t ri but eVal ues> Char Mask)
H ghl i ght Text Annot ation(l ong Start Char Count,

I ong EndChar Count,

Col orI nfo Foreground,

Col orI nf o Background)
H ghl i ght Text Annot ation(l ong Start Char Count,

I ong EndChar Count,

Col orI nfo Foreground,

Col orI nf o Background,

EnunBet <Char At tri but eVal ues> CharAttrs,

EnunBet <Char At t ri but eVal ues> Char Mask)
Start CharCount The character count of the starting position

EndChar Count The character count of the end position
For eground The text color of the highlight
Background The background col or of the highlight
CharAttrs the character attributes to use

Char Mask character attributes to change

Initializes a new instance of the HighlightTextAnnotation class.

Accessors
e StartCharCount: The character count of the starting position

* EndCharCount: The character count of the end position

14-46 Developer's Guide

MailHeaders Class

¢ Foreground: The text color of the highlight
¢ Background: The background color of the highlight
* CharAttrs: The character attributes to use

¢ CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.
e NORMAL: Normal text - All attributes off
e UNDERLINE: Underline attribute

e ITALIC: Italic attribute

e BOLD: Bold attribute

e STRIKEOUT: Strike out text

e SMALLCAPS: Small caps

e OUTLINE: Outline Text

e SHADOW: Shadow text

e CAPS: All Caps

e SUBSCRIPT: Subscript text

¢ SUPERSCRIPT: Superscript text

e DUNDERLINE: Double Underline

e WORDUNDERLINE: Word Underline

e DOTUNDERLINE: Dotted Underline

e DASHUNDERLINE: Dashed Underline

e ALL: All attributes

MailHeaders Class

MailHeaders class is a class describing the Mail Headers to be displayed, hidden or
modified.

Namespace

com.oracle.outsidein.options
Constructors
Mai | Header s()

Constructs a MailHeaders object with standard headers only.

Mai | Header s(Mai | Header s. Basel i neVal ue basel i ne)
baseline The starting point to add or del ete headers.

HTML Export Java Classes 14-47

MailHeaders Class

Accessors

voi d set Basel i ne(Mai | Header s. Basel i neVal ue)
Mai | Header s. Basel i neVal ue get Basel i ne()

The starting point to add or delete headers.

Methods

Mai | Header s excl udeHeader (Mai | Header s. Mai | TypeVal ue ntype,
Mai | Header s. Mai | Header Val ue nhdr)

This method adds a standard header to the hidden list.

e mtype: The type of documents in which to hide this header
¢ mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

Mai | Header s excl udeHeader (Mai | Header s. Mai | TypeVal ue ntype, String Excl usion)
This method adds a custom header to be the hidden list.

¢ mtype: The type of documents in which to hide this header

¢ Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

Mai | Header s i ncl udeHeader (Mai | Header s. Mai | TypeVal ue ntype,
Mai | Header s. Mai | Header Val ue nhdr)

This method adds a standard header to the visible list.

¢ mtype: The type of documents in which to show this header

e mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

Mai | Headers i ncl udeHeader (Mai | Header s. Mai | TypeVal ue ntype, String Original, String
Repl acenent)

This method adds a custom header to the visible list.

e mtype: The type of documents in which to show this header
¢ Original: User-specified MIME header name

* Replacement: String that will be used as the label for the user-defined MIME
header

This method returns a reference to the updated MailHeaders object.

voi d set Vi si bl eHeader s(Map<Mai | Headers. Mai | TypeVal ue, Map<String, String>> headers)

This method sets a series of custom headers to the visible headers list.

14-48 Developer's Guide

Option Interface

* headers: A key value pair of user-specified MIME headers and their replacement
strings
voi d set H ddenHeader s(Map<Mai | Header Val ue. Mai | TypeVal ue, List<String>> headers)

This method sets a series of custom headers to the hidden headers list.

¢ headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add
or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

Option Interface

The Option Interface provides the methods and properties to retrieve information
about an Outside In Option.

Package

com.oracle.outsidein.options

Accessors

e String getName() — Gets the name of the option

* String getDescription() — Gets the description of the option
¢ C(Class<?> getDataType() — Gets the type of the option value.

® C(Class<?>[] getltemTypes() — Gets the type parameters for option values that are
generics

¢ EnumSet<Option.OutsideInProducts> getSupportingProducts() — Gets the list of
products that support this option

Methods
voi d set (OptionsCache exporter, CObject objValue) throws Qutsidel nException;
This method sets the option to the exporter object and returns the exporter object itself.

* exporter — The exporter object

¢ objValue — Value of the option

Note:

If the type of objValue cannot be converted to the data type the option is
expecting, an OutsideInException is thrown.

HTML Export Java Classes 14-49

Outsideln Class

(oj ect get (OptionsCache exporter)
This method gets the currently set value for the option.

¢ exporter: The exporter object who’s option value is requested.

OutsidelnProducts Enumeration

e HTMLEXPORT — Outside In HTML Export

¢ IMAGEEXPORT — Outside In Image Export

e PDFEXPORT — Outside In PDF Export

¢ SEARCHEXPORT — Outside In Search Export

¢ WEBVIEWEXPORT — Outside In Web View Export
e XMLEXPORT — Outside In XML Export

Outsideln Class

This is a utility class that creates an instance of an Exporter object on request.

Namespace

com.oracle.outsidein

Methods

static Exporter newLocal Exporter ()

This method creates an instance of an Exporter object. It returns a newly created
Exporter object.

static Exporter newLocal Exporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source
Exporter. All the options of source are copied to the new Exporter. The source and
destination file information will not be copied.

Qut si del nVer si on get Cor eVer si on()

This static method returns an OutsideInVersion object with information describingthe
Outside In Core Technology used.

voi d setLocation(File oilinkDir)

Sets an explicit path to the native Outside In libraries and oilink.exe. If used, this
method must be called prior to any other Outside In method or this method will throw
an exception. If setLocation() is not used, the location will be determined by searching
for the Outside In libraries in the following order:

1. the location specified in the 'OILinkLocation' Java property
2. the 'oit' subdirectory under the directory containing oilink.jar

3. the directory containing oilink jar

14-50 Developer's Guide

OutsidelnException Class

OutsidelnException Class

This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or
properties except those of the parent Exception class.

Namespace

com.oracle.outsidein

HTML Export Java Classes 14-51

OutsidelnException Class

14-52 Developer's Guide

Part IV

Using the .NET AP

This section provides details about using the HTML Export SDK with the NET APL

Part IV contains the following chapters:
¢ Introduction to the NET API

¢ HTML Export .NET Classes

15

Introduction to the .NET API

This chapter is an introduction to getting started with the NET APL Outside In .NET
is a set of class libraries and Windows DLLs that provides developers an easy interface
to create NET applications using Outside In Technology.

The following topics are covered:
* Requirements

* Getting Started

Requirements

To develop applications using the .NET APIs, the following set of modules and tools
are required:

* The Outside In Technology (OIT) developer's redistributable modules for your
product

e Visual Studio 2010 or later
e NET Framework 4.0 or later

e The API libraries:
outsidein.dll - The .NET libraries to access the Outside In technologies
oilink.dll and oilink.exe- The bridge modules between .NET and the C-APIs.

Google. ProtocolBuffers.dll - The cross language binary serialization provider.

Getting Started

There are two steps in developing applications using the APIs. In the first step, you
would need to configure the environment to create your application (typical
programming tasks not directly related to these APIs) and in the second step you
would generate code to utilize the functionality of these libraries.

Configuring your Environment

To setup the environment to create a .NET application, you would need to add
references to all the libraries. In order to use the Outside In components in your
application, the following component should be referenced: outsidein.dll. (This can be
done by using the Add Reference dialog box in Visual Studio.)

Generate Code

The sample application included with the SDK, OITsample, is a minimal
demonstration of how to use this APIL.

Introduction to the .NET API 15-1

Getting Started

All the functionality required to perform a conversion is provided in an Exporter
object. The basic process of exporting a file involves the following tasks:

1.

Create an Exporter object. To obtain access to the Outside In functionality, you
should call the utility function in the "OutsideIn" class. This will provide you an
instance of an Exporter Object.

Configure the export. The Outside In API is highly configurable, and presents
numerous options to fine-tune the way a document is exported. Each option has a
"set" and "get" method to set or retrieve the currently set value.

Set the source and primary destination files. You are required to specify the source
file and the destination file. This is done similar to setting options using "set"
methods.

Set the output type. In this step, you specify the output format.

(Optional) Provide a callback handler. The Outside In Technology provides
callbacks that allow the developer to intervene at critical points in the export
process. To respond to these callbacks, you would have to subscribe to any
messages that you are interested in by overriding the message handlers from the
"Callback" class. After creating an object of this class, set the callback option to this
object and the messages will be passed to your object.

Run the export. After all the previous steps are completed, you can produce the
desired output.

Create an Exporter Object

To obtain access to the Outside In functionality, you should call the utility function in
the "Outsideln" class. This will provide you an instance of an Exporter Object.

Exporter exporter = Qutsideln. Qutsideln. NewLocal Exporter();

Configure the Output

The Outside In API is highly configurable, and presents numerous options to fine-tune
the way a document is exported. Each option has a "set" and "get" method to set or
retrieve the currently set value.

exporter. Set Per f or nExt endedFI (true);
int timezoneOffset = exporter. GetTi meZonef fset();

Set the Source and Primary Destination Files

You are required to specify the source file and the destination file. This is done
similarly to setting options using "set" methods.

exporter. Set SourceFil e(i nputFil enane);

exporter. Set DestinationFil e(output Fil enane);

There are other options that can be set at this time to specify the way to handle the
input file, such as providing a SourceFormat to provide a mechanism to handle the
input file in a different format than that which it is identified as.

The API also supports opening certain types of embedded documents from within an
input file. For example, a .zip file may contain a number of embedded documents; and
an email message saved as a .msg file may contain attachments. The API provides the
means of opening these types of embedded documents. This can be done by opening

15-2 Developer's Guide

Getting Started

the parent document and then the embedded document can be opened through this
exporter object.

/] subdocld is the sequential number of the node in the archive file

Exporter exporterNode = exporter. NewTr eeNodeExport er (subdocl d);

Set the Output Type
In this step, you specify the output format.

exporter. Set Desti nationFormat (Fi | eFormat. FI _HTM.);

Provide a Callback Handler

Outside In Technology provides callbacks that allow the developer to intervene at
critical points in the export process. To respond to these callbacks, you have to
subscribe to any messages that you are interested in by overriding the message
handlers from the Callback class. After creating an object of this class, set the callback
option to this object and the messages will be passed to your object.

class Cal |l backHandl er : Cal |l back

{

..Il inplenentation of messages to handle - described in the next section

}

Cal | backHandl er cal | back = new Cal | backHandl er () ;

exporter. Set Cal | backHandl er (cal | back) ;

Run the Export
After all the previous steps are completed, you can produce the desired output.

exporter. Export();

Redirected I/0 Support in .NET

Support for redirected 1/0O is supported through .NET Streams. Streams that are
readable and seekable can be used as input files, while streams that are readable,
writable and seekable can be used for output.

Using streams is very similar to using standard I/O in the .NET APL To use streams,
the stream object is passed as a parameter to the "SetSourceFile" or
"SetDestinationFile". When using Output streams, handling callbacks is mandatory
when secondary files are expected to be generated.

Introduction to the .NET API 15-3

Getting Started

15-4 Developer's Guide

16

HTML Export .NET Classes

This chapter provides detailed descriptions of HTML Export .NET classes.

The following classes are covered:
¢ Annotation Class

® ArchiveNode Class

e Callback Class

* ColorInfo Class

e Exporter Interface

¢ ExportStatus Class

¢ FileFormat Class

¢ FontAliases Class

e FontInfo Class

e FontList Class

¢ GridWraplnfo Class

¢ HighlightTextAnnotation Class
* MailHeaders Class

* Option Interface

® OQutsideln Class

* QutsideInCastException Class

* QOutsideInException Class

Annotation Class

Annotation is an abstract base class for the Annotation objects.

Namespace

OutsideIn.Annotations

Properties

¢ Height (Int64) Height of area in coordinates or rows

HTML Export .NET Classes 16-1

ArchiveNode Class

Left (Int64) Leftmost coordinate or column

Opacity (Single) Opacity of the annotation. Range 0.0 - 1.0; setting opacity to 0
makes the annotation invisible

SectionIndex (Int64) 0-based page/sheet/image/slide index
Top (Int64) Top coordinate or row

Units (Annotation.UnitTypeValue) Type of units in which Height, Width, Left and
Top are described

Userld (Int64) User Data

Width (Int64) Width of area in coordinates or columns

Annotation.UnitTypeValue Enumeration

The UnitTypeValue is an enumeration of the various unit types that annotation
positions can be described in.

Pixels: Units specified in Pixels. This Unit type should be used for Graphic files.

Twips: Units specified in Twips (1/1440th of an inch). This Unit type should be
used for Word Processing documents.

Cells: Units specified in cell positions. This Unit type should be used for
Spreadsheets.

ArchiveNode Class

ArchiveNode provides information about an archive node. This is a read-only class
where the technology fills in all the values.

Namespace

Outsideln

Properties

IsDirectory (Boolean) A value of true indicates that the record is an archive node.
FileSize (Int32) File size of the archive node

NodeTime (Int32) Time the archive node was created

NodeNum (Int32) Serial number of the archive node in the archive

NodeName (String) The name of the archive node

Callback Class

Callback messages are notifications that come from Outside In during the export
process, providing information and sometimes the opportunity to customize the
generated output.

Namespace

Outsideln

16-2 Developer's Guide

Callback Class

OpenFile

CreateNewFile

To access callback messages, your code must create an object that inherits from
Callback and pass it through the API's SetCallbackHandler method. Your object can
implement methods that override the default behavior for whichever methods your
application is interested in.

Callback has three methods: OpenFile, CreateNewFile and NewFileInfo.

QpenFi | eResponse QpenFi | g(
Fi | eTypeVal ue fil eType,
string fileNane

)

This callback is made any time a new file needs to be opened.

Parameters
¢ fileType: Type of file being requested to be opened.

¢ filename: Name of the file to be open

Return Value

To take action in response to this method, return an OpenFileResponse object.

