Agente com Várias Ferramentas

Saiba como criar um agente que use várias ferramentas.

Um Agente de Suporte com uma Ferramenta RAG e várias Ferramentas de Função

Este exemplo demonstra um agente equipado com uma base de conhecimento (usando AgenticRagTool) e um conjunto de ferramentas de função personalizadas (usando Toolkit).

Antes de começar, crie uma base de conhecimento para a ferramenta RAG. Consulte Criando uma Base de Conhecimento. Para a origem de dados, crie um arquivo do Object Storage. Em seguida, copie o OCID da base de conhecimento e cole-o em um bloco de notas.

Python

product_support_agent.py

from oci.addons.adk import Agent, AgentClient
from oci.addons.adk.tool.prebuilt import AgenticRagTool
from custom_function_tools import AccountToolkit

def main():

    # Assuming the resources were already provisioned
    agent_endpoint_id = "ocid1.genaiagentendpoint..."
    knowledge_base_id = "ocid1.genaiagentknowledgebase..."

    client = AgentClient(
        auth_type="api_key",
        profile="DEFAULT",
        region="us-chicago-1"
    )

    instructions = """
    You are customer support agent.
    Use RAG tool to answer product questions.
    Use function tools to fetch user and org info by id.
    Only orgs of Enterprise plan can use Responses API.
    """

    agent = Agent(
        client=client,
        agent_endpoint_id=agent_endpoint_id,
        instructions=instructions,
        tools=[
            AgenticRagTool(knowledge_base_ids=[knowledge_base_id]),
            AccountToolkit()
        ]
    )

    agent.setup()

    # This is a context your existing code is best at producing (e.g., fetching the authenticated user id)
    client_provided_context = "[Context: The logged in user ID is: user_123] "

    # Handle the first user turn of the conversation
    input = "What is the Responses API?"
    input = client_provided_context + " " + input
    response = agent.run(input)
    response.pretty_print()

    # Handle the second user turn of the conversation
    input = "Is my user account eligible for the Responses API?"
    input = client_provided_context + " " + input
    response = agent.run(input, session_id=response.session_id)
    response.pretty_print()


if __name__ == "__main__":
    main()

Java

ProductSupportAgent.java


import com.oracle.bmc.ConfigFileReader;
import com.oracle.bmc.adk.agent.Agent;
import com.oracle.bmc.adk.agent.RunOptions;
import com.oracle.bmc.adk.client.AgentClient;
import com.oracle.bmc.adk.tools.prebuilt.AgenticRagTool;
import com.oracle.bmc.adk.run.RunResponse;
import com.oracle.bmc.auth.BasicAuthenticationDetailsProvider;
import com.oracle.bmc.auth.SessionTokenAuthenticationDetailsProvider;

import java.util.Arrays;
public class ProductSupportAgent {

  public static void main(String[] args) throws Exception {
    final String configLocation = "~/.oci/config";
    final String configProfile = "DEFAULT";
    final String agentEndpointId = "ocid1.genaiagentendpoint.oc1.us-chicago-1...";
    final String knowledgeBaseId ="ocid1.genaiagentknowledgebaseppe.oc1.us-chicago-1...";

    BasicAuthenticationDetailsProvider authProvider =
            new SessionTokenAuthenticationDetailsProvider(
                    ConfigFileReader.parse(configLocation, configProfile));

    AgentClient agentClient = AgentClient.builder()
        .authProvider(authProvider)
        .region("us-chicago-1")
        .build();

    final String instructions =
        "You are customer support agent. Use KB tool to answer product questions. Use tools to fetch user and org info by id. Only orgs of Enterprise plan can use Responses API.";

    Agent agent = Agent.builder()
            .client(agentClient)
            .agentEndpointId(agentEndpointId)
            .instructions(instructions)
            .tools(
                Arrays.asList(
                    new AccountToolkit(),
                    AgenticRagTool.builder().knowledgeBaseIds(Arrays.asList(knowledgeBaseId))))
            .build();

    agent.setup();

    final String clientProvidedContext = "[Context: The logged in user ID is: user_123]";

