JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle Solaris Administration: ZFS File Systems     Oracle Solaris 11 Information Library
search filter icon
search icon

Document Information

Preface

1.  Oracle Solaris ZFS File System (Introduction)

2.  Getting Started With Oracle Solaris ZFS

3.  Oracle Solaris ZFS and Traditional File System Differences

4.  Managing Oracle Solaris ZFS Storage Pools

Components of a ZFS Storage Pool

Using Disks in a ZFS Storage Pool

Using Slices in a ZFS Storage Pool

Using Files in a ZFS Storage Pool

Considerations for ZFS Storage Pools

Replication Features of a ZFS Storage Pool

Mirrored Storage Pool Configuration

RAID-Z Storage Pool Configuration

ZFS Hybrid Storage Pool

Self-Healing Data in a Redundant Configuration

Dynamic Striping in a Storage Pool

Creating and Destroying ZFS Storage Pools

Creating ZFS Storage Pools

Creating a Basic Storage Pool

Creating a Mirrored Storage Pool

Creating a ZFS Root Pool

Creating a RAID-Z Storage Pool

Creating a ZFS Storage Pool With Log Devices

Creating a ZFS Storage Pool With Cache Devices

Cautions For Creating Storage Pools

Displaying Storage Pool Virtual Device Information

Handling ZFS Storage Pool Creation Errors

Detecting In-Use Devices

Mismatched Replication Levels

Doing a Dry Run of Storage Pool Creation

Default Mount Point for Storage Pools

Destroying ZFS Storage Pools

Destroying a Pool With Faulted Devices

Managing Devices in ZFS Storage Pools

Adding Devices to a Storage Pool

Attaching and Detaching Devices in a Storage Pool

Creating a New Pool By Splitting a Mirrored ZFS Storage Pool

Onlining and Offlining Devices in a Storage Pool

Taking a Device Offline

Bringing a Device Online

Clearing Storage Pool Device Errors

Replacing Devices in a Storage Pool

Designating Hot Spares in Your Storage Pool

Activating and Deactivating Hot Spares in Your Storage Pool

Managing ZFS Storage Pool Properties

Querying ZFS Storage Pool Status

Displaying Information About ZFS Storage Pools

Displaying Information About All Storage Pools or a Specific Pool

Displaying Pool Devices by Physical Locations

Displaying Specific Storage Pool Statistics

Scripting ZFS Storage Pool Output

Displaying ZFS Storage Pool Command History

Viewing I/O Statistics for ZFS Storage Pools

Listing Pool-Wide I/O Statistics

Listing Virtual Device I/O Statistics

Determining the Health Status of ZFS Storage Pools

Basic Storage Pool Health Status

Detailed Health Status

Gathering ZFS Storage Pool Status Information

Migrating ZFS Storage Pools

Preparing for ZFS Storage Pool Migration

Exporting a ZFS Storage Pool

Determining Available Storage Pools to Import

Importing ZFS Storage Pools From Alternate Directories

Importing ZFS Storage Pools

Importing a Pool With a Missing Log Device

Importing a Pool in Read-Only Mode

Importing a Pool By a Specific Device Path

Recovering Destroyed ZFS Storage Pools

Upgrading ZFS Storage Pools

5.  Managing ZFS Root Pool Components

6.  Managing Oracle Solaris ZFS File Systems

7.  Working With Oracle Solaris ZFS Snapshots and Clones

8.  Using ACLs and Attributes to Protect Oracle Solaris ZFS Files

9.  Oracle Solaris ZFS Delegated Administration

10.  Oracle Solaris ZFS Advanced Topics

11.  Oracle Solaris ZFS Troubleshooting and Pool Recovery

12.  Archiving Snapshots and Root Pool Recovery

13.  Recommended Oracle Solaris ZFS Practices

A.  Oracle Solaris ZFS Version Descriptions

Index

Creating and Destroying ZFS Storage Pools

The following sections describe different scenarios for creating and destroying ZFS storage pools:

Creating and destroying pools is fast and easy. However, be cautious when performing these operations. Although checks are performed to prevent using devices known to be in use in a new pool, ZFS cannot always know when a device is already in use. Destroying a pool is easier than creating one. Use zpool destroy with caution. This simple command has significant consequences.

Creating ZFS Storage Pools

To create a storage pool, use the zpool create command. This command takes a pool name and any number of virtual devices as arguments. The pool name must satisfy the naming requirements in ZFS Component Naming Requirements.

Creating a Basic Storage Pool

The following command creates a new pool named tank that consists of the disks c1t0d0 and c1t1d0:

# zpool create tank c1t0d0 c1t1d0

Device names representing the whole disks are found in the /dev/dsk directory and are labeled appropriately by ZFS to contain a single, large slice. Data is dynamically striped across both disks.