FileTypeValue Enumeration

This enumeration defines the type of file being requested to be opened. Its value may
be one of the following:

® Input: File to be opened (path unknown)
e Template: Template file to be opened
e Path: Full file name of the file to be opened.

e Other: Not used.

OpenFileResponse Class

This is a class to define a new file or stream object in response to an OpenFile callback.
Constructor

OpenFi | eResponse(Filelnfo file)

File: File object with full path to the new file.

OpenFi | eResponse(Streamfile)

File: A stream to which the file data will be written.

Creat eNewFi | eResponse Creat eNewri | e(Fil eFormat ParentQutputld, FileFormat CQutputld,
Associ ation Association, string Path)

HTML Export .NET Classes 16-3

Callback Class

This callback is made any time a new output file needs to be generated. This gives the
developer the chance to affect where the new output file is created, how it is named,
and the URL (if any) used to reference the file.

Parameters
e ParentOutputld: File format identifier of the parent file.
® OQutputld: File format identifier of the file created.

® Association: An Association that describes relationship between the primary
output file and the new file.

e Path: Full path of the file to be created.

Return Value

To take action in response to this notification, return a CreateNewFileResponse object
with the new file information. If you wish to accept the defaults for the path and URL,
you may return null.

CreateNewFileResponse Class

This is a class to define a new output file location in response to a CreateNewFile
callback. If you do not wish to change the path to the new output file, you may use the
path as received. If you do not wish to specify the URL for the new file, you many
specify it as null.

Constructor
Creat eNewFi | eResponse(Filelnfo File, string URL)

¢ File: File object with full path to new file.

e URL: A new URL that references the newly created file. This parameter can be null.

Association Enumeration

This enumeration defines, for a new file created by an export process, the different
possible associations between the new file and the primary output file. Its value may
be one of the following;:

* Root - indicates the primary output file

e Child - a new file linked (directly or indirectly) from the primary output file
¢ Sibling - indicates new files not linked from the primary output file

* Copy - the file was copied as a part of a template macro operation.

® RequiredName - not used

Note that some of these relationships will not be possible in all Outside In Export
SDKs.

16-4 Developer's Guide

ColorInfo Class

NewFilelnfo

voi d NewFilelnfo(FileFormat ParentCQutputld, FileFormat CQutputld,
Associ ation Association, string Path, string URL)

This informational callback is made just after each new file has been created.

Parameters
¢ ParentOutputld: File format identifier of the parent file
® OQutputld: File format identifier of the file created

® Association: An Association that describes relationship between the primary
output file and the new file.

e Path: Full path of the file created

e URL: URL that references the newly created file
CreateTempFile
Creat eTenpFi | eResponse Creat eTenpFil e()

This callback is made any time a new temporary file needs to be generated. This gives
the developer the chance to handle the reading and writing of the temporary file.

Return Value

To take action in response to this notification, return a CreateTempFileResponse object
with the temporary file information.

CreateTempFileResponse Class

This is a class to define a new file or stream object in response to an CreateTempFile
callback.

Constructor

Creat eTenpFi | eResponse (Streamfile)

File: A stream to which the file data will be written and read from.

Colorinfo Class

ColorInfo is a class to define a color or to use a default color in appropriate cases.

Namespace
Outsideln

Constructors

Col or I nfo()

Initializes an ColorInfo object to use the default color.

HTML Export .NET Classes 16-5

Exporter Interface

public Colorlnfo(Byte red,
Byte green,
Byte bl ue)

Initializes a ColorInfo object with the specified RGB values.

Properties

¢ Blue (Byte) - Blue component of the color

¢ Green (Byte) - Green component of the color
* Red (Byte) - Red component of the color

* UseDefault (Byte) - Set to true if the default color is used

Exporter Interface

This section describes the properties and methods of Exporter.

All of Outside In's Exporter functionality can be accessed through the Exporter
Interface. The object returned by Outsideln class is an implementation of this interface.
This class derives from the Document Interface, which in turn is derived from the
OptionsCache Interface.

Namespace
Outsideln

Methods

¢ GetExportStatus
Export Status Get Export Status()
This function is used to determine if there were conversion problems during an
export. The ExportStatus object returned may have information about sub-
document failures, areas of a conversion that may not have high fidelity with the

original document. When applicable the number of pages in the output is also
provided.

¢ NewSubDocumentExporter

Exporter NewSubDocument Exporter (
int SubDocld,
SubDocunent | denti fi er TypeVal ue i dType

)

Create a new Exporter for a subdocument.
SubDocld: Identifier of the subdocument
idType: Type of subdocument

SubDocumentldentifierTypeValue: This is an enumeration for the type of
subdocument being opened.

- IDTYPE_XX: Subdocument to be opened is based on output of XML Export
(Subdocld is the value of the object_id attribute of a locator element.)

16-6 Developer's Guide

Exporter Interface

- IDTYPE_ATTACHMENT_LOCATOR: Subdocument to be opened is based on
the locator value provided by the one of the Export SDKs.

— IDTYPE_ATTACHMENT_INDEX: Subdocument to be opened is based on the
index of the attachment from an email message. (Subdocld is the zero-based
index of the attachment from an email message file. The first attachment
presented by Outsideln has the index value 0, the second has the index value 1,
etc.)

Returns: A new Exporter object for the subdocument

¢ NewSubObjectExporter

Exporter NewSubQhj ect Exporter(
SubQbj ect TypeVal ue obj Type,
ui nt datal,
ui nt dat a2,
ui nt dat a3,
uint data4

)

Create a new Exporter for a subobject.

objType: Type of subobject

datal: Data identifying the subobject from SearchML
data2: Data identifying the subobject from SearchML
data3: Data identifying the subobject from SearchML
data4: Data identifying the subobject from SearchML
Returns: A new Exporter object for the subobject

SubObjectTypeValue: An enumeration to describe the type of SubObject to open.
- LinkedObject

— EmbeddedObject

— CompressedFile

— Attachment

¢ NewArchiveNodeExporter

Exporter NewArchi veNodeExporter (
int dwRecordNum

)

Create a new Exporter for an archive node. You may get the number of nodes in an
archive using getArchiveNodeCount. The nodes are numbered from 0 to
getArchiveNodeCount -1.

dwRecordNum: The number of the record to retrieve information about. The first
node is node 0 and the total number of nodes may be obtained from
GetArchiveNodeCount.

Returns: A new Exporter object for the archive node

¢ NewArchiveNodeExporter with Search Export Data

HTML Export .NET Classes 16-7

Exporter Interface

Exporter NewArchi veNodeExporter (
uint flags,
ui nt paramsl,
ui nt parans2

)

Create a new Exporter for an archive node. To use this function, you must first
process the archive with Search Export and save the Node data for later use in this
function.

Flags: Special flags value from Search Export
Paramsl: Datal from Search Export
Params2: Data2 from Search Export

Returns: A new Exporter object for the archive node

Export

voi d Export()

Perform the conversion and close the Export process keeping the source document
open.

voi d Export (bool bLeaveSourceQpen)

Perform the conversion and close the Export process keep the source document
open or close it based on the value of bLeaveSourceOpen.

bLeaveSourceOpen: If set to true, keeps the source document open for next export
process.

Note: Before Release 8.5.3, calling Export() with no parameters, would leave
the source document open. The default behavior starting with Release 8.5.3 is
to close the document after exporting the file. If you would like to keep the file
open for other conversions, use this method with "bLeaveSourceOpen" set to
true.

SetExportTemplate
Set Export Tenpl at e(Fi | el nfo tenpl ate)

This method sets the template file to be used for export.

template: A FileInfo object representing the template to be used for export.

SetExportTimeout

Opti onsCache Set Export Ti meout (i nt millisecondsTi neout);

This method sets the time that the export process should wait for a response from
the Outside In export engine to complete the export of a document, setting an
upper limit on the time that will elapse during a call to Export(). If the specified
length of time or the default timeout amount is reached before the export has
completed, the export operation is terminated and an OutsideInException is
thrown. If this option is not set, the default timeout is 5 minutes.

Close
C ose()

16-8 Developer's Guide

Exporter Interface

This function closes the current Export process.

* NewLocalExporter

static Exporter NewLocal Exporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the
source Exporter. All the options of source are copied to the new Exporter. The
source and destination file information will not be copied.

IAnnotatable Interface

All of the Outside In annotation-related methods are accessed through the
IAnnotatable Interface.

NameSpace

OutsideIn.Annotations

Methods

e AddTextHighlight

voi d AddText Hi ghli ght (
H ghl i ght Text Annot ati on textanno

)

Highlight text in a document.
textanno: A HighlightTextAnnotation object with information about the text to
highlight

* AddTextHighlight and Add Annotation Properties

voi d AddText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
Dictionary<string, string> Properties

)

Highlight text in a document and associate properties with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Properties: Key value pairs of name/value of properties associated with this
annotation

¢ AddTextHighlight and Associate a Comment

voi d AddText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
string Comment

)

Highlight text in a document and associate a comment with the highlight.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

¢ AddTextHighlight with Comment and Properties to Annotation

HTML Export .NET Classes 16-9

Exporter Interface

voi d AddText Hi ghli ght (
H ghl i ght Text Annot ati on textanno,
string Comment,
Dictionary<string, string> Properties

)

Highlight text in a document and provide comment text and properties to be
associated with the annotation.

textanno: A HighlightTextAnnotation object with information about the text to
highlight

Comment: Comment text to associate with the annotation

Properties: Key value pairs of name/value of properties associated with this
annotation

Document Interface

All of the Outside In document-related methods are accessed through the Document
Interface.

Names pace
Outsideln

Methods

e (lose

void C ose()

Closes the currently open document

e GetArchiveNodeCount
I nt 32 Get Archi veNodeCount ()

Retrieves the number of nodes in an archive file.

Returns the number of nodes in the archive file or 0 if the file is not an archive file.

e GetFileld

Fil eFormat GetFileld(Fileldl nfoFlagVal ue dwFl ags)

Gets the format of the file based on the technology's content-based file
identification process.

dwFlags: Option to retrieve the file identification pre-Extended or post-Extended
Test

Returns the format identifier of the file.

e GetArchiveNode
Archi veNode CGet Archi veNode(| nt 32 nNodeNun)

Retrieves information about a record in an archive file. You may get the number of
nodes in an archive using getArchiveNodeCount.

nNodeNum: The number of the record to retrieve information about. The first node

is node 0.

16-10 Developer's Guide

Exporter Interface

Return Value: An ArchiveNode object with the information about the record

SaveArchiveNode

voi d SaveAr chi veNode(
I'nt 32 nNodeNum
Filelnfo fileinfo)
voi d SaveAr chi veNode(
I'nt 32 nNodeNum
string strFileName)

Extracts a record in an archive file to disk.

nNodeNumType: The number of the record to retrieve information about. The first
node is node 0.

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

SaveArchiveNode with ArchiveNode

voi d SaveAr chi veNode(
Ar chi veNode ar cNode,
Filelnfo fileinfo)
voi d SaveAr chi veNode(
Ar chi veNode ar cNode,
string strFileName)

Extracts a record in an archive file to disk.

arcNode: An ArchiveNode object retrieved from GetArchiveNodelnfo with
information about the node to extract

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

SaveArchiveNode with Search Export Flags

voi d SaveAr chi veNode(
uint flags,
ui nt paramsl,
ui nt params2,
Filelnfo fileinfo)
voi d SaveAr chi veNode(
uint flags,
ui nt paramsl,
ui nt params2,
string strFileName)

Extracts a record in an archive file to disk without reading the data for all nodes in
the archive in a sequential order. To use this function, you must first process the
archive with Search Export and save the Node data for later use in this function.

flagsType: Special flags value from Search Export
params]: Datal from Search Export
params2: Data2 from Search Export

strFileNameType/fileinfo: Full path of the destination file to which the file will be
extracted

HTML Export .NET Classes 16-11

Exporter Interface

OptionsCache Class

This section describes the OptionsCache class.

The options that configure the way outputs are generated are accessed through the
OptionsCache class.

All of the options described in the following subsections are available through this
interface. Other methods in this interface are described below.

Namespace

Outsideln.Options

Methods

OptionsCache SetSourceFile(FileInfo file)
Sets the source document to be opened.

file: Full path to source file

OptionsCache SetSourceFile(string filename)
Set the source document.
filename: Full path of the source document

Returns: The options cache object associated with this document

OptionsCache AddSourceFile(Filelnfo file)

Sets the next source document file to be exported in sequence. This allows multiple
documents to be exported to the same output destination.

file: Full path to source file

OptionsCache SetSourceFormat(FileFormat fileld)

Sets the source format to process the input file as, ignoring the algorithmic
detection of the file type.

fileld: the format to treat the input document as.

OptionsCache SetDestinationFile(FileInfo file)
Sets the location of the destination file.

file: Full path to the destination file

OptionsCache SetDestinationFile(string filename)
Set the location of the destination file.
filename: Full path to the destination file

returns: The updated options object

OptionsCache SetDestinationFormat(FileFormat fileld)
Sets the destination file format to which the file should be converted to.

fileld: the format to convert the input document(s) to.

OptionsCache SetCallbackHandler(Callback callback)

16-12 Developer's Guide

Exporter Interface

Sets the object to use to handle callbacks.
callback: the callback handling object.

OptionsCache SetPasswordsList(List<String> Passwords)

Provides a list of strings to use as passwords for encrypted documents. The
technology will cycle through this list until a successful password is found or the
list is exhausted.

Passwords: List of strings to be used as passwords.

OptionsCache SetLotusNotesld(String NotesIdFile)
Sets the Lotus Notes ID file location.
NoteslIdFile: Full path to the Notes ID file.

OptionsCache SetOpenForNonSequential Access(bool
bOpenForNonSequential Access)

Setting this option causes the technology to open archive files in a special mode
that is only usable for non-sequential access of nodes.

bOpenForNonSequential Access : If set to true would open the archive file in the
special access mode. Note that turning this flag on a non-archive file will throw an
exception at RunExport time.

OptionsCache SetSourceFile(Stream file)

Set an input stream as the source document. Exporting a file using this method
may have issues with files that require the original name of the file (example:
extension of the file for identification purposes or name of a secondary file
dependent on the name/path of this file).

