Oracle Call Interface Programmer's Guide
Release 9.0.1

Part Number A89857-01
Go To Documentation Library
Home
Go To Product List
Book List
Go To Table Of Contents
Contents
Go To Index
Index

Master Index

Feedback

Go to previous page Go to next page

3
Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI applications. It also provides a general discussion of Oracle datatypes, including special datatypes new in the latest Oracle release. The information in this chapter is useful for understanding the conversions between internal and external representations that occur when you transfer data between your program and Oracle. This chapter contains the following sections:

Oracle Datatypes

One of the main functions of an OCI program is to communicate with a database through an Oracle server. The OCI application may retrieve data from database tables through SQL SELECT queries, or it may modify existing data in tables through INSERT, UPDATE, or DELETE statements.

Inside a database, values are stored in columns in tables. Internally, Oracle represents data in particular formats known as internal datatypes. Examples of internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of data. OCI applications work with host language datatypes which are predefined by the language in which they are written. When data is transferred between an OCI client application and a database table, the OCI libraries convert the data between internal datatypes and external datatypes.

External datatypes are host language types that have been defined in the OCI header files. When an OCI application binds input variables, one of the bind parameters is an indication of the external datatype code (or SQLT code) of the variable. Similarly, when output variables are specified in a define call, the external representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types provide a convenience for the programmer by making it possible to work with host language types instead of proprietary data formats.


Note:

Even though some external types are similar to internal types, an OCI application never binds to internal datatypes. They are discussed here because it can be useful to understand how internal types can map to external types. 


The OCI is capable of performing a wide range of datatype conversions when transferring data between Oracle and an OCI application. There are more OCI external datatypes than Oracle internal datatypes. In some cases a single external type maps to an internal type; in other cases multiple external types map to an single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

and you want the salary to come back as character data, rather than in a binary floating-point format, specify an Oracle external string datatype, such as VARCHAR2 (code = 1) or CHAR (code = 96) for the dty parameter in the OCIDefineByPos() call for the sal column. You also need to declare a string variable in your program and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value, however, specify the FLOAT (code = 4) external datatype. You also need to define a variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost any external datatype provides a lot of power for performing specialized tasks. For example, you can input and output DATE values in pure binary format, with no character conversion involved, by using the DATE external datatype (code = 12). See the description of the DATE external datatype for more information.

To control data conversion, you must use the appropriate external datatype codes in the bind and define routines. You must tell Oracle where the input or output variables are in your OCI program and their datatypes and lengths.

OCI also supports an additional set of OCI typecodes which are used by Oracle's type management system to represent datatypes of object type attributes. There is a set of predefined constants which can be used to represent these typecodes. The constants each contain the prefix OCI_TYPECODE.

In summary, the OCI programmer must be aware of the following different datatypes or data representations:

Information about a column's internal datatype is conveyed to your application in the form of an internal datatype code. Once your application knows what type of data will be returned, it can make appropriate decisions about how to convert and format the output data. The Oracle internal datatype codes are listed in the section "Internal Datatypes".

See Also:

For detailed information about Oracle internal datatypes, see the Oracle9i SQL Reference. For information about describing select-list items in a query, see the section "Describing Select-List Items"

Using External Datatype Codes

An external datatype code indicates to Oracle how a host variable represents data in your program. This determines how the data is converted when returned to output variables in your program, or how it is converted from input (bind) variables to Oracle column values. For example, if you want to convert a NUMBER in an Oracle column to a variable-length character array, you specify the VARCHAR2 external datatype code in the OCIDefineByPos() call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external datatype code that corresponds to the type of the bind variable. For example, if you want to input a character string such as 02-FEB-65 to a DATE column, specify the datatype as a character string and set the length parameter to nine.

It is always the programmer's responsibility to make sure that values are convertible. If you try to insert the string MY BIRTHDAY into a DATE column, you will get an error when you execute the statement.

See Also:

For a complete list of the external datatypes and datatype codes, see Table 3-2, "External Datatypes and Codes" 

Internal Datatypes

The following table lists the Oracle internal (also known as built-in) datatypes, along with each type's maximum internal length and datatype code.

Table 3-1 Internal Oracle Datatypes  
Internal Oracle Datatype  Maximum Internal Length  Datatype Code 

VARCHAR2, NVARCHAR2 

4000 bytes 

NUMBER 

21 bytes 

LONG 

2^31-1 bytes (2 gigabytes) 

ROWID 

10 bytes 

11 

DATE 

7 bytes 

12 

RAW 

2000 bytes 

23 

LONG RAW 

2^31-1 bytes 

24 

CHAR, NCHAR 

2000 bytes 

96 

User-defined type (object type, VARRAY, Nested Table) 

N/A 

108 

REF 

N/A 

111 

CLOB, NCLOB 

4 gigabytes 

112 

BLOB 

4 gigabytes 

113 

BFILE 

4 gigabytes 

114 

TIMESTAMP 

11 bytes 

180 

TIMESTAMP WITH TIME ZONE 

13 bytes 

181 

INTERVAL YEAR TO MONTH 

5 bytes 

182 

INTERVAL DAY TO SECOND 

11 bytes 

183 

UROWID 

3950 bytes 

208 

TIMESTAMP WITH LOCAL TIME ZONE 

11 bytes 

231 

See Also:

For more information about these built-in datatypes, see the Oracle9i SQL Reference. The following sections provide OCI-specific information about these datatypes. 

LONG, RAW, LONG RAW, VARCHAR2

You can use the piecewise capabilities provided by OCIBindByName(), OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo() to perform inserts, updates or fetches involving column data of these types.

Character Strings and Byte Arrays

You can use five Oracle internal datatypes to specify columns that contain characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.


Note:

LOBs can contain characters and FILEs can contain binary data. They are handled differently than other types, so they are not included in this discussion. See Chapter 7, "LOB and FILE Operations", for more information about these data types. 


CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and LONG RAW hold bytes that are not interpreted as characters, for example, pixel values in a bit-mapped graphics image. Character data can be transformed when passed through a gateway between networks. For example, character data passed between machines using different languages (where single characters may be represented by differing numbers of bytes) can be significantly changed in length. Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle internal datatype for each column in the table. The OCI programmer must be aware of the many possible ways that character and byte-array data can be represented and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is always passed in and returned in bytes, not characters.

UROWID

The Universal ROWID (UROWID) is a datatype that can store both logical and physical rowids of Oracle tables, and rowids of the foreign tables, such as DB2 tables accessed by a gateway. Logical rowids are primary key-based logical identifiers for the rows of Index-Organized Tables (IOTs).

To use columns of the UROWID datatype, the value of the COMPATIBLE initialization parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:

External Datatypes

Table 3-2 lists datatype codes for external datatypes. For each datatype, the table lists the program variable types for C from or to which Oracle internal data is normally converted.

