Linker and Libraries Guide

Sections

An object file's section header table allows you to locate all of the sections of the file. The section header table is an array of Elf32_Shdr or Elf64_Shdr structures. A section header table index is a subscript into this array. The ELF header's e_shoff member indicates the byte offset from the beginning of the file to the section header table. The e_shnum member indicates how many entries that the section header table contains. The e_shentsize member indicates the size in bytes of each entry.

If the number of sections is greater than or equal to SHN_LORESERVE (0xff00), e_shnum has the value SHN_UNDEF (0). The actual number of section header table entries is contained in the sh_size field of the section header at index 0. Otherwise, the sh_size member of the initial entry contains the value zero.

Some section header table indexes are reserved in contexts where index size is restricted. For example, the st_shndx member of a symbol table entry and the e_shnum and e_shstrndx members of the ELF header. In such contexts, the reserved values do not represent actual sections in the object file. Also in such contexts, an escape value indicates that the actual section index is to be found elsewhere, in a larger field.

Table 7–4 ELF Special Section Indexes

Name 

Value 

SHN_UNDEF

0

SHN_LORESERVE

0xff00

SHN_LOPROC

0xff00

SHN_BEFORE

0xff00

SHN_AFTER

0xff01

SHN_AMD64_LCOMMON

0xff02

SHN_HIPROC

0xff1f

SHN_LOOS

0xff20

SHN_LOSUNW

0xff3f

SHN_SUNW_IGNORE

0xff3f

SHN_HISUNW

0xff3f

SHN_HIOS

0xff3f

SHN_ABS

0xfff1

SHN_COMMON

0xfff2

SHN_XINDEX

0xffff

SHN_HIRESERVE

0xffff


Note –

Although index 0 is reserved as the undefined value, the section header table contains an entry for index 0. That is, if the e_shnum member of the ELF header indicates a file has 6 entries in the section header table, the sections have the indexes 0 through 5. The contents of the initial entry are specified later in this section.


SHN_UNDEF

An undefined, missing, irrelevant, or otherwise meaningless section reference. For example, a symbol defined relative to section number SHN_UNDEF is an undefined symbol.

SHN_LORESERVE

The lower boundary of the range of reserved indexes.

SHN_LOPROC - SHN_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

SHN_LOOS - SHN_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

SHN_LOSUNW - SHN_HISUNW

Values in this inclusive range are reserved for Sun-specific semantics.

SHN_SUNW_IGNORE

This section index provides a temporary symbol definition within relocatable objects. Reserved for internal use by dtrace(1M).

SHN_BEFORE, SHN_AFTER

Provide for initial and final section ordering in conjunction with the SHF_LINK_ORDER and SHF_ORDERED section flags. See Table 7–8.

SHN_AMD64_LCOMMON

x64 specific common block label. This label is similar to SHN_COMMON, but provides for identifying a large common block.

SHN_ABS

Absolute values for the corresponding reference. For example, symbols defined relative to section number SHN_ABS have absolute values and are not affected by relocation.

SHN_COMMON

Symbols defined relative to this section are common symbols, such as FORTRAN COMMON or unallocated C external variables. These symbols are sometimes referred to as tentative.

SHN_XINDEX

An escape value indicating that the actual section header index is too large to fit in the containing field. The header section index is found in another location specific to the structure where the section index appears.

SHN_HIRESERVE

The upper boundary of the range of reserved indexes. The system reserves indexes between SHN_LORESERVE and SHN_HIRESERVE, inclusive. The values do not reference the section header table. The section header table does not contain entries for the reserved indexes.

Sections contain all information in an object file except the ELF header, the program header table, and the section header table. Moreover, the sections in object files satisfy several conditions.