OptionsCache SetSourceFile(Stream file, String Filename)

Set an input stream as the source document and provide information about the
filename (fully qualified path or file name that may be used to derive the extension
of the file or name of a secondary file dependent on the name/path of this file).

OptionsCache SetNextSourceFile(Stream file)

Set an input stream as the next source document to be exported to the original
destination file. This method has the same limitations as the similar
SetSourceFile(Stream file) method.

OptionsCache SetNextSourceFile(Stream file, String Filename)

Set an input stream as the next source document to be exported to the original
destination file. The file name provided is used as in the method
SetSourceFile(Stream file, String Filename)

OptionsCache SetNextSourceFile(FileInfo file)

Set an input stream as the next source document to be exported to the original
destination file.

OptionsCache SetDestinationFile(Stream file)

Set an output stream as the destination for an export.

HTML Export .NET Classes 16-13

Exporter Interface

BorderMode

Option to determines how borders will be handled for spreadsheet and database files.

Data Type
BorderModeValue

BorderModeValue Enumeration

¢ CreatelfMissing: Use source document borders. If no borders are in the table,
automatically create borders.

e Off: Do not write any table borders

e UseSource: Use source document borders

Default
CreatelfMissing

CollapseWhiteSpace

This is an advanced option that casual users of HTML Export may safely ignore. When
set, this option deletes whitespace from the output document. Two types of
whitespace are removed: redundant whitespace characters and vertical whitespace.

This option is intended for situations where bandwidth and screen space are limited.

The HTML standard specifies that the browser will collapse a sequence of whitespace
characters into a single whitespace character. Therefore, having HTML Export remove
these redundant whitespace characters has no effect on the final view of the document.

Removing them benefits the document in reducing the overall size of the output files
generated and thereby saves bandwidth and decreases file transmission times. While
HTML Export makes an effort to remove as much redundant whitespace as possible,
there will be cases where some extra spacing appears in the output.

Removing vertical whitespace, on the other hand, does affect the look of the document
in the browser. When possible, HTML Export preserves vertical spacing between
elements. However, when this option is set, vertical whitespace is removed, resulting
in a more compact view.

Please note that the collapse white space option does not affect whitespace coming
from the template.

Data Type
bool

Data
One of the following values:
e true: Whitespace is removed.

¢ false: Whitespace is left intact.

16-14 Developer's Guide

Exporter Interface

Default

false

DefaultinputCharacterSet
OIT Option ID: SCCOPT_DEFAULTINPUTCHARSET

This option is used in cases where Outside In cannot determine the character set used
to encode the text of an input file. When all other means of determining the file's
character set are exhausted, Outside In will assume that an input document is encoded
in the character set specified by this option. This is most often used when reading
plain-text files, but may also be used when reading HTML or PDF files.

Data Type
DefaultInputCharacterSetValue

DefaultinputCharacterSetValue Enumeration
DefaultinputCharacterSetValue can be one of the following enumerations:
SystemDefault
Unicode
BigEndianUnicode
LittleEndianUnicode
Utf8

Utf7

Ascii

UnixJapanese
UnixJapaneseEuc
UnixChineseTrad1
UnixChineseEucTradl
UnixChineseTrad?2
UnixChineseEucTrad?2
UnixKorean
UnixChineseSimple
Ebcdic37

Ebcdic273

Ebcdic274

Ebcdic277

Ebcdic278

Ebcdic280

Ebcdic282

Ebcdic284

Ebcdic285

HTML Export .NET Classes 16-15

Exporter Interface

Ebcdic297
Ebcdic500
Ebcdic1026
Dos437
Dos737
Dos850
Dos852
Dos855
Dos857
Dos860
Dos861
Dos863
Dos865
Dos866
Dos869
Windows874
Windows932
Windows936
Windows949
Windows950
Windows1250
Windows1251
Windows1252
Windows1253
Windows1254
Windows1255
Windows1256
Windows1257
Is08859_1
Is08859_2
Is08859_3
Is08859_4
Is08859_5
Is08859_6
Is08859_7
Is08859_8
Is08859_9

16-16 Developer's Guide

Exporter Interface

MacRoman
MacCroatian
MacRomanian
MacTurkish
Maclcelandic
MacCyrillic
MacGreek
MacCE
MacHebrew
MacArabic
MacJapanese
HPRoman8
BiDiOldCode
BiDiPC8
BiDiEQ
RussianKOI8
JapaneseX0201

Default
SystemDefault

DefaultRenderFont
OIT Option ID: SCCOPT_DEFAULTPRINTFONT

This option sets the font to use when the chunker-specified font is not available on the
system. It is also the font used when the font in source file is not available on the
system performing the conversion.

Class members:
string strFaceName

int FontHeight

DocumentMemoryMode
OIT Option ID: SCCOPT_DOCUMENTMEMORYMODE

This option determines the maximum amount of memory that the chunker may use to
store the document's data, from 4 MB to 1 GB. The more memory the chunker has
available to it, the less often it needs to re-read data from the document.

Data

e SMALLEST: 1-4MB
e SMALL:2-16MB

e MEDIUM: 3 - 64MB

HTML Export .NET Classes 16-17

Exporter Interface

e LARGE: 4 -256MB
e LARGEST:5-1GB

Default
LARGE: 4 - 256 MB

DropPDFHyphens

This option controls whether or not the PDF filter will drop hyphens at the end of a
line. Since most PDF-generating tools create them as generic dashes, it's impossible for
Outside In to know if the hyphen is a syllable hyphen or part of a hyphenated
word.When this option is set to true, all hyphens at the end of lines will be dropped
from the extracted text.

Data Type
bool

Default

false

EmailHeaders
OIT Option ID: SCCOPT_WPEMAILHEADEROUTPUT

This option controls rendering of email headers.

Data
e ALL: Displays all available email headers.

e STANDARD: Displays "To," "From," "Subject," "CC," "BCC," "Date Sent," and
"Attachments" header fields only. The filter outputs any fields not listed above as
hidden fields, so they will not display.

* NONE: Displays no email header fields.
¢ CUSTOM

Default
STANDARD

ExtractEmbeddedFiles

This option controls the extraction of attachments to email documents. The input
document must be an email document in order for this option to take effect.

e When set to Binary, the attachment will be extracted in its native format allowing it
to be read by the authoring application.

¢ When set to Convert, the attachment will be extracted as HTML.

e When set to Off, the attachment will be ignored.

The Binary option is not compatible with MHTML, and therefore embeddings will
always be converted when exporting to MHTML unless this option is set to Off.

16-18 Developer's Guide

Exporter Interface

This option is only valid for UUE, MIME and MSG files and not for general purpose
file attachments.

Data Type
ExtractEmbeddedFilesValue

ExtractEmbeddedFilesValue Enumeration
¢ Off - Embeddings are skipped
e Convert - Embeddings are converted

¢ Binary - Embeddings are extracted in their native file format

Default
Off

FallbackFormat

This option controls how files are handled when their specific application type cannot
be determined. This normally affects all plain-text files, because plain-text files are
generally identified by process of elimination, for example, when a file isn't identified
as having been created by a known application, it is treated as a plain-text file. It is
recommended that None be set to prevent the conversion from exporting unidentified
binary files as though they were text, which could generate many pages of "garbage"
output.

Data Type
FallbackFormatValue

FallbackFormatValue Enumeration
* Text: Unidentified file types will be treated as text files.
¢ None: Outside In will not attempt to process files whose type cannot be identified

Default
Text

FontAliasList

This option enables the capability to specify which font on the system should be used
when a specific font referenced in the original file is not available. A different alias can
be set for each font desired to be mapped.

Data Type

FontAliases

Data

A FontAliases object with a list of font matchings

HTML Export .NET Classes 16-19

Exporter Interface

Default
Windows PrintAlias default

GenerateBulletsAndNumbering

Turning this option on causes the technology to generate list numbers and/or bullets
as needed rather than using list markup tags. While this violates the spirit of what
markup languages should do, it does cause the browsers to render the lists in a way
that is more faithful to the original look of the document. One use is based on the way
browsers render tags. The HTML standards currently do not allow any way to
specify outline style list numbering.

One limitation when using this option is that standard list indentation may not be
possible due to the limits of the selected output HTML flavor. At this time, only the
HTML flavors where CSS is available support the kind of hanging indents normally
associated with lists. If a bullet character needs to be generated, Unicode character
0x2022 will be used.

Note that many character sets do not contain this character, so the unmappable
character ("*") would be used in that case.

Data Type
bool

Default

false

GenerateJavascriptTabs

Tab support is available by setting this option to true. When active, this option uses
JavaScript to calculate tab stops and position blocks of text accordingly. Potential side
effects of this include delays in loading the pages in the browser and seeing the text
initially with no whitespace at all followed by a pause and then all of the tabs popping
into place. In addition, this support is limited to only left tabs.

In order to take advantage of this option the following additional steps must be taken:

1. The template must contain a <script> tag. Something similar to the following code
fragment is recommended:

{## if el ement=pragnma.jsfile}

<script |anguage="Javascriptl.2" src="{## insert
el ement =pragma. j sfile}"></script>

{## if}

2. The template must also run the DoTabStops routine in the <body> of the HTML.
A span tag used to define the value of oneinch should follow this. Something
similar to the following code snippet is recommended to accomplish this:

{## if el ement=pragnma.jsfile}
<body onl oad="DoTabSt ops() ">

{## el se}
<body>
{## if}

3. Aflavor of HTML that supports CSS must be used.

16-20 Developer's Guide

Exporter Interface

4. The user's browser must support JavaScript and this support must be enabled.

Data Type
bool

Default

false

GraphicHeightLimit
OIT Option ID: SCCOPT_GRAPHIC_HEIGHTLIMIT

Note that this option differs from the behavior of setting the height of graphics in that
it sets an upper limit on the image height. Images larger than this limit will be reduced
to the limit value. However, images smaller than this height will not be enlarged when
using this option. Setting the height using GraphicHeight causes all output images to
be reduced or enlarged to be of the specified height.

Data Type
Int32

GraphicOutputDPI
OIT Option ID: SCCOPT_GRAPHIC_OUTPUTDPI

This option allows the user to specify the output graphics device's resolution in DPI
and only applies to images whose size is specified in physical units (in/cm). For
example, consider a 1" square, 100 DPI graphic that is to be rendered on a 50 DPI
device (GraphicOutputDPI is set to 50). In this case, the size of the resulting TIFF,
BMP, JPEG, GIF, or PNG will be 50 x 50 pixels.

In addition, the special #define of SCCGRAPHIC_MAINTAIN_IMAGE_DPI, which is
defined as 0, can be used to suppress any dimensional changes to an image. In other
words, a 1" square, 100 DPI graphic will be converted to an image that is 100 x 100
pixels in size. This value indicates that the DPI of the output device is not important. It
extracts the maximum resolution from the input image with the smallest exported
image size.

Setting this option to SCCGRAPHIC_MAINTAIN_IMAGE_DPI may result in the
creation of extremely large images. Be aware that there may be limitations in the
system running this technology that could result in undesirably large bandwidth
consumption or an error message. Additionally, an out of memory error message will
be generated if system memory is insufficient to handle a particularly large image.

Also note that the SCCGRAPHIC_MAINTAIN_IMAGE_DPI setting will force the
technology to use the DPI settings already present in raster images, but will use the
current screen resolution as the DPI setting for any other type of input file.

For some output graphic types, there may be a discrepancy between the value set by
this option and the DPI value reported by some graphics applications. The
discrepancy occurs when the output format uses metric units (DPM, or dots per meter)
instead of English units (DPI, or dots per inch). Depending on how the graphics
application performs rounding on meters to inches conversions, the DPI value
reported may be 1 unit more than expected. An example of a format which may
exhibit this problem is PNG.

The maximum value that can be set is 2400 DPI; the default is 96 DPL.

HTML Export .NET Classes 16-21

Exporter Interface

Data Type
Int32

GraphicSizeLimit
OIT Option ID: SCCOPT_GRAPHIC_SIZELIMIT

This option is used to set the maximum size of the exported graphic in pixels. It may
be used to prevent inordinately large graphics from being converted to equally
cumbersome output files, thus preventing bandwidth waste.

This setting takes precedence over all other options and settings that affect the size of a
converted graphic.

When creating a multi-page TIFF file, this limit is applied on a per page basis. It is not
a pixel limit on the entire output file.

Data Type
Int32

GraphicSizeMethod
OIT Option ID: SCCOPT_GRAPHIC_SIZEMETHOD

This option determines the method used to size graphics. The developer can choose
among three methods, each of which involves some degree of trade off between the
quality of the resulting image and speed of conversion.

Using the quick sizing option results in the fastest conversion of color graphics,
though the quality of the converted graphic will be somewhat degraded. The smooth
sizing option results in a more accurate representation of the original graphic, as it
uses anti-aliasing. Antialiased images may appear smoother and can be easier to read,
but rendering when this option is set will require additional processing time. The
grayscale only option also uses antialiasing, but only for grayscale graphics, and the
quick sizing option for any color graphics.

The smooth sizing option does not work on images which have a width or height of
more than 4096 pixels.

Data Type
e GRAPHICSIZEMETHOD_VALUES

GraphicWidthLimit
OIT Option ID: SCCOPT_GRAPHIC_WIDTHLIMIT

This option allows a hard limit to be set for how wide in pixels an exported graphic
may be. Any images wider than this limit will be resized to match the limit. It should
be noted that regardless whether the GraphicHeightLimit option is set or not, any
resized images will preserve their original aspect ratio.

Note that this option differs from the behavior of setting the width of graphics by
using GraphicWidth in that it sets an upper limit on the image width. Images larger
than this limit will be reduced to the limit value. However, images smaller than this
width will not be enlarged when using this option. Setting the width using
GraphicWidth causes all output images to be reduced or enlarged to be of the
specified width.

16-22 Developer's Guide

Exporter Interface

Data Type
Int32

GridWrap

Option to specify whether the "previous” and "next" relationships "wrap" at the edges
of the spreadsheet or database.

Data Type
GridWraplnfo

Data
A GridWraplnfo object describing the grid output properties.

Default

Wrapping enabled with 5000 rows and 100 columns with the AdvanceMode set to
AdvanceModeValue.Down

HTMLFlavor

Each Web browser forms a de facto HTML standard. This is because each browser
hasa unique collection of HTML tags and tag attributes it does or does not support.
Thus, there are a large number of browser-based variations on the official HTML
standards that are referred to here as "flavors" of HTML.