Table 3-2 External Datatypes and Codes  
EXTERNAL DATATYPE  TYPE OF PROGRAM VARIABLE  OCI DEFINED CONSTANT 
NAME  CODE 

VARCHAR2 

char[n] 

SQLT_CHR 

NUMBER 

unsigned char[21] 

SQLT_NUM 

8-bit signed INTEGER 

signed char 

SQLT_INT 

16-bit signed INTEGER 

signed short, signed int 

SQLT_INT 

32-bit signed INTEGER 

signed int, signed long 

SQLT_INT 

FLOAT 

float, double 

SQLT_FLT 

Null-terminated STRING 

char[n+1] 

SQLT_STR 

VARNUM 

char[22] 

SQLT_VNU 

LONG 

char[n] 

SQLT_LNG 

VARCHAR 

char[n+sizeof(short integer)] 

SQLT_VCS 

DATE 

12 

char[7] 

SQLT_DAT 

VARRAW 

15 

unsigned char[n+sizeof(short integer)] 

SQLT_VBI 

RAW 

23 

unsigned char[n] 

SQLT_BIN 

LONG RAW 

24 

unsigned char[n] 

SQLT_LBI 

UNSIGNED INT 

68 

unsigned 

SQLT_UIN 

LONG VARCHAR 

94 

char[n+sizeof(integer)] 

SQLT_LVC 

LONG VARRAW 

95 

unsigned char[n+sizeof(integer)] 

SQLT_LVB 

CHAR 

96 

char[n] 

SQLT_AFC 

CHARZ 

97 

char[n+1] 

SQLT_AVC 

ROWID descriptor 

104 

OCIRowid * 

SQLT_RDD 

NAMED DATA TYPE 

108 

struct 

SQLT_NTY 

REF 

110 

OCIRef 

SQLT_REF 

Character LOB descriptor 

112 

OCILobLocator (see note 3) 

SQLT_CLOB 

Binary LOB descriptor 

113 

OCILobLocator (see note 3) 

SQLT_BLOB 

Binary FILE descriptor 

114 

OCILobLocator 

SQLT_FILE 

OCI string type 

155 

OCIString 

SQLT_VST (see note 2) 

OCI date type 

156 

OCIDate * 

SQLT_ODT (see note 2) 

ANSI DATE descriptor 

184 

OCIDateTime * 

SQLT_DATE 

TIMESTAMP descriptor 

187 

OCIDateTime * 

SQLT_TIMESTAMP 

TIMESTAMP WITH TIME ZONE descriptor 

188 

OCIDateTime * 

SQLT_TIMESTAMP_TZ 

INTERVAL YEAR TO MONTH descriptor 

189 

OCIInterval * 

SQLT_INTERVAL_YM 

INTERVAL DAY TO SECOND descriptor 

190 

OCIInterval * 

SQLT_INTERVAL_DS 

TIMESTAMP WITH LOCAL TIME ZONE descriptor 

232 

OCIDateTime * 

SQLT_TIMESTAMP_LTZ 

Notes:

(1) This type is valid only for version 7.x OCI calls. OCI release 8 or later applications should use the ROWID descriptor (type 104).

(2) For more information on the use of these datatypes, refer to Chapter 11, "Object-Relational Datatypes".

(3) In applications using datatype mappings generated by OTT, CLOBs may be mapped as OCIClobLocator, and BLOBs may be mapped as OCIBlobLocator. For more information, refer to Chapter 14, "The Object Type Translator (OTT)"


Note:

Where the length is shown as n, it is a variable, and depends on the requirements of the program (or of the operating system in the case of ROWID


Each of the external datatypes is described below. Datatypes that are new as of release 8.0 or later are described in the section "New External Datatypes".

The following three types are internal to PL/SQL and cannot be returned as values by OCI:

VARCHAR2

The VARCHAR2 datatype is a variable-length string of characters with a maximum length of 4000 bytes.


Note:

If you are using Oracle objects, you can work with a special OCIString external datatype using a set of predefined OCI functions. Refer to Chapter 11, "Object-Relational Datatypes" for more information about this datatype. 


Input

The value_sz parameter determines the length in the OCIBindByName() or OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable value by reading exactly that many bytes, starting at the buffer address in your program. Trailing blanks are stripped, and the resulting value is used in the SQL statement or PL/SQL block. If, in the case of an INSERT statement, the resulting value is longer than the defined length of the database column, the INSERT fails, and an error is returned.


Note:

A trailing null is not stripped. Variables should be blank-padded but not null-terminated. 


If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless of its actual content. Of course, a null must be allowed for the bind variable value in the SQL statement. If you try to insert a null into a column that has a NOT NULL integrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character string that contains the character representation of a number is legal. Input character strings are converted to internal numeric format. If the VARCHAR2 string contains an illegal conversion character, Oracle returns an error and the value is not inserted into the database.

Output

Specify the desired length for the return value in the value_sz parameter of the OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank-padded to the buffer length, and nulls are returned as a string of blank characters. If rlenp is included, returned values are not blank-padded. Instead, their actual lengths are returned in the rlenp parameter.

To check if a null is returned or if character truncation has occurred, include an indicator parameter in the OCIDefineByPos() call. Oracle sets the indicator parameter to -1 when a null is fetched and to the original column length when the returned value is truncated. Otherwise, it is set to zero. If you do not specify an indicator parameter and a null is selected, the fetch call returns the error code OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will return ORA-1405.

See Also:

"Indicator Variables" 

You can also request output to a character string from an internal NUMBER datatype. Number conversion follows the conventions established by National Language Support for your system. For example, your system might be configured to recognize a comma rather than period as the decimal point.

NUMBER

You should not need to use NUMBER as an external datatype. If you do use it, Oracle returns numeric values in its internal 21-byte binary format and will expect this format on input. The following discussion is included for completeness only.


Note:

If you are using objects in an Oracle database server, you can work with a special OCINumber datatype using a set of predefined OCI functions. Refer to Chapter 11, "Object-Relational Datatypes" for more information about this datatype. 


Oracle stores values of the NUMBER datatype in a variable-length format. The first byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of the exponent byte is the sign bit; it is set for positive numbers and it is cleared for negative numbers. The lower 7 bits represent the exponent, which is a base-100 digit with an offset of 65.

To calculate the decimal exponent, add 65 to the base-100 exponent and add another 128 if the number is positive. If the number is negative, you do the same, but subsequently the bits are inverted. For example, -5 has a base-100 exponent = 62 (0x3e). The decimal exponent is thus (~0x3e) -128 - 65 = 0xc1 -128 -65 = 193 -128 -65 = 0.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit for the number -5 is 96 (101 - 5). Negative numbers have a byte containing 102 appended to the data bytes. However, negative numbers that have 20 mantissa bytes do not have the trailing 102 byte. Because the mantissa digits are stored in base 100, each byte can represent 2 decimal digits. The mantissa is normalized; leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum precision of 38 digits for an Oracle NUMBER.

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos() call, your program receives numeric data in this Oracle internal format. The output variable should be a 21-byte array to accommodate the largest possible number. Note that only the bytes that represent the number are returned. There is no blank padding or null termination. If you need to know the number of bytes returned, use the VARNUM external datatype instead of NUMBER. See the description of VARNUM for examples of the Oracle internal number format.

INTEGER

The INTEGER datatype converts numbers. An external integer is a signed binary number; the size in bytes is system dependent. The host system architecture determines the order of the bytes in the variable. A length specification is required for input and output. If the number being returned from Oracle is not an integer, the fractional part is discarded, and no error or other indication is returned. If the number to be returned exceeds the capacity of a signed integer for the system, Oracle returns an "overflow on conversion" error.