A section header has the following structure. See sys/elf.h.

typedef struct {
        elf32_Word      sh_name;
        Elf32_Word      sh_type;
        Elf32_Word      sh_flags;
        Elf32_Addr      sh_addr;
        Elf32_Off       sh_offset;
        Elf32_Word      sh_size;
        Elf32_Word      sh_link;
        Elf32_Word      sh_info;
        Elf32_Word      sh_addralign;
        Elf32_Word      sh_entsize;
} Elf32_Shdr;

typedef struct {
        Elf64_Word      sh_name;
        Elf64_Word      sh_type;
        Elf64_Xword     sh_flags;
        Elf64_Addr      sh_addr;
        Elf64_Off       sh_offset;
        Elf64_Xword     sh_size;
        Elf64_Word      sh_link;
        Elf64_Word      sh_info;
        Elf64_Xword     sh_addralign;
        Elf64_Xword     sh_entsize;
} Elf64_Shdr;
sh_name

The name of the section. This members value is an index into the section header string table section giving the location of a null-terminated string. Section names and their descriptions are listed in Table 7–10.

sh_type

Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 7–5.

sh_flags

Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 7–8.

sh_addr

If the section appears in the memory image of a process, this member gives the address at which the section's first byte should reside. Otherwise, the member contains the value zero.

sh_offset

The byte offset from the beginning of the file to the first byte in the section. For a SHT_NOBITS section, this member indicates the conceptual offset in the file, as the section occupies no space in the file.

sh_size

The section's size in bytes. Unless the section type is SHT_NOBITS, the section occupies sh_size bytes in the file. A section of type SHT_NOBITS can have a nonzero size, but the section occupies no space in the file.

sh_link

A section header table index link, whose interpretation depends on the section type. Table 7–9 describes the values.

sh_info

Extra information, whose interpretation depends on the section type. Table 7–9 describes the values. If the sh_flags field for this section header includes the attribute SHF_INFO_LINK, then this member represents a section header table index.

sh_addralign

Some sections have address alignment constraints. For example, if a section holds a double-word, the system must ensure double-word alignment for the entire section. In this case, the value of sh_addr must be congruent to 0, modulo the value of sh_addralign. Currently, only 0 and positive integral powers of two are allowed. Values 0 and 1 mean the section has no alignment constraints.

sh_entsize

Some sections hold a table of fixed-size entries, such as a symbol table. For such a section, this member gives the size in bytes of each entry. The member contains the value zero if the section does not hold a table of fixed-size entries.

A section header's sh_type member specifies the section's semantics, as shown in the following table.

Table 7–5 ELF Section Types, sh_type

Name 

Value 

SHT_NULL

0

SHT_PROGBITS

1

SHT_SYMTAB

2

SHT_STRTAB

3

SHT_RELA

4

SHT_HASH

5

SHT_DYNAMIC

6

SHT_NOTE

7

SHT_NOBITS

8

SHT_REL

9

SHT_SHLIB

10

SHT_DYNSYM

11

SHT_INIT_ARRAY

14

SHT_FINI_ARRAY

15

SHT_PREINIT_ARRAY

16

SHT_GROUP

17

SHT_SYMTAB_SHNDX

18

SHT_LOOS

0x60000000

SHT_LOSUNW

0x6ffffff4

SHT_SUNW_dof

0x6ffffff4

SHT_SUNW_cap

0x6ffffff5

SHT_SUNW_SIGNATURE

0x6ffffff6

SHT_SUNW_ANNOTATE

0x6ffffff7

SHT_SUNW_DEBUGSTR

0x6ffffff8

SHT_SUNW_DEBUG

0x6ffffff9

SHT_SUNW_move

0x6ffffffa

SHT_SUNW_COMDAT

0x6ffffffb

SHT_SUNW_syminfo

0x6ffffffc

SHT_SUNW_verdef

0x6ffffffd

SHT_SUNW_verneed

0x6ffffffe

SHT_SUNW_versym

0x6fffffff

SHT_HISUNW

0x6fffffff

SHT_HIOS

0x6fffffff

SHT_LOPROC

0x70000000

SHT_SPARC_GOTDATA

0x70000000

SHT_AMD64_UNWIND

0x70000001

SHT_HIPROC

0x7fffffff

SHT_LOUSER

0x80000000

SHT_HIUSER

0xffffffff

SHT_NULL

Identifies the section header as inactive. This section header does not have an associated section. Other members of the section header have undefined values.

SHT_PROGBITS

Identifies information defined by the program, whose format and meaning are determined solely by the program.

SHT_SYMTAB, SHT_DYNSYM

Identifies a symbol table. Typically, a SHT_SYMTAB section provides symbols for link-editing. As a complete symbol table, the table can contain many symbols that are unnecessary for dynamic linking. Consequently, an object file can also contain a SHT_DYNSYM section, which holds a minimal set of dynamic linking symbols, to save space.

See Symbol Table Section for details.

