
CDC 1.1.2  
PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 
java.lang.Object java.util.Arrays
This class contains various methods for manipulating arrays (such as sorting and searching). This class also contains a static factory that allows arrays to be viewed as lists.
The methods in this class all throw a NullPointerException if the specified array reference is null.
The documentation for the methods contained in this class includes briefs description of the implementations. Such descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should feel free to substitute other algorithms, so long as the specification itself is adhered to. (For example, the algorithm used by sort(Object[]) does not have to be a mergesort, but it does have to be stable.)
This class is a member of the Java Collections Framework.
Comparable
,
Comparator
Method Summary  
static List 
asList(Object[] a)
Returns a fixedsize list backed by the specified array. 
static int 
binarySearch(byte[] a,
byte key)
Searches the specified array of bytes for the specified value using the binary search algorithm. 
static int 
binarySearch(char[] a,
char key)
Searches the specified array of chars for the specified value using the binary search algorithm. 
static int 
binarySearch(double[] a,
double key)
Searches the specified array of doubles for the specified value using the binary search algorithm. 
static int 
binarySearch(float[] a,
float key)
Searches the specified array of floats for the specified value using the binary search algorithm. 
static int 
binarySearch(int[] a,
int key)
Searches the specified array of ints for the specified value using the binary search algorithm. 
static int 
binarySearch(long[] a,
long key)
Searches the specified array of longs for the specified value using the binary search algorithm. 
static int 
binarySearch(Object[] a,
Object key)
Searches the specified array for the specified object using the binary search algorithm. 
static int 
binarySearch(Object[] a,
Object key,
Comparator c)
Searches the specified array for the specified object using the binary search algorithm. 
static int 
binarySearch(short[] a,
short key)
Searches the specified array of shorts for the specified value using the binary search algorithm. 
static boolean 
equals(boolean[] a,
boolean[] a2)
Returns true if the two specified arrays of booleans are equal to one another. 
static boolean 
equals(byte[] a,
byte[] a2)
Returns true if the two specified arrays of bytes are equal to one another. 
static boolean 
equals(char[] a,
char[] a2)
Returns true if the two specified arrays of chars are equal to one another. 
static boolean 
equals(double[] a,
double[] a2)
Returns true if the two specified arrays of doubles are equal to one another. 
static boolean 
equals(float[] a,
float[] a2)
Returns true if the two specified arrays of floats are equal to one another. 
static boolean 
equals(int[] a,
int[] a2)
Returns true if the two specified arrays of ints are equal to one another. 
static boolean 
equals(long[] a,
long[] a2)
Returns true if the two specified arrays of longs are equal to one another. 
static boolean 
equals(Object[] a,
Object[] a2)
Returns true if the two specified arrays of Objects are equal to one another. 
static boolean 
equals(short[] a,
short[] a2)
Returns true if the two specified arrays of shorts are equal to one another. 
static void 
fill(boolean[] a,
boolean val)
Assigns the specified boolean value to each element of the specified array of booleans. 
static void 
fill(boolean[] a,
int fromIndex,
int toIndex,
boolean val)
Assigns the specified boolean value to each element of the specified range of the specified array of booleans. 
static void 
fill(byte[] a,
byte val)
Assigns the specified byte value to each element of the specified array of bytes. 
static void 
fill(byte[] a,
int fromIndex,
int toIndex,
byte val)
Assigns the specified byte value to each element of the specified range of the specified array of bytes. 
static void 
fill(char[] a,
char val)
Assigns the specified char value to each element of the specified array of chars. 
static void 
fill(char[] a,
int fromIndex,
int toIndex,
char val)
Assigns the specified char value to each element of the specified range of the specified array of chars. 
static void 
fill(double[] a,
double val)
Assigns the specified double value to each element of the specified array of doubles. 
static void 
fill(double[] a,
int fromIndex,
int toIndex,
double val)
Assigns the specified double value to each element of the specified range of the specified array of doubles. 
static void 
fill(float[] a,
float val)
Assigns the specified float value to each element of the specified array of floats. 
static void 
fill(float[] a,
int fromIndex,
int toIndex,
float val)
Assigns the specified float value to each element of the specified range of the specified array of floats. 
static void 
fill(int[] a,
int val)
Assigns the specified int value to each element of the specified array of ints. 
static void 
fill(int[] a,
int fromIndex,
int toIndex,
int val)
Assigns the specified int value to each element of the specified range of the specified array of ints. 
static void 
fill(long[] a,
int fromIndex,
int toIndex,
long val)
Assigns the specified long value to each element of the specified range of the specified array of longs. 
static void 
fill(long[] a,
long val)
Assigns the specified long value to each element of the specified array of longs. 
static void 
fill(Object[] a,
int fromIndex,
int toIndex,
Object val)
Assigns the specified Object reference to each element of the specified range of the specified array of Objects. 
static void 
fill(Object[] a,
Object val)
Assigns the specified Object reference to each element of the specified array of Objects. 