FLOAT

The FLOAT datatype processes numbers that have fractional parts or that exceed the capacity of an integer. The number is represented in the host system's floating-point format. Normally the length is either four or eight bytes. The length specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point implementations are binary; therefore Oracle can represent numbers with greater precision than floating-point representations.


Note:

You may receive a round-off error when converting between FLOAT and NUMBER. Thus, using a FLOAT as a bind variable in a query may return an ORA-1403 error. You can avoid this situation by converting the FLOAT into a STRING and then using datatype code 1 or 5 for the operation. 


STRING

The null-terminated STRING format behaves like the VARCHAR2 format (datatype code 1), except that the string must contain a null terminator character. This datatype is most useful for C language programs.

Input

The string length supplied in the OCIBindByName() or OCIBindByPos() call limits the scan for the null terminator. If the null terminator is not found within the length specified, Oracle issues the error

If the length is not specified in the bind call, the OCI uses an implied maximum string length of 4000.

The minimum string length is two bytes. If the first character is a null terminator and the length is specified as two, a null is inserted in the column, if permitted. Unlike types 1 and 96, a string containing all blanks is not treated as a null on input; it is inserted as is.


Note:

Unlike earlier versions of the OCI, in release 8.0 or later, you cannot pass -1 for the string length parameter of a null-terminated string 


Output

A null terminator is placed after the last character returned. If the string exceeds the field length specified, it is truncated and the last character position of the output variable contains the null terminator.

A null select-list item returns a null terminator character in the first character position. An ORA-01405 error is possible, as well.

VARNUM

The VARNUM datatype is like the external NUMBER datatype, except that the first byte contains the length of the number representation. This length does not include the length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set the length byte when you send a VARNUM value to Oracle.

The following table shows several examples of the VARNUM values returned for numbers in an Oracle table.

Table 3-3 VARNUM Examples
Decimal Value  Length Byte  Exponent Byte  Mantissa Bytes  Terminator Byte 

128 

n/a 

n/a 

193 

n/a 

-5 

62 

96 

102 

2767 

194 

28, 68 

n/a 

-2767 

61 

74, 34 

102 

100000 

195 

11 

n/a 

1234567 

196 

2, 24, 46, 68 

n/a 

LONG

The LONG datatype stores character strings longer than 4000 bytes. You can store up to two gigabytes (2^31-1 bytes) in a LONG column. Columns of this type are used only for storage and retrieval of long strings. They cannot be used in functions, expressions, or WHERE clauses. LONG column values are generally converted to and from character strings.

VARCHAR

The VARCHAR datatype stores character strings of varying length. The first two bytes contain the length of the character string, and the remaining bytes contain the string. The specified length of the string in a bind or a define call must include the two length bytes, so the largest VARCHAR string that can be received or sent is 65533 bytes long, not 65535. For converting longer strings, use the LONG VARCHAR external datatype.

DATE

The DATE datatype can update, insert, or retrieve a date value using the Oracle internal date binary format. A date in binary format contains seven bytes, as shown in Table 3-4.

Table 3-4 Format of the DATE Datatype
Byte  1  2  3  4  5  6  7 

Meaning 

Century 

Year 

Month 

Day 

Hour 

Minute 

Second 

Example (for 30-NOV-1992, 3:17 PM) 

119 

192 

11 

30 

16 

18 

The century and year bytes (bytes 1 and 2) are in excess-100 notation. The first byte stores the value of the year, which is 1992, as an integer, divided by 100, giving 119 in excess-100 notation. The second byte stores year modulo 100, giving 192. Dates Before Common Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1. For this date, the century byte is 53, and the year byte is 88. The hour, minute, and second bytes are in excess-1 notation. The hour byte ranges from 1 to 24, the minute and second bytes from 1 to 60. If no time was specified when the date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the database does not do consistency or range checking. All data in this format must be carefully validated before input.


Note:

There is little need to use the Oracle external DATE datatype in ordinary database operations. It is much more convenient to convert DATE into character format, because the program usually deals with data in a character format, such as DD-MON-YY. 


When a DATE column is converted to a character string in your program, it is returned using the default format mask for your session, or as specified in the INIT.ORA file.


Note:

If you are using objects in an Oracle database, you can work with a special OCIDate datatype using a set of predefined OCI functions.

 

RAW

The RAW datatype is used for binary data or byte strings that are not to be interpreted by Oracle, for example, to store graphics character sequences. The maximum length of a RAW column is 2000 bytes.

See Also:

Oracle9i SQL Reference

When RAW data in an Oracle table is converted to a character string in a program, the data is represented in hexadecimal character code. Each byte of the RAW data is returned as two characters that indicate the value of the byte, from '00' to 'FF'. If you want to input a character string in your program to a RAW column in an Oracle table, you must code the data in the character string using this hexadecimal code.

You can use the piecewise capabilities provided by OCIDefineByPos(), OCIBindByName(), OCIBindByPos(), OCIStmtGetPieceInfo(), and OCIStmtSetPieceInfo() to perform inserts, updates, or fetches involving RAW (or LONG RAW) columns.


Note:

If you are using objects in an Oracle database, you can work with a special OCIRaw datatype using a set of predefined OCI functions. Refer to Chapter 11, "Object-Relational Datatypes" for more information about this datatype. 


VARRAW

The VARRAW datatype is similar to the RAW datatype. However, the first two bytes contain the length of the data. The specified length of the string in a bind or a define call must include the two length bytes. So the largest VARRAW string that can be received or sent is 65533 bytes long, not 65535. For converting longer strings, use the LONG VARRAW external datatype.

LONG RAW

The LONG RAW datatype is similar to the RAW datatype, except that it stores raw data with a length up to two gigabytes (2^31-1 bytes).

UNSIGNED

The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is system dependent. The host system architecture determines the order of the bytes in a word. A length specification is required for input and output. If the number being output from Oracle is not an integer, the fractional part is discarded, and no error or other indication is returned. If the number to be returned exceeds the capacity of an unsigned integer for the system, Oracle returns an "overflow on conversion" error.

LONG VARCHAR

The LONG VARCHAR datatype stores data from and into an Oracle LONG column. The first four bytes of a LONG VARCHAR contain the length of the item. So, the maximum length of a stored item is 2^31-5 bytes.

LONG VARRAW

The LONG VARRAW datatype is used to store data from and into an Oracle LONG RAW column. The length is contained in the first four bytes. The maximum length is 2^31-5 bytes.

CHAR

The CHAR datatype is a string of characters, with a maximum length of 2000. CHAR strings are compared using blank-padded comparison semantics

See Also:

Oracle9i SQL Reference 

Input

The length is determined by the value_sz parameter in the OCIBindByName() or OCIBindByPos() call.