SHT_STRTAB, SHT_DYNSTR

Identifies a string table. An object file can have multiple string table sections. See String Table Section for details.

SHT_RELA

Identifies relocation entries with explicit addends, such as type Elf32_Rela for the 32–bit class of object files. An object file can have multiple relocation sections. See Relocation Sections for details.

SHT_HASH

Identifies a symbol hash table. A dynamically linked object file must contain a symbol hash table. Currently, an object file can have only one hash table, but this restriction might be relaxed in the future. See Hash Table Section for details.

SHT_DYNAMIC

Identifies information for dynamic linking. Currently, an object file can have only one dynamic section. See Dynamic Section for details.

SHT_NOTE

Identifies information that marks the file in some way. See Note Section for details.

SHT_NOBITS

Identifies a section that occupies no space in the file but otherwise resembles SHT_PROGBITS. Although this section contains no bytes, the sh_offset member contains the conceptual file offset.

SHT_REL

Identifies relocation entries without explicit addends, such as type Elf32_Rel for the 32–bit class of object files. An object file can have multiple relocation sections. See Relocation Sections for details.

SHT_SHLIB

Identifies a reserved section which has unspecified semantics. Programs that contain a section of this type do not conform to the ABI.

SHT_INIT_ARRAY

Identifies a section containing an array of pointers to initialization functions. Each pointer in the array is taken as a parameterless procedure with a void return. See Initialization and Termination Sections for details.

SHT_FINI_ARRAY

Identifies a section containing an array of pointers to termination functions. Each pointer in the array is taken as a parameterless procedure with a void return. See Initialization and Termination Sections for details.

SHT_PREINIT_ARRAY

Identifies a section containing an array of pointers to functions that are invoked before all other initialization functions. Each pointer in the array is taken as a parameterless procedure with a void return. See Initialization and Termination Sections for details.

SHT_GROUP

Identifies a section group. A section group identifies a set of related sections that must be treated as a unit by the link-editor. Sections of type SHT_GROUP can appear only in relocatable objects. See Group Section for details.

SHT_SYMTAB_SHNDX

Identifies a section containing extended section indexes, that are associated with a symbol table. If any section header indexes referenced by a symbol table, contain the escape value SHN_XINDEX, an associated SHT_SYMTAB_SHNDX is required.

The SHT_SYMTAB_SHNDX section is an array of Elf32_Word values. This array contains one entry for every entry in the associated symbol table entry. The values represent the section header indexes against which the symbol table entries are defined. Only if corresponding symbol table entry's st_shndx field contains the escape value SHN_XINDEX will the matching Elf32_Word hold the actual section header index. Otherwise, the entry must be SHN_UNDEF (0).

SHT_LOOSSHT_HIOS

Values in this inclusive range are reserved for operating system-specific semantics.

SHT_LOSUNWSHT_HISUNW

Values in this inclusive range are reserved for Solaris OS semantics.

SHT_SUNW_dof

Reserved for internal use by dtrace(1M).

SHT_SUNW_cap

Specifies hardware and software capability requirements. See Hardware and Software Capabilities Section for details.

SHT_SUNW_SIGNATURE

Identifies module verification signature.

SHT_SUNW_ANNOTATE

The processing of an annotate section follows all of the default rules for processing a section. The only exception occurs if the annotate section is in non-allocatable memory. If the section header flag SHF_ALLOC is not set, the link-editor silently ignores any unsatisfied relocations against this section.

SHT_SUNW_DEBUGSTR, SHT_SUNW_DEBUG

Identifies debugging information. Sections of this type are stripped from the object using the link-editor's -s option, or after the link-edit using strip(1).

SHT_SUNW_move

Identifies data to handle partially initialized symbols. See Move Section for details.

SHT_SUNW_COMDAT

Identifies a section that allows multiple copies of the same data to be reduced to a single copy. See COMDAT Section for details.

SHT_SUNW_syminfo

Identifies additional symbol information. See Syminfo Table Section for details.

SHT_SUNW_verdef

Identifies fine-grained versions defined by this file. See Version Definition Section for details.

SHT_SUNW_verneed

Identifies fine-grained dependencies required by this file. See Version Dependency Section for details.

SHT_SUNW_versym

Identifies a table describing the relationship of symbols to the version definitions offered by the file. See Version Symbol Section for details.

