Package | Description |
---|---|
oracle.pgx.api |
This package contains the main Java APIs.
|
Modifier and Type | Method and Description |
---|---|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty)
Blocking version of
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph, EdgeProperty) . |
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Blocking version of
#matrixFactorizationGradientDescentAsync(BipartiteGraph, EdgeProperty, double, double, double, int, int, VertexProperty<ID, PgxVect<Double>>) . |
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Blocking version of
#matrixFactorizationGradientDescentAsync(BipartiteGraph, EdgeProperty, VertexProperty<ID, PgxVect<Double>>) . |
Modifier and Type | Method and Description |
---|---|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty)
Performs the training step of generating recommendations using matrix factorization.
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
Performs the training step of generating recommendations using matrix factorization.
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Performs the training step of generating recommendations using matrix factorization.
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weightProperty, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Performs the training step of generating recommendations using matrix factorization.
|
Copyright © 2017 Oracle Corp. All Rights Reserved.