static void 
fill(short[] a,
int fromIndex,
int toIndex,
short val)
Assigns the specified short value to each element of the specified range of the specified array of shorts. 
static void 
fill(short[] a,
short val)
Assigns the specified short value to each element of the specified array of shorts. 
static void 
sort(byte[] a)
Sorts the specified array of bytes into ascending numerical order. 
static void 
sort(byte[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of bytes into ascending numerical order. 
static void 
sort(char[] a)
Sorts the specified array of chars into ascending numerical order. 
static void 
sort(char[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of chars into ascending numerical order. 
static void 
sort(double[] a)
Sorts the specified array of doubles into ascending numerical order. 
static void 
sort(double[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of doubles into ascending numerical order. 
static void 
sort(float[] a)
Sorts the specified array of floats into ascending numerical order. 
static void 
sort(float[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of floats into ascending numerical order. 
static void 
sort(int[] a)
Sorts the specified array of ints into ascending numerical order. 
static void 
sort(int[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of ints into ascending numerical order. 
static void 
sort(long[] a)
Sorts the specified array of longs into ascending numerical order. 
static void 
sort(long[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of longs into ascending numerical order. 
static void 
sort(Object[] a)
Sorts the specified array of objects into ascending order, according to the natural ordering of its elements. 
static void 
sort(Object[] a,
Comparator c)
Sorts the specified array of objects according to the order induced by the specified comparator. 
static void 
sort(Object[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of objects into ascending order, according to the natural ordering of its elements. 
static void 
sort(Object[] a,
int fromIndex,
int toIndex,
Comparator c)
Sorts the specified range of the specified array of objects according to the order induced by the specified comparator. 
static void 
sort(short[] a)
Sorts the specified array of shorts into ascending numerical order. 
static void 
sort(short[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of shorts into ascending numerical order. 
Methods inherited from class java.lang.Object 
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait 
Method Detail 
public static void sort(long[] a)
a
 the array to be sorted.public static void sort(long[] a, int fromIndex, int toIndex)
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(int[] a)
a
 the array to be sorted.public static void sort(int[] a, int fromIndex, int toIndex)
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(short[] a)
a
 the array to be sorted.public static void sort(short[] a, int fromIndex, int toIndex)
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(char[] a)
a
 the array to be sorted.public static void sort(char[] a, int fromIndex, int toIndex)
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(byte[] a)
a
 the array to be sorted.public static void sort(byte[] a, int fromIndex, int toIndex)
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(double[] a)
The <
relation does not provide a total order on
all floatingpoint values; although they are distinct numbers
0.0 == 0.0
is true
and a NaN value
compares neither less than, greater than, nor equal to any
floatingpoint value, even itself. To allow the sort to
proceed, instead of using the <
relation to
determine ascending numerical order, this method uses the total
order imposed by Double.compareTo(java.lang.Double)
. This ordering
differs from the <
relation in that
0.0
is treated as less than 0.0
and
NaN is considered greater than any other floatingpoint value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.public static void sort(double[] a, int fromIndex, int toIndex)
The <
relation does not provide a total order on
all floatingpoint values; although they are distinct numbers
0.0 == 0.0
is true
and a NaN value
compares neither less than, greater than, nor equal to any
floatingpoint value, even itself. To allow the sort to
proceed, instead of using the <
relation to
determine ascending numerical order, this method uses the total
order imposed by Double.compareTo(java.lang.Double)
. This ordering
differs from the <
relation in that
0.0
is treated as less than 0.0
and
NaN is considered greater than any other floatingpoint value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(float[] a)
The <
relation does not provide a total order on
all floatingpoint values; although they are distinct numbers
0.0f == 0.0f
is true
and a NaN value
compares neither less than, greater than, nor equal to any
floatingpoint value, even itself. To allow the sort to
proceed, instead of using the <
relation to
determine ascending numerical order, this method uses the total
order imposed by Float.compareTo(java.lang.Float)
. This ordering
differs from the <
relation in that
0.0f
is treated as less than 0.0f
and
NaN is considered greater than any other floatingpoint value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.public static void sort(float[] a, int fromIndex, int toIndex)
The <
relation does not provide a total order on
all floatingpoint values; although they are distinct numbers
0.0f == 0.0f
is true
and a NaN value
compares neither less than, greater than, nor equal to any
floatingpoint value, even itself. To allow the sort to
proceed, instead of using the <
relation to
determine ascending numerical order, this method uses the total
order imposed by Float.compareTo(java.lang.Float)
. This ordering
differs from the <
relation in that
0.0f
is treated as less than 0.0f
and
NaN is considered greater than any other floatingpoint value.
For the purposes of sorting, all NaN values are considered
equivalent and equal.
The sorting algorithm is a tuned quicksort, adapted from Jon L. Bentley and M. Douglas McIlroy's "Engineering a Sort Function", SoftwarePractice and Experience, Vol. 23(11) P. 12491265 (November 1993). This algorithm offers n*log(n) performance on many data sets that cause other quicksorts to degrade to quadratic performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void sort(Object[] a)
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
a
 the array to be sorted.