This option allows the developer to tailor the output generated to a specific browser or
for a specific minimum browser. This allows HTML Export to produce the best
possible rendering of the source document given the tags available in the target flavor.

It also gives the OEM the ability to specify which standard their product will adhere
to, rather than having that standard be dictated by HTML Export. HTML Export
currently supports a large number of flavors. While some flavors are targeted at
specific browsers, other flavors are designed for a more abstract target. The "generic"
and "HTML 2.0" flavors provide "lowest common denominator" flavors. The HTML
produced by these flavors is very simple and should work in almost any browser. The
primary difference between these two flavors is that the generic flavor supports tables
and the HTML 2.0 flavor does not.

At other times, it is desirable to have the ability to create HTML that simply supports
"the major x.0 and later browsers." For this purpose, there are the "greatest common
denominator" flavors. They are the "3.0" and "4.0" flavors. The "3.0" flavor should be
used to create HTML that will look good in Netscape Navigator 3.0 or later and in
Microsoft Internet Explorer 3.0 or later. The "4.0" flavor is defined to look good in
Netscape Navigator 4.0 or later and in Microsoft Internet Explorer 4.0 or later. Note
that upon examining the capabilities of these browsers after the 4.0 versions, it was
determined that while they offer many new features, they do not have any .html

or .css extensions that are useful to HTML Export at this time.

Naturally, support for a particular HTML flavor does not mean that HTML Export
will generate all the tags and tag attributes that flavor supports. There are many tags
and attributes that cannot sensibly be used in an automated conversion setting. Such
tags require more information about the author's intent than is available in the source
document.

Exporting a document to a particular HTML flavor also does not mean that the
resulting HTML will be limited to only the tags and tag attributes supported by that

HTML Export .NET Classes 16-23

Exporter Interface

flavor. The target browser will safely ignore this extra HTML. However, should the
converted document be viewed in a more sophisticated browser, this extra
information will be used to produce a more accurate view of the document.

What support for a particular HTML flavor does mean is that the HTML generated
will look as good as possible when viewed in the appropriate browser.

Data Type
HTMLFlavorValue

HTMLFlavorValue Enumeration
One of the following values (flavors marked with "(CSS)" require a separate or

embedded .css file to be created as part of the document conversion):

¢ GenericHTML: General purpose, simple HTML support that should look good in
any browser that supports tables.

e HTML20: HTML 2.0. Based on the official HTML 2.0 standard, this provides
minimal HTML support and per that standard, it does not support tables.

¢ HTML30: Should look good in both Netscape Navigator 3.0 or later and Microsoft
Internet Explorer 3.0 or later.

e HTML40: Should look good in both Netscape Navigator 4.0 or later and Microsoft
Internet Explorer 4.0 or later (CSS).

¢ NS30: Netscape Navigator 3.0
® NS40: Netscape Navigator 4.0 (CSS)

¢ MS30: Microsoft Internet Explorer 3.0. Note that while this flavor has limited CSS
support, it does not create a separate or embedded .css file.

e MS40: Microsoft Internet Explorer 4.0 (CSS)

Default
HTML40

HTMLOutputFormatting
This is an advanced option that casual users may safely ignore.

This option turns off writing of characters that are produced strictly to make the
output more readable and visually appealing. Currently, those formatting characters
are limited to newlines, carriage returns and spaces. This option is of benefit primarily
to users who perform special automated processing on the text produced by the
technology. For these users, even benign non-markup text not originally in the source
document constitutes a source of extra headaches for their processing. Setting this
option excludes all formatting characters from appearing in the generated markup. It
is important to note the things that setting this option does not do:

¢ While setting this option will make it very difficult for a human to read the
generated markup in a text editor, it does not affect the browser's rendering of the
document.

* This option does not affect the contents of the .css files since they do not contain
any text from the source document.

16-24 Developer's Guide

Exporter Interface

* The option does not affect spaces or newlines copied from the template as the
contents of the templates are already under the control of the customer.

Data Type
bool

Default

False

IECondCommentMode
OIT Option ID: SCCOPT_HTML_COND_COMMENT_MODE

Some HTML input files may include "conditional comments", which are HTML
comments that mark areas of HTML to be interpreted in specific versions of Internet
Explorer, while being ignored by other browsers. This option allows you to control
how the content contained within conditional comments will be interpreted by
Outside In's HTML parsing code.

Data

¢ NONE: Don't output any conditional comment
e JE5: Include the IE5 comments

e JE6: Include the IE6 comments

e JE7: Include the IE7 comments

e JE8: Include the IE8 comments

e JE9: Include the IE9 comments

e ALL: Include all conditional comments

IgnorePassword
OIT Option ID: SCCOPT_IGNORE_PASSWORD

This option can disable the password verification of files where the contents can be
processed without validation of the password. If this option is not set, the filter should
prompt for a password if it handles password-protected files.

Data Type
bool

InterlacedGIFs
OIT Option ID: SCCOPT_GIF_INTERLACED

This option allows the developer to specify interlaced or non-interlaced GIF output.
Interlaced GIFs are useful when graphics are to be downloaded over slow Internet
connections. They allow the browser to begin to render a low-resolution view of the
graphic quickly and then increase the quality of the image as it is received. There is no
real penalty for using interlaced graphics.

This option is only valid if the dwOutputID parameter of the EXOpenExport function
is set to FI_GIF.

HTML Export .NET Classes 16-25

Exporter Interface

Data Type
bool

ISODateTimes
OIT Option ID: SCCOPT_FORMATFLAGS

When this flag is set, all Date and Time values are converted to the ISO 8601 standard.
This conversion can only be performed using dates that are stored as numeric data
within the original file.

Data
bool

Default

false

JPEGQuality
OIT Option ID: SCCOPT_JPEG_QUALITY

This option allows the developer to specify the lossyness of JPEG compression. The
option is only valid if the dwOutputID parameter of the EXOpenExport function is set
to FI_JPEGFIF.

Data Type
Int32

Data

A value from 1 to 100, with 100 being the highest quality but the least compression,
and 1 being the lowest quality but the most compression.

Default
100

LotusNotesDirectory
OIT Option ID: SCCOPT_LOTUSNOTESDIRECTORY

This option allows the developer to specify the location of a Lotus Notes or Domino
installation for use by the NSF filter. A valid Lotus installation directory must contain
the file nnotes.dll.

Data
A path to the Lotus Notes directory.

Default

If this option isn't set, then OIT will first attempt to load the Lotus library according to
the operating system's PATH environment variable, and then attempt to find and load
the Lotus library as indicated in HKEY_CLASSES_ROOT\Notes.Link.

16-26 Developer's Guide

Exporter Interface

OutputChangeTracking

The setting for this option determines whether or not change tracking information in
input documents will be written into the output via the <ins> and HTML tags.
When the option is set to false, no change tracking information will be written into the
output. When set to true, the <ins> and tags will be used as appropriate.
Previous versions of HTML Export included change tracking text in comments.

Data Type
bool

Default

false

OutputCharacterSet

This option allows the developer to specify which character set should be used in the
output file. The technology will then translate or "map" characters from the input
document's character set to the output character set as needed. Naturally, export
process does not translate content from one language to another. This character
mapping is also clearly limited by the need for the character to be in both the input
and the output character sets. If a character cannot be mapped, the character will show
up in the output as the "unmappable character.” The default unmappable character
used is the asterisk (*). The character used may be changed by setting the
UnmappableCharacter option. If the resulting output contains an excessive number of
asterisks, selecting a more appropriate output character set should improve the
situation.

The technology reserves the right to override this option. The option will be
overridden if ANSI Double-Byte Character Set (DBCS) characters are detected in the
source document and a single-byte character set is chosen as the output character set.
If the option is overridden, this change will affect the entire output document. The
technology uses the first DBCS character set it finds in the document as the basis for its
decision about which output character set to choose as its override.

Note that special character set override rules apply when the input document uses the
HWP (Hangul 97) filter. For these documents, the output character set will be forced to
SO_ANSI949 (euc-kr) unless the user has selected euc-kr, Unicode or UTF-8 output.
These override rules do not apply to the HWP2 (Hangul 2002) filter, as it uses Unicode
exclusively.

Source documents in Unicode will not override this option. This is especially
important to remember as some important file formats store text in Unicode including
Microsoft Office.

The markup standards currently supported by HTML Export limit documents to a
single character set. That character set is specified in an output file using the
CONTENT attribute of the <meta> tag. This limits what the technology can do with
documents that have multiple character sets. In general, documents that are a mix of a
single Asian language and English characters will translate correctly (although with
some possible loss of non-alphanumeric characters) if the appropriate DBCS, UTFE-8 or
Unicode output character set is selected. This is because most DBCS character sets
include the standard 7-bit Latin 1 characters. Documents that contain more than one
DBCS character set or a DBCS character set and a non-English character set (such as
Cyrillic) may not export with all the character glyphs intact unless Unicode or UTF-8 is
used.

HTML Export .NET Classes 16-27

Exporter Interface

Source documents that contain characters from many character sets will look best only
when this option is set to Unicode or UTF-8. This is because the Unicode and UTF-8
character sets contain almost all characters for the most common languages.

While the W3C recommends using Unicode, there is a downside to it at this time. Not
all systems have the appropriate fonts needed for using Unicode or UTF-8. Many
editors do not understand these character sets, as well. In fact, while HTML Export can
read Unicode source documents, it cannot read UTF-8 source documents. In addition,
there are some differences in the way browsers interpret the byte order of 2-byte
Unicode characters. For additional details about the byte ordering issue, see the
section for "UnicodeByteOrder."

In order for HTML Export to correctly place the character set into the output file it
generates, all templates should include a statement that uses the {## insert} macro to
insert the character set into the document, as in the following example:

<meta HTTP- EQUI V="Cont ent - Type" CONTENT="text/htni;
charset ={## insert el enent=pragna. charset}" />

If the template does not include this line, the user may have to manually select the
correct character set in the user's browser.

Data Type
OutputCharacterSetValue

OutputCharacterSetValue Enumeration
This enumeration contains the possible values for OutputCharacterSet:
Dos437: U.S.

Dos737: Greek

Dos850: Latin-1

Dos852: Latin-2

Dos855: Cyrillic

Dos857: Turkish

Dos860: Portuguese

Dos863: French Canada

Dos865: Denmark, Norway-DAT

Dos866: Cyrillic

Dos869: Greece

Windows874: Thailand

Windows932: Japanese

Windows936: Chinese GB

Windows949: Korea (Wansung)
Windows950: Hong Kong, Taiwan
Windows1250: Windows Latin 2 (Central Europe)
Windows1251: Windows Ciyrillic (Slavic)
Windows1252: Windows Latin 1 (ANSI)

16-28 Developer's Guide

Exporter Interface

Windows1253: Windows Greek
Windows1254: Windows Latin 5 (Turkish)
Windows1255: Windows Hebrew
Windows1256: Windows Arabic
Windows1257: Windows Baltic

Unicode: Unicode

Utf8: UTF-8

[s08859_1: Latin-1 - subset of Windows 1252
[s08859_2: Latin-2

[s08859_3: Latin-3

1s08859 4: Latin-4

Is08859_5: Cyrillic

1s08859_6: Arabic

1s08859_7: Greek

1s08859_8: Hebrew

1s08859_9: Turkish

Default
Windows1252

OutputGraphicType
OIT Option ID: SCCOPT_GRAPHIC_TYPE

This option allows the developer to specify the format of the graphics produced by the

technology.

e When setting this option, remember that the JPEG file format does not support

transparency.

* Though the GIF file format supports transparency, it is limited to using only one of
its 256 available colors to represent a transparent pixel ("index transparency").

¢ PNG supports many types of transparency. The PNG files written by HTML Export
are created so that various levels of transparency are possible for each pixel. This is
achieved through the implementation of an 8-bit "alpha channel".

There is a special optimization that HITML Export can make when this option is set to
None. Some of the Outside In Viewer Technology's import filters can be optimized to

ignore certain types of graphics.

Data Type
OutputGraphicTypeValue

OutputGraphicTypeValue Enumeration

These are the possible values for OutputGraphicType:

* GIF: Create GIF images

HTML Export .NET Classes 16-29

Exporter Interface

* JPEG: Create JPEG/]JFIF images
* PNG: Create PNG images

¢ NONE: Turn off graphic conversions

Default
JPEG

PageBreakLimit

This option sets a suggested page size for the output generated. This means that the
text of the document is broken up into "pages" of approximately the requested size.
Each page is stored as a separate output file.

This feature is particularly useful when converting documents that are poorly
structured. Many documents lack the kind of style information HTML Export
normally uses to break the document into pieces based on things like headings. By
setting this option, the exported document can be presented as a set of more
manageable pieces rather than a single giant output file. It is also useful with
documents that are structured but have large pieces in the structure.

If page breaking is activated (set to a non-zero value), HTML Export will buffer the
entire output document in memory during conversion. Conversion times and memory
requirements will increase accordingly in this case.

The size specified by this option is given in characters of text. Only text inserted from
the input document is counted in the page size. Thus, "as is" text from the template is
not counted against the page size. Also, markup tags are not counted in the page size.

In addition, some template inserts are normally used as attributes to markup tags, and
as such they are not counted in page size calculations no matter how they are actually
used. Those template inserts are:

e pragma.charset

¢ pragma.jsfile

e pragma.cssfilename
* sections.x.itemnum

® sections.x.reflink

A page size of zero ("0") indicates that this option is turned off and no page breaking is
done.

When this option is turned on, the page breaking rules are as follows:

* Hard page breaks in the document always trigger a page break. Soft page breaks
are ignored.

* A page break may be specified in the template with the {## unit break} macro.

* A page boundary will never be created in the middle of a paragraph. As many
paragraphs as possible will be written without exceeding the requested page size.
Page sizes are not hard limits on content however. One situation where the page
size could be exceeded would be if a single paragraph exceeds the page size.

16-30 Developer's Guide

Exporter Interface

¢ When grid-enabled templates are in use, the exported grids are not broken based
on the setting of this option. However, this option may affect the size of grids
generated. For more information, see the section on "GridWrap."

