
Oracle8 i

Application Developer’s Guide - Object-Relational Features

Release 2 (8.1.6)

December 1999

Part No. A76976-01

Application Developer’s Guide - Object-Relational Features, Release 2 (8.1.6)

Part No. A76976-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Author: John Russell

Contributing Authors: S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, G. Lee, S. Muralidhar, D.
Raphaely, R. Urbano

Contributors: S. Krishnaswamy, M. Morsi, R. Murthy, K. Osinski, E. Rohwedder, N. Shariatpanahy

Graphic Designer: V. Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registerd trademark, and Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net,
SQL*Plus, Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle8i,
Oracle Forms, Oracle Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks or
registered trademarks of Oracle Corporation. All other company or product names mentioned are used
for identification purposes only and may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xi

Preface .. xiii

1 Introduction to Oracle Objects

The Nuts and Bolts of Oracle Objects .. 1-1
The Object-Relational Model .. 1-1
Object Types .. 1-2
Objects .. 1-3
Methods ... 1-3
Object Tables ... 1-5
Object Views.. 1-6
REF Datatype... 1-6
Collections ... 1-8
Inheritance ... 1-10

An Example of an Object-Oriented Model.. 1-10

2 Managing Oracle Objects

Using Object Types and References.. 2-1
Null Objects and Attributes .. 2-2
Default Values for Objects and Collections .. 2-3
Constraints for Object Tables.. 2-3
Indexes for Object Tables and Nested Tables... 2-4
Triggers for Object Tables ... 2-5
iii

Rules for REF Columns and Attributes ... 2-5
Name Resolution... 2-6
Method Calls without Arguments ... 2-8

Using Collections .. 2-8
Querying Collections.. 2-8
Collection Unnesting.. 2-9
DML on Collections.. 2-9

Privileges on Object Types and Their Methods.. 2-10
System Privileges .. 2-10
Schema Object Privileges... 2-11
Using Types in New Types or Tables .. 2-11
Example.. 2-11
Privileges on Type Access and Object Access .. 2-12

Dependencies and Incomplete Types ... 2-14
Completing Incomplete Types.. 2-15
Type Dependencies of Tables ... 2-15

Import/Export/Load of Object Types... 2-15

3 Object Support in Oracle Programmatic Environments

SQL .. 3-1
PL/SQL .. 3-2
Oracle Call Interface (OCI) ... 3-2

Associative Access in OCI Programs ... 3-3
Navigational Access in OCI Programs .. 3-4
Object Cache .. 3-4
Building an OCI Program that Manipulates Objects... 3-5

Pro*C/C++... 3-6
Associative Access in Pro*C/C++.. 3-6
Navigational Access in Pro*C/C++ ... 3-6
Converting Between Oracle Types and C Types ... 3-7
Oracle Type Translator (OTT)... 3-8

Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages) 3-9
Representing Objects in Visual Basic (OraObject) ... 3-10
Representing REFs in Visual Basic (OraRef)... 3-10
Representing VARRAYs and Tables in Visual Basic (OraCollection)................................. 3-11
iv

Java: JDBC, Oracle SQLJ, and JPublisher .. 3-12
JDBC Access to Oracle Object Data.. 3-12
SQLJ Access to Oracle Object Data .. 3-12
Using JPublisher to Create Java Classes for JDBC and SQLJ Programs............................. 3-13

4 Applying an Object Model to Relational Data

Why to Use Object Views.. 4-2
Defining Object Views... 4-3
Using Object Views in Applications... 4-4
Nesting Objects in Object Views... 4-4
Identifying Null Objects in Object Views... 4-5
Using Nested Tables and Varrays in Object Views.. 4-6
Specifying Object Identifiers for Object Views.. 4-7
Creating References to View Objects ... 4-9
Modelling Inverse Relationships with Object Views ... 4-10
Updating Object Views ... 4-11

Updating Nested Table Columns in Views .. 4-11
Using INSTEAD-OF Triggers to Control Mutating and Validation 4-11

Applying the Object Model to Remote Tables ... 4-12
Defining Complex Relationships in Object Views .. 4-13

Tables and Types to Demonstrate Circular View References .. 4-14
Creating Object Views with Circular References... 4-16

5 Design Considerations for Oracle Objects

Representing Objects as Columns or Rows .. 5-1
Column Object Storage .. 5-2
Row Object Storage in Object Tables ... 5-7

Performance of Object Comparisons .. 5-7
Storage Considerations for Object Identifiers (OIDs)... 5-8
Storage Size of REFs... 5-9
Integrity Constraints for REF Columns.. 5-9
Performance and Storage Considerations for Scoped REFs... 5-9

Indexing Scoped REFs ... 5-10
Speeding up Object Access using the WITH ROWID Option .. 5-11
Viewing Object Data in Relational Form with Unnesting Queries.. 5-12
v

Storage Considerations for Varrays ... 5-13
Performance of Varrays vs. Nested Tables ... 5-14
Nested Tables ... 5-14

Nested Table Storage.. 5-14
Nested Table Indexes ... 5-17
Nested Table Locators.. 5-18
Optimizing Set Membership Queries .. 5-18
DML Operations on Nested Tables.. 5-19

Nesting Collections within other Collections ... 5-20
Choosing a Language for Method Functions .. 5-26

Static Methods ... 5-28
Writing Reusable Code using Invoker Rights .. 5-29
Function-Based Indexes on the Return Values of Type Methods.. 5-30
New Object Format in Release 8.1 ... 5-31
Replicating Object Tables and Columns .. 5-31
Consequences of the Oracle Inheritance Implementation ... 5-32

Simulating Inheritance... 5-32
Constraints on Objects... 5-37
Type Evolution... 5-38
Performance Tuning ... 5-38
Parallel Queries with Oracle Objects ... 5-38

6 Advanced Topics for Oracle Objects

Storage of Objects ... 6-1
Leaf-Level Attributes.. 6-1
How Row Objects are Split Across Columns ... 6-1
Hidden Columns for Tables with Column Objects ... 6-2
REFs .. 6-2
Internal Layout of Nested Tables ... 6-3
Internal Layout of VARRAYs ... 6-3

Object Identifiers .. 6-3
OCI Tips and Techniques for Objects... 6-4

Initializing an OCI Program in Object Mode.. 6-4
Creating a New Object ... 6-4
Updating an Object... 6-5
vi

Deleting an Object .. 6-5
Controlling Object Cache Size .. 6-5
Retrieving Objects into the Client Cache (Pinning)... 6-6
How to Choose the Locking Technique .. 6-8
Flushing an Object from the Object Cache.. 6-9
Pre-Fetching Related Objects (Complex Object Retrieval) ... 6-9
Demonstration of OCI and Oracle Objects ... 6-11
Using the OCI Object Cache with View Objects .. 6-11

Partitioning Tables that Contain Oracle Objects ... 6-14
Parallel Query with Object Views .. 6-15
How Locators Improve the Performance of Nested Tables ... 6-15

7 Frequently Asked Questions about Programming with Oracle Objects

General Questions about Oracle Objects... 7-2
Are the object-relational features a separate option? .. 7-2
What are the design goals of Oracle8i Object-Relational & Extensibility technologies? ... 7-2
What are the key features in Oracle8i Object-Relational Technology?................................. 7-2
What are the new Object-Relational features in Oracle8i? ... 7-5

Object Types .. 7-6
What is structured data?.. 7-6
Where are the user-defined types, user-defined functions, and abstract data types?........ 7-6
What is an object type? .. 7-6
Why are object types useful? .. 7-7
How is object data stored and managed in Oracle8i? ... 7-7
Is inheritance supported in Oracle8i? .. 7-7

Object Methods ... 7-8
What language can I use to write my object methods?... 7-8
How do I decide between using PL/SQL and Java for my object methods? 7-8
When should I use external procedures? .. 7-8
What are definer and invoker rights?.. 7-9

Object References ... 7-9
What is an object reference?.. 7-9
When should I use object references? How are they different from foreign keys? 7-9
Can I construct object references based on primary keys?... 7-10
What is a scoped REF and when should I use it? .. 7-10
vii

Can I manipulate objects using object references in PL/SQL and Java?............................ 7-10
Collections .. 7-10

What kinds of collections are supported by Oracle8i?.. 7-10
How do I decide between using varrays and nested tables for modeling collections?.... 7-11
Do Oracle8i Objects support collections within collections?.. 7-11
What is a collection locator?.. 7-11
What is collection unnesting? ... 7-11

Object Views .. 7-12
What are the differences between object views and object tables? 7-12
Are object views updateable? ... 7-12

Object Cache .. 7-12
Why do we need the object cache?... 7-12
Does the object cache support object locking?.. 7-13

Large Objects (LOBs) ... 7-13
How can I manage large objects using Oracle8i?... 7-13

User-Defined Operators ... 7-14
What is a user-defined operator? ... 7-14
Why are user-defined operators useful? ... 7-14

8 A Sample Application using Object-Relational Features

Introduction ... 8-2
A Purchase Order Example ... 8-3
Implementing the Application Under The Relational Model ... 8-4

Entities and Relationships ... 8-5
Creating Tables Under the Relational Model ... 8-5
Inserting Values Under the Relational Model .. 8-8
Querying Data Under The Relational Model ... 8-9
Updating Data Under The Relational Model ... 8-10
Deleting Data Under The Relational Model ... 8-10
Limitations of a Purely Relational Model ... 8-11
The Evolution of the Object-Relational Database System... 8-12

Implementing the Application Under The Object-Relational Model.................................... 8-13
Defining Types .. 8-14
Method Definitions... 8-21
Creating Object Tables ... 8-23
viii

Object Datatypes as a Template for Object Tables... 8-25
Object Identifiers and References... 8-26
Object Tables with Embedded Objects .. 8-26

Manipulating Objects Through Java .. 8-39
Using oracle.sql.* Classes (Weak Typing)... 8-39
Using Strong Typing (SQLData or CustomDatum) .. 8-41

Manipulating Objects with Oracle Objects for OLE ... 8-45
Selecting Data.. 8-45
Inserting Data.. 8-46
Updating Data... 8-48
Calling a Method Function.. 8-50

Index
ix

x

Send Us Your Comments

Oracle8i Application Developer’s Guide - Object-Relational Features, Release 2 (8.1.6)

Part No. A76976-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - (650) 506-7228 Attn: Oracle Server Documentation

■ Postal service:

Oracle Corporation

Server Documentation Manager

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.
xi

xii

Preface

Application Developer’s Guide - Object-Relational Features describes how to write

applications that use the object-relational features of the Oracle Server, Release 2

(8.1.6). Information in this guide applies to versions of the Oracle Server that run on

all platforms, and does not include system-specific information.

The Preface includes the following sections:

■ Information in This Guide

■ Audience

■ Feature Coverage and Availability

■ Other Guides

■ How This Book Is Organized

■ Conventions Used in This Guide

■ Your Comments Are Welcome
xiii

Information in This Guide
As an application developer, you are probably interested in features that help to

write reusable code and to accurately model the application domain in the database

schema. This Guide describes a set of application development features that address

these subjects. You should already understand how to develop database

applications; it might help to have some background in an object-oriented language

such as C++ or Java.

Audience
The Application Developer’s Guide - Object-Relational Features is intended for

programmers developing new applications or converting existing applications to

run in the Oracle environment. The object-relational features are often used in

multimedia, Geographic Information Systems (GIS), and similar applications that

deal with complex data. The object views feature can be valuable when writing new

applications on top of an existing relational schema.

This guide assumes that you have a working knowledge of application

programming, and that you are familiar with the use of Structured Query Language

(SQL) to access information in relational database systems.

Feature Coverage and Availability
The Application Developer’s Guide - Object-Relational Features contains information

that describes the features and functionality of the Oracle8i and the Oracle8i
Enterprise Edition products. Oracle8i and Oracle8i Enterprise Edition have the

same basic features. The core object-relational features covered in this book are part

of the Oracle8i server. Some other advanced features are available only with the

Enterprise Edition, and some of these, such as the Data Cartridges, are optional.

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the features and options that are available to you, see Getting to Know
Oracle8i.

Other Guides
Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete

description of this high-level programming language, which is Oracle Corporation’s

procedural extension to SQL.
xiv

For general information about developing applications, see the Oracle8i Application
Developer’s Guide - Fundamentals.

To use Oracle’s object-relational features through Java, you should also refer to

Oracle8i JDBC Developer’s Guide and Reference and Oracle8i Java Stored Procedures
Developer’s Guide.

The Oracle Call Interface (OCI) is described in Oracle Call Interface Programmer’s
Guide

You can use the OCI to build third-generation language (3GL) applications that

access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you

to embed SQL and PL/SQL in your application programs. If you write 3GL

application programs in Ada, C, C++, COBOL, or FORTRAN that incorporate

embedded SQL, then refer to the corresponding precompiler manual. For example,

if you program in C or C++, then refer to the Pro*C/C++ Precompiler Programmer’s
Guide.

Oracle Developer/2000 is a cooperative development environment that provides

several tools including a form builder, reporting tools, and a debugging

environment for PL/SQL. If you use Developer/2000, then refer to the appropriate

Oracle Tools documentation.

For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide. For basic Oracle concepts, see Oracle8i Concepts.
xv

How This Book Is Organized
The Application Developer’s Guide - Object-Relational Features contains the following

chapters. This section includes a brief summary of what you will find in each

chapter.

Chapter 1, "Introduction to Oracle Objects"

Introduces the background concepts and terminology that you need to work with

Oracle objects.

Chapter 2, "Managing Oracle Objects"

Explains how to perform essential operations with objects and object types.

Chapter 3, "Object Support in Oracle Programmatic Environments"

Summarizes the object-relational features in SQL and PL/SQL; Oracle Call Interface

(OCI); Pro*C/C++; Oracle Objects For OLE; and Java, JDBC, and Oracle SQLJ. The

information in this chapter is high level, for education and planning. The following

chapters explain how to use the object-relational features in greater detail.

Chapter 4, "Applying an Object Model to Relational Data"

Explains object views, which allow you to develop object-oriented applications

without changing the underlying relational schema.

Chapter 5, "Design Considerations for Oracle Objects"

Explains the implementation and performance characteristics of Oracle’s

object-relational model.

Chapter 6, "Advanced Topics for Oracle Objects"

Discusses features that you might need to manage storage and performance as you

scale up an object-oriented application.

Chapter 7, "Frequently Asked Questions about Programming with Oracle Objects"

Provides helpful hints for people getting started with object-oriented programming,

or coming to Oracle with a background in some other database system or

object-oriented language.

Chapter 8, "A Sample Application using Object-Relational Features"

Demonstrates how a relational program can be rewritten as an object-oriented one,

schema and all.
xvi

Conventions Used in This Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that

multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has

been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.

This guide uses special text formatting to draw the reader’s attention to some

information. A paragraph that is indented and begins with a bold text label may

have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The "Note" flag indicates that you should pay particular attention to the

information to avoid a common problem or to increase understanding of a

concept.

Warning: An item marked as "Warning" indicates something that an OCI

programmer must be careful to do, or not do, in order for an application to

work correctly.

See Also: Text marked "See Also" points you to another section of this guide, or

to other documentation, for additional information about the topic being

discussed.
xvii

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the Information

Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, then you can send letters or faxes containing your comments to the

following address:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7200
xviii

Introduction to Oracle
1

Introduction to Oracle Objects

If you have programmed in C++, Java, Perl, or other such modern languages, then

you have probably encountered the idea of object-oriented programming. Oracle

provides a number of object-oriented features that let you transfer your design and

problem-solving skills from those languages to database application development.

If you are a long-time database programmer, you may have been frustrated by the

lack of complex types, the need to "flatten" hierarchical data structures into tables

with numerous primary and foreign keys, and the amount of application logic that

must be copied and adapted to handle each new situation. Oracle’s object-oriented

features are intended to help solve each of these problems.

Before reading this book, you should be familiar with database application

development. You should be able to use one or more programming languages

together with DDL and DML to do all the usual database operations.

If you are just beginning to use Oracle’s object-relational features, and you still have

questions after reading this chapter, refer to Chapter 7, "Frequently Asked

Questions about Programming with Oracle Objects".

The Nuts and Bolts of Oracle Objects
Here is a brief overview of the concepts and terminology you need to work with

Oracle’s object-relational features features.

The Object-Relational Model
The object-relational model is an evolutionary way to introduce object-oriented

features to the database without giving up the existing relational features that are

used in existing applications. As you read further, you will see how object-oriented
 Objects 1-1

The Nuts and Bolts of Oracle Objects
features are integrated into Oracle 8i without compromising the good features of

the past.

Object-Relational Database Systems versus Third-Generation Languages
Why not create object-oriented applications using a third-generation language

(3GL), without the database at all?

First, an RDBMS provides functionality that you can build upon, instead of

reinventing.

Second, one of the problems of information management using 3GLs is that they are

not persistent; or, if they are persistent, then they sacrifice security to get the

necessary performance by locating the application logic and the data logic in the

same address space. Neither trade-off is acceptable to users of an RDBMS, for

whom both persistence and security are basic requirements.

This leaves the application developer working under the relational model with the

problem of simulating complex types by some form of mapping into SQL. Apart

from the many person-hours required, this approach involves serious problems of

implementation. You must:

■ Translate from application logic into data logic on 'write', and then

■ Perform the reverse process on 'read' (and vice versa).

This involves heavy traffic between the client and server address spaces, leading to

slower performance. If client and server are on different machines, network

roundtrips may add considerable overhead.

Object-relational (O-R) technology solves these problems, as you will see

throughout this book.

Object Types
Object types are abstractions of the real-world entities—for example, purchase

orders—that application programs deal with. They are analogous to Java and C++

classes.

You can think of an object type as a template, and an object as a structure that

matches the template. Object types can represent many different data structures; a

few examples are line items, images, and spatial data.

Object types are schema objects, subject to the same kinds of administrative control

as other schema objects (see Chapter 2, "Managing Oracle Objects").
1-2 Application Developer’s Guide - Object-Relational Features

The Nuts and Bolts of Oracle Objects
You can use object types to map an object model directly to a database schema,

instead of flattening the model to relational tables and columns. They let you bring

related pieces of data together in a single unit, and to store the behavior of data

along with the data itself. Application code can retrieve and manipulate the data as

objects.

 An object type is a schema object with three kinds of components:

■ A name, which identifies the object type uniquely within that schema.

■ Attributes, which model the structure and state of the real-world entity.

Attributes can be built-in types or object types.

■ Methods, functions or procedures that implement operations that mimic ones

you can perform on the real-world entity.

Objects
When you create a variable of an object type, the result is an object. The object has

attributes and methods based on its type. Because the object is a concrete thing, you

can assign values to its attributes and call its methods.

Methods
Methods of an object type are functions or procedures that are called by the

application to model the behavior of the objects. Methods that are written in

PL/SQL or Java are stored in the database, which is preferable for data-intensive

procedures and short procedures that are called frequently. Procedures in other

languages, such as C, are stored externally, which is preferable for computationally

intensive procedures that are called less frequently.

The methods of an object type broadly fall into three categories: Member, Static, and

Comparison.

A member method is a function or a procedure that always has an implicit SELF

parameter, and thus can work with the attributes of a specific object. You invoke it

using the "dot" notation OBJECT_VARIABLE.METHOD(). Member methods are

useful for writing observer or mutator methods, where the operation affects a

specific object and you do not need to pass in any parameters.

A static method is a function or a procedure that does not have an implicit SELF

parameter. Such methods may be invoked by qualifying the method with the type

name, as in TYPE_NAME.METHOD(). Static methods are useful for procedures

that work with global data rather than the object state, or functions that return the

same value regardless of the object.
Introduction to Oracle Objects 1-3

The Nuts and Bolts of Oracle Objects
Comparison methods compare instances of objects, to allow sorting and IF/THEN

logic.

In the example, PURCHASE_ORDER has a method named GET_VALUE. Each

purchase order object has its own GET_VALUE method. For example, if X_OBJ and

Y_OBJ are PL/SQL variables that hold purchase order objects and W_NUM and Z_

NUM are variables that hold numbers, the following two statements can retrieve

values from the objects:

w_num = x_obj.get_value();
z_num = y_obj.get_value();

Both objects, being of the same type, have the GET_VALUE method. The method

call does not need any parameters, because it operates on its own set of data: the

attributes of X_OBJ and Y_OBJ. In this selfish style of method invocation, the method

uses the appropriate set of data depending upon the object for which it is called.

Constructor Methods Every object type has a system-defined constructor method, that

is, a method that makes a new object and sets up the values of its attributes. The

name of the constructor method is the name of the object type. Its parameters have

the names and types of the object type’s attributes. The constructor method is a

function. It returns the new object as its value.

For example, the expression

purchase_order(
 1000376,
 person ("John Smith","1-800-555-1212"),
 NULL)

represents a purchase order object with the following attributes:

id 1000376
contact person("John Smith","1-800-555-1212")
lineitems NULL

The expression person ("John Smith", "1-800-555-1212") is an

invocation of the constructor function for the object type PERSON. The object that it

returns becomes the contact attribute of the purchase order.

See "Null Objects and Attributes" on page 2-2 for a discussion of null objects and

null attributes.

Comparison Methods Oracle has facilities for comparing two data items of a given

built-in type and determining whether one is greater than, equal to, or less than the
1-4 Application Developer’s Guide - Object-Relational Features

The Nuts and Bolts of Oracle Objects
other. To compare two items of a user-defined type, the creator of the type must

define an order relationship for the type using map methods or order methods.

Map methods produce a single value of a built-in type that can be used for

comparisons and sorting. For example, if you define an object type called

RECTANGLE, the map method AREA can multiply its HEIGHT and WIDTH

attributes and return the answer. Oracle can then compare two rectangles by

comparing their areas.

Order methods are more general. They use their own internal logic to compare two

objects of a given object type and return a value that encodes the order relationship:

-1 if the first is smaller, 0 if they are equal, and 1 if the first is larger.

For example, an order method can allow you to sort a set of addresses based on

their distance from a fixed point, or some other operation more complicated than

comparing individual values.

In defining an object type, you can specify either a map method or an order method

for it, but not both. If an object type has no comparison method, Oracle cannot

determine a greater-than or less-than relationship between two objects of that type.

It can, however, attempt to determine whether two objects of the type are equal.

Oracle compares two objects of a type that lacks a comparison method by

comparing corresponding attributes:

■ If all the attributes are non-null and equal, the objects are considered equal.

■ If there is an attribute for which the two objects have unequal non-null values,

the objects are considered unequal.

■ Otherwise, the objects are considered unequal.

Because the system can perform scalar value comparisons very efficiently, coupled

with the fact that calling a user-defined function is slower than calling a kernel

implemented function, sorting objects using the ORDER method is relatively slow

compared to sorting the mapped scalar values returned by the MAP function.

Object Tables
An object table is a special kind of table in which each row represents an object.

For example, the following statement defines an object table for objects of the

PERSON type:

CREATE TABLE person_table OF person;

Oracle allows you to view this table in two ways:
Introduction to Oracle Objects 1-5

The Nuts and Bolts of Oracle Objects
■ A single-column table in which each row is a PERSON object, allowing you to

perform object-oriented operations.

■ A multi-column table in which each attribute of the object type PERSON,

namely NAME and PHONE, occupies a column, allowing you to perform

relational operations.

For example, you can execute the following instructions:

INSERT INTO person_table VALUES (
 "John Smith",
 "1-800-555-1212");

SELECT VALUE(p) FROM person_table p
 WHERE p.name = "John Smith";

The first instruction inserts a PERSON object into PERSON_TABLE as a

multi-column table. The second selects from PERSON_TABLE as a single column

table.

Row Objects and Column Objects Objects that occupy complete rows in object tables

are called row objects. Objects that occupy table columns in a larger row, or are

attributes of other objects, are called column objects.

Object Views
An object view (see Chapter 4, "Applying an Object Model to Relational Data") is a

way to access relational data using object-relational features. It lets you develop

object-oriented applications without changing the underlying relational schema.

REF Datatype
A REF is a logical "pointer" to a row object. It is an Oracle built-in datatype. REFs

and collections of REFs model associations among objects--particularly many-to-one

relationships--thus reducing the need for foreign keys. REFs provide an easy

mechanism for navigating between objects. You can use the dot notation to follow

the pointers. Oracle does joins for you when needed, and in some cases can avoid

doing joins.

You can use a REF to examine or update the object it refers to. You can also use a

REF to obtain a copy of the object it refers to. You can change a REF so that it points

to a different object of the same object type, or assign it a null value.
1-6 Application Developer’s Guide - Object-Relational Features

The Nuts and Bolts of Oracle Objects
Scoped REFs In declaring a column type, collection element, or object type attribute

to be a REF, you can constrain it to contain only references to a specified object table.

Such a REF is called a scoped REF. Scoped REFs require less storage space and allow

more efficient access than unscoped REFs.

Dangling REFs It is possible for the object identified by a REF to become

unavailable—through either deletion of the object or a change in privileges. Such a

REF is called dangling. Oracle SQL provides a predicate (called IS DANGLING) to

allow testing REFs for this condition.

Dereferencing REFs Accessing the object referred to by a REF is called dereferencing
the REF. Oracle provides the DEREF operator to do this.

Dereferencing a dangling REF returns a null object.

Oracle also provides implicit dereferencing of REFs. For example, consider the

following:

CREATE TYPE person AS OBJECT (
 name VARCHAR2(30),
 manager REF person);

If X represents an object of type PERSON, then the SQL expression:

x.manager.name;

follows the pointer from the person X to another person, X’s manager, and retrieves

the manager’s name. (Following the REF like this is allowed in SQL, but not in

PL/SQL.)

Obtaining REFs You can obtain a REF to a row object by selecting the object from its

object table and applying the REF operator. For example, you can obtain a REF to

the purchase order with identification number 1000376 as follows:

DECLARE OrderRef REF to purchase_order;

SELECT REF(po) INTO OrderRef
 FROM purchase_order_table po
 WHERE po.id = 1000376;

The query must return exactly one row.

For more on storage of objects and REFs, see "Using Collections" on page 2-8.
Introduction to Oracle Objects 1-7

The Nuts and Bolts of Oracle Objects
Collections
For modelling one-to-many relationships, Oracle supports two collection datatypes:

varrays and nested tables. For example, a purchase order has an arbitrary number

of line items, so you may want to put the line items into a collection.

■ Varrays have a maximum number of elements, although you can change the

upper bound. The order of elements is defined. Varrays are stored as opaque

objects (that is, raw or BLOB).

■ Nested tables can have any number of elements, and you can select, insert,

delete, and so on the same as with regular tables. The order of the elements is

not defined. Nested tables are stored in a storage table with every element

mapping to a row in the storage table.

If you need to loop through the elements in order, store only a fixed number of

items, or retrieve and manipulate the entire collection as a value, then use varrays.

If you need to run efficient queries on collections, handle arbitrary numbers of

elements, or do mass insert/update/delete operations, then use nested tables. If

the collections are very large and you want to retrieve only subsets, you can model

the collection as a nested table and retrieve a locator for the result set.

For example, a purchase order object may have a nested table of line items, while a

rectangle object may contain a varray with 4 coordinates.

Creating a VARRAY or Nested Table
You can make an object of a collection type by calling its constructor method. The

name of the constructor method is the name of the type, and its argument is a

comma-separated list of the new collection’s elements.

Calling the constructor method with an empty list creates an empty collection of

that type. An empty collection is different from a null collection.

VARRAYs
An array is an ordered set of data elements. All elements of a given array are of the

same datatype. Each element has an index, which is a number corresponding to the

element’s position in the array.

The number of elements in an array is the size of the array. Oracle allows arrays to

be of variable size, which is why they are called VARRAYs. You must specify a

maximum size when you declare the array type.

For example, the following statement declares an array type:
1-8 Application Developer’s Guide - Object-Relational Features

The Nuts and Bolts of Oracle Objects
CREATE TYPE prices AS VARRAY(10) OF NUMBER(12,2);

The VARRAYs of type PRICES have no more than ten elements, each of datatype

NUMBER(12,2).

Creating an array type does not allocate space. It defines a datatype, which you can

use as

■ The datatype of a column of a relational table.

■ An object type attribute.

■ The type of a PL/SQL variable, parameter, or function return value.

A VARRAY is normally stored in line, that is, in the same tablespace as the other

data in its row. If it is sufficiently large, Oracle stores it as a BLOB (see

"Import/Export/Load of Object Types" on page 2-15).

Nested Tables
A nested table is an unordered set of data elements, all of the same datatype. It has a

single column, and the type of that column is a built-in type or an object type. If the

column in a nested table is an object type, the table can also be viewed as a

multi-column table, with a column for each attribute of the object type.

For example, in the purchase order example, the following statement declares the

table type used for the nested tables of line items:

CREATE TYPE lineitem_table AS TABLE OF lineitem;

A table type definition does not allocate space. It defines a type, which you can use

as

■ The datatype of a column of a relational table.

■ An object type attribute.

■ A PL/SQL variable, parameter, or function return type.

When a table type appears as the type of a column in a relational table or as an

attribute of the underlying object type of an object table, Oracle stores all of the

nested table data in a single table, which it associates with the enclosing relational

or object table. For example, the following statement defines an object table for the

object type PURCHASE_ORDER:

Additional Information: For more information on VARRAYs, see

"Storage Considerations for Varrays" on page 5-13.
Introduction to Oracle Objects 1-9

An Example of an Object-Oriented Model
CREATE TABLE purchase_order_table OF purchase_order
 NESTED TABLE lineitems STORE AS lineitems_table;

The second line specifies LINEITEMS_TABLE as the storage table for the

LINEITEMS attributes of all of the PURCHASE_ORDER objects in PURCHASE_

ORDER_TABLE.

A convenient way to access the elements of a nested table individually is to use a

nested cursor.

Inheritance
Inheritance is a technique used in object-oriented development to create objects that

contain generalized attributes and behavior for groups of related objects. The more

general object types are referred to as a super-types. The specialized object types

that "inherit" from the super-types are called subtypes.

A common case of inheritance is that of Person and Employee . The set of people

includes employees and non-employees. The more general case, Person , is the

super-type and the special case, Employee , the sub-type. Another example could

involve a Vehicle as super-type and Car and Truck as its subtypes.

An Example of an Object-Oriented Model
Here is an example of how you might define a set of object types.

The object types are PERSON, LINEITEM, LINEITEM_TABLE, and PURCHASE_

ORDER.

NAME, PHONE, ITEM_NAME, and so on are attributes of their respective object

types. The attribute CONTACT is an object, and the attribute LINEITEMS is a

nested table.

LINEITEM_TABLE is a table in which each row is an object of type LINEITEM.

CREATE TYPE person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TYPE lineitem AS OBJECT (
 item_name VARCHAR2(30),

Additional Information: See Oracle8i SQL Reference for information

about nested cursors, and see"Nested Tables" on page 5-14 for more

information on using nested tables.
1-10 Application Developer’s Guide - Object-Relational Features

An Example of an Object-Oriented Model
 quantity NUMBER,
 unit_price NUMBER(12,2));

CREATE TYPE lineitem_table AS TABLE OF lineitem;

CREATE TYPE purchase_order AS OBJECT (
 id NUMBER,
 contact person,
 lineitems lineitem_table,

 MEMBER FUNCTION
 get_value RETURN NUMBER);

This is a simplified example. It does not show how to specify the body of the

method GET_VALUE, which you do with the CREATE OR REPLACE TYPE BODY

statement.

Defining an object type does not allocate any storage.

You can use LINEITEM, PERSON, or PURCHASE_ORDER in SQL statements in

most of the same places you can use types like NUMBER or VARCHAR2.

For example, you might define a relational table to keep track of your contacts:

CREATE TABLE contacts (
 contact person
 date DATE);

The CONTACT table is a relational table with an object type defining one of its

columns. Objects that occupy columns of relational tables are called column objects
(see "Row Objects and Column Objects" on page 1-6).
Introduction to Oracle Objects 1-11

An Example of an Object-Oriented Model
1-12 Application Developer’s Guide - Object-Relational Features

Managing Oracle O
2

Managing Oracle Objects

This chapter explains how Oracle objects work in combination with the rest of the

database, and how to perform DML and DDL operations on them. It contains the

following major sections:

■ Using Object Types and References

■ Using Collections

■ Privileges on Object Types and Their Methods

■ Dependencies and Incomplete Types

■ Import/Export/Load of Object Types

Using Object Types and References
This section describes object types and references, including:

■ Null Objects and Attributes

■ Default Values for Objects and Collections

■ Constraints for Object Tables

■ Indexes for Object Tables and Nested Tables

■ Triggers for Object Tables

■ Rules for REF Columns and Attributes

■ Name Resolution
bjects 2-1

Using Object Types and References
Null Objects and Attributes
Many things associated with objects can be null: a table column, object, object

attribute, collection, or collection element. This means that the item is initialized to

NULL or is not initialized. Usually, the value of the item is not yet known but might

become available later.

An object whose value is NULL is called atomically null. In addition, attributes of an

object can be null. These two uses of nulls are different. When all the attributes of an

object are null, you can still change the attributes and call methods. When an object

is atomically null, you cannot do very much with it at all.

For example, consider the CONTACTS table defined as follows:

CREATE TYPE person AS OBJECT (
 name VARCHAR2(30),
 phone VARCHAR2(20));

CREATE TABLE contacts (
 contact person
 date DATE);

The statement

INSERT INTO contacts VALUES (
 person (NULL, NULL),
 ’24 Jun 1997’);

gives a different result from

INSERT INTO contacts VALUES (
 NULL,
 ’24 Jun 1997’);

In both cases, Oracle allocates space in CONTACTS for a new row and sets its

DATE column to the value given. In the first case, Oracle allocates space for an

object in the PERSON column and sets each of its attributes to NULL. In the second

case, it sets the PERSON column to NULL and does not allocate space for an object.

In some cases, you can omit checks for null values. A table row or row object cannot

be null. A nested table of objects cannot contain an element whose value is NULL.

A nested table or array can be null, so you do need to handle that condition. A null

collection is different from an empty one, that is, a collection containing no

elements.
2-2 Application Developer’s Guide - Object-Relational Features

Using Object Types and References
Default Values for Objects and Collections
When you declare a table column to be of an object type or collection type, you can

include a DEFAULT clause. This provides a value to use in cases where you do not

explicitly specify a value for the column. The default clause must contain a literal
invocation of the constructor method for that object or collection.

A literal invocation of a constructor method is a call to the constructor method in

which any arguments are either literals, or further literal invocations of constructor

methods. No variables or functions are allowed.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (
 id NUMBER
 name VARCHAR2(30),
 address VARCHAR2(30));

CREATE TYPE people AS TABLE OF person;

The following is a literal invocation of the constructor method for the nested table

type PEOPLE:

people (person(1, ’John Smith’, ’5 Cherry Lane’),
 person(2, ’Diane Smith’, NULL))

The following example shows how to use literal invocations of constructor methods

to specify defaults:

CREATE TABLE department (
 d_no CHAR(5) PRIMARY KEY,
 d_name CHAR(20),
 d_mgr person DEFAULT person(1,’John Doe’,NULL),
 d_emps people DEFAULT people())
 NESTED TABLE d_emps STORE AS d_emps_tab;

Note that the term PEOPLE() is a literal invocation of the constructor method for an

empty PEOPLE table.

Constraints for Object Tables
You can define constraints on an object table just as you can on other tables.

You can define constraints on the leaf-level scalar attributes of a column object, with

the exception of REFs that are not scoped.
Managing Oracle Objects 2-3

Using Object Types and References
The following examples illustrate the possibilities.

The first example places a primary key constraint on the SSNO column of the object

table PERSON_EXTENT:

CREATE TYPE location (
 building_no NUMBER,
 city VARCHAR2(40));

CREATE TYPE person (
 ssno NUMBER,
 name VARCHAR2(100),
 address VARCHAR2(100),
 office location);

CREATE TABLE person_extent OF person (
 ssno PRIMARY KEY);

The DEPARTMENT table in the next example has a column whose type is the object

type LOCATION defined in the previous example. The example defines constraints

on scalar attributes of the LOCATION objects that appear in the DEPT_LOC column

of the table.

