Linker and Libraries Guide

Chapter 5 Application Binary Interfaces and Versioning

ELF objects processed by the link-editors provide many global symbols to which other objects can bind. These symbols describe the object's application binary interface (ABI). During the evolution of an object, this interface can change due to the addition or deletion of global symbols. In addition, the object's evolution can involve internal implementation changes.

Versioning refers to several techniques that can be applied to an object to indicate interface and implementation changes. These techniques provide for the object's controlled evolution while maintaining backward compatibility.

This chapter describes how an object's ABI can be defined and classifies how changes to this interface can affect backward compatibility. It also presents models by which interface and implementation changes can be incorporated into new releases of the object.

The focus of this chapter is on the runtime interfaces of dynamic executables and shared objects. The techniques used to describe and manage changes within these dynamic objects are presented in generic terms. A common set of naming conventions and versioning scenarios as applied to shared objects can be found in Appendix B, Versioning Quick Reference.

Developers of dynamic objects must be aware of the ramifications of an interface change and understand how such changes can be managed, especially in regards to maintaining backward compatibility with previously shipped objects.

The global symbols made available by any dynamic object represent the object's public interface. Frequently, the number of global symbols remaining in an object at the end of a link-edit are more than you would like to make public. These global symbols result from the relationship required between relocatable objects used to create the object. They represent private interfaces within the object itself.

Before defining an object's binary interface, you should first determine those global symbols you wish to make publicly available from the object being created. These public symbols can be established using the link-editor's -M option and an associated mapfile as part of the final link-edit. This technique is introduced in Reducing Symbol Scope. This public interface establishes one or more version definitions within the object being created. These definitions form the foundation for the addition of new interfaces as the object evolves.

The following sections build upon this initial public interface. First though, you should understand how various changes to an interface can be categorized so that they can be managed appropriately.

Interface Compatibility

Many types of change can be made to an object. In their simplest terms, these changes can be categorized into one of two groups:

The following table categorizes some common object changes.

Table 5–1 Interface Compatibility Examples

Object Change 

Update Type 

The addition of a symbol 

Compatible 

The removal of a symbol 

Incompatible 

The addition of an argument to a non-varargs(3HEAD) function

Incompatible 

The removal of an argument from a function 

Incompatible 

The change of size, or content, of a data item to a function or as an external definition 

Incompatible 

A bug fix, or internal enhancement to a function, providing the semantic properties of the object remain unchanged 

Compatible 

A bug fix, or internal enhancement to a function when the semantic properties of the object change 

Incompatible 

Because of interposition, the addition of a symbol can constitute an incompatible update, such that the new symbol might conflict with an applications use of that symbol. However, this does seem rare in practice as source-level name space management is commonly used.

Compatible updates can be accommodated by maintaining version definitions internal to the object being generated. Incompatible updates can be accommodated by producing a new object with a new external versioned name. Both of these versioning techniques enable the selective binding of applications. They also enable verification of correct version binding at runtime. These two techniques are explored in more detail in the following sections.

Internal Versioning

A dynamic object can have one or more internal version definitions associated with it. Each version definition is commonly associated with one or more symbol names. A symbol name can only be associated with one version definition. However, a version definition can inherit the symbols from other version definitions. Thus, a structure exists to define one or more independent, or related, version definitions within the object being created. As new changes are made to the object, new version definitions can be added to express these changes.

There are two consequences of providing version definitions within a shared object:

Creating a Version Definition

Version definitions commonly consist of an association of symbol names to a unique version name. These associations are established within a mapfile and supplied to the final link-edit of an object using the link-editor's -M option. This technique is introduced in the section Reducing Symbol Scope.

A version definition is established whenever a version name is specified as part of the mapfile directive. In the following example, two source files are combined, together with mapfile directives, to produce an object with a defined public interface:


$ cat foo.c
extern  const char * _foo1;

void foo1()
{
        (void) printf(_foo1);
}

$ cat data.c
const char * _foo1 = "string used by foo1()\n";

$ cat mapfile
SUNW_1.1 {                  # Release X
        global:
                foo1;
        local:
                *;
};
$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep "foo.$"
[33]    |0x0001058c|0x00000004|OBJT |LOCL |0x0  |17   |_foo1
[35]    |0x00000454|0x00000034|FUNC |GLOB |0x0  |9    |foo1

The symbol foo1 is the only global symbol defined to provide the shared object's public interface. The special auto-reduction directive “*” causes the reduction of all other global symbols to have local binding within the object being generated. This directive is introduced in Defining Additional Symbols. The associated version name, SUNW_1.1, causes the generation of a version definition. Thus, the shared object's public interface consists of the internal version definition SUNW_1.1, associated with the global symbol foo1.