¢ Use of this option will not cause the contents of cells within a grid to be truncated.

¢ When grids are not in effect, spreadsheets and databases will be broken based on
page size. For these section types, checks for page breaks will be made after each
full row from the spreadsheet or database is written.

It is up to the template author to then connect these pieces with the appropriate links.
In order to use this option, the template must be equipped to use the {## unit} syntax.

Note that templates enabled with the {## unit} syntax may be mixed with templates
that do not contain {## unit} macros. In this case, page breaking will only occur in the
template that is enabled with {## unit} macros. An example of where this would be
desirable is a "table of contents" template that uses two sub templates to each fill in the
contents of a frame. The frame containing the actual table of contents could avoid
being broken into pages by not containing any {## unit} macros. The frame containing
the actual document contents could then support paging by using {## unit} macros.

Data Type
Int32

Default
0 (off)

ParseXMPMetadata
OIT Option ID: SCCOPT_PARSEXMPMETADATA

Adobe's Extensible Metadata Platform (XMP) is a labeling technology that allows you
to embed data about a file, known as metadata, into the file itself. This option enables
parsing of the XMP data into normal OIT document properties. Enabling this option
may cause the loss of some regular data in premium graphics filters (such as
Postscript), but won't affect most formats (such as PDF).

Data Type
bool

Data
¢ true: This setting enables parsing XMP.
¢ false: This setting disables parsing XMP.

Default

false

PDFInputMaxEmbeddedObjects

This option allows the user to limit the number of embedded objects that are produced
in a PDF file.

HTML Export .NET Classes 16-31

Exporter Interface

Data Type
Ulnt32

Data

The maximum number of embedded objects to produce in PDF output. Setting this to
0 would produce an all embedded objects in the input document.

Default
0 — produce all objects.

PDFInputMaxVectorPaths

This option allows the user to limit the number of vector paths that are produced in a
PDF file.

Data

The maximum number of paths to produce in PDF output. Setting this to 0 would
produce an all vector objects in the input document.

Default

0 — produce all vector objects.

PDFReorderBiDi
OIT Option ID: SCCOPT_PDF_FILTER_REORDER_BIDI

This option controls whether or not the PDF filter will attempt to reorder bidirectional
text runs so that the output is in standard logical order as used by the Unicode 2.0 and
later specification. This additional processing will result in slower filter performance
according to the amount of bidirectional data in the file.

PDFReorderBiDiValue Enumeration

This enumeration defines the type of Bidirection text reordering the PDF filter should
perform.

¢ StandardBiDi: Do not attempt to reorder bidirectional text runs.

* ReorderedBiDi: Attempt to reorder bidirectional text runs.

PDFWordSpacingFactor

This option controls the spacing threshold in PDF input documents. Most PDF
documents do not have an explicit character denoting a word break. The PDF filter
calculates the distance between two characters to determine if they are part of the
same word or if there should be a word break inserted. The space between characters
is compared to the length of the space character in the current font multiplied by this
fraction. If the space between characters is larger, then a word break character is
inserted into the text stream. Otherwise, the characters are considered to be part of the
same word and no word break is inserted.

Data Type
float

16-32 Developer's Guide

Exporter Interface

Data

A value representing the percentage of the space character used to trigger a word
break. Valid values are positive values less than 2.

Default
0.85

PerformExtendedFlI
OIT Option ID: SCCOPT_FIFLAGS

This option affects how an input file's internal format (application type) is identified
when the file is first opened by the Outside In technology. When the extended test flag
is in effect, and an input file is identified as being either 7-bit ASCII, EBCDIC, or
Unicode, the file's contents will be interpreted as such by the export process.

The extended test is optional because it requires extra processing and cannot
guarantee complete accuracy (which would require the inspection of every single byte
in a file to eliminate false positives.)

Data Type
bool

Data

One of the following values:
e false: When this is set, standard file identification behavior occurs.

e true: If set, the File Identification code will run an extended test on all files that are
not identified.

Default

true

PreventGraphicOverlap

Most browsers support flowing text around images. Unfortunately, even the most
popular browsers also have bugs in their support for this feature that occasionally
result in document elements overlapping. This option allows users of HTML Export to
choose if they would rather have text flowing around graphics or if they are willing to
sacrifice that feature in order to prevent browser overlap bugs.

When this option is turned on (set to true), HTML Export prevents browsers from
causing graphic overlap problems by surrounding all tags with <div> tags. The
overlap problems occur most frequently when the browser is displaying a document
that has a mix of left- and right-aligned graphics in close proximity to each other.

Resizing the browser window horizontally will sometimes expose this problem if it
does not appear initially.

Because these browser bugs are infrequently seen, this option is turned off (set to false)
by default. However, setting this option off does not guarantee that text will be able to
flow around graphics in the browser the same way it does in the original document.
There are two problems which can prevent this from occurring.

HTML Export .NET Classes 16-33

Exporter Interface

* The first problem is when objects are placed using positional frames.
Unfortunately, most new word processing formats do this automatically. When
positional frames are used, each object exists in its own frame. HTML Export
converts each frame as a single paragraph. Therefore, the objects are written one
after the other even if they were originally placed side by side in the source
document.

¢ The second problem is associated with image alignment. For some images, HTML
Export is unable to obtain the alignment of the image, so the alignment of the
paragraph it is contained in is used instead. The reason HTML Export uses this
alignment, which is not necessarily 100% correct, is because without adding
"align="in the tag, text does not wrap around images in browsers.

Data Type
bool

Default

false

RenderEmbeddedFonts

This option allows you to disable the use of embedded fonts in PDF input files. If the
option is set to true, the embedded fonts in the PDF input are used to render text; if the
option is set to false, the embedded fonts are not used and the fallback is to use fonts
available to Outside In to render text.

Data Type
bool

Default

true

ShowArchiveFullPath
OIT Option ID: SCCOPT_ARCFULLPATH

This option causes the full path of a node to be returned in "GetArchiveNodelnfo" and
"GetObjectInfo".

Data Type
bool

Data
¢ true: Provide the full path.

¢ false: Do not provide the path.

Default

false

16-34 Developer's Guide

Exporter Interface

ShowColumnHeadings

When this option is set to true, row and column headings ("1", "2", "3" / "A", "B", "C")
are included in the output for spreadsheet and database files. When set to false, no
row and column headings are created. The default for this option is true.

Data Type
bool

Default

true

ShowHiddenSpreadSheetData

The setting for this option determines whether or not hidden data (hidden columns,
rows or sheets) in a spreadsheet will be included in the output. When set to false (the
default), the hidden elements are not written. When set to true, they are placed in the
output in the same manner as regular spreadsheet data.

Data Type
bool

Default

false

ShowHiddenText

This option will force HTML Export to place all hidden text in line with surrounding
text.

Please note that enabling this option will not display hidden cells, hidden rows or
hidden sheets in spreadsheet documents. Also note that when graphic documents
(such as faxes) are processed by OCR software and converted to PDF, the optically
recognized text may be rendered as a layer of hidden text behind the original image.
In order to properly export such PDF documents, this option must be enabled.

Data Type

bool

Data

e true: Allow hidden text to be placed in the output.

¢ false: Prevent hidden text from being placed in the output.

Default

false

SimpleStyleNames

This option is for use by people who intend to read or change the CSS style names
generated by HTML Export.

HTML Export .NET Classes 16-35

Exporter Interface

By default, HTML Export creates unique style names based on the style names used in
the original document. Unfortunately, there is an inherent limitation in the style
names the CSS standard permits. That standard only permits the characters [a-z][A-Z]
[0-9] and "-". Source document style names do not necessarily have this restriction. In
fact they may even contain Unicode characters at times. For this reason, the original
style names may need to be modified to conform to this standard. To avoid illegal
style names, HTML Export performs the following substitutions on all source style
names:

"non

1. If the character is a "-", then it is replaced with "--".

2. If the character is not one of the remaining characters ([a-z][A-Z][0-9]), then it is
replaced by "-xxxx" where "xxxx" is the Unicode value of the character in
hexadecimal.

3. Otherwise the character appears in the style name normally.

An example of one of the most common examples of this substitution is that spaces in
style names are replaced with "-0020". For a more complete example of this character
substitution in style names, consider the source style name My Special H1-Style!. This
would be transformed to:

My-0020Special-0020H1--Style-0021

While admittedly this system lacks a certain aesthetic, it avoids the problem of how
the document looks when the browser receives duplicate or invalid style names.

Developers should also appreciate the simplicity of the code needed to parse or create
these style names.

In addition, HTML Export will sometimes create special character attribute-only
versions of styles. These have the same name as the style they are based on with "--
Char" appended to the end. These styles differ from their original counterparts in that
they contain no block level CSS. This more general solution replaces the solution
implemented in versions 7.1 and earlier which created "--List" styles to solve a subset
of this problem. This was done to work around limitations in some browsers.

Because of these CSS limitations, this option was created. Setting this option to true
causes HTML Export to generate style names that are easy to read but are not
guaranteed to be unique. It does this by discarding all characters in the original style
name that are not legal in CSS style names. As one would expect, this may lead to
naming collisions.

An example of a naming collision caused by setting this option can be seen if you look
at source document styles named MyStyle and My $ Style. When exported with this
option, both would become MyStyle. This in turn may generate confusion when
viewing the document in the browser. This is because the browser will look upon the
second style as being a redefinition of the first.

With the option set to false this is not a problem. The two styles would be converted to
MyStyle and My-0020-0024-0020Style respectively. Because the style names are
unique, the browser will not see the second style as a redefinition of the first.

As this contrived example indicates, naming collisions should be rare for most U.S.
documents.

If a style name consists of nothing but illegal characters, HTML Export will create a
style name for it. This style name is of the form UnnamedStyleX where X is a count of
styles encountered so far that did not have style names for one reason or another. This
behavior is expected to be very common when converting international documents in
languages that are not based on 7-bit ASCIIL.

16-36 Developer's Guide

Exporter Interface

Data Type
bool

Data
* true: Generate names that may not be unique, but are easy to read.

¢ false: Generate unique style names that are difficult to read.

Default

false

StrictFile

When an embedded file or URL can't be opened with the full path, Outsideln will
sometimes try and open the referenced file from other locations, including the current
directory. When this option is set, it will prevent Outsideln from trying to open the file
from any location other than the fully qualified path or URL.

Data Type
bool

Default

false

SuppressFontAttributes

This option is used to turn off specified font-related markup in the output. Naturally,
if the requested output flavor or other option settings prevent markup of the specified
type from being written, this option cannot be used to turn it back on. However,
specifying the size, color and font face of characters may all be suppressed by
combining together the appropriate combination of flags in this option.

Data Type
SuppressFontAttributeValues

SuppressFontAttributeValues Enumeration

The following set of flags:

® SuppressSize: Turns off any character-sizing information supported in the output
flavor.

* SuppressColor: Suppresses specifying the color of text.

® SuppressFace: Prevents the technology from requesting a specific font name for
text.

o AlOff

Default
AlOff

HTML Export .NET Classes 16-37

Exporter Interface

TimeZoneOffset
OIT Option ID: SCCOPT_TIMEZONE

This option allows the user to define an offset to GMT that will be applied during date
formatting, allowing date values to be displayed in a selectable time zone. This option
affects the formatting of numbers that have been defined as date values. This option
will not affect dates that are stored as text. To query the operating system for the time
zone set on the machine, specify TimeZoneOffset_UseNative.

Note:

Daylight savings is not supported. The sent time in msg files when viewed in
Outlook can be an hour different from the time sent when an image of the msg
file is created.

Data Type
Int32

Data

Integer parameter from -96 to 96, representing 15-minute offsets from GMT. To query
the operating system for the time zone set on the machine, specify
SCC_TIMEZONE_USENATIVE.

Default

e (0: GMT time

TransparencyColor
OIT Option ID: SCCOPT_GRAPHIC_TRANSPARENCYCOLOR

This option allows the user to set the color used as the "transparency color" in the
output graphic file. Naturally, this option is only used when the selected output
graphic file format supports transparency (GIF and PNG only). If the option is not set,
the default behavior is to use the same color value that the input file used as the
transparency color.

Use the (r, g, b) macro to create the color value to pass to this option. The red, green
and blue values are percentages of the color from 0-255 (with 255 being 100%). Note
that this macro should be used to set a variable and that variable should then be
passed to the set option routine (instead of trying to use the macro as part of the set
option call directly).

Since there is no way to "unset" an option once it has been set, the developer may set
the option to DefaultTransparencyColor if they wish to revert to the default behavior.

Class members:
byte Red

byte Green
byte Blue

16-38 Developer's Guide

ExportStatus Class

UnicodeByteOrder

This option determines the byte order of Unicode characters in the output files when
Unicode is chosen as the output character set.

Data Type
UnicodeByteOrderValue

UnicodeByteOrderValue Enumeration

The following set of values:
¢ BigEndian: Big-Endian byte ordering is used to output characters in output file.
e LittleEndian: Little-Endian byte ordering is used to output characters in output file.

¢ FromTemplate: Use the byte ordering used in the main template file

Default

FromTemplate

UnmappableCharacter
OIT Option ID: SCCOPT_UNMAPPABLECHAR

This option selects the character used when a character cannot be found in the output
character set. This option takes the Unicode value for the replacement character. It is
left to the user to make sure that the selected replacement character is available in the
output character set.

Data Type
UShort

Data

The Unicode value for the character to use.

Default

e 0x002a ="*"

ExportStatus Class

The ExportStatus class provides access to information about a conversion. This
information may include information about sub-document failures, areas of a
conversion that may not have high fidelity with the original document. When
applicable the number of pages in the output is also provided.

Namespace
Outsideln

HTML Export .NET Classes 16-39

FileFormat Class

Properties

¢ PageCount (Int32) - A count of all of the output pages produced during an export
operation.

e StatusFlags (ExportStatusFlags) - Gets the information about possible fidelity issues
with the original document.

e SubDocsFailed (Int32) - Number of sub documents that were not converted.

® SubDocsPassed (Int32) - Number of sub documents that were successfully
converted.

ExportStatusFlags Enumeration

This enumeration is the set of possible known problems that can occur during an
export process.