CREATE TABLE department (
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
 dept_mgr person,
 dept_loc location,
 CONSTRAINT dept_loc_cons1
 UNIQUE (dept_loc.building_no, dept_loc.city),
 CONSTRAINT dept_loc_cons2
 CHECK (dept_loc.city IS NOT NULL));

Indexes for Object Tables and Nested Tables
You can define indexes on an object table or on the storage table for a nested table

column or attribute, just as you can on other tables.

You can define indexes on leaf-level scalar attributes of column objects, as shown in

the following example. You can only define indexes on REF attributes or columns if

the REF is scoped.

Here, DEPT_ADDR is a column object, and CITY is a leaf-level scalar attribute of

DEPT_ADDR that we want to index:

CREATE TABLE department (
2-4 Application Developer’s Guide - Object-Relational Features

Using Object Types and References
 deptno CHAR(5) PRIMARY KEY,
 dept_name CHAR(20),
 dept_addr address);

CREATE INDEX i_dept_addr1
 ON department (dept_addr.city);

Wherever Oracle expects a column name in an index definition, you can also specify

a scalar attribute of an object column.

Triggers for Object Tables
You can define triggers on an object table just as you can on other tables. You cannot

define a trigger on the storage table for a nested table column or attribute.

You cannot modify LOB values in a trigger body. Otherwise, there are no special

restrictions on using object types with triggers.

The following example defines a trigger on the PERSON_EXTENT table defined in

an earlier section:

CREATE TABLE movement (
 ssno NUMBER,
 old_office location,
 new_office location);

CREATE TRIGGER trig1
 BEFORE UPDATE
 OF office
 ON person_extent
 FOR EACH ROW
 WHEN new.office.city = ’REDWOOD SHORES’
 BEGIN
 IF :new.office.building_no = 600 THEN
 INSERT INTO movement (ssno, old_office, new_office)
 VALUES (:old.ssno, :old.office, :new.office);
 END IF;
 END;

Rules for REF Columns and Attributes
In Oracle, a REF column or attribute can be unconstrained or constrained using a

SCOPE clause or a referential constraint clause. When a REF column is

unconstrained, it may store object references to row objects contained in any object

table of the corresponding object type.
Managing Oracle Objects 2-5

Using Object Types and References
Oracle does not ensure that the object references stored in such columns point to

valid and existing row objects. Therefore, REF columns may contain object

references that do not point to any existing row object. Such REF values are referred

to as dangling references. Currently, Oracle does not permit storing object references

that contain a primary-key based object identifier in unconstrained REF columns.

A REF column may be constrained to be scoped to a specific object table. All the

REF values stored in a column with a SCOPE constraint point at row objects of the

table specified in the SCOPE clause. The REF values may, however, be dangling.

A REF column may be constrained with a REFERENTIAL constraint similar to the

specification for foreign keys. The rules for referential constraints apply to such

columns. That is, the object reference stored in these columns must point to a valid

and existing row object in the specified object table.

UNIQUE or PRIMARY KEY constraints cannot be specified for REF columns.

However, you can specify NOT NULL constraints for such columns.

Name Resolution
Oracle SQL lets you omit table names in some relational operations. For example, if

ASSIGNMENT is a column in PROJECTS and TASK is a column in DEPTS, you can

write:

SELECT *
FROM projects
WHERE EXISTS
 (SELECT * FROM depts
 WHERE assignment = task);

Oracle determines which table each column belongs to.

You can qualify the column names with table names or table aliases to make things

more maintainable:

SELECT * FROM projects WHERE EXISTS
 (SELECT * FROM depts WHERE projects.assignment = depts.task);

SELECT * FROM projects pj WHERE EXISTS
 (SELECT * FROM depts dp WHEREpj.assignment = dp.task);

In some cases, object-relational features require you to specify the table aliases.
2-6 Application Developer’s Guide - Object-Relational Features

Using Object Types and References
When Table Aliases are Required
Using unqualified names can lead to problems. If you add an ASSIGNMENT

column to the second table (DEPTS) and forget to change the query, Oracle

automatically recompiles the query and the new version uses the ASSIGNMENT

column from the DEPTS table. This situation is called inner capture.

To avoid inner capture and similar misinterpretations of the intended meanings of

SQL statements, Oracle requires you to use table aliases to qualify references to

methods or attributes of objects.

The same requirement applies to attribute references via REFs. This requirement is

called the capture avoidance rule.

For example, consider the following statements:

CREATE TYPE person AS OBJECT (ssno VARCHAR(20));
CREATE TABLE ptab1 OF person;
CREATE TABLE ptab2 (c1 person);

These define an object type PERSON and two tables. The first is an object table for

objects of type PERSON. The second has a single column of type PERSON.

Now consider the following queries:

SELECT ssno FROM ptab1 ; --Correct
SELECT c1.ssno FROM ptab2 ; --Wrong
SELECT p.c1.ssno FROM ptab2 p ; --Correct

■ In the first SELECT statement, SSNO is the name of a column of PTAB1.

Because this is considered a relational query, no further qualification is

required.

■ In the second SELECT statement, SSNO is the name of an attribute of the

PERSON object in the column named C1. This reference requires a table alias, as

shown in the third SELECT statement.

You must qualify references to object attributes with table aliases rather than table

names, even if the table names are further qualified by schema names.

For example, the following expression tries to refer to the SCOTT schema,

PROJECTS table, ASSIGNMENT column, and DUEDATE attribute of that column.

But it is not allowed because PROJECTS is a table name, not an alias.

scott.projects.assignment.duedate

Table aliases should be unique throughout a query and should not be the same as

schema names that could legally appear in the query.
Managing Oracle Objects 2-7

Using Collections
Method Calls without Arguments
Methods are functions or subroutines. The proper syntax for invoking them uses

parentheses following the method name to enclose any calling arguments. In order

to avoid ambiguities, Oracle requires empty parentheses for method calls that do

not have arguments.

For example, if TB is a table with column C of object type T, and T has a method m

that does not take arguments, the following query illustrates the correct syntax:

SELECT p.c.m() FROM tb p;

This differs from the rules for PL/SQL functions and procedures, where the

parentheses are optional for calls that have no arguments.

Using Collections
This section describes the use of collections, including:

■ Querying Collections

■ Collection Unnesting

■ DML on Collections

Querying Collections
In Oracle8i, a collection column may be queried using the TABLE expression. For

example, a nested table column (PROJECTS) of the table (EMPLOYEES) can be

queried as follows:

SELECT * FROM TABLE(SELECT t.projects FROM employees t WHERE t.eno = 1000);

SELECT t.eno, CURSOR(SELECT * FROM TABLE(t.projects)) FROM employees t;

The TABLE expression can be used to query any collection value expression,

including transient values such as variables and parameters.

Note: We recommend that you define table aliases in all UPDATE,

DELETE, and SELECT statements and subqueries and use them to

qualify column references, whether or not the columns contain

object types.
2-8 Application Developer’s Guide - Object-Relational Features

Using Collections
Collection Unnesting
Many tools and applications are not equipped to deal with collection types, and

require a flattened view of the data. In order to use these tools to view Oracle

collection data, you must has to be unnest or flatten the collection attribute of a row

into one or more relational rows. You do this by joining the rows of the nested table

with the row that contains the nested table.

Consider the following object-relational schema, where we define a type that

contains a nested table, and specify the name by which we will access the nested

table:

CREATE TYPE emp_set_t IS NESTED TABLE of emp_t ;
CREATE TYPE dept_t(deptno NUMBER, emps emp_set_t);
CREATE TABLE depts OF dept_t NESTED TABLE emps STORE AS depts_emps ;

The following query unnests the data in the EMPS column with respect to the DEPT

table by augmenting every row of EMPS with its parent DEPTS row:

SELECT d.deptno, e.* FROM depts d, TABLE(d.emps) e ;

Oracle8i also supports the following syntax to produce outer-join results:

SELECT d.*, e.* FROM depts d, TABLE(d.emps)(+) e;

The (+) indicates that the dependent join between DEPTS and D.EMPS should be

NULL-augmented. That is, there will be rows of DEPTS in the output for which

D.EMPS is NULL or empty, with NULL values for columns corresponding to

D.EMPS.

DML on Collections
Oracle supports the following DML operations on nested table columns:

■ Inserts and updates that provide a new value for the entire collection

■ Piecewise Updates

■ Inserting new elements into the collection

■ Deleting elements from the collection

Note: TheTABLE expression takes the place ofTHE subquery
introduced in a previous release. TheTHE subquery expression will
eventually be deprecated.
Managing Oracle Objects 2-9

Privileges on Object Types and Their Methods
■ Updating elements of the collection.

Oracle does not support piecewise updates on VARRAY columns. However,

VARRAY columns can be inserted into or updated as an atomic unit.

For piecewise updates of nested table columns, the DML statement identifies the

nested table value to be operated on by using the TABLE expression. Note that

DML operations on a nested table value are serialized. That is, when a nested table

value is operated on by a DML statement in a transaction, modifications to the same

nested table value from other transactions are blocked until after the transaction

terminates.

The following DML statements demonstrate piecewise operations on nested table

columns.

INSERT INTO TABLE(SELECT e.projects
 FROM employees e
 WHERE e.eno = 100)
 VALUES (1, ‘Project Neptune’);

UPDATE TABLE(SELECT e.projects
 FROM employees e
 WHERE e.eno = 100) p
 SET VALUE(p) = project_t(1, ‘Project Pluto’)
 WHERE p.pno = 1;

DELETE FROM TABLE(SELECT e.projects
 FROM employee e
 WHERE e.eno = 100) p
 WHERE p.pno = 1;

Privileges on Object Types and Their Methods
Privileges for object types exist at the system level and schema object level.

System Privileges
Oracle defines the following system privileges for object types:

■ CREATE TYPE allows you to create object types in your own schema.

■ CREATE ANY TYPE allows you to create object types in any schema.

■ ALTER ANY TYPE allows you to alter object types in any schema.
2-10 Application Developer’s Guide - Object-Relational Features

Privileges on Object Types and Their Methods
■ DROP ANY TYPE allows you to drop named types in any schema.

■ EXECUTE ANY TYPE allows you to use and reference named types in any

schema.

The CONNECT and RESOURCE roles include the CREATE TYPE system privilege.

The DBA role includes all of the above privileges.

Schema Object Privileges
The only schema object privilege that applies to object types is EXECUTE.

EXECUTE on a object type allows you to use the type to:

■ Define a table.

■ Define a column in a relational table.

■ Declare a variable or parameter of the named type.

EXECUTE lets you invoke the type’s methods, including the constructor.

Method execution and the associated permissions are the same as for stored

PL/SQL procedures.

Using Types in New Types or Tables
In addition to the permissions detailed in the previous sections, you need specific

privileges to:

■ Create types or tables that use types created by other users.

■ Grant use of your new types or tables to other users.

You must have the EXECUTE ANY TYPE system privilege, or you must have the

EXECUTE object privilege for any type you use in defining a new type or table. You

must have received these privileges explicitly, not through roles.

If you intend to grant access to your new type or table to other users, you must

have either the required EXECUTE object privileges with the GRANT option or the

EXECUTE ANY TYPE system privilege with the option WITH ADMIN OPTION.

You must have received these privileges explicitly, not through roles.

Example
Assume that three users exist with the CONNECT and RESOURCE roles: USER1,

USER2, and USER3.
Managing Oracle Objects 2-11

Privileges on Object Types and Their Methods
USER1 performs the following DDL in the USER1 schema:

CREATE TYPE type1 AS OBJECT (attr1 NUMBER);
CREATE TYPE type2 AS OBJECT (attr2 NUMBER);
GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

USER2 performs the following DDL in the USER2 schema:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (attr3 user1.type2);
CREATE TABLE tab2 (col1 user1.type2);

The following statements succeed, because USER2 has EXECUTE on USER1’s

TYPE2 with the GRANT option:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails, because USER2 does not have EXECUTE on

USER1.TYPE1 with the GRANT option:

GRANT SELECT ON tab1 TO user3;

USER3 can successfully perform the following actions:

CREATE TYPE type4 AS OBJECT (attr4 user2.type3);
CREATE TABLE tab3 OF type4;

Privileges on Type Access and Object Access
While object types only make use of EXECUTE privilege, object tables use all the

same privileges as relational tables:

■ SELECT lets you access an object and its attributes from the table.

■ UPDATE lets you modify attributes of objects in the table.

■ INSERT lets you add new objects to the table.

■ DELETE lets you delete objects from the table.

Similar table and column privileges regulate the use of table columns of object

types.

Selecting columns of an object table does not require privileges on the type of the

object table. Selecting the entire row object, however, does.

Consider the following schema:
2-12 Application Developer’s Guide - Object-Relational Features

Privileges on Object Types and Their Methods
CREATE TYPE emp_type as object (
 eno NUMBER,
 ename CHAR(31),
 eaddr addr_t);

CREATE TABLE emp OF emp_type;

and the following two queries:

SELECT VALUE(e) FROM emp e;
SELECT eno, ename FROM emp;

For either query, Oracle checks the user’s SELECT privilege for the EMP table. For

the first query, the user needs to obtain the EMP_TYPE type information to interpret

the data. When the query accesses the EMP_TYPE type, Oracle checks the user’s

EXECUTE privilege.

Execution of the second query, however, does not involve named types, so Oracle

does not check type privileges.

Additionally, using the schema from the previous section, USER3 can perform the

following queries:

SELECT tab1.col1.attr2 from user2.tab1 tab1;
SELECT t.attr4.attr3.attr2 FROM tab3 t;

Note that in both selects by USER3, USER3 does not have explicit privileges on the

underlying types, but the statement succeeds because the type and table owners

have the necessary privileges with the GRANT option.

Oracle checks privileges on the following requests, and returns an error if the

requestor does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes Oracle to check

SELECT privilege on the object table containing the object and EXECUTE

privilege on the object type. (For more information about the OCI object cache,

see "OCI Tips and Techniques for Objects" on page 6-4.)

■ Modifying an existing object or flushing an object from the object cache, causes

Oracle to check UPDATE privilege on the destination object table. Flushing a

new object causes Oracle to check INSERT privilege on the destination object

table.

■ Deleting an object causes Oracle to check DELETE privilege on the destination

table.
Managing Oracle Objects 2-13

Dependencies and Incomplete Types
■ Invoking a method causes Oracle to check EXECUTE privilege on the

corresponding object type.

 Oracle does not provide column level privileges for object tables.

Dependencies and Incomplete Types
Types can depend upon each other for their definitions. For example, you might

want to define object types EMPLOYEE and DEPARTMENT in such a way that one

attribute of EMPLOYEE is the department the employee belongs to and one

attribute of DEPARTMENT is the employee who manages the department.

Types that depend on each other in this way, either directly or via intermediate

types, are called mutually dependent. A diagram of mutually dependent types, with

arrows representing the dependencies, always reveals a path of arrows starting and

ending at one of the types.

To define such a cyclic dependency, you must use REFs for at least one branch of the

cycle.

For example, you can define the following types:

CREATE TYPE department;

CREATE TYPE employee AS OBJECT (
 name VARCHAR2(30),
 dept REF department,
 supv REF employee);

CREATE TYPE emp_list AS TABLE OF employee;

CREATE TYPE department AS OBJECT (
 name VARCHAR2(30),
 mgr REF employee,
 staff emp_list);

This is a legal set of mutually dependent types and a legal sequence of SQL DDL

statements. Oracle compiles it without errors. The first statement:

CREATE TYPE department;

is optional. It makes the compilation proceed without errors. It establishes

DEPARTMENT as an incomplete object type. A REF to an incomplete object type

compiles without error, so the compilation of EMPLOYEE proceeds.
2-14 Application Developer’s Guide - Object-Relational Features

Import/Export/Load of Object Types
When Oracle reaches the last statement, which completes the definition of

DEPARTMENT, all of the components of DEPARTMENT have compiled

successfully, so the compilation finishes without errors.

Without the optional declaration of DEPARTMENT as an incomplete type,

EMPLOYEE compiles with errors. Oracle then automatically adds EMPLOYEE to

its library of schema objects as an incomplete object type. This makes the

declarations of EMP_LIST and DEPARTMENT compile without errors. When

EMPLOYEE is recompiled after EMP_LIST and DEPARTMENT are complete,

EMPLOYEE compiles without errors and becomes a complete object type.

Completing Incomplete Types
Once you have declared an incomplete object type, you must complete it as an

object type. You cannot, for example, declare it to be a table type or an array type.

The only alternative is to drop the type.

This is also true if Oracle has made the type an incomplete object type for you—as it

did when EMPLOYEE failed to compile in the previous section.

Type Dependencies of Tables
The SQL commands REVOKE and DROP TYPE return an error and abort if the type

referred to in the command has tables or other types that depend on it.

The FORCE option with either of these commands overrides that behavior. The

command succeeds and the affected tables or types become invalid.

If a table contains data that relies on a type definition for access, any change to the

type causes the table’s data to become inaccessible. This happens if privileges

required by the type are revoked or if the type or a type it depends on is dropped.

The table then becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges automatically becomes valid

and accessible if the required privileges are re-granted.

A table that is invalid because a type it depends on has been dropped can never be

accessed again. The only permissible action is to drop the table.

Import/Export/Load of Object Types
The Export and Import utilities move data into and out of Oracle databases. They

also back up or archive data and aid migration to different releases of the Oracle

RDBMS.
Managing Oracle Objects 2-15

Import/Export/Load of Object Types
Export and Import support object types. Export writes object type definitions and

all of the associated data to the dump file. Import then re-creates these items from

the dump file.

The SQL*Loader supports loading row objects, column objects and objects with

collections and references. In Oracle8i, only conventional path loading is supported

for objects.

An alternative to conventional path loading is to first load the data into relational

tables using direct path loading, and then create the object tables and tables with

column objects using CREATE TABLE...AS SELECT commands. However, with this

approach you need enough space to hold as much as twice the actual data.

See Also: Oracle8i Utilities for information about exporting,

importing, and loading Oracle objects.
2-16 Application Developer’s Guide - Object-Relational Features

Object Support in Oracle Programmatic Envir
3

Object Support in Oracle Programmatic

Environments

In Oracle8i, you can create object types with SQL data definition language (DDL)

commands, and you can manipulate objects with SQL data manipulation language

(DML) commands. Object support is built into Oracle's application programming

environments:

■ SQL

■ PL/SQL

■ Oracle Call Interface (OCI)

■ Pro*C/C++

■ Oracle Type Translator (OTT)

■ Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages)

■ Java: JDBC, Oracle SQLJ, and JPublisher

SQL
Oracle SQL DDL provides the following support for object types:

■ Defining object types, nested tables, and arrays

■ Specifying privileges

■ Specifying table columns of user-defined types

■ Creating object tables

Oracle SQL DML provides the following support for object types:
onments 3-1

PL/SQL
■ Querying and updating objects and collections

■ Manipulating REFs

PL/SQL
PL/SQL allows you to use the SQL features that support object types within

functions and procedures.

The parameters and variables of PL/SQL functions and procedures can be of object

types.

You can implement the methods associated with object types in PL/SQL. These

methods (functions and procedures) reside on the server as part of a user’s schema.

Oracle Call Interface (OCI)
OCI is a set of C library functions that applications can use to manipulate data and

schemas in an Oracle database. OCI supports both traditional 3GL and

object-oriented techniques for database access, as explained in the following

sections.

An important component of OCI is a set of calls to manage a workspace called the

object cache. The object cache is a memory block on the client side that allows

programs to store entire objects and to navigate among them without additional

round trips to the server.

The object cache is completely under the control and management of the application

programs using it. The Oracle server has no access to it. The application programs

using it must maintain data coherency with the server and protect the workspace

against simultaneous conflicting access.

OCI provides functions to

■ Access objects on the server using SQL.

■ Access, manipulate and manage objects in the object cache by traversing

pointers or REFs.

■ Convert Oracle dates, strings and numbers to C data types.

See Also: For a complete description of Oracle SQL syntax, see

Oracle8i SQL Reference.

See Also: For a complete description of PL/SQL, see PL/SQL
User’s Guide and Reference.
3-2 Application Developer’s Guide - Object-Relational Features

Oracle Call Interface (OCI)
■ Manage the size of the object cache’s memory.

OCI improves concurrency by allowing individual objects to be locked. It improves

performance by supporting complex object retrieval.

OCI developers can use the object type translator to generate the C datatypes

corresponding to a Oracle object types.

Associative Access in OCI Programs
Traditionally, 3GL programs manipulate data stored in a relational database by

executing SQL statements and PL/SQL procedures. Data is usually manipulated

on the server without incurring the cost of transporting the data to the client(s). OCI

supports this associative access to objects by providing an API for executing SQL

statements that manipulate object data. Specifically, OCI allows you to:

■ Execute SQL statements that manipulate object data and object type schema

information

■ Pass object instances, object references (REFs), and collections as input variables

in SQL statements

■ Return object instances, REFs, and collections as output of SQL statement

fetches

■ Describe the properties of SQL statements that return object instances, REFs,

and collections

■ Describe and execute PL/SQL procedures or functions with object parameters

or results

■ Synchronize object and relational functionality through enhanced commit and

rollback functions

See Also: Oracle Call Interface Programmer’s Guide for more

information about using objects with OCI.

See Also: "Associative Access in Pro*C/C++" on page 3-6
Object Support in Oracle Programmatic Environments 3-3

Oracle Call Interface (OCI)
Navigational Access in OCI Programs
In the object-oriented programming paradigm, applications model their real-world

entities as a set of inter-related objects that form graphs of objects. The relationships

between objects are implemented as references. An application processes objects by

starting at some initial set of objects, using the references in these initial objects to

traverse the remaining objects, and performing computations on each object. OCI

provides an API for this style of access to objects, known as navigational access.

Specifically, OCI allows you to:

■ Cache objects in memory on the client machine

■ De-reference an object reference and pin the corresponding object in the object

cache. The pinned object is transparently mapped in the host language

representation.

■ Notify the cache when the pinned object is no longer needed

■ Fetch a graph of related objects from the database into the client cache in one

call

■ Lock objects

■ Create, update, and delete objects in the cache

■ Flush changes made to objects in the client cache to the database

Object Cache
To support high-performance navigational access of objects, OCI runtime provides

an object cache for caching objects in memory. The object cache supports references

(REFs) to database objects in the object cache, the database objects can be identified

(that is, pinned) through their references. Applications do not need to allocate or

free memory when database objects are loaded into the cache, because the object

cache provides transparent and efficient memory management for database objects.

Also, when database objects are loaded into the cache, they are transparently

mapped into the host language representation. For example, in the C programming

language, the database object is mapped to its corresponding C structure. The object

cache maintains the association between the object copy in the cache and the

corresponding database object. Upon transaction commit, changes made to the

object copy in the cache are propagated automatically to the database.

See Also: "Navigational Access in Pro*C/C++" on page 3-6
3-4 Application Developer’s Guide - Object-Relational Features

Oracle Call Interface (OCI)
The object cache maintains a fast look-up table for mapping REFs to objects. When

an application de-references a REFand the corresponding object is not yet cached in

the object cache, the object cache automatically sends a request to the server to fetch

the object from the database and load it into the object cache. Subsequent

de-references of the same REFare faster because they become local cache access and

do not incur network round-trips. To notify the object cache that an application is

accessing an object in the cache, the application pins the object; when it is finished

with the object, it unpins it. The object cache maintains a pin count for each object in

the cache. The count is incremented upon a pin call and decremented upon an

unpin call. When the pin count goes to zero, it means the object is no longer needed

by the application. The object cache uses a least-recently used (LRU) algorithm to

manage the size of the cache. When the cache reaches the maximum size, the LRU

algorithm frees candidate objects with a pin count of zero.

Building an OCI Program that Manipulates Objects
When you build an OCI program that manipulates objects, you must complete the

following general steps:

1. Define the object types that correspond to the application objects.

2. Execute the SQL DDL statements to populate the database with the necessary

object types.

3. Represent the object types in the host language format.

For example, to manipulate instances of the object types in a C program, you

must represent these types in the C host language format. You can do this by

representing the object types as C structs. You can use a tool provided by Oracle

called the Object Type Translator (OTT) to generate the C mapping of the object

types. The OTT puts the equivalent C structs in header (*.h) files. You include

these *.h files in the *.c files containing the C functions that implement the

application.

4. Construct the application executable by compiling and linking the application's

*.c files with the OCI library.

See Also: "OCI Tips and Techniques for Objects" on page 6-4
Object Support in Oracle Programmatic Environments 3-5

Pro*C/C++
Pro*C/C++
The Oracle Pro*C/C++ precompiler allows programmers to use user-defined

datatypes in C and C++ programs.

Pro*C developers can use the Object Type Translator to map Oracle object types and

collections into C datatypes to be used in the Pro*C application.

Pro*C provides compile time type checking of object types and collections and

automatic type conversion from database types to C datatypes.

Pro*C includes an EXEC SQL syntax to create and destroy objects and offers two

ways to access objects in the server:

■ SQL statements and PL/SQL functions or procedures embedded in Pro*C

programs.

■ An interface to the object cache (described under "Oracle Call Interface (OCI)"

on page 3-2), where objects can be accessed by traversing pointers, then

modified and updated on the server.

Associative Access in Pro*C/C++
For background information on associative access, see "Associative Access in OCI

Programs" on page 3-3.

Pro*C/C++ offers the following capabilities for associative access to objects:

■ Support for transient copies of objects allocated in the object cache

■ Support for transient copies of objects referenced as input host variables in

embedded SQL INSERT, UPDATE, and DELETE statements, or in the WHERE
clause of a SELECT statement

■ Support for transient copies of objects referenced as output host variables in

embedded SQL SELECT and FETCH statements

■ Support for ANSI dynamic SQL statements that reference object types through

the DESCRIBE statement, to get the object’s type and schema information

Navigational Access in Pro*C/C++
For background information on navigational access, see "Navigational Access in

OCI Programs" on page 3-4.

Additional Information: For a complete description of the Pro*C

precompiler, see Pro*C/C++ Precompiler Programmer’s Guide.
3-6 Application Developer’s Guide - Object-Relational Features

Pro*C/C++
Pro*C/C++ offers the following capabilities to support a more object-oriented

interface to objects:

■ Support for de-referencing, pinning, and optionally locking an object in the

object cache using an embedded SQL OBJECT DEREF statement

■ Allowing a Pro*C/C++ user to inform the object cache when an object has been

updated or deleted, or when it is no longer needed, using embedded SQL

OBJECT UPDATE, OBJECT DELETE, and OBJECT RELEASE statements

■ Support for creating new referenceable objects in the object cache using an

embedded SQL OBJECT CREATE statement

■ Support for flushing changes made in the object cache to the server with an

embedded SQL OBJECT FLUSH statement

Converting Between Oracle Types and C Types
The C representation for objects that is generated by the Oracle Type Translator

(OTT) uses OCI types whose internal details are hidden, such as OCIString and

OCINumber for scalar attributes. Collection types and object references are similarly

represented using OCITable , OCIArray , and OCIRef types. While using these

"opaque" types insulates you from changes to their internal formats, using such

types in a C or C++ application is cumbersome. Pro*C/C++ provides the following

ease-of-use enhancements to simplify use of OCI types in C and C++ applications:

■ Object attributes can be retrieved and implicitly converted to C types with the

embedded SQL OBJECT GET statement.

■ Object attributes can be set and converted from C types with the embedded

SQL OBJECT SET statement.

■ Collections can be mapped to a host array with the embedded SQL

COLLECTION GET statement. Furthermore, if the collection is comprised of

scalar types, then the OCI types can be implicitly converted to a compatible C

type.

■ Host arrays can be used to update the elements of a collection with the

embedded SQL COLLECTION SET statement. As with the COLLECTION GET
statement, if the collection is comprised of scalar types, C types are implicitly

converted to OCI types.
Object Support in Oracle Programmatic Environments 3-7

Pro*C/C++
Oracle Type Translator (OTT)
The Oracle type translator (OTT) is a program that automatically generates C

language structure declarations corresponding to object types. OTT makes it easier

to use the Pro*C precompiler and the OCI server access package.

Additional Information: For complete information about OTT, see

Oracle Call Interface Programmer’s Guide and Pro*C/C++ Precompiler
Programmer’s Guide.
3-8 Application Developer’s Guide - Object-Relational Features

Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages)
Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server
Pages)

Oracle Objects for OLE (OO4O) provides full support for accessing and

manipulating instances of REFs, value instances, variable-length arrays (VARRAYs),

and nested tables in an Oracle database server.

Figure 3–1 illustrates the containment hierarchy for value instances of all types in

OO4O.

Figure 3–1 Supported Oracle Datatypes

Instances of these types can be fetched from the database or passed as input or

output variables to SQL statements and PL/SQL blocks, including stored

procedures and functions. All instances are mapped to COM Automation Interfaces

that provide methods for dynamic attribute access and manipulation. These

interfaces may be obtained from:

■ The value property of an OraField object in a Dynaset

See Also: OO4O online help for detailed information about using

OO4O with Oracle objects.

OraAttribute

OraAttribute

Element Values

OraObject

OraRef

OraCollection

OraField

OraParameter

OraBLOB

OraCLOB

OraBFILE

Value of all other scalar types
Object Support in Oracle Programmatic Environments 3-9

Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages)
■ The value property of an OraParameter object used as an input or an output

parameter in SQL Statements or PL/SQL blocks

■ An attribute of an object (REF)

■ An element in a collection (varray or a nested table)

Representing Objects in Visual Basic (OraObject)
The OraObject interface is a representation of an Oracle embedded object or a value

instance. It contains a collection interface (OraAttributes) for accessing and

manipulating (updating and inserting) individual attributes of a value instance.

Individual attributes of an OraAttributes collection interface can be accessed by

using a subscript or the name of the attribute.

The following Visual Basic example illustrates how to access attributes of the

Address object in the person_tab table:

Dim Address OraObject
Set Person = OraDatabase.CreateDynaset("select * from person_tab", 0&)
Set Address = Person.Fields("Addr").Value
msgbox Address.Zip
msgbox.Address.City

Representing REFs in Visual Basic (OraRef)
The OraRef interface represents an Oracle object reference (REF) as well as

referenceable objects in client applications. The object attributes are accessed in the

same manner as attributes of an object represented by the OraObject interface.

OraRef is derived from an OraObject interface via the containment mechanism in

COM. REF objects are updated and deleted independent of the context they

originated from, such as Dynasets. The OraRef interface also encapsulates the

functionality for navigating through graphs of objects utilizing the Complex Object

Retrieval Capability (COR) in OCI, described in "Pre-Fetching Related Objects

(Complex Object Retrieval)" on page 6-9.
3-10 Application Developer’s Guide - Object-Relational Features

Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages)
Representing VARRAYs and Tables in Visual Basic (OraCollection)
The OraCollection interface provides methods for accessing and manipulating

Oracle collection types, namely variable-length arrays (VARRAYs) and nested tables

in OO4O. Elements contained in a collection are accessed by subscripts.

The following Visual Basic example illustrates how to access attributes of the

EnameList object from the department table:

Dim EnameList OraCollection
Set Person = OraDatabase.CreateDynaset("select * from department", 0&)
set EnameList = Department.Fields("Enames").Value
’access all elements of the EnameList VArray
for I=1 to I=EnameList.Size
 msgbox EnameList(I)
Next I
Object Support in Oracle Programmatic Environments 3-11

Java: JDBC, Oracle SQLJ, and JPublisher
Java: JDBC, Oracle SQLJ, and JPublisher
Java has emerged as a powerful, modern object-oriented language that provides

developers with a simple, efficient, portable, and safe application development

platform. Oracle provides two ways to integrate Oracle object features with Java:

JDBC and Oracle SQLJ. The following sections provide more information about

these environments.

JDBC Access to Oracle Object Data
JDBC (Java Database Connectivity) is a set of Java interfaces to the Oracle server.

Oracle provides tight integration between objects and JDBC. You can map SQL

types to Java classes with considerable flexibility.

Oracle’s JDBC:

■ Allows access to objects and collection types (defined in the database) in Java

programs through dynamic SQL.

■ Translates types defined in the database into Java classes through default or

customizable mappings.

Version 2.0 of the JDBC specification supports Object-Relational constructs such as

user-defined (Object) types. JDBC materializes Oracle objects as instances of

particular Java classes. Using JDBC to access Oracle objects involves creating the

Java classes for the Oracle objects and populating these classes. You can either:

■ Let JDBC materialize the object as a STRUCT. In this case, JDBC creates the

classes for the attributes and populates them for you.

■ Personally specify the mappings between Oracle objects and Java classes; that

is, customize your Java classes for object data. The driver then populates the

customized Java classes that you specify, which imposes a set of constraints on

the Java classes. To satisfy these constraints, you can choose to define your

classes according to either the SQLData interface or the CustomDatum
interface.

SQLJ Access to Oracle Object Data
SQLJ provides access to server objects using SQL statements embedded in the Java

code:

Additional Information: For complete information about JDBC,

see the Oracle8i JDBC Developer’s Guide and Reference .
3-12 Application Developer’s Guide - Object-Relational Features

Java: JDBC, Oracle SQLJ, and JPublisher
■ You can use user-defined types in Java programs.

■ You can use JPublisher to map Oracle object and collection types into Java

classes to be used in the application.

■ The object types and collections in the SQL statements are checked at compile

time.

Choosing a Data Mapping Strategy
Oracle SQLJ supports either strongly typed or weakly typed Java representations of

object types, reference types (REFs), and collection types (VARRAYs and nested

tables) to be used in iterators or host expressions.

Strongly typed representations use a custom Java class that corresponds to a

particular object type, reference type, or collection type and must implement the

interface oracle .sql .CustomDatum . The Oracle JPublisher utility can

automatically generate such custom Java classes.

Weakly typed representations use the class oracle .sql .STRUCT (for objects),

oracle .sql .REF (for references), or oracle .sql .ARRAY (for collections).

Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
Oracle lets you map Oracle object types, reference types, and collection types to

Java classes and preserve all the benefits of strong typing. You can:

■ Use JPublisher to automatically generate custom Java classes and use those

classes without any change.

■ Subclass the classes produced by JPublisher to create your own specialized Java

classes.

■ Manually code custom Java classes without using JPublisher, provided that the

classes meet the requirements stated in the Oracle8i SQLJ Developer’s Guide and
Reference .

We recommend that you use JPublisher, and subclass when the generated classes do

not do everything you need.

Additional Information: For complete information about SQLJ, see

the Oracle8i Java Developer’s Guide .

See Also: "Manipulating Objects Through Java" on page 8-39 for
sample code showing both techniques.
Object Support in Oracle Programmatic Environments 3-13

Java: JDBC, Oracle SQLJ, and JPublisher
What JPublisher Produces
When you run JPublisher for a user-defined object type, it automatically creates the

following:

■ A custom object class to act as a type definition to correspond to your Oracle

object type

This class includes getter and setter methods for each attribute. The method

names are of the form getFoo() and setFoo() for attribute foo .

Also, you can optionally instruct JPublisher to generate wrapper methods in

your class that invoke the associated Oracle object methods executing in the

server.

■ A related custom reference class for object references to your Oracle object type

This class includes a getValue() method that returns an instance of your

custom object class, and a setValue() method that updates an object value in

the database, taking as input an instance of the custom object class.

When you run JPublisher for a user-defined collection type, it automatically creates

the following:

■ A custom collection class to act as a type definition to correspond to your

Oracle collection type

This class includes overloaded getArray() and setArray() methods to

retrieve or update a collection as a whole, a getElement() method and

setElement() method to retrieve or update individual elements of a

collection, and additional utility methods.

JPublisher-produced custom Java classes in any of these categories implement the

CustomDatum interface, the CustomDatumFactory interface, and the

getFactory() method.

See Also: The Oracle8i JPublisher User’s Guide for more

information about using JPublisher.
3-14 Application Developer’s Guide - Object-Relational Features

Applying an Object Model to Relat
4

Applying an Object Model to Relational Data

This chapter shows how to write object-oriented applications without changing the

underlying structure of your relational data:

■ Why to Use Object Views

■ Defining Object Views

■ Using Object Views in Applications

■ Nesting Objects in Object Views

■ Identifying Null Objects in Object Views

■ Using Nested Tables and Varrays in Object Views

■ Specifying Object Identifiers for Object Views

■ Creating References to View Objects

■ Modelling Inverse Relationships with Object Views

■ Updating Object Views

■ Applying the Object Model to Remote Tables

■ Defining Complex Relationships in Object Views
ional Data 4-1

Why to Use Object Views
Why to Use Object Views
Just as a view is a virtual table, an object view is a virtual object table. Each row in

the view is an object: you can call its methods, access its attributes using the dot

notation, and create a REF that points to it.

