Fortran 95 ¶è´Ö±é»»¥×¥í¥°¥é¥ß¥ó¥°¥ê¥Õ¥¡¥ì¥ó¥¹ ¥Û¡¼¥àÌܼ¡Á°¥Ú¡¼¥¸¤Ø¼¡¥Ú¡¼¥¸¤Øº÷°ú


ÍѸ콸

certainly true ´Ø·¸±é»»»Ò
(certainly true relational operator)
´Ø·¸±é»»»Ò: certainly true (relational operators: certainly true) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
cset(expression, set)
cset(expression, set)¤Îɽµ­¤Ï¡¢°ìÁȤΰú¿ô·²¤ËÂФ·¤ÆÉ¾²Á¤µ¤ì¤ë¼°¤ÎÊñ´Þ½¸¹ç¤òµ­¹æÅª¤Ëɽ¤¹¤¿¤á¤Ë»ÈÍѤ·¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢¼° f(x, y) = xy ¤Ë¤Ä¤¤¤Æ¡¢¶è´Ö¼°[0] [0] × [+] ¤¬Ëþ¤¿¤µ¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤Êñ´Þ¤ÎÀ©Ìó¤Ï¡¢¼¡¤Î¤è¤¦¤Ëɽ¤µ¤ì¤Þ¤¹¡£
[0] × [+] cset(x × y, {(0,+)}) = [-, +].
ev(literal_constant)
ev (literal_constant) ¤Îɽµ­¤Ï¥ê¥Æ¥é¥ëÄê¿ôʸ»úÎó¤Ë¤è¤êÄêµÁ¤µ¤ì¤¿³°ÉôÃͤòɽ¤¹¤Î¤Ë»ÈÍѤ·¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢Äê¿ô 0.1 ¤Ï¥Þ¥·¥óɽ¸½¤Ç¤­¤Ê¤¤¤Î¤Ç¡¢0.1 ¤ÎÆâÉôŪ¤Ê¶á»÷Ãͤ¬»È¤ï¤ì¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤È¤¤¤¦»ö¼Â¤Ë´Ø·¸¤Ê¤¯¡¢ev(0.1) = 1/10 ¤È¤Ê¤ê¤Þ¤¹¡£
INTERVAL ¸ÇÍ­¤Î´Ø¿ô
(INTERVAL-specific function)
f95 ¤Ç¤Ï¡¢INTERVAL ¸ÇÍ­¤Î´Ø¿ô¤Ïɸ½à Fortran ´Ø¿ô¤Î¶è´Ö¥Ð¡¼¥¸¥ç¥ó¤Ç¤Ï¤Ê¤¤¡¢¶è´Ö´Ø¿ô¤Ç¤¹¡£¤¿¤È¤¨¤Ð¡¢WID¡¢MID¡¢INF¡¢SUP ¤Ï INTERVAL ¸ÇÍ­¤Î´Ø¿ô¤Ç¤¹¡£
KTPV (kind type parameter value)
¼ïÊÌ·¿¥Ñ¥é¥á¡¼¥¿ÃÍ (KTPV) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
KTPVmax
¶è´Ö¼°¤ÎºÇÂçÉýÍ׵ἰ½èÍý¤Î¤â¤È¤Ç¤Ï¡¢¤¹¤Ù¤Æ¤Î¶è´Ö¤Ï¼°¤ÎÃæ¤ÎǤ°Õ¤Î¥Ç¡¼¥¿¹àÌܤΠKTPV ¤ÎºÇÂçÃͤؤÈÊÑ´¹¤µ¤ì¤Þ¤¹¡£¤³¤ÎºÇÂçÃͤˤϡ¢KTPVmax ¤È¤¤¤¦Ì¾Á°¤¬Í¿¤¨¤é¤ì¤Æ¤¤¤Þ¤¹¡£
KTPVº®¹ç¤Î¶è´Ö¼°
(mixed-KTPV INTERVAL expression)