¢ NolnformationAvailable: No Information is available
¢ MissingMap: A PDF text run was missing the toUnicode table
e VerticalText: A vertical text run was present

e TextEffects: A run that had unsupported text effects applied. One example is Word
Art

¢ UnsupportedCompression: A graphic had an unsupported compression

* UnsupportedColorSpace: A graphic had an unsupported color space

e Forms: A sub documents had forms

¢ RightToLeftTables: A table had right to left columns

e Equations: A file had equations

* AliasedFont: The desired font was missing, but a font alias was used

e MissingFont: The desired font wasn't present on the system

¢ SubDocFailed: a sub-document was not converted

e TypeThreeFont: A type 3 font was encountered.

* UnsupportedShading: An unsupported shading pattern was encountered.

¢ InvalidHTML: An HTML parse error, as defined by the W3C, was encountered.

FileFormat Class

This class defines the identifiers for file formats.

Namespace
Outsideln

Methods

¢ getDescription

16-40 Developer's Guide

FontAliases Class

String getDescription()
This method returns the description of the format.
e getld
int getld()
This method returns the numeric identifier of the format.
e forld
Fil eFormat forld(int id)
This method returns the FileFormat object for the given identifier.

id : The numeric identifier for which the corresponding FileFormat object is
returned.

FontAliases Class

FontAliases is a class for providing font matching of unknown fonts.

Namespace
OutsideIn.Options
Constructor
Font Al i ases(Dictionary<string, string> aliasList)
al i asLi st Aliases list as a key-value pair with original name as key
Properties

e AliasList (Dictionary<String, String>) - List of font aliases set.

Fontinfo Class

Fontlnfo is a class to define a font for use in the Outsideln API.

Namespace

Outsideln.Options
Constructor
Font I nfo()

Constructs a FontInfo object with a 10 point Arial Font.

FontInfo(String fontface, Int16 height)
fontface The name of the font
hei ght Size of the font in half points

Properties
¢ Fontface (String) - The name of the font

* Height (Int16) - Size of the font in half points

HTML Export .NET Classes 16-41

FontList Class

FontList Class

FontList is a class for inclusion or exclusion of fonts in exported documents.

Namespace

OutsideIn.Options

Constructor

Font Li st (Bool ean I sExclusion, String[] fonts)
IsExclusion |f set then acconpanying list is an exclusion |ist
fonts List of fonts to include or exclude

Properties
¢ IsExclusion (Boolean) - If set, then accompanying list is an exclusion list.

¢ FontsList (String[]) - List of fonts to include or exclude.

GridWraplnfo Class

The GridWraplnfo class is a data class used to define the grid wrapping options to be
used.

Namespace

Outsideln.Options

Constructors

GidWapl nfo()

Default constructor with default values.

Gi dWapl nf o(bool Enabl e)

Initializes a new instance of the GridWraplInfo class to enable or disable grid wrapping
Enable: Option to enable or disable grid wrapping

GidWapl nf o(
bool Enabl e,
int Rows,
int Colums,
GidWapl nfo. AdvanceMbdeVal ue Advance)

Create an instance of a GridWrapInfo object with all properties initialized.

Enable: Option to enable or disable grid wrapping

Rows: The maximum number of rows that each template "grid" should contain.
Columns: The maximum number of columns that each template "grid" should contain.

Advance: Option to specify how the "previous" and "next" relationships will work
between grids.

16-42 Developer's Guide

HighlightTextAnnotation Class

Properties
G i dWapl nf 0. AdvanceMdeVal ue AdvanceMde

Option to specify how the "previous" and "next" relationships will work between
grids.

¢ Int32 MaxColumns: The number of columns that each template "grid" (applicable
only to spreadsheet or database files) should contain.

¢ Int32 MaxRows: The number of rows that each template "grid" (applicable only to
spreadsheet or database files) should contain.

* Boolean WrappingEnabled: This option specifies whether the "previous" and "next"
relationships "wrap" at the edges of the spreadsheet or database.

AdvanceModeValue Enumeration

This enumeration is used to set how spreadsheet is traversed.
¢ DOWN: Traverse by columns
* ACROSS: Traverse by rows

HighlightTextAnnotation Class

The HighlightTextAnnotation class applies to characteristics of a highlighted text
annotation. This class derives from the Annotation class.

Namespace

OutsideIn.Annotations

Constructors

Hi ghl i ght Text Annotation(lnt64 Start Char Count,
I nt 64 EndChar Count,
Char AttributeVal ues CharAttrs,
Char Attribut eVal ues Char Mask)
Hi ghl i ght Text Annotation(Int64 Start Char Count,
I nt 64 EndChar Count ,
Col or I nfo Foreground,
Col or I nfo Background)
Hi ghl i ght Text Annotation(lnt64 Start Char Count,
I nt 64 EndChar Count,
Col or I nfo Foreground,
Col or I nfo Background,
Char AttributeVal ues CharAttrs,
Char Attribut eVal ues Char Mask)

Initializes a new instance of the HighlightTextAnnotation class.

Parameters
¢ StartCharCount: The character count of the starting position
¢ EndCharCount: The character count of the end position

¢ Foreground: The text color of the highlight

HTML Export .NET Classes 16-43

MailHeaders Class

e Background: The background color of the highlight
* CharAttrs: The character attributes to use

* CharMask: Character attributes to change

CharAttributeValues Enumeration

This enumeration is the list of all character attributes to apply for the text highlight.
e Normal: Normal text - All attributes off
¢ Underline: Underline attribute

e Jtalic: Italic attribute

¢ Bold: Bold attribute

e StrikeOut: Strike out text

¢ SmallCaps: Small caps

e Qutline: Outline Text

e Shadow: Shadow text

* Caps: All Caps

¢ Subscript: Subscript text

® Superscript: Superscript text

¢ DoubleUnderline: Double Underline

e WordUnderline: Word Underline

¢ DottedUnderline: Dotted Underline

e DashedUnderline: Dashed Underline

e All: All attributes

MailHeaders Class

MailHeaders class is a class describing the Mail Headers to be displayed, hidden or
modified.

Namespace

Outsideln.Options

Constructors

Mai | Header s()

Constructs a MailHeaders object with a standard headers only.

Mai | Header s(Mai | Header s. Basel i neVal ue basel i ne)

baseline: The starting point to add or delete headers.

16-44 Developer's Guide

MailHeaders Class

Properties

Baseline (MailHeaders.BaselineValue) The starting point to add or delete headers.

Methods

Mai | Header s Excl udeHeader (Mai | Header s. Mai | TypeVal ue ntype,
Mai | Header s. Mai | Header Val ue nhdr)

This method adds a standard header to the hidden list.

e mtype: The type of documents in which to hide this header
¢ mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

Mai | Header s Excl udeHeader (Mai | Header s. Mai | TypeVal ue ntype, String Excl usion)
This method adds a custom header to be the hidden list.
¢ mtype: The type of documents in which to hide this header

¢ Exclusion: User-specified MIME header name to be excluded

This method returns a reference to the updated MailHeaders object.

Mai | Headers | ncl udeHeader (Mai | Header s. Mai | TypeVal ue ntype,
Mai | Header s. Mai | Header Val ue nhdr)

This method adds a standard header to the visible list.

¢ mtype: The type of documents in which to show this header

e mhdr: The header to hide

This method returns a reference to the updated MailHeaders object.

Mai | Headers | ncl udeHeader (Mai | Header s. Mai | TypeVal ue ntype, String Original, String
Repl acenent)

This method adds a custom header to the visible list.
e mtype: The type of documents in which to show this header
¢ Original: User-specified MIME header name

* Replacement: String that will be used as the label for the user-defined MIME
header

This method returns a reference to the updated MailHeaders object.

voi d Set Header (Di cti onar y<Mai | Headers. Mai | TypeVal ue, Dictionary<String, String>>
headers)

This method sets a series of custom headers to the visible headers list.

* headers: A key value pair of user-specified MIME headers and their replacement
strings

HTML Export .NET Classes 16-45

Option Interface

voi d Set Header (Di ctionary<Mai | Headers. Mai | TypeVal ue, List<String>> headers)
This method sets a series of custom headers to the hidden headers list.
¢ headers: A list of user-specified MIME headers to be hidden

MailHeaders.BaselineValue Enumeration

The BaselineValue is an enumeration of the possible baselines (starting points to add
or exclude headers).

MailHeaders.MailTypeValue Enumeration

The MailTypeValue is an enumeration of the types of mail documents.

Option Interface

The Option Interface provides the methods and properties to retrieve information
about an Outside In Option.

Namespace
Outside In

Properties

e Name — Name of the option

¢ Description — Description of the option

e DataType — The type of the option value

* SupportingProducts — The list of products that support this option
Methods

voi d Set (OptionsCache exporter, Object objValue);

This method sets the option to the exporter object.

* exporter — The exporter object

* objValue — Value of the option

Note:

If the type of objValue cannot be converted to the data type the option is
expecting, an OutsideInCastException is thrown.

voi d Get (OptionsCache exporter)
This method gets the currently set value for the option.

¢ exporter — The exporter object who’s option value is requested.

16-46 Developer's Guide

Outsideln Class

OutsidelnProducts Enumeration

¢ HTMLExport — Outside In HTML Export

¢ ImageExport — Outside In Image Export

¢ PDFExport — Outside In PDF Export

e SearchExport — Outside In Search Export

¢ WebViewExport — Outside In Web View Export
e XMLExport — Outside In XML Export

¢ AllExports — All Outside In export products

Outsideln Class

This is a utility class that creates an instance of an Exporter object on request.

Namespace
Outsideln

Methods
static Exporter NewLocal Exporter()

This method creates an instance of an Exporter object. It returns a newly created
Exporter object.

static Exporter NewLocal Exporter(Exporter source)

This method creates and returns an instance of an Exporter object based on the source
Exporter. All the options of source are copied to the new Exporter. The source and
destination file information will not be copied.

Qut si del nVersi on Get Cor eVersion()

This static method returns an OutsideInVersion object with information of the Outside
In Core Technology used.

OutsidelnConfig Class

The OutsideInConfig Class is used to describe the Outside In Configuration Options.

Namespace
Outsideln

Constructors
Qut si del nConfig()

Creates a OutsideInConfig instance with default values.

Qut si del nConfig(Directorylnfo InstallLocation, U nt32 Idl eWrkerTineout, U nt32
M ni mumAér ker Count)

Creates a OutsideInConfig instance with specified values.

HTML Export .NET Classes 16-47

OutsidelnVersion Class

Properties
DirectoryInfo InstallLocation: The Location of the technology directory.

UInt32 IdleWorkerTimeout: value indicating the number of milliseconds that an idle
process in excess of the minimum worker count is kept alive before being terminated.
This timeout only applies to worker processes created beyond the number of
MinimumWorkerCount processes.

UInt32 MinimumWorkerCount: Specifies the minimum number of running worker
processes kept available for export operations. If there is a higher number of exporter
objects performing simultaneous export operations, additional worker processes will
be created. Those additional worker processes will be terminated according to the
IdleWorkerTimeout setting. If any of these processes are terminated due to errors, they
will be replaced by a new process to maintain this minimum count of loaded worker
processes.

OutsidelnVersion Class

The Outsideln Class is used to describe the version of the Outside In Core Module.

Namespace
Outsideln

Methods
String CetVersion()

This method returns the version information as a string in the format of
“MajorVersion.MinorVersion.DotVersion”.

Properties
¢ int MajorVersion: The major version component
¢ int MinorVersion: The minor version component

¢ int DotVersion: The dot version component

OutsidelnCastException Class

This exception is thrown when an invalid value is provided as an option value.

This class derives from the OutsideInException class. This class has no public methods
or properties except those of the parent Exception class.

Namespace

Outsideln

OutsidelnException Class

This is the exception that is thrown when an Outside In Technology error occurs.

This class derives from the Exception class. This class has no public methods or
properties except those of the parent Exception class.

16-48 Developer's Guide

OutsidelnException Class

Names pace
Outsideln

HTML Export .NET Classes 16-49

OutsidelnException Class

16-50 Developer's Guide

Symbols

#define Name Changes, 12-63
$DISPLAY, 6-9

$HOME, 6-12
$LD_LIBRARY_PATH, 6-11
$LIBPATH, 6-11

$ORIGIN, 6-11
$SHLIB_PATH, 6-11

A

Annotation, 14-1, 16-1
Annotation Functions, 8-6
Architectural Overview, 1-2

B

batch_process_hx, 11-2
BorderMode, 14-15, 16-14

C

Callback, 14-3, 16-2

Callbacks, 10-1, 12-54

CGI programs, 6-9

Character Mapping, 12-2
CollapseWhiteSpace, 14-16, 16-14
ColorInfo, 14-6, 16-5

colors available, 6-10
Compression, 12-36
createNewFile, 14-3
CreateNewFile, 16-3
CreateNewFileResponse, 14-3, 16-4
createTempFile, 14-6
CreateTempFileResponse, 14-6

D

DACloseDocument, 7-5
DACloseTreeRecord, 7-14
DADelnit, 7-3

Index

DAGetErrorString, 7-10
DAGetFileld, 7-8

DAGetFileldEx, 7-9

DAGetOption, 7-8
DAGetTreeCount, 7-10
DAGetTreeRecord, 7-11

DAInitEx, 7-2

DAOpenDocument, 7-3
DAOpenTreeRecord, 7-12
DARetrieveDocHandle, 7-6
DASaveTreeRecord, 7-13
DASetFileAccessCallback, 7-16
DASetFileSpecOption, 7-7, 12-35
DASetOption, 7-6, 12-35
DASetStatCallback, 7-14

Data Access Common Functions, 7-1
Default Font Aliases, 5-8, 6-12
DefaultInputCharacterSet, 14-16, 16-15
DefaultRenderFont, 14-19, 16-17
Deprecated Functions, 7-1
Deprecated Template Macros, 3-33
Directory Structure, 1-4
Discontinued Options, 12-62
Document, 14-11, 16-10
DocumentMemoryMode, 14-19, 16-17
DropPDFHyphens, 14-19, 16-18

E

EmailHeaders, 14-20, 16-18
environment variables

$DISPLAY, 6-9

$HOME, 6-12

$LD_LIBRARY_PATH, 6-11

$LIBPATH, 6-11

$SHLIB_PATH, 6-11
EX_CALLBACK_ID_ALTLINK, 10-5
EX_CALLBACK_ID_CUSTOMELEMENTLIST, 10-6
EX_CALLBACK_ID_ENTERARCHIVE, 10-6
EX_CALLBACK_ID_GRAPHICEXPORTFAILURE,