Object views are useful in prototyping or transitioning to object-oriented

applications, because the data in the view can be taken from relational tables and

accessed as if the table were defined as an object table. You can run object-oriented

applications without converting existing tables to a different physical structure.

Object views provide the same features as traditional views, applied to object data.

For example, you might provide an object view of an employee table that doesn’t

have attributes containing sensitive data and doesn’t have a deletion method.

Using object views can lead to better performance. Relational data that make up a

row of an object view traverse the network as a unit, potentially saving many round

trips.

You can fetch relational data into the client-side object cache and map it into C

structs or C++ or Java classes, so 3GL applications can manipulate it just like native

classes. You can also use object-oriented features like complex object retrieval with

relational data.

■ By synthesizing objects from relational data, you can query the data in new

ways. You can view data from multiple tables by using object de-referencing

instead of writing complex joins with multiple tables.

■ Since the objects in the view are processed within the server, not on the client,

this can result in significantly fewer SQL statements and much less network

traffic.

■ The object data from object views can be pinned and used in the client side

object cache. When you retrieve these synthesized objects in the object cache by

means of specialized object-retrieval mechanisms, you reduce network traffic.

■ You gain great flexibility when you create an object model within a view in that

you can continue to develop the model. If you need to alter an object type, you

can simply replace the invalidated views with a new definition.

■ Using objects in views does not place any restrictions on the characteristics of

the underlying storage mechanisms. By the same token, you are not limited by

the restrictions of current technology. For example, you can synthesize objects

from relational tables which are parallelized and partitioned.

■ You can create different complex data models from the same underlying data.
4-2 Application Developer’s Guide - Object-Relational Features

Defining Object Views
Defining Object Views
The procedure for defining an object view is:

1. Define an object type, where each attribute of the type corresponds to an

existing column in a relational table.

2. Write a query that specifies how to extract the data from relational tables.

Specify the columns in the same order as the attributes in the object type.

3. Specify a unique value, based on attributes of the underlying data, to serve as

an object identifier, which allows you to create pointers (REFs) to the objects in

the view. You can often use an existing primary key.

If you want to be able to update an object view, you may have to take another step,

if the attributes of the object type do not correspond exactly to columns in existing

tables:

4. Write an INSTEAD OF trigger procedure (see "Updating Object Views" on

page 4-11) for Oracle to execute whenever an application program tries to

update data in the object view.

After these steps, you can use an object view just like an object table.

For example, the following SQL statements define an object view, where each row

in the view is an object of type EMPLOYEE_T:

CREATE TABLE emp_table (
 empnum NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE TYPE employee_t (

See Also:

■ Oracle8i SQL Reference for a complete description of SQL syntax and
usage.

■ PL/SQL User’s Guide and Reference for a complete discussion of PL/SQL
capabilities

■ Oracle8i Java Stored Procedures Developer’s Guide for a complete
discussion of Java.

■ Oracle Call Interface Programmer’s Guide for a complete discussion of
those facilities.
Applying an Object Model to Relational Data 4-3

Using Object Views in Applications
 empno NUMBER (5),
 ename VARCHAR2 (20),
 salary NUMBER (9, 2),
 job VARCHAR2 (20));

CREATE VIEW emp_view1 OF employee_t
WITH OBJECT IDENTIFIER (empno) AS

 SELECT e.empnum, e.ename, e.salary, e.job
 FROM emp_table e
 WHERE job = ’Developer’;

To access the data from the EMPNUM column of the relational table, you would

access the EMPNO attribute of the object type.

Using Object Views in Applications
Data in the rows of an object view may come from more than one table, but the

object still traverses the network in one operation. When the instance is in the client

side object cache, it appears to the programmer as a C or C++ structure or as a

PL/SQL object variable. You can manipulate it like any other native structure.

You can refer to object views in SQL statements the same way you refer to an object

table. For example, object views can appear in a SELECT list, in an UPDATE-SET

clause, or in a WHERE clause.

You can also define object views on object views.

You can access object view data on the client side using the same OCI calls you use

for objects from object tables. For example, you can use OCIObjectPin() for pinning a

REF and OCIObjectFlush() for flushing an object to the server. When you update or

flush to the server an object in an object view, Oracle updates the object view.

Nesting Objects in Object Views
If one of the attributes of an object type is itself an object type, you must extract

suitable column objects from the relational data. You can either select them from a

column object that already exists in the relational table, or synthesize them from a

set of relational columns using the appropriate type constructor.

Additional Information: See Oracle Call Interface Programmer’s
Guide for more information about OCI calls.
4-4 Application Developer’s Guide - Object-Relational Features

Identifying Null Objects in Object Views
For example, consider the department table dept :

CREATE TABLE dept
(
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10)
);

You might want to create an object view where the addresses are objects inside the

department objects. That would allow you to define reusable methods for address

objects, and use them for all kinds of addresses.

1. Create the type for the address object:

CREATE TYPE address_t AS OBJECT
(
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10)
);
/

2. Create the view containing the department number, name and address. The

address is constructed from several columns of the relational table.

CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,

address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS
deptaddr
 FROM dept d;

Identifying Null Objects in Object Views
Because the constructor for an object never returns a null, none of the address

objects in the above view can ever be null, even if the city, street, and so on columns

in the relational table are all null. The relational table has no column that specifies

whether the department address is null. If we define a convention so that a null

deptstreet column indicates that the whole address is null, then we can capture
Applying an Object Model to Relational Data 4-5

Using Nested Tables and Varrays in Object Views
the logic using the DECODE function, or some other function, to return either a null

or the constructed object:

CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,

DECODE(d.deptstreet, NULL, NULL,
 address_t(d.deptstreet, d.deptcity, d.deptstate, d.deptzip)) AS
deptaddr
 FROM dept d;

Using such a technique makes it impossible to directly update the department

address through the view, because it does not correspond directly to a column in the

relational table. Instead, we would define an INSTEAD-OF trigger over the view to

handle updates to this column.

Using Nested Tables and Varrays in Object Views
Collections, both nested tables and VARRAYs, can be columns in views. You can

select these collections from underlying collection columns or you can synthesize

them using subqueries. The CAST-MULTISET operator provides a way of

synthesizing such collections.

Taking the previous example as our starting point, we represent each employee in

an emp relational table with following structure:

CREATE TABLE emp
(
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
 deptno NUMBER REFERENCES dept(deptno)
);

Using this relational table, we can construct a dept_view with the department

number, name, address and a collection of employees belonging to the department.

1. Define a employee type and a nested table type for the employee type:

CREATE TYPE employee_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER
);
4-6 Application Developer’s Guide - Object-Relational Features

Specifying Object Identifiers for Object Views
CREATE TYPE employee_list_t AS TABLE OF employee_t ;

2. The dept_view can now be defined:

CREATE VIEW dept_view AS
 SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) AS deptaddr,

 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 AS emp_list
 FROM dept d;

The SELECT subquery inside the CAST-MULTISET block selects the list of

employees that belong to the current department. The MULTISET keyword

indicates that this is a list as opposed to a singleton value. The CAST operator casts

the result set into the appropriate type, in this case to the employee_list_t
collection type.

A query on this view could give us the list of departments, with each department

row containing the department number, name, the address object and a collection of

employees belonging to the department.

Specifying Object Identifiers for Object Views
You can construct pointers (REFs) to the row objects in an object view. Since the

view data is not stored persistently, you must specify a set of distinct values to be

used as object identifiers. The notion of object identifiers allows the objects in object

views to be referenced and pinned in the object cache.

If the view is based on an object table or an object view, then there is already an

object identifier associated with each row and you can reuse them. Either omit the

WITH OBJECT IDENTIFIER clause, or specify WITH OBJECT IDENTIFIER
DEFAULT.

However, if the row object is synthesized from relational data, you must choose

some other set of values.

Oracle lets you specify object identifiers based on the primary key. The set of unique

keys that identify the row object is turned into an identifier for the object. These
Applying an Object Model to Relational Data 4-7

Specifying Object Identifiers for Object Views
values must be unique within the rows selected out of the view, since duplicates

would lead to problems during navigation through object references.

The object view created with the WITH OBJECT IDENTIFIER clause has an object

identifier derived from the primary key. If the WITH OBJECT IDENTIFIER
DEFAULT clause is specified, the object identifier is either system generated or

primary key based, depending on the underlying table or view definition.

Continuing with our department example, we can create a dept_view object view

that uses the department number as the object identifier:

Define the object type for the row, in this case the dept_t department type:

CREATE TYPE dept_t AS OBJECT
(

dno NUMBER ,
 dname VARCHAR2(20),
 deptaddr address_t ,
 emplist employee_list_t
);

Because the underlying relational table has deptno as the primary key, each

department row has a unique department number. In the view, the deptno column

becomes the dno attribute of the object type. Once we know that dno is unique

within the view objects, we can specify it as the object identier:

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,
 address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip),
 CAST(MULTISET (
 SELECT e.empno, e.empname, e.salary
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_t)
 FROM dept d;

See Also: Object Identifiers on page 6-3
4-8 Application Developer’s Guide - Object-Relational Features

Creating References to View Objects
Creating References to View Objects
In the example we have been developing, each object selected out of the dept_
view view has a unique object identifier derived from the department number

value. In the relational case, the foreign key deptno in the emp employee table

matches the deptno primary key value in the dept department table. We used the

primary key value for creating the object identifier in the dept_view . This allows

us to use the foreign key value in the emp_view in creating a reference to the

primary key value in dept_view .

We accomplish this by using MAKE_REFoperator to synthesize a primary key object

reference. This takes the view or table name to which the reference points and a list

of foreign key values to create the object identifier portion of the reference that will

match with a particular object in the referenced view.

In order to create an emp_view view which has the employee’s number, name,

salary and a reference to the department in which she works, we need first to create

the employee type emp_t and then the view based on that type

CREATE TYPE emp_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,

deptref REF dept_t
);

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,

MAKE_REF(dept_view, e.deptno)
 FROM emp e;

The deptref column in the view holds the department reference. We write the

following simple query to determine all employees whose department is located in

the city of San Francisco:

SELECT e.eno, e.salary, e.deptref.dno
FROM emp_view e
WHEREe.deptref.deptaddr.city = ‘San Francisco’;

Note that we could also have used the REF modifier to get the reference to the

dept_view objects:

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary, REF(d)
Applying an Object Model to Relational Data 4-9

Modelling Inverse Relationships with Object Views
 FROM emp e, dept_view d
 WHERE e.deptno = d.dno;

In this case we join the dept_view and the emp table on the deptno key. The

advantage of using MAKE_REF operator instead of the REF modifier is that in using

the former, we can create circular references. For example, we can create employee

view to have a reference to the department in which she works, and the department

view can have a list of references to the employees who work in that department.

Note that if the object view has a primary key based object identifier, the reference

to such a view is primary key based. On the other hand, a reference to a view with

system generated object identifier will be a system generated object reference. This

difference is only relevant when you create object instances in the OCI object cache

and need to get the reference to the newly created objects. This is explained in a

later section.

As with synthesized objects, we can also select persistently stored references as

view columns and use them seamlessly in queries. However, the object references to

view objects cannot be stored persistently.

Modelling Inverse Relationships with Object Views
Views with objects can be used to model inverse relationships.

One-to-One Relationships
One-to-one relationships can be modeled with inverse object references. For

example, let us say that each employee has a particular computer on her desk, and

that the computer belongs to that employee only. A relational model would capture

this using foreign keys either from the computer table to the employee table, or in

the reverse direction. Using views, we can model the objects so that we have an

object reference from the employee to the computer object and also have a reference

from the computer object to the employee.

One-to-Many and One-to-Many Relationships
One-to-many relationships (or many-to-many relationships) can be modeled either

by using object references or by embedding the objects. One-to-many relationship

can be modeled by having a collection of objects or object references. The

many-to-one side of the relationship can be modeled using object references.

Consider the department-employee case. In the underlying relational model, we

have the foreign key in the employee table. Using collections in views, we can

model the relationship between departments and employees. The department view
4-10 Application Developer’s Guide - Object-Relational Features

Updating Object Views
can have a collection of employees, and the employee view can have a reference to

the department (or inline the department values). This gives us both the forward

relation (from employee to department) and the inverse relation (department to list

of employees). The department view can also have a collection of references to

employee objects instead of embedding the employee objects.

Updating Object Views
You can update, insert, and delete the data in an object view using the same SQL

DML you use for object tables. Oracle updates the base tables of the object view if

there is no ambiguity.

A view is not updatable if its view query contains joins, set operators, aggregate

functions, GROUP BY, or DISTINCT. If a view query contains pseudocolumns or

expressions, the corresponding view columns are not updatable. Object views often

involve joins.

To overcome these obstacles Oracle provides INSTEAD OF triggers . They are called

INSTEAD OF triggers because Oracle executes the trigger body instead of the actual

DML statement.

INSTEAD OF triggers provide a transparent way to update object views or

relational views. You write the same SQL DML (INSERT, DELETE, and UPDATE)

statements as for an object table. Oracle invokes the appropriate trigger instead of

the SQL statement, and the actions specified in the trigger body take place.

Updating Nested Table Columns in Views
A nested table can be modified by inserting new elements and updating or deleting

existing elements. Nested table columns that are virtual or synthesized, as in a view,

are not usually updatable. To overcome this, Oracle allows INSTEAD OF triggers to

be created on these columns.

The INSTEAD OF trigger defined on a nested table column (of a view) is fired when

the column is modified. Note that if the entire collection is replaced (by an update

of the parent row), the INSTEAD OF trigger on the nested table column is not fired.

Using INSTEAD-OF Triggers to Control Mutating and Validation
INSTEAD-OF triggers provide a way of updating complex views that otherwise

could not be updated. They can also be used to enforce constraints, check privileges

and validate the DML. Using these triggers, you can control mutation of the objects
Applying an Object Model to Relational Data 4-11

Applying the Object Model to Remote Tables
created though an object view that might be caused by inserting, updating and

deleting.

For instance, suppose we wanted to enforce the condition that the number of

employees in a department cannot exceed 10. To enforce this, we can write an

INSTEAD-OF trigger for the employee view. The trigger is not needed for doing the

DML since the view can be updated, but we need it to enforce the constraint.

We implement the trigger by means of the following code:

CREATE TRIGGER emp_instr INSTEAD OF INSERT on emp_view
FOR EACH ROW
DECLARE

dept_var dept_t ;
 emp_count integer;
BEGIN
 -- Enforce the constraint..!
 -- First get the department number from the reference

UTL_REF.SELECT_OBJECT(:NEW.deptref,dept_var);

 SELECT COUNT(*) INTO emp_count
 FROM emp
 WHERE deptno = dept_var.dno ;

 IF emp_count < 9 THEN
 -- let us do the insert

INSERT INTO emp VALUES (:NEW.eno,:NEW.ename,:NEW.salary,dept_var.dno);
 END IF;
END;

Applying the Object Model to Remote Tables
Although you cannot directly access remote tables as object tables, object views let

you access remote tables as if they were object tables.

Consider a company with two branches — one in Washington D.C., and another in

Chicago. Each site has an employee table. The headquarters in Washington has a

department table with the list of all the departments. To get a total view of the entire

organization, we can create views over the individual remote tables and then a

overall view of the organization.

First, we create an object view for each employee table:

CREATE VIEW emp_washington_view (eno,ename,salary)
 AS SELECT e.empno, e.empname, e.salary
4-12 Application Developer’s Guide - Object-Relational Features

Defining Complex Relationships in Object Views
 FROM emp@washington_link e ;

CREATE VIEW emp_chicago_view
 AS SELECT e.eno, e.name, e.salary
 FROM emp_tab@chicago_link e ;

We can now create the global view:

CREATE VIEW orgnzn_view OF dept_t WITH OBJECT IDENTIFIER (dno)
 AS SELECT d.deptno, d.deptname,

address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) ,
CAST(MULTISET (

 SELECT e.eno, e.ename, e.salary
 FROM emp_washington_view e)
 AS employee_list_t)
 FROM dept d
 WHERE d.deptcity = ‘Washington’
 UNION ALL
 SELECT d.deptno, d.deptname,

address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) ,
CAST(MULTISET (

 SELECT e.eno, e.name, e.salary
 FROM emp_chicago_view e)
 AS employee_list_t)
 FROM dept d
 WHERE d.deptcity = ‘Chicago’;

This view has the list of all employees for each department. We use UNION ALL
since we cannot have two employees working in more than one department. If we

had to deal with that eventuality, we could use a UNION of the rows. However, one

caveat in using the UNION operator is that we need to introduce an ORDER BY
operator within the CAST-MULTISET expressions so that the comparison of two

collections is performed properly.

Defining Complex Relationships in Object Views
You can define circular references in object views using the MAKE_REF operator:

view_A can refer to view_B which in turn can refer to view_A . This allows an

object view to synthesize a complex structure such as a graph from relational data.

For example, in the case of the department and employee, the department object

currently includes a list of employees. To conserve space, we may want to put

references to the employee objects inside the department object, instead of
Applying an Object Model to Relational Data 4-13

Defining Complex Relationships in Object Views
materializing all the employees within the department object. We can construct

("pin") the references to employee objects, and later follow the references using the

dot notation to extract employee information.

Because the employee object already has a reference to the department in which the

employee works, an object view over this model contains circular references

between the department view and the employee view.

You can create circular references between object views in two different ways.

Method 1: Create Both Views
1. Create view A without any reference to view B.

2. Create view B, which includes a reference to view A.

3. Replace view A with a new definition that includes the reference to view B.

Method 2:
1. Create view A with the reference to view B using the FORCE keyword.

2. Create view B with reference to view A. When view A is used, it is validated

and re-compiled.

Method 2 has fewer steps, but the FORCE keyword may hide errors in the view

creation. You need to query the USER_ERRORS catalog view to see if there were any

errors during the view creation. Use this method only if you are sure that there are

no errors in the view creation statement.

Also, if errors prevent the views from being recompiled upon use, you must

recompile them manually using the ALTER VIEW COMPILE command.

We will see the implementation for both the methods.

Tables and Types to Demonstrate Circular View References
First, we set up some relational tables and associated object types. Although the

tables contain some objects, they are not object tables. To access the data objects, we

will create object views later.

The emp table stores the employee information:

CREATE TABLE emp
(
 empno NUMBER PRIMARY KEY,
 empname VARCHAR2(20),
 salary NUMBER,
4-14 Application Developer’s Guide - Object-Relational Features

Defining Complex Relationships in Object Views
 deptno NUMBER
);

The emp_t type contains a reference to the department. We need a dummy

department type so that the emp_t type creation succeeds.

CREATE TYPE dept_t;
/

The employee type includes a reference to the department:

CREATE TYPE emp_t AS OBJECT
(
 eno NUMBER,
 ename VARCHAR2(20),
 salary NUMBER,

deptref REF dept_t
);
/

We represent the list of references to employees as a nested table:

CREATE TYPE employee_list_ref_t AS TABLE OF REF emp_t ;
/

The department table is a typical relational table:

CREATE TABLE dept
(
 deptno NUMBER PRIMARY KEY,
 deptname VARCHAR2(20),
 deptstreet VARCHAR2(20),
 deptcity VARCHAR2(10),
 deptstate CHAR(2),
 deptzip VARCHAR2(10)
);

To create object views, we need object types that map to columns from the relational

tables:

CREATE TYPE address_t AS OBJECT
(
 street VARCHAR2(20),
 city VARCHAR2(10),
 state CHAR(2),
 zip VARCHAR2(10)
Applying an Object Model to Relational Data 4-15

Defining Complex Relationships in Object Views
);
/

We earlier created an incomplete type; now we fill in its definition:

CREATEOR REPLACE TYPE dept_t AS OBJECT
(
 dno NUMBER,
 dname VARCHAR2(20),
 deptaddr address_t,
 empreflist employee_list_ref_t
);
/

Creating Object Views with Circular References
Now that we have the underlying relational table definitions, we create the object

views on top of them.

Method 1: Views compiled now.
We first create the employee view with a null in the deptref column. Later, we will

turn that column into a reference.

CREATE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,

NULL
 FROM emp e;

Next, we create the department view, which includes references to the employee

objects.

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,

address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) ,
 CAST(MULTISET (

 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;
4-16 Application Developer’s Guide - Object-Relational Features

Defining Complex Relationships in Object Views
We create a list of references to employee objects, instead of including the entire

employee object. We now re-create the employee view with the reference to the

department view.

CREATEOR REPLACE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,

MAKE_REF(dept_view, e.deptno)
 FROM emp e;

This creates the views.

Method 2: Views compiled upon use.
If we are sure that the view creation statement has no syntax errors, we can use the

FORCE keyword to force the creation of the first view without the other view being

present.

First, we create an employee view that includes a reference to the department view,

which does not exist at this point. This view cannot be queried until the department

view is created properly.

CREATEFORCE VIEW emp_view OF emp_t WITH OBJECT IDENTIFIER(eno)
 AS SELECT e.empno, e.empname, e.salary,

MAKE_REF(dept_view, e.deptno)
 FROM emp e;

Next, we create a department view that includes references to the employee objects.

We do not have to use the FORCE keyword here, since emp_view already exists.

CREATE VIEW dept_view OF dept_t WITH OBJECT IDENTIFIER(dno)
 AS SELECT d.deptno, d.deptname,

address_t(d.deptstreet,d.deptcity,d.deptstate,d.deptzip) ,
 CAST(MULTISET (

 SELECT MAKE_REF(emp_view, e.empno)
 FROM emp e
 WHERE e.deptno = d.deptno)
 AS employee_list_ref_t)
 FROM dept d;

This allows us to query the department view, getting the employee object by

de-referencing the employee reference from the nested table empreflist :

SELECT DEREF(e.COLUMN_VALUE)
FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e;
Applying an Object Model to Relational Data 4-17

Defining Complex Relationships in Object Views
COLUMN_VALUE is a special name that represents the scalar value in a scalar nested

table. In this case, COLUMN_VALUE denotes the reference to the employee objects in

the nested table empreflist.

We can also access only the employee number of all those employees whose name

begins with “John”.

SELECT e.COLUMN_VALUE.eno
FROM TABLE(SELECT e.empreflist FROM dept_view e WHERE e.dno = 100) e
WHERE e.COLUMN_VALUE.ename like ‘John%’ ;

To get a tabular output, unnest the list of references by joining the department table

with the items in its nested table:

SELECT d.dno, e.COLUMN_VALUE.eno, e.COLUMN_VALUE.ename
FROM dept_view d, TABLE(d.empreflist) e
WHERE e.COLUMN_VALUE.ename like ‘John%’
 AND d.dno = 100;

Finally, we can rewrite the above query to use the emp_view instead of the dept_
view to show how you can navigate from one view to the other:

SELECT e.deptref.dno , DEREF(f.COLUMN_VALUE)
FROM emp_view e, TABLE(e.deptref.empreflist) f
WHEREe.deptref.dno = 100
AND f.COLUMN_VALUE.ename like ‘John%’;
4-18 Application Developer’s Guide - Object-Relational Features

Design Considerations for Oracle
5

Design Considerations for Oracle Objects

This chapter explains the implementation and performance characteristics of

Oracle’s object-relational model. Use this information to map a logical data model

into an Oracle physical implementation, and when developing applications that use

object-oriented features.

This chapter covers the following topics:

■ Representing Objects as Columns or Rows

■ Storage Considerations for Object Identifiers (OIDs)

■ Viewing Object Data in Relational Form with Unnesting Queries

■ Choosing a Language for Method Functions

You should be familiar with the basic concepts behind Oracle objects before you

read this chapter.

Representing Objects as Columns or Rows
You can store objects in columns of relational tables as column objects, or in object

tables as row objects. Objects that have meaning outside of the relational database

object in which they are contained, or objects that are shared among more than one

relational database object, should be made referenceable as row objects. That is,

such objects should be stored in an object table instead of in a column of a relational

table.

See Also: Oracle8i Concepts for conceptual information about

Oracle objects, and see Oracle8i SQL Reference for information about

the SQL syntax for using Oracle objects.
 Objects 5-1

Representing Objects as Columns or Rows
For example, an object of object type CUSTOMER has meaning outside of any

particular purchase order, and should be referenceable; therefore, CUSTOMERobjects

should be stored as row objects in an object table. An object of object type ADDRESS,
however, has little meaning outside of a particular purchase order and can be one

attribute within a purchase order; therefore, ADDRESS objects should be stored as

column objects in columns of relational tables or object tables. So, ADDRESS might

be a column object in the CUSTOMER row object.

Column Object Storage
The storage of a column object is the same as the storage of an equivalent set of

scalar columns that collectively make up the object. The only difference is that there

is the additional overhead of maintaining the atomic null values of the object and its

embedded object attributes. These values are called null indicators because, for every

column object, a null indicator specifies whether the column object is null and

whether each of its embedded object attributes is null. However, null indicators do

not specify whether the scalar attributes of a column object are null. Oracle uses a

different method to determine whether scalar attributes are null.

Consider a table that holds the identification number, name, address, and phone

numbers of people within an organization. You can create three different object

types to hold the name, address, and phone number. First, to create the name_
objtyp object type, enter the following SQL statement:

CREATE TYPE name_objtyp AS OBJECT (
 first VARCHAR2(15),
 middle VARCHAR2(15),
 last VARCHAR2(15));

Figure 5–1 Object Relational Representation for the name_objtyp Type

Type NAME_OBJTYP

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
5-2 Application Developer’s Guide - Object-Relational Features

Representing Objects as Columns or Rows
Next, to create the address_objtyp object type, enter the following SQL

statement:

CREATE TYPE address_objtyp AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state CHAR(2),
 zipcode VARCHAR2(20));

Figure 5–2 Object Relational Representation of the address_objtyp Type

Finally, to create the phone_objtyp object type, enter the following SQL

statement:

CREATE TYPE phone_objtyp AS OBJECT (
 location VARCHAR2(15),
 num VARCHAR2(14));

Figure 5–3 Object Relational Representation of the phone_objtyp Type

Type ADDRESS_OBJTYP

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)

Type PHONE_OBJTYP

NUM

Number
VARCHAR2(14)

LOCATION

Text
VARCHAR2(15)
Design Considerations for Oracle Objects 5-3

Representing Objects as Columns or Rows
Because each person may have more than one phone number, create a nested table

type phone_ntabtyp based on the phone_objtyp object type:

CREATE TYPE phone_ntabtyp AS TABLE OF phone_objtyp;

Once all of these object types are in place, you can create a table to hold the

information about the people in the organization with the following SQL statement:

CREATE TABLE people_reltab (
 id NUMBER(4) CONSTRAINT pk_people_reltab PRIMARY KEY,
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab;

See Also: "Nested Tables" on page 5-14 for more information

about nested tables.
5-4 Application Developer’s Guide - Object-Relational Features

Representing Objects as Columns or Rows
Figure 5–4 Representation of the people_reltab Relational Table

Table PEOPLE_RELTAB

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type
NAME_OBJTYP

ID

PK

Number
NUMBER(4)

Object Type
ADDRESS_OBJTYP

Nested Table
PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text
VARCHAR(200)

STREET

Text
VARCHAR2(200)

Text
CHAR(2)

Text
VARCHAR(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number
VARCHAR(14)

LOCATION

Text
VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
Design Considerations for Oracle Objects 5-5

Representing Objects as Columns or Rows
The people_reltab table has three column objects: name_obj , address_obj ,

and phones_ntab . The phones_ntab column object is also a nested table.

The storage for each object stored in the people_reltab table is the same as that

of the attributes of the object. For example, the storage required for a name_obj
object is the same as the storage for the first , middle , and last attributes

combined, except for the null indicator overhead.

If the COMPATIBLE parameter is set to 8.1.0 or higher, the null indicator for an

object and its embedded object attributes occupy one bit each. Thus, an object with

n embedded object attributes (including objects at all levels of nesting) has a storage

overhead of CEIL(n/8) bytes. In the people_reltab table, for example, the

overhead of the null information for each row is one byte because it translates to

CEIL(3/8) or CEIL(.37) , which rounds up to one byte. In this case, there are

three objects in each row: name_obj , address_obj , and phones_ntab .

If, however, the COMPATIBLE parameter is set to a value below 8.1.0, such as 8.0.0,

the storage is determined by the following calculation:

CEIL(n/8) + 6

Here, n is the total number of all attributes (scalar and object) within the object.

Therefore, in the people_reltab table, for example, the overhead of the null

information for each row is seven bytes because it translates to the following

calculation:

CEIL(4/8) + 6 = 7

CEIL(4/8) is CEIL(.5) , which rounds up to one byte. In this case, there are three

objects in each row and one scalar.

Therefore, the storage overhead and performance of manipulating a column object

is similar to that of the equivalent set of scalar columns. The storage for collection

attributes are described in the "Viewing Object Data in Relational Form with

Unnesting Queries" section on page 5-12.

Note: The name_obj object, address_obj object, phones_ntab
nested table, and people_reltab table are used in examples

throughout this chapter.
5-6 Application Developer’s Guide - Object-Relational Features

Performance of Object Comparisons
Row Object Storage in Object Tables
Row objects are stored in object tables. An object table is a special kind of table that

holds objects and provides a relational view of the attributes of those objects. An

object table is logically and physically similar to a relational table whose column

types correspond to the top level attributes of the object type stored in the object

table. The key difference is that an object table can optionally contain an additional

object identifier (OID) column and index.

Object Identifier (OID) Storage and OID Index By default, Oracle assigns every row object

a unique, immutable object identifier, called an OID. An OID allows the

corresponding row object to be referred to from other objects or from relational

tables. A built-in datatype called a REF represents such references. A REF
encapsulates a reference to a row object of a specified object type.

By default, an object table contains a system-generated OID column, so that each

row object is assigned a globally unique OID. This OID column is automatically

indexed for efficient OID-based lookups. The OID column is the equivalent of

having an extra 16-byte primary key column.

Primary-Key Based OIDs If a primary key column is available, you can avoid the

storage and performance overhead of maintaining the 16-byte OID column and its

index. Instead of using the system-generated OIDs, you can use a CREATE TABLE
statement to specify that the system use the primary key column(s) as the OIDs of

the objects in the table. Therefore, you can use existing columns as the OIDs of the

objects or use application generated OIDs that are smaller than the 16-byte globally

unique OIDs generated by Oracle.

Performance of Object Comparisons
You can compare objects by invoking the map or order methods defined on the object

type. A map method converts objects into scalar values while preserving the

ordering of the objects. Mapping objects into scalar values, if it can be done, is

preferred because it allows the system to efficiently order objects once they are

mapped.

The way objects are mapped has significant performance implications when sorting

is required on the objects for ORDER BY or GROUP BY processing because an object

See Also: Oracle8i SQL Reference for more information about

CEIL .
Design Considerations for Oracle Objects 5-7

Storage Considerations for Object Identifiers (OIDs)
may need to be compared to other objects many times, and it is much more efficient

if the objects can be mapped to scalar values first. If the comparison semantics are

extremely complex, or if the objects cannot be mapped into scalar values for

comparison, you can define an order method that, given two objects, returns the

ordering determined by the object implementor. Order methods are not as efficient

as map methods, so performance may suffer if you use order methods. In any one

object type, you can implement either map or order methods, but not both.

Once again, consider an object type ADDRESSconsisting of four character attributes:

STREET, CITY, STATE, and ZIPCODE. Here, the most efficient comparison method

is a map method because each object can be converted easily into scalar values. For

example, you might define a map method that orders all of the objects by state.

On the other hand, suppose you want to compare binary objects, such as images. In

this case, the comparison semantics may be too complex to use a map method; if so,

you can use an order method to perform comparisons. For example, you could

create an order method that compares images according to brightness or the

number of pixels in each image.

If an object type does not have either a map or order method, only equality

comparisons are allowed on objects of that type. In this case, Oracle performs the

comparison by doing a field-by-field comparison of the corresponding object

attributes, in the order they are defined. If the comparison fails at any point, a

FALSE value is returned. If the comparison matches at every point, a TRUE value is

returned. However, if an object has a collection of LOB attributes, then Oracle does

not compare the object on a field-by-field basis. Such objects must have a map or

order method to perform comparisons.

Storage Considerations for Object Identifiers (OIDs)
REFs use object identifiers (OIDs) to point to objects. You can use either

system-generated OIDs or primary-key based OIDs. The differences between these

types of OIDs are outlined in "Row Object Storage in Object Tables" on page 5-7. If

you use system-generated OIDs for an object table, Oracle maintains an index on

the column that stores these OIDs. The index requires storage space, and each row

object has a system-generated OID, which requires an extra 16 bytes of storage per

row.

You can avoid these added storage requirements by using the primary key for the

object identifiers, instead of system-generated OIDs. You can enforce referential

integrity on columns that store references to these row objects in a way similar to

foreign keys in relational tables.
5-8 Application Developer’s Guide - Object-Relational Features

Performance and Storage Considerations for Scoped REFs
However, if each primary key value requires more than 16 bytes of storage and you

have a large number of REFs, using the primary key might require more space than

system-generated OIDs because each REF is the size of the primary key. In addition,

each primary-key based OID is locally (but not necessarily globally) unique. If you

require a globally unique identifier, you must ensure that the primary key is

globally unique or use system-generated OIDs.

Storage Size of REFs
A REF contains the following three logical components:

■ OID of the object referenced. A system-generated OID is 16 bytes long. The size

of a primary-key based OID depends on the size of the primary key column(s).

■ OID of the table or view containing the object referenced, which is 16 bytes

long.

■ Rowid hint, which is 10 bytes long.

Integrity Constraints for REF Columns
Referential integrity constraints on REFcolumns ensure that there is a row object for

the REF. Referential integrity constraints on REFs create the same relationship as

specifying a primary key/foreign key relationship on relational data. In general,

you should use referential integrity constraints wherever possible because they are

the only way to ensure that the row object for the REF exists. However, you cannot

specify referential integrity constraints on REFs that are in nested tables.

Performance and Storage Considerations for Scoped REFs
A scoped REFis constrained to contain only references to a specified object table. You

can specify a scoped REF when you declare a column type, collection element, or

object type attribute to be a REF. In general, you should use scoped REFs whenever

possible instead of unscoped REFs because scoped REFs are stored more efficiently.

Scoped REFs are stored on disk as just the OID, so each scoped REFis 16 bytes long.

In addition to the smaller size, the optimizer often can optimize queries that

dereference a scoped REF into efficient joins. This optimization is not possible for

unscoped REFs because the optimizer cannot determine the containing table(s) for

unscoped REFs at query optimization time.

However, unlike referential integrity constraints, scoped REFs do not ensure that

the referenced row object exists; they only ensure that the referenced object table
Design Considerations for Oracle Objects 5-9

Performance and Storage Considerations for Scoped REFs
exists. Therefore, if you specify a scoped REF to a row object and then delete the

row object, the scoped REF becomes a dangling REF because the referenced object

no longer exists.

Unscoped REFs are useful if the application design requires that the objects

referenced be scattered in multiple tables. Because rowid hints are ignored for

scoped REFs, you should use unscoped REFs if the performance gain of the rowid

hint, as explained below in the "Speeding up Object Access using the WITH

ROWID Option" section, outweighs the benefits of the storage saving and query

optimization of using scoped REFs.

Indexing Scoped REFs
You can build indexes on scoped REF columns using the CREATE INDEX command.

Then, you can use the index to efficiently evaluate queries that dereference the

scoped REFs. Such queries are turned into joins implicitly. For certain types of

queries, Oracle can use an index on the scoped REF column to evaluate the join

efficiently.