Whenever a version definition, or the auto-reduction directive, are used to generate an object, a base version definition is also created. This base version is defined using the name of the file itself, and is used to associate any reserved symbols generated by the link-editor. See Generating the Output File for a list of these reserved symbols.

The version definitions contained within an object can be displayed using pvs(1) with the -d option:


$ pvs -d libfoo.so.1
        libfoo.so.1;
        SUNW_1.1;

The object libfoo.so.1 has an internal version definition named SUNW_1.1, together with a base version definition libfoo.so.1.


Note –

The link-editor's -z noversion option allows symbol reduction to be directed by a mapfile but suppresses the creation of version definitions.


Starting with this initial version definition, the object can evolve by adding new interfaces and updated functionality. For example, a new function, foo2, together with its supporting data structures, can be added to the object by updating the source files foo.c and data.c:


$ cat foo.c
extern  const char * _foo1;
extern  const char * _foo2;

void foo1()
{
        (void) printf(_foo1);
}

void foo2()
{
        (void) printf(_foo2);
}

$ cat data.c
const char * _foo1 = "string used by foo1()\n";
const char * _foo2 = "string used by foo2()\n";

A new version definition, SUNW_1.2, can be created to define a new interface representing the symbol foo2. In addition, this new interface can be defined to inherit the original version definition SUNW_1.1.

The creation of this new interface is important as it identifies the evolution of the object and enables users to verify and select the interfaces to which they bind. These concepts are covered in more detail in Binding to a Version Definition and in Specifying a Version Binding.

The following example shows the mapfile directives that create these two interfaces.


$ cat mapfile
SUNW_1.1 {                   # Release X
        global:
                foo1;
        local:
                *;
};

SUNW_1.2 {                   # Release X+1
        global:
                foo2;
} SUNW_1.1;

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ nm -x libfoo.so.1 | grep "foo.$"
[33]    |0x00010644|0x00000004|OBJT |LOCL |0x0  |17   |_foo1
[34]    |0x00010648|0x00000004|OBJT |LOCL |0x0  |17   |_foo2
[36]    |0x000004bc|0x00000034|FUNC |GLOB |0x0  |9    |foo1
[37]    |0x000004f0|0x00000034|FUNC |GLOB |0x0  |9    |foo2

The symbols foo1 and foo2 are both defined to be part of the shared object's public interface. However, each of these symbols is assigned to a different version definition; foo1 is assigned to SUNW_1.1, and foo2 is assigned to SUNW_1.2.

These version definitions, their inheritance, and their symbol association can be displayed using pvs(1) together with the -d, -v and -s options:


$ pvs -dsv libfoo.so.1
        libfoo.so.1:
                _end;
                _GLOBAL_OFFSET_TABLE_;
                _DYNAMIC;
                _edata;
                _PROCEDURE_LINKAGE_TABLE_;
                _etext;
        SUNW_1.1:
                foo1;
                SUNW_1.1;
        SUNW_1.2:               {SUNW_1.1}:
                foo2;
                SUNW_1.2

The version definition SUNW_1.2 has a dependency on the version definition SUNW_1.1.

The inheritance of one version definition by another is a useful technique that reduces the version information that will eventually be recorded by any object that binds to a version dependency. Version inheritance is covered in more detail in the section Binding to a Version Definition.

Any internal version definition has an associated version definition symbol created. As shown in the previous pvs(1) example, these symbols are displayed when using the -v option.

Creating a Weak Version Definition

Internal changes to an object that do not require the introduction of a new interface definition can be defined by creating a weak version definition. Examples of such changes are bug fixes or performance improvements.

Such a version definition is empty, in that it has no global interface symbols associated with it.

