MySQL 8.4 Reference Manual Including MySQL NDB Cluster 8.4
        MySQL provides several MySQL-specific functions that test the
        relationship between minimum bounding rectangles (MBRs) of two
        geometries g1 and
        g2. The return values 1 and 0
        indicate true and false, respectively.
      
        The MBR (also known as the bounding box) for a two-dimensional
        geometry is the smallest rectangle which holds all points in the
        geometry, and so encloses the area between its greatest extents
        in both coordinate directions. In other words, it is the
        rectangle bounded by the points (min(x),
        min(y)), (min(x), max(y)),
        (max(x), max(y)), and (max(x),
        min(y)), where min() and
        max() represent the geometry's minimum
        and maximum x-coordinate or y-coordinate, respectively.
      
When speaking of relationships between geometries, it is important to distinguish between containment and covering, as described here:
            A geometry g1
            contains another geometry
            g2 if and only if all points in
            g2 are also in
            g1, and their boundaries do not
            intersect. That is, all points (a, b) in
            g2 must satisfy the conditions
            min(x) < a < max(x) and
            min(y) < b < max(y). In this case,
            ST_Contains( and
            g1,
            g2)MBRContains( both return true,
            as does
            g1,
            g2)ST_Within(.
          g2,
            g1)
            We say that g1
            covers g2 if
            all points in g2 are also in
            g1, including any boundary
            points. That is, all points (a, b) in
            g2 must satisfy the conditions
            min(x) <= a <= max(x) and
            min(y) <= b <= max(y). In this
            case,
            MBRCovers( and
            g1,
            g2)MBRCoveredBy( both return true.
          g2,
            g1)
        Let us define a rectangle g1 and
        points p1,
        p2, and p3
        using the SQL statements shown here:
      
SET 
  @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),
  @p1 = ST_GeomFromText('Point(1 1)'),
  @p2 = ST_GeomFromText('Point(3 3)'),
  @p3 = ST_GeomFromText('Point(5 5)');
        g1 contains and covers
        p1; p1 is
        entirely within g1 and does not touch
        any of its boundaries, as we can see from the
        SELECT statement shown here:
      
mysql>SELECT->ST_Contains(@g1, @p1), ST_Within(@p1, @g1),->MBRContains(@g1, @p1),->MBRCovers(@g1, @p1), MBRCoveredBy(@p1, @g1),->ST_Disjoint(@g1, @p1), ST_Intersects(@g1, @p1)\G*************************** 1. row *************************** ST_Contains(@g1, @p1): 1 ST_Within(@p1, @g1): 1 MBRContains(@g1, @p1): 1 MBRCovers(@g1, @p1): 1 MBRCoveredBy(@p1, @g1): 1 ST_Disjoint(@g1, @p1): 0 ST_Intersects(@g1, @p1): 1 1 row in set (0.01 sec)
        Using the same query with @p2 in place of
        @p1, we can see that
        g2 covers
        p2, but does not contain it, because
        p2 is included in the boundary of
        g2, but does not lie within its
        interior. (That is, min(x) <= a <=
        max(x) and min(y) <= b <=
        max(y) are true, but min(x) < a <
        max(x) and min(y) < b <
        max(y) are not.)
      