For example, suppose the object type address_objtyp is used to create an object

table named address_objtab :

CREATE TABLE address_objtab OF address_objtyp ;

Then, a people_reltab2 table can be created that has the same definition as the

people_reltab table discussed in "Column Object Storage" on page 5-2, except

that a REF is used for the address:

CREATE TABLE people_reltab2 (
 id NUMBER(4) CONSTRAINT pk_people_reltab2 PRIMARY KEY,
 name_obj name_objtyp,
 address_ref REF address_objtyp SCOPE IS address_objtab ,
 phones_ntab phone_ntabtyp)
 NESTED TABLE phones_ntab STORE AS phone_store_ntab2 ;

Now, an index can be created on the address_ref column:

CREATE INDEX address_ref_idx ON people_reltab2 (address_ref) ;

The following query dereferences the address_ref :

Note: Referential integrity constraints are scoped implicitly.
5-10 Application Developer’s Guide - Object-Relational Features

Speeding up Object Access using the WITH ROWID Option
SELECT id FROM people_reltab2 p
 WHERE p.address_ref.state = 'CA' ;

When this query is executed, the address_ref_idx index is used to efficiently

evaluate it. Here, address_ref is a scoped REF column that stores references to

addresses stored in the address_objtab object table. Oracle implicitly transforms

the above query into a query with a join:

SELECT p.id FROM people_reltab2 p, address_objtab a
 WHERE p.address_ref = ref(a) AND a.state = 'CA' ;

Oracle’s optimizer might create a plan to perform a nested-loops join with

address_objtab as the outer table and look up matching addresses using the

index on the address_ref scoped REF column.

Speeding up Object Access using the WITH ROWID Option
If the WITH ROWIDoption is specified for a REFcolumn, Oracle maintains the rowid

of the object referenced in the REF. Then, Oracle can find the object referenced

directly using the rowid contained in the REF, without the need to fetch the rowid

from the OID index. Therefore, you use the WITH ROWID option to specify a rowid

hint. Maintaining the rowid requires more storage space because the rowid adds 16

bytes to the storage requirements of the REF.

Bypassing the OID index search improves the performance of REF traversal

(navigational access) in applications. The actual performance gain may vary from

application to application depending on the following factors:

■ How large the OID indexes are.

■ Whether the OID indexes are cached in the buffer cache.

■ How many REF traversals an application does.

The WITH ROWID option is only a hint because, when you use this option, Oracle

checks the OID of the row object with the OID in the REF. If the two OIDs do not

match, Oracle uses the OID index instead. The rowid hint is not supported for

scoped REFs, for REFs with referential integrity constraints, or for primary

key-based REFs.
Design Considerations for Oracle Objects 5-11

Viewing Object Data in Relational Form with Unnesting Queries
Viewing Object Data in Relational Form with Unnesting Queries
An unnesting query on a collection allows the data to be viewed in a flat (relational)

form. You can execute unnesting queries on both nested tables and varrays. This

section contains examples of unnesting queries.

Nested tables can be unnested for queries using the TABLE syntax, as in the

following example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) n ;

Here, phones_ntab specifies the attributes of the phones_ntab nested table. To

ensure that the parent rows with no children rows also are retrieved, use the outer

join syntax as follows:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_ntab) (+) n ;

In the first case, if the query does not refer to any columns from the parent table

(other than the nested table column in the FROM clause), the query is optimized to

execute only against the storage table.

You can also use the TABLE syntax to query varrays. For example, suppose the

phones_ntab nested table is instead a varray named phones_var . In this case,

you still can use the TABLE syntax to query the varray, as in the following example:

SELECT p.name_obj, n.num
 FROM people_reltab p, TABLE(p.phones_var) n ;

The unnesting query syntax is the same for varrays and nested tables.

Using Procedures and Functions in Unnesting Queries
You can create procedures and functions that you can then execute to perform

unnesting queries. For example, you can create a function called home_phones()
that returns only the phone numbers where location is 'home'. To create the

home_phones() function, you enter code similar to the following:

CREATE OR REPLACE FUNCTION home_phones(allphones IN phone_ntabtyp)
 RETURN phone_ntabtyp IS
 homephones phone_ntabtyp := phone_ntabtyp();
 indx1 number;
 indx2 number := 0;
BEGIN
 FOR indx1 IN 1..allphones.count LOOP
5-12 Application Developer’s Guide - Object-Relational Features

Storage Considerations for Varrays
 IF
 allphones(indx1).location = 'home'
 THEN
 homephones.extend; -- extend the local collection
 indx2 := indx2 + 1; -- extend the local collection
 homephones(indx2) := allphones(indx1);
 END IF;
 END LOOP;

 RETURN homephones;
END;
/

Now, to query for a list of people and their home phone numbers, enter the

following:

SELECT p.name_obj, n.num
 FROM people_reltab p, table(
 CAST(home_phones(p.phones_ntab) AS phone_ntabtyp)) n ;

To query for a list of people and their home phone numbers, including those people

who do not have a home phone number listed, enter the following:

SELECT p.name_obj, n.num
 FROM people_reltab p,
 TABLE(CAST(home_phones(p.phones_ntab) AS phone_ntabtyp))(+) n ;

Storage Considerations for Varrays
The size of a stored varray depends only on the current count of the number of

elements in the varray and not on the maximum number of elements that it can

hold. The storage of varrays incurs some overhead, such as null information.

Therefore, the size of the varray stored may be slightly greater than the size of the

elements multiplied by the count.

Varrays are stored in columns either as raw values or BLOBs. Oracle decides how to

store the varray when the varray is defined, based on the maximum possible size of

the varray computed using the LIMIT of the declared varray. If the size exceeds

approximately 4000 bytes, then the varray is stored in BLOBs. Otherwise, the varray

is stored in the column itself as a raw value. In addition, Oracle supports inline

See Also: Oracle8i SQL Reference for more information about

using the TABLE syntax.
Design Considerations for Oracle Objects 5-13

Performance of Varrays vs. Nested Tables
LOBs; therefore, elements that fit in the first 4000 bytes of a large varray (with some

bytes reserved for the LOB locator) are stored in the column of the row itself.

Performance of Varrays vs. Nested Tables
If the entire collection is manipulated as a single unit in the application, varrays

perform much better than nested tables. The varray is stored "packed" and requires

no joins to retrieve the data, unlike nested tables.

Varray Querying
The unnesting syntax can be used to access varray columns similar to the way it is

used to access nested tables.

Varray Updates
Piece-wise updates of a varray value are not supported. Thus, when a varray is

updated, the entire old collection is replaced by the new collection.

Nested Tables
The following sections contain design considerations for using nested tables.

Nested Table Storage
Oracle stores the rows of a nested table in a separate storage table. A system

generated NESTED_TABLE_ID, which is 16 bytes in length, correlates the parent

row with the rows in its corresponding storage table.

Figure 5–5 shows how the storage table works. The storage table contains each

value for each nested table in a nested table column. Each value occupies one row in

the storage table. The storage table uses the NESTED_TABLE_ID to track the nested

table for each value. So, in Figure 5–5, all of the values that belong to nested table A
are identified, all of the values that belong to nested table B are identified, etc.

See Also: "Viewing Object Data in Relational Form with

Unnesting Queries" on page 5-12 for more information.
5-14 Application Developer’s Guide - Object-Relational Features

Nested Tables
Figure 5–5 Nested Table Storage

Nested Table in an Index-Organized Table (IOT)
If a nested table has a primary key, you can organize the nested table as an

index-organized table (IOT). If the NESTED_TABLE_ID column is a prefix of the

primary key for a given parent row, Oracle physically clusters its children rows

together. So, when a parent row is accessed, all its children rows can be efficiently

retrieved. When only parent rows are accessed, efficiency is maintained because the

children rows are not inter-mixed with the parent rows.

Figure 5–6 shows how the storage table works when the nested table is in an IOT.

The storage table groups the values for each nested table within a nested table

column. In Figure 5–6, for each nested table in the NT_DATA column of the parent

table, the data is grouped in the storage table. So, all of the values in nested table A
are grouped together, all of the values in nested table B are grouped together, etc.

B21
B22
C33
A11
E51
B25
E52
A12
E54
B23
C32
A13
D41
B24
E53

B
B
C
A
E
B
E
A
E
B
C
A
D
B
E

ValuesNESTED_TABLE_ID
Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .
Design Considerations for Oracle Objects 5-15

Nested Tables
Figure 5–6 Nested Table in IOT Storage

In addition, the COMPRESS clause enables prefix compression on the IOT rows. It

factors out the key of the parent in every child row. That is, the parent key is not

repeated in every child row, thus providing significant storage savings.

In other words, if you specify nested table compression using the COMPRESSclause,

the amount of space required for the storage table is reduced because the NESTED_
TABLE_ID is not repeated for each value in a group. Instead, the NESTED_TABLE_
ID is stored only once per group, as illustrated in Figure 5–7.

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A
A
A
B
B
B
B
B
C
C
D
E
E
E
E

ValuesNESTED_TABLE_ID
Storage for

nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

Storage Table

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

. . .
5-16 Application Developer’s Guide - Object-Relational Features

Nested Tables
Figure 5–7 Nested Table in IOT Storage with Compression

In general, Oracle Corporation recommends that nested tables be stored in an IOT

with the NESTED_TABLE_ID column as a prefix of the primary key. Further, prefix

compression should be enabled on the IOT. However, if you usually do not retrieve

the nested table as a unit and you do not want to cluster the child rows, do not store

the nested table in an IOT and do not specify compression.

Nested Table Indexes
For nested tables stored in heap tables (as opposed to IOTs), you should create an

index on the NESTED_TABLE_ID column of the storage table. The index on the

corresponding ID column of the parent table is created by Oracle automatically

when the table is created. Creating an index on the NESTED_TABLE_ID column

enables Oracle to access the child rows of the nested table more efficiently, because

A11
A12
A13
B21
B22
B23
B24
B25
C31
C32
D41
E51
E52
E53
E54

A

B

C

D

ValuesNESTED_TABLE_ID
Storage Table

Storage for
nested
table A

Storage for
nested
table B

Storage for
nested
table C

Storage for
nested
table E

Storage for
nested
table D

A
B
C
D
E

. . .

. . .

. . .

. . .

. . .

NT_DATADATA4
. . .
. . .
. . .
. . .
. . .

DATA3
. . .
. . .
. . .
. . .
. . .

DATA2
. . .
. . .
. . .
. . .

DATA1

E

. . .
Design Considerations for Oracle Objects 5-17

Nested Tables
Oracle must perform a join between the parent table and the nested table using the

NESTED_TABLE_ID column.

Nested Table Locators
For large child-sets, the parent row and a locator to the child-set can be returned so

that the children rows can be accessed on demand; the child-sets also can be filtered.

Using nested table locators allows you to avoid unnecessary transporting of

children rows for every parent.

You can perform either one of the following actions to access the children rows

using the nested table locator:

■ Call the OCI collection functions. This action occurs implicitly when you access

the elements of the collection in the client-side code, such as OCIColl* functions.

The entire collection is retrieved implicitly on the first access.

■ Use SQL to retrieve the rows corresponding to the nested table. This action is

described in "The Object Table PurchaseOrder_objtab" on page 8-27.

Optimizing Set Membership Queries
Set membership queries are useful when you want to search for a specific item in a

nested table. For example, the following query tests the membership in a child-set;

specifically, whether the location home is in the nested table phones_ntab , which

is in the parent table people_reltab :

SELECT * FROM people_reltab p
 WHERE ’home’ IN (SELECT location FROM TABLE(p.phones_ntab)) ;

Oracle can execute a query that tests the membership in a child-set more efficiently

by transforming it internally into a semi-join. However, this optimization only

happens if the ALWAYS_SEMI_JOIN initialization parameter is set. If you want to

perform semi-joins, the valid values for this parameter are MERGE and HASH; these

parameter values indicate which join method to use.

See Also: Oracle Call Interface Programmer’s Guide for more

information about OCI collection functions.
5-18 Application Developer’s Guide - Object-Relational Features

Nested Tables
DML Operations on Nested Tables
You can perform DML operations on nested tables. Rows can be inserted into or

deleted from a nested table, and existing rows can be updated, by using the

appropriate SQL command against the nested table. In these operations, the nested

table is identified by a TABLE subquery. The following example inserts a new

person into the people_reltab table, including phone numbers into the phones_
ntab nested table:

INSERT INTO people_reltab values (
 0001,
 name_objtyp(
 ’john’, ’william’, ’foster’),
 address_objtyp(
 ’111 Maple Road’, ’Fairfax’, ’VA’, ’22033’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’650.331.1222’),
 phone_objtyp(’work’, ’650.945.4389’))) ;

The following example inserts a phone number into the nested table phones_ntab
for an existing person in the people_reltab table whose identification number is

0001 :

INSERT INTO TABLE(SELECT p.phones_ntab FROM people_reltab p WHERE p.id = ’0001’)
 VALUES (’cell’, ’650.331.9337’) ;

To drop a particular nested table, you can set the nested table column in the parent

row to NULL, as in the following example:

UPDATE people_reltab SET phones_ntab = NULL WHERE id = ’0001’ ;

Once you drop a nested table, you cannot insert values into it until you recreate it.

To recreate the nested table in the phones_ntab nested table column object for the

person whose identification number is 0001 , enter the following SQL statement:

UPDATE people_reltab SET phones_ntab = phone_ntabtyp() WHERE id = ’0001’ ;

You also can insert values into the nested table as you recreate it:

UPDATE people_reltab

Note: In the example above, home and location are child set

elements. If the child set elements are object types, they must have

a map or order method to perform a set membership query.
Design Considerations for Oracle Objects 5-19

Nesting Collections within other Collections
 SET phones_ntab = phone_ntabtyp(phone_objtyp(’home’, ’650.331.1222’))
 WHERE id = ’0001’ ;

DML operations on a nested table lock the parent row. Therefore, only one

modification at a time can be made to the data in a particular nested table, even if

the modifications are on different rows in the nested table. However, if only part of

the data in your nested table must support simultaneous modifications, while other

data in the nested table does not require this support, you should consider using

REFs to the data that requires simultaneous modifications.

For example, if you have an application that processes purchase orders, you might

include customer information and line items in the purchase orders. In this case, the

customer information does not change often and so you do not need to support

simultaneous modifications for this data. Line items, on the other hand, might

change very often. To support simultaneous updates on line items that are in the

same purchase order, you can store the line items in a separate object table and

reference them with REFs in the nested table.

Nesting Collections within other Collections
An attribute of a collection cannot be a collection type (either varray or nested

table). In other words, you cannot have collections within collections. Oracle allows

only one level of direct nesting of collections. However, an attribute of a collection

can be a reference to an object that has a collection attribute. Thus, you can have

multiple levels of collections indirectly by using REFs.

For example, suppose you want to create a new object type called person_objtyp
using the object types described in "Column Object Storage" on page 5-2, which are

name_objtyp , address_objtyp , and phone_ntabtyp . Remember that the

phone_ntabtyp object type is a nested table because each person may have more

than one phone number.

To create the person_objtyp object type, issue the following SQL statement:

CREATE TYPE person_objtyp AS OBJECT (
 id NUMBER(4),
 name_obj name_objtyp,
 address_obj address_objtyp,
 phones_ntab phone_ntabtyp);

To create an object table called people_objtab of person_objtyp object type,

issue the following SQL statement:
5-20 Application Developer’s Guide - Object-Relational Features

Nesting Collections within other Collections
CREATE TABLE people_objtab OF person_objtyp (id PRIMARY KEY)
 NESTED TABLE phones_ntab STORE AS phones_store_ntab ;

The people_objtab table has the same attributes as the people_reltab table

discussed in "Column Object Storage" on page 5-2. The difference is that the

people_objtab is an object table with row objects, while the people_reltab
table is a relational table with three column objects.
Design Considerations for Oracle Objects 5-21

Nesting Collections within other Collections
Figure 5–8 Object Relational Representation of the people_objtab Object Table

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ ADDRESS_OBJ PHONES_NTAB

Object Type
NAME_OBJTYP

ID

PK

Number
NUMBER(4)

Object Type
ADDRESS_OBJTYP

Nested Table
PHONE_NTABTYP

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY STATE ZIPCODE

Text
VARCHAR(200)

STREET

Text
VARCHAR2(200)

Text
CHAR(2)

Text
VARCHAR2(20)

Nested Table PHONES_NTAB (of PHONE_NTABTYP)

NUM

Number
VARCHAR(14)

LOCATION

Text
VARCHAR(15)

Column Object NAME_OBJ (of NAME_OBJTYP)

MIDDLE LAST

Text
VARCHAR2(15)

FIRST

Text
VARCHAR2(15)

Text
VARCHAR2(15)
5-22 Application Developer’s Guide - Object-Relational Features

Nesting Collections within other Collections
Now you can reference the row objects in the people_objtab object table from

other tables. For example, suppose you want to create a projects_objtab table

that contains:

■ A project identification number for each project.

■ The title of each project.

■ The project lead for each project.

■ A description of each project.

■ Nested table collection of the team of people assigned to each project.

You can use REFs to the people_objtab for the project leads, and you can use a

nested table collection of REFs for the team. To begin, create a nested table object

type called personref_ntabtyp based on the person_objtyp object type:

CREATE TYPE personref_ntabtyp AS TABLE OF REF person_objtyp;

Now you are ready to create the object table projects_objtab . First, create the

object type projects_objtyp by issuing the following SQL statement:

CREATE TYPE projects_objtyp AS OBJECT (
 id NUMBER(4),
 title VARCHAR2(15),
 proglead_ref REF person_objtyp,
 description CLOB,
 team_ntab personref_ntabtyp);

Next, create the object table projects_objtab based on the projects_objtyp :

CREATE TABLE projects_objtab OF projects_objtyp (id PRIMARY KEY)
 NESTED TABLE team_ntab STORE AS team_store_ntab ;
Design Considerations for Oracle Objects 5-23

Nesting Collections within other Collections
Figure 5–9 Object Relational Representation of the projects_objtab Object Table

Once the people_objtab object table and the projects_objtab object table are

in place, you indirectly have a nested collection. That is, the projects_objtab
table contains a nested table collection of REFs that point to the people in the

people_objtab table, and the people in the people_objtab table have a nested

table collection of phone numbers.

You can insert values into the people_objtab table in the following way:

INSERT INTO people_objtab VALUES (
 0001,
 name_objtyp(’JOHN’, ’JACOB’, ’SCHMIDT’),
 address_objtyp(’1252 Maple Road’, ’Fairfax’, ’VA’, ’22033’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’650.339.9922’),
 phone_objtyp(’work’, ’510.563.8792’))) ;

Table PROJECTS_OBJTAB (of PROJECTS_OBJTYP)

TITLE

Text
VARCHAR2(15)

PROJLEAD_REF

Reference
PERSON_OBJTYP

DESCRIPTION

Text
CLOB

TEAM_NTAB

Nested Table Reference
PERSONREF_NTABTYP

ID

PK

Number
NUMBER(4)

Object Table PEOPLE_OBJTAB (of PERSON_OBJTYP)

NAME_OBJ

Object Type
NAME_OBJTYP

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONES_NTAB

Nested Table
PHONE_NTABTYP

ID

PK

Number
NUMBER(4)

Refers to a
row of the
object table

Refers to multiple rows
of the object table
5-24 Application Developer’s Guide - Object-Relational Features

Nesting Collections within other Collections
INSERT INTO people_objtab VALUES (
 0002,
 name_objtyp(’MARY’, ’ELLEN’, ’MILLER’),
 address_objtyp(’33 Spruce Street’, ’McKees Rocks’, ’PA’, ’15136’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’415.642.6722’),
 phone_objtyp(’work’, ’650.891.7766’))) ;

INSERT INTO people_objtab VALUES (
 0003,
 name_objtyp(’SARAH’, ’MARIE’, ’SINGER’),
 address_objtyp(’525 Pine Avenue’, ’San Mateo’, ’CA’, ’94403’),
 phone_ntabtyp(
 phone_objtyp(’home’, ’510.804.4378’),
 phone_objtyp(’work’, ’650.345.9232’),
 phone_objtyp(’cell’, ’650.854.9233’))) ;

Then, you can insert into the projects_objtab relational table by selecting from

the people_objtab object table using a REF operator, as in the following

examples:

INSERT INTO projects_objtab VALUES (
 1101,
 ’Demo Product’,
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 ’Demo the product, show all the great features.’,
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0001),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;

INSERT INTO projects_objtab VALUES (
 1102,
 ’Create PRODDB’,
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 ’Create a database of our products.’,
 personref_ntabtyp(
 (SELECT REF(p) FROM people_objtab p WHERE id = 0002),
 (SELECT REF(p) FROM people_objtab p WHERE id = 0003))) ;
Design Considerations for Oracle Objects 5-25

Choosing a Language for Method Functions
Choosing a Language for Method Functions
Method functions can be implemented in any of the languages supported by Oracle,

such as PL/SQL, Java, or C. Consider the following factors when you choose the

language for a particular application:

■ Ease of use

■ SQL calls

■ Speed of execution

■ Same/different address space

In general, if the application performs intense computations, C is preferable, but if

the application performs a relatively large number of database calls, PL/SQL or

Java is preferable.

A method implemented in C executes in a separate process from the server using

external routines. In contrast, a method implemented in Java or PL/SQL executes in

the same process as the server.

Method Implementation Example
The example described in this section involves an object type whose methods are

implemented in different languages. In the example, the object type ImageType
has an ID attribute, which is a NUMBER that uniquely identifies it, and an IMG
attribute, which is a BLOB that stores the raw image. The object type ImageType
has the following methods:

■ The method get_name() fetches the name of the image by looking it up in the

database. This method is implemented in PL/SQL.

■ The method rotate() rotates the image. This method is implemented in C.

■ The method clear() returns a new image of the specified color. This method

is implemented in Java.

For implementing a method in C, a LIBRARY object must be defined to point to the

library that contains the external C routines. For implementing a method

implemented in Java, this example assumes that the Java class with the method has

been compiled and uploaded into Oracle.

Note: This example uses nested tables to store REFs, but you also

can store REFs in varrays. That is, you can have a varray of REFs.
5-26 Application Developer’s Guide - Object-Relational Features

Choosing a Language for Method Functions
Here is the object type specification and its methods:

CREATE TYPE ImageType AS OBJECT (
 id NUMBER,
 img BLOB,
 MEMBER FUNCTION get_name() return VARCHAR2,
 MEMBER FUNCTION rotate() return BLOB,
 STATIC FUNCTION clear(color NUMBER) return BLOB
);

CREATE TYPE BODY ImageType AS
 MEMBER FUNCTION get_name() RETURN VARCHAR2
 AS
 imgname VARCHAR2(100);
 BEGIN
 SELECT name INTO imgname FROM imgtab WHERE imgid = id;
 RETURN imgname;
 END;

 MEMBER FUNCTION rotate() RETURN BLOB
 AS LANGUAGE C
 NAME "Crotate"
 LIBRARY myCfuncs;

 STATIC FUNCTION clear(color NUMBER) RETURN BLOB
 AS LANGUAGE JAVA
 NAME ’myJavaClass.clear(color oracle.sql.NUMBER) RETURN oracle.sql.BLOB’;

END;
/

Restriction: Type methods can be mapped only to static Java

methods.
Design Considerations for Oracle Objects 5-27

Choosing a Language for Method Functions
Static Methods
Static methods differ from member methods in that the SELF value is not passed in

as the first parameter. Methods in which the value of SELF is not relevant should be

implemented as static methods. Static methods can be used for user-defined

constructors.

The following example is a constructor-like method that constructs an instance of

the type based on the explicit input parameters and inserts the instance into the

specified table:

CREATE OR REPLACE TYPE atype AS OBJECT(a1 NUMBER,
 STATIC PROCEDURE newa (
 p1 NUMBER,
 tabname VARCHAR2,
 schname VARCHAR2));

CREATE OR REPLACE TYPE BODY atype AS
 STATIC PROCEDURE newa (p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := ’INSERT INTO ’||schname||’.’||tabname|| ’ VALUES (atype(:1))’;
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

CREATE TABLE atab OF atype;
 BEGIN
 atype.newa(1, ’atab’, ’scott’);
 END;

See Also:

■ Oracle8i Java Stored Procedures Developer’s Guide for more information.

■ Chapter 3, "Object Support in Oracle Programmatic Environments" for
more information about choosing a language.
5-28 Application Developer’s Guide - Object-Relational Features

Writing Reusable Code using Invoker Rights
Writing Reusable Code using Invoker Rights
To create generic object types that can be used in any schema, you must define the

type to use invoker-rights, through the AUTHID CURRENT_USER option of

CREATE OR REPLACE TYPE. In general, use invoker-rights when both of the

following conditions are true:

■ There are type methods that access and manipulate data.

■ Users who did not define these type methods must use them.

For example, you can grant user SARA execute privileges on type atype created by

SCOTT in "Static Methods" on page 5-28, and then create table atab based on the

type:

GRANT EXECUTE ON atype TO SARA ;
CONNECT SARA/TPK101 ;
CREATE TABLE atab OF scott.atype ;

Now, suppose user SARA tries to use atype in the following statement:

BEGIN
 scott.atype.newa(1, ’atab’, ’SARA’); -- raises an error
END;
/

This statement raises an error because the definer of the type (SCOTT) does not have

the privileges required to perform the insert in the newa procedure. You can avoid

this error by defining atype using invoker-rights. Here, you first drop the atab
table in both schemas and recreate atype using invoker-rights:

DROP TABLE atab ;
CONNECT SCOTT/TIGER ;
DROP TABLE atab ;

CREATE OR REPLACE TYPE atype AUTHID CURRENT_USER AS OBJECT(a1 NUMBER,
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2));
Design Considerations for Oracle Objects 5-29

Function-Based Indexes on the Return Values of Type Methods
CREATE OR REPLACE TYPE BODY atype AS
 STATIC PROCEDURE newa(p1 NUMBER, tabname VARCHAR2, schname VARCHAR2)
 IS
 sqlstmt VARCHAR2(100);
 BEGIN
 sqlstmt := ’INSERT INTO ’||schname||’.’||tabname|| ’ VALUES
 (scott.atype(:1))’;
 EXECUTE IMMEDIATE sqlstmt USING p1;
 END;
END;
/

Now, if user SARA tries to use atype again, the statement executes successfully:

GRANT EXECUTE ON atype TO SARA ;
CONNECT SARA/TPK101 ;
CREATE TABLE atab OF scott.atype;

BEGIN
 scott.atype.newa(1, ’atab’, ’SARA’); -- executes successfully
END;
/

The statement is successful this time because the procedure is executed under the

privileges of the invoker (SARA), not the definer (SCOTT).

Function-Based Indexes on the Return Values of Type Methods
You can create function-based indexes on the return values of type methods. The

following example creates a function-based index on the method afun() of the

type atype2 :

CREATE TYPE atype2 AS OBJECT
(
 a NUMBER,
 MEMBER FUNCTION afun RETURN NUMBER DETERMINISTIC
);

CREATE OR REPLACE TYPE BODY atype2 IS
 MEMBER FUNCTION afun RETURN NUMBER IS
 BEGIN
 RETURN self.a * 100;
 END;
END;
/

5-30 Application Developer’s Guide - Object-Relational Features

Replicating Object Tables and Columns
CREATE TABLE atab2 OF atype2 ;
CREATE INDEX atab2_afun_idx ON atab2 x (x.afun()) ;

For some methods, you can use function-based indexes to improve the performance

of method invocation in SQL.

New Object Format in Release 8.1
In release 8.1, objects are stored in a new format that uses less storage space and has

better performance characteristics than the previous format. The performance also

is improved due to a more efficient transport protocol. If the COMPATIBLE
parameter is set to 8.1.0 or higher, all the new objects you create are automatically

stored and transported in the release 8.1 format.

In order to convert the objects created in a release 8.0 database to the release 8.1

format, complete following steps:

1. Recreate the tables using a CREATE TABLE...AS SELECT... statement.

2. Export/import the data in the tables.

Replicating Object Tables and Columns
Replication of object columns and object tables is not yet supported. If replication is

a requirement, then you can use object views and store the application objects in

relational tables, which can be replicated. Using object views, both the object model

and the data to be replicated can be preserved in the database.

Restriction: You cannot create an index on a type method that

takes as input LOB, REF, nested table, or varray arguments, or on

any object type that contains such attributes.

See Also: Oracle8i SQL Reference for detailed information about

using function-based indexes.

See Also: Oracle8i Migration for more information about

compatibility and the COMPATIBLE initialization parameter.
Design Considerations for Oracle Objects 5-31

Consequences of the Oracle Inheritance Implementation
Consequences of the Oracle Inheritance Implementation
Inheritance can imply various levels of encapsulation for super-types. In cases

where the super-type should not be exposed to other objects, a subtype should

contain the methods and attributes necessary to make the super-type invisible. To

understand the implementation consequences of the inheritance, it is also important

to remember that Oracle8i is a strongly-typed system. A strongly-typed system

requires that the type of an attribute is declared when the attribute is declared. Only

values of the declared type may be stored in the attribute. For example, the Oracle8i
collections are strongly-typed. Oracle8i does not allow the implementation of

heterogeneous collections (collections of multiple types).

Simulating Inheritance
The Oracle type model does not support inheritance directly. However, you can

map your current Oracle object types to Java classes and then leverage the

inheritance features native to Java.

In addition, inheritance can be simulated in Oracle. For example, you can use one of

the following techniques to simulate inheritance:

■ Subtype Contains Super-type

■ Super-type Contains or References All Subtypes

■ Dual Subtype / Super-type Reference

See Also: Oracle8i JDBC Developer’s Guide and Reference and

Oracle8i SQLJ Developer’s Guide and Reference for more information

about mapping Oracle objects to Java classes.
5-32 Application Developer’s Guide - Object-Relational Features

Consequences of the Oracle Inheritance Implementation
Subtype Contains Super-type

Figure 5–10 Object-Relational Schema — Subtype Contains Super-type

Table SUBSCONTAINSUPER_TAB

CAR_OBJ TRUCK_OBJ . . .

Object Type
CAR_OBJTYP

. . .

Object Type
TRUCK_OBJ

VEHICLE_OBJ (of VEHICLE_OBJTYP)

MODE OF TRAVEL WHEELS . . .

Text
VARCHAR2(20)

. . .

Boolean
BOOLEAN

Column Object CAR_OBJ (of CAR_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

VEHICLE_OBJ . . .

Object Type
VEHICLE_OBJTYP

. . .

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)

MEMBER FUNCTION get Mode Of Travel
RETURN VARCHAR2(20)
Design Considerations for Oracle Objects 5-33

Consequences of the Oracle Inheritance Implementation
The Subtype Contains Super-type technique hides the implementation of the

abstractions/generalizations for a subtype. Each of the subtypes are exposed to

other types in the object model. The super-types are not exposed to other types. To

simulate inheritance, the super-type in the design object model is created as an

object type. The subtype is also created as an object type. The super-type is defined

as an embedded attribute in the subtype. All of the methods that can be executed

for the subtype and it's super-type must be defined in the subtype.

The Subtype Contains Super-type technique is used when each subtype has specific

relationships to other objects in the object model. For example, a super-type of

Customer may have subtypes of Private Customer and Corporate Customer .

Private Customers have relationships with the Personal Banking objects,

while Corporate Customers have relationships with the Commercial Banking
objects. In this environment, the Customer super-type is not visible to the rest of

the object model.

In the Vehicle -Car /Truck example, the Vehicle (super-type) is embedded in

the sub-types Car and Truck .
5-34 Application Developer’s Guide - Object-Relational Features

Consequences of the Oracle Inheritance Implementation
Super-type Contains All Subtypes

Figure 5–11 Object-Relational Schema — Super-type Contains All Subtypes

The Super-type Contains All Subtypes technique hides the implementation of the

subtypes and only exposes the super-type. To simulate inheritance, all of the

subtypes for a given super-type in the design object model are created as object

types. The super-type is created as an object type as well. The super-type declares

an attribute for each subtype. The super-type also declares the constraints to enforce

the one-and-only-one rules for the subtype attributes. All of the methods that can be

executed for the subtype must defined in the super-type.

The Super-type Contains All Subtypes technique is used when objects have

relationships with other objects that are predominately one-to-many in multiplicity.

For example, a Customer can have many Accounts and a Bank can have many

Accounts . The many relationships require a collection for each subtype if the

Subtype Contains Super-type technique is used. If the Account is a super-type and

Checking and Savings are subtypes, both Bank and Customer must implement

a collection of Checking and Savings (4 collections). Adding a new account

Table SUPERCONTAINSUBS_TAB (of VEHICLE_OBJTYP)

CAR_OBJ TRUCK_OBJ . . .

Column Object
CAR_OBJTYP

. . .

Column Object
TRUCK_OBJTYP

Column Object CAR_OBJ (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column Object TRUCK_OBJ (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

ARMOR PLATED

Boolean
BOOLEAN

. . .

Column
object of the
defined type

Column
object of the
defined type

MEMBER FUNCTION is Stick Shift
RETURN BOOLEAN
Design Considerations for Oracle Objects 5-35

Consequences of the Oracle Inheritance Implementation
subtype requires that both Customer and Bank add the collection to support the

new account subtype (2 collections per addition). Using the Super-type Contains All
Subtypes technique means that Customer and Bank have a collection of Account .

Adding a subtype to Accounts means that only account changes.

In the case of the Vehicle -Car /Truck , the Vehicle is created with Car and

Truck as embedded attributes of Vehicle .

Dual Subtype / Super-type Reference

Figure 5–12 Object-Relational Schema — Dual Subtype / Super-type Reference

In cases where the super-type is involved in multiple object-relationships with

many for a multiplicity and the subtypes have specific relationships in the object

model, the implementation of inheritance is a combination of the two inheritance

techniques. The super-type is implemented as an object type. Each subtype is

implemented as an object type. The super-type implements a referenced attribute

for each subtype (zero referenced relationship). The super-type also implements an

Table DUALSUBSREFSUPER_TAB (of VEHICLE_OBJTYP)

CAR_REF TRUCK_REF . . .

Reference
CAR_OBJTYP

VIN

PK

Number
NUMBER

Reference
TRUCK_OBJTYP

Table CAR_TAB (of CAR_OBJTYP)

WHEELS . . .

Number
NUMBER

SEATS

Number
NUMBER

VIN

PK

Number
NUMBER

Table TRUCK_TAB (of TRUCK_OBJTYP)

WHEELS . . .

Number
NUMBER

HAULS

Weight
NUMBER

VIN

Number
NUMBER

References a row
in the table of the
defined type

References a row
in the table of the
defined type

References
5-36 Application Developer’s Guide - Object-Relational Features

Constraints on Objects
or-association for the group of subtype attributes. Each subtype implements a

referenced attribute for the super-type (one referenced relationship). In this way,

both the super-type and sub-type are visible to the rest of the object model.

In the case of the Vehicle -Car /Truck , the Vehicle is created as a type. The Car
and Truck are created as types. The Vehicle type implements a reference to both

Car and Truck , with the or-constraint on the Car and Truck attributes. The Car
implements an attribute that references Vehicle . The Truck implements an

attribute that references Vehicle .

Constraints on Objects
Oracle does not support constraints and defaults in type specifications. However,

you can specify the constraints and defaults when creating the tables:

CREATE OR REPLACE TYPE customer_type AS OBJECT(
 cust_id INTEGER);

CREATE OR REPLACE TYPE department_type AS OBJECT(
 deptno INTEGER);

CREATE TABLE customer_tab OF customer_type (
 cust_id default 1 NOT NULL);

CREATE TABLE department_tab OF department_type (
 deptno PRIMARY KEY);

CREATE TABLE customer_tab1 (
 cust customer_type DEFAULT customer_type(1)
 CHECK (cust.cust_id IS NOT NULL),
 some_other_column VARCHAR2(32));
Design Considerations for Oracle Objects 5-37

Type Evolution
Type Evolution
You cannot change the definitions of types that have dependent data (in the form of

column and/or row objects). However, you can modify tables with column objects

by dropping and adding columns in a way similar to regular relational tables.

You cannot change tables containing row objects by dropping, adding, or modifying

columns. If you need to modify tables containing row objects, a workaround is to:

1. Copy the table data into a temporary table, or export the table data.

2. Drop the table.

3. Recreate the type with the new definition.

4. Recreate the table.

5. Copy in the relevant data from temporary table, or import the data.

If type evolution is a requirement and this workaround is not acceptable, you

should use object views defined over relational tables, instead of column objects or

row objects. You can then change the definitions of object types and views.

Performance Tuning
See Oracle8i Tuning for details on measuring and tuning the performance of your

application. In particular, some of the key performance factors are the following:

■ ANALYZE command to collect statistics.

■ tkprof to profile execution of SQL commands.

■ EXPLAIN PLAN to generate the query plans.