For example, suppose the data file data.c, used in the previous examples, is updated to provide more detailed string definitions:


$ cat data.c
const char * _foo1 = "string used by function foo1()\n";
const char * _foo2 = "string used by function foo2()\n";

A weak version definition can be introduced to identify this change:


$ cat mapfile
SUNW_1.1 {                   # Release X
        global:
                foo1;
        local:
                *;
};

SUNW_1.2 {                   # Release X+1
        global:
                foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2;     # Release X+2

$ cc -o libfoo.so.1 -M mapfile -G foo.o data.o
$ pvs -dv libfoo.so.1
        libfoo.so.1;
        SUNW_1.1;
        SUNW_1.2:                {SUNW_1.1};
        SUNW_1.2.1 [WEAK]:       {SUNW_1.2};

The empty version definition is signified by the weak label. These weak version definitions enable applications to verify the existence of a particular implementation by binding to the version definition associated with that functionality. The section Binding to a Version Definition illustrates how these definitions can be used in more detail.

Defining Unrelated Interfaces

The previous examples show how new version definitions added to an object inherit any existing version definitions. You can also create version definitions that are unique and independent. In the following example, two new files, bar1.c and bar2.c, are added to the object libfoo.so.1. These files contribute two new symbols, bar1 and bar2, respectively:


$ cat bar1.c
extern  void foo1();

void bar1()
{
        foo1();
}
$ cat bar2.c
extern  void foo2();

void bar2()
{
        foo2();
}

These two symbols are intended to define two new public interfaces. Neither of these new interfaces are related to each other. However, each expresses a dependency on the original SUNW_1.2 interface.

The following mapfile definition creates this required association:


$ cat mapfile
SUNW_1.1 {                   # Release X
        global:
                foo1;
        local:
                *;
};

SUNW_1.2 {                   # Release X+1
        global:
                foo2;
} SUNW_1.1;

SUNW_1.2.1 { } SUNW_1.2;     # Release X+2

SUNW_1.3a {                  # Release X+3
        global:
                bar1;
} SUNW_1.2;

SUNW_1.3b {                  # Release X+3
        global:
                bar2;
} SUNW_1.2;

Again, the version definitions created in libfoo.so.1 when using this mapfile, and their related dependencies, can be inspected using pvs(1):


$ cc -o libfoo.so.1 -M mapfile -G foo.o bar1.o bar2.o data.o
$ pvs -dv libfoo.so.1
        libfoo.so.1;
        SUNW_1.1;
        SUNW_1.2:                {SUNW_1.1};
        SUNW_1.2.1 [WEAK]:       {SUNW_1.2};
        SUNW_1.3a:               {SUNW_1.2};
        SUNW_1.3b:               {SUNW_1.2};

The following sections explore how these version definition recordings can be used to verify runtime binding requirements and control the binding of an object during its creation.

Binding to a Version Definition

When a dynamic executable or shared object is built against other shared objects, these dependencies are recorded in the resulting object. See Shared Object Processing and Recording a Shared Object Name for more details. If these shared object dependencies also contain version definitions, then an associated version dependency is recorded in the object being built.

The following example takes the data files from the previous section and generates a shared object suitable for a compile time environment. This shared object, libfoo.so.1, is used in the succeeding binding examples.


$ cc -o libfoo.so.1 -h libfoo.so.1 -M mapfile -G foo.o bar.o \
data.o
$ ln -s libfoo.so.1 libfoo.so
$ pvs -dsv libfoo.so.1
        libfoo.so.1:
                _end;
                _GLOBAL_OFFSET_TABLE_;
                _DYNAMIC;
                _edata;
                _PROCEDURE_LINKAGE_TABLE_;
                _etext;
        SUNW_1.1:
                foo1;
                SUNW_1.1;
        SUNW_1.2:                {SUNW_1.1}:
                foo2;
                SUNW_1.2;
        SUNW_1.2.1 [WEAK]:       {SUNW_1.2}:
                SUNW_1.2.1;
        SUNW_1.3a:               {SUNW_1.2}:
                bar1;
                SUNW_1.3a;
        SUNW_1.3b:               {SUNW_1.2}:
                bar2;
                SUNW_1.3b

In effect, there are six public interfaces being offered by the shared object. Four of these interfaces, SUNW_1.1, SUNW_1.2, SUNW_1.3a, and SUNW_1.3b, define exported symbol names. One interface, SUNW_1.2.1, describes an internal implementation change to the shared object, and one interface, libfoo.so.1, defines several reserved labels. Dynamic objects created with this shared object as a dependency, record the version names of the interfaces the dynamic object binds to.