    // Handle the first user turn of the conversation
    String input = "What is the Responses API?";
    input = clientProvidedContext + " " + input;
    final Integer maxStep = 3;
    RunOptions runOptions = RunOptions.builder().maxSteps(maxStep).build();
    RunResponse response = agent.run(input, runOptions);
    response.prettyPrint();

    // Handle the second user turn of the conversation
    input = "Is my user account eligible for the Responses API?";
    input = clientProvidedContext + " " + input;
    runOptions.setSessionId(response.getSessionId());
    response = agent.run(input, runOptions);
    response.prettyPrint();
  }
}


Informações: Este exemplo também mostra o tratamento de conversas de vários turnos usando session_id para manter o contexto entre turnos. Explore mais sobre o exemplo de tratamento de conversas em vários turnos.


O agente usa um AccountToolkit personalizado. Você pode criar sua própria classe de kit de ferramentas personalizada herdando da classe oci.addons.adk, a classe Toolkit.

Uma classe Toolkit ajuda a organizar ferramentas relacionadas em uma única classe.

Você pode reutilizar o mesmo kit de ferramentas em diferentes agentes. Você também pode manter algum estado dentro da instância da classe Toolkit. O ADK chama o método de instância para que seu estado esteja disponível para os métodos com o decorador @tool.

Python

custom_function_tools.py

from typing import Dict, Any
from oci.addons.adk import Toolkit, tool

class AccountToolkit(Toolkit):

    @tool
    def get_user_info(self, user_id: str) -> Dict[str, Any]:
        """Get information about a user by user_id

        Args:
            user_id (str): The user ID to get information about

        Returns:
            Dict[str, Any]: A dictionary containing the user information
        """
        # Here is a mock implementation
        return {
            "user_id": user_id,
            "account_id": "acc_111",
            "name": "John Doe",
            "email": "john.doe@example.com",
            "org_id": "org_222",
        }

    @tool
    def get_org_info(self, org_id: str) -> Dict[str, Any]:
        """Get information about an organization by org_id

        Args:
            org_id (str): The organization ID to get information about

        Returns:
            Dict[str, Any]: A dictionary containing the organization information
        """
        # Here is a mock implementation
        return {
            "org_id": org_id,
            "name": "Acme Inc",
            "admin_email": "admin@acme.com",
            "plan": "Enterprise",
        }

Java

AccountToolkit.java

package demos.singleTurnMultiTools.accountToolkitAgent;

import com.oracle.bmc.adk.tools.Param;
import com.oracle.bmc.adk.tools.Tool;
import com.oracle.bmc.adk.tools.Toolkit;
import java.util.HashMap;
import java.util.Map;
public class AccountToolkit extends Toolkit {


  @Tool(name = "getUserInfo", description = "Get user info")
  public static Map<String, String> getUserInfo(
      @Param(description = "The user id.") String userId) {

    Map<String, String> userData = new HashMap<>();
    if (userId.equals("user_123")) {
      userData.put("user_id", userId);
      userData.put("account_id", "acc_111");
      userData.put("name", "John Doe");
      userData.put("email", "john.doe@example.com");
      userData.put("org_id", "org_222");
    } else {
      userData.put("user_id", userId);
      userData.put("account_id", "acc_111");
      userData.put("name", "Jane Doe");
      userData.put("email", "jane.doe@example.com");
      userData.put("org_id", "org_333");
    }
    return userData;
  }


  @Tool(name = "getOrgInfo", description = "Get org info")
  public static Map<String, String> getOrgInfo(@Param(description = "The org id.") String orgId) {

    Map<String, String> orgData = new HashMap<>();
    orgData.put("orgId", orgId);
    orgData.put("name", "Acme Inc");
    orgData.put("adminEmail", "admin@acme.com");
    orgData.put("plan", "Enterprise");
    return orgData;
  }
}