mysql>SELECT->ST_Contains(@g1, @p2), ST_Within(@p2, @g1),->MBRContains(@g1, @p2),->MBRCovers(@g1, @p2), MBRCoveredBy(@p2, @g1),->ST_Disjoint(@g1, @p2), ST_Intersects(@g1, @p2)\G*************************** 1. row *************************** ST_Contains(@g1, @p2): 0 ST_Within(@p2, @g1): 0 MBRContains(@g1, @p2): 0 MBRCovers(@g1, @p2): 1 MBRCoveredBy(@p2, @g1): 1 ST_Disjoint(@g1, @p2): 0 ST_Intersects(@g1, @p2): 1 1 row in set (0.00 sec)
        Executing the query—this time using @p3
        rather than @p2 or
        @p1—shows us that
        p3 is disjoint from
        g1; the two geometries have no points
        in common, and g1 neither contains
        nor covers p3.
        ST_Disjoint( returns true;
        g1,
        p3)ST_Intersects( returns false.
      g1,
        p3)
mysql>SELECT->ST_Contains(@g1, @p3), ST_Within(@p3, @g1),->MBRContains(@g1, @p3),->MBRCovers(@g1, @p3), MBRCoveredBy(@p3, @g1),->ST_Disjoint(@g1, @p3), ST_Intersects(@g1, @p3)\G*************************** 1. row *************************** ST_Contains(@g1, @p3): 0 ST_Within(@p3, @g1): 0 MBRContains(@g1, @p3): 0 MBRCovers(@g1, @p3): 0 MBRCoveredBy(@p3, @g1): 0 ST_Disjoint(@g1, @p3): 1 ST_Intersects(@g1, @p3): 0 1 row in set (0.00 sec)
The function descriptions shown later in this section and in Section 14.16.9.1, “Spatial Relation Functions That Use Object Shapes” provide additional examples.
The bounding box of a point is interpreted as a point that is both boundary and interior.
The bounding box of a straight horizontal or vertical line is interpreted as a line where the interior of the line is also boundary. The endpoints are boundary points.
If any of the parameters are geometry collections, the interior, boundary, and exterior of those parameters are those of the union of all elements in the collection.
Functions in this section detect arguments in either Cartesian or geographic spatial reference systems (SRSs), and return results appropriate to the SRS.
Unless otherwise specified, functions in this section handle their geometry arguments as follows:
            If any argument is NULL or an empty
            geometry, the return value is NULL.
          
            If any geometry argument is not a syntactically well-formed
            geometry, an
            ER_GIS_INVALID_DATA error
            occurs.
          
            If any geometry argument is a syntactically well-formed
            geometry in an undefined spatial reference system (SRS), an
            ER_SRS_NOT_FOUND error
            occurs.
          
            For functions that take multiple geometry arguments, if
            those arguments are not in the same SRS, an
            ER_GIS_DIFFERENT_SRIDS error
            occurs.
          
If any argument is geometrically invalid, either the result is true or false (it is undefined which), or an error occurs.
For geographic SRS geometry arguments, if any argument has a longitude or latitude that is out of range, an error occurs:
                If a longitude value is not in the range (−180,
                180], an
                ER_GEOMETRY_PARAM_LONGITUDE_OUT_OF_RANGE
                error occurs.
              
                If a latitude value is not in the range [−90, 90],
                an
                ER_GEOMETRY_PARAM_LATITUDE_OUT_OF_RANGE
                error occurs.
              
Ranges shown are in degrees. If an SRS uses another unit, the range uses the corresponding values in its unit. The exact range limits deviate slightly due to floating-point arithmetic.
            Otherwise, the return value is non-NULL.
          
These MBR functions are available for testing geometry relationships:
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangle of g1 contains the
            minimum bounding rectangle of g2.
            This tests the opposite relationship as
            MBRWithin().
          
            MBRContains() handles its
            arguments as described in the introduction to this section.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)');->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.00 sec) mysql>SELECT->MBRContains(@g1, @g2), MBRContains(@g1, @g4),->MBRContains(@g2, @g1), MBRContains(@g2, @g4),->MBRContains(@g2, @g3), MBRContains(@g3, @g4),->MBRContains(@g3, @g1), MBRContains(@g1, @g3),->MBRContains(@g1, @p1), MBRContains(@p1, @g1),->MBRContains(@g1, @p1), MBRContains(@p1, @g1),->MBRContains(@g2, @p2), MBRContains(@g2, @p3),->MBRContains(@g3, @p1), MBRContains(@g3, @p2),->MBRContains(@g3, @p3), MBRContains(@g4, @p1),->MBRContains(@g4, @p2), MBRContains(@g4, @p3)\G*************************** 1. row *************************** MBRContains(@g1, @g2): 1 MBRContains(@g1, @g4): 0 MBRContains(@g2, @g1): 0 MBRContains(@g2, @g4): 0 MBRContains(@g2, @g3): 0 MBRContains(@g3, @g4): 0 MBRContains(@g3, @g1): 1 MBRContains(@g1, @g3): 0 MBRContains(@g1, @p1): 1 MBRContains(@p1, @g1): 0 MBRContains(@g1, @p1): 1 MBRContains(@p1, @g1): 0 MBRContains(@g2, @p2): 0 MBRContains(@g2, @p3): 0 MBRContains(@g3, @p1): 1 MBRContains(@g3, @p2): 1 MBRContains(@g3, @p3): 0 MBRContains(@g4, @p1): 0 MBRContains(@g4, @p2): 0 MBRContains(@g4, @p3): 0 1 row in set (0.00 sec)
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangle of g1 is covered by the
            minimum bounding rectangle of g2.
            This tests the opposite relationship as
            MBRCovers().
          