The following example creates an application that references symbols foo1 and foo2. The versioning dependency information recorded in the application can be examined using pvs(1) with the -r option.


$ cat prog.c
extern void foo1();
extern void foo2();

main()
{
        foo1();
        foo2();
}
$ cc -o prog prog.c -L. -R. -lfoo
$ pvs -r prog
        libfoo.so.1 (SUNW_1.2, SUNW_1.2.1);

In this example, the application prog has bound to the two interfaces SUNW_1.1 and SUNW_1.2. These interfaces provided the global symbols foo1 and foo2 respectively.

Because version definition SUNW_1.1 is defined within libfoo.so.1 as being inherited by the version definition SUNW_1.2, you also need to record the latter version dependency. This normalization of version definition dependencies reduces the amount of version information maintained within an object, and reduces the processing required at runtime.

Because the application prog was built against the shared object's implementation containing the weak version definition SUNW_1.2.1, this dependency is also recorded. Even though this version definition is defined to inherit the version definition SUNW_1.2, the version's weak nature precludes its normalization with SUNW_1.1, and results in a separate dependency recording.

Had there been multiple weak version definitions that inherited from each other, then these definitions will be normalized in the same manner as non-weak version definitions are.


Note –

The recording of a version dependency can be suppressed by the link-editor's -z noversion option.


Having recorded these version definition dependencies, the runtime linker validates the existence of the required version definitions in the objects that are bound to when the application is executed. This validation can be displayed using ldd(1) with the -v option. For example, by running ldd(1) on the application prog, the version definition dependencies are shown to be found correctly in the shared object libfoo.so.1:


$ ldd -v prog

   find object=libfoo.so.1; required by prog
        libfoo.so.1 =>   ./libfoo.so.1
   find version=libfoo.so.1;
        libfoo.so.1 (SUNW_1.2) =>            ./libfoo.so.1
        libfoo.so.1 (SUNW_1.2.1) =>          ./libfoo.so.1
   ....

Note –

ldd(1) with the -v option implies verbose output. A recursive list of all dependencies, together with all versioning requirements, is generated.


If a non-weak version definition dependency cannot be found, a fatal error occurs during application initialization. Any weak version definition dependency that cannot be found is silently ignored. For example, if the application prog is run in an environment in which libfoo.so.1 only contains the version definition SUNW_1.1, then the following fatal error occurs:


$ pvs -dv libfoo.so.1
        libfoo.so.1;
        SUNW_1.1;
$ prog
ld.so.1: prog: fatal: libfoo.so.1: version `SUNW_1.2' not \
found (required by file prog)

Had the application prog not recorded any version definition dependencies, the nonexistence of the required interface symbol foo2 would have manifested itself some time during the execution of the application as a fatal relocation error. This relocation error might occur at process initialization, during process execution, or might not occur at all if the execution path of the application did not call the function foo2. See Relocation Errors.

Recording version definition dependencies provides an alternative and immediate indication of the availability of the interfaces required by the application.

If the application prog is run in an environment in which libfoo.so.1 only contains the version definitions SUNW_1.1 and SUNW_1.2, then all non-weak version definition requirements will be satisfied. The absence of the weak version definition SUNW_1.2.1 is deemed nonfatal, and so no runtime error condition is generated. However, ldd(1) can be used to display all version definitions that cannot be found:


$ pvs -dv libfoo.so.1
        libfoo.so.1;
        SUNW_1.1;
        SUNW_1.2:                {SUNW_1.1};
$ prog
string used by foo1()
string used by foo2()
$ ldd prog
        libfoo.so.1 =>   ./libfoo.so.1
        libfoo.so.1 (SUNW_1.2.1) =>          (version not found)
        ...........

Note –

If an object requires a version definition from a given dependency, and at runtime an implementation of that dependency is found that contains no version definition information, the version verification of the dependency will be silently ignored. This policy provides a level of backward compatibility as a transition from non-versioned to versioned shared objects occurs. ldd(1), however, can still be used to display any version requirement discrepancies. The environment variable LD_NOVERSION can be used to suppress all runtime versioning verification.


Verifying Versions in Additional Objects

Version definition symbols also provide a mechanism for verifying the version requirements of an object obtained by dlopen(3DL). Any object added to the process's address space using this function will have no automatic version dependency verification carried out by the runtime linker. Thus, the caller of this function is responsible for verifying that any versioning requirements are met.