10-8

EX_CALLBACK_ID_LEAVEARCHIVE, 10-8

Index-1

EX_CALLBACK_ID_NEWFILEINFO, 10-5
EX_CALLBACK_ID_OEMOUTPUT, 10-9
EX_CALLBACK_ID_OEMOUTPUT_VER?2, 10-9
EX_CALLBACK_ID_PROCESSELEMENTSTR, 10-10
EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2,
10-10

EX_CALLBACK_ID_PROCESSLINK, 10-12
EX_CALLBACK_ID_REFLINK, 10-14
EX_LINKTARGET, 12-61
EX_LINKTARGETOVERRIDE, 12-62
EXCALLBACKPROC, 8-3
EXCloseExport, 8-4
EXExportStatus, 8-4
EXOpenExport, 8-1
export

Main Window, 11-3
Export Functions, 8-1
Exporter, 14-7,16-6
ExportStatus, 14-42, 16-39
ExportStatusFlags, 16-39
ExportTest, 11-6
exredir, 11-4
EXRunExport, §-4
exsimple, 11-4
extract_archive, 11-4
ExtractEmbeddedFiles, 14-20, 16-18

F

FallbackFormat, 14-21, 16-19
File System, 12-56
FileFormat, 14-43, 16-40
Font Rendering, 12-51
FontAliases, 14-44, 16-41
FontAliasList, 14-21, 16-19
FontInfo, 14-44, 16-41
FontList, 14-44, 16-42

G

GenerateBulletsAndNumbering, 14-22, 16-20
GenerateJavascriptTabs, 14-22, 16-20
graphic types, 6-9
GraphicHeightLimit, 14-23, 16-21
GraphicOutputDPI, 14-23, 16-21
Graphics, 12-38

GraphicSizeLimit, 14-24, 16-22
GraphicSizeMethod, 14-24, 16-22
GraphicWidthLimit, 14-24, 16-22
GridWrap, 14-25, 16-23
GridWraplInfo, 14-45, 16-42

H

HighlightTextAnnotation, 14-46, 16-43
How to Use HTML Export, 1-4

Index-2

HP-UX on Itanium (64 bit), 6-15
HP-UX on RISC, 6-15

HP-UX on RISC (64 bit), 6-15

HTML Export Options, 12-1
HTMLFlavor, 14-25, 16-23
HTMLOutputFormatting, 14-26, 16-24
hxanno, 11-5

hxsample, 11-2

IBM AIX (32-bit pSeries), 6-16

IBM AIX PPC (64-bit), 6-16
IECondCommentMode, 14-27, 16-25
IgnorePassword, 14-27, 16-25
Implementation Issues, 2-1

Input Handling, 12-15
InterlacedGIFs, 14-27, 16-25
InternalRendering, 14-28
Introduction, 1-1

I0Close, 9-3

IOGENSECONDARY and IOGENSECONDARYW

Structures, 9-8
I0GetInfo, 9-5
IOGETINFO_GENSECONDARY, 9-10
IORead, 9-3
10Seek, 9-4
IOSPECARCHIVEOBJECT Structure, 7-5
IOSPECLINKEDOBJECT Structure, 7-5
I0Tell, 9-5
IOWrite, 9-4
ISODateTimes, 14-28, 16-26

J

Java Wrapper, 11-5
JPEGQuality, 14-28, 16-26

L

Layout, 12-24
Linux
Compiling and Linking, 6-17
GLIBC and Compiler Versions, 6-17
Library Compatibility, 6-16
Motif Libraries, 6-16
Linux 32-bit, including Linux PPC, 6-18
Linux 64-bit, 6-18
Linux zSeries, 6-18
LotusNotesDirectory, 14-29, 16-26

M

Machine-dependant, 6-10
MailHeaders, 14-47, 16-44

N

newFilelnfo, 14-4
NewgFilelnfo, 16-5
NSF Support, 5-2, 6-2

o

Old Options, 12-62

OLE2, 6-9

openkFile, 14-5
OpenFileResponse, 14-5
Option Interface, 14-49, 16-46
OptionsCache, 14-13, 16-12
Oracle Solaris (SPARC) 64, 6-19
Oracle Solaris SPARC, 6-19

Oracle Solaris X Server Display Memory Issue, 6-19

Output, 12-7
OutputChangeTracking, 14-29, 16-27
OutputCharacterSet, 14-29, 16-27
OutputGraphicType, 14-32, 16-29
Outsideln, 14-50, 16-47
OutsideInCastException Class, 16-48
OutsideInConfig, 16-47
OutsideInException, 14-51, 16-48
OutsideInVersion, 16-48

P

Page Rendering, 12-48

PageBreakLimit, 14-32, 16-30
ParseXMPMetadata, 14-34, 16-31
PDFInputMaxEmbeddedObjects, 14-34, 16-31
PDFInputMaxVectorPaths, 14-34, 16-32
PDFReorderBiDi, 14-35, 16-32
PDFWordSpacingFactor, 14-35, 16-32
PerformExtendedFI, 14-35, 16-33
PreventGraphicOverlap, 14-36, 16-33

Q

query folders, 6-9

R

Running in 24x7 Environments, 2-1
Running in Multiple Threads or Processes, 2-1
Runtime Search Path, 6-11

S

Sample Applications, 11-1
SCCDATREENODE Structure, 7-12
SCCOPT_ARCFULLPATH, 12-21
SCCOPT_DEFAULTINPUTCHARSET, 12-2
SCCOPT_DEFAULTPRINTFONT, 12-51

SCCOPT_DOCUMENTMEMORYMODE, 12-59
SCCOPT_EX_CALLBACKS, 12-54
SCCOPT_EX_CHANGETRACKING, 12-7
SCCOPT_EX_CHARBYTEORDER, 12-2
SCCOPT_EX_COLLAPSEWHITESPACE, 12-7
SCCOPT_EX_EXTRACTEMBEDDEDFILES, 12-8
SCCOPT_EX_FALLBACKFONT, 12-24
SCCOPT_EX_FLAVOR, 12-9
SCCOPT_EX_FONTFLAGS, 12-25
SCCOPT_EX_GENBULLETSANDNUMS, 12-26
SCCOPT_EX_GRIDADVANCE, 12-27
SCCOPT_EX_GRIDCOLS, 12-28
SCCOPT_EX_GRIDROWS, 12-29
SCCOPT_EX_GRIDWRAP, 12-31
SCCOPT_EX_JAVASCRIPTTABS, 12-31
SCCOPT_EX_NOSOURCEFORMATTING, 12-10
SCCOPT_EX_OUTPUTCHARACTERSET, 12-3
SCCOPT_EX_PAGESIZE, 12-32
SCCOPT_EX_PREVENTGRAPHICOVERLAP, 12-34
SCCOPT_EX_SHOWHIDDENSSDATA, 12-11
SCCOPT_EX_SHOWHIDDENTEXT, 12-12
SCCOPT_EX_SHOWSPREADSHEETBORDER, 12-45
SCCOPT_EX_SIMPLESTYLENAMES, 12-12
SCCOPT_EX_SSDBBORDER, 12-46
SCCOPT_EX_SSDBROWCOLHEADINGS, 12-48
SCCOPT_EX_TEMPLATE, 12-35
SCCOPT_EX_UNICODECALLBACKSTR, 12-56
SCCOPT_FALLBACKFORMAT, 12-15
SCCOPT_FIFLAGS, 12-16
SCCOPT_FILTERJPG, 12-36
SCCOPT_FILTERLZW, 12-37
SCCOPT_FORMATFLAGS, 12-16
SCCOPT_GENERATEEXCELREVISIONS, 12-22
SCCOPT_GIF_INTERLACED, 12-38
SCCOPT_GIF_SPLASHPALETTE, 12-62
SCCOPT_GRAPHIC_HEIGHTLIMIT, 12-38
SCCOPT_GRAPHIC_OUTPUTDP], 12-39
SCCOPT_GRAPHIC_SIZELIMIT, 12-40
SCCOPT_GRAPHIC_SIZEMETHOD, 12-41
SCCOPT_GRAPHIC_TRANSPARENCYCOLOR,
12-42
SCCOPT_GRAPHIC_TYPE, 12-42
SCCOPT_GRAPHIC_WIDTHLIMIT, 12-43
SCCOPT_HTML_COND_COMMENT_MODE, 12-20
SCCOPT_IGNORE_PASSWORD, 12-17
SCCOPT_IO_BUFFERSIZE, 12-57
SCCOPT_JPEG_QUALITY, 12-44
SCCOPT_LOTUSNOTESDIRECTORY, 12-18
SCCOPT_MAILHEADERHIDDEN, 12-50
SCCOPT_MAILHEADERVISIBLE, 12-49
SCCOPT_PARSEXMPMETADATA, 12-18
SCCOPT_PDF_FILTER_DROPHYPHENS, 12-21
SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS,
12-22
SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS,
12-23

Index-3

SCCOPT_PDF_FILTER_REORDER_BIDI, 12-19
SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION,
12-23
SCCOPT_PRINTFONTALIAS, 12-52
SCCOPT_REDIRECTTEMPFILE, 12-60
SCCOPT_RENDER_ENABLEALPHABLENDING,
12-45
SCCOPT_RENDERING_PREFER_OIT, 12-14
SCCOPT_STROKE_TEXT, 12-54
SCCOPT_SYSTEMFLAGS, 12-17
SCCOPT_TEMPDIR, 12-58
SCCOPT_TIMEZONE, 12-19
SCCOPT_UNMAPPABLECHAR, 12-6
SCCOPT_WPEMAILHEADEROUTPUT, 12-48
SCCVWFONTALIAS Structure, 12-52
SCCVWFONTSPEC Structure, 12-51
ShowArchiveFullPath, 14-37, 16-34
ShowColumnHeadings, 14-37, 16-35
ShowHiddenSpreadSheetData, 14-37, 16-35
ShowHiddenText, 14-38, 16-35
SimpleStyleNames, 14-38, 16-35
Solaris x64, 6-19
Solaris x86, 6-19
Spreadsheet and Database File Rendering, 12-45
Status Callback Function, 7-14
StrictFile, 14-39, 16-37
SuppressFontAttributes, 14-40, 16-37

T

Template Comments, 4-1
Template-Only Options, 12-61
TimeZoneOffset, 14-40, 16-38
TransparencyColor, 14-41, 16-38

U

UnicodeByteOrder, 14-41, 16-39
Unix

X server, 6-9
UNIX

API Libraries, 6-3

Index-4

UNIX (continued)

Changing Resources, 6-14

Character Sets, 6-9

Engine Libraries, 6-4

Environment Variables, 6-11

Filter and Export Filter Libraries, 6-5

HP-UX Compiling and Linking, 6-14

IBM AIX Compiling and Linking, 6-15

Information Storage, 6-8

Installation, 6-1

Libraries and Structure, 6-2

Linux Compiling and Linking, 6-16

OLE2, 6-9

Oracle Solaris Compiling and Linking, 6-18

Premier Graphics Filters, 6-6

Runtime Considerations, 6-9

Signal Handling, 6-10

Support Libraries, 6-3

z/0S Compiling and Linking, 6-20
UNIX Implementation Details, 6-1
UnmappableCharacter, 14-42, 16-39
Using Redirected IO, 9-1

Vv

vector graphics, 6-9
video driver, 6-10

w

What’s New in this Release, 1-1
Windows
APIDLLs, 5-2
Changing Resources, 5-9
Character Sets, 5-8
Engine Libraries, 5-4
Filter and Export Filter Libraries, 5-4
Installation, 5-1
Libraries and Structure, 5-2
Options and Information Storage, 5-7
Premier Graphics Filters, 5-5
Support DLLs, 5-3
Windows Implementation Details, 5-1

	Contents
	Preface
	Audience
	Related Documents
	Conventions

	Part I Getting Started with HTML Export
	1 Introduction
	What's New in this Release
	Architectural Overview
	Definition of Terms
	Directory Structure
	Installing Multiple SDKs

	How to Use HTML Export

	2 Implementation Issues
	Running in 24x7 Environments
	Running in Multiple Threads or Processes
	HTML Export Issues
	Relative URLs in Templates
	Guarantee the References Are Good
	Use Absolute URLs
	Generate Complete URLs Using {## insert oem=}
	Use CGI and the <base> tag
	Have HX copy the files using {## copy}

	Browser Caching
	Errors Returned by HTML Export
	CSS Considerations
	Customizing CSS Styles
	Style Names Used by HTML Export
	Overriding HTML Export's Styles
	pragma.cssfile and {## link}

	XHTML
	Archive Support
	Using Redirected IO with Archive Files
	Temporary File Creation
	Empty Directories in Archive Files
	Finding the Total Number of Files in an Archive

	Positional Frames Support
	Limitations of Multimedia File Support

	3 Templates
	What Is a Template?
	The Included Sample Templates
	The Document Tree and Its Elements
	Leaf Elements
	Repeatable Elements
	Element Definitions
	Default Nodes

	Macro Reference
	Units: {## unit}, {## header}, and {## footer}
	Insert Element: {## insert}
	Conditional: {## if}, {## elseif}, and {## else}
	Loop: {## repeat}
	Linking with Structured Breaking: {## link}
	Linking with Content Size Breaking: {## anchor}
	Comment Put in the Output File: {## ignore}
	Comment Not Put in the Output File: {## comment}
	Including Other Templates: {## include}
	Setting Options Within the Template: {## option}
	Copying Files: {## copy} (HTML Export Only)
	Deprecated Template Macros (HTML Export Only)

	Breaking Documents by Structure
	Indexes and Structure-Based Breaking

	Units - Breaking Documents by Content Size
	A Sample Size Breaking Template
	Templates Without {## unit} Macros
	Indexes and Size-Based Breaking

	Using Grids to Navigate Spreadsheet and Database Files
	Grid Support When Tables Are Not Available

	Choosing a Template
	Unicode Templates

	4 Template Tutorials
	Template Comments
	Tutorial 1: simple
	Tutorial 2: toc1
	Tutorial 3: toc2
	Tutorial 4: unit
	Tutorial 5: misc
	Tutorial 6: grids1
	Tutorial 7: grids2
	Tutorial 8: internal

