cc [ flag... ] file... –lmlib [ library... ] #include <mlib.h> mlib_status mlib_MatrixTranspose_U8(mlib_u8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_U8C(mlib_u8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S8(mlib_s8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S8C(mlib_s8 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S16(mlib_s16 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S16C(mlib_s16 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S32(mlib_s32 *xz, mlib_s32 mn);
mlib_status mlib_MatrixTranspose_S32C(mlib_s32 *xz, mlib_s32 mn);
Each of these functions performs an in-place transpose of a square matrix.
For real data, the following pseudo code applies:
for (i = 1; i < mn; i++) { for (j = 0; j < i; i++) { tmp = xz[i*mn + j]; xz[i*mn + j] = xz[j*mn + i]; xz[j*mn + i] = tmp; } }
For complex data, the following pseudo code applies:
for (i = 1; i < mn; i++) { for (j = 0; j < i; i++) { tmp0 = xz[2*(i*mn + j)]; tmp1 = xz[2*(i*mn + j) + 1]; xz[2*(i*mn + j)] = xz[2*(j*mn + i)]; xz[2*(i*mn + j) + 1] = xz[2*(j*mn + i) + 1]; xz[2*(j*mn + i)] = tmp0; xz[2*(j*mn + i) + 1] = tmp1; } }
Each of the functions takes the following arguments:
Pointer to the source and destination matrix.
Number of rows and columns in the matrix.
Each of the functions returns MLIB_SUCCESS if successful. Otherwise it returns MLIB_FAILURE.
See attributes(5) for descriptions of the following attributes:
|