KTPV º®¹ç¤Î¶è´Ö¼°¤Ï°Û¤Ê¤ë KTPV ¤ò»ý¤ÄÄê¿ô¤È (¤Þ¤¿¤Ï) ÊÑ¿ô¤ò´Þ¤ß¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢[1_4] + [0.2_8] ¤ÏKTPV º®¹ç¤Î¶è´Ö¼°¤Ç¤¹¡£ºÇÂçÉýÍ׵ἰ½èÍý¤Î¤â¤È¤Ç¤Ï¡¢KTPV º®¹ç¤Î¶è´Ö¼°¤¬µö¤µ¤ì¤Þ¤¹¤¬¡¢¸·Ì©¼°½èÍý¤Î¤â¤È¤Ç¤Ïµö¤µ¤ì¤Þ¤»¤ó¡£
possibly true ´Ø·¸±é»»»Ò
(possibly true relational operators)
´Ø·¸±é»»»Ò: possibly true (relational operators: possibly true) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
ÃͤÎÂåÆþ
(value assignment)
Fortran ¤Ç¤Ï¡¢ÂåÆþʸ¤Ï¼°¤ÎÃͤòÃͤÎÂåÆþ±é»»»Ò = ¤Î±¦Â¦¤Ç·×»»¤·¡¢º¸Â¦¤ÎÊÑ¿ô¡¢ÇÛÎóÍ×ÁÇ¡¢¤Þ¤¿¤Ï¡¢ÇÛÎó¤Ë³ÊǼ¤·¤Þ¤¹¡£
³°ÉôÃÍ
(external value)
Fortran ¥ê¥Æ¥é¥ëÄê¿ô¤Î³°ÉôÃͤϡ¢¥ê¥Æ¥é¥ëÄê¿ô¤Îʸ»úÎó¤Ë¤è¤êÄêµÁ¤µ¤ì¤¿¿ô³ØÅª¤ÊÃͤǤ¹¡£¥ê¥Æ¥é¥ëÄê¿ô¤Î³°ÉôÃͤÏÄê¿ô¤ÎÆâÉôŪ¤Ê¶á»÷ÃÍ¤ÈÆ±¤¸¤Ç¤¢¤ë¤È¤Ï¸Â¤ê¤Þ¤»¤ó¡£¸å¼Ô¤Ï¡¢Fortran ɸ½à¤Ç¤Ï¥ê¥Æ¥é¥ëÄê¿ô¤ÎÍ£°ì¤ÎÄêµÁ¤µ¤ì¤¿ÃͤǤ¹¡£ev(literal_constant) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
³°Éôɽ¸½
(external representation)
Fortran ¥Ç¡¼¥¿¹àÌܤγ°Éôɽ¸½¤Ï¡¢ÆþÎϥǡ¼¥¿ÊÑ´¹Ãæ¤Ç¤ÎÄêµÁ¤Ë»ÈÍѤµ¤ì¤ëʸ»úÎ󡢤ޤ¿¤Ï¡¢½ÐÎϥǡ¼¥¿ÊÑ´¹¸å¤Îɽ¼¨¤Ë»ÈÍѤµ¤ì¤ëʸ»úÎó¤Î¤³¤È¤Ç¤¹¡£
³ÈÄ¥¶è´Ö
(extended interval)
³ÈÄ¥¶è´Ö¤ÎÍѸì¤Ï¡¢¤½¤Î½ªÎ»ÅÀ¤¬ - ¤È + ¤ò´Þ¤à¼Â¿ô¤Ë³ÈÄ¥¤Ç¤­¤ë¶è´Ö¤ò°ÕÌ£¤·¤Þ¤¹¡£´°Á´¤Ê°ÕÌ£¤Ç¤Ï¡¢¶õ¤Î¶è´Ö¤â¤Þ¤¿³ÈÄ¥¼Â¶è´Ö¤Î½¸¹ç¤Ë´Þ¤Þ¤ì¤Þ¤¹¡£
²¼¸Â
(lower bound)
ºÇÂç²¼¸Â (infumum(plural, infima)) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¶õ¤Î¶è´Ö
(empty interval)
¶õ¤Î¶è´Ö [empty] ¤Ï¡¢¥á¥ó¥Ð¡¼¤ò»ý¤¿¤Ê¤¤¶è´Ö¤Ç¤¹¡£¶õ¤Î¶è´Ö¤Ï 2 ¤Ä¤Î¸ß¤¤¤ËÁǤζè´Ö¤ÎÀѽ¸¹ç¤È¤·¤Æ¡¢¼«Á³¤ËȯÀ¸¤·¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢[2, 3]¢Á[4, 5] = [empty] ¤È¤Ê¤ê¤Þ¤¹¡£
¶õ¤Î½¸¹ç
(empty set)
¶õ¤Î½¸¹ç ¤Ï¡¢¥á¥ó¥Ð¡¼¤ò»ý¤¿¤Ê¤¤½¸¹ç¤Ç¤¹¡£¶õ¤Î½¸¹ç¤Ï 2 ¤Ä¤Î¸ß¤¤¤ËÁǤν¸¹ç¤ÎÀѽ¸¹ç¤È¤·¤Æ¼«Á³¤ËȯÀ¸¤·¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢{2, 3} {4, 5} = ¤È¤Ê¤ê¤Þ¤¹¡£