	Part II Using the C/C++ API
	5 Windows Implementation Details
	Installation
	NSF Support

	Libraries and Structure
	API DLLs
	Support DLLs
	Engine Libraries
	Filter and Export Filter Libraries
	Premier Graphics Filters
	Additional Files

	The Basics
	What You Need in Your Source Code
	Options and Information Storage
	Structure Alignment
	Character Sets
	Runtime Considerations

	Default Font Aliases
	Changing Resources

	6 UNIX Implementation Details
	Installation
	NSF Support

	Libraries and Structure
	API Libraries
	Support Libraries
	Engine Libraries
	Filter and Export Filter Libraries
	Premier Graphics Filters
	Additional Files

	The Basics
	What You Need in Your Source Code
	Information Storage

	Character Sets
	Runtime Considerations
	X Server Requirement
	OLE2 Objects
	Machine-Dependent Graphics Context
	Signal Handling
	Runtime Search Path and $ORIGIN

	Environment Variables
	Default Font Aliases
	Changing Resources
	HP-UX Compiling and Linking
	HP-UX on RISC
	HP-UX on RISC (64 bit)
	HP-UX on Itanium (64 bit)

	IBM AIX Compiling and Linking
	IBM AIX (32-bit pSeries)
	IBM AIX PPC (64-bit)

	Linux Compiling and Linking
	Library Compatibility
	Motif Libraries
	GLIBC and Compiler Versions
	Other Libraries

	Compiling and Linking
	Linux 32-bit, including Linux PPC
	Linux 64-bit
	Linux zSeries

	Oracle Solaris Compiling and Linking
	Oracle Solaris SPARC
	Oracle Solaris (SPARC) 64
	Oracle Solaris x86
	Oracle Solaris x64
	Oracle Solaris X Server Display Memory Issue

	z/OS Compiling and Linking

	7 Data Access Common Functions
	Deprecated Functions
	DAInitEx
	DADeInit
	DAOpenDocument
	IOSPECLINKEDOBJECT Structure
	IOSPECARCHIVEOBJECT Structure

	DACloseDocument
	DARetrieveDocHandle
	DASetOption
	DASetFileSpecOption
	DAGetOption
	DAGetFileId
	DAGetFileIdEx
	DAGetErrorString
	DAGetTreeCount
	DAGetTreeRecord
	SCCDATREENODE Structure

	DAOpenTreeRecord
	DASaveTreeRecord
	DACloseTreeRecord
	DASetStatCallback
	DASetFileAccessCallback

	8 Export Functions
	General Functions
	EXOpenExport
	EXCALLBACKPROC
	EXCloseExport
	EXRunExport
	EXExportStatus

	Annotation Functions
	EXHiliteText
	HTML Export Usage Notes

	EXInsertText
	EXHideText
	EXANNOHIDETEXT Structure

	9 Redirected IO
	Using Redirected IO
	Opening Files
	IOClose
	IORead
	IOWrite
	IOSeek
	IOTell
	IOGetInfo
	IOGENSECONDARY and IOGENSECONDARYW Structures
	File Types That Cause IOGETINFO_GENSECONDARY

	IOSEEK64PROC / IOTELL64PROC
	IOSeek64
	IOTell64

	10 Callbacks
	EX_CALLBACK_ID_CREATENEWFILE
	EXURLFILEIOCALLBACKDATA / EXURLFILEIOCALLBACKDATAW Structures

	EX_CALLBACK_ID_NEWFILEINFO
	EX_CALLBACK_ID_ALTLINK
	EX_CALLBACK_ID_CUSTOMELEMENTLIST
	EX_CALLBACK_ID_ENTERARCHIVE
	EX_CALLBACK_ID_GRAPHICEXPORTFAILURE
	EX_CALLBACK_ID_LEAVEARCHIVE
	EX_CALLBACK_ID_OEMOUTPUT
	EX_CALLBACK_ID_OEMOUTPUT_VER2
	EX_CALLBACK_ID_PROCESSELEMENTSTR
	EX_CALLBACK_ID_PROCESSELEMENTSTR_VER2
	EX_CALLBACK_ID_PROCESSLINK
	Links That Reference Objects Using a Relative Path (HTML Export)

	EX_CALLBACK_ID_REFLINK

	11 Sample Applications
	Building the Samples on a Windows System
	An Overview of the Sample Applications
	batch_process_hx
	*sample
	export (Windows Only)
	The export Main Window

	exsimple
	exredir
	extract_archive
	hxanno

	Accessing the SDK via a Java Wrapper
	The ExJava Wrapper API
	The C-Based Exporter Application
	Compiling the Executables
	The ExportTest Sample Application
	An Example Conversion Using the ExJava Wrapper

	12 HTML Export C/C++ Options
	Character Mapping
	SCCOPT_DEFAULTINPUTCHARSET
	SCCOPT_EX_CHARBYTEORDER
	SCCOPT_EX_OUTPUTCHARACTERSET
	SCCOPT_UNMAPPABLECHAR

	Output
	SCCOPT_EX_CHANGETRACKING
	SCCOPT_EX_COLLAPSEWHITESPACE
	SCCOPT_EX_EXTRACTEMBEDDEDFILES
	SCCOPT_EX_FLAVOR
	SCCOPT_EX_NOSOURCEFORMATTING
	SCCOPT_EX_SHOWHIDDENSSDATA
	SCCOPT_EX_SHOWHIDDENTEXT
	SCCOPT_EX_SIMPLESTYLENAMES
	SCCOPT_RENDERING_PREFER_OIT

	Input Handling
	SCCOPT_FALLBACKFORMAT
	SCCOPT_FIFLAGS
	SCCOPT_FORMATFLAGS
	SCCOPT_SYSTEMFLAGS
	SCCOPT_IGNORE_PASSWORD
	SCCOPT_LOTUSNOTESDIRECTORY
	SCCOPT_PARSEXMPMETADATA
	SCCOPT_PDF_FILTER_REORDER_BIDI
	SCCOPT_TIMEZONE
	SCCOPT_HTML_COND_COMMENT_MODE
	SCCOPT_PDF_FILTER_DROPHYPHENS
	SCCOPT_ARCFULLPATH
	SCCOPT_GENERATEEXCELREVISIONS
	SCCOPT_PDF_FILTER_MAX_EMBEDDED_OBJECTS
	SCCOPT_PDF_FILTER_MAX_VECTOR_PATHS
	SCCOPT_PDF_FILTER_WORD_DELIM_FRACTION

	Layout
	SCCOPT_EX_FALLBACKFONT
	SCCUTFALLBACKFONT Structure

	SCCOPT_EX_FONTFLAGS
	SCCOPT_EX_GENBULLETSANDNUMS
	SCCOPT_EX_GRIDADVANCE
	SCCOPT_EX_GRIDCOLS
	SCCOPT_EX_GRIDROWS
	SCCOPT_EX_GRIDWRAP
	SCCOPT_EX_JAVASCRIPTTABS
	SCCOPT_EX_PAGESIZE
	SCCOPT_EX_PREVENTGRAPHICOVERLAP
	SCCOPT_EX_TEMPLATE
	Using DASetOption to Specify the Template
	Using DASetFileSpecOption to Specify the Template

	Compression
	SCCOPT_FILTERJPG
	SCCOPT_FILTERLZW

	Graphics
	SCCOPT_GIF_INTERLACED
	SCCOPT_GRAPHIC_HEIGHTLIMIT
	SCCOPT_GRAPHIC_OUTPUTDPI
	SCCOPT_GRAPHIC_SIZELIMIT
	SCCOPT_GRAPHIC_SIZEMETHOD
	SCCOPT_GRAPHIC_TRANSPARENCYCOLOR
	SCCOPT_GRAPHIC_TYPE
	SCCOPT_GRAPHIC_WIDTHLIMIT
	SCCOPT_JPEG_QUALITY
	SCCOPT_RENDER_ENABLEALPHABLENDING

	Spreadsheet and Database File Rendering
	SCCOPT_EX_SHOWSPREADSHEETBORDER
	SCCOPT_EX_SSDBBORDER
	SCCOPT_EX_SSDBROWCOLHEADINGS

	Page Rendering
	SCCOPT_WPEMAILHEADEROUTPUT
	SCCOPT_MAILHEADERVISIBLE
	SCCOPT_MAILHEADERHIDDEN

	Font Rendering
	SCCOPT_DEFAULTPRINTFONT
	SCCVWFONTSPEC Structure

	SCCOPT_PRINTFONTALIAS
	SCCVWFONTALIAS Structure

	SCCOPT_STROKE_TEXT

	Callbacks
	SCCOPT_EX_CALLBACKS
	SCCOPT_EX_UNICODECALLBACKSTR

	File System
	SCCOPT_IO_BUFFERSIZE
	SCCBUFFEROPTIONS Structure

	SCCOPT_TEMPDIR
	SCCUTTEMPDIRSPEC Structure

	SCCOPT_DOCUMENTMEMORYMODE
	SCCOPT_REDIRECTTEMPFILE

	Template-Only Options
	EX_LINKTARGET
	EX_LINKTARGETOVERRIDE

	Old Options
	Discontinued Options
	SCCOPT_GIF_SPLASHPALETTE

	SCCOPT_EX_COMPLIANCEFLAGS
	Option Name Changes
	#define Name Changes

	Part III Using the Java API
	13 Introduction to the Java API
	Requirements
	Getting Started
	Configure the Environment
	Generate Code
	Create an Exporter Object
	Configure the Output
	Set the Source and Primary Destination Files
	Set the Output Type
	Provide a Callback Handler
	Run the Export

	14 HTML Export Java Classes
	Annotation Class
	ArchiveNode Class
	Callback Class
	createNewFile
	CreateNewFileResponse Class

	newFileInfo
	openFile
	OpenFileResponse Class

	createTempFile
	CreateTempFileResponseClass

	ColorInfo Class
	Exporter Interface
	Annotatable Interface
	Document Interface
	SeekableByteChannel6 Interface
	OptionsCache Class
	BorderMode
	CollapseWhiteSpace
	DefaultInputCharacterSet
	DefaultRenderFont
	DocumentMemoryMode
	DropPDFHyphens
	EmailHeaders
	EnableAlphaBlending
	ExtractEmbeddedFiles
	FallbackFormat
	FontAliasList
	GenerateBulletsAndNumbering
	GenerateJavascriptTabs
	GraphicHeightLimit
	GraphicOutputDPI
	GraphicSizeLimit
	GraphicSizeMethod
	GraphicWidthLimit
	GridWrap
	HTMLFlavor
	HTMLOutputFormatting
	IECondCommentMode
	IgnorePassword
	InterlacedGIFs
	InternalRendering
	ISODateTimes
	JPEGQuality
	LotusNotesDirectory
	OutputChangeTracking
	OutputCharacterSet
	OutputGraphicType
	PageBreakLimit
	ParseXMPMetadata
	PDFInputMaxEmbeddedObjects
	PDFInputMaxVectorPaths
	PDFReorderBiDi
	PDFWordSpacingFactor
	PerformExtendedFI
	PreventGraphicOverlap
	RenderEmbeddedFonts
	ShowArchiveFullPath
	ShowColumnHeadings
	ShowHiddenSpreadSheetData
	ShowHiddenText
	SimpleStyleNames
	StrictFile
	SuppressFontAttributes
	TimeZoneOffset
	TransparencyColor
	UnicodeByteOrder
	UnmappableCharacter

	ExportStatus Class
	FileFormat Class
	FontAliases Class
	FontInfo Class
	FontList Class
	GridWrapInfo Class
	HighlightTextAnnotation Class
	MailHeaders Class
	Option Interface
	OutsideIn Class
	OutsideInException Class

	Part IV Using the .NET API
	15 Introduction to the .NET API
	Requirements
	Getting Started
	Configuring your Environment
	Generate Code
	Create an Exporter Object
	Configure the Output
	Set the Source and Primary Destination Files
	Set the Output Type
	Provide a Callback Handler
	Run the Export

	Redirected I/O Support in .NET

	16 HTML Export .NET Classes
	Annotation Class
	ArchiveNode Class
	Callback Class
	OpenFile
	OpenFileResponse Class

	CreateNewFile
	CreateNewFileResponse Class

	NewFileInfo
	CreateTempFile
	CreateTempFileResponse Class

	ColorInfo Class
	Exporter Interface
	lAnnotatable Interface
	Document Interface
	OptionsCache Class
	BorderMode
	CollapseWhiteSpace
	DefaultInputCharacterSet
	DefaultRenderFont
	DocumentMemoryMode
	DropPDFHyphens
	EmailHeaders
	ExtractEmbeddedFiles
	FallbackFormat
	FontAliasList
	GenerateBulletsAndNumbering
	GenerateJavascriptTabs
	GraphicHeightLimit
	GraphicOutputDPI
	GraphicSizeLimit
	GraphicSizeMethod
	GraphicWidthLimit
	GridWrap
	HTMLFlavor
	HTMLOutputFormatting
	IECondCommentMode
	IgnorePassword
	InterlacedGIFs
	ISODateTimes
	JPEGQuality
	LotusNotesDirectory
	OutputChangeTracking
	OutputCharacterSet
	OutputGraphicType
	PageBreakLimit
	ParseXMPMetadata
	PDFInputMaxEmbeddedObjects
	PDFInputMaxVectorPaths
	PDFReorderBiDi
	PDFWordSpacingFactor
	PerformExtendedFI
	PreventGraphicOverlap
	RenderEmbeddedFonts
	ShowArchiveFullPath
	ShowColumnHeadings
	ShowHiddenSpreadSheetData
	ShowHiddenText
	SimpleStyleNames
	StrictFile
	SuppressFontAttributes
	TimeZoneOffset
	TransparencyColor
	UnicodeByteOrder
	UnmappableCharacter

	ExportStatus Class
	FileFormat Class
	FontAliases Class
	FontInfo Class
	FontList Class
	GridWrapInfo Class
	HighlightTextAnnotation Class
	MailHeaders Class
	Option Interface
	OutsideIn Class
	OutsideInConfig Class
	OutsideInVersion Class
	OutsideInCastException Class
	OutsideInException Class

	Index