            MBRCoveredBy() handles its
            arguments as described in the introduction to this section.
          
mysql>SET @g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');mysql>SET @g2 = ST_GeomFromText('Point(1 1)');mysql>SELECT MBRCovers(@g1,@g2), MBRCoveredby(@g1,@g2);+--------------------+-----------------------+ | MBRCovers(@g1,@g2) | MBRCoveredby(@g1,@g2) | +--------------------+-----------------------+ | 1 | 0 | +--------------------+-----------------------+ mysql>SELECT MBRCovers(@g2,@g1), MBRCoveredby(@g2,@g1);+--------------------+-----------------------+ | MBRCovers(@g2,@g1) | MBRCoveredby(@g2,@g1) | +--------------------+-----------------------+ | 0 | 1 | +--------------------+-----------------------+
            See the description of the
            MBRCovers() function for
            additional examples.
          
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangle of g1 covers the
            minimum bounding rectangle of g2.
            This tests the opposite relationship as
            MBRCoveredBy(). See the
            description of MBRCoveredBy()
            for additional examples.
          
            MBRCovers() handles its
            arguments as described in the introduction to this section.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)'),->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.02 sec) mysql>SELECT->MBRCovers(@g1, @p1), MBRCovers(@g1, @p2),->MBRCovers(@g1, @g2), MBRCovers(@g1, @p3)\G*************************** 1. row *************************** MBRCovers(@g1, @p1): 1 MBRCovers(@g1, @p2): 1 MBRCovers(@g1, @g2): 1 MBRCovers(@g1, @p3): 0 1 row in set (0.00 sec)
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangles of the two geometries
            g1 and
            g2 are disjoint (do not
            intersect).
          
            MBRDisjoint() handles its
            arguments as described in the introduction to this section.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)'),->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.00 sec) mysql>SELECT->MBRDisjoint(@g1, @g4), MBRDisjoint(@g2, @g4),->MBRDisjoint(@g3, @g4), MBRDisjoint(@g4, @g4),->MBRDisjoint(@g1, @p1), MBRDisjoint(@g1, @p2),->MBRDisjoint(@g1, @p3)\G*************************** 1. row *************************** MBRDisjoint(@g1, @g4): 1 MBRDisjoint(@g2, @g4): 1 MBRDisjoint(@g3, @g4): 0 MBRDisjoint(@g4, @g4): 0 MBRDisjoint(@g1, @p1): 0 MBRDisjoint(@g1, @p2): 0 MBRDisjoint(@g1, @p3): 1 1 row in set (0.00 sec)
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangles of the two geometries
            g1 and
            g2 are the same.
          
            MBREquals() handles its
            arguments as described in the introduction to this section,
            except that it does not return NULL for
            empty geometry arguments.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)'),->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.00 sec) mysql>SELECT->MBREquals(@g1, @g1), MBREquals(@g1, @g2),->MBREquals(@g1, @p1), MBREquals(@g1, @p2), MBREquals(@g2, @g2),->MBREquals(@p1, @p1), MBREquals(@p1, @p2), MBREquals(@p2, @p2)\G*************************** 1. row *************************** MBREquals(@g1, @g1): 1 MBREquals(@g1, @g2): 0 MBREquals(@g1, @p1): 0 MBREquals(@g1, @p2): 0 MBREquals(@g2, @g2): 1 MBREquals(@p1, @p1): 1 MBREquals(@p1, @p2): 0 MBREquals(@p2, @p2): 1 1 row in set (0.00 sec)
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangles of the two geometries
            g1 and
            g2 intersect.
          