²¾¿ô (mantissa)
²Ê³ØÅªµ­¿ôË¡¤Çµ­½Ò¤µ¤ì¤¿1 ¤Ä¤Î¿ô¤Ï¡¢²¾¿ô¡¢¤Þ¤¿¤Ï¡¢Í­¸ú¿ô»ú¤È»Ø¿ô¡¢¤Þ¤¿¤Ï¡¢10 ¤Î¤Ù¤­¾è¤Ç¹½À®¤µ¤ì¤Þ¤¹¡£Fortran¤Î E ÊÔ½¸µ­½Ò»Ò¤Ï¿ô¤ò²¾¿ô·Á¼°¡¢¤Þ¤¿¤Ï¡¢Í­¸ú¿ô»ú¤È»Ø¿ô·Á¼°¡¢¤Þ¤¿¤Ï¡¢10 ¤Î¤Ù¤­¾è·Á¼°¤Çɽ¼¨¤·¤Þ¤¹¡£
´Ø·¸±é»»»Ò:
certainly true
(relational operators: certainly true)
certainly true ´Ø·¸±é»»»Ò¤È¤·¤Æ¤Ï¡¢{.CLT.,.CLE.,.CEQ.,.CNE.,.CGE.,.CGT.} ¤¬¤¢¤ê¤Þ¤¹¡£certainly true ´Ø·¸±é»»»Ò¤Ï¡¢¥ª¥Ú¥é¥ó¥É¶è´Ö¤Î¤¹¤Ù¤Æ¤ÎÍ×ÁǤˤĤ¤¤Æ¡¢²ÝÂê¤È¤Ê¤ë´Ø·¸¤¬ true ¤Ç¤¢¤ì¤Ð¡¢true ¤È¤Ê¤ê¤Þ¤¹¡£¤Ä¤Þ¤ê¡¢¤¹¤Ù¤Æ¤Î ¤Ë¤Ä¤¤¤Æ¡¢x .op. y = true ¤Ç¤¢¤ì¤Ð¡¢[a, b] .Cop. [c, d] = true ¤È¤Ê¤ê¤Þ¤¹¡£
¤¿¤È¤¨¤Ð¡¢(b < c)¤¬ true ¤Ç¤¢¤ì¤Ð¡¢[a, b] .CLT. [c, d] ¤Ï true ¤È¤Ê¤ê¤Þ¤¹¡£
´Ø·¸±é»»»Ò:
possibly true
(relational operators: possibly true)
possibly true ´Ø·¸±é»»»Ò¤È¤·¤Æ¤Ï¡¢{.PLT., .PLE., .PEQ., .PNE., .PGE., .PGT.} ¤¬¤¢¤ê¤Þ¤¹¡£possibly true ´Ø·¸±é»»»Ò¤Ï¡¢¥ª¥Ú¥é¥ó¥É¶è´Ö¤ÎǤ°Õ¤ÎÍ×ÁǤˤĤ¤¤Æ¡¢²ÝÂê¤È¤Ê¤ë´Ø·¸¤¬ true ¤Ç¤¢¤ì¤Ð¡¢true ¤È¤Ê¤ê¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢(a < d) ¤¬ true ¤Ç ¤¢¤ì¤Ð¡¢[a, b] .PLT. [c, d] if a < d ¤Ï true ¤È¤Ê¤ê¤Þ¤¹¡£
´Ø·¸±é»»»Ò¡§set
(relational operators: set)
set ´Ø·¸±é»»»Ò¤È¤·¤Æ¤Ï¡¢{.SLT., .SLE., .SEQ., .SNE., .SGE., .SGT.} ¤¬¤¢¤ê¤Þ¤¹¡£½¸¹ç´Ø·¸±é»»»Ò¤Ï¡¢¤½¤Î¶è´Ö¤Î½ªÎ»ÅÀ¤Ë¤Ä¤¤¤Æ¡¢²ÝÂê¤È¤Ê¤ë´Ø·¸¤¬ true ¤Ç¤¢¤ì¤Ð¡¢true ¤È¤Ê¤ê¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢(a = c) ¤¬ true ¤Ç¤¢¤ê¡¢(b = d)¤â true ¤Ç¤¢¤ì¤Ð¡¢[a, b] .SEQ. [c, d] ¤Ï true ¤È¤Ê¤ê¤Þ¤¹¡£
´ð¿ôÊÑ´¹
(radix conversion)