Note:

The entire contents of the buffer (value_sz chars) is passed to the database, including any trailing blanks or nulls 


If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless of its actual content. Of course, a null must be allowed for the bind variable value in the SQL statement. If you try to insert a null into a column that has a NOT NULL integrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) datatype is NUMBER, input from a character string that contains the character representation of a number is legal. Input character strings are converted to internal numeric format. If the CHAR string contains an illegal conversion character, Oracle returns an error and does not insert the value. Number conversion follows the conventions established by National Language Support settings for your system. For example, your system might be configured to recognize a comma (,) rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the value_sz parameter of the OCIDefineByPos() call. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank padded to the buffer length, and nulls are returned as a string of blank characters. If rlenp is included, returned values are not blank padded. Instead, their actual lengths are returned in the rlenp parameter.

To check whether a null is returned or if character truncation has occurred, include an indicator parameter or array of indicator parameters in the OCIDefineByPos() call. An indicator parameter is set to -1 when a null is fetched and to the original column length when the returned value is truncated. Otherwise, it is set to zero. If you do not specify an indicator parameter and a null is selected, the fetch call returns an ORA-01405 error.

See Also:

"Indicator Variables" 

You can also request output to a character string from an internal NUMBER datatype. Number conversion follows the conventions established by the National Language Support settings for your system. For example, your system might use a comma (,) rather than a period (.) as the decimal point.

CHARZ

The CHARZ external datatype is similar to the CHAR datatype, except that the string must be null terminated on input, and Oracle places a null-terminator character at the end of the string on output. The null terminator serves only to delimit the string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the null terminator. For example, if an array in C is declared as

char my_num[] = "123.45";

then the length parameter when you bind my_num must be seven. Any other value would return an error for this example.

New External Datatypes

The following new external datatypes were introduced with or after release 8.0. These datatypes are not supported when you connect to an Oracle release 7 server.


Note:

Both internal and external datatypes have Oracle-defined constant values, such as SQLT_NTY, SQLT_REF, corresponding to their datatype codes. Although the constants are not listed for all of the types in this chapter, they are used in this section when discussing new Oracle datatypes. The datatype constants are also used in other chapters of this guide when referring to these new types. 


Named Data Types (Object, VARRAY, Nested Table)

Named data types are user-defined types which are specified with the CREATE TYPE command in SQL. Examples include object types, varrays, and nested tables. In the OCI, named data type refers to a host language representation of the type. The SQLT_NTY datatype code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can be generated from types stored in the database by using the Object Type Translator. These types correspond to OCI_TYPECODE_OBJECT.

See Also:

 

REF

This is a reference to a named data type. The C language representation of a REF is a variable declared to be of type OCIRef *. The SQLT_REF datatype code is used when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in object mode. When REFs are retrieved from the server, they are stored in the client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as the typecode parameter.

See Also:

For more information about working with REFs in the OCI, refer to Part II of this guide 

ROWID Descriptor

The ROWID datatype identifies a particular row in a database table. ROWID can be a select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned. This ROWID can be read into a user-allocated ROWID descriptor using OCIAttrGet() on the statement handle and used in a subsequent UPDATE statement. The prefetch operation fetches all ROWIDs on a SELECT for UPDATE; use prefetching and then a single row fetch.

You access rowids through the use of a ROWID descriptor, which you can use as a bind or define variable.

See Also:

See the sections "Descriptors" and "Positioned Updates and Deletes" for more information about the use of the ROWID descriptor 

LOB Descriptor

A LOB (Large Object) stores binary or character data up to 4 gigabytes in length. Binary data is stored in a BLOB (Binary LOB), and character data is stored in a CLOB (Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In either case, LOBs have the full transactional support of the database server. A database table stores a LOB locator which points to the LOB value which may be in a different storage space.

When an OCI application issues a SQL query which includes a LOB column or attribute in its select-list, fetching the result(s) of the query returns the locator, rather than the actual LOB value. In the OCI, the LOB locator maps to a variable of type OCILobLocator.

See Also:

 

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI functions assume that the locator has already been created, whether or not the LOB to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated with the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then operations are performed using the locator. The OCI functions never take the actual LOB value as a parameter.

See Also:

For more information about OCI LOB functions, see Chapter 7, "LOB and FILE Operations" 

The datatype codes available for binding or defining LOBs are:

The NCLOB is a special type of CLOB with the following requirements:

BFILE

The BFILE datatype provides access to file LOBs that are stored in file systems outside an Oracle database. Oracle currently only supports access to binary files, or BFILEs.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a binary file on the server's file system. The locator maintains the directory alias and the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating system provides file integrity and durability. The maximum file size supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining FILEs is:

BLOB

The BLOB datatype stores unstructured binary large objects. BLOBs can be thought of as bitstreams with no character set semantics. BLOBs can store up to four gigabytes of binary data.

BLOBs have full transactional support; changes made through the OCI participate fully in the transaction. The BLOB value manipulations can be committed or rolled back. You cannot save a BLOB locator in a variable in one transaction and then use it in another transaction or session.

CLOB

The CLOB datatype stores fixed- or varying-width character data. CLOBs can store up to 4 gigabytes of character data.

CLOBs have full transactional support; changes made through the OCI participate fully in the transaction. The CLOB value manipulations can be committed or rolled back. You cannot save a CLOB locator in a variable in one transaction and then use it in another transaction or session.

NCLOB. An NCLOB is a national character version of a CLOB. It stores fixed-width, single-byte or multibyte national character set (NCHAR) data, or varying-width character set data. NCLOBs can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support; changes made through the OCI participate fully in the transaction. NCLOB value manipulations can be committed or rolled back. You cannot save a NCLOB locator in a variable in one transaction and then use it in another transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB parameters in methods.

Datetime and Interval Datatype Descriptors

The datetime and interval datatype descriptors are briefly summarized here.

See Also:

For more a more complete discussion, see Oracle9i SQL Reference 

ANSI DATE

The ANSI DATE is based on the DATE, but contains no time portion. (Therefore, it also has no time zone.) ANSI DATE follows the ANSI specification for the DATE datatype. When assigning an ANSI DATE to a DATE or a timestamp datatype, the time portion of the Oracle DATE and the timestamp are set to zero. When assigning a DATE or a timestamp to an ANSI DATE, the time portion is ignored.

You are encouraged to instead use the TIMESTAMP datatype which contains both date and time.

TIMESTAMP

The TIMESTAMP datatype is an extension of the DATE datatype. It stores the year, month, and day of the DATE datatype, plus the hour, minute, and second values. It has no time zone. The TIMESTAMP datatype has the form:

TIMESTAMP(fractional_seconds_precision) 

where fractional_seconds_precision (which is optional) specifies the number of digits in the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

TIMESTAMP WITH TIME ZONE

TIMESTAMP WITH TIME ZONE (TSTZ) is a variant of TIMESTAMP that includes an explicit time zone displacement in its value. The time zone displacement is the difference (in hours and minutes) between local time and UTC (Coordinated Universal Time--formerly Greenwich Mean Time). The TIMESTAMP WITH TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits in the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

Two TIMESTAMP WITH TIME ZONE values are considered identical if they represent the same instant in UTC, regardless of the TIME ZONE offsets stored in the data.

TIMESTAMP WITH LOCAL TIME ZONE

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) is another variant of TIMESTAMP that includes a time zone displacement in its value. Storage is in the same format as for TIMESTAMP. This type differs from TIMESTAMP WITH TIME ZONE in that data stored in the database is normalized to the database time zone, and the time zone displacement is not stored as part of the column data. When users retrieve the data, Oracle returns it in the users' local session time zone.

