JavaScript is required to for searching.
Skip Navigation Links
Exit Print View
Oracle Solaris Studio 12.2: Debugging a Program With dbx
search filter icon
search icon

Document Information

Preface

1.  Getting Started With dbx

2.  Starting dbx

3.  Customizing dbx

4.  Viewing and Navigating To Code

5.  Controlling Program Execution

6.  Setting Breakpoints and Traces

7.  Using the Call Stack

8.  Evaluating and Displaying Data

9.  Using Runtime Checking

10.  Fixing and Continuing

11.  Debugging Multithreaded Applications

Understanding Multithreaded Debugging

Thread Information

Viewing the Context of Another Thread

Viewing the Threads List

Resuming Execution

Understanding Thread Creation Activity

Understanding LWP Information

12.  Debugging Child Processes

13.  Debugging OpenMP Programs

14.  Working With Signals

15.  Debugging C++ With dbx

16.  Debugging Fortran Using dbx

17.  Debugging a Java Application With dbx

18.  Debugging at the Machine-Instruction Level

19.  Using dbx With the Korn Shell

20.  Debugging Shared Libraries

A.  Modifying a Program State

B.  Event Management

C.  Command Reference

Index

Understanding Thread Creation Activity

You can get an idea of how often your application creates and destroys threads by using the thr_create event and thr_exit event as in the following example:

(dbx) trace thr_create
(dbx) trace thr_exit
(dbx) run

trace: thread created t@2 on l@2
trace: thread created t@3 on l@3
trace: thread created t@4 on l@4
trace: thr_exit t@4
trace: thr_exit t@3
trace: thr_exit t@2

The application created three threads. Note how the threads exited in reverse order from their creation, which might indicate that had the application had more threads, the threads would accumulate and consume resources.

To get more interesting information, you could try the following in a different session:

(dbx) when thr_create { echo "XXX thread $newthread created by $thread"; }
XXX thread t@2 created by t@1
XXX thread t@3 created by t@1
XXX thread t@4 created by t@1

The output shows that all three threads were created by thread t@1, which is a common multi-threading pattern.

Suppose you want to debug thread t@3 from its outset. You could stop the application at the point that thread t@3 is created as follows:

(dbx) stop thr_create t@3
(dbx) run
t@1 (l@1) stopped in tdb_event_create at 0xff38409c
0xff38409c: tdb_event_create       :    retl
Current function is main
216       stat = (int) thr_create(NULL, 0, consumer, q, tflags, &tid_cons2);
(dbx)

If your application occasionally spawns a new thread from thread t@5 instead of thread t@1, you could capture that event as follows:

(dbx) stop thr_create -thread t@5