´ð¿ôÊÑ´¹¤È¤Ï¡¢³°Éô 10 ¿Ê¿ô¤ÈÆâÉô 2 ¿Ê¿ô´ÖÁê¸ß¤ÎÊÑ´¹¥×¥í¥»¥¹¤Î¤³¤È¤Ç¤¹¡£´ð¿ôÊÑ´¹¤Ï½ñ¼°²½¤µ¤ì¤¿Ê¤Ӥˤè¤ëÆþÎÏ/½ÐÎϤÎÃæ¤Ç¹Ô¤ï¤ì¤Þ¤¹¡£Æ±¤¸¿ô¤Ï 2 ¿Ê¿ô¥·¥¹¥Æ¥à¤È 10 ¿Ê¿ô¥·¥¹¥Æ¥à¤Ç¾ï¤Ëɽ¸½²Äǽ¤Ê¤ï¤±¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¤«¤é¡¢Êñ´Þ¤òÊݾڤ¹¤ë¤¿¤á¤Ë¤Ï¡¢´ð¿ôÊÑ´¹Ãæ¤ÎÍ­¸þ¤Î´Ý¤á¤¬Í×·ï¤È¤Ê¤ê¤Þ¤¹¡£
¶¹Éý¶è´Ö
(narrow-width interval)
¶è´Ö [a, b] ¤¬ÃÍ ¤Î¶á»÷ÃͤǤ¢¤ë¤â¤Î¤È¤·¤Þ¤¹¡£w[ab] = a ¤¬¾®¤µ¤±¤ì¤Ð¡¢[a, b] ¤Ï¶¹Éý¶è´Ö¤Ç¤¢¤ë¤³¤È¤Ë¤Ê¤ê¤Þ¤¹¡£¶è´Ö [a, b]¤ÎÉý¤¬¶¹¤±¤ì¤Ð¶¹¤¤¤Û¤É¡¢[a, b] ¤Ï¤è¤êÀµ³Î¤Ë V ¤Ë¶á»÷¤·¤Þ¤¹¡£±Ô¤¤¶è´Ö·ë²Ì (sharp interval result)) ¤â»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¶è´Ö¥¢¥ë¥´¥ê¥º¥à
(interval algorithm)
¶è´Ö¥¢¥ë¥´¥ê¥º¥à¤Ï¡¢¶è´Ö·ë²Ì¤Î·×»»¤Ë»ÈÍѤµ¤ì¤ë°ìÏ¢¤Î±é»»¤Ç¤¹¡£
¶è´Ö±é»»
(interval arithmetic)
¶è´Ö±é»»¤Ï¶è´Ö¤ò»È¤Ã¤¿·×»»¤Ë»ÈÍѤµ¤ì¤ë»»½Ñ¥·¥¹¥Æ¥à¤Ç¤¹¡£
¶è´Ö¶á»÷ÃÍ
(internal approximation)
Fortran ¤Ç¤Ï¡¢¥ê¥Æ¥é¥ëÄê¿ô¤Î¶è´Ö¶á»÷Ãͤϥޥ·¥ó¤Çɽ¸½²Äǽ¤ÊÃͤǤ¹¡£Fortran ɸ½à¤Ë¤Ï¡¢ÆâÉôŪ¤Ê¶á»÷ÃͤÎÀµ³ÎÀ­¤ÎÍ׷郎¸ºß¤·¤Þ¤»¤ó¡£
¶è´ÖÄê¿ô
(INTERVAL constant)
¶è´ÖÄê¿ô¤ÏÊĤ¸¤¿ÊäÀµ½¸¹ç¤Ç¤¹¡£ÂФοô a b ¤Ë¤è¤êÄêµÁ¤µ¤ì¤¿ [a, b] ={z | a z b} ¤Ç¤¹¡£
¶è´ÖÄê¿ô¤Î³°ÉôÃÍ
(INTERVAL constant's external value)
¶è´ÖÄê¿ô¤Î³°ÉôÃͤϡ¢¶è´ÖÄê¿ô¤Îʸ»úÎó¤Ë¤è¤êÄêµÁ¤µ¤ì¤¿¿ô³ØÅª¤ÊÃͤǤ¹¡£³°ÉôÃÍ (external value)¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¶è´ÖÄê¿ô¤ÎÆâÉôŪ¤Ê
¶á»÷ÃÍ
(INTERVAL
constant's internal approximation)
f95 ¤Ç¤Ï¡¢¶è´ÖÄê¿ô¤ÎÆâÉôŪ¤Ê¶á»÷Ãͤϡ¢Äê¿ô¤Î³°ÉôÃͤαԤ¤ÆâÉôŪ¤Ê¶á»÷ÃͤǤ¹¡£¤³¤Î¤¿¤á¡¢¤³¤Î¶á»÷ÃͤÏÄê¿ô¤Î³°ÉôÃͤò´Þ¤àºÇ¤â¶¹¤¤¥Þ¥·¥óɽ¸½²Äǽ¤Ê¶è´Ö¤È¤Ê¤ê¤Þ¤¹¡£
¶è´ÖÉý
(interval width)
¶è´ÖÉý¤Ï¡¢w([a, b]) = b - a ¤Î¤è¤¦¤Ëɽ¤µ¤ì¤Þ¤¹¡£
¶è´ÖÊñ (interval hull)
1 ÂФζè´Ö ¤Ë´Ø¤¹¤ë¶è´ÖÊñ±é»»»Ò ¤Ï¡¢X ¤È Y¤ÎξÊý¤ò´Þ¤àºÇ¾®¤Î¶è´Ö¤Ç¤¹ ( ¤È¤âɽ¤µ¤ì¤ë) ¡£¤¿¤È¤¨¤Ð¡¢¼¡¤Î¤è¤¦¤Ë¤Ê¤ê¤Þ¤¹¡£
[2, 3] [5, 6] = [2, 6].