Parallel Queries with Oracle Objects
Oracle8i lets you perform parallel queries with objects, when you follow these rules:

■ To make queries involving joins and sorts parallel (using the ORDER BY, GROUP
BY, and SET operations), a MAP function is required. In the absence of a MAP
function, the query automatically becomes serial.

■ Parallel queries on nested tables are not supported. Even if there are parallel

hints or parallel attributes for the table, the query is serial.

■ Parallel DML and parallel DDL are not supported with objects. DML and DDL

are always performed in serial.
5-38 Application Developer’s Guide - Object-Relational Features

Advanced Topics for Oracle O
6

Advanced Topics for Oracle Objects

The other chapters in this book discuss the topics that you need to get started with

Oracle objects. The topics in this chapter are of interest once you start applying

object-relational techniques to large-scale applications or complex schemas.

If the terms in this chapter are unfamiliar to you, or you are not sure what their

significance is, refer to Chapter 1, "Introduction to Oracle Objects" and Chapter 7,

"Frequently Asked Questions about Programming with Oracle Objects".

Storage of Objects
Oracle automatically maps the complex structure of object types into the simple

rectangular structure of tables.

Leaf-Level Attributes
An object type is like a tree structure, where the branches represent the attributes.

Attributes that are objects sprout subbranches for their own attributes.

Ultimately, each branch ends at an attribute that is a built-in type (such as

NUMBER, VARCHAR2, or REF) or a collection type (such as VARRAY or nested

table). Each of these leaf-level attributes of the original object type is stored in a table

column.

The leaf-level attributes that are not collection types are called the leaf-level scalar
attributes of the object type.

How Row Objects are Split Across Columns
In an object table, Oracle stores the data for every leaf-level scalar or REF attribute

in a separate column. Each VARRAY is also stored in a column, unless it is too large
bjects 6-1

Storage of Objects
(see "Internal Layout of VARRAYs" on page 6-3). Oracle stores leaf-level attributes

of table types in separate tables associated with the object table. You must declare

these tables as part of the object table declaration (see "Internal Layout of Nested

Tables" on page 6-3).

When you retrieve or change attributes of objects in an object table, Oracle performs

the corresponding operations on the columns of the table. Accessing the value of

the object itself produces a copy of the object, by invoking the default constructor

for the type, using the columns of the object table as arguments.

Oracle stores the system-generated object identifier in a hidden column. Oracle uses

the object identifier to construct REFs to the object.

Hidden Columns for Tables with Column Objects
When a table is defined with a column of an object type, Oracle adds hidden

columns to the table for the object type’s leaf-level attributes. Each column object

also has a corresponding hidden column to store the NULL information of the

object (that is, the atomic nulls of the top-level and the nested objects).

REFs
When Oracle constructs a REF to a row object, the constructed REF is made up of

the object identifier, some metadata of the object table, and, optionally, the ROWID.

The size of a REF in a column of REF type depends on the storage properties

associated with the column. For example, if the column is declared as a REF WITH

ROWID, Oracle stores the ROWID in the REF column. The ROWID hint is ignored

for object references in constrained REF columns.

If column is declared as a REF with a SCOPE clause, the column is made smaller by

omitting the object table metadata and the ROWID. A scoped REF is 16 bytes long.

If the object identifier is primary-key based, Oracle may create one or more internal

columns to store the values of the primary key depending on how many columns

comprise the primary key.

Note: When a REF column references row objects whose object

identifiers are derived from primary keys, we refer to it as a

primary-key-based REF or pkREF. Columns containing pkREFs must

be scoped or have a referential constraint.
6-2 Application Developer’s Guide - Object-Relational Features

Object Identifiers
Internal Layout of Nested Tables
The rows of a nested table are stored in a separate storage table. Each nested table

column has a single associated storage table, not one for each row. The storage table

holds all the elements for all of the nested tables in that column. The storage table

has a hidden NESTED_TABLE_ID column with a system-generated value that lets

Oracle map the nested table elements back to the appropriate row.

You can speed up queries that retrieve entire collections by making the storage table

index-organized. Include the ORGANIZATION INDEX clause inside the STORE AS

clause.

A nested table type can contain objects or scalars:

■ If the elements are objects, the storage table is like an object table: the top-level

attributes of the object type become the columns of the storage table. But

because a nested table row has no object identifier column, you cannot

construct REFs to objects in a nested table.

■ If the elements are scalars, the storage table contains a single column called

COLUMN_VALUE that contains the scalar values.

For more information, see Nested Table Storage on page 5-14.

Internal Layout of VARRAYs
All the elements of a VARRAY are stored in a single column. Depending upon the

size of the array, it may be stored inline or in a BLOB. See Storage Considerations

for Varrays on page 5-13 for details.

Object Identifiers
Every row object in an object table has an associated logical object identifier (OID).

By default, Oracle assigns each row object a unique system-generated OID, 16 bytes

in length. Oracle provides no documentation of or access to the internal structure of

object identifiers. This structure can change at any time.

The OID column of an object table is a hidden column. Once it is set up, you can

ignore it and focus instead on fetching and navigating objects through object

references.

The OID for a row object uniquely identifies it in an object table. Oracle implicitly

creates and maintains an index on the OID column of an object table. In a

distributed and replicated environment, the system-generated unique identifier lets

Oracle identify objects unambiguously .
Advanced Topics for Oracle Objects 6-3

OCI Tips and Techniques for Objects
Primary-key Based Object Identifiers In less demanding environments, where globally

unique system-generated identifiers are not required, it may be inefficient to store

sixteen extra bytes with each object and maintain an index on it. A space-saving

technique is to reuse the primary key value of a row object as its object identifier.

Primary-key based identifiers also make it faster and easier to loading data into an

object table. By contrast, system-generated object identifiers need to be remapped

using some user-specified keys, especially when references to them are also stored

persistently.

OCI Tips and Techniques for Objects
The following sections introduce tips and techniques for using OCI effectively by

showing common operations performed by an OCI program that uses objects.

Initializing an OCI Program in Object Mode
To enable object manipulation, the OCI program must be initialized in object mode.

The following OCI code initializes a program in object mode:

err = OCIInitialize(OCI_OBJECT, 0, 0, 0, 0);

When the program is initialized in object mode, the object cache is initialized.

Memory for the cache is not allocated at this time; instead, it is allocated only on

demand.

Creating a New Object
The OCIObjectNew() function creates transient or persistent objects. A transient

object’s lifetime is the duration of the session in which it was created. A persistent

object is an object that is stored in an object table in the database. The

OCIObjectNew() function returns a pointer to the object created in the cache, and the

application should initialize the new object by setting the attribute values directly.

The object is not created in the database yet; it will be created and stored in the

database when it is flushed from the cache.

When OCIObjectNew() creates an object in the cache, it sets all the attributes to

NULL. The attribute null indicator information is recorded in the parallel null

indicator structure. If the application sets the attribute values, but fails to set the

null indicator information in the parallel null structure, then upon object flush the

object attributes will be set to NULL in the database.
6-4 Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects
In Oracle8i, if you want to set all of the attributes to NOT NULL during object

creation instead, you can use the OCI_OBJECT_NEW_NOTNULL attribute of the

environment handle using the OCIAttrSet() function. When set, this attribute creates

a non-null object. That is, all the attributes are set to default values provided by

Oracle and their null status information in the parallel null indicator structure is set

to NOT NULL. Using this attribute eliminates the additional step of changing the

indicator structure. You cannot change the default values provided by Oracle.

Instead, you can populate the object with your own default values immediately

after object creation.

When OCIObjectNew() is used to create a persistent object, the caller must identify

the database table into which the newly created object is to be inserted. The caller

identifies the table using a table object. Given the schema name and table name, the

OCIObjectPinTable() function returns a pointer to the table object. Each call to

OCIObjectPinTable() results in a call to the server to fetch the table object

information. The call to the server happens even if the required table object has

been previously pinned in the cache. When the application is creating multiple

objects to be inserted into the same database table, Oracle Corporation recommends

that the table object be pinned once and the pointer to the table object be saved for

future use. Doing so improves performance of the application.

Updating an Object
Before you can update an object, the object must be pinned in the cache. After

pinning the object, the application can update the desired attributes directly. You

must make a call to the OCIObjectMarkUpdate() function to indicate that the object

has been updated. Objects which have been marked as updated are placed in a dirty

list and are flushed to the server upon cache flush or when the transaction is

committed.

Deleting an Object
You can delete an object by calling the OCIObjectMarkDelete() function or the

OCIObjectMarkDeleteByRef() function.

Controlling Object Cache Size
You can control the size of the object cache by using the following two OCI

environment handle attributes:

■ OCI_ATTR_CACHE_MAX_SIZE controls the maximum cache size

■ OCI_ATTR_CACHE_OPT_SIZE controls the optimal cache size
Advanced Topics for Oracle Objects 6-5

OCI Tips and Techniques for Objects
You can get or set these OCI attributes using the OCIAttrGet() or OCIAttrSet()
functions. Whenever memory is allocated in the cache, a check is made to determine

whether the maximum cache size has been reached. If the maximum cache size has

been reached, the cache automatically frees (ages out) the least-recently used objects

with a pin count of zero. The cache continues freeing such objects until memory

usage in the cache reaches the optimal size, or until it runs out of objects eligible for

freeing. The object cache does not limit cache growth to the maximum cache size.

The servicing of the memory allocation request could cause the cache to grow

beyond the specified maximum cache size. The above two parameters allow the

application to control the frequency of object aging from the cache.

Retrieving Objects into the Client Cache (Pinning)
Pinning is the process of retrieving an object from the server to the client cache,

laying it in memory, providing a pointer to it for an application to manipulate, and

marking the object as being in use. The OCIObjectPin() function de-references the

given REF and pins the corresponding object in the cache. A pointer to the pinned

object is returned to the caller and this pointer is valid as long as the object is

pinned in the cache. This pointer should not be used after the object is unpinned

because the object may have aged out and therefore may no longer be in the object

cache.

The following are examples of OCIObjectPin() and OCIObjectUnpin() calls:

status = OCIObjectPin(envh, errh, empRef,(OCIComplexObject*)0,
 OCI_PIN_RECENT, OCI_DURATION_TRANSACTION,
 OCI_LOCK_NONE, (dvoid**)&emp);
/* manipulate emp object */
status = OCIObjectUnpin(envh, errh, emp);

The empRef parameter passed in the pin call specifies the REF to the desired

employee object. A pointer to the employee object in the cache is returned via the

emp parameter.

You can use the OCIObjectPinArray() function to pin an array of objects in one call.

This function de-references an array of REFs and pins the corresponding objects in

the cache. Objects that are not already cached in the cache are retrieved from the

server in one network round-trip. Therefore, calling OCIObjectPinArray() to pin an

array of objects improves application performance. Also, the array of objects you

are pinning can be of different types.
6-6 Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects
Specifying which Version of an Object to Retrieve
When pinning an object, you can use the pin option argument to specify whether

the recent version, latest version, or any version of the object is desired. The valid

options are explained in more detail in the following list:

■ The OCI_PIN_RECENT pin option instructs the object cache to return the object

that is loaded into the cache in the current transaction; in other words, if the

object was loaded prior to the current transaction, the object cache needs to

refresh it with the latest version from the database. Succeeding pins of the object

within the same transaction would return the cached copy and would not result

in database access. In most cases, you should use this pin option.

■ The OCI_PIN_LATEST pin option instructs the object cache to always get the

latest copy of the object. If the object is already in the cache and not-locked, the

object copy is refreshed with the latest copy from the database. On the other

hand, if the object in the cache is locked, Oracle assumes that it is the latest

copy, and the cached copy is returned. You should use this option for

applications that must display the most recent copy of the object, such as

applications that display stock quotes, current account balance, etc.

■ The OCI_PIN_ANY pin option instructs the object cache to fetch the object in the

most efficient manner; the version of the returned object does not matter. The

pin any option is appropriate for objects which do not change often, such as

product information, parts information, etc. The pin any option also is

appropriate for read-only objects.

Specifying How Long to Keep the Object Pinned
When pinning an object, you can specify the duration for which the object is pinned

in the cache. When the duration expires, the object is unpinned automatically from

the cache. The application should not use the object pointer after the object’s pin

duration has ended. An object can be unpinned prior to the expiration of its

duration by explicitly calling the OCIObjectUnpin() function. Oracle supports two

pre-defined pin durations:

■ The session pin duration (OCI_DURATION_SESSION) lifetime is the duration of

the database connection. Objects that are required in the cache at all times

across transactions should be pinned with session duration.

■ The transaction pin duration (OCI_DURATION_TRANS) lifetime is the duration

of the database transaction. That is, the duration ends when the transaction is

rolled back or committed.
Advanced Topics for Oracle Objects 6-7

OCI Tips and Techniques for Objects
Specifying Whether to Lock the Object on the Server
When pinning an object, the caller can specify whether the object should be locked

via lock options. When an object is locked, a server-side lock is acquired, which

prevents any other user from modifying the object. The lock is released when the

transaction commits or rolls back. The following list describes the available lock

options:

■ The OCI_LOCK_NONE lock option instructs the cache to pin the object without

locking.

■ The OCI_LOCK_X lock option instructs the cache to pin the object only after

acquiring a lock. If the object is currently locked by another user, the pin call

with this option waits until it can acquire the lock before returning to the caller.

Using the OCI_LOCK_X lock option is equivalent to executing a SELECT FOR
UPDATE statement.

■ The OCI_LOCK_X_NOWAITlock option instructs the cache to pin the object only

after acquiring a lock. Unlike the OCI_LOCK_X option, the pin call with OCI_
LOCK_X_NOWAIT option will not wait if the object is currently locked by

another user. Using the OCI_LOCK_X_NOWAIT lock option is equivalent to

executing a SELECT FOR UPDATE WITH NOWAIT statement.

How to Choose the Locking Technique
Depending upon how frequently objects are updated, you can choose which locking

options from the previous section to use.

If objects are updated frequently, you can use the pessimistic locking scheme. This

scheme presumes that contention for update access is frequent. Objects are locked

before the object in the cache is modified, ensuring that no other user can modify

the object until the transaction owning the lock performs a commit or rollback. The

object can be locked at the time of pin by choosing the appropriate locking options.

An object that was not locked at the time of pin also can be locked by the function

OCIObjectLock() . A new locking function, OCIObjectLockNoWait() , has

been added in Oracle8i. As the name indicates, this function does not wait to

acquire the lock if another user holds a lock on the object.

If objects are updated infrequently, you can use the optimistic locking scheme. This

scheme presumes that contention for update access is rare. Objects are fetched and

modified in the cache without acquiring a lock. A lock is acquired only when the

object is flushed to the server. Optimistic locking allows for a higher degree of

concurrent access than pessimistic locking. To use optimistic locking effectively, the

Oracle8i object cache detects if an object is changed by any other user since it was
6-8 Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects
fetched into the cache. By turning on the object change detection mode, object

modifications are made persistent only if the object has not been changed by any

other user since it was fetched into the cache. This mode is activated by setting

OCI_OBJECT_DETECTCHANGE attribute of the environment handle using the

OCIAttrSet() function.

Flushing an Object from the Object Cache
Changes made to the objects in the object cache are not sent to the database until the

object cache is flushed. The OCICacheFlush() function flushes all changes in a single

network round-trip between the client and the server. The changes may involve

insertion of new objects into the appropriate object tables, updating objects in object

tables, and deletion of objects from object tables. If the application commits a

transaction by calling the OCITransCommit() function, the object cache automatically

performs a cache flush prior to committing the transaction.

Pre-Fetching Related Objects (Complex Object Retrieval)
Complex Object Retrieval (COR) can significantly improve the performance of

applications that manipulate graphs of objects. COR allows applications to pre-fetch

a set of related objects in one network round-trip, thereby improving performance.

When pinning the root object(s) using OCIObjectPin() or OCIObjectPinArray(), you

can specify the related objects to be pre-fetched along with the root. The pre-fetched

objects are not pinned in the cache; instead, they are put in the LRU list. Subsequent

pin calls on these objects result in a cache hit, thereby avoiding a round-trip to the

server.

The application specifies the set of related objects to be pre-fetched by providing the

following information:

■ A REF to the root object

■ One or more pairs of object type and depth information to specify the content

and boundary of objects to be pre-fetched. The type information indicates

which REF attributes should be de-referenced and which resulting object

should be pre-fetched. The depth defines the boundary of objects pre-fetched.

The depth level is the shortest number of references that need to be traversed

from the root object to a related object.

For example, consider a purchase order system with the following properties:

■ Each purchase order object includes a purchase order number, a REF to a

customer object, and a collection of REFs that point to line item objects.
Advanced Topics for Oracle Objects 6-9

OCI Tips and Techniques for Objects
■ Each customer object includes information about the customer, such as the

customer’s name and address.

■ Each line item object includes a reference to a stock item and the quantity of the

order.

■ Each stock item object includes the name of the item, its price, and other

information about the item.

Suppose you want to calculate the total cost of a particular purchase order. To

maximize efficiency, you want to fetch only the objects necessary for the calculation

from the server to the client cache, and you want to fetch these objects with the least

number of calls to the server possible.

If you do not use COR, your application must make several server calls to retrieve

all of the necessary objects. However, if you use COR, you can specify the objects

that you want to retrieve and exclude other objects that are not required. To

calculate the total cost of a purchase order, you need the purchase order object, the

related line item objects, and the related stock item objects, but you do not need the

customer objects.

Therefore, as shown in Figure 6–1, COR enables you to retrieve the required

information for the calculation in the most efficient way possible. When pinning the

purchase order object without COR, only that object is retrieved. When pinning it

with COR, the purchase order and the related line item objects and stock item

objects are retrieved. However, the related customer object is not retrieved because

it is not required for the calculation.
6-10 Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects
Figure 6–1 Difference Between Retrieving an Object Without COR and With COR

Demonstration of OCI and Oracle Objects
For a demonstration of how to use OCI with Oracle objects, see the cdemocor1 .c
file in $ORACLE_HOME/rdbms/demo.

Using the OCI Object Cache with View Objects
We can pin and navigate objects synthesized from object views in the OCI Object

Cache similar to the way we do this with object tables. We can also create new view

objects, update them, delete them and flush them from the cache. The flush

performs the appropriate DML on the view (such as insert for newly created objects

. . .

. . .

. . .

. . .

REF

PONO

Cust_Ref

Nested Table
of Line Items

Pinning of Purchase Order Object without COR

. . .

. . .

. . .

. . .

Ref

PONO

Cust_Ref

Nested Table
of Line Items

Pinning of Purchase Order Object with COR

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Quantity

Line Item Object

Ref

Name

Stock Item Object

Price

Name

Line Item Object

Price

Name

Line Item Object

Price

Name

Line Item Object

Price
Advanced Topics for Oracle Objects 6-11

OCI Tips and Techniques for Objects
and updates for any attribute changes). This fires any INSTEAD-OF triggers on the

view and stores the object persistently.

There is a minor difference between the two approaches with regard to getting the

reference to a newly created instance in the object cache.

In the case of object views with primary key based reference, the attributes that

make up the identifier for the object need to be initialized before the

OCIObjectGetObjectRef call can be called on the object to get the object

reference. For example, to create a new object in the OCI Object cache for the

purchase order object, we need to take the following steps:

.. /* Initialize all the settings including creating a connection, getting a
 environment handle etc. We do not check for error conditions to make
 the example eaiser to read. */
OCIType *purchaseOrder_tdo = (OCIType *) 0; /* This is the type object for the
 purchase order */
dvoid * purchaseOrder_viewobj = (dvoid *) 0; /* This is the view object */

/* The purchaseOrder struct is a structure that is defined to have the same
attributes as that of PurchaseOrder_objtyp type. This can be created by the
user or generated automatically using the OTT generator. */
purchaseOrder_struct *purchaseOrder_obj;

/* This is the null structure corresponding to the purchase order object’s
attributes */
purchaseOrder_nullstruct *purchaseOrder_nullobj;

/* This is the variable containing the purchase order number that we need to
create */
int PONo = 1003;

/* This is the reference to the purchase order object */
OCIRef *purchaseOrder_ref = (OCIRef *)0;

/* Pin the object type first */
OCITypeByName(envhp, errhp, svchp,
 (CONST text *) “”, (ub4) strlen(“”) ,
 (CONST text *) “PURCHASEORDER_OBJTYP” ,
 (ub4) strlen(“PURCHASEORDER_OBJTYP”),
 (CONST char *) 0, (ub4)0,
 OCI_DURATION_SESSION, OCI_TYPEGET_ALL,
&purchaseOrder_tdo);

/* Pin the table object - in this case it is the purchase order view */
OCIObjectPinObjectTable(envhp, errhp, svchp, (CONST text *) “”,
6-12 Application Developer’s Guide - Object-Relational Features

OCI Tips and Techniques for Objects
 (ub4) strlen(“”),
 (CONST text *) “PURCHASEORDER_OBJVIEW”,
 (ub4) strlen(“PURCHASEORDER_OBJVIEW”),
 (CONST OCIRef *) NULL,
 OCI_DURATION_SESSION,
 &purchaseOrder_viewobj);

/* Now create a new object in the cache. This is a purchase order object */
OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_OBJECT, purchaseOrder_tdo,
 purchaseOrder_viewobj, OCI_DURATION_DEFAULT, FALSE,
 (dvoid **) *purchaseOrder_obj);

/* Now we can initialize this object, and use it as a regular object. But before
getting the reference to this object we need to initialize the PONo attribute of
the object which makes up its object identifier in the view */

/* Initialize the null identifiers */
OCIObjectGetInd(envhp, errhp, purchaseOrder_obj, purchaseOrder_nullobj);

purchaseOrder_nullobj->purchaseOrder = OCI_IND_NOTNULL;
purchaseOrder_nullobj->PONo = OCI_IND_NOTNULL;

/* This sets the PONo attribute */
OCINumberFromInt(errhp, (CONST dvoid *) &PoNo, sizeof(PoNo), OCI_NUMBER_SIGNED,
 &(purchaseOrder_obj->PONo));

/* Create an object reference */
OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_REF, (OCIType *) 0,
 (dvoid *) 0, (dvoid *) 0, OCI_DURATION_DEFAULT, TRUE,
 (dvoid **) &purchaseOrder_ref);

/* Now get the reference to the newly created object */
OCIObjectGetObjectRef(envhp, errhp, (dvoid *) purchaseOrder_obj, purchaseOrder_
ref);

/* This reference may be used in the rest of the program ….. */
…
/* We can flush the changes to the disk and the newly instantiated purchase
order object in the object cache will become permanent. In the case of the
purchase order object, the insert will fire the INSTEAD-OF trigger defined over
the purchase order view to do the actual processing */

OCICacheFlush(envhp, errhp, svchp, (dvoid *) 0, 0, (OCIRef **) 0);
…

Advanced Topics for Oracle Objects 6-13

Partitioning Tables that Contain Oracle Objects
Partitioning Tables that Contain Oracle Objects
Partitioning addresses the key problem of supporting very large tables and indexes

by allowing you to decompose them into smaller and more manageable pieces

called partitions. Oracle8i extends your partitioning capabilities by letting you

partition tables that contain objects, REFs, varrays, and nested tables. Varrays stored

in LOBs are equipartitioned in a way similar to LOBs.

The following example partitions the purchase order table along zip codes (ToZip),

which is an attribute of the ShipToAddr embedded column object. For the

purposes of this example, the LineItemList nested table was made a varray to

illustrate storage for the partitioned varray.

Assuming that the LineItemList is defined as a varray:

CREATE TYPE LineItemList_vartyp as varray(10000) of LineItem_objtyp;

CREATE TYPE PurchaseOrder_typ AS OBJECT (
 PONo NUMBER,
 Cust_ref REF Customer_objtyp,
 OrderDate DATE,
 ShipDate DATE,
 OrderForm BLOB,
 LineItemList LineItemList_vartyp,
 ShipToAddr Address_objtyp,

 MAP MEMBER FUNCTION
 ret_value RETURN NUMBER,

 MEMBER FUNCTION
 total_value RETURN NUMBER
);

CREATE TABLE PurchaseOrders_tab of PurchaseOrder_typ
 LOB (OrderForm) store as (nocache logging)
 PARTITION BY RANGE (ShipToAddr.zip)
 (PARTITION PurOrderZone1_part
 VALUES LESS THAN ('59999')
 LOB (OrderForm) store as (

Restriction: Nested tables are allowed in tables that are

partitioned; however, the storage table associated with the nested

table is not partitioned.
6-14 Application Developer’s Guide - Object-Relational Features

Partitioning Tables that Contain Oracle Objects
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZone6_part
 VALUES LESS THAN ('79999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)),
 PARTITION PurOrderZoneO_part
 VALUES LESS THAN ('99999')
 LOB (OrderForm) store as (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100))
 VARRAY LineItemList store as LOB (
 storage (INITIAL 10 MINEXTENTS 10 MAXEXTENTS 100)));

Parallel Query with Object Views
Parallel query is supported on the objects synthesized from views.

To execute queries involving joins and sorts (using the ORDER BY, GROUP BY, and

SET operations) in parallel, a MAP function is needed. In the absence of a MAP
function, the query automatically becomes serial.

Parallel queries on nested table columns are not supported. Even in the presence of

parallel hints or parallel attributes for the view, the query will be serial if it involves

the nested table column.

Parallel DML is not supported on views with INSTEAD-OF trigger. However, the

individual statements within the trigger may be parallelized.

How Locators Improve the Performance of Nested Tables
In Oracle8i, the collection typed value does not map directly to a native type or

structure in languages such as C++ and Java. An application using those languages

must access the contents of a collection through Oracle interfaces, such as OCI.

Generally, when the client accesses a nested table explicitly or implicitly (by

fetching the containing object), Oracle returns the entire collection value to the client

process. For performance reasons, a client may wish to delay or avoid retrieving the

entire contents of the collection. Oracle handles this case for you by using a locator

instead of the real nested table value. When you really access the contents of the

collection, they are automatically transferred to the client.
Advanced Topics for Oracle Objects 6-15

Partitioning Tables that Contain Oracle Objects
A nested table locator is like a handle to the collection value. It attempts to preserve

the value or copy semantics of the nested table by containing the database snapshot

as of its time of retrieval. The snapshot helps the database retrieve the correct

instantiation of the nested table value at a later time when the collection elements

are fetched using the locator. The locator is scoped to a session and cannot be used

across sessions. Since database snapshots are used, it is possible to get a "snapshot

too old" error if there is a high update rate on the nested table. Unlike a LOB locator,

the nested table locator is truly a locator and cannot be used to modify the

collection instance.
6-16 Application Developer’s Guide - Object-Relational Features

Frequently Asked Questions about Programming with Oracle O
7

Frequently Asked Questions about
Programming with Oracle Objects

Here are some questions and answers that new users often have about Oracle’s

object-relational features:

■ General Questions about Oracle Objects

■ Object Types

■ Object Methods

■ Object References

■ Collections

■ Object Views

■ Object Cache

■ Large Objects (LOBs)

■ User-Defined Operators

You can use this chapter as introductory information, or refer here if you still have

questions after reading the rest of the book.
bjects 7-1

General Questions about Oracle Objects
General Questions about Oracle Objects

Are the object-relational features a separate option?
Not anymore. As of Version 8.1, they are part of the base server product.

What are the design goals of Oracle8 i Object-Relational & Extensibility technologies?
The design goals of Oracle8i Objects and Extensibility technologies are to:

■ Provide users with the ability to model their business objects in the database by

enhancing the type system to support user-defined types. These types are

meant to closely model application objects and are treated as built-in types,

such as number and character, by the database server.

■ Provide an infrastructure to facilitate object-based access to data stored in an

Oracle database and minimize the potential mismatch between the data model

used in an application and the data model supported by a database.

■ Provide built-in support for new data types needed in multi-media, financial

and spatial applications.

■ Provide a framework for database extensibility so that new multimedia and

complex data types can be supported and managed natively in the database.

This framework provides the infrastructure needed to allow extensions of the

data server by third parties via data cartridges.

This book talks about the object-relational technologies. For details about

extensibility, see Oracle8 Data Cartridge Developer’s Guide.

What are the key features in Oracle8 i Object-Relational Technology?
Building on the standard features of the Oracle data server, the Oracle8i Objects is

an additional set of features that enable the creation and manipulation of

user-defined object types:

Object Type System
Oracle8i provides the capability to define new types in the database via a new

meta-model, simply called the Oracle8i Type System. This type system extends the

Oracle relational types to allow users to define types and methods that model

objects. Oracle8i stores the meta-data for user-defined types in a schema that is

available to SQL, PL/SQL, Java and other published interfaces. A user can create a
7-2 Application Developer’s Guide - Object-Relational Features

General Questions about Oracle Objects
new object type by using any built-in database types, and/or any known object

types, object references and collection types.

Object Views
In addition to natively storing object data in the server, Oracle8i allows the creation

of an object abstraction over existing relational data via the object view mechanism.

Objects belonging to an object view are accessed in the same manner as row objects

via SQL or other call interfaces. To support such data access, Oracle8i server

materializes objects of user-defined types from data stored in relational schemas

and tables. This view mechanism supports the development of new object-oriented

applications without having to modify existing database schemas.

SQL Object Extensions
To support the new features of the Objects Option, extensions have been made to

SQL -- including new DDL -- to create, alter, or drop object types; to store object

types in tables; and to create, alter, or drop object views. There are DML and query

extensions to support object types, references, and collections.

PL/SQL Object Extensions
PL/SQL is Oracle’s database programming language that is tightly integrated with

SQL. With the addition of user-defined types and other SQL types introduced in

Oracle8i, PL/SQL has been enhanced to operate on user-defined types seamlessly.

Thus, application developers can use PL/SQL to implement logic and operations on

user-defined types that execute in the database server.

Java Support for Oracle8 i Objects
Oracle8i’s Java VM is tightly integrated with the RDBMS and supports access to

Oracle8i Objects via object extensions to JDBC (dynamic SQL) and SQLJ (static

SQL). Thus, application developers can use the Java to implement logic and

operations on user-defined types that execute in the database server.

External Procedures
Database functions, procedures, or member methods of an object type can be

implemented in PL/SQL, Java, or C as external procedures. External procedures are

best suited for tasks that are more quickly or easily done in a low-level language

such as C, which is more efficient at machine-precision calculation. External

procedures are always run in a safe mode outside the address space of the RDBMS

server.
Frequently Asked Questions about Programming with Oracle Objects 7-3

General Questions about Oracle Objects
Object Type Translator
The Object Type Translator (OTT) available with the Objects Option provides

client-side mappings to object type schema by generating header files containing

Java classes and C structs and indicators, using schema information from the Oracle

data dictionary. These generated header files can be used in host-language

applications for transparent access to database objects.

Client-Side Cache
Oracle8i provides an object cache for efficient access to persistent objects stored in

the database. Copies of objects can be brought into the object cache. Once the data

has been cached in the client, the application can traverse through these at memory

speed. Any changes made to objects in the cache can be committed to the database

by using the object extensions to Oracle Call Interface programmatic interfaces.

Complex Object Retrieval
Oracle8i also provides support for efficient complex object retrieval. That is, a single

request to fetch an object from the server can be used to retrieve other objects,

which are connected to the object being fetched via object references, in a single

round-trip between the client and the server. Such functionality facilitates the

fetching and manipulation of a set of related objects as a single unit.

OCI Object Extensions
Oracle8i Oracle Call Interface provides a comprehensive application programming

interface for application and tool developers seeking to use the object capabilities of

Oracle8. Oracle Call Interface provides a run-time environment with functions to

connect to an Oracle8 server and control transactions that access objects in the

server. It allows application developers to access and manipulate objects and their

attributes in the client-side object cache either "navigationally" by traversing a

graph of inter-connected objects or "associatively" by specifying the nature of the

data via declarative SQL DML. Oracle Call Interface also provides a number of

functions for accessing meta-data information at run-time about object types

defined in the server. Such a set of functions facilitates dynamic access to the object

meta-data and the actual object data stored in the database.

PRO*C/C++ Object Extensions
Oracle8i Pro*C precompiler provides an embedded SQL application programming

interface and offers a higher level of abstraction than Oracle Call Interface. Like

Oracle Call Interface, the Pro*C precompiler allows application developers to use

the Oracle8i client-side object cache and the Object Type Translator Utility. Pro*C
7-4 Application Developer’s Guide - Object-Relational Features

General Questions about Oracle Objects
supports the use of "C" bind variables for Oracle8i object types. Furthermore, Pro*C

provides new simplified syntax to allocate and free objects of SQL types and access

them by either SQL DML, or via the "navigational" interface. Thus, it provides

application developers many benefits, including compile-time type checking of

(client-side) bind variables against the schema in the server, automatic mapping of

object data in an Oracle8i server to program bind variables in the client, and simple

ways to manage and manipulate database objects in the client process.

OO4O Object Extensions
Oracle8i Oracle Objects For OLE (OO4O) is a set of COM Automation

interfaces/objects for connecting to Oracle8i database servers, executing queries

and managing the results. Automation interfaces in OO4O provide easy and

efficient access to features that are unique to Oracle8i, and can be used from

virtually any programming or scripting language that supports the Microsoft COM

Automation technology. This includes Visual Basic, Visual C++, VBA in Excel,

VBScript and JavaScript in IIS Active Server Pages.

Integration with Relational Functionality
Oracle8i Objects continues to support standard relational database functionality

such as queries (SELECT...FROM...WHERE), fast commits, backup and recovery,

scalable connectivity, row-level locking, read consistency, partitioned tables, parallel

queries, parallel server, export/import, loader etc.

What are the new Object-Relational features in Oracle8 i?
Oracle8i provides the foundation for modeling complex objects. Here is a list of

object-relational features, with the new 8i features in italics:

Type System
Scalars, LOBs, Objects, References, Collections

Execution Environment
PL/SQL methods, External Procedures, Java Methods

Query Processing
Triggers, Constraints, Object Views, User-Defined Operators
Frequently Asked Questions about Programming with Oracle Objects 7-5

Object Types
Data Indexing
Sorted, Hash, Bitmap, Index-Organized Tables, Extensible Indexing

Query Optimization
Object Query Optimization, Extensible Optimizer

Operational Completeness
Object Support in Export/Import, Loader, Parallel Query, Partitioning

Language Interfaces
Object Support in OCI, C++ (ODD), Pro*C, JDBC, OO4O

Object Types

What is structured data?
The SQL 92 standard defines the 19 atomic datatypes that are used in most database

programming. We refer to these kinds of data as "simple structured".

Oracle Objects introduces the ideas of REFs and collections. We refer to these kinds

of data as "complex structured".

LOBs provide another way to store information. We refer to them as "unstructured".

Where are the user-defined types, user-defined functions, and abstract data types?
The Oracle equivalent of a user-defined type or an abstract data type is an object

type.

The Oracle equivalent of a user-defined function is an object type method.

We use these terms because their semantics are different from the common industry

usage. For example, an Oracle object can be null, while an object of an abstract data

type cannot.

What is an object type?
Oracle8i supports a form of user-defined data types called object types. Object types

are abstractions of real-world entities. An object type is a schema object with the

following components:
7-6 Application Developer’s Guide - Object-Relational Features

Object Types
■ A name, which identifies the object type uniquely within a schema

■ Attributes, which model the structure and state of the real-world entity

■ Methods, which implement the behavior of the real-world entity

Why are object types useful?
An object type is similar to the class mechanism supported by C++ and Java. Object

reusability provides faster and more efficient database application development.

Object support makes it easier to model complex, real-world business entities and

logic. By supporting object types natively in the database, Oracle8i eliminates the

impedance mismatch between object-oriented programming languages and the

database, and relieves application developers from the need to write a mapping

layer between client-side objects and database objects. Object abstraction and

encapsulation also make it easier to understand and maintain applications, an

important consideration in enterprise database application development.

How is object data stored and managed in Oracle8 i?
Objects are managed natively by the data server. Object types can be used as the

type of a column (column objects) or as type of each row in an object table (row

objects). When used as column objects, object types serve as classical relational

domains. Each row object has a unique identity, called an object identifier (OID).

Objects are first-class citizens and are fully integrated with the database

components. They can be indexed and partitioned. For example, queries involving

objects can be parallelized and are optimized by the cost-based optimizer using

statistics.

By building on the proven foundation of the Oracle8i data server, objects are

managed with the same reliability, availability, and scalability as relational data.