            MBRIntersects() handles its
            arguments as described in the introduction to this section.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),->@g5 = ST_GeomFromText('Polygon((2 2,2 8,8 8,8 2,2 2))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)'),->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.00 sec) mysql> SELECT -> MBRIntersects(@g1, @g1), MBRIntersects(@g1, @g2), -> MBRIntersects(@g1, @g3), MBRIntersects(@g1, @g4), MBRIntersects(@g1, @g5), -> MBRIntersects(@g1, @p1), MBRIntersects(@g1, @p2), MBRIntersects(@g1, @p3), -> MBRIntersects(@g2, @p1), MBRIntersects(@g2, @p2), MBRIntersects(@g2, @p3)\G *************************** 1. row *************************** MBRIntersects(@g1, @g1): 1 MBRIntersects(@g1, @g2): 1 MBRIntersects(@g1, @g3): 1 MBRIntersects(@g1, @g4): 0 MBRIntersects(@g1, @g5): 1 MBRIntersects(@g1, @p1): 1 MBRIntersects(@g1, @p2): 1 MBRIntersects(@g1, @p3): 0 MBRIntersects(@g2, @p1): 1 MBRIntersects(@g2, @p2): 0 MBRIntersects(@g2, @p3): 0 1 row in set (0.00 sec)
Two geometries spatially overlap if they intersect and their intersection results in a geometry of the same dimension but not equal to either of the given geometries.
            This function returns 1 or 0 to indicate whether the minimum
            bounding rectangles of the two geometries
            g1 and
            g2 overlap.
          
            MBROverlaps() handles its
            arguments as described in the introduction to this section.
          
Two geometries spatially touch if their interiors do not intersect, but the boundary of one of the geometries intersects either the boundary or the interior of the other.
            This function returns 1 or 0 to indicate whether the minimum
            bounding rectangles of the two geometries
            g1 and
            g2 touch.
          
            MBRTouches() handles its
            arguments as described in the introduction to this section.
          
            Returns 1 or 0 to indicate whether the minimum bounding
            rectangle of g1 is within the
            minimum bounding rectangle of g2.
            This tests the opposite relationship as
            MBRContains().
          
            MBRWithin() handles its
            arguments as described in the introduction to this section.
          
mysql>SET->@g1 = ST_GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))'),->@g2 = ST_GeomFromText('Polygon((1 1,1 2,2 2,2 1,1 1))'),->@g3 = ST_GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))'),->@g4 = ST_GeomFromText('Polygon((5 5,5 10,10 10,10 5,5 5))'),->@p1 = ST_GeomFromText('Point(1 1)'),->@p2 = ST_GeomFromText('Point(3 3)');->@p3 = ST_GeomFromText('Point(5 5)');Query OK, 0 rows affected (0.00 sec) mysql>SELECT->MBRWithin(@g1, @g2), MBRWithin(@g1, @g4),->MBRWithin(@g2, @g1), MBRWithin(@g2, @g4),->MBRWithin(@g2, @g3), MBRWithin(@g3, @g4),->MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),->MBRWithin(@g1, @p1), MBRWithin(@p1, @g1),->MBRWithin(@g2, @p2), MBRWithin(@g2, @p3)\G*************************** 1. row *************************** MBRWithin(@g1, @g2): 0 MBRWithin(@g1, @g4): 0 MBRWithin(@g2, @g1): 1 MBRWithin(@g2, @g4): 0 MBRWithin(@g2, @g3): 1 MBRWithin(@g3, @g4): 0 MBRWithin(@g1, @p1): 0 MBRWithin(@p1, @g1): 1 MBRWithin(@g1, @p1): 0 MBRWithin(@p1, @g1): 1 MBRWithin(@g2, @p2): 0 MBRWithin(@g2, @p3): 0 1 row in set (0.00 sec)