¶è´Ö¥Ü¥Ã¥¯¥¹
(interval box)
¶è´Ö¥Ü¥Ã¥¯¥¹¤Ï¡¢n ¼¡¸µ¤Î¥Ç¥«¥ë¥ÈºÂɸ¼´¤ËÊ¿¹Ô¤ÊÊÕ¤ò»ý¤ÄÊ¿¹ÔÏ»ÌÌÂΤǤ¹¡£¶è´Ö¥Ü¥Ã¥¯¥¹¤Ï n ¼¡¸µ¤Î¶è´Ö¥Ù¥¯¥È¥ë X = (X1, . . ., Xn)T ¤ò»È¤Ã¤Æ´ÊÊØ¤Ëɽ¸½¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
ÁȤ߹þ¤ß¶è´Ö¥Ç¡¼¥¿·¿
(intrinsic INTERVAL
data type)
Fortran ¤Ë¤Ï¡¢4 ¤Ä¤ÎÁȤ߹þ¤ß¤Î¿ôÃͥǡ¼¥¿·¿¤È¤·¤Æ¡¢INTEGER¡¢REAL¡¢DOUBLE PRECISION REAL¡¢COMPLEX ¤¬¤¢¤ê¤Þ¤¹¡£¥³¥Þ¥ó¥É¹Ô¥ª¥×¥·¥ç¥ó¤Î -xia ¤Þ¤¿¤Ï -xinterval ¤ò»È¤¦¤È¡¢f95 ¤Ï¶è´Ö¤òÁȤ߹þ¤ß¤Î¥Ç¡¼¥¿·¿¤È¤·¤ÆÇ§¼±¤·¤Þ¤¹¡£
ÁȤ߹þ¤ß¤Î INTERVAL ¸ÇÍ­¤Î´Ø¿ô
(intrinsic INTERVAL-specific function)
f95 ¤Ë¤Ï¡¢WID¡¢HULL¡¢MID¡¢INF¡¢SUP ¤ò´Þ¤à¤¤¤í¤¤¤í¤ÊÁȤ߹þ¤ß¤Î INTERVAL ¸ÇÍ­¤Î´Ø¿ô¤¬¤¢¤ê¤Þ¤¹¡£
¸·Ì©¼°½èÍý
(strict expression processing)
¸·Ì©¼°½èÍý¤Î¤â¤È¤Ç¤Ï¡¢¥³¥ó¥Ñ¥¤¥é¤Ï¼«Æ°Åª¤Ê·¿ÊÑ´¹¤Þ¤¿¤Ï KTPV ÊÑ´¹¤ò¹Ô¤¤¤Þ¤»¤ó¡£·¿¤Îº®¹ç¤È KTPV ¤Îº®¹ç¤µ¤ì¤¿¶è´Ö¼°¤Ïµö¤µ¤ì¤Þ¤»¤ó¡£Ç¤°Õ¤Î·¿¤È (¤Þ¤¿¤Ï) KTPV ¤ÎÊÑ´¹¤ÏÌÀ¼¨Åª¤Ë¥×¥í¥°¥é¥à¤·¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£
¸ò´¹²Äǽ¤Ê¼°
(exchangeable expression)
2 ¤Ä¤Î¼°¤Ï¤½¤ì¤é¤¬Êñ´Þ½¸¹ç¤ÈƱ¤¸ (Êñ´Þ½¸¹ç¤¬¤¹¤Ù¤Æ¤Î²Õ½ê¤ÇƱ¤¸) ¤Ç¤¢¤ì¤Ð¡¢¸ò´¹²Äǽ¤Ç¤¹¡£
¹çÀ®¼°
(composite expression)
g ¤ÎÊѰèÆâ¤Ë¤¢¤ë h ¤ÎÊѰèÆâ¤Î¤¹¤Ù¤Æ¤Îñ½¸¹ç { } = {x1 {xn} ¤Ë¤Ä¤¤¤Æ¡¢ f({ }) = g(h({ })) ¤Îµ¬Äê¤É¤ª¤ê¤Ë¡¢½êÍ¿¤Î¼° g ¤È h ¤«¤é¿·¤·¤¤¼° f (¹çÀ®¼°) ¤ò·ÁÀ®¤·¤Þ¤¹¡£Ã±½¸¹ç°ú¿ô¤Ï¡¢¼°¤¬´Ø¿ô¤Þ¤¿¤Ï´Ø·¸¤Î¤É¤Á¤é¤«¤Ç¤¢¤ë¤È¤¤¤¦¤³¤È¤ò°Å¼¨¤·¤Æ¤¤¤Þ¤¹¡£
º®¹ç·¿¤Î¶è´Ö¼°
(mixed-type INTERVAL expression)
º®¹ç·¿¤Î¶è´Ö¼°¤Ï°Û¤Ê¤ë·¿¤Î¥Ç¡¼¥¿¹àÌܤò´Þ¤ß¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢¼° [0.1] + 0.2D0 ¤Ï¡¢[0.1] ¤¬ 1 ¤Ä¤Î¶è´Ö¤Ç¤¢¤ê¡¢0.2D0 ¤¬ DOUBLE PRECISION ¤ÎÄê¿ô¤Ê¤Î¤Ç¡¢º®¹ç·¿¤Î¶è´Ö¼°¤Ç¤¹¡£¤³¤ì¤é¤Ï¶¦¤ËƱ¤¸ KTPV = 8 ¤ò»ý¤Á¤Þ¤¹¡£
º®¹ç¥â¡¼¥É (·¿¤ÈKTPV) ¤Î¶è´Ö¼°