The time zone displacement is the difference (in hours and minutes) between local time and UTC (Coordinated Universal Time--formerly Greenwich Mean Time). The TIMESTAMP WITH LOCAL TIME ZONE datatype has the form:

TIMESTAMP(fractional_seconds_precision) WITH LOCAL TIME ZONE

where fractional_seconds_precision optionally specifies the number of digits in the fractional part of the SECOND datetime field and can be a number in the range 0 to 9. The default is 6.

INTERVAL YEAR TO MONTH

INTERVAL YEAR TO MONTH stores a period of time using the YEAR and MONTH datetime fields. The INTERVAL YEAR TO MONTH datatype has the form:

INTERVAL YEAR(year_precision) TO MONTH

where the optional year_precision is the number of digits in the YEAR datetime field. The default value of year_precision is 2.

INTERVAL DAY TO SECOND

INTERVAL DAY TO SECOND stores a period of time in terms of days, hours, minutes, and seconds. The INTERVAL DAY TO SECOND datatype has the form:

INTERVAL DAY (day_precision) TO SECOND(fractional_seconds_precision)

where:

fractional_seconds_precision is the number of digits in the fractional part of the SECOND datetime field. It is optional. Accepted values are 0 to 9. The default is 6.

Avoiding Unexpected Results Using Datetime


Note:

To avoid unexpected results in your DML operations on datetime data, you can verify the database and session time zones by querying the built-in SQL functions DBTIMEZONE and SESSIONTIMEZONE. If the time zones have not been set manually, Oracle uses the operating system time zone by default. If the operating system time zone is not a valid Oracle time zone, Oracle uses UTC as the default value. 


C Object-Relational Datatype Mappings

The OCI supports Oracle-defined C datatypes used to map user-defined datatypes to C representations (e.g. OCINumber, OCIArray). The OCI provides a set of calls to operate on these datatypes, and to use these datatypes in bind and define operations, in conjunction with OCI external datatype codes.

See Also:

For information on using these Oracle-defined C datatypes, refer to Chapter 11, "Object-Relational Datatypes" 

Data Conversions

Table 3-5 and Table 3-6 show the supported conversions from internal datatypes to external datatypes, and from external datatypes into internal column representations, for all datatypes available through release 7.3. Information about data conversions for data types newer than release 7.3 is listed here:

LOBs are shown in a separate table that follows, because of the width limitation.

See Also:

For information about OCIString, OCINumber, and other new datatypes, refer to Chapter 11, "Object-Relational Datatypes" 

Table 3-5 Data Conversions  
EXTERNAL DATATYPES  INTERNAL DATATYPES 
VARCHAR2  NUMBER  LONG  ROWID  UROWID  DATE  RAW  LONG RAW  CHAR 

VARCHAR 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I/O(3) 

 

NUMBER 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

INTEGER 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

FLOAT 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

STRING 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I/O(3, 5) 

I/O 

VARNUM 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

DECIMAL 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

LONG 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I/O(3, 5) 

I/O 

VARCHAR 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I/O(3, 5) 

I/O 

DATE 

I/O 

 

 

 

I/O 

 

 

I/O 

VARRAW 

I/O(6) 

 

I(5, 6) 

 

 

 

I/O 

I/O 

I/O(6) 

RAW 

I/O(6) 

 

I(5, 6) 

 

 

 

I/O 

I/O 

I/O(6) 

LONG RAW 

O(6) 

 

I(5, 6) 

 

 

 

I/O 

I/O 

O(6) 

UNSIGNED 

I/O(4) 

I/O 

 

 

 

 

 

I/O(4) 

LONG VARCHAR 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I/O(3, 5) 

I/O 

LONG VARRAW 

I/O(6) 

 

I(5, 6) 

 

 

 

I/O 

I/O 

I/O(6) 

CHAR 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I(3) 

I/O 

CHARZ 

I/O 

I/O 

I/O 

I/O(1) 

I/O(1) 

I/O(2) 

I/O(3) 

I(3) 

I/O 

ROWID descriptor 

I(1) 

 

 

I/O 

I/O 

 

 

 

I(1) 

Notes:

(1) For input, host string must be in Oracle ROWID/UROWID format.

On output, column value is returned in Oracle ROWID/UROWID format.

(2) For input, host string must be in the Oracle DATE character format.

On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.

On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.

(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.

On output, column value must be in hex format. 

Legend:

I = Conversion valid for input only

O = Conversion valid for output only

I/O = Conversion valid for input or output 

Data Conversions for LOB Datatype Descriptors

Table 3-6 Data Conversions for LOBs
  INTERNAL DATATYPES     
EXTERNAL DATATYPES  CLOB  BLOB 

VARCHAR 

I/O 

 

CHAR 

I/O 

 

LONG 

I/O 

 

LONG VARCHAR 

I/O 

 

RAW 

 

I/O 

VARRAW 

 

I/O 

LONG RAW 

 

I/O 

LONG VARRAW 

 

I/O 

Data Conversions for Datetime and Interval Datatypes

You can also use one of the character data types for the host variable used in a fetch or insert operation from or to a datetime or interval column. Oracle will do the conversion between the character data type and datetime/interval data type for you.

Table 3-7 Data Conversion for Datetime and Interval Types
External Types  Internal Types 
VARCHAR,CHAR  DATE  TS  TSTZ  TSLTZ  INTERVAL YEAR TO MONTH  NTERVAL DAY TO SECOND 

VARCHAR2, CHAR 

I/O 

I/O 

I/O 

I/O 

I/O 

I/O 

I/O 

DATE 

I/O 

I/O 

I/O 

I/O 

I/O 

OCI DATE 

I/O 

I/O 

I/O 

I/O 

I/O 

ANSI DATE 

I/O 

I/O 

I/O 

I/O 

I/O 

TIMESTAMP (TS) 

I/O 

I/O 

I/O 

I/O 

I/O 

TIMESTAMP WITH TIME ZONE (TSTZ) 

I/O 

I/O 

I/O 

I/O 

I/O 

TIMESTAMP WITH LOCAL TIME ZONE (TSLTZ) 

I/O 

I/O 

I/O 

I/O 

I/O 

 

 

INTERVAL YEAR TO MONTH 

I/O 

I/O 

INTERVAL DAY TO SECOND 

I/O 

I/O 

Note: When assigning a source with time zone to a target without a time zone, the time zone portion of the source is ignored. On assigning a source without a time zone to a target with a time zone, the time zone of the target is set to the session's default time zone

(0) When assigning an Oracle DATE to a TIMESTAMP, the TIME portion of the DATE is copied over to the TIMESTAMP. When assigning a TIMESTAMP to Oracle DATE, the TIME portion of the result DATE is set to zero. This is done to encourage migration of Oracle DATE to ANSI compliant DATETIME data types

(1) When assigning an ANSI DATE to an Oracle DATE or a TIMESTAMP, the TIME portion of the Oracle DATE and the TIMESTAMP are set to zero. When assigning an Oracle DATE or a TIMESTAMP to an ANSI DATE, the TIME portion is ignored

(2) When assigning a DATETIME to a character string, the DATETIME is converted using the session's default DATETIME format. When assigning a character string to a DATETIME, the string must contain a valid DATETIME value based on the session's default DATETIME format

(3) When assigning a character string to an INTERVAL, the character string must be a valid INTERVAL character format. 

