Package | Description |
---|---|
oracle.pgx.api |
This package contains the main Java APIs.
|
Modifier and Type | Method and Description |
---|---|
<ID> PgxFuture<AllPaths<ID>> |
PgxGraph.createAllPathsAsync(PgxVertex<ID> src, EdgeProperty<java.lang.Double> cost, VertexProperty<ID,java.lang.Double> dist, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Creates a
AllPaths object representing all the shortest paths from a single source to all the possible destinations (shortest regarding the given edge costs). |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.fattestPathAsync(PgxGraph graph, PgxVertex<ID> root, EdgeProperty<java.lang.Double> capacity)
Fattest Tree Algorithm - Computes the fattest path from a source vertex to all vertices in the graph.
|
<ID> PgxFuture<AllPaths<ID>> |
Analyst.fattestPathAsync(PgxGraph graph, PgxVertex<ID> root, EdgeProperty<java.lang.Double> capacity, VertexProperty<ID,java.lang.Double> distance, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Fattest Tree Algorithm - Computes the fattest path from a source vertex to all vertices in the graph.
|
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathBellmanFordAsync(PgxGraph graph, PgxVertex<ID> src, EdgeProperty<java.lang.Double> cost)
Compute single source shortest paths using Bellman & Ford algorithm
Time complexity: O(E * D) with E = number of edges, D = number edges in the shortest length |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathBellmanFordAsync(PgxGraph graph, PgxVertex<ID> src, EdgeProperty<java.lang.Double> cost, VertexProperty<ID,java.lang.Double> distance, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Compute single source shortest paths using Bellman & Ford algorithm
Time complexity: O(E * D) with E = number of edges, D = number edges in the shortest length |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathBellmanFordReverseAsync(PgxGraph graph, PgxVertex<ID> src, EdgeProperty<java.lang.Double> cost)
Compute reverse single source shortest paths using Bellman & Ford algorithm
Time complexity: O(E * D) with E = number of edges, D = number edges in the shortest length |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathBellmanFordReverseAsync(PgxGraph graph, PgxVertex<ID> src, EdgeProperty<java.lang.Double> cost, VertexProperty<ID,java.lang.Double> distance, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Compute reverse single source shortest paths using Bellman & Ford algorithm
Time complexity: O(E * D) with E = number of edges, D = number edges in the shortest length |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathHopDistAsync(PgxGraph graph, PgxVertex<ID> src)
Compute hop-distance from given vertex to every other vertex
Time complexity: O(E * d) with E = number of edges, d = diameter of graph |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathHopDistAsync(PgxGraph graph, PgxVertex<ID> src, VertexProperty<ID,java.lang.Double> distance, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Compute hop-distance from given vertex to every other vertex
Time complexity: O(E * d) with E = number of edges, d = diameter of graph |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathHopDistReverseAsync(PgxGraph graph, PgxVertex<ID> src)
Compute reverse hop-distance from given vertex to every other vertex
Time complexity: O(E * d) with E = number of edges, d = diameter of graph |
<ID> PgxFuture<AllPaths<ID>> |
Analyst.shortestPathHopDistReverseAsync(PgxGraph graph, PgxVertex<ID> src, VertexProperty<ID,java.lang.Double> distance, VertexProperty<ID,PgxVertex<ID>> parent, VertexProperty<ID,PgxEdge> parentEdge)
Compute reverse hop-distance from given vertex to every other vertex
Time complexity: O(E * d) with E = number of edges, d = diameter of graph |
Copyright © 2017 Oracle Corp. All Rights Reserved.