(mixed-mode (type and KTPV) INTERVAL expression)
º®¹ç¥â¡¼¥É¤Î¶è´Ö¼°¤Ï°Û¤Ê¤ë·¿¤È KTPV ¤Î¥Ç¡¼¥¿¹àÌܤò´Þ¤ß¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢¼° [0.1] + 0.2 ¤Ïº®¹ç¥â¡¼¥É¼°¤Ç¤¹¡£[0.1] ¤Ï KTPV = 8 ¤ò»ý¤Ä¶è´ÖÄê¿ô¤Ç¤¹¤¬¡¢0.2 ¤Ï KTPV = 4 ¤ò»ý¤Ä REAL Äê¿ô¤Ç¤¹¡£
ºÇ½ª°ÌÃÖñ°Ì (ulp)
(unit in the last place (ulp))
ÆâÉôŪ¤Ê¥Þ¥·¥ó¿ô¤Î 1 ºÇ½ª°ÌÃÖñ°Ì (ulp) ¤Ï¡¢¥Þ¥·¥ó¤Î±é»»µ¡Ç½¤ò»È¤Ã¤Æ¼Â¹Ô²Äǽ¤ÊºÇ¾®¤Î¥¤¥ó¥¯¥ê¥á¥ó¥È¤Þ¤¿¤Ï¥Ç¥¯¥ê¥á¥ó¥È¤Î¤³¤È¤Ç¤¹¡£¤³¤Î¤¿¤á¡¢·×»»¤µ¤ì¤¿¶è´Ö¤ÎÉý¤¬ 1 ulp ¤Ç¤¢¤ì¤Ð¡¢¤³¤ì¤Ï½êÍ¿¤Î KTPV ¤ò»ý¤Ä¡¢²Äǽ¤ÊºÇ¤â¶¹¤¤Èó½ÌÂà¶è´Ö¤È¤Ê¤ê¤Þ¤¹¡£
ºÇ½ª·åñ°Ì (uid)
(unit in the last digit (uld))
ñ¿ô¤ÎÆþÎÏ/½ÐÎϤǤϡ¢°ÅÌۤ˶è´Ö¤ò¹½ÃÛ¤¹¤ë¤¿¤á¤Ë¡¢ºÇ½ªÉ½¼¨·å¤ËÂФ· 1ºÇ½ª·åñ°Ì (uld) ¤Î²Ã»»¤Þ¤¿¤Ï¸º»»¤¬¹Ô¤ï¤ì¤Þ¤¹¡£
ºÇ¾®¾å¸Â (supremum(plural, suprema))
¿ô¤Î½¸¹ç¤ÎºÇ¾®¾å¸Â¤Ï¡¢½¸¹ç¤Î¾å¸Â¤Ë¤¤¤Á¤Ð¤ó¶á¤¤¿ô¤Ç¤¹¡£¤³¤ì¤Ï½¸¹çÆâÉô¤ÎºÇÂç¤Î¿ô¡¢¤Þ¤¿¤Ï¡¢½¸¹çÆâÉô¤Î¤¹¤Ù¤Æ¤Î¥á¥ó¥Ð¡¼¤è¤ê¤âÂ礭¤¤ºÇ¾®¤Î¿ô¤Î¤¤¤º¤ì¤«¤Ç¤¹¡£¶è´ÖÄê¿ô [a, b] ¤ÎºÇ¾®¾å¸Â sup([a, b]) ¤Ï b ¤Ç¤¹¡£
ºÇÂç²¼¸Â (infumum(plural, infima))
¿ô¤Î½¸¹ç¤ÎºÇÂç²¼¸Â¤Ï¡¢½¸¹ç¤Î²¼¸Â¤Ë¤¤¤Á¤Ð¤ó¶á¤¤¿ô¤Ç¤¹¡£¤³¤ì¤Ï¡¢½¸¹çÆâÉô¤ÎºÇ¾®¤Î¿ô¡¢¤Þ¤¿¤Ï¡¢½¸¹çÆâÉô¤Î¤¹¤Ù¤Æ¤Î¥á¥ó¥Ð¡¼¤è¤ê¤â¾®¤µ¤¤ºÇÂç¤Î¿ô¤Î¤¤¤º¤ì¤«¤Ç¤¹¡£¶è´ÖÄê¿ô [a, b] ¤ÎºÇÂç²¼¸Â inf([a, b]) ¤Ï a ¤Ç¤¹¡£
ºÇÂçÉýÍ׵ἰ½èÍý(widest-need expression processing)
ºÇÂçÉýÍ׵ἰ½èÍý¤Î¤â¤È¤Ç¤Ï¡¢¥³¥ó¥Ñ¥¤¥é¤Ë¤è¤ê¡¢¼«Æ°Åª¤Ê·¿ÊÑ´¹¤È KTPV ÊÑ´¹¤¬¹Ô¤ï¤ì¤Þ¤¹¡£Ç¤°Õ¤ÎÈó¶è´Ö¤Îź»ú¼°¤Ï¶è´Ö¤Ë¾º³Ê¤µ¤ì¡¢KTPV ¤Ï KTPVmax ¤Ø¤ÈÀßÄꤵ¤ì¤Þ¤¹¡£
ºÇÂçÉýÍ׵ἰ½èÍý¡§
¥¹¥³¡¼¥×
(widest-need expression processing: scope)
Fortran ¤Ç¤Ï¡¢¥¹¥³¡¼¥×¤Ï¡¢¥Ç¡¼¥¿¤È (¤Þ¤¿¤Ï) ±é»»¤¬ÄêµÁ¤µ¤ì¤Æ¤¤¤Æ¤¢¤¤¤Þ¤¤¤µ¤Î¤Ê¤¤¡¢¼Â¹Ô¥×¥í¥°¥é¥à¤Î°ìÉôʬ¤ò°ÕÌ£¤·¤Þ¤¹¡£ºÇÂçÉýÍ׵ἰ½èÍý¤Î¥¹¥³¡¼¥×¤Ï¡¢´Ø¿ô¤È¥µ¥Ö¥ë¡¼¥Á¥ó¤Î¸Æ¤Ó½Ð¤·¤Ë¤è¤êÀ©¸Â¤ò¼õ¤±¤Þ¤¹¡£
