Import ONNX Models into Oracle Database End-to-End Example

Learn to import a pretrained embedding model that is in ONNX format and generate vector embeddings.

Follow the steps below to import a pertained ONNX formatted embedding model into the Oracle Database.

Prepare Your Data Dump Directory

Prepare your data dump directory and provide the necessary access and privileges to dmuser.

  1. Choose from:
    1. If you already have a pretrained ONNX embedding model, store it in your working folder.

    2. If you do not have pretrained embedding model in ONNX format, perform the steps listed in Convert Pretrained Models to ONNX Format.

  2. Login to SQL*Plus as SYSDBA in your PDB.

    CONN sys/<password>@pdb as sysdba;
  3. Grant the DB_DEVELOPER_ROLE to dmuser.

    
    GRANT DB_DEVELOPER_ROLE TO dmuser identified by <password>;
  4. Grant CREATE MINING MODEL privilege to dmuser.

    GRANT create mining model TO dmuser;
  5. Set your working folder as the data dump directory (DM_DUMP) to load the ONNX embedding model.

    CREATE OR REPLACE DIRECTORY DM_DUMP as '<work directory path>';
  6. Grant READ permissions on the DM_DUMP directory to dmuser.

    GRANT READ ON DIRECTORY dm_dump TO dmuser;
  7. Grant WRITE permissions on the DM_DUMP directory to dmuser.

    GRANT WRITE ON DIRECTORY dm_dump TO dmuser;
  8. Drop the model if it already exits.

    exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

Import ONNX Model Into the Database

You created a data dump directory and now you load the ONNX model into the Database. Use the DBMS_VECTOR.LOAD_ONNX_MODEL procedure to load the model. The DBMS_VECTOR.LOAD_ONNX_MODEL procedure facilitates the process of importing ONNX format model into the Oracle Database. In this example, the procedure loads an ONNX model file, named my_embedding_model.onnx from the DM_DUMP directory, into the Database as doc_model, specifying its use for embedding tasks.

  1. Connect as dmuser.

    CONN dmuser/<password>@<pdbname>;
  2. Load the ONNX model into the Database.

    If the ONNX model to be imported already includes an output tensor named embeddingOutput and an input string tensor named data, JSON metadata is unnecessary. Embedding models converted from OML4Py follow this convention and can be imported without the JSON metadata.

    EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
      'DM_DUMP',
      'my_embedding_model.onnx',
      'doc_model');

    Alternately, you can load the ONNX embedding model by specifying the JSON metadata.

    EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
      'DM_DUMP',
      'my_embedding_model.onnx', 
      'doc_model', 
      JSON('{"function" : "embedding", "embeddingOutput" : "embedding", "input": {"input": ["DATA"]}}'));
The procedure LOAD_ONNX_MODEL declares these parameters:
  • DM_DUMP: specifies the directory name of the data dump.

    Note:

    Ensure that the DM_DUMP directory is defined.
  • my_embedding_model: is a VARCHAR2 type parameter that specifies the name of the ONNX model.

  • doc_model: This parameter is a user-specified name under which the model is stored in the Oracle Database.

  • The JSON metadata associated with the ONNX model is declared as:

    "function" : "embedding": Indicates the function name for text embedding model.

    "embeddingOutput" : "embedding": Specifies the output variable which contains the embedding results.

  • "input": {"input": ["DATA"]}: Specifies a JSON object ("input") that describes the input expected by the model. It specifies that there is an input named "input", and its value should be an array with one element, "DATA". This indicates that the model expects a single string input to generate embeddings.

For more information about the LOAD_ONNX_MODEL procedure, see Oracle Database PL/SQL Packages and Types Reference.

Alternatively, if your ONNX embedding model is loaded on cloud object storage, the LOAD_ONNX_MODEL_CLOUD procedure can be used. For more information, see Oracle Database PL/SQL Packages and Types Reference.

Query Model Statistics

You can view model attributes and learn about the model by querying machine learning dictionary views and model detail views.

Note:

DOC_MODEL is the user-specified name of the embedding text model.
  1. Query USER_MINING_MODEL_ATTRIBUTES view.

    SELECT model_name, attribute_name, attribute_type, data_type, vector_info
    FROM user_mining_model_attributes
    WHERE model_name = 'DOC_MODEL'
    ORDER BY ATTRIBUTE_NAME;

    To learn about USER_MINING_MODEL_ATTRIBUTES view, see USER_MINING_MODEL_ATTRIBUTES.

  2. Query USER_MINING_MODELS view.

    SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
    ALGORITHM_TYPE, MODEL_SIZE
    FROM user_mining_models
    WHERE model_name = 'DOC_MODEL'
    ORDER BY MODEL_NAME;

    To learn about USER_MINING_MODELS view, see USER_MINING_MODELS.

  3. Check model statistics by viewing the model detail views. Query the DM$VMDOC_MODEL view.

    SELECT * FROM DM$VMDOC_MODEL ORDER BY NAME;

    To learn about model details views for ONNX embedding models, see Model Details Views for ONNX Models.

  4. Query the DM$VPDOC_MODEL model detail view.

    SELECT * FROM DM$VPDOC_MODEL ORDER BY NAME;
  5. Query the DM$VJDOC_MODEL model detail view.

