Sun Java Communications Suite 5 Deployment Planning Guide

The Message Transfer Agent (MTA)

The MTA routes, transfers, and delivers Internet mail messages for Messaging Server. Mail flows through interfaces known as channels. Each channel consists of one or a pair of agent programs and a set of configuration information. The agent programs are a slave program, which handles mail coming into the channel, and a master program, which handles mail as it leaves the channel. There is a message queue for storing messages that are destined to be sent to one or more of the interfaces associated with any channel. Messaging Server provides a number of default channels, including:

Figure 9–2 illustrates the process. You can configure channels individually and direct mail to specific channels based on the address.

Figure 9–2 Channel Architecture

This diagram shows the Messaging Server channel architecture.

Channel programs perform one of two functions:

Channels are configurable by using the imta.cnf configuration text file. Through channel configuration, you can set a variety of channel keywords to control how messages are handled. Channel keywords affect performance tuning as well as reporting aspects of the system. For example, you can define multiple channels to segment traffic by destination, define message size limits to limit traffic, and define delivery status notification rules according to the needs of your business. Diagnostic attributes are also configurable on a per-channel basis. The number of configuration parameters that can be set on a channel basis is large.

See Chapter 8, MTA Concepts, in Sun Java System Messaging Server 6.3 Administration Guide for more information on MTA concepts.

Direct LDAP Lookup

The MTA looks up the information directly from the LDAP server. The direct lookup provides a scalable, fast, and configurable relationship between the MTA and the LDAP server. The results of the LDAP queries are cached in the process, with configurable size and time, so performance is tunable. See the Sun Java System Messaging Server 6.3 Administration Guide for more information.

Rewrite Rules

Mail is routed to a channel based on the result of running the destination addresses through domain rewriting rules, or rewrite rules for short. Rewrite rules are used to convert addresses into true domain addresses and to determine their corresponding channels. These rules are used to rewrite addresses appearing in both the transport layer and the message header. The transport layer is the message’s envelope. It contains routing information and is invisible to the user, but is the actual information used to deliver the message to the appropriate recipient.

The rewrite rules and the table of channels cooperate to determine the disposition of each address. The result of the rewrite process is a rewritten address and a routing system, that is, the system (channel) to which the message is to be sent/queued. Depending upon the topology of the network, the routing system might only be the first step along the path the message takes to reach its destination, or it might be the final destination system itself.

After the rewrite process has finished, a search is made for the routing system among the channel portion of the imta.cnf file. Each channel has one or more host names associated with it. The routing system name is compared against each of these names to determine to which channel to enqueue the message. A simple rewrite rule is shown here:

example.com     $U%example.com@tcp_siroe-daemon

This rule matches addresses for the domain example.com only. Such matching addresses would be rewritten using the template $U%$D, where:

$U

Indicates the user portion or left-hand side of the address (before the @)

%

Indicates the @ sign

$D

Indicates the domain portion or right-hand side of the address (after the @)

Thus, a message of the form wallaby@thor.example.com would be rewritten to wallaby@example.com, and would be sent to the channel whose channel host name is tcp_siroe-daemon.

Rewrite rules can perform sophisticated substitutions based on mapping tables, LDAP directory lookups, and database references. While occasionally cryptic, they are useful in the fact that they operate at a low level and impose little direct overhead on the message processing cycle. For full information on these and other features available in the rewrite process, see Chapter 11, Configuring Rewrite Rules, in Sun Java System Messaging Server 6.3 Administration Guide.

The Job Controller

Master channel programs are run under the control of the job controller, a program that controls the message queues and invokes the channel programs to do the actual message delivery. The job controller is a multithreaded process and is one of the few processes that is always present in the Messaging Server system. The channel processing jobs themselves are created by the job controller but are transient and might not be present when there is no work for them to do.

Job controller configuration settings determine if there is always at least one instance of a channel processing program. In many cases, these are set so that there is always at least one instance of the service program even when there is no immediate work to do. In other cases, there will be an instance for a set period of time after it last did some work but there is nothing to do currently.

Slave channels, which accept external messages, by queueing a message, notify the job controller of a newly created message file. The job controller enters this information into its internal data structure and if necessary creates a master channel job to process the message in that queue. This job creation might not be necessary if the job controller determines that an existing channel job can process the newly queued message file. When the master channel job starts, it gets its message assignment from the job controller. When it is finished with the message, the master channel updates the job controller as to the status of its processing. The status is either that the message is successfully dequeued or the message should be rescheduled for retrying.

The job controller maintains information about message priority and previous delivery attempts that failed, allowing for advantageous scheduling of channel jobs. The job controller also keeps track of the state of each job. The state can be idle, how long the job has been idle, or whether the job is busy. Tracking state enables the job controller to keep an optimal pool of channel jobs.


Note –

There are currently only two slave channels, SMTP slave and LMTP slave. These programs are controlled by the dispatcher, which is described next.


Dispatcher

The dispatcher is another process that is always present on a Messaging Server system. It is a multithreaded traffic dispatcher, which dispatches incoming SMTP or LMTP connections to the pool of SMTP or LMTP server threads for protocol-specific processing. The SMTP and LMTP server programs provide a pool of worker threads at the disposal of the dispatcher. After it processes a message by either rejecting the message or enqueuing it into its destination channel, the worker thread is ready to accept more work from the dispatcher.

The dispatcher can block incoming traffic based on IP address and throttles it to prevent denial of service attacks. It also creates and shuts down SMTP or LMTP server processes based on load and configuration. Therefore the SMTP or LMTP slave channel programs are under the control of the dispatcher, not the job controller.

Local Mail Transfer Protocol (LMTP)

As of the Messaging Server 6.0 release, you can configure LMTP for delivery to the Message Store in a multi-tiered deployment. In these scenarios, where you are using inbound relays and back-end Message Stores, the relays become responsible for address expansion and delivery methods such as autoreply and forwarding and also for mailing list expansion.

Delivery to the back-end stores historically has been over SMTP, which requires the back-end system to look up the recipient addresses in the LDAP directory again, thereby engaging the full machinery of the MTA. For speed and efficiency, the MTA can use LMTP rather than SMTP to deliver messages to the back-end store. See Chapter 16, LMTP Delivery, in Sun Java System Messaging Server 6.3 Administration Guide for more information.


Note –

By design, LMTP is intended for use in multi-tier deployments. It is not possible to use LMTP with single-system deployments. Also, the Messaging Server’s LMTP service as implemented is not designed to work with other LMTP servers or other LMTP clients.