The presence of a required version definition can be verified by looking up the associated version definition symbol using dlsym(3DL). The following example adds the shared object libfoo.so.1 to a process using dlopen(3DL), and verifies the interface SUNW_1.2 is available.


#include        <stdio.h>
#include        <dlfcn.h>
 
main()
{
        void *       handle;
        const char * file = "libfoo.so.1";
        const char * vers = "SUNW_1.2";
        ....
 
        if ((handle = dlopen(file, (RTLD_LAZY | RTLD_FIRST))) == NULL) {
                (void) printf("dlopen: %s\n", dlerror());
                exit (1);
        }
 
        if (dlsym(handle, vers) == NULL) {
                (void) printf("fatal: %s: version `%s' not found\n",
                    file, vers);
                exit (1);
        }
        ....

Specifying a Version Binding

When creating a dynamic object against a shared object containing version definitions, you can instruct the link-editor to limit the binding to specific version definitions. Effectively, the link-editor enables you to control an object's binding to specific interfaces.

An object's binding requirements can be controlled using a file control directive. This directive is supplied using the link-editor's -M option and an associated mapfile. The following syntax for file control directives is available:


name - version [ version ... ] [ $ADDVERS=version ];

This binding control can be useful in the following scenarios:

The following example illustrates the use of the version control mechanism. This example uses the shared object libfoo.so.1 containing the following version interface definitions:


$ pvs -dsv libfoo.so.1
        libfoo.so.1:
                _end;
                _GLOBAL_OFFSET_TABLE_;
                _DYNAMIC;
                _edata;
                _PROCEDURE_LINKAGE_TABLE_;
                _etext;
        SUNW_1.1:
                foo1;
                foo2;
                SUNW_1.1;
        SUNW_1.2:           {SUNW_1.1}:
                bar;

The version definitions SUNW_1.1 and SUNW_1.2 represent interfaces within libfoo.so.1 that were made available in software Release X and Release X+1 respectively.

An application can be built to bind only to the interfaces available in Release X by using the following version control mapfile directive:


$ cat mapfile
libfoo.so - SUNW_1.1;

For example, suppose you develop an application, prog, and want to ensure that the application can run on Release X. The application can then only use the interfaces available in that release. If the application mistakenly references the symbol bar, then the application is not compliant with the required interface. This condition is signalled by the link-editor as an undefined symbol error:


$ cat prog.c
extern void foo1();
extern void bar();

main()
{
        foo1();
        bar();
}
$ cc -o prog prog.c -M mapfile -L. -R. -lfoo
Undefined           first referenced
 symbol                 in file
bar                     prog.o  (symbol belongs to unavailable \
                                version ./libfoo.so (SUNW_1.2))
ld: fatal: Symbol referencing errors. No output written to prog

To be compliant with the SUNW_1.1 interface, you must remove the reference to bar. You can either rework the application to remove the requirement on bar, or add an implementation of bar to the creation of the application.


Note –

By default, shared object dependencies encountered as part of a link-edit, are also verified against any file control directives. Use the environment variable LD_NOVERSION to suppress the version verification of any shared object dependencies.


Binding to Additional Version Definitions

To record more version dependencies than would be produced from the normal symbol binding of an object, use the $ADDVERS file control directive. This section describes scenarios where this additional binding might be useful.

From the previous libfoo.so.1 example, assume that in Release X+2, the version definition SUNW_1.1 is subdivided into two standard releases, STAND_A and STAND_B. To preserve compatibility, the SUNW_1.1 version definition must be maintained. In this example, this version definition is expressed as inheriting the two standard definitions:


$ pvs -dsv libfoo.so.1
        libfoo.so.1:
                _end;
                _GLOBAL_OFFSET_TABLE_;
                _DYNAMIC;
                _edata;
                _PROCEDURE_LINKAGE_TABLE_;
                _etext;
        SUNW_1.1:           {STAND_A, STAND_B}:
                SUNW_1.1;
        SUNW_1.2:           {SUNW_1.1}:
                bar;
        STAND_A:
                foo1;
                STAND_A;
        STAND_B:
                foo2;
                STAND_B;

If the only requirement of application prog is the interface symbol foo1, the application will have a single dependency on the version definition STAND_A. This precludes running prog on a system where libfoo.so.1 is less than Release X+2. The version definition STAND_A did not exist in previous releases, even though the interface foo1 did.