ºÇÂçÉýÍ׵ἰ½èÍý¤Î
¥¹¥³¡¼¥×
(scope of widest-need expression processing)
ºÇÂçÉýÍ׵ἰ½èÍý¡§ ¥¹¥³¡¼¥× (widest-need expression processing: scope)¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¼°½èÍý¡§strict
(expression processing: strict)
¸·Ì©¼°½èÍý (strict expression processing) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¼°½èÍý¡§widest-need
(expression processing: widest-need)
ºÇÂçÉýÍ׵ἰ½èÍý(widest-need expression processing) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¼°¤Îʸ̮
(expression context)
ºÇÂçÉýÍ׵ἰ½èÍý¤Ç¤Ï¡¢¼°¤Îʸ̮¤òÄêµÁ¤¹¤ë 2 ¤Ä¤Î°À­¤Ï¡¢¼°¤Î·¿¤ÈºÇÂçKTPV (KTPVmax) ¤Ç¤¹¡£
¼°¤ÎÊÄÊñ
(closure of expression)
½¸¹ç ¤Ë¤Ä¤¤¤ÆÉ¾²Á¤µ¤ì¤¿¡¢n ¸Ä¤ÎÊÑ¿ô¤Î¼° f ¤ÎÊÄÊñ¤Ï¡¢ ¤Çɽ¤µ¤ì¡¢¤Þ¤¿¡¢ ¤Ë¤Ä¤¤¤Æ¤Ï¡¢¼¡¤Î¤è¤¦¤ËÄêµÁ¤µ¤ì¤Þ¤¹¡£
¤Ë¤Ä¤¤¤Æ¤Ï¡¢ ¤Ç¤¹¡£
¤¹¤Ù¤Æ¤Î¥·¡¼¥±¥ó¥¹ { }¤Î½¸ÀÑÅÀ xj ¤Ï¡¢½¸¹ç X0 ¤ÎÍ×ÁǤǤ¹¡£f ¤ÎÊÄÊñ¤Ï¡¢¾åµ­ÄêµÁ¼°¤Î±¦Â¦¤Î¾ò·ï¤¬Ëþ¤¿¤µ¤ì¤¿¡¢¤¹¤Ù¤Æ¤Î²Äǽ¤Ê f ¤Î½¸ÀÑÅÀ¤Î½¸¹ç¤Ç¤¹¡£
is defined for all .
¼ÂÁõÆÃÀ­
(quality of implementation)
¼ÂÁõÆÃÀ­¤Ï¥³¥ó¥Ñ¥¤¥é¤Î¶è´Ö¥µ¥Ý¡¼¥È¤òÆÃħÉÕ¤±¤Þ¤¹¡£¶¹Éý (narrow width) ¤Ï¶è´Ö¥Ç¡¼¥¿·¿ÍѤËÁȤ߹þ¤ß¤Î¥³¥ó¥Ñ¥¤¥é¥µ¥Ý¡¼¥È¤Ë¤è¤êÄ󶡤µ¤ì¤ë¿·¤·¤¤¼ÂÁõÉʼÁ¤Ç¤¹¡£
½¸¹çÍýÏÀ
(set theoretic)
½¸¹çÍýÏÀ¤Ï¡¢½¸¹ç¤Î¼êÃÊ¡¢¤Þ¤¿¤Ï¡¢½¸¹ç¤ÎÂå¿ô¤Ë°¤¹¤ë¤â¤Î¤Ç¤¹¡£
½ÌÂष¤¿¶è´Ö
(degenerate interval)
½ÌÂष¤¿¶è´Ö¤Ï¥¼¥íÉý¤Î¶è´Ö¤Ç¤¹¡£½ÌÂष¤¿¶è´Ö¤Ï¡¢¤½¤ÎÍ£°ì¤ÎÍ×ÁǤ¬ÅÀ¤Ç¤¢¤ëñ½¸¹ç¤Ç¤¹¡£¤Û¤È¤ó¤É¤Î¾ì¹ç¡¢½ÌÂà¶è´Ö¤Ï 1 ¤Ä¤ÎÅÀ¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢¶è´Ö [2, 2] ¤Ï½ÌÂष¤Æ¤ª¤ê¡¢¶è´Ö [2, 3] ¤Ï½ÌÂष¤Æ¤¤¤Þ¤»¤ó¡£
¼ïÊÌ·¿¥Ñ¥é¥á¡¼¥¿ÃÍ (KTPV)
Fortran ¤Ç¤Ï¡¢³ÆÁȤ߹þ¤ß¥Ç¡¼¥¿·¿¤Ï¡¢¥Ç¡¼¥¿·¿¤Î¼ïÊÌ (ÀºÅÙ) ¤òÁªÂò¤¹¤ë¼ïÊÌ·¿¥Ñ¥é¥á¡¼¥¿ÃÍ (KTPV) ¤ò»È¤Ã¤Æ¥Ñ¥é¥á¡¼¥¿²½¤µ¤ì¤Þ¤¹¡£f95 ¤Ë¤Ï¡¢4¡¢8¡¢16 ¤Î 3 ¤Ä¤Î¶è´Ö KTPV ¤¬Â¸ºß¤·¤Þ¤¹¡£¥Ç¥Õ¥©¥ë¥È¤Î KTPV ¤Ï¡¢8 ¤Ç¤¹¡£