Creating a Mirrored Storage Pool

To create a mirrored pool, use the mirror keyword, followed by any number of storage devices that will comprise the mirror. Multiple mirrors can be specified by repeating the mirror keyword on the command line. The following command creates a pool with two, two-way mirrors:

# zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The second mirror keyword indicates that a new top-level virtual device is being specified. Data is dynamically striped across both mirrors, with data being redundant between each disk appropriately.

For more information about recommended mirrored configurations, see Chapter 13, Recommended Oracle Solaris ZFS Practices.

Currently, the following operations are supported in a ZFS mirrored configuration:

You cannot outright remove a device that is not a spare, a log device, or a cache device from a mirrored storage pool.

Creating a ZFS Root Pool

Consider the following root pool configuration requirements:

For more information about installing and booting a ZFS root file system, see Chapter 5, Managing ZFS Root Pool Components.

Creating a RAID-Z Storage Pool

Creating a single-parity RAID-Z pool is identical to creating a mirrored pool, except that the raidz or raidz1 keyword is used instead of mirror. The following example shows how to create a pool with a single RAID-Z device that consists of five disks:

# zpool create tank raidz c1t0d0 c2t0d0 c3t0d0 c4t0d0 /dev/dsk/c5t0d0

This example illustrates that disks can be specified by using their shorthand device names or their full device names. Both /dev/dsk/c5t0d0 and c5t0d0 refer to the same disk.

You can create a double-parity or triple-parity RAID-Z configuration by using the raidz2 or raidz3 keyword when creating the pool. For example:

# zpool create tank raidz2 c1t0d0 c2t0d0 c3t0d0 c4t0d0 c5t0d0
# zpool status -v tank
  pool: tank
 state: ONLINE
 scrub: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        tank        ONLINE       0     0     0
          raidz2-0  ONLINE       0     0     0
            c1t0d0  ONLINE       0     0     0
            c2t0d0  ONLINE       0     0     0
            c3t0d0  ONLINE       0     0     0
            c4t0d0  ONLINE       0     0     0
            c5t0d0  ONLINE       0     0     0

errors: No known data errors
# zpool create tank raidz3 c0t0d0 c1t0d0 c2t0d0 c3t0d0 c4t0d0
c5t0d0 c6t0d0 c7t0d0 c8t0d0
# zpool status -v tank
  pool: tank
 state: ONLINE
 scrub: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        tank        ONLINE       0     0     0
          raidz3-0  ONLINE       0     0     0
            c0t0d0  ONLINE       0     0     0
            c1t0d0  ONLINE       0     0     0
            c2t0d0  ONLINE       0     0     0
            c3t0d0  ONLINE       0     0     0
            c4t0d0  ONLINE       0     0     0
            c5t0d0  ONLINE       0     0     0
            c6t0d0  ONLINE       0     0     0
            c7t0d0  ONLINE       0     0     0
            c8t0d0  ONLINE       0     0     0
errors: No known data errors

Currently, the following operations are supported in a ZFS RAID-Z configuration:

Currently, the following operations are not supported in a RAID-Z configuration:

For more information about a RAID-Z configuration, see RAID-Z Storage Pool Configuration.

Creating a ZFS Storage Pool With Log Devices

The ZFS intent log (ZIL) is provided to satisfy POSIX requirements for synchronous transactions. For example, databases often require their transactions to be on stable storage devices when returning from a system call. NFS and other applications can also use fsync() to ensure data stability.

By default, the ZIL is allocated from blocks within the main pool. However, better performance might be possible by using separate intent log devices, such as NVRAM or a dedicated disk.

Consider the following points when determining whether setting up a ZFS log device is appropriate for your environment:

You can set up a ZFS log device when the storage pool is created or after the pool is created.

The following example shows how to create a mirrored storage pool with mirrored log devices:

# zpool create datap mirror c1t1d0 c1t2d0 mirror c1t3d0 c1t4d0
log mirror c1t5d0 c1t8d0
# zpool status datap
  pool: datap
 state: ONLINE
 scrub: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        datap       ONLINE       0     0     0
          mirror-0  ONLINE       0     0     0
            c1t1d0  ONLINE       0     0     0
            c1t2d0  ONLINE       0     0     0
          mirror-1  ONLINE       0     0     0
            c1t3d0  ONLINE       0     0     0
            c1t4d0  ONLINE       0     0     0
        logs
          mirror-2  ONLINE       0     0     0
            c1t5d0  ONLINE       0     0     0
            c1t8d0  ONLINE       0     0     0

errors: No known data errors

For information about recovering from a log device failure, see Example 11-2.

Creating a ZFS Storage Pool With Cache Devices

Cache devices provide an additional layer of caching between main memory and disk. Using cache devices provides the greatest performance improvement for random-read workloads of mostly static content.

