MySQL AI User Guide
ML_EXPLAIN_TABLE
explains predictions for an entire table of unlabeled data. It
limits explanations to the 100 most relevant features.
ML_EXPLAIN_TABLE
is a very memory-intensive process. We recommend limiting
the input table to a maximum of 100 rows. If the input table
has more than ten columns, limit it to ten rows.
A call to
ML_EXPLAIN_TABLE
can include columns that were not present during
ML_TRAIN
.
A table can include extra columns, and still use the
MySQL HeatWave AutoML model. This allows side by side comparisons of
target column labels, ground truth, and explanations in the
same table.
ML_EXPLAIN_TABLE
ignores any extra columns, and appends them to the results.
A loaded model and trained with the appropriate prediction
explainer is required to run
ML_EXPLAIN_TABLE
.
See
Generate
Prediction Explanations for a Table.
The output table includes a primary key:
If the input table has a primary key, the output table will have the same primary key.
If the input table does not have a primary key, the output
table will have a new primary key column that auto
increments. The name of the new primary key column is
_4aad19ca6e_pk_id
. The input table must
not have a column with the name
_4aad19ca6e_pk_id
that is not a primary
key.
You have the option to specify the input table and output table as the same table if specific conditions are met. See Input Tables and Output Tables to learn more.
ML_EXPLAIN_TABLE
does not support recommendation, anomaly detection, and topic
modeling models. A call with one of these models produces an
error.
mysql>CALL sys.ML_EXPLAIN_TABLE(
table_name
,model_handle
,output_table_name
, [options
]);options
: { JSON_OBJECT("key
","value
"[,"key
","value
"] ...)"key","value"
: { ['prediction_explainer', {'permutation_importance'|'shap'}|NULL] } }
Set the following required parameters.
table_name
: Specifies the fully
qualified name of the input table
(database_name.table_name
). The
input table should contain the same feature columns as the
table used to train the model. If the target column is
included in the input table, it is not considered when
generating prediction explanations.
model_handle
: Specifies the model
handle or a session variable containing the model handle.
See Work with
Model Handles.
output_table_name
: Specifies the table
where explanation data is stored. A fully qualified table
name must be specified
(database_name.table_name
). You
have the option to specify the input table and output
table as the same table if specific conditions are met.
See
Input Tables and Output Tables
to learn more.
Set the following options as needed.
prediction_explainer
: The name of the
prediction explainer that you have trained for this model
using
ML_EXPLAIN
.
permutation_importance
: The default
prediction explainer.
shap
: The SHAP prediction
explainer, which produces feature importance values
based on Shapley values.
The following example generates explanations for a table
of data with the default Permutation Importance prediction
explainer. The
ML_EXPLAIN_TABLE
call specifies the fully qualified name of the table to
generate explanations for, the session variable containing
the model handle, and the fully qualified output table
name.
mysql> CALL sys.ML_EXPLAIN_TABLE('census_data.census_train', @census_model, 'census_data.census_train_permutation', JSON_OBJECT('prediction_explainer', 'permutation_importance'));
To view
ML_EXPLAIN_TABLE
results, query the output table. The
SELECT
statement retrieves explanation
data from the output table. The table includes the primary
key, _4aad19ca6e_pk_id
, and the
ml_results
column, which uses
JSON
format:
mysql> SELECT * FROM census_train_permutation LIMIT 3;
+-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| _4aad19ca6e_pk_id | age | workclass | fnlwgt | education | education-num | marital-status | occupation | relationship | race | sex | capital-gain | capital-loss | hours-per-week | native-country | revenue | Prediction | age_attribution | education-num_attribution | marital-status_attribution | education_attribution | hours-per-week_attribution | relationship_attribution | race_attribution | sex_attribution | workclass_attribution | fnlwgt_attribution | capital-gain_attribution | Notes | ml_results |
+-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| 1 | 37 | Private | 99146 | Bachelors | 13 | Married-civ-spouse | Exec-managerial | Husband | White | Male | 0 | 1977 | 50 | United-States | >50K | <=50K | -0.1 | -0.08 | -0.05 | -0.05 | -0.03 | -0.03 | 0.02 | -0.02 | 0.01 | 0 | 0 | race (White) had the largest impact towards predicting =50K, whereas age (37) contributed the most against predicting <=50K | {"attributions": {"age": -0.1, "education-num": -0.08, "marital-status": -0.05, "education": -0.05, "hours-per-week": -0.03, "relationship": -0.03, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "race (White) had the largest impact towards predicting <=50K, whereas age (37) contributed the most against predicting <=50K"} |
| 2 | 34 | Private | 27409 | 9th | 5 | Married-civ-spouse | Craft-repair | Husband | White | Male | 0 | 0 | 50 | United-States | <=50K | <=50K | 0 | 0 | -0.04 | 0.06 | -0.03 | 0.02 | 0.02 | -0.02 | 0.01 | 0 | 0 | education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": -0.04, "education": 0.06, "hours-per-week": -0.03, "relationship": 0.02, "race": 0.02, "sex": -0.02, "workclass": 0.01, "fnlwgt": 0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "education (9th) had the largest impact towards predicting <=50K, whereas marital-status (Married-civ-spouse) contributed the most against predicting <=50K"} |
| 3 | 30 | Private | 299507 | Assoc-acdm | 12 | Separated | Other-service | Unmarried | White | Female | 0 | 0 | 40 | United-States | <=50K | <=50K | 0 | 0 | 0 | 0 | 0 | 0.03 | 0.01 | 0.02 | 0 | 0 | 0 | relationship (Unmarried) had the largest impact towards predicting <=50K | {"attributions": {"age": 0.0, "education-num": 0.0, "marital-status": 0.0, "education": 0.0, "hours-per-week": 0.0, "relationship": 0.03, "race": 0.01, "sex": 0.02, "workclass": 0.0, "fnlwgt": -0.0, "capital-gain": 0.0}, "predictions": {"revenue": "<=50K"}, "notes": "relationship (Unmarried) had the largest impact towards predicting <=50K"} |
+-------------------+-----+-----------+--------+------------+---------------+--------------------+-----------------+--------------+-------+--------+--------------+--------------+----------------+----------------+---------+------------+-----------------+---------------------------+----------------------------+-----------------------+----------------------------+--------------------------+------------------+-----------------+-----------------------+--------------------+--------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+