SHT_LOPROC - SHT_HIPROC

Values in this inclusive range are reserved for processor-specific semantics.

SHT_SPARC_GOTDATA

Identifies SPARC specific data, referenced using GOT-relative addressing. That is, offsets relative to the address assigned to the symbol _GLOBAL_OFFSET_TABLE_. For 64–bit SPARC, data in this section must be bound at link-edit time to locations within {+-} 2^32 bytes of the GOT address.

SHT_AMD64_UNWIND

Identifies x64 specific data, containing unwind function table entries for stack unwinding.

SHT_LOUSER

Specifies the lower boundary of the range of indexes that are reserved for application programs.

SHT_HIUSER

Specifies the upper boundary of the range of indexes that are reserved for application programs. Section types between SHT_LOUSER and SHT_HIUSER can be used by the application without conflicting with current or future system-defined section types.

Other section-type values are reserved. As mentioned before, the section header for index 0 (SHN_UNDEF) exists, even though the index marks undefined section references. The following table shows the values.

Table 7–6 ELF Section Header Table Entry: Index 0

Name 

Value 

Note 

sh_name

0

No name 

sh_type

SHT_NULL

Inactive 

sh_flags

0

No flags 

sh_addr

0

No address 

sh_offset

0

No file offset 

sh_size

0

No size 

sh_link

SHN_UNDEF

No link information 

sh_info

0

No auxiliary information 

sh_addralign

0

No alignment 

sh_entsize

0

No entries 

Should the number of sections or program headers exceed the ELF header data sizes, elements of section header 0 are used to define extended ELF header attributes. The following table shows the values.

Table 7–7 ELF Extended Section Header Table Entry: Index 0

Name 

Value 

Note 

sh_name

0

No name 

sh_type

SHT_NULL

Inactive 

sh_flags

0

No flags 

sh_addr

0

No address 

sh_offset

0

No file offset 

sh_size

e_shnum

The number of entries in the section header table 

sh_link

e_shstrndx

The section header index of the entry that is associated with the section name string table 

sh_info

e_phnum

The number of entries in the program header table 

sh_addralign

0

No alignment 

sh_entsize

0

No entries 

A section header's sh_flags member holds 1-bit flags that describe the section's attributes.

Table 7–8 ELF Section Attribute Flags

Name 

Value 

SHF_WRITE

0x1

SHF_ALLOC

0x2

SHF_EXECINSTR

0x4

SHF_MERGE

0x10

SHF_STRINGS

0x20

SHF_INFO_LINK

0x40

SHF_LINK_ORDER

0x80

SHF_OS_NONCONFORMING

0x100

SHF_GROUP

0x200

SHF_TLS

0x400

SHF_MASKOS

0x0ff00000

SHF_AMD64_LARGE

0x10000000

SHF_ORDERED

0x40000000

SHF_EXCLUDE

0x80000000

SHF_MASKPROC

0xf0000000

If a flag bit is set in sh_flags, the attribute is on for the section. Otherwise, the attribute is off, or does not apply. Undefined attributes are reserved and are set to zero.

SHF_WRITE

Identifies a section that should be writable during process execution.

SHF_ALLOC

Identifies a section that occupies memory during process execution. Some control sections do not reside in the memory image of an object file. This attribute is off for those sections.

SHF_EXECINSTR

Identifies a section that contains executable machine instructions.

SHF_MERGE

Identifies a section containing data that can be merged to eliminate duplication. Unless the SHF_STRINGS flag is also set, the data elements in the section are of a uniform size. The size of each element is specified in the section header's sh_entsize field. If the SHF_STRINGS flag is also set, the data elements consist of null-terminated character strings. The size of each character is specified in the section header's sh_entsize field.

SHF_STRINGS

Identifies a section that consists of null-terminated character strings. The size of each character is specified in the section header's sh_entsize field.

SHF_INFO_LINK

This section headers sh_info field holds a section header table index.

SHF_LINK_ORDER

This section adds special ordering requirements to the link-editor. The requirements apply if the sh_link field of this section's header references another section, the linked-to section. If this section is combined with other sections in the output file, the section appears in the same relative order with respect to those sections. Similarly the linked-to section appears with respect to sections the linked-to section is combined with.