    SELECT * FROM DM$VJDOC_MODEL;

Generate Embeddings

Apply the model and generate vector embeddings for your input. Here, the input is hello.

Generate vector embeddings using the VECTOR_EMBEDDING function.

SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS embedding;

To learn about the VECTOR_EMBEDDING SQL function, see VECTOR_EMBEDDING. You can use the UTL_TO_EMBEDDING function in the DBMS_VECTOR_CHAIN PL/SQL package to generate vector embeddings generically through REST endpoints. To explore these functions, see the example Convert Text String to Embedding.

Example: Importing a Pretrained ONNX Model to Oracle Database

The following presents a comprehensive step-by-step example of importing ONNX embedding and generating vector embeddings.

conn sys/<password>@pdbname as sysdba
grant db_developer_role to dmuser identified by <password>;
grant create mining model to dmuser;
 
create or replace directory DM_DUMP as '<work directory path>';
grant read on directory dm_dump to dmuser;
grant write on directory dm_dump to dmuser;
>conn dmuser/<password>@<pdbname>;

–- Drop the model if it exits								  
exec DBMS_VECTOR.DROP_ONNX_MODEL(model_name => 'doc_model', force => true);

-- Load Model
EXECUTE DBMS_VECTOR.LOAD_ONNX_MODEL(
	'DM_DUMP', 
	'my_embedding_model.onnx', 
	'doc_model', 
	JSON('{"function" : "embedding", "embeddingOutput" : "embedding"}'));
/
 
--check the attributes view
set linesize 120
col model_name format a20
col algorithm_name format a20
col algorithm format a20
col attribute_name format a20
col attribute_type format a20
col data_type format a20 

SQL> SELECT model_name, attribute_name, attribute_type, data_type, vector_info
FROM user_mining_model_attributes
WHERE model_name = 'DOC_MODEL'
ORDER BY ATTRIBUTE_NAME;
 
 
OUTPUT:
 
MODEL_NAME           ATTRIBUTE_NAME       ATTRIBUTE_TYPE       DATA_TYPE  VECTOR_INFO
-------------------- -------------------- -------------------- ---------- ---------------
DOC_MODEL                INPUT_STRING         TEXT                 VARCHAR2
DOC_MODEL                ORA$ONNXTARGET       VECTOR               VECTOR     VECTOR(128,FLOA
                                                                          T32)
 
 
 
SQL> SELECT MODEL_NAME, MINING_FUNCTION, ALGORITHM,
ALGORITHM_TYPE, MODEL_SIZE
FROM user_mining_models
WHERE model_name = 'DOC_MODEL'
ORDER BY MODEL_NAME;
 
OUTPUT:
MODEL_NAME           MINING_FUNCTION                ALGORITHM            ALGORITHM_ MODEL_SIZE
-------------------- ------------------------------ -------------------- ---------- ----------
DOC_MODEL                EMBEDDING                      ONNX                 NATIVE       17762137
 
 
 
SQL> select * from DM$VMDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- ----------------------------------------
Graph Description                        Graph combining g_8_torch_jit and torch_
                                         jit
                                         g_8_torch_jit
 
 
 
                                         torch_jit
 
 
Graph Name                               g_8_torch_jit_torch_jit
Input[0]                                 input:string[1]
Output[0]                                embedding:float32[?,128]
Producer Name                            onnx.compose.merge_models
Version                                  1
 
6 rows selected.
 
 
SQL> select * from DM$VPDOC_MODEL ORDER BY NAME;
 
OUTPUT:
NAME                                     VALUE
---------------------------------------- ----------------------------------------
batching                                 False
embeddingOutput                          embedding
 
 
SQL> select * from DM$VJDOC_MODEL;
 
OUTPUT:
METADATA
--------------------------------------------------------------------------------
{"function":"embedding","embeddingOutput":"embedding","input":{"input":["DATA"]}}
 
 
 
--apply the model
SQL> SELECT TO_VECTOR(VECTOR_EMBEDDING(doc_model USING 'hello' as data)) AS embedding;
  
--------------------------------------------------------------------------------
[-9.76553112E-002,-9.89954844E-002,7.69771636E-003,-4.16760892E-003,-9.69305634E-002,
-3.01141385E-002,-2.63396613E-002,-2.98553891E-002,5.96499592E-002,4.13885899E-002,
5.32859489E-002,6.57707453E-002,-1.47056757E-002,-4.18472625E-002,4.1588001E-002,
-2.86354572E-002,-7.56499246E-002,-4.16395674E-003,-1.52879998E-001,6.60010576E-002,
-3.9013084E-002,3.15719917E-002,1.2428958E-002,-2.47651711E-002,-1.16851285E-001,
-7.82847106E-002,3.34323719E-002,8.03267583E-002,1.70483496E-002,-5.42407483E-002,
6.54291287E-002,-4.81935125E-003,6.11041225E-002,6.64106477E-003,-5.47

Oracle AI Vector Search SQL Scenario

To learn how you can chunk database-concepts23ai.pdf and oracle-ai-vector-search-users-guide.pdf, generate vector embeddings, and perform similarity search using vector indexes, see Quick Start SQL.