ClassCastException
 if the array contains elements that are not
mutually comparable (for example, strings and integers).Comparable
public static void sort(Object[] a, int fromIndex, int toIndex)
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.length
ClassCastException
 if the array contains elements that are
not mutually comparable (for example, strings and
integers).Comparable
public static void sort(Object[] a, Comparator c)
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
a
 the array to be sorted.c
 the comparator to determine the order of the array. A
null value indicates that the elements' natural
ordering should be used.
ClassCastException
 if the array contains elements that are
not mutually comparable using the specified comparator.Comparator
public static void sort(Object[] a, int fromIndex, int toIndex, Comparator c)
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
The sorting algorithm is a modified mergesort (in which the merge is omitted if the highest element in the low sublist is less than the lowest element in the high sublist). This algorithm offers guaranteed n*log(n) performance.
a
 the array to be sorted.fromIndex
 the index of the first element (inclusive) to be
sorted.toIndex
 the index of the last element (exclusive) to be sorted.c
 the comparator to determine the order of the array. A
null value indicates that the elements' natural
ordering should be used.
ClassCastException
 if the array contains elements that are not
mutually comparable using the specified comparator.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthComparator
public static int binarySearch(long[] a, long key)
a
 the array to be searched.key
 the value to be searched for.
sort(long[])
public static int binarySearch(int[] a, int key)
a
 the array to be searched.key
 the value to be searched for.
sort(int[])
public static int binarySearch(short[] a, short key)
a
 the array to be searched.key
 the value to be searched for.
sort(short[])
public static int binarySearch(char[] a, char key)
a
 the array to be searched.key
 the value to be searched for.
sort(char[])
public static int binarySearch(byte[] a, byte key)
a
 the array to be searched.key
 the value to be searched for.
sort(byte[])
public static int binarySearch(double[] a, double key)
a
 the array to be searched.key
 the value to be searched for.
sort(double[])
public static int binarySearch(float[] a, float key)
a
 the array to be searched.key
 the value to be searched for.
sort(float[])
public static int binarySearch(Object[] a, Object key)
a
 the array to be searched.key
 the value to be searched for.
ClassCastException
 if the search key in not comparable to the
elements of the array.Comparable
,
sort(Object[])
public static int binarySearch(Object[] a, Object key, Comparator c)
a
 the array to be searched.key
 the value to be searched for.c
 the comparator by which the array is ordered. A
null value indicates that the elements' natural
ordering should be used.
ClassCastException
 if the array contains elements that are not
mutually comparable using the specified comparator,
or the search key in not mutually comparable with the
elements of the array using this comparator.Comparable
,
sort(Object[], Comparator)
public static boolean equals(long[] a, long[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(int[] a, int[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(short[] a, short[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(char[] a, char[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(byte[] a, byte[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(boolean[] a, boolean[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static boolean equals(double[] a, double[] a2)
Two doubles d1 and d2 are considered equal if:
new Double(d1).equals(new Double(d2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0d unequal to 0.0d.)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
Double.equals(Object)
public static boolean equals(float[] a, float[] a2)
Two floats f1 and f2 are considered equal if:
new Float(f1).equals(new Float(f2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0f unequal to 0.0f.)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
Float.equals(Object)
public static boolean equals(Object[] a, Object[] a2)
a
 one array to be tested for equality.a2
 the other array to be tested for equality.
public static void fill(long[] a, long val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(long[] a, int fromIndex, int toIndex, long val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(int[] a, int val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(int[] a, int fromIndex, int toIndex, int val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(short[] a, short val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(short[] a, int fromIndex, int toIndex, short val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(char[] a, char val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(char[] a, int fromIndex, int toIndex, char val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(byte[] a, byte val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(byte[] a, int fromIndex, int toIndex, byte val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(boolean[] a, boolean val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(double[] a, double val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(double[] a, int fromIndex, int toIndex, double val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(float[] a, float val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(float[] a, int fromIndex, int toIndex, float val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static void fill(Object[] a, Object val)
a
 the array to be filled.val
 the value to be stored in all elements of the array.public static void fill(Object[] a, int fromIndex, int toIndex, Object val)
a
 the array to be filled.fromIndex
 the index of the first element (inclusive) to be
filled with the specified value.toIndex
 the index of the last element (exclusive) to be
filled with the specified value.val
 the value to be stored in all elements of the array.
IllegalArgumentException
 if fromIndex > toIndex
ArrayIndexOutOfBoundsException
 if fromIndex < 0 or
toIndex > a.lengthpublic static List asList(Object[] a)
RandomAccess
.
a
 the array by which the list will be backed.
Collection.toArray()

CDC 1.1.2  
PREV CLASS NEXT CLASS  FRAMES NO FRAMES  
SUMMARY: NESTED  FIELD  CONSTR  METHOD  DETAIL: FIELD  CONSTR  METHOD 