The application prog can be built to align its requirement with previous releases by creating a dependency on SUNW_1.1:


$ cat mapfile
libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.1;
$ cat prog
extern void foo1();

main()
{
        foo1();
}
$ cc -M mapfile -o prog prog.c -L. -R. -lfoo
$ pvs -r prog
        libfoo.so.1 (SUNW_1.1);

This explicit dependency is sufficient to encapsulate the true dependency requirements. This dependency satisfies compatibility with older releases.

Creating a Weak Version Definition described how weak version definitions can be used to mark an internal implementation change. These version definitions are well suited to indicate bug fixes and performance improvements made to an object. If the existence of a weak version is required, an explicit dependency on this version definition can be generated. The creation of such a dependency can be important when a bug fix, or performance improvement, is critical for the object to function correctly.

From the previous libfoo.so.1 example, assume a bug fix is incorporated as the weak version definition SUNW_1.2.1 in software Release X+3:


$ pvs -dsv libfoo.so.1
        libfoo.so.1:
                _end;
                _GLOBAL_OFFSET_TABLE_;
                _DYNAMIC;
                _edata;
                _PROCEDURE_LINKAGE_TABLE_;
                _etext;
        SUNW_1.1:           {STAND_A, STAND_B}:
                SUNW_1.1;
        SUNW_1.2:           {SUNW_1.1}:
                bar;
        STAND_A:
                foo1;
                STAND_A;
        STAND_B:
                foo2;
                STAND_B;
        SUNW_1.2.1 [WEAK]:  {SUNW_1.2}:
                SUNW_1.2.1;

Normally, if an application is built against this shared object, the application records a weak dependency on the version definition SUNW_1.2.1. This dependency is informational only. This dependency does not cause termination of the application should the version definition not exist in the libfoo.so.1 used at runtime.

The file control directive $ADDVERS can be used to generate an explicit dependency on a version definition. If this definition is weak, then this explicit reference also causes the version definition to be promoted to a strong dependency.

The application prog can be built to enforce the requirement that the SUNW_1.2.1 interface be available at runtime by using the following file control directive:


$ cat mapfile
libfoo.so - SUNW_1.1 $ADDVERS=SUNW_1.2.1;
$ cat prog
extern void foo1();

main()
{
        foo1();
}
$ cc -M mapfile -o prog prog.c -L. -R. -lfoo
$ pvs -r prog
        libfoo.so.1 (SUNW_1.2.1);

prog has been built with an explicit dependency on the interface STAND_A. Because the version definition SUNW_1.2.1 is promoted to a strong version, it is also normalized with the dependency STAND_A. At runtime, if the version definition SUNW_1.2.1 cannot be found, a fatal error is generated.


Note –

When working with a small number of dependencies, you can use the link-editor's -u option to explicitly bind to a version definition. Use this option to reference the version definition symbol. However, a symbol reference is nonselective. When working with multiple dependencies, that might contain similarly named version definitions, this technique may be insufficient to create explicit bindings.


Version Stability

The various models for binding to versions within an object only remain intact if the individual version definitions remain constant over the life time of the object.

Once a version definition for an object has been created and made public, it must exist in subsequent releases of that object unchanged. Both the version name and the symbols associated with it must remain constant. For this reason, wildcard expansion of the symbol names defined within a version definition is not supported. The number of symbols matching the wildcard might differ over the course of an objects evolution.

Relocatable Objects

Version information can be recorded and used within dynamic objects. Relocatable objects can maintain versioning information in a similar manner. However, there are some subtle differences in how this information is used.

Any version definitions supplied to the link-edit of a relocatable object are recorded in the same format as they are when building dynamic executables or shared objects. However, by default, symbol reduction is not carried out on the object being created. Instead, when the relocatable object is finally used as input to the generation of a dynamic object, the version recording itself will be used to determine the symbol reductions to apply.

In addition, any version definitions found in relocatable objects are propagated to the dynamic object. For an example of version processing in relocatable objects, see Reducing Symbol Scope.

External Versioning

Runtime references to a shared object should always refer to the file's version file name. This is usually expressed as a file name with a version number suffix. When a shared object's interface changes in an incompatible manner, such that it will break old applications, a new shared object should be distributed with a new versioned file name. In addition, the original versioned file name must still be distributed to provide the interfaces required by the old applications.