Is inheritance supported in Oracle8 i?
Not directly. Because each language has its own semantics for inheritance -- for

example, single inheritance versus multiple inheritance -- Oracle uses techniques

that mimic the inheritance behavior of each language.

Oracle8i provides support for client-side inheritance via its C++ and Java mappings.

For C++, use the Object Modelling Option of Oracle Designer to produce DDL and

C++ code based on diagrams in the Universal Modelling Language (UML). For

Java, use the "custom datum" feature of the Oracle JDBC driver.
Frequently Asked Questions about Programming with Oracle Objects 7-7

Object Methods
Server-side method inheritance is provided in Java by the Oracle8i Java VM.

Oracle8i does not currently support inheritance in SQL, the ability to store and

query instances of a type and its subtypes.

Object Methods

What language can I use to write my object methods?
Methods can be implemented in PL/SQL, Java, C or C++. C & C++ support is via

the external procedure functionality in Oracle8i, whereas PL/SQL and Java

methods run within the address space of the server. De-coupling of the specification

of a method in SQL from its implementation provides a uniform way to invoke

methods on object types, even though these object types can be implemented in

various programming languages. Oracle8i provides a safe and secure environment

for invoking PL/SQL methods, Java methods, and external C procedures from the

server. Programming errors in user methods will not crash the server or corrupt the

database, thus ensuring the reliability and availability of the server in a mission

critical environment.

How do I decide between using PL/SQL and Java for my object methods?
With Oracle8i, PL/SQL and Java can be used interchangeably as a server

programming language. PL/SQL is a seamless extension of SQL and is the

language of choice for doing SQL intensive operations in the database. Java is the

emerging language of choice for writing portable applications that run in multiple

tiers, including the database server.

When should I use external procedures?
External procedures are typically used for compute intensive operations that are

best written in a low-level language such as C. External procedures are also useful

for invoking routines in some existing libraries that cannot be easily rewritten in

Java or PL/SQL to run in the data server.

The IPC (inter-process communication) overhead of invoking an external procedure

is an order of magnitude higher than that of invoking PL/SQL or Java procedure.

However, the overhead of invoking an external procedure become insignificant if

the computation done in the external procedure is complex and is in the order of

tens of thousands of instructions.
7-8 Application Developer’s Guide - Object-Relational Features

Object References
What are definer and invoker rights?
The distinction between definer and invoker rights applies to more than just objects.

You may find invoker rights especially useful for object-oriented programs because

they typically contain reusable modules.

An object method can be executed with the privileges of its owner (definer rights)

or with the privileges of the current user (invoker rights), based on the method

definition. Invoker rights are useful for writing reusable objects because users of

these objects do not have to grant access privileges to their tables to the

implementor of the objects. Definer rights are useful when the as part of the object

implementation, the object methods need to access some meta-data maintained by

the object implementor. Methods that access the meta-data are executed using the

definer rights so that the object implementor does not have to expose the

proprietary meta-data to the users.

Object References

What is an object reference?
An object reference (REF) uniquely identify a row object stored in an object table or

an object constructed from an object view. Typically, a REF value is comprised of the

object’s unique identifier, the unique identifier associated with the object table, and

the ROWID of the row in the object table in which the object is stored. The optional

ROWID is used as a hint to provide fast access to the object.

When should I use object references? How are they different from foreign keys?
Object references, like foreign keys, are useful in modeling complex relationships.

Object references are more flexible than foreign keys for modeling complex

relationships because:

■ Object references are strongly typed and this provides better compile-time type

checking

■ One-to-many relationships can be modeled using a collection of object

references

■ Application can easily navigate and retrieve objects using object references

without having to construct SQL statements

■ REF navigation in SQL avoids the need to do complicated multi-table joins
Frequently Asked Questions about Programming with Oracle Objects 7-9

Collections
■ Object references allow applications to retrieve objects connected by REFs in a

single request to the server

Can I construct object references based on primary keys?
Yes, object references can be constructed based on foreign keys to reference objects

in:

■ Object views: When constructing objects from relational tables using an object

view, the OIDs of the constructed objects are typically based on the primary

keys on the underlying relational tables.

■ Object tables with primary key-based OIDs: When defining an object table,

Oracle8i provides the option of specifying the primary keys as the OIDs of the

row objects instead of using the system generated OIDs.

What is a scoped REF and when should I use it?
In general, a column may contain references to objects of a particular declared type

regardless of the object table(s) in which the objects are stored. However, a REF type

column may be scoped (constrained) to only contain references to objects from a

specified object table. One should use scoped REFs whenever possible because

scoped REFs are smaller in size than regular REFs on disk because the system does

not have to store the table identifier with the scoped REFs. Also, queries containing

navigation of scoped REFs can be optimized into joins when appropriate.

Can I manipulate objects using object references in PL/SQL and Java?
Yes, both PL/SQL and Java support object references. In PL/SQL, an object can be

retrieved and updated using the UTL_REF package given its object references. In

Java, object references are mapped to reference classes with get and set methods to

retrieve and update the objects.

Collections

What kinds of collections are supported by Oracle8 i?
Oracle8i supports two types of collections: varying arrays (varrays) and nested

tables. Attributes of object types and columns of tables can be of collection types. By

using varying arrays and nested tables, applications can model one-to-many and

many-to-many relationships natively in their database schema.
7-10 Application Developer’s Guide - Object-Relational Features

Collections
How do I decide between using varrays and nested tables for modeling collections?
Varrays are useful when you need to maintain ordering of your collection elements.

Varrays are very efficient when you always manipulate the entire collection as a

unit, and that you don’t require querying on individual elements of the collections.

Varrays are stored inline with the containing row if it is small and automatically

stored as a LOBs by the system when its size is beyond a certain threshold.

Nested tables are useful when there is no ordering among the collection elements

and that efficient querying on individual elements are important. Elements of a

collection type column are stored in a separate table, similar to parent-child tables

in a relational schema.

Do Oracle8 i Objects support collections within collections?
A collection cannot contain another collection attribute. However, nested collections

can be modeled using a reference to an object which has a collection attribute.

Therefore applications can model nested collections with REF indirection.

What is a collection locator?
Collection locators allow applications to retrieve large collections without

materializing the collections in memory. This allows for efficient transfer of large

collections across interfaces. A collection will be transparently materialized when

the application first accesses its elements. Also, applications can query and retrieve

subsets of the collection using its locator.

The specification of retrieval of collection locators is done in CREATE and ALTER

TABLE DDL. Since access to a collection is encapsulated, applications will use the

same interface to retrieve a nested table specified to be returned as a locator as one

specified to be returned as a value.

What is collection unnesting?
Collection unnesting allows applications to efficiently query over a set of collections

in some specified rows, similar to query on the child rows in a relational schema for

some specified parent rows. Collection unnesting allows applications the flexibility

to view one-to-many relationships in the collection form or in the flat parent-child

form.
Frequently Asked Questions about Programming with Oracle Objects 7-11

Object Views
Object Views

What are the differences between object views and object tables?
Like the similarity between relational views and tables, an object view has

properties similar to an object table:

■ It contains objects in rows. The columns of the view map to top-level attributes

of the object type.

■ Each object has an identifier associated with it. The identifier is specified by the

view definer; in most cases, the primary key of the base table serves as the

identifier.

Are object views updateable?
It is easy to update an object view where every attribute maps back to a real column

in a table. For views that derive some attributes by more complex techniques, such

as CAST-MULTISET, INSTEAD-OF triggers can be used to do the updates. When

such a view is updated (or inserted into or deleted from), rather than attempting to

implicitly modify any base tables, the system simply invokes the INSTEAD-OF

trigger specified for the view. You can encapsulate whatever update semantics you

want in the trigger body.

Object Cache

Why do we need the object cache?
The object cache gives applications the following benefits:

■ Transparent mapping of database objects to host language objects in memory.

■ Transparent, efficient memory management for persistent objects. Applications

do not have to worry about allocation of memory for accessing database objects.

■ Transactional semantics for client-side objects. Modified persistent objects in the

object cache can be propagated (flushed) to the database in a single round-trip

between the client and the server.

■ Navigational object access. Object cache allows for navigational style of object

access. Using OCI's object functions, objects can be fetched into the object cache

by pinning object REFs. Navigational style of object access may be more
7-12 Application Developer’s Guide - Object-Relational Features

Large Objects (LOBs)
suitable when operating on a graph of objects that are inter-connected via object

REFs.

■ Complex object retrieval. That is, a single request to fetch an object from the

server can be used to retrieve other objects, which are connected to the object

being fetched via REFs, in a single round-trip between the client and the server.

Does the object cache support object locking?
The object cache supports both a pessimistic locking scheme and an optimistic

locking scheme.

■ In the pessimistic locking scheme, objects are locked up-front in the server prior

to modifying the object in the cache. This ensures no other user can modify the

object until the transaction owning the lock commits/rollbacks.

■ In the optimistic locking scheme, an object is fetched and modified in the cache

without acquiring a lock. The lock is acquired only when the object is flushed to

the server. Optimistic locking allows for a higher degree of concurrent access

than pessimistic locking. To use optimistic locking effectively, the object cache

provides the ability for detecting if an object was changed by any other user

since it was fetched into the cache. By turning on the "object change detection

mode", object modifications will be made persistent if the nobody else has

changed the object since it was fetched into the cache.

Large Objects (LOBs)

How can I manage large objects using Oracle8 i?
Support for multimedia data types like text, images, audio, and video requires

robust support for binary and character data. The data in these domains tends to be

large and requires direct access to different pieces of the binary data. To address this

need, Oracle8i provides significantly improved support for large-scale binary and

character data. It introduces the Large Object type (LOB) which can be used to store

large, domain-specific data from various domains, including images, audio files,

text and spatial data.

Oracle8i supports three kinds of large data objects: binary, character-based, and

file-based. In addition to providing the ability to create LOBs, Oracle8i server

provides several other improvements in managing binary data. These

improvements can be summarized as follows:

■ Support for defining more than one LOB column in a table
Frequently Asked Questions about Programming with Oracle Objects 7-13

User-Defined Operators
■ Random, piece-wise access to LOB data

■ Support for transferring LOB data as a single stream

■ Support for disabling logging and/or caching for LOB data

■ Support for transparently moving LOBs from "in-line" row storage to

"out-of-line" storage in another segment or even another tablespace

For more information about LOBs, see Oracle8i Application Developer’s Guide - Large
Objects (LOBs).

User-Defined Operators

What is a user-defined operator?
Oracle8i allows developers of object-oriented applications to extend the list of

built-in relational operators (for example, +, -, /, *, LIKE) with domain specific

operators (for example, Contains, Within_Distance, Similar) called user-defined

operators. A user-defined operator can be used anywhere built-in operators can be

used, for example, in the select list or the where clause. Similar to built-in operators,

a user-defined operator may support arguments of different types, and that it may

be evaluated using an index.

For more information about user-defined operators, see CREATE OPERATOR in the

Oracle8i SQL Reference, and the Oracle8 Data Cartridge Developer’s Guide.

Why are user-defined operators useful?
Similar to built-in operators, user-defined operators allow efficient content-based

querying and sorting on object data. For example, to find a resume containing

certain qualifications, one may specify the Contains operator as part of the SQL

where clause. The optimizer may choose to use a Text index on the resume column

to perform the query efficiently, similar to using a B-tree index to evaluate a

relational operator.
7-14 Application Developer’s Guide - Object-Relational Features

A Sample Application using Object-Relational Featu
8

A Sample Application using
Object-Relational Features

This chapter has an extended example of how to use user-defined datatypes (Oracle

objects). The example shows how a relational model might be transformed into an

object-relational model that better represents the real-world entities that are

managed by an application.

This chapter contains the following sections:

■ Introduction

■ A Purchase Order Example

■ Implementing the Application Under The Relational Model

■ Implementing the Application Under The Object-Relational Model

■ Manipulating Objects Through Java

■ Manipulating Objects with Oracle Objects for OLE
res 8-1

Introduction
Introduction
User-defined types are schema objects in which users formalize the data structures

and operations that appear in their applications.

The example in this chapter illustrates the most important aspects of defining and

using user-defined types. One important aspect of using user-defined types is

creating methods that perform operations on objects. In the example, definitions of

object type methods use the PL/SQL language. Other aspects of using user-defined

types, such as defining a type, use SQL.

PL/SQL and Java provide additional capabilities beyond those illustrated in this

chapter, especially in the area of accessing and manipulating the elements of

collections.

Client applications that use the Oracle Call Interface (OCI), Pro*C/C++, or Oracle

Objects for OLE (OO4O) can take advantage of its extensive facilities for accessing

objects and collections, and manipulating them on clients.

See Also:

■ Oracle8i Concepts for an introduction to user-defined types and
instructions on how to use them.

■ Oracle8i SQL Reference for a complete description of SQL syntax and
usage for user-defined types.

■ PL/SQL User’s Guide and Reference for a complete discussion of PL/SQL
capabilities

■ Oracle8i Java Stored Procedures Developer’s Guide for a complete
discussion of Java.

■ Oracle Call Interface Programmer’s Guide,

■ Pro*C/C++ Precompiler Programmer’s Guideo

■ Oracle Objects for OLE/ActiveX Programmer’s Guide
8-2 Application Developer’s Guide - Object-Relational Features

A Purchase Order Example
A Purchase Order Example
This example is based on a typical business activity: managing customer orders. We

demonstrate how the application might evolve from relational to object-relational,

and how you could write it from scratch using a pure object-oriented approach.

■ First, we show how to implement the schema — Implementing the
Application Under The Relational Model — using only Oracle’s built-in

datatypes. You can build an object-oriented application on top of this relational

schema using object views, as described in Chapter 4

■ Implementing the Application Under The Object-Relational Model uses

Oracle’s object types to represent the entities and relationships of the

application domain. It uses object tables to hold the underlying data, and

encapsulates the behavior of objects in method functions.
A Sample Application using Object-Relational Features 8-3

Implementing the Application Under The Relational Model
Implementing the Application Under The Relational Model

Figure 8–1 Entity-Relationship Diagram for Purchase Order Application

contains

places

refers
to

Purchase Order

Customer

Line Items

Stock Item

customer number

customer name

purchase order number

customer number

order date

ship date

tostreet

tocity

tostate

tozip

stocknumber

price

tax rate

street

city

zip

phone1

phone2

phone3

1

1

N

N

N

1

8-4 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model
Entities and Relationships
The basic entities in this example are:

■ Customers

■ The stock of products for sale

■ Purchase orders

As you can see from Figure 8–1, a customer has contact information, so that the

address and set of telephone numbers is exclusive to that customer. The application

does not allow different customers to be associated with the same address or

telephone numbers. If a customer changes her address, the previous address ceases

to exist. If someone ceases to be a customer, the associated address disappears.

A customer has a one-to-many relationship with a purchase order: a customer can

place many orders, but a given purchase order is placed by one customer. Because a

customer can be defined before they place an order, the relationship is optional

rather than mandatory.

Similarly, a purchase order has a many-to-many relationship with a stock item.

Because this relationship does not show which stock items appear on which

purchase orders, the entity-relationship has the notion of a line item. A purchase

order must contain one or more line items. Each line item is associated only with

one purchase order.

The relationship between line item and stock item is that a stock item can appear on

zero, one, or many line items, but each line item refers to exactly one stock item.

Creating Tables Under the Relational Model
The relational approach normalizes everything into tables. The table names are

Customer_reltab , PurchaseOrder_reltab , and Stock_reltab .

Each part of an address becomes a column in the Customer_reltab table.

Structuring telephone numbers as columns sets an arbitrary limit on the number of

telephone numbers a customer can have.
A Sample Application using Object-Relational Features 8-5

Implementing the Application Under The Relational Model
The relational approach separates line items from their purchase orders and puts

each into its own table, named PurchaseOrder_reltab and LineItems_
reltab . As depicted in Figure 8–1, a line item has a relationship to both a purchase

order and a stock item. These are implemented as columns in LineItems_reltab
table with foreign keys to PurchaseOrder_reltab and Stock_reltab .

The relational approach results in the following tables:

Customer_reltab
The Customer_reltab table has the following definition:

CREATE TABLE Customer_reltab (
 CustNo NUMBER NOT NULL,
 CustName VARCHAR2(200) NOT NULL,
 Street VARCHAR2(200) NOT NULL,
 City VARCHAR2(200) NOT NULL,
 State CHAR(2) NOT NULL,
 Zip VARCHAR2(20) NOT NULL,
 Phone1 VARCHAR2(20),
 Phone2 VARCHAR2(20),
 Phone3 VARCHAR2(20),
 PRIMARY KEY (CustNo)
) ;

This table, Customer_reltab , stores all the information about customers, which

means that it fully contains information that is intrinsic to the customer (defined

with the NOT NULLconstraint) and information that is not as essential. According to

this definition of the table, the application requires that every customer have a

shipping address.

Our Entity-Relationship (E-R) diagram showed a customer placing an order, but the

table does not make allowance for any relationship between the customer and the

Note: We have adopted a convention in this section of adding the

suffix _reltab to the names of relational tables. Such a

self-describing notation can make your code easier to maintain.

You may find it useful to make distinctions between tables (_tab)

and types (_typ). But you can choose any names you want; one of

the main advantages of object-relational methods is that the names

of software entities can closely model real-world objects.
8-6 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model
purchase order. This suggests that the relationship must be managed by the

purchase order.

PurchaseOrder_reltab
The PurchaseOrder_reltab table has the following definition:

CREATE TABLE PurchaseOrder_reltab (
 PONo NUMBER, /* purchase order no */
 Custno NUMBER references Customer_reltab, /* Foreign KEY referencing
 customer */
 OrderDate DATE, /* date of order */
 ShipDate DATE, /* date to be shipped */
 ToStreet VARCHAR2(200), /* shipto address */
 ToCity VARCHAR2(200),
 ToState CHAR(2),
 ToZip VARCHAR2(20),
 PRIMARY KEY(PONo)
) ;

As expected, PurchaseOrder_reltab manages the relationship between the

customer and the purchase order by means of the foreign key (FK) column CustNo ,

which references the CustNo key of the PurchaseOrder_reltab . Because the

table makes no allowance for the relationship between the purchase order and its

line items, the list of line items must handle this.

LineItems_reltab
The LineItems_reltab table has the following definition:

CREATE TABLE LineItems_reltab (
 LineItemNo NUMBER,
 PONo NUMBER REFERENCES PurchaseOrder_reltab,
 StockNo NUMBER REFERENCES Stock_reltab,
 Quantity NUMBER,
 Discount NUMBER,
 PRIMARY KEY (PONo, LineItemNo)
) ;

The table name is in the plural form LineItems_reltab to emphasize to someone

reading the code that the table holds a collection of line items.

Note: The Stock_reltab table, describe in "Stock_reltab" on

page 8-8, must be created before the LineItems_reltab table.
A Sample Application using Object-Relational Features 8-7

Implementing the Application Under The Relational Model
As shown in the E-R diagram, the list of line items has relationships with both the

purchase order and the stock item. These relationships are managed by

LineItems_reltab by means of two foreign key columns:

■ PONo, which references the PONo column in PurchaseOrder_reltab

■ StockNo , which references the StockNo column in Stock_reltab

Stock_reltab
The Stock_reltab table has the following definition:

CREATE TABLE Stock_reltab (
 StockNo NUMBER PRIMARY KEY,
 Price NUMBER,
 TaxRate NUMBER
) ;

Inserting Values Under the Relational Model
In our application, statements like these insert data into the tables:

Establish Inventory
INSERT INTO Stock_reltab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_reltab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_reltab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_reltab VALUES(1535, 3456.23, 2) ;

Register Customers
INSERT INTO Customer_reltab
 VALUES (1, ’Jean Nance’, ’2 Avocet Drive’,
 ’Redwood Shores’, ’CA’, ’95054’,
 ’415-555-1212’, NULL, NULL) ;

INSERT INTO Customer_reltab
 VALUES (2, ’John Nike’, ’323 College Drive’,
 ’Edison’, ’NJ’, ’08820’,
 ’609-555-1212’, ’201-555-1212’, NULL) ;

Place Orders
INSERT INTO PurchaseOrder_reltab
 VALUES (1001, 1, SYSDATE, ’10-MAY-1997’,
 NULL, NULL, NULL, NULL) ;
8-8 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model
INSERT INTO PurchaseOrder_reltab
 VALUES (2001, 2, SYSDATE, ’20-MAY-1997’,
 ’55 Madison Ave’, ’Madison’, ’WI’, ’53715’) ;

Detail Line Items
INSERT INTO LineItems_reltab VALUES(01, 1001, 1534, 12, 0) ;
INSERT INTO LineItems_reltab VALUES(02, 1001, 1535, 10, 10) ;
INSERT INTO LineItems_reltab VALUES(01, 2001, 1004, 1, 0) ;
INSERT INTO LineItems_reltab VALUES(02, 2001, 1011, 2, 1) ;

Querying Data Under The Relational Model
The application can execute queries like these:

Get Customer and Line Item Data for a Specific Purchase Order
SELECT C.CustNo, C.CustName, C.Street, C.City, C.State,
 C.Zip, C.phone1, C.phone2, C.phone3,
 P.PONo, P.OrderDate,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM Customer_reltab C,
 PurchaseOrder_reltab P,
 LineItems_reltab L
 WHERE C.CustNo = P.CustNo
 AND P.PONo = L.PONo
 AND P.PONo = 1001 ;

Get the Total Value of Purchase Orders
SELECT P.PONo, SUM(S.Price * L.Quantity)
 FROM PurchaseOrder_reltab P,
 LineItems_reltab L,
 Stock_reltab S
 WHERE P.PONo = L.PONo
 AND L.StockNo = S.StockNo
 GROUP BY P.PONo ;

Get the Purchase Order and Line Item Data for those LineItems that Use a Stock
Item Identified by a Specific Stock Number
SELECT P.PONo, P.CustNo,
 L.StockNo, L.LineItemNo, L.Quantity, L.Discount
 FROM PurchaseOrder_reltab P,
A Sample Application using Object-Relational Features 8-9

Implementing the Application Under The Relational Model
 LineItems_reltab L
 WHERE P.PONo = L.PONo
 AND L.StockNo = 1004 ;

Updating Data Under The Relational Model
The application can execute statements like these to update the data:

Update the Quantity for Purchase Order 1001 and Stock Item 1534
UPDATE LineItems_reltab
 SET Quantity = 20
 WHERE PONo = 1001
 AND StockNo = 1534 ;

Deleting Data Under The Relational Model
The application can execute statements like these to delete data:

Delete Purchase Order 1001
DELETE
 FROM LineItems_reltab
 WHERE PONo = 1001 ;

DELETE
 FROM PurchaseOrder_reltab
 WHERE PONo = 1001 ;
8-10 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Relational Model
Limitations of a Purely Relational Model
The Relational Database Management System (RDBMS) is a very powerful and

efficient form of information management. Why then should you even consider

another approach? If you examine the application as developed under the relational

model in comparison to the real world of the application domain, then certain

shortcomings become evident.

Limitation in Encapsulating Data (Structure) with Operations (Behavior)
Database tables are excellent for modeling a structure of relationships, but they fail

to capture the way that objects in the real world are naturally bundled with

operations on the data. For example, when you operate on a purchase order in the

real world, you expect to be able to sum the line items to find the total cost to the

customer. Similarly, you expect that you should be able to retrieve information

about the customer who placed the order — such as name, reference number,

address, and so on. More complexly, you may want to determine the customer’s

buying history and payment pattern.

An RDBMS provides very sophisticated structures for storing and retrieving data,

but each application developer must craft the operations needed for each

application. This means that you must recode operations often, even though they

may be very similar to operations already coded for applications within the same

enterprise.

Limitation in Dealing with Composition
Relational tables do not capture compositions. For example, an address may be a

composite of number, street, city, state, and zip code, but in a relational table, the

notion of an address as a structure composed of the individual columns is not

captured.

Limitation in Dealing with Aggregation
Relational tables have difficulty dealing with complex part-whole relationships. A

piston and an engine have the same status as columns in the Stock_reltab , but

there is no easy way to describe the fact that pistons are part of engines, except by

creating multiple tables with primary key-foreign key relationships. Similarly, there

is no easy way to implement the complex interrelationships between collections.
A Sample Application using Object-Relational Features 8-11

Implementing the Application Under The Relational Model
Limitation in Dealing with Generalization-Specialization
There is no easy way to capture the relationship of generalization-specification

(inheritance). If we abstract the base requirements of a purchase order and write

code to capture the relationships, then there is no way to develop purchase orders

that use this code and then further specialize it for different domains. Instead, we

will have duplicated the code in every implementation of a purchase order.

The Evolution of the Object-Relational Database System
So why not create applications using a third-generation language (3GL)?

First, an RDBMS provides functionality that would take millions of person-hours to

replicate.

Second, one of the problems of information management using 3GLs is that they are

not persistent; or, if they are persistent, then they sacrifice security to obtain the

necessary performance by way of locating the application logic and the data logic in

the same address space. Neither trade-off is acceptable to users of an RDBMS, for

whom both persistence and security are basic requirements.

This leaves the application developer working under the relational model with the

problem of simulating complex types by some form of mapping into SQL. Apart

from the many person-hours required, this approach involves serious problems of

implementation. You must:

■ Translate from application logic into data logic on 'write', and then

■ Perform the reverse process on 'read' (and vice versa).

Obviously, there is heavy traffic back and forth between the client address space

and that of the server, with the accompanying decrement in performance. And, if

client and server are on different machines, then the toll on performance from

network roundtrips may be considerable.

Object-relational (O-R) technology solves these problems. This chapter and the

following chapter present examples that implement this new functionality.
8-12 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Implementing the Application Under The Object-Relational Model

Figure 8–2 Class Diagram for Purchase Order Application

The object-relational (O-R) approach begins with the same entity relationships as in

"Entities and Relationships" on page 8-5. Viewing these from the object-oriented

perspective, as in the class diagram above, allows us to translate more of the

real-world structure into the database schema.

1 0 . . 10
Phone

Number

Address

Street
City
State
Zip

Customer

CustNo
CustName

Line Item

LineItemNo

Purchase Order

PONo
OrderDate
ShipDate

getPONo()
sumLineItems()

has

1 1

has

* ShipTo

1

*

*

places
contains

1

1

1 1

refers to Stock Item

StockNo
Price
TaxRate
A Sample Application using Object-Relational Features 8-13

Implementing the Application Under The Object-Relational Model
Rather than breaking up addresses or multiple phone numbers into unrelated

columns in relational tables, the O-R approach defines types to represent them.

Rather than breaking line items out into a separate table, the O-R approach allows

them to stay with their respective purchase orders as nested tables.

The main entities — customers, stock, and purchase orders — become objects.

Object references express the relationships between them. Collection types model

their multi-valued attributes.

There are two approaches to an object-relational implementation:

■ Create and populate object tables.

■ Use object views to represent virtual object tables from existing relational data.

The remainder of this chapter develops the O-R schema and shows how to

implement it with object tables. Chapter 4, "Applying an Object Model to Relational

Data" implements the same schema with object views.

Defining Types
The following statements set the stage by defining incomplete object types:

CREATE TYPE StockItem_objtyp;
CREATE TYPE LineItem_objtyp;
CREATE TYPE PurchaseOrder_objtyp;

The incomplete definitions notify Oracle that full definitions are coming later.

Oracle can compile other types that refer to these incomplete types. Incomplete type

declarations are like forward declarations in C and other programming languages.
8-14 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
The following statement defines an array type:

CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20);

Figure 8–3 Object Relational Representation of PhoneList_vartyp Type

The preceding statement defines the type PhoneList_vartyp . Any data unit of

type PhoneList_vartyp is a varray of up to 10 telephone numbers, each

represented by a data item of type VARCHAR2.

A list of phone numbers could occupy a varray or a nested table. In this case, the list

is the set of contact phone numbers for a single customer. A varray is a better choice

than a nested table for the following reasons:

■ The order of the numbers might be important: varrays are ordered while nested

tables are unordered.

■ The number of phone numbers for a specific customer is small. Varrays force

you to specify a maximum number of elements (10 in this case) in advance.

They use storage more efficiently than nested tables, which have no special size

limitations.

■ There is no reason to query the phone number list, so the nested table format

offers no benefit.

In general, if ordering and bounds are not important design considerations, then

designers can use the following rule of thumb for deciding between varrays and

nested tables: If you need to query the collection, then use nested tables; if you

intend to retrieve the collection as a whole, then use varrays.

See Also: Chapter 5, "Design Considerations for Oracle Objects"

for more information about the design considerations for varrays

and nested tables.

Type PHONELIST_VARTYP

(PHONE)

Number
NUMBER
A Sample Application using Object-Relational Features 8-15

Implementing the Application Under The Object-Relational Model
The following statement defines the object type Address_objtyp to represent

addresses:

CREATE TYPE Address_objtyp AS OBJECT (
 Street VARCHAR2(200),
 City VARCHAR2(200),
 State CHAR(2),
 Zip VARCHAR2(20)
)
/

Figure 8–4 Object Relational Representation of Address_objtyp Type

All of the attributes of an address are character strings, representing the usual parts

of a simplified mailing address.

The following statement defines the object type Customer_objtyp , which uses

other user-defined types as building blocks.

CREATE TYPE Customer_objtyp AS OBJECT (
 CustNo NUMBER,
 CustName VARCHAR2(200),
 Address_obj Address_objtyp,
 PhoneList_var PhoneList_vartyp,

 ORDER MEMBER FUNCTION
 compareCustOrders(x IN Customer_objtyp) RETURN INTEGER
)
/

Instances of the type Customer_objtyp are objects that represent blocks of

information about specific customers. The attributes of a Customer_objtyp object

are a number, a character string, an Address_objtyp object, and a varray of type

PhoneList_vartyp .

Type ADDRESS_OBJTYP

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)
8-16 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Every Customer_objtyp object also has an associated order method, one of the

two types of comparison methods. Whenever Oracle needs to compare two

Customer_objtyp objects, it invokes the compareCustOrders method to do so.

The two types of comparison methods are map methods and order methods. This

application uses one of each for purposes of illustration.

An ORDER method must be called for every two objects being compared, whereas a

MAP method is called once per object. In general, when sorting a set of objects, the

number of times an ORDERmethod is called is more than the number of times a MAP
method would be called.

Note: The PL/SQL to implement the comparison method appears

in "The compareCustOrders Method" on page 8-22.

See Also: ■

■ Chapter 5, "Design Considerations for Oracle Objects" for more
information about design considerations for ORDER and MAP methods.

■ PL/SQL User’s Guide and Reference for details about how to use pragma
declarations.
A Sample Application using Object-Relational Features 8-17

Implementing the Application Under The Object-Relational Model
The following statement completes the definition of the incomplete object type

LineItem_objtyp declared at the beginning of this section.

CREATE TYPE LineItem_objtyp AS OBJECT (
 LineItemNo NUMBER,
 Stock_ref REF StockItem_objtyp,
 Quantity NUMBER,
 Discount NUMBER
)
/

Figure 8–5 Object Relational Representation of LineItem_objtyp Type

Instances of type LineItem_objtyp are objects that represent line items. They

have three numeric attributes and one REF attribute. The LineItem_objtyp
models the line item entity and includes an object reference to the corresponding

stock object.

The following statement defines the nested table type LineItemList_ntabtyp ,

which will represent an arbitrary set of line items inside a purchase order:

CREATE TYPE LineItemList_ntabtyp AS TABLE OF LineItem_objtyp
/

A data unit of this type is a nested table, each row of which contains an object of

type LineItem_objtyp . A nested table of line items is a better choice to represent

the multivalued line item list than a varray of LineItem_objtyp objects, because:

■ Most applications will need to query the contents of line items. This is an

inefficient operation for varrays because their storage representation is not the

same as the table representation.

■ If an application needs to index on line item data, this can be done with nested

tables but not with varrays.

Type LINEITEM_OBJTYP

STOCK_REF

Reference
STOCKITEM_OBJTYP

QUANTITY

Number
NUMBER

DISCOUNT

Number
NUMBER

LINEITEMNO

Number
NUMBER
8-18 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
■ The order of line items is usually unimportant; the line item number can

identify an order when necessary.

■ There is no practical upper bound on the number of line items on a purchase

order. Using a varray requires specifying an arbitrary upper bound on the

number of elements.

The following statement completes the definition of the incomplete object type

PurchaseOrder_objtyp declared at the beginning of this section:

CREATE TYPE PurchaseOrder_objtyp AUTHID CURRENT_USER AS OBJECT (
 PONo NUMBER,
 Cust_ref REF Customer_objtyp,
 OrderDate DATE,
 ShipDate DATE,
 LineItemList_ntab LineItemList_ntabtyp,
 ShipToAddr_obj Address_objtyp,

 MAP MEMBER FUNCTION
 getPONo RETURN NUMBER,

 MEMBER FUNCTION
 sumLineItems RETURN NUMBER
)
/

Figure 8–6 Object Relational Representation of the PuchaseOrder_objtyp

Type PURCHASEORDER_OBJTYP

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURN NUMBER
A Sample Application using Object-Relational Features 8-19

Implementing the Application Under The Object-Relational Model
The preceding statement defines the object type PurchaseOrder_objtyp .

Instances of this type are objects representing purchase orders. They have six

attributes, including a REF to Customer_objtyp , an Address_objtyp object,

and a nested table of type LineItemList_ntabtyp , which is based on type

LineItem_objtyp .

Objects of type PurchaseOrder_objtyp have two methods: getPONo and

sumLineItems . One, getPONo , is a MAP method, one of the two kinds of

comparison methods. A MAP method returns the relative position of a given record

within the order of records within the object. So, whenever Oracle needs to compare

two PurchaseOrder_objtyp objects, it implicitly calls the getPONo method to

do so.

The two pragma declarations provide information to PL/SQL about what sort of

access the two methods need to the database.

The statement does not include the actual PL/SQL programs implementing the

methods getPONo and sumLineItems . That appears in "Method Definitions" on

page 8-21.

The following statement completes the definition of StockItem_objtyp , the last

of the three incomplete object types declared at the beginning of this section.

CREATE TYPE StockItem_objtyp AS OBJECT (
 StockNo NUMBER,
 Price NUMBER,
 TaxRate NUMBER
)
/

Figure 8–7 Object Relational Representation of the StockItem_objtyp

Instances of type StockItem_objtyp are objects representing the stock items that

customers order. They have three numeric attributes.

Type STOCKITEM_OBJTYP

PRICE

Number
NUMBER

TAXRATE

Number
NUMBER

STOCKNO

PK

Number
NUMBER
8-20 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Method Definitions
This section shows how to specify the methods of the PurchaseOrder_objtyp
and Customer_objtyp object types. The following statement defines the body of

the PurchaseOrder_objtyp object type (the PL/SQL programs that implement

its methods):

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

MAP MEMBER FUNCTION getPONo RETURN NUMBER is
 BEGIN
 RETURN PONo;
 END;

MEMBER FUNCTION sumLineItems RETURN NUMBER is
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;

 BEGIN
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity * StockVal.Price;
 END LOOP;
 RETURN Total;
 END;
END;
/

The getPONo Method
The getPONo method is simple; use it to return the purchase order number of its

associated PurchaseOrder_objtyp object. Such "get" methods allow you to

avoid reworking code that uses the object if its internal representation changes.

The sumLineItems Method
The sumLineItems method uses a number of object-relational features:

■ As already noted, the basic function of the sumLineItems method is to return

the sum of the values of the line items of its associated PurchaseOrder_
objtyp object. The keyword SELF, which is implicitly created as a parameter

to every function, lets you refer to that object.

■ The keyword COUNT gives the count of the number of elements in a PL/SQL

table or array. Here, in combination with LOOP, the application iterates through
A Sample Application using Object-Relational Features 8-21

Implementing the Application Under The Object-Relational Model
all the elements in the collection — in this case, the items of the purchase order.

In this way SELF.LineItemList_ntab .COUNT counts the number of elements

in the nested table that match the LineItemList_ntab attribute of the

PurchaseOrder_objtyp object, here represented by SELF.

■ A method from package UTL_REFis used in the implementation. The UTL_REF
methods are necessary because Oracle does not support implicit dereferencing

of REFs within PL/SQL programs. The UTL_REF package provides methods

that operate on object references. Here, the SELECT_OBJECT method is called

to obtain the StockItem_objtyp object corresponding to the Stock_ref .