You can create a storage pool with cache devices to cache storage pool data. For example:

# zpool create tank mirror c2t0d0 c2t1d0 c2t3d0 cache c2t5d0 c2t8d0
# zpool status tank
  pool: tank
 state: ONLINE
 scrub: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        tank        ONLINE       0     0     0
          mirror-0  ONLINE       0     0     0
            c2t0d0  ONLINE       0     0     0
            c2t1d0  ONLINE       0     0     0
            c2t3d0  ONLINE       0     0     0
        cache
          c2t5d0    ONLINE       0     0     0
          c2t8d0    ONLINE       0     0     0

errors: No known data errors

After cache devices are added, they gradually fill with content from main memory. Depending on the size of your cache device, it could take over an hour for the device to fill. Capacity and reads can be monitored by using the zpool iostat command as follows:

# zpool iostat -v pool 5

Cache devices can be added or removed from a pool after the pool is created.

Consider the following points when determining whether to create a ZFS storage pool with cache devices:

Cautions For Creating Storage Pools

Review the following cautions when creating and managing ZFS storage pools.

Displaying Storage Pool Virtual Device Information

Each storage pool contains one or more virtual devices. A virtual device is an internal representation of the storage pool that describes the layout of physical storage and the storage pool's fault characteristics. As such, a virtual device represents the disk devices or files that are used to create the storage pool. A pool can have any number of virtual devices at the top of the configuration, known as a top-level vdev.

If the top-level virtual device contains two or more physical devices, the configuration provides data redundancy as mirror or RAID-Z virtual devices. These virtual devices consist of disks, disk slices, or files. A spare is a special virtual dev that tracks available hot spares for a pool.

The following example shows how to create a pool that consists of two top-level virtual devices, each a mirror of two disks:

# zpool create tank mirror c1d0 c2d0 mirror c3d0 c4d0

The following example shows how to create a pool that consists of one top-level virtual device of four disks:

# zpool create mypool raidz2 c1d0 c2d0 c3d0 c4d0

You can add another top-level virtual device to this pool by using the zpool add command. For example:

# zpool add mypool raidz2 c2d1 c3d1 c4d1 c5d1

Disks, disk slices, or files that are used in nonredundant pools function as top-level virtual devices. Storage pools typically contain multiple top-level virtual devices. ZFS dynamically stripes data among all of the top-level virtual devices in a pool.

Virtual devices and the physical devices that are contained in a ZFS storage pool are displayed with the zpool status command. For example:

# zpool status tank
  pool: tank
 state: ONLINE
 scrub: none requested
config:

        NAME        STATE     READ WRITE CKSUM
        tank        ONLINE       0     0     0
          mirror-0  ONLINE       0     0     0
            c0t1d0  ONLINE       0     0     0
            c1t1d0  ONLINE       0     0     0
          mirror-1  ONLINE       0     0     0
            c0t2d0  ONLINE       0     0     0
            c1t2d0  ONLINE       0     0     0
          mirror-2  ONLINE       0     0     0
            c0t3d0  ONLINE       0     0     0
            c1t3d0  ONLINE       0     0     0

errors: No known data errors

Handling ZFS Storage Pool Creation Errors

Pool creation errors can occur for many reasons. Some reasons are obvious, such as when a specified device doesn't exist, while other reasons are more subtle.

Detecting In-Use Devices

Before formatting a device, ZFS first determines if the disk is in-use by ZFS or some other part of the operating system. If the disk is in use, you might see errors such as the following:

# zpool create tank c1t0d0 c1t1d0
invalid vdev specification
use '-f' to override the following errors:
/dev/dsk/c1t0d0s0 is currently mounted on /. Please see umount(1M).
/dev/dsk/c1t0d0s1 is currently mounted on swap. Please see swap(1M).
/dev/dsk/c1t1d0s0 is part of active ZFS pool zeepool. Please see zpool(1M).

Some errors can be overridden by using the -f option, but most errors cannot. The following conditions cannot be overridden by using the -f option, and you must manually correct them:

Mounted file system

The disk or one of its slices contains a file system that is currently mounted. To correct this error, use the umount command.

File system in /etc/vfstab

The disk contains a file system that is listed in the /etc/vfstab file, but the file system is not currently mounted. To correct this error, remove or comment out the line in the /etc/vfstab file.

Dedicated dump device

The disk is in use as the dedicated dump device for the system. To correct this error, use the dumpadm command.

Part of a ZFS pool

The disk or file is part of an active ZFS storage pool. To correct this error, use the zpool destroy command to destroy the other pool, if it is no longer needed. Or, use the zpool detach command to detach the disk from the other pool. You can only detach a disk from a mirrored storage pool.

The following in-use checks serve as helpful warnings and can be overridden by using the -f option to create the pool:

Contains a file system

The disk contains a known file system, though it is not mounted and doesn't appear to be in use.