You should provide shared objects as separate versioned file names within the runtime environment when building applications over a series of software releases. You can then guarantee that the interface against which the applications were built is available for them to bind during their execution.

The following section describes how to coordinate the binding of an interface between the compilation and runtime environments.

Coordination of Versioned Filenames

During a link-edit, the most common method to input shared objects is to use the -l option. This option uses the link-editor's library search mechanism to locate shared objects that are prefixed with lib and suffixed with .so.

However, at runtime, any shared object dependencies should exist in their versioned name form. Instead of maintaining two distinct shared objects that follow these naming conventions, create file system links between the two file names.

To make the runtime shared object libfoo.so.1 available to the compilation environment, provide a symbolic link from the compilation file name to the runtime file name. For example:


$ cc -o libfoo.so.1 -G -K pic foo.c
$ ln -s libfoo.so.1 libfoo.so
$ ls -l libfoo*
lrwxrwxrwx  1 usr grp          11 1991 libfoo.so -> libfoo.so.1
-rwxrwxr-x  1 usr grp        3136 1991 libfoo.so.1

Either a symbolic link or hard link can be used. However, as a documentation and diagnostic aid, symbolic links are more useful.

The shared object libfoo.so.1 has been generated for the runtime environment. Generating a symbolic link libfoo.so, has also enabled this file's use in a compilation environment. For example:


$ cc -o prog main.o -L. -lfoo

The link-editor processes the relocatable object main.o with the interface described by the shared object libfoo.so.1, which is found by following the symbolic link libfoo.so.

Over a series of software releases, new versions of this shared object may be distributed with changed interfaces. The compilation environment can be constructed to use the interface that is applicable by changing the symbolic link. For example:


$ ls -l libfoo*
lrwxrwxrwx  1 usr grp          11 1993 libfoo.so -> libfoo.so.3
-rwxrwxr-x  1 usr grp        3136 1991 libfoo.so.1
-rwxrwxr-x  1 usr grp        3237 1992 libfoo.so.2
-rwxrwxr-x  1 usr grp        3554 1993 libfoo.so.3

Three major versions of the shared object are available. Two of these shared objects, libfoo.so.1 and libfoo.so.2, provide the dependencies for existing applications. libfoo.so.3 offers the latest major release for creating and running new applications.

Using this symbolic link mechanism itself is insufficient to coordinate the correct binding of a shared object from its use in the compilation environment to its requirement in the runtime environment. As the example presently stands, the link-editor records in the dynamic executable prog the file name of the shared object it has processed. In this case, that file name is the compilation environment file name.


$ dump -Lv prog

prog:
 **** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag      Value
[1]     NEEDED   libfoo.so
.........

When the application prog is executed, the runtime linker searches for the dependency libfoo.so. prog binds to the file to which this symbolic link is pointing.

To provide the correct runtime name to be recorded as a dependency, the shared object libfoo.so.1 should be built with an soname definition. This definition identifies the shared object's runtime name. This name is used as the dependency name by any object that links against this shared object. This definition can be provided using the -h option during the link-edit of the shared object itself. For example:


$ cc -o libfoo.so.1 -G -K pic -h libfoo.so.1 foo.c
$ ln -s libfoo.so.1 libfoo.so
$ cc -o prog main.o -L. -lfoo
$ dump -Lv prog

prog:
 **** DYNAMIC SECTION INFORMATION ****
.dynamic:
[INDEX] Tag      Value
[1]     NEEDED   libfoo.so.1
.........

This symbolic link and the soname mechanism have established a robust coordination between the shared-object naming conventions of the compilation and runtime environment. The interface processed during the link-edit is accurately recorded in the output file generated. This recording ensures that the intended interface are furnished at runtime.


Caution – Caution –

Creating a new externally versioned shared object is a major change. Be sure you understand the complete dependencies of any processes that use this shared object.

For example, an application might have dependencies on libfoo.so.1 and an externally delivered object libISV.so.1. This latter object might also have a dependency on libfoo.so.1. If the application is redesigned to use the new interfaces in libfoo.so.2 without any change to its use of the external object libISV.so.1, then both major versions of libfoo.so will be brought into the running process. Because the only reason to change the version of libfoo.so is to mark an incompatible change, having both versions of the object within a process can lead to incorrect symbol binding and hence undesirable interactions.