Data Conversion Notes for Datetime and Interval Types

(1) When converting from TSLTZ to CHAR, DATE, TIMESTAMP and TSTZ, the value will be adjusted to the session time zone.

(2) When converting from CHAR, DATE, and TIMESTAMP to TSLTZ, the session time zone will be stored in memory.

(3) When assigning TSLTZ to ANSI DATE, the time portion will be zero.

(4) When converting from TSTZ, the time zone which the time stamp is in will be stored in memory.

(5) When assigning a character string to an interval, the character string must be a valid interval character format.

Datetime and Date Migration Rules

OCI has full forward and backward compatibility between a client application and the database server as far as the datetime and date columns are concerned.

Pre-9.0 Client with 9.0 or Later Server

The only datetime datatype available to a pre-9.0 application is the DATE datatype, SQLT_DAT. When a pre-9.0 client that defined a buffer as SQLT_DAT, tries to obtain data from a TSLTZ column, then only the date portion of the value will be returned to the client.

Pre-9.0 Server with 9.0 or Later Client

In this case the new client might have a bind or define buffer of type SQLT_TIMESTAMP_LTZ. The following compatibilities are maintained in this case.

If any client application tries to insert a SQLT_TIMESTAMP_LTZ (or any of the new datetime datatypes) into a DATE column, an error will be issued since there is potential data loss in this situation.

When a client has an OUT bind or a define buffer that is of datatype SQLT_TIMESTAMP_LTZ and the underlying server side SQL buffer or column is of DATE type, then the session time zone is assigned.

Typecodes

There is a unique typecode associated with each Oracle type, whether scalar, collection, reference, or object type. This typecode identifies the type, and is used by Oracle to manage information about object type attributes. This typecode system is designed to be generic and extensible, and is not tied to a direct one-to-one mapping to Oracle datatypes. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
( attr1    NUMBER,
  attr2    INTEGER,
  attr3    SMALLINT);

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created, my_table will have three columns, all of which are of Oracle NUMBER type, because SMALLINT and INTEGER map internally to NUMBER. The internal representation of the attributes of my_type, however, maintains the distinction between the datatypes of the three attributes: attr1 is OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is OCI_TYPECODE_SMALLINT. If an application describes my_type, these typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some OCI functions, like OCIObjectNew() (where it helps determine what type of object is created). It is also returned as the value of some attributes when an object is described; e.g., querying the OCI_ATTR_TYPECODE attribute of a type returns an OCITypeCode value.

Table 3-8 lists the possible values for an OCITypeCode. There is a value corresponding to each Oracle datatype.

Table 3-8 OCITypeCode Values  
Value   Datatype 

OCI_TYPECODE_REF 

REF 

OCI_TYPECODE_DATE 

DATE 

OCI_TYPECODE_TIMESTAMP 

TIMESTAMP 

OCI_TYPECODE_TIMESTAMP_TZ 

TIMESTAMP WITH TIME ZONE 

OCI_TYPECODE_TIMESTAMP_LTZ 

TIMESTAMP WITH LOCAL TIME ZONE 

OCI_TYPECODE_INTERVAL_YM 

INTERVAL YEAR TO MONTH 

OCI_TYPECODE_INTERVAL_DS 

INTERVAL DAY TO SECOND 

OCI_TYPECODE_REAL 

single-precision real 

OCI_TYPECODE_DOUBLE 

double-precision real 

OCI_TYPECODE_FLOAT 

floating-point 

OCI_TYPECODE_NUMBER 

Oracle number 

OCI_TYPECODE_DECIMAL 

decimal 

OCI_TYPECODE_OCTET 

octet 

OCI_TYPECODE_INTEGER 

integer 

OCI_TYPECODE_SMALLINT 

smallint 

OCI_TYPECODE_RAW 

RAW 

OCI_TYPECODE_VARCHAR2 

variable string ANSI SQL, i.e., VARCHAR2 

OCI_TYPECODE_VARCHAR 

variable string Oracle SQL, i.e., VARCHAR 

OCI_TYPECODE_CHAR 

fixed-length string inside SQL, i.e. SQL CHAR 

OCI_TYPECODE_VARRAY 

variable-length array (varray) 

OCI_TYPECODE_TABLE 

multiset 

OCI_TYPECODE_CLOB 

character large object (CLOB) 

OCI_TYPECODE_BLOB 

binary large object (BLOB) 

OCI_TYPECODE_BFILE 

binary large object file (BFILE) 

OCI_TYPECODE_OBJECT 

named object type 

OCI_TYPECODE_NAMEDCOLLECTION 

Domain (named primitive type) 

Relationship Between SQLT and OCI_TYPECODE Values

Oracle recognizes two different sets of datatype code values. One set is distinguished by the SQLT_ prefix, the other by the OCI_TYPECODE_ prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define operation. In this way, the SQL typecodes help to control data conversions between Oracle and OCI client applications. The OCI_TYPECODE types are used by Oracle's type system to reference or describe predefined types when manipulating or creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE values. In other cases, however, there is not a direct one-to-one mapping. For example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32, OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

The following table illustrates the mappings between SQLT and OCI_TYPECODE types.

Table 3-9 OCI_TYPECODE to SQLT Mappings  
Oracle Type System Typename  Oracle Type System Type  Equivalent SQLT Type 

BFILE 

OCI_TYPECODE_BFILE 

SQLT_BFILE 

BLOB 

OCI_TYPECODE_BLOB 

SQLT_BLOB 

CHAR 

OCI_TYPECODE_CHAR (n) 

SQLT_AFC(n) [note 1] 

CLOB 

OCI_TYPECODE_CLOB 

SQLT_CLOB 

COLLECTION 

OCI_TYPECODE_NAMEDCOLLECTION 

SQLT_NCO 

DATE 

OCI_TYPECODE_DATE 

SQLT_DAT 

TIMESTAMP 

OCI_TYPECODE_TIMESTAMP 

SQLT_TIMESTAMP 

TIMESTAMP WITH TIME ZONE 

OCI_TYPECODE_TIMESTAMP_TZ 

SQLT_TIMESTAMP_TZ 

TIMESTAMP WITH LOCAL TIME ZONE 

OCI_TYPECODE_TIMESTAMP_LTZ 

SQLT_TIMESTAMP_LTZ 

INTERVAL YEAR TO MONTH 

OCI_TYPECODE_INTERVAL_YM 

SQLT_INTERVAL_YM 

INTERVAL DAY TO SECOND 

OCI_TYPECODE_INTERVAL_DS 

SQLT_INTERVAL_DS 

FLOAT 

OCI_TYPECODE_FLOAT (b) 

SQLT_FLT (8) [note 2] 

DECIMAL 

OCI_TYPECODE_DECIMAL (p) 

SQLT_NUM (p, 0) [note 3] 

DOUBLE 

OCI_TYPECODE_DOUBLE 

SQLT_FLT (8) 

INTEGER 

OCI_TYPECODE_INTEGER 

SQLT_INT (i) [note 4] 