■ The AUTHID CURRENT_USER syntax specifies that the PurchaseOrder_
objtyp is defined using invoker-rights: the methods are executed under the

rights of the current user, not under the rights of the user who defined the type.

■ The PL/SQL variable StockVal is of type StockItem_objtyp . The UTL_
REF.SELECT_OBJECT sets it to the object whose reference is the following:

(LineItemList_ntab(i).Stock_ref)

This object is the actual stock item referred to in the currently selected line item.

■ Having retrieved the stock item in question, the next step is to compute its cost.

The program refers to the stock item’s cost as StockVal .Price , the Price
attribute of the StockItem_objtyp object. But to compute the cost of the

item, you also need to know the quantity of items ordered. In the application,

the term LineItemList_ntab(i) .Quantity represents the Quantity
attribute of the currently selected LineItem_objtyp object.

The remainder of the method program is a loop that sums the extended values of

the line items, and the method returns the total as its value.

The compareCustOrders Method
The following statement defines the compareCustOrders method of the

Customer_objtyp object type.

CREATE OR REPLACE TYPE BODY Customer_objtyp AS
 ORDER MEMBER FUNCTION
 compareCustOrders (x IN Customer_objtyp) RETURN INTEGER IS
 BEGIN
 RETURN CustNo - x.CustNo;
 END;
END;
/

8-22 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
As mentioned earlier, the order method compareCustOrders operation compares

information about two customer orders. It takes another Customer_objtyp object

as an input argument and returns the difference of the two CustNo numbers. The

return value is:

■ a negative number, if its own object has a smaller value of CustNo

■ a positive number, if its own object has a larger value of CustNo

■ zero, if the two objects have the same value of CustNo —in which case it is

referring to itself.

Whether the return value is positive, negative, or zero signifies the relative order of

the customer numbers. For example, perhaps lower numbers are created earlier in

time than higher numbers. If either of the input arguments (SELF and explicit) to an

ORDER method is NULL, Oracle does not call the ORDER method and simply treats

the result as NULL.

This completes the definition of the user-defined types used in the purchase order

application. None of the declarations creates tables or reserves data storage space.

Creating Object Tables
To this point, the example is the same whether you plan to create and populate

object tables or implement the application with object views on top of the relational

tables that appear in "Implementing the Application Under The Relational Model"

on page 8-4. The remainder of this chapter continues the example using object

tables. Chapter 4, "Applying an Object Model to Relational Data", picks up from this

point and continues the example with object views.

Generally, you can think of the relationship between the "objects" and "object tables"

in the following way:

■ Classes, which represent entities, map to object tables

■ Attributes map to columns

■ Objects map to rows

Viewed in this way, each object table is an implicit type whose objects (specific

rows) each have the same attributes (column values). The creation of explicit

user-defined datatypes and object tables introduces a new level of functionality.

The Object Table Customer_objtab
The following statement defines an object table Customer_objtab to hold objects

of type Customer_objtyp :
A Sample Application using Object-Relational Features 8-23

Implementing the Application Under The Object-Relational Model
CREATE TABLE Customer_objtab OF Customer_objtyp (CustNo PRIMARY KEY)
 OBJECT ID PRIMARY KEY ;

As you can see, the term "OF" makes the create statement different for object tables

as opposed to relational tables. We earlier defined the attributes of Customer_
objtyp objects as:

CustNo NUMBER
CustName VARCHAR2(200)
Address_obj Address_objtyp
PhoneList_var PhoneList_vartyp

This means that the object table Customer_objtab has columns of CustNo ,

CustName , Address_obj , and PhoneList_var , and that each row is an object of

type Customer_objtyp . As you will see, this notion of row object offers a

significant advance in functionality.
8-24 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Figure 8–8 Object Relational Representation of Table Customer_objtab

Object Datatypes as a Template for Object Tables
Because there is a type Customer_objtyp , you could create numerous object

tables of the same type. For example, you could create an object table Customer_
objtab2 also of type Customer_objtyp . Without this ability, you would need to

define each table individually.

You can introduce variations when creating multiple tables. The statement that

created Customer_objtab defined a primary key constraint on the CustNo
column. This constraint applies only to this object table. Another object table of the

same type might not have this constraint.

Column Object ADDRESS_OBJ (of ADDRESS_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

PK

Text
VARCHAR2(200)

Varray PHONELIST_VAR (of PHONELIST_VARTYP)

(PHONE)

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER
A Sample Application using Object-Relational Features 8-25

Implementing the Application Under The Object-Relational Model
Object Identifiers and References
Customer_objtab contains customer objects, represented as row objects. Oracle

allows row objects to be referenceable, meaning that other row objects or relational

rows may reference a row object using its object identifier (OID). For example, a

purchase order row object may reference a customer row object using its object

reference. The object reference is an opaque system-generated value represented by

the type REF and is composed of the row object’s unique OID.

Oracle requires every row object to have a unique OID. You may specify the unique

OID value to be system-generated or specify the row object’s primary key to serve

as its unique OID. You indicate this when you execute the CREATE TABLEstatement

by specifying OBJECT ID PRIMARY KEY or OBJECT ID SYSTEM GENERATED, the

latter serving as the default. The choice of primary key as the object identifier may

be more efficient in cases where the primary key value is smaller than the default 16

byte system-generated identifier. For our example, the choice of primary key as the

row object identifier has been made.

Object Tables with Embedded Objects
Examining the definition of Customer_objtab , you can see that the Address_
obj column contains Address_objtyp objects. In other words, an object type may

have attributes that are themselves object types. These embedded objects represent

composite or structured values, and are also referred to as column objects. They

differ from row objects because they are not referenceable and can be NULL.

Address_objtyp objects have attributes of built-in types, which means that they

are leaf-level scalar attributes of Customer_objtyp . Oracle creates columns for

Address_objtyp objects and their attributes in the object table Customer_
objtab . You can refer to these columns using the dot notation. For example, if you

want to build an index on the Zip column, then you can refer to it as Address .Zip .

The PhoneList column contains varrays of type PhoneList_vartyp . We defined

each object of type PhoneList_vartyp as a varray of up to 10 telephone numbers,

each represented by a data item of type VARCHAR2:

CREATE TYPE PhoneList_vartyp AS VARRAY(10) OF VARCHAR2(20)
/

8-26 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Because each varray of type PhoneList_vartyp can contain no more than 200

characters (10 x 20), plus a small amount of overhead, Oracle stores the varray as a

single data unit in the PhoneList_var column. Oracle stores varrays that exceed

4000 bytes in "inline" BLOBs, which means that a portion of the varray value could

potentially be stored outside the table.

The Object Table Stock_objtab
The next statement creates an object table for StockItem_objtyp objects:

CREATE TABLE Stock_objtab OF StockItem_objtyp (StockNo PRIMARY KEY)
 OBJECT ID PRIMARY KEY ;

Each row of the table is a StockItem_objtyp object having three numeric

attributes:

StockNo NUMBER
Price NUMBER
TaxRate NUMBER

Oracle assigns a column for each attribute, and the CREATE TABLEstatement places

a primary key constraint on the StockNo column, and specifies that the primary

key be used as the row object’s identifier.

The Object Table PurchaseOrder_objtab
The next statement defines an object table for PurchaseOrder_objtyp objects:

CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (/* Line 1 */
 PRIMARY KEY (PONo), /* Line 2 */
 FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab) /* Line 3 */
 OBJECT ID PRIMARY KEY /* Line 4 */
 NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (/* Line 5 */
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo)) /* Line 6 */
 ORGANIZATION INDEX COMPRESS) /* Line 7 */
 RETURN AS LOCATOR /* Line 8 */
/

The preceding CREATE TABLE statement creates the PurchaseOrder_objtab
object table. The significance of each line is as follows:

Line 1:

CREATE TABLE PurchaseOrder_objtab OF PurchaseOrder_objtyp (
A Sample Application using Object-Relational Features 8-27

Implementing the Application Under The Object-Relational Model
This line indicates that each row of the table is a PurchaseOrder_objtyp object.

Attributes of PurchaseOrder_objtyp objects are:

 PONo NUMBER
 Cust_ref REF Customer_objtyp
 OrderDate DATE
 ShipDate DATE
 LineItemList_ntab LineItemList_ntabtyp
 ShipToAddr_obj Address_objtyp

Figure 8–9 Object Relational Representation of Table PurchaseOrder_objtab

Line 2:

PRIMARY KEY (PONo),

This line specifies that the PONo attribute is the primary key for the table.

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Table CUSTOMER_OBJTAB (of CUSTOMER_OBJTYP)

CUSTNAME

Text
VARCHAR2(200)

ADDRESS_OBJ

Object Type
ADDRESS_OBJTYP

PHONELIST_VAR

Varray
PHONELIST_VARTYP

CUSTNO

PK

Number
NUMBER

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURN NUMBER

Reference
to a row of
the table
8-28 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Line 3:

FOREIGN KEY (Cust_ref) REFERENCES Customer_objtab)

This line specifies a referential constraint on the Cust_ref column. This referential

constraint is similar to those specified for relational tables. When there is no

constraint, the REFcolumn allows you to reference any row object. However, in this

case, the Cust_ref REF s can refer only to row objects in the Customer_objtab
object table.

Line 4:

OBJECT ID PRIMARY KEY

This line indicates that the primary key of the PurchaseOrder_objtab object

table be used as the row’s OID.

Line 5 - 8:

NESTED TABLE LineItemList_ntab STORE AS PoLine_ntab (
 (PRIMARY KEY(NESTED_TABLE_ID, LineItemNo))
 ORGANIZATION INDEX COMPRESS)
 RETURN AS LOCATOR

These lines pertain to the storage specification and properties of the nested table

column, LineItemList_ntab . The rows of a nested table are stored in a separate

storage table. This storage table is not directly queryable by the user but can be

referenced in DDL statements for maintenance purposes. A hidden column in the

storage table, called the NESTED_TABLE_ID, matches the rows with their

corresponding parent row. All the elements in the nested table belonging to a

particular parent have the same NESTED_TABLE_ID value. For example, all the

elements of the nested table of a given row of PurchaseOrder_objtab have the

same value of NESTED_TABLE_ID. The nested table elements that belong to a

different row of PurchaseOrder_objtab have a different value of NESTED_
TABLE_ID .

In the CREATE TABLE example above, Line 5 indicates that the rows of

LineItemList_ntab nested table are to be stored in a separate table (referred to

as the storage table) named PoLine_ntab . The STORE ASclause also allows you to

specify the constraint and storage specification for the storage table. In this

example, Line 7 indicates that the storage table is an index-organized table (IOT). In

general, storing nested table rows in an IOT is beneficial, because it provides

clustering of rows belonging to the same parent. The specification of COMPRESS on

the IOT saves storage space because, if you do not specify COMPRESS, the NESTED_
A Sample Application using Object-Relational Features 8-29

Implementing the Application Under The Object-Relational Model
TABLE_ID part of the IOT ’s key is repeated for every row of a parent row object. If,

however, you specify COMPRESS, the NESTED_TABLE_ID is stored only once for

each row of a parent row object.

The SCOPE FOR constraint on a REF is not allowed in a CREATE TABLE statement.

Therefore, to specify that Stock_ref can reference only the object table Stock_
objtab , issue the following ALTER TABLE statement on the PoLine_ntab storage

table:

ALTER TABLE PoLine_ntab
 ADD (SCOPE FOR (Stock_ref) IS stock_objtab) ;

Note that this statement is executed on the storage table, not the parent table.

In Line 6, the specification of NESTED_TABLE_IDand LineItemNo attribute as the

primary key for the storage table serves two purposes: first, it serves as the key for

the IOT ; second, it enforces uniqueness of a column (LineItemNo) of a nested table

within each row of the parent table. By including the LineItemNo column in the

key, the statement ensures that the LineItemNo column contains distinct values

within each purchase order.

Line 8 indicates that the nested table, LineItemList_ntab , is returned in the

locator form when retrieved. If you do not specify LOCATOR, the default is VALUE,

which indicates that the entire nested table is returned instead of just a locator to the

nested table. When the nested table collection contains many elements, it may not

be very efficient to return the entire nested table whenever the containing row

object or the column is selected.

Specifying that the nested table’s locator is returned enables Oracle to send to the

client only a locator to the actual collection value. An application can find whether a

fetched nested table is in the locator or value form by calling the

OCICollIsLocator or UTL_COLL.IS_LOCATOR interfaces. Once you know that

the locator has been returned, the application can query using the locator to fetch

only the desired subset of row elements in the nested table. This locator-based

retrieval of the nested table rows is based on the original statement’s snapshot, to

preserve the value or copy semantics of the nested table. That is, when the locator is

See Also: "Nested Table Storage" on page 5-14 for information

about the benefits of organizing a nested table as and IOT and

specifying nested table compression, and for more information

about nested table storage.
8-30 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
used to fetch a subset of row elements in the nested table, the nested table snapshot

reflects the nested table when the locator was first retrieved.

Recall the implementation of the sumLineItems method of PurchaseOrder_
objtyp in "Method Definitions" on page 8-21. That implementation assumed that

the LineItemList_ntab nested table would be returned as a VALUE. In order to

handle large nested tables more efficiently, and to take advantage of the fact that the

nested table in the PurchaseOrder_objtab is returned as a locator, the

sumLineItems method must be rewritten as follows:

CREATE OR REPLACE TYPE BODY PurchaseOrder_objtyp AS

 MAP MEMBER FUNCTION getPONo RETURN NUMBER is
 BEGIN
 RETURN PONo;
 END;

 MEMBER FUNCTION sumLineItems RETURN NUMBER IS
 i INTEGER;
 StockVal StockItem_objtyp;
 Total NUMBER := 0;

 BEGIN
 IF (UTL_COLL.IS_LOCATOR(LineItemList_ntab)) -- check for locator
 THEN
 SELECT SUM(L.Quantity * L.Stock_ref.Price) INTO Total
 FROM TABLE(CAST(LineItemList_ntab AS LineItemList_ntabtyp)) L;
 ELSE
 FOR i in 1..SELF.LineItemList_ntab.COUNT LOOP
 UTL_REF.SELECT_OBJECT(LineItemList_ntab(i).Stock_ref,StockVal);
 Total := Total + SELF.LineItemList_ntab(i).Quantity *
 StockVal.Price;
 END LOOP;
 END IF;
 RETURN Total;
 END;
END;
/

The rewritten sumLineItems method checks whether the nested table attribute,

LineItemList_ntab , is returned as a locator using the UTL_COLL.IS_LOCATOR
function. When the condition evaluates to TRUE, the nested table locator is queried

using the TABLE expression.
A Sample Application using Object-Relational Features 8-31

Implementing the Application Under The Object-Relational Model
The querying of the nested table locator results in a more efficient processing of the

large line item list of a purchase order. The previous code that iterates over the

LineItemList_ntab is kept to deal with the case where the nested table is

returned as a VALUE.

After the table is created, the following ALTER TABLE statement is issued:

ALTER TABLE PoLine_ntab
 ADD (SCOPE FOR (Stock_ref) IS stock_objtab);

This statement specifies that the Stock_ref column of the nested table is scoped to

Stock_objtab . This indicates that the values stored in this column must be

references to row objects in Stock_objtab . The SCOPE constraint is different from

the referential constraint, because the SCOPE constraint has no implication on the

referenced object. For example, any referenced row object in Stock_objtab may

be deleted, even if it is referenced in the Stock_ref column of the nested table.

Such a deletion renders the corresponding reference in the nested table a

DANGLING REF.

Note: The CAST expression is currently required in such TABLE
expressions to communicate to the SQL compilation engine the

actual type of the collection attribute (or parameter or variable) so

that it can successfully compile the query.
8-32 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Figure 8–10 Object Relational Representation of Nested Table LineItemList_ntab

Oracle does not support referential constraint specification for storage tables. In this

situation, specifying the SCOPE clause for a REF column is useful. In general,

specifying scope or referential constraints for REF columns has a few benefits:

■ It saves storage space because it allows Oracle to store just the row object’s

unique identifier as the REF value in the column.

■ It enables an index to be created on the storage table’s REF column.

■ It allows Oracle to rewrite queries containing dereferences of these REFs as joins

involving the referenced table.

At this point, all of the tables for the purchase order application are in place. The

next section shows how to operate on these tables.

Column LINEITEMLIST_NTAB (of LINEITEMLIST_NTABTYP
 (as table of LINEITEM_OBJTYP))

STOCK_REF

Reference
STOCKITEM_OBJTYP

QUANTITY

Number
NUMBER

DISCOUNT

Number
NUMBER

LINEITEMNO

Number
NUMBER

Table STOCK_OBJTAB (of STOCKITEM_OBJTYP)

PRICE

Number
NUMBER

TAXRATE

Number
NUMBER

STOCKNO

PK

Number
NUMBER

Refers to a row
of the table
A Sample Application using Object-Relational Features 8-33

Implementing the Application Under The Object-Relational Model
Figure 8–11 Object Relational Representation of Table PurchaseOrder_objtab

Inserting Values
Here is how to insert the same data into the object tables as we did earlier for

relational tables. Notice how some of the values are actually calls to the constructors

for object types.

Stock_objtab
INSERT INTO Stock_objtab VALUES(1004, 6750.00, 2) ;
INSERT INTO Stock_objtab VALUES(1011, 4500.23, 2) ;
INSERT INTO Stock_objtab VALUES(1534, 2234.00, 2) ;
INSERT INTO Stock_objtab VALUES(1535, 3456.23, 2) ;

Table PURCHASEORDER_OBJTAB (of PURCHASEORDER_OBJTYP)

CUST_REF

Reference
CUSTOMER_
OBJTYP

ORDERDATE

Date
DATE

SHIPDATE

Date
DATE

LINEITEMLIST_NTAB

Nested Table
LINEITEMLIST_
NTABTYP

SHIPTOADDR_OBJ

Object Type
ADDRESS_
OBJTYP

PONO

PK FK

Number
NUMBER

Column Object SHIPTOADDR_OBJ (of ADDR_OBJTYP)

CITY

Text
VARCHAR2(200)

STATE

Text
CHAR(2)

ZIP

Number
VARCHAR2(20)

STREET

Text
VARCHAR2(200)

MEMBER FUNCTION getPONO RETURN NUMBER
MEMBER FUNCTION SumLineItems RETURNNUMBER

Column Object
of the defined type
8-34 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
Customer_objtab
INSERT INTO Customer_objtab
 VALUES (
 1, ’Jean Nance’,
 Address_objtyp(’2 Avocet Drive’, ’Redwood Shores’, ’CA’, ’95054’),
 PhoneList_vartyp(’415-555-1212’)
) ;

INSERT INTO Customer_objtab
 VALUES (
 2, ’John Nike’,
 Address_objtyp(’323 College Drive’, ’Edison’, ’NJ’, ’08820’),
 PhoneList_vartyp(’609-555-1212’,’201-555-1212’)
) ;

PurchaseOrder_objtab
INSERT INTO PurchaseOrder_objtab
 SELECT 1001, REF(C),
 SYSDATE, ’10-MAY-1999’,
 LineItemList_ntabtyp(),
 NULL
 FROM Customer_objtab C
 WHERE C.CustNo = 1 ;

The preceding statement constructs a PurchaseOrder_objtyp object with the

following attributes:

 PONo 1001
 Cust_ref REF to customer number 1
 OrderDate SYSDATE
 ShipDate 10-MAY-1999
 LineItemList_ntab an empty LineItem_ntabtyp
 ShipToAddr_obj NULL

The statement uses a query to construct a REF to the row object in the Customer_
objtab object table that has a CustNo value of 1.
A Sample Application using Object-Relational Features 8-35

Implementing the Application Under The Object-Relational Model
The following statement uses a TABLE expression to identify the nested table as the

target for the insertion, namely the nested table in the LineItemList_ntab
column of the row object in the PurchaseOrder_objtab table that has a PONo
value of 1001.

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 01, REF(S), 12, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1534 ;

The preceding statement inserts a line item into the nested table identified by the

TABLE expression. The inserted line item contains a REF to the row object with a

StockNo value of 1534 in the object table Stock_objtab .

The following statements follow the same pattern as the previous ones:

INSERT INTO PurchaseOrder_objtab
 SELECT 2001, REF(C),
 SYSDATE, ’20-MAY-1997’,
 LineItemList_ntabtyp(),
 Address_objtyp(’55 Madison Ave’,’Madison’,’WI’,’53715’)
 FROM Customer_objtab C
 WHERE C.CustNo = 2 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 1001
)
 SELECT 02, REF(S), 10, 10
 FROM Stock_objtab S
 WHERE S.StockNo = 1535 ;

Note: Oracle release 8.0 supports the "flattened subquery" or "THE
(subquery)" expression to identify the nested table. This construct is

deprecated in release 8.1 in favor of the TABLE expression

illustrated below.
8-36 Application Developer’s Guide - Object-Relational Features

Implementing the Application Under The Object-Relational Model
INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 SELECT 10, REF(S), 1, 0
 FROM Stock_objtab S
 WHERE S.StockNo = 1004 ;

INSERT INTO TABLE (
 SELECT P.LineItemList_ntab
 FROM PurchaseOrder_objtab P
 WHERE P.PONo = 2001
)
 VALUES(11, (SELECT REF(S)
 FROM Stock_objtab S
 WHERE S.StockNo = 1011), 2, 1) ;

Querying
The following query statement implicitly invokes a comparison method. It shows

how Oracle orders objects of type PurchaseOrder_objtyp using that type’s

comparison method:

SELECT p.PONo
 FROM PurchaseOrder_objtab p
 ORDER BY VALUE(p) ;

Oracle invokes the map method getPONo for each PurchaseOrder_objtyp
object in the selection. Because that method returns the object’s PONo attribute, the

selection produces a list of purchase order numbers in ascending numerical order.

The following queries correspond to the queries executed under the relational

model.

Customer and Line Item Data for Purchase Order 1001
SELECT DEREF(p.Cust_ref), p.ShipToAddr_obj, p.PONo,
 p.OrderDate, LineItemList_ntab
 FROM PurchaseOrder_objtab p
 WHERE p.PONo = 1001 ;
A Sample Application using Object-Relational Features 8-37

Implementing the Application Under The Object-Relational Model
Total Value of Each Purchase Order
SELECT p.PONo, p.sumLineItems()
 FROM PurchaseOrder_objtab p ;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT po.PONo, po.Cust_ref.CustNo,
 CURSOR (
 SELECT *
 FROM TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004
)
 FROM PurchaseOrder_objtab po ;

The above query returns a nested cursor for the set of LineItem_obj objects

selected from the nested table. The application can fetch from the nested cursor to

get the individual LineItem_obj objects. The above query can also be expressed

by unnesting the nested set with respect to the outer result:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L
 WHERE L.Stock_ref.StockNo = 1004 ;

The above query returns the result set as a "flattened" form (or First Normal Form).

This type of query is useful when accessing Oracle collection columns from

relational tools and APIs, such as ODBC. In the above unnesting example, only the

rows of the PurchaseOrder_objtab object table that has any LineItemList_
ntab rows are returned. To fetch all rows of the PurchaseOrder_objtab table,

regardless of the presence of any rows in their corresponding LineItemList_
ntab , then the (+) operator is required:

SELECT po.PONo, po.Cust_ref.CustNo, L.*
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) (+) L
 WHERE L.Stock_ref.StockNo = 1004 ;

Average Discount across all Line Items of all Purchase Orders
This request requires querying the rows of all nested tables, LineItemList_ntab ,

of all PurchaseOrder_objtab rows. Again, unnesting is required:

SELECT AVG(L.DISCOUNT)
 FROM PurchaseOrder_objtab po, TABLE (po.LineItemList_ntab) L ;
8-38 Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java
Deleting
The following example has the same effect as the two deletions needed in the

relational case (see "Deleting Data Under The Relational Model" on page 8-10). In

this case, Oracle automatically deletes all line items belonging to the deleted

purchase order. The relational case requires a separate step.

Delete Purchase Order 1001
DELETE
 FROM PurchaseOrder_objtab
 WHERE PONo = 1001 ;

Manipulating Objects Through Java
Using the schema that we have already defined for the purchase order example, we

can manipulate objects within the database through the Java Database Connectivity

(JDBC) API or by using embedded SQL with SQLJ. Although we use JDBC in this

example, the coding for both is similar, and you can use either technique for

object-oriented programs.

The first decision you do have to make is how closely you want to map the object

types in the database to Java classes. The following sections show the two choices.

Using oracle.sql.* Classes (Weak Typing)
In this example:

■ We map the data types and objects from the customer table to predefined object

classes provided in the ORACLE.SQL package.

■ We create only a single class with all the application logic, not one class for each

object type.

■ We treat the objects as the generic type oracle.sql.STRUCT, collection types as

oracle.sql.ARRAY, and the scalar values as predefined types such as

oracle.sql.NUMBER.

■ We dynamically retrieve the attributes from the STRUCT class, pulling them

into a single array. We must know the internal details of the class, such as that

the first attribute is a number, and cast each element of the array into an object

of the right type.
A Sample Application using Object-Relational Features 8-39

Manipulating Objects Through Java
This technique lets us essentially write a procedural Java program that can easily

interact with a particular class, as long as the definition of that class stays the same.

import java.sql.*;
import oracle.sql.*;

public class DefaultMappingDemo
{
 public static void main(String[] args)
 {
 System.out.println("*** JAVA OBJECTS DEMO ***");

 try {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@stpc90.us.oracle.com:1521:stpc90",
 "scott", "tiger") ;

 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery
 ("select value(c) from CUSTOMER_TAB c order by value(c)");

 while (rs.next ())
 {

 // retrieve the STRUCT
 oracle.sql.STRUCT cust_struct = (STRUCT)rs.getObject(1);

 oracle.sql.Datum cust_attrs[] = cust_struct.getOracleAttributes();
 oracle.sql.NUMBER num = (NUMBER)cust_attrs[0];

 // string attribute in Object
 oracle.sql.CHAR name = (CHAR) cust_attrs[1];

 // embedded object
 oracle.sql.STRUCT address_struct = (STRUCT)cust_attrs[2];
 oracle.sql.Datum address_attrs[] = address_struct.getOracleAttributes();
 oracle.sql.CHAR street = (CHAR) address_attrs[0];
 oracle.sql.CHAR city = (CHAR) address_attrs[1];
 oracle.sql.CHAR state = (CHAR) address_attrs[2];
 oracle.sql.CHAR zip = (CHAR) address_attrs[3];

 System.out.println("Number: " + num.stringValue() + ", Name: " + name +
8-40 Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java
 ", Address: " + street + ", " + city + ", " + state +
 ", " + zip);
 //embedded array
 oracle.sql.ARRAY phone_list = (ARRAY)cust_attrs[3];
 }
 rs.close();
 stmt.close();
 }
 catch (SQLException exn)
 {
 System.out.println("SQLException: "+exn);
 }
 }
}

Using Strong Typing (SQLData or CustomDatum)
If you want to model the database object types using multiple Java classes, you can

construct a strongly typed model. The classes all implement some common

behavior to do the underlying database operations. Now, you have another choice:

do you want to model the classes on the JDBC 2.0 API (the SQLData interface) or on

Oracle’s API (the CustomDatum interface)?

The SQLData interface is standards-based and potentially offers portability between

different database systems. The CustomDatum interface is derived from JDBC, but

offers additional enhancements; it can encapsulate REFs, collection types, and other

object-oriented features not supported by JDBC.

You can generate wrapper classes for either interface by using JPublisher with

different options.

Generating Wrapper Classes with JPublisher
In the strongly typed model, we need a Java class for each object type in the schema.

The easiest way to get these classes is to let Oracle read the type definitions from the

database and generate the Java code for us. To do this, we can use the following file

as input to the JPublisher tool:

SQL SCOTT."ADDRESS_OBJTYP" AS JAddress
SQL SCOTT."CUSTOMER_OBJTYP" AS JCustomerInfo
SQL SCOTT."LINEITEMLIST_NTABTYP" AS JLineItemList
A Sample Application using Object-Relational Features 8-41

Manipulating Objects Through Java
SQL SCOTT."LINEITEM_OBJTYP" AS JLineItem
SQL SCOTT."PHONELIST_VARTYP" AS JPhoneList
SQL SCOTT."PURCHASEORDER_OBJTYP" AS JPurchaseOrder
SQL SCOTT."STOCKITEM_OBJTYP" AS JStockInfo

How to Use the Wrapper Classes
The wrapper classes all look much like the one below, JCustomer which

corresponds to the CUSTOMER_INFO_T type in the database schema. For our

example, we would also need the JAddress wrapper class because one of the

attributes of JCustomer is a JAddress object.

You can read or write instances of this type using regular Java I/O streams. To

implement additional member functions, you can subclass JCustomer, so that your

code is preserved whenever that class is regenerated.

import java.sql.*;
import oracle.jdbc2.*;
import oracle.sql.*;

public class JCustomer implements SQLData
{
 private String sql_type;
 public int custNo;
 public String custName;
 public JAddress address;
 public Array phoneList;

 public String getSQLTypeName() throws SQLException { return sql_type; }

 public void readSQL (SQLInput stream, String typeName) throws SQLException
 {
 sql_type = typeName;
 custNo = stream.readInt();
 custName = stream.readString();
 address = (JAddress) stream.readObject();
 phoneList= stream.readArray();
 }
 public void writeSQL (SQLOutput stream) throws SQLException
 {
 stream.writeInt(custNo);
 stream.writeString(custName);
 stream.writeObject(address);
8-42 Application Developer’s Guide - Object-Relational Features

Manipulating Objects Through Java
 stream.writeArray(phoneList);
 }
}

In this example, we do not show member functions being derived from the method

functions of the database type. Calling such member functions causes traffic as

object data is passed back and forth to the database server, and you must follow

certain conventions for input and output parameters. For information on this

subject, see Oracle8i SQLJ Developer’s Guide and Reference (Objects and Collections)

and Oracle8i JDBC Developer’s Guide and Reference (Working with Oracle Object

Types).

Sample Program Using the SQLData Interface
In the following program:

■ We work with the JCustomer and JAddress classes that are produced by

JPublisher. JAddress is needed because it is the type for one of JCustomer’s

attributes.

■ We let the database know which Java classes correspond to which SQL object

types. For example, JCustomer corresponds to CUSTOMER_INFO_T. That

information allows Oracle to substitute object data into SQL statements such as

the INSERT in the example.

■ Once we cast an object from the result set to JCustomer, we can access its data

and functions as with any other Java class.

■ We update the object in Java, then substitute the Java object into an SQL

statement that updates the database.

import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc2.*;
import java.util.*;

public class SQLDataDemo
{
 public static void main(String[] args) throws Exception, SQLException
 {
 System.out.println("*** JAVA OBJECTS DEMO : USING SQLData INTERFACE ***");

 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
A Sample Application using Object-Relational Features 8-43

Manipulating Objects Through Java
 OracleConnection conn = (OracleConnection) DriverManager.getConnection
 ("jdbc:oracle:thin:@stpc90.us.oracle.com:1521:stpc90",
 "scott", "tiger");

 Statement stmt = conn.createStatement();

 //put an entry in the typemap
 try
 {
 Dictionary map = conn.getTypeMap();

 map.put("CUSTOMER_INFO_T", Class.forName("JCustomer"));
 map.put("ADDRESS_T", Class.forName("JAddress"));
 }
 catch (ClassNotFoundException exn) { }

 ResultSet rs = stmt.executeQuery("select VALUE (p) from CUSTOMER_TAB p");

 while (rs.next())
 {
 //retrieve the object using standard API
 JCustomer jc = (JCustomer) rs.getObject(1);
 int custNo = jc.custNo;
 String custName = jc.custName;

 jc.custName = "Geoff Lee";
 PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO CUSTOMER_TAB VALUES (?)");
 pstmt.setObject(1, jc);
 pstmt.executeUpdate();

 rs.close();
 stmt.close();
 }
 }
}

8-44 Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE
Manipulating Objects with Oracle Objects for OLE
On Windows systems, you can use Oracle Objects for OLE (OO4O) to write

object-oriented database programs in Visual Basic or other environments that

support the COM protocol, such as Excel.

The following examples all begin with a similar header section that connects to the

database, then each shows how to perform a different operation on object data.

Selecting Data
Here is an event handler for a button that performs a SELECT operation.

■ We get a set of rows from the database, each row containing some relational

columns and some columns that are objects.

■ Using the name of the CUSTREF column, we retrieve its value, which is an

object.

■ Then we can use the dot notation to access the attributes of the object. We define

the variable as a generic object type, OraObject. After it is instantiated with a

real object, it takes on the properties of the corresponding object type.

Private Sub obj_select_Click()
 Dim OO4OSession As OraSession
 Dim InvDB As OraDatabase
 Dim PurchaseOrder As OraDynaset
 Dim CustomerInfo As OraRef
 Dim LineItemsList As OraCollection
 Dim LineItem As OraObject
 Dim ShipToAddr As OraObject
 Dim StockInfo As OraRef
 Dim CustomerAddr As OraObject

 ’Create the OraSession Object.
 Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

 ’Create the OraDatabase Object by opening a connection to Oracle.
 Set InvDB = OO4OSession.OpenDatabase("exampledb", "scott/tiger", 0&)

 ’Select from purchase_tab
 Set PurchaseOrder = InvDB.CreateDynaset("select * from purchase_tab", 0&)

 ’Get the custref attribute from PurchaseOrder
 Set CustomerInfo = PurchaseOrder.Fields("custref").Value
A Sample Application using Object-Relational Features 8-45

Manipulating Objects with Oracle Objects for OLE
 ’ Accessing attributes CustomerInfo object

 ’Display custno,custname,phonelist attibutes of CustomerInfo
 MsgBox CustomerInfo.custno
 MsgBox CustomerInfo.custname

 ’Get address and phonelist attibutes of CustomerInfo
 Set CustomerAddr = CustomerInfo.Address

 ’Display all the atributes of CustomerAddr
 MsgBox CustomerAddr.Street
 MsgBox CustomerAddr.State
 MsgBox CustomerAddr.Zip

 ’ Accessing elements of LineItemsList Object

 ’Get line_item_list attribute from PurchaseOrder
 Set LineItemsList = PurchaseOrder.Fields("line_item_list").Value

 ’Get LineItem object element from LineItemList collection
 Set LineItem = LineItemsList(1)

 ’Display lineitemno,quantity,discount attibutes
 MsgBox LineItem.lineitemno
 MsgBox LineItem.quantity
 MsgBox LineItem.discount

 ’Access stockref attribute of LineItem
 Set StockInfo = LineItem.Stockref

 ’Display stockno,cost,tax_code of StockInfo
 MsgBox StockInfo.stockno
 MsgBox StockInfo.cost
 MsgBox StockInfo.tax_code

End Sub

Inserting Data
Here is a program that retrieves a set of rows from the database, then adds a new

row.

■ We create some objects of the appropriate object types.
8-46 Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE
■ We populate the objects with sample values.

■ We create a new row for the purchase order table, and fill in the values for its

columns. The columns that are not objects can be set directly. The columns that

are objects must be set using the VALUE field.