Part of volume

The disk is part of a Solaris Volume Manager volume.

Part of exported ZFS pool

The disk is part of a storage pool that has been exported or manually removed from a system. In the latter case, the pool is reported as potentially active, as the disk might or might not be a network-attached drive in use by another system. Be cautious when overriding a potentially active pool.

The following example demonstrates how the -f option is used:

# zpool create tank c1t0d0
invalid vdev specification
use '-f' to override the following errors:
/dev/dsk/c1t0d0s0 contains a ufs filesystem.
# zpool create -f tank c1t0d0

Ideally, correct the errors rather than use the -f option to override them.

Mismatched Replication Levels

Creating pools with virtual devices of different replication levels is not recommended. The zpool command tries to prevent you from accidentally creating a pool with mismatched levels of redundancy. If you try to create a pool with such a configuration, you see errors similar to the following:

# zpool create tank c1t0d0 mirror c2t0d0 c3t0d0
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level: both disk and mirror vdevs are present
# zpool create tank mirror c1t0d0 c2t0d0 mirror c3t0d0 c4t0d0 c5t0d0
invalid vdev specification
use '-f' to override the following errors:
mismatched replication level: 2-way mirror and 3-way mirror vdevs are present

You can override these errors with the -f option, but you should avoid this practice. The command also warns you about creating a mirrored or RAID-Z pool using devices of different sizes. Although this configuration is allowed, mismatched levels of redundancy result in unused disk space on the larger device. The -f option is required to override the warning.

Doing a Dry Run of Storage Pool Creation

Attempts to create a pool can fail unexpectedly in different ways, and formatting disks is a potentially harmful action. For these reasons, the zpool create command has an additional option, -n, which simulates creating the pool without actually writing to the device. This dry run option performs the device in-use checking and replication-level validation, and reports any errors in the process. If no errors are found, you see output similar to the following:

# zpool create -n tank mirror c1t0d0 c1t1d0
would create 'tank' with the following layout:

        tank
          mirror
            c1t0d0
            c1t1d0

Some errors cannot be detected without actually creating the pool. The most common example is specifying the same device twice in the same configuration. This error cannot be reliably detected without actually writing the data, so the zpool create -n command can report success and yet fail to create the pool when the command is run without this option.

Default Mount Point for Storage Pools

When a pool is created, the default mount point for the top-level file system is /pool-name. This directory must either not exist or be empty. If the directory does not exist, it is automatically created. If the directory is empty, the root file system is mounted on top of the existing directory. To create a pool with a different default mount point, use the -m option of the zpool create command. For example:

# zpool create home c1t0d0
default mountpoint '/home' exists and is not empty
use '-m' option to provide a different default
# zpool create -m /export/zfs home c1t0d0

This command creates the new pool home and the home file system with a mount point of /export/zfs.

For more information about mount points, see Managing ZFS Mount Points.

Destroying ZFS Storage Pools

Pools are destroyed by using the zpool destroy command. This command destroys the pool even if it contains mounted datasets.

# zpool destroy tank

Caution

Caution - Be very careful when you destroy a pool. Ensure that you are destroying the right pool and you always have copies of your data. If you accidentally destroy the wrong pool, you can attempt to recover the pool. For more information, see Recovering Destroyed ZFS Storage Pools.


If you destroy a pool with the zpool destroy command, the pool is still available for import as described in Recovering Destroyed ZFS Storage Pools. This means that confidential data might still be available on the disks that were part of the pool. If you want to destroy data on the destroyed pool's disks, you must use a feature like the format utility's analyze->purge option on every disk in the destroyed pool.

Another option for keeping file system data confidential is to create encrypted ZFS file systems. When a pool with an encrypted file system is destroyed, the data would not be accessible without the encryption keys, even if the destroyed pool was recovered. For more information, see Encrypting ZFS File Systems.

Destroying a Pool With Faulted Devices

The act of destroying a pool requires data to be written to disk to indicate that the pool is no longer valid. This state information prevents the devices from showing up as a potential pool when you perform an import. If one or more devices are unavailable, the pool can still be destroyed. However, the necessary state information won't be written to these unavailable devices.

These devices, when suitably repaired, are reported as potentially active when you create a new pool. They appear as valid devices when you search for pools to import. If a pool has enough faulted devices such that the pool itself is faulted (meaning that a top-level virtual device is faulted), then the command prints a warning and cannot complete without the -f option. This option is necessary because the pool cannot be opened, so whether data is stored there is unknown. For example:

# zpool destroy tank
cannot destroy 'tank': pool is faulted
use '-f' to force destruction anyway
# zpool destroy -f tank

For more information about pool and device health, see Determining the Health Status of ZFS Storage Pools.

For more information about importing pools, see Importing ZFS Storage Pools.