NUMBER 

OCI_TYPECODE_NUMBER (p, s) 

SQLT_NUM (p, s) [note 5] 

OCTET 

OCI_TYPECODE_OCTET 

SQLT_INT (1) 

POINTER 

OCI_TYPECODE_PTR 

<NONE> 

RAW 

OCI_TYPECODE_RAW 

SQLT_LVB 

REAL 

OCI_TYPECODE_REAL 

SQLT_FLT (4) 

REF 

OCI_TYPECODE_REF 

SQLT_REF 

OBJECT 

OCI_TYPECODE_OBJECT 

SQLT_NTY 

SIGNED(8) 

OCI_TYPECODE_SIGNED8 

SQLT_INT (1) 

SIGNED(16) 

OCI_TYPECODE_SIGNED16 

SQLT_INT (2) 

SIGNED(32) 

OCI_TYPECODE_SIGNED32 

SQLT_INT (4) 

SMALLINT 

OCI_TYPECODE_SMALLINT 

SQLT_INT (i) [note 4] 

TABLE [note 6] 

OCI_TYPECODE_TABLE 

<NONE> 

TABLE (Indexed table) 

OCI_TYPECODE_ITABLE 

SQLT_TAB 

UNSIGNED(8) 

OCI_TYPECODE_UNSIGNED8 

SQLT_UIN (1) 

UNSIGNED(16) 

OCI_TYPECODE_UNSIGNED16 

SQLT_UIN (2) 

UNSIGNED(32) 

OCI_TYPECODE_UNSIGNED32 

SQLT_UIN (4) 

VARRAY [note 6] 

OCI_TYPECODE_VARRAY 

<NONE> 

VARCHAR 

OCI_TYPECODE_VARCHAR (n) 

SQLT_CHR (n) [note 1] 

VARCHAR2 

OCI_TYPECODE_VARCHAR2 (n) 

SQLT_VCS (n) [note 1] 

Notes:

1. n is the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

4. i is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.

6. Can only be part of a named collection type. 

Definitions in oratypes.h

Throughout this guide you will see references to datatypes like ub2 or sb4, or to constants like UB4MAXVAL. These types are defined in the oratypes.h header file, an example of which is included here. The exact contents may vary according to the platform you are using.


Note:

The use of the datatypes in oratypes.h is the only supported means of supplying parameters to the OCI. 


#ifndef ORATYPES
# define ORATYPES
# define SX_ORACLE
# define SX3_ORACLE 


#ifndef ORASTDDEF
# include <stddef.h>
# define ORASTDDEF
#endif

#ifndef ORALIMITS
# include <limits.h>
# define ORALIMITS
#endif


#ifndef TRUE
# define TRUE  1
# define FALSE 0
#endif


#ifdef lint
# ifndef mips
#  define signed
# endif 
#endif 

#ifdef ENCORE_88K
# ifndef signed
#  define signed
# endif 
#endif 

#if defined(SYSV_386) || defined(SUN_OS)
# ifdef signed
#  undef signed
# endif 
# define signed
#endif 





#ifndef lint 
typedef unsigned char  ub1;                   
typedef   signed char  sb1;                  
#else 
#define ub1 unsigned char 
#define sb1 signed char 
#endif 
 
#define UB1MAXVAL ((ub1)UCHAR_MAX) 
#define UB1MINVAL ((ub1)        0) 
#define SB1MAXVAL ((sb1)SCHAR_MAX) 
#define SB1MINVAL ((sb1)SCHAR_MIN) 
#define MINUB1MAXVAL ((ub1)  255) 
#define MAXUB1MINVAL ((ub1)    0) 
#define MINSB1MAXVAL ((sb1)  127) 
#define MAXSB1MINVAL ((sb1) -127) 
 
 

 
#ifndef lint 
typedef unsigned short    ub2;                
typedef   signed short    sb2;               
#else 
#define ub2  unsigned short 
#define sb2  signed short 
#endif

#define UB2MAXVAL ((ub2)USHRT_MAX) 
#define UB2MINVAL ((ub2)        0) 
#define SB2MAXVAL ((sb2) SHRT_MAX) 
#define SB2MINVAL ((sb2) SHRT_MIN) 
#define MINUB2MAXVAL ((ub2) 65535) 
#define MAXUB2MINVAL ((ub2)     0) 
#define MINSB2MAXVAL ((sb2) 32767) 
#define MAXSB2MINVAL ((sb2)-32767) 
  



#ifndef lint 
typedef unsigned int  ub4;                   
typedef   signed int  sb4;                   
#else 
#define eb4 int 
#define ub4 unsigned int 
#define sb4 signed int 
#endif 
 
#define UB4MAXVAL ((ub4)UINT_MAX) 
#define UB4MINVAL ((ub4)        0) 
#define SB4MAXVAL ((sb4) INT_MAX) 
#define SB4MINVAL ((sb4) INT_MIN) 
#define MINUB4MAXVAL ((ub4) 4294967295) 
#define MAXUB4MINVAL ((ub4)          0) 
#define MINSB4MAXVAL ((sb4) 2147483647) 
#define MAXSB4MINVAL ((sb4)-2147483647) 



#define UB1BITS          CHAR_BIT
#define UB1MASK          ((1 << ((uword)CHAR_BIT)) - 1)



typedef ub1   bitvec;    
#define BITVEC(n) (((n)+(UB1BITS-1))>>3) 



#ifdef lint
# define oratext unsigned char
#else
  typedef unsigned char oratext;
#endif
 

#ifndef lint 
typedef         ub4      duword;                   
typedef         sb4      dsword;                 
typedef         dsword   dword;

#else 
#define duword ub4 
#define dsword sb4 
#define dword  dsword
#endif  

#define  DUWORDMAXVAL       UB4MAXVAL 
#define  DUWORDMINVAL       UB4MINVAL 
#define  DSWORDMAXVAL       SB4MAXVAL 
#define  DSWORDMINVAL       SB4MINVAL 
#define  MINDUWORDMAXVAL    MINUB4MAXVAL 
#define  MAXDUWORDMINVAL    MAXUB4MINVAL 
#define  MINDSWORDMAXVAL    MINSB4MAXVAL 
#define  MAXDSWORDMINVAL    MAXSB4MINVAL 
#define  DEWORDMAXVAL       EB4MAXVAL 
#define  DEWORDMINVAL       EB4MINVAL 
#define  MINDEWORDMAXVAL    MINEB4MAXVAL 
#define  MAXDEWORDMINVAL    MAXEB4MINVAL 
#define  DWORDMAXVAL        DSWORDMAXVAL 
#define  DWORDMINVAL        DSWORDMINVAL 
   




#ifndef lint  
typedef ub4 dsize_t;  
# else 
# define dsize_t ub4 
#endif 
 
# define DSIZE_TMAXVAL UB4MAXVAL           
# define MINDSIZE_TMAXVAL (dsize_t)65535 
 

#ifndef lint  
typedef sb4 dboolean;  
# else 
# define dboolean sb4 
#endif 
 
 