Dim OO4OSession As OraSession
Dim InvDB As OraDatabase
Dim PurchaseOrder As OraDynaset
Dim CustomerInfo As OraRef
Dim LineItemsList As OraCollection
Dim LineItem As OraObject
Dim ShipToAddr As OraObject
Dim StockInfo As OraRef
Dim CustomerAddr As OraObject

 ’Create the OraSession Object.
 Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

 ’Create the OraDatabase Object by opening a connection to Oracle.
 Set InvDB = OO4OSession.OpenDatabase("exampledb", "scott/tiger", 0&)

 ’Select from purchase_tab
 Set PurchaseOrder = InvDB.CreateDynaset("select * from purchase_tab", 0&)

 ’ Step 1 - Creating CustomerInfo ref object

 ’select a ref from customer_tab for custono 2
 Set CustomerDyn = InvDB.CreateDynaset("select REF(C) from customer_tab c
where c.custno = 2", 0&)

 ’get the CustomerInfo ref object
 Set CustomerInfo = CustomerDyn.Fields(0).Value

 ’ Step 2 - Creating LineItemsList object

 ’ Create a new line_items_list object
 Set LineItemsList = InvDB.CreateOraObject("line_item_list_t")

 ’ Create a new line_items object
 Set LineItem = InvDB.CreateOraObject("line_item_t")

 ’set attributes of LineItem object
 LineItem.lineitemno = 2
 LineItem.quantity = 15
A Sample Application using Object-Relational Features 8-47

Manipulating Objects with Oracle Objects for OLE
 LineItem.discount = 30
 LineItem.Stockref = Null

 ’set the LineItem to first element of LineItemList
 LineItemsList(1) = LineItem

 ’ Step 3 - Creating ShipToAddr object

 ’ create a shiptoaddr object
 Set ShipToAddr = InvDB.CreateOraObject("address_t")

 ’set the attributes of ShipToAddr Object
 ShipToAddr.city = "Belmont"
 ShipToAddr.Street = "Continentals way"
 ShipToAddr.Zip = "94002"
 ShipToAddr.State = "CA"

 ’ Start the AddNew operation on PurchaseOrder dynaset

 PurchaseOrder.AddNew

 PurchaseOrder.Fields("pono").Value = 1002
 PurchaseOrder.Fields("orderdate").Value = "5/15/99"
 PurchaseOrder.Fields("shipdate").Value = "6/15/99"

 ’set the custref field to CustomerInfo object created in step1
 PurchaseOrder.Fields("custref").Value = CustomerInfo

 ’set the line_item_list field to LineItemslist object created in step2
 PurchaseOrder.Fields("line_item_list").Value = LineItemsList

 ’set the shiptoaddr field to ShipToAddr object created in step3
 PurchaseOrder.Fields("shiptoaddr").Value = ShipToAddr

 ’ Call the update method on Purchaseorder Dynaset which inserts a new row
 ’ in purchase_tab table

 PurchaseOrder.Update

Updating Data
Here is a program that retrieves some rows from the database, then updates a

specific one.
8-48 Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE
■ We select the purchase order using a query that returns a single row.

■ We get individual data items to manipulate from other tables and from the

original purchase order.

■ We lock the purchase order row for updating, and put in the new values.

Dim OO4OSession As OraSession
Dim InvDB As OraDatabase
Dim PurchaseOrder As OraDynaset
Dim CustomerInfo As OraRef
Dim LineItemsList As OraCollection
Dim LineItem As OraObject
Dim ShipToAddr As OraObject
Dim StockInfo As OraRef
Dim CustomerAddr As OraObject

’Create the OraSession Object.
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

’Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = OO4OSession.OpenDatabase("exampledb", "scott/tiger", 0&)

’Select from purchase_tab for pono 1002
Set PurchaseOrder = InvDB.CreateDynaset("select * from purchase_tab where
pono = 1002", 0&)

’Create a StockInfo from stock_tab for stockno 1535
Set StockDyn = InvDB.CreateDynaset("select REF(s) from stock_tab s where
s.stockno = 1535", 0&)
Set StockInfo = StockDyn.Fields(0).Value

’Get line_item_list attribute from PurchaseOrder
Set LineItemsList = PurchaseOrder.Fields("line_item_list").Value

’Get LineItem object element from LineItemList collection
Set LineItem = LineItemsList(1)

’Start the edit operation on PurchaseOrder dynaset
PurchaseOrder.Edit

’ Set the StockInfo object created in Step1 to stockref attribute
’ of LineItem
LineItem.Stockref = StockInfo
PurchaseOrder.Update
A Sample Application using Object-Relational Features 8-49

Manipulating Objects with Oracle Objects for OLE
Calling a Method Function
Here is a program that retrieves a purchase order, and calls its member function

TOTAL_VALUE to sum the cost of the line items that are part of the purchase order.

■ We select one row from the purchase order table. Notice we select the VALUE

so that the result comes back as an object.

■ We get a pointer to the purchase order object (the zero’th column of the result

row). Later this pointer is passed to a PL/SQL stored procedure, to simulate the

SELF pointer in Java or C++ methods.

■ We build a list of parameters corresponding to the implicit self parameter and

the return value of the method function. For each, we specify the bind variable,

its value, its mode, and its type.

■ We call the stored procedure corresponding to the method function, storing the

result in the TOTALVALUE bind variable.

■ To use the result, we retrieve the return value from the parameter list.

Dim OO4OSession As OraSession
Dim InvDB As OraDatabase
Dim PurchaseOrderObj As OraDynaset

’Create the OraSession Object.
Set OO4OSession = CreateObject("OracleInProcServer.XOraSession")

’Create the OraDatabase Object by opening a connection to Oracle.
Set InvDB = OO4OSession.OpenDatabase("exampledb", "scott/tiger", 0&)

’Select from purchase_tab
Set PurchaseOrderDyn = InvDB.CreateDynaset("select VALUE(p) from
purchase_tab p where p.pono = 1001", 0&)

’Get the PurchaseOrderObj
Set PurchaseOrderObj = PurchaseOrderDyn.Fields(0).Value

’Create a OraParameter object for purchase_order_t object and set it to
PurchaseOrder
InvDB.Parameters.Add "PURCHASEORDER", PurchaseOrderObj, ORAPARM_BOTH,
ORATYPE_OBJECT, "PURCHASE_ORDER_T"

’Create a parameter for total_value return
InvDB.Parameters.Add "TOTALVALUE", "", ORAPARM_OUTPUT

’Execute a member method
8-50 Application Developer’s Guide - Object-Relational Features

Manipulating Objects with Oracle Objects for OLE
InvDB.ExecuteSQL ("BEGIN :TOTALVALUE :=
PURCHASE_ORDER_T.TOTAL_VALUE(:PURCHASEORDER); END;")

’Display the totalvalue
MsgBox InvDB.Parameters("TOTALVALUE").Value
A Sample Application using Object-Relational Features 8-51

Manipulating Objects with Oracle Objects for OLE
8-52 Application Developer’s Guide - Object-Relational Features

Index

A
Active Server Pages, 3-9

ActiveX, 3-9

ADMIN OPTION

with EXECUTE ANY TYPE, 2-11

ALTER ANY TYPE privilege, 2-10

See also privileges

arrays, 8-26

size of VARRAYs, 1-8

variable (VARRAYs), 1-8

ASP, 3-9

atomic nulls, 2-2

attributes

leaf-level, 6-1

leaf-level scalar, 6-1

of object types, 1-3

B
bind variables

user-defined types, 3-2

C
caches

object cache, 2-13, 3-2, 3-6

object views, 4-4

capture avoidance rule, 2-7

collections

nested tables, 1-9

nesting, 5-20

querying, 5-12

variable arrays (VARRAYs), 1-8

column objects

vs. row objects, 5-1

columns

column names

qualifying in queries, 2-7

column objects, 1-6

indexes, 2-4

qualifying in queries, 2-6

comparison methods, 1-4, 8-20

compilation of object types, 2-14

complex object retrieval

for Oracle Call Interface, 6-9

COMPRESS clause

nested tables, 5-16

CONNECT role

user-defined types, 2-11

constraints, 8-25

object tables, 2-3

on Oracle objects, 5-37

REFs, 5-9

SCOPE FOR constraint, 8-30, 8-32

constructor methods, 1-4, 6-2

literal invocation of, 2-3

COUNT attribute of collection types, 8-21

CREATE ANY TYPE privilege, 2-10

See also privileges

CREATE INDEX statement

object types, 2-5

CREATE TABLE statement

examples

column objects, 1-11, 2-7

nested tables, 1-10

object tables, 1-5, 1-10, 2-4, 2-7

CREATE TRIGGER statement
Index-1

examples

object tables, 2-5

CREATE TYPE command

nested tables, 1-9, 1-11

CREATE TYPE privilege, 2-10

See also privileges

CREATE TYPE statement

incomplete types, 2-14

nested tables, 2-3

object types, 1-10, 2-2, 2-3, 2-7, 8-14

object views, 4-3

varrays, 1-9, 8-15

CREATE VIEW statement

examples

object views, 4-4

D
dangling REFs, 1-7

database administrators (DBAs)

DBA role, 2-11

datatypes

array types, 1-8

nested tables, 1-9

object types, 1-2

DBA role

user-defined types, 2-11

default values

user-defined types, 2-3

DELETE privilege for object tables, 2-12, 2-13

dependencies

object type definitions, 2-14, 2-15

dereferencing, 1-7, 8-22

implicit, 1-7, 8-22

dot notation, 1-3

DROP ANY TYPE privilege, 2-11

See also privileges

DROP TYPE statement

FORCE option, 2-15

dump files

Export and Import, 2-16

E
Excel, 3-9

EXECUTE ANY TYPE privilege, 2-11

See also privileges

EXECUTE privilege

user-defined types, 2-11

See also privileges

EXECUTE user-defined type, 2-11

Export utility

user-defined types, 2-16

F
FAQ

for Oracle objects, 7-1

files

Export and Import dump file, 2-16

FORCE option

object type dependencies, 2-15

foreign keys

representing many-to-one entity relationship

with, 8-7

frequently asked questions

about Oracle objects, 7-1

function-based indexes

returning values of type methods, 5-30

G
GRANT option for EXECUTE privilege, 2-11

granting

execute user-defined type, 2-11

I
implicit dereferencing, 1-7, 8-22

Import utility

user-defined types, 2-16

incomplete object types, 2-14, 8-14

indexes

on REFs, 2-4

user-defined types, 2-4

index-organized tables

storing nested tables as, 5-15

inheritance, 1-10

dual subtype/super-type reference, 5-36

subtype contains super-type, 5-33
Index-2

super-type contains all subtypes, 5-35

inner capture, 2-7

INSERT privilege for object tables, 2-12, 2-13

INSTEAD OF triggers

nested tables, 4-11

invoker-rights

object types, 5-29

J
Java

Oracle JDBC and Oracle objects, 3-12

Oracle SQLJ and Oracle objects, 3-12

with Oracle objects, 3-12

JDBC

See Oracle JDBC

K
keys

foreign keys, 8-7

L
leaf-level attributes, 6-1

leaf-level scalar attributes, 6-1

literal invocation

constructor methods, 2-3

locators, 8-30

returning nested tables as, 5-18

locks

object level locking, 3-3

M
map methods, 1-5, 5-7, 8-17

methods, 1-3

choosing a language for, 5-26

comparison, 8-20

comparison methods, 1-4

constructor methods, 1-4

literal invocation, 2-3

function-based indexes, 5-30

map, 5-7, 8-17

of object types, 1-3, 8-21

constructor methods, 6-2

execution privilege for, 2-11

map methods, 1-5

order methods, 1-5

PL/SQL, 3-2

selfish style of invocation, 1-4

use of empty parentheses with, 2-8

order, 5-7, 8-17, 8-23

static, 5-28

N
nested tables, 1-9, 5-14

COMPRESS clause, 5-16

creating indexes on, 5-17

DML operations on, 5-19

in an index-organized table, 5-15

indexes, 2-4

INSTEAD OF triggers, 4-11

querying, 8-18

returning as locators, 5-18, 8-30

storage, 5-14, 8-29

uniqueness in, 8-30

updating in views, 4-11

vs VARRAY, 8-18

vs varrays, 8-15

NESTED_TABLE_ID, 5-17, 8-29

nulls

atomic, 2-2

object types, 2-2

O
object cache

flushing an object, 6-9

object views, 4-4

OCI, 3-2

privileges, 2-13

Pro*C, 3-6

object identifiers, 8-26

for object types, 6-2

primary-key based, 5-7

REFs, 5-8

storage, 5-7

WITH OBJECT IDENTIFIER clause, 4-4
Index-3

object tables, 1-5, 5-7, 8-23

constraints, 2-3

deleting values, 8-39

indexes, 2-4

inserting values, 8-34

querying, 8-37

row objects, 1-6

triggers, 2-5

virtual object tables, 4-2

object types, 1-2

attributes of, 1-3

column objects, 1-6

indexes, 2-4

column objects vs. row objects, 5-1

comparison methods for, 1-4, 8-20

constructor methods for, 1-4, 6-2

incomplete, 2-14, 8-14

invoker-rights, 5-29

locking in cache, 3-3

methods of, 1-3, 8-21

method calls, 2-8

PL/SQL, 3-2

mutually dependent, 2-14

Oracle type translator, 3-8

purchase order example, 1-10

row objects, 1-6

use of table aliases, 2-7

object views, 4-1 to 4-18

advantages of, 4-2

defining, 4-3

nested tables, 4-11

updating through INSTEAD OF triggers, 4-11

object-relational model, 8-1

comparing objects, 5-7

constraints, 5-37

design considerations, 5-1

embedded objects, 8-26

implementing with object tables, 8-14

inheritance, 1-10

limiations of relational model, 8-11

methods, 1-3

new object format, 5-31

partitioning, 6-14

programmatic environments for, 3-1 to 3-12

replication, 5-31

type evolution, 5-38

objects

collection objects, 4-6

in columns, 4-4

object references, 4-9

row objects and object identifiers, 4-6

OCI

associative access, 3-3

complex object retrieval (COR), 6-9

creating a new object, 6-4

deleting an object, 6-5

for Oracle objects

building a program, 3-5

initializing object manipulation, 6-4

lock options, 6-8

navigational access, 3-4

object cache, 3-4, 6-11

flushing an object, 6-9

OCIObjectFlush, 4-4

OCIObjectPin, 4-4

pinning and unpinning objects, 6-6

updating an object, 6-5

OIDs

See object identifiers

Oracle Call Interface

controlling object cache size, 6-5

Oracle JDBC

accessing Oracle object data, 3-12

Oracle objects

See object-relational model

Oracle Objects for OLE

OraCollection interface, 3-11

OraObject interface, 3-10

OraRef interface, 3-10

Oracle SQLJ

creating custom Java classes, 3-13

JPublisher, 3-13

support for Oracle objects, 3-12

Oracle type translator (OTT), 3-8

OraCollection interface, 3-11

OraObject interface, 3-10

OraRef interface, 3-10

order methods, 1-5, 5-7, 8-17, 8-23

OTT, 3-8
Index-4

P
parallel query

restrictions for Oracle objects, 5-38

parentheses, use of in method calls, 2-8

partitioning

tables containing Oracle objects, 6-14

pkREFs, 6-2

PL/SQL

bind variables

user-defined types, 3-2

object views, 4-4

user-defined datatypes, 3-2

pragma RESTRICT_REFERENCES, 8-20

primary-key-based REFs, 6-2

privileges

system

user-defined types, 2-10

user-defined types

acquired by role, 2-11

ALTER ANY TYPE, 2-10

checked when pinning, 2-13

column level for object tables, 2-14

CREATE ANY TYPE, 2-10

CREATE TYPE, 2-10

DELETE, 2-12, 2-13

DROP ANY TYPE, 2-11

EXECUTE, 2-11

EXECUTE ANY TYPE, 2-11

EXECUTE ANY TYPE with ADMIN

OPTION, 2-11

EXECUTE with GRANT option, 2-11

INSERT, 2-12, 2-13

SELECT, 2-12, 2-13

system privileges, 2-10

UPDATE, 2-12, 2-13

using, 2-11, 2-15

Pro*C/C++

associative access, 3-6

converting between Oracle and C types, 3-7

navigational access, 3-6

user-defined datatypes, 3-2

programmatic environments

for Oracle objects, 3-1 to 3-12

Q
queries

set membership, 5-18

unnesting, 5-12

varrays, 5-14

R
REFs, 1-6

constraints on, 5-9

constructing from object identifiers, 6-2

dangling, 1-7

dereferencing of, 1-7, 8-22

for rows of object views, 4-3

implicit dereferencing of, 1-7, 8-22

indexes on, 2-4

indexing, 5-10

mutually dependent types, 2-14

object identifiers, 8-26

pinning, 2-13, 4-4

scoped, 1-7, 5-9, 6-2

size of, 6-2

storage, 5-9

use of table aliases, 2-7

WITH ROWID option, 5-11

RESOURCE role

user-defined types, 2-11

returning nested tables as, 8-30

REVOKE command

object types and dependencies, 2-15

REVOKE statement

FORCE option, 2-15

roles

CONNECT role, 2-11

DBA role, 2-11

RESOURCE role, 2-11

row objects, 1-6

storage, 5-7

rows

row objects, 1-6

S
schema names

qualifying column names, 2-7
Index-5

schemas

user-defined datatypes, 3-2

user-defined types, 1-2

SCOPE FOR constraint, 8-30, 8-32

scoped REFs, 1-7, 6-2

SELECT privilege for object tables, 2-12, 2-13

selfish style of method invocation, 1-4

SQL

user-defined datatypes, 3-1

embedded SQL, 3-6

OCI, 3-2

SQLJ

See Oracle SQLJ

storage

nested tables, 6-3

object tables, 6-1

REFs, 6-2

STORE AS clause, 8-29

system privileges

ADMIN OPTION, 2-11

user-defined types, 2-10

See also privileges

T
TABLE syntax, 5-12

tables

nested tables, 1-9

indexes, 2-4

object

See object tables

object tables, 1-5

constraints, 2-3

indexes, 2-4

triggers, 2-5

virtual, 4-2

qualifying column names, 2-6, 2-7

triggers

INSTEAD OF triggers

object views and, 4-11

user-defined types, 2-5

type evolution, 5-38

types

See datatypes, object types

U
unnesting queries, 5-12

UPDATE privilege for object tables, 2-12, 2-13

updates

object views, 4-11

user-defined datatypes, 2-1 to 2-16

collections

nested tables, 1-9

variable arrays (VARRAYs), 1-8

Export and Import, 2-15

incomplete types, 2-14

object types, 1-2

use of table aliases, 2-7

privileges, 2-10

See also object-relational model

storage, 6-1

V
variables

bind variables

user-defined types, 3-2

object variables, 4-4

VARRAY

vs nested tables, 8-18

varrays, 1-8

accessing, 5-14

querying, 5-14

See also arrays, collections

storage, 5-13

updating, 5-14

vs nested tables, 8-15

views

See also object views

updatability, 4-11

Visual Basic, 3-9

W
WITH OBJECT IDENTIFIER clause, 4-4
Index-6

	PDF Directory
	Contents
	1� Introduction to Oracle Objects
	The Nuts and Bolts of Oracle Objects 1�1
	The Object-Relational Model 1�1
	Object Types 1�2
	Objects 1�3
	Methods 1�3
	Object Tables 1�5
	Object Views 1�6
	REF Datatype 1�6
	Collections 1�8
	Inheritance 1�10

	An Example of an Object-Oriented Model 1�10

	2�Managing Oracle Objects
	Using Object Types and References 2�1
	Null Objects and Attributes 2�2
	Default Values for Objects and Collections 2�3
	Constraints for Object Tables 2�3
	Indexes for Object Tables and Nested Tables 2�4
	Triggers for Object Tables 2�5
	Rules for REF Columns and Attributes 2�5
	Name Resolution 2�6
	Method Calls without Arguments 2�8

	Using Collections 2�8
	Querying Collections 2�8
	Collection Unnesting 2�9
	DML on Collections 2�9

	Privileges on Object Types and Their Methods 2�10
	System Privileges 2�10
	Schema Object Privileges 2�11
	Using Types in New Types or Tables 2�11
	Example 2�11
	Privileges on Type Access and Object Access 2�12

	Dependencies and Incomplete Types 2�14
	Completing Incomplete Types 2�15
	Type Dependencies of Tables 2�15

	Import/Export/Load of Object Types 2�15

	3� Object Support in Oracle Programmatic Environments
	SQL 3�1
	PL/SQL 3�2
	Oracle Call Interface (OCI) 3�2
	Associative Access in OCI Programs 3�3
	Navigational Access in OCI Programs 3�4
	Object Cache 3�4
	Building an OCI Program that Manipulates Objects 3�5

	Pro*C/C++ 3�6
	Associative Access in Pro*C/C++ 3�6
	Navigational Access in Pro*C/C++ 3�6
	Converting Between Oracle Types and C Types 3�7
	Oracle Type Translator (OTT) 3�8

	Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages) 3�9
	Representing Objects in Visual Basic (OraObject) 3�10
	Representing REFs in Visual Basic (OraRef) 3�10
	Representing VARRAYs and Tables in Visual Basic (OraCollection) 3�11

	Java: JDBC, Oracle SQLJ, and JPublisher 3�12
	JDBC Access to Oracle Object Data 3�12
	SQLJ Access to Oracle Object Data 3�12
	Using JPublisher to Create Java Classes for JDBC and SQLJ Programs 3�13

	4� Applying an Object Model to Relational Data
	Why to Use Object Views 4�2
	Defining Object Views 4�3
	Using Object Views in Applications 4�4
	Nesting Objects in Object Views 4�4
	Identifying Null Objects in Object Views 4�5
	Using Nested Tables and Varrays in Object Views 4�6
	Specifying Object Identifiers for Object Views 4�7
	Creating References to View Objects 4�9
	Modelling Inverse Relationships with Object Views 4�10
	Updating Object Views 4�11
	Updating Nested Table Columns in Views 4�11
	Using INSTEAD-OF Triggers to Control Mutating and Validation 4�11

	Applying the Object Model to Remote Tables 4�12
	Defining Complex Relationships in Object Views 4�13
	Tables and Types to Demonstrate Circular View References 4�14
	Creating Object Views with Circular References 4�16

	5� Design Considerations for Oracle Objects
	Representing Objects as Columns or Rows 5�1
	Column Object Storage 5�2
	Row Object Storage in Object Tables 5�7

	Performance of Object Comparisons 5�7
	Storage Considerations for Object Identifiers (OIDs) 5�8
	Storage Size of REFs 5�9
	Integrity Constraints for REF Columns 5�9
	Performance and Storage Considerations for Scoped REFs 5�9
	Indexing Scoped REFs 5�10

	Speeding up Object Access using the WITH ROWID Option 5�11
	Viewing Object Data in Relational Form with Unnesting Queries 5�12
	Storage Considerations for Varrays 5�13
	Performance of Varrays vs. Nested Tables 5�14
	Nested Tables 5�14
	Nested Table Storage 5�14
	Nested Table Indexes 5�17
	Nested Table Locators 5�18
	Optimizing Set Membership Queries 5�18
	DML Operations on Nested Tables 5�19

	Nesting Collections within other Collections 5�20
	Choosing a Language for Method Functions 5�26
	Static Methods 5�28

	Writing Reusable Code using Invoker Rights 5�29
	Function-Based Indexes on the Return Values of Type Methods 5�30
	New Object Format in Release 8.1 5�31
	Replicating Object Tables and Columns 5�31
	Consequences of the Oracle Inheritance Implementation 5�32
	Simulating Inheritance 5�32

	Constraints on Objects 5�37
	Type Evolution 5�38
	Performance Tuning 5�38
	Parallel Queries with Oracle Objects 5�38

	6�Advanced Topics for Oracle Objects
	Storage of Objects 6�1
	Leaf-Level Attributes 6�1
	How Row Objects are Split Across Columns 6�1
	Hidden Columns for Tables with Column Objects 6�2
	REFs 6�2
	Internal Layout of Nested Tables 6�3
	Internal Layout of VARRAYs 6�3

	Object Identifiers 6�3
	OCI Tips and Techniques for Objects 6�4
	Initializing an OCI Program in Object Mode 6�4
	Creating a New Object 6�4
	Updating an Object 6�5
	Deleting an Object 6�5
	Controlling Object Cache Size 6�5
	Retrieving Objects into the Client Cache (Pinning) 6�6
	How to Choose the Locking Technique 6�8
	Flushing an Object from the Object Cache 6�9
	Pre-Fetching Related Objects (Complex Object Retrieval) 6�9
	Demonstration of OCI and Oracle Objects 6�11
	Using the OCI Object Cache with View Objects 6�11

	Partitioning Tables that Contain Oracle Objects 6�14
	Parallel Query with Object Views 6�15
	How Locators Improve the Performance of Nested Tables 6�15

	7�Frequently Asked Questions about Programming with Oracle Objects
	General Questions about Oracle Objects 7�2
	Are the object-relational features a separate option? 7�2
	What are the design goals of Oracle8i Object-Relational & Extensibility technologies? 7�2
	What are the key features in Oracle8i Object-Relational Technology? 7�2
	What are the new Object-Relational features in Oracle8i? 7�5

	Object Types 7�6
	What is structured data? 7�6
	Where are the user-defined types, user-defined functions, and abstract data types? 7�6
	What is an object type? 7�6
	Why are object types useful? 7�7
	How is object data stored and managed in Oracle8i? 7�7
	Is inheritance supported in Oracle8i? 7�7

	Object Methods 7�8
	What language can I use to write my object methods? 7�8
	How do I decide between using PL/SQL and Java for my object methods? 7�8
	When should I use external procedures? 7�8
	What are definer and invoker rights? 7�9

	Object References 7�9
	What is an object reference? 7�9
	When should I use object references? How are they different from foreign keys? 7�9
	Can I construct object references based on primary keys? 7�10
	What is a scoped REF and when should I use it? 7�10
	Can I manipulate objects using object references in PL/SQL and Java? 7�10

	Collections 7�10
	What kinds of collections are supported by Oracle8i? 7�10
	How do I decide between using varrays and nested tables for modeling collections? 7�11
	Do Oracle8i Objects support collections within collections? 7�11
	What is a collection locator? 7�11
	What is collection unnesting? 7�11

	Object Views 7�12
	What are the differences between object views and object tables? 7�12
	Are object views updateable? 7�12

	Object Cache 7�12
	Why do we need the object cache? 7�12
	Does the object cache support object locking? 7�13

	Large Objects (LOBs) 7�13
	How can I manage large objects using Oracle8i? 7�13

	User-Defined Operators 7�14
	What is a user-defined operator? 7�14
	Why are user-defined operators useful? 7�14

	8� A Sample Application using Object-Relational Features
	Introduction 8�2
	A Purchase Order Example 8�3
	Implementing the Application Under The Relational Model 8�4
	Entities and Relationships 8�5
	Creating Tables Under the Relational Model 8�5
	Inserting Values Under the Relational Model 8�8
	Querying Data Under The Relational Model 8�9
	Updating Data Under The Relational Model 8�10
	Deleting Data Under The Relational Model 8�10
	Limitations of a Purely Relational Model 8�11
	The Evolution of the Object-Relational Database System 8�12

	Implementing the Application Under The Object-Relational Model 8�13
	Defining Types 8�14
	Method Definitions 8�21
	Creating Object Tables 8�23
	Object Datatypes as a Template for Object Tables 8�25
	Object Identifiers and References 8�26
	Object Tables with Embedded Objects 8�26

	Manipulating Objects Through Java 8�39
	Using oracle.sql.* Classes (Weak Typing) 8�39
	Using Strong Typing (SQLData or CustomDatum) 8�41

	Manipulating Objects with Oracle Objects for OLE 8�45
	Selecting Data 8�45
	Inserting Data 8�46
	Updating Data 8�48
	Calling a Method Function 8�50

	Send Us Your Comments
	Preface
	Information in This Guide
	Audience
	Feature Coverage and Availability
	Other Guides
	How This Book Is Organized
	Conventions Used in This Guide
	Your Comments Are Welcome

	1 Introduction to Oracle Objects
	The Nuts and Bolts of Oracle Objects
	The Object-Relational Model
	Object-Relational Database Systems versus Third-Generation Languages
	Object Types
	Objects
	Methods
	Object Tables
	Object Views
	REF Datatype
	Collections
	Creating a VARRAY or Nested Table
	VARRAYs
	Nested Tables
	Inheritance

	An Example of an Object-Oriented Model

	2 Managing Oracle Objects
	Using Object Types and References
	Null Objects and Attributes
	Default Values for Objects and Collections
	Constraints for Object Tables
	Indexes for Object Tables and Nested Tables
	Triggers for Object Tables
	Rules for REF Columns and Attributes
	Name Resolution
	When Table Aliases are Required
	Method Calls without Arguments

	Using Collections
	Querying Collections
	Collection Unnesting
	DML on Collections

	Privileges on Object Types and Their Methods
	System Privileges
	Schema Object Privileges
	Using Types in New Types or Tables
	Example
	Privileges on Type Access and Object Access

	Dependencies and Incomplete Types
	Completing Incomplete Types
	Type Dependencies of Tables

	Import/Export/Load of Object Types

	3 Object Support in Oracle Programmatic Environments
	SQL
	PL/SQL
	Oracle Call Interface (OCI)
	Associative Access in OCI Programs
	Navigational Access in OCI Programs
	Object Cache
	Building an OCI Program that Manipulates Objects

	Pro*C/C++
	Associative Access in Pro*C/C++
	Navigational Access in Pro*C/C++
	Converting Between Oracle Types and C Types
	Oracle Type Translator (OTT)

	Oracle Objects For OLE (for Visual Basic, Excel, ActiveX, Active Server Pages)
	Representing Objects in Visual Basic (OraObject)
	Representing REFs in Visual Basic (OraRef)
	Representing VARRAYs and Tables in Visual Basic (OraCollection)

	Java: JDBC, Oracle SQLJ, and JPublisher
	JDBC Access to Oracle Object Data
	SQLJ Access to Oracle Object Data
	Choosing a Data Mapping Strategy
	Using JPublisher to Create Java Classes for JDBC and SQLJ Programs
	What JPublisher Produces

	4 Applying an Object Model to Relational Data
	Why to Use Object Views
	Defining Object Views
	Using Object Views in Applications
	Nesting Objects in Object Views
	Identifying Null Objects in Object Views
	Using Nested Tables and Varrays in Object Views
	Specifying Object Identifiers for Object Views
	Creating References to View Objects
	Modelling Inverse Relationships with Object Views
	One-to-One Relationships
	One-to-Many and One-to-Many Relationships

	Updating Object Views
	Updating Nested Table Columns in Views
	Using INSTEAD-OF Triggers to Control Mutating and Validation

	Applying the Object Model to Remote Tables
	Defining Complex Relationships in Object Views
	Method 1: Create Both Views
	Method 2:
	Tables and Types to Demonstrate Circular View References
	Creating Object Views with Circular References
	Method 1: Views compiled now.
	Method 2: Views compiled upon use.

	5 Design Considerations for Oracle Objects
	Representing Objects as Columns or Rows
	Column Object Storage
	Row Object Storage in Object Tables

	Performance of Object Comparisons
	Storage Considerations for Object Identifiers (OIDs)
	Storage Size of REFs
	Integrity Constraints for REF Columns
	Performance and Storage Considerations for Scoped REFs
	Indexing Scoped REFs

	Speeding up Object Access using the WITH ROWID Option
	Viewing Object Data in Relational Form with Unnesting Queries
	Using Procedures and Functions in Unnesting Queries

	Storage Considerations for Varrays
	Performance of Varrays vs. Nested Tables
	Varray Querying
	Varray Updates

	Nested Tables
	Nested Table Storage
	Nested Table in an Index-Organized Table (IOT)
	Nested Table Indexes
	Nested Table Locators
	Optimizing Set Membership Queries
	DML Operations on Nested Tables

	Nesting Collections within other Collections
	Choosing a Language for Method Functions
	Method Implementation Example
	Static Methods

	Writing Reusable Code using Invoker Rights
	Function-Based Indexes on the Return Values of Type Methods
	New Object Format in Release 8.1
	Replicating Object Tables and Columns
	Consequences of the Oracle Inheritance Implementation
	Simulating Inheritance
	Super-type Contains All Subtypes
	Dual Subtype / Super-type Reference

	Constraints on Objects
	Type Evolution
	Performance Tuning
	Parallel Queries with Oracle Objects

	6 Advanced Topics for Oracle Objects
	Storage of Objects
	Leaf-Level Attributes
	How Row Objects are Split Across Columns
	Hidden Columns for Tables with Column Objects
	REFs
	Internal Layout of Nested Tables
	Internal Layout of VARRAYs

	Object Identifiers
	OCI Tips and Techniques for Objects
	Initializing an OCI Program in Object Mode
	Creating a New Object
	Updating an Object
	Deleting an Object
	Controlling Object Cache Size
	Retrieving Objects into the Client Cache (Pinning)
	Specifying which Version of an Object to Retrieve
	Specifying How Long to Keep the Object Pinned
	Specifying Whether to Lock the Object on the Server
	How to Choose the Locking Technique
	Flushing an Object from the Object Cache
	Pre-Fetching Related Objects (Complex Object Retrieval)
	Demonstration of OCI and Oracle Objects
	Using the OCI Object Cache with View Objects

	Partitioning Tables that Contain Oracle Objects
	Parallel Query with Object Views
	How Locators Improve the Performance of Nested Tables

	7 Frequently Asked Questions about Programming with Oracle Objects
	General Questions about Oracle Objects
	Are the object-relational features a separate option?
	What are the design goals of Oracle8i Object-Relational & Extensibility technologies?
	What are the key features in Oracle8i Object-Relational Technology?
	Object Type System
	Object Views
	SQL Object Extensions
	PL/SQL Object Extensions
	Java Support for Oracle8i Objects
	External Procedures
	Object Type Translator
	Client-Side Cache
	Complex Object Retrieval
	OCI Object Extensions
	PRO*C/C++ Object Extensions
	OO4O Object Extensions
	Integration with Relational Functionality
	What are the new Object-Relational features in Oracle8i?
	Type System
	Execution Environment
	Query Processing
	Data Indexing
	Query Optimization
	Operational Completeness
	Language Interfaces

	Object Types
	What is structured data?
	Where are the user-defined types, user-defined functions, and abstract data types?
	What is an object type?
	Why are object types useful?
	How is object data stored and managed in Oracle8i?
	Is inheritance supported in Oracle8i?

	Object Methods
	What language can I use to write my object methods?
	How do I decide between using PL/SQL and Java for my object methods?
	When should I use external procedures?
	What are definer and invoker rights?

	Object References
	What is an object reference?
	When should I use object references? How are they different from foreign keys?
	Can I construct object references based on primary keys?
	What is a scoped REF and when should I use it?
	Can I manipulate objects using object references in PL/SQL and Java?

	Collections
	What kinds of collections are supported by Oracle8i?
	How do I decide between using varrays and nested tables for modeling collections?
	Do Oracle8i Objects support collections within collections?
	What is a collection locator?
	What is collection unnesting?

	Object Views
	What are the differences between object views and object tables?
	Are object views updateable?

	Object Cache
	Why do we need the object cache?
	Does the object cache support object locking?

	Large Objects (LOBs)
	How can I manage large objects using Oracle8i?

	User-Defined Operators
	What is a user-defined operator?
	Why are user-defined operators useful?

	8 A Sample Application using Object-Relational Features
	Introduction
	A Purchase Order Example
	Implementing the Application Under The Relational Model
	Entities and Relationships
	Creating Tables Under the Relational Model
	Customer_reltab
	PurchaseOrder_reltab
	LineItems_reltab
	Stock_reltab
	Inserting Values Under the Relational Model
	Establish Inventory
	Register Customers
	Place Orders
	Detail Line Items
	Querying Data Under The Relational Model
	Get Customer and Line Item Data for a Specific Purchase Order
	Get the Total Value of Purchase Orders
	Get the Purchase Order and Line Item Data for those LineItems that Use a Stock Item Identified by...
	Updating Data Under The Relational Model
	Update the Quantity for Purchase Order 1001 and Stock Item 1534
	Deleting Data Under The Relational Model
	Delete Purchase Order 1001
	Limitations of a Purely Relational Model
	Limitation in Encapsulating Data (Structure) with Operations (Behavior)
	Limitation in Dealing with Composition
	Limitation in Dealing with Aggregation
	Limitation in Dealing with Generalization-Specialization
	The Evolution of the Object-Relational Database System

	Implementing the Application Under The Object-Relational Model
	Defining Types
	Method Definitions
	The getPONo Method
	The sumLineItems Method
	The compareCustOrders Method
	Creating Object Tables
	The Object Table Customer_objtab
	Object Datatypes as a Template for Object Tables
	Object Identifiers and References
	Object Tables with Embedded Objects
	The Object Table Stock_objtab
	The Object Table PurchaseOrder_objtab
	Inserting Values
	Querying
	Average Discount across all Line Items of all Purchase Orders
	Deleting

	Manipulating Objects Through Java
	Using oracle.sql.* Classes (Weak Typing)
	Using Strong Typing (SQLData or CustomDatum)
	Generating Wrapper Classes with JPublisher
	How to Use the Wrapper Classes
	Sample Program Using the SQLData Interface

	Manipulating Objects with Oracle Objects for OLE
	Selecting Data
	Inserting Data
	Updating Data
	Calling a Method Function

	Index