The special sh_link values SHN_BEFORE and SHN_AFTER (see Table 7–4) imply that the sorted section is to precede or follow, respectively, all other sections in the set being ordered. Input file link-line order is preserved if multiple sections in an ordered set have one of these special values.

A typical use of this flag is to build a table that references text or data sections in address order.

In the absence of the sh_link ordering information, sections from a single input file combined within one section of the output file are contiguous. These section have the same relative ordering as the sections did in the input file. The contributions from multiple input files appear in link-line order.

SHF_OS_NONCONFORMING

This section requires special OS-specific processing beyond the standard linking rules to avoid incorrect behavior. If this section has either an sh_type value or contains sh_flags bits in the OS-specific ranges for those fields, and the link-editor does not recognize these values, then the object file containing this section is rejected with an error.

SHF_GROUP

This section is a member, perhaps the only member, of a section group. The section must be referenced by a section of type SHT_GROUP. The SHF_GROUP flag can be set only for sections that are contained in relocatable objects. See Group Section for details.

SHF_TLS

This section holds thread-local storage. Each thread within a process has a distinct instance of this data. See Chapter 8, Thread-Local Storage for details.

SHF_MASKOS

All bits that are included in this mask are reserved for operating system-specific semantics.

SHF_AMD64_LARGE

The default compilation model for x64 only provides for 32–bit displacements. This displacement limits the size of sections, and eventually segments, to 2 Gbytes. This attribute flag identifies a section that can hold more than 2 Gbyte. This flag allows the linking of object files that use different code models.

An x64 object file section that does not contain the SHF_AMD64_LARGE attribute flag can be freely referenced by objects using small code models. A section that contains this flag can only be referenced by objects that use larger code models. For example, an x64 medium code model object can refer to data in sections that contain the attribute flag and sections that do not contain the attribute flag. However, an x64 small code model object can only refer to data in a section that does not contain this flag.

SHF_ORDERED

This section requires ordering in relation to other sections of the same type. Ordered sections are combined within the section pointed to by the sh_link entry. The sh_link entry of an ordered section can point to itself.

If the sh_info entry of the ordered section is a valid section within the same input file, the ordered section is sorted based on the relative ordering within the output file of the section pointed to by the sh_info entry.

The special sh_info values SHN_BEFORE and SHN_AFTER (see Table 7–4) imply that the sorted section is to precede or follow, respectively, all other sections in the set being ordered. Input file link-line order is preserved if multiple sections in an ordered set have one of these special values.

In the absence of the sh_info ordering information, sections from a single input file combined within one section of the output file are contiguous. These sections have the same relative ordering as the sections appear in the input file. The contributions from multiple input files appear in link-line order.

SHF_EXCLUDE

This section is excluded from input to the link-edit of an executable or shared object. This flag is ignored if the SHF_ALLOC flag is also set, or if relocations exist against the section.

SHF_MASKPROC

All bits that are included in this mask are reserved for processor-specific semantics.

Two members in the section header, sh_link and sh_info, hold special information, depending on section type.

Table 7–9 ELF sh_link and sh_info Interpretation

sh_type

sh_link

sh_info

SHT_DYNAMIC

The section header index of the associated string table. 

0

SHT_HASH

The section header index of the associated symbol table. 

0

SHT_REL

SHT_RELA

The section header index of the associated symbol table. 

If the sh_flags member contains the SHF_INFO_LINK flag, the section header index of the section to which the relocation applies, otherwise 0. See also Table 7–10 and Relocation Sections.

SHT_SYMTAB

SHT_DYNSYM

The section header index of the associated string table. 

One greater than the symbol table index of the last local symbol, STB_LOCAL.

SHT_GROUP

The section header index of the associated symbol table. 

The symbol table index of an entry in the associated symbol table. The name of the specified symbol table entry provides a signature for the section group. 

SHT_SYMTAB_SHNDX

The section header index of the associated symbol table. 

0

SHT_SUNW_move

The section header index of the associated symbol table. 

0

SHT_SUNW_COMDAT

0

0

SHT_SUNW_syminfo

The section header index of the associated symbol table. 

The section header index of the associated .dynamic section.

SHT_SUNW_verdef

The section header index of the associated string table. 

The number of version definitions within the section. 

SHT_SUNW_verneed

The section header index of the associated string table. 

The number of version dependencies within the section. 

SHT_SUNW_versym

The section header index of the associated symbol table. 

0