#ifndef lint 
typedef ub4 dptr_t; 
#else 
#define dptr_t ub4 
#endif 




#ifndef lint 
typedef          char     eb1;
typedef          short    eb2;               
typedef          int      eb4;               
typedef          eb4      deword;     
#else
# define         eb1      char
# define         eb2      short
# define         eb4      int
# define         deword   eb4
#endif

#define EB1MAXVAL      ((eb1)SCHAR_MAX) 
#define EB1MINVAL      ((eb1)        0) 
#define MINEB1MAXVAL   ((eb1)  127) 
#define MAXEB1MINVAL   ((eb1)    0) 
#define EB2MAXVAL      ((eb2) SHRT_MAX) 
#define EB2MINVAL      ((eb2)        0) 
#define MINEB2MAXVAL   ((eb2) 32767) 
#define MAXEB2MINVAL   ((eb2)     0) 
#define EB4MAXVAL      ((eb4) INT_MAX) 
#define EB4MINVAL      ((eb4)        0) 
#define MINEB4MAXVAL   ((eb4) 2147483647) 
#define MAXEB4MINVAL   ((eb4)          0) 




#ifndef lint 
typedef         sb1  b1;                   
#else 
#define         b1 sb1 
#endif  
#define  B1MAXVAL  SB1MAXVAL 
#define  B1MINVAL  SB1MINVAL 
 
#ifndef lint 
typedef         sb2      b2;              
#else 
#define         b2 sb2 
#endif  
#define  B2MAXVAL  SB2MAXVAL 
#define  B2MINVAL  SB2MINVAL 
 
#ifndef lint 
typedef         sb4    b4;                
#else 
#define         b4 sb4 
#endif  
# define  B4MAXVAL  SB4MAXVAL 
# define  B4MINVAL  SB4MINVAL 
 

#ifndef uiXT
typedef   ub1       BITS8;                              
typedef   ub2       BITS16;                              
typedef   ub4       BITS32;                              
#endif
 
#if !defined(LUSEMFC)
# ifdef lint
#  define text unsigned char
#  define OraText oratext
# else
   typedef oratext text;
   typedef oratext OraText;
# endif
#endif

#define  M_IDEN    30
                
#ifdef AIXRIOS
# define SLMXFNMLEN 256                  
#else
# define SLMXFNMLEN 512                
#endif 

#ifndef lint
typedef          int eword;                  
typedef unsigned int uword;                  
typedef   signed int sword;                  
#else
#define eword int
#define uword unsigned int
#define sword signed int
#endif 

#define  EWORDMAXVAL  ((eword) INT_MAX)
#define  EWORDMINVAL  ((eword)       0)
#define  UWORDMAXVAL  ((uword)UINT_MAX)
#define  UWORDMINVAL  ((uword)       0)
#define  SWORDMAXVAL  ((sword) INT_MAX)
#define  SWORDMINVAL  ((sword) INT_MIN)
#define  MINEWORDMAXVAL  ((eword)  2147483647)
#define  MAXEWORDMINVAL  ((eword)      0)
#define  MINUWORDMAXVAL  ((uword)  4294967295)
#define  MAXUWORDMINVAL  ((uword)           0)
#define  MINSWORDMAXVAL  ((sword)  2147483647)
#define  MAXSWORDMINVAL  ((sword) -2147483647)

 

#ifndef lint
typedef unsigned long  ubig_ora;             
typedef   signed long  sbig_ora;             
#else
#define ubig_ora unsigned long
#define sbig_ora signed long
#endif 

#define UBIG_ORAMAXVAL ((ubig_ora)ULONG_MAX)
#define UBIG_ORAMINVAL ((ubig_ora)        0)
#define SBIG_ORAMAXVAL ((sbig_ora) LONG_MAX)
#define SBIG_ORAMINVAL ((sbig_ora) LONG_MIN)
#define MINUBIG_ORAMAXVAL ((ubig_ora) 4294967295)
#define MAXUBIG_ORAMINVAL ((ubig_ora)          0)
#define MINSBIG_ORAMAXVAL ((sbig_ora) 2147483647)
#define MAXSBIG_ORAMINVAL ((sbig_ora)-2147483647)

#define UBIGORABITS      (UB1BITS * sizeof(ubig_ora))


#ifndef lint
#if (__STDC__ != 1)
# define SLU8NATIVE
# define SLS8NATIVE
#endif
#endif

#ifdef SLU8NATIVE

#ifdef SS_64BIT_SERVER
# ifndef lint
   typedef unsigned long ub8;
# else
#  define ub8 unsigned long
# endif 
#else
# ifndef lint
   typedef unsigned long long ub8;
# else
#  define ub8 unsigned long long
# endif 
#endif

#define UB8ZERO      ((ub8)0)

#define UB8MINVAL    ((ub8)0)
#define UB8MAXVAL    ((ub8)18446744073709551615)

#define MAXUB8MINVAL ((ub8)0)
#define MINUB8MAXVAL ((ub8)18446744073709551615)

#endif 


#ifdef SLS8NATIVE

#ifdef SS_64BIT_SERVER
# ifndef lint
   typedef signed long sb8;
# else
#  define sb8 signed long
# endif 
#else
# ifndef lint
   typedef signed long long sb8;
# else
#  define sb8 signed long long
# endif 
#endif

#define SB8ZERO      ((sb8)0)

#define SB8MINVAL    ((sb8)-9223372036854775808)
#define SB8MAXVAL    ((sb8) 9223372036854775807)

#define MAXSB8MINVAL ((sb8)-9223372036854775807)
#define MINSB8MAXVAL ((sb8) 9223372036854775807)

#endif 



#undef CONST

#ifdef _olint
# define CONST const
#else
#if defined(PMAX) && defined(__STDC__)
#   define CONST const
#else
# ifdef M88OPEN
#  define CONST const
# else 
#  if defined(SEQ_PSX) && defined(__STDC__)
#    define CONST const
#  else 
#    ifdef A_OSF
#      if defined(__STDC__)
#        define CONST const
#      else
#        define CONST
#      endif
#    else
#      define CONST
#    endif 
#  endif 
# endif 
#endif
#endif 



#ifdef lint
# define dvoid void
#else

# ifdef UTS2
#  define dvoid char
# else
# define dvoid void
# endif 

#endif 


typedef void (*lgenfp_t)( void );



#ifndef ORASYS_TYPES
# include <sys/types.h>
# define ORASYS_TYPES
#endif 

#ifndef boolean
#ifndef lint
typedef int boolean;
#else
#define boolean int
#endif
#endif

#ifndef SIZE_TMAXVAL
# define SIZE_TMAXVAL UBIG_ORAMAXVAL
#endif

#ifndef MINSIZE_TMAXVAL
# define MINSIZE_TMAXVAL (size_t)4294967295
#endif


#if !defined(MOTIF) && !defined(LISPL)  && !defined(__cplusplus) && \
 !defined(LUSEMFC)
typedef  OraText *string;        
#endif 

#ifndef lint
typedef unsigned short  utext;
#else
#define utext  unsigned short
#endif

 
#endif 



Go to previous page Go to next page
Oracle
Copyright © 1996-2001, Oracle Corporation.

All Rights Reserved.
Go To Documentation Library
Home
Go To Product List
Book List
Go To Table Of Contents
Contents
Go To Index
Index

Master Index

Feedback