¾å¸Â
(upper bound)
ºÇ¾®¾å¸Â (supremum(plural, suprema)) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
±Ô¤¤¶è´Ö·ë²Ì
(sharp interval result)
±Ô¤¤¶è´Ö·ë²Ì¤Ï²Äǽ¤Ê¸Â¤ê¶¹¤¤Éý¤ò»ý¤Á¤Þ¤¹¡£±Ô¤¤¶è´Ö·ë²Ì¤Ï¼°¤ÎÊñ´Þ¤ÎÊñ¤ÈƱ¤¸¤Ë¤Ê¤ê¤Þ¤¹¡£Í­¸ÂÀºÅ٤λ»½Ñ¤Ë¤è¤ëÀ©¸Â¤¬²Ý¤»¤é¤ì¤ë¤È¡¢±Ô¤¤¶è´Ö·ë²Ì¤Ï¡¢¼°¤ÎÊñ´Þ½¸¹ç¤ò´Þ¤à¡¢²Äǽ¤Ê¤«¤®¤êºÇ¤â¶¹¤¤Í­¸Â¤Î¶è´Ö¤È¤Ê¤ê¤Þ¤¹¡£
ÂåÆþʸ
(assignment statement)
ÂåÆþʸ¤Ï¡¢¼¡¤Î·Á¼°¤ò»ý¤Ä Fortran ʸ¤Ç¤¹¡£
V = expression
ÂåÆþʸ¤Îº¸Â¦¤Ï¡¢ÊÑ¿ô¡¢ÇÛÎóÍ×ÁÇ¡¢¤Þ¤¿¤ÏÇÛÎó V ¤Ç¤¹¡£
¸ß¤¤¤ËÁǤζè´Ö (disjoint interval)
2 ¤Ä¤Î¸ß¤¤¤ËÁǤζè´Ö¤Ï¶¦Ä̤ÎÍ×ÁǤò»ý¤Á¤Þ¤»¤ó¡£¶è´Ö [2, 3] ¤È [4, 5] ¤Ï¡¢¸ß¤¤¤ËÁǤζè´Ö¤Ç¤¹¡£2 ¤Ä¤Î¸ß¤¤¤ËÁǤζè´Ö¤ÎÀѽ¸¹ç¤Ï¶õ¤Î¶è´Ö¤È¤Ê¤ê¤Þ¤¹¡£
¿ÍÑÅÓ¼°
(MUE = multiple-use expression)
¿ÍÑÅÓ¼° (MUE) ¤Ï¡¢¾¯¤Ê¤¯¤È¤â 1 ¤Ä¤ÎÆÈΩÊÑ¿ô¤¬Ê£¿ô²ó½Ð¸½¤¹¤ë¼°¤Î¤³¤È¤Ç¤¹¡£
ñ°ìÍÑÅÓ¼° (SUE)
(single-use expression (SUE))
ñ°ìÍÑÅÓ¼° (SUE) ¤Ï¡¢¼°ÆâÉô¤Ç³ÆÊÑ¿ô¤¬ 1 ÅÙ¤À¤±¤·¤«È¯À¸¤·¤Ê¤¤¼°¤Î¤³¤È¤Ç¤¹¡£¤¿¤È¤¨¤Ð¡¢¼¡¤Î¼°¤Ïñ°ìÍÑÅÓ¼°¤Ç¤¹¤¬¡¢
¼¡¤Î¼°¤Ï¡¢¤½¤¦¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£
ñ¿ô¶è´Ö¥Ç¡¼¥¿ÊÑ´¹
(single-number INTERVAL data conversion)
ñ¿ô¶è´Ö¥Ç¡¼¥¿ÊÑ´¹¤Ï¡¢Y ÊÔ½¸µ­½Ò»Ò¤Ë¤è¤ëÆÉ¤ß¼è¤ê¤Èñ¿ôɽ¸½¤ò»È¤Ã¤¿³°Éô¶è´Ö¤Îɽ¼¨¤Ë»ÈÍѤ·¤Þ¤¹¡£Ã±¿ô¤ÎÆþÎÏ/½ÐÎÏ (single-number input/output)¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
ñ¿ô¤ÎÆþÎÏ/½ÐÎÏ
(single-number
input/output)
ñ¿ô¤ÎÆþÎÏ/½ÐÎϤ϶è´ÖÍѤˡ¢¶è´Ö [-1, +1]uld ¤¬°ÅÌۤΤ¦¤Á¤ËºÇ½ªÉ½¼¨·å¤ËÄɲ䵤ì¤ë¡¢Ã±¿ô³°Éôɽ¸½¤ò»ÈÍѤ·¤Þ¤¹¡£²¼ÉÕ¤­Ê¸»ú uld ¤Ï¡¢ºÇ½ª·å¤Ç¤Îñ°Ì¤òɽ¤¹Æ¬»ú¸ì (Unit in the Last Digit) ¤Ç¤¹¡£¤¿¤È¤¨¤Ð¡¢0.12300 ¤Ï¶è´Ö 0.12300 + [-1, +1]uld = [0.12299, 0.12301] ¤òɽ¤·¤Þ¤¹¡£
ÃÇÄêŪ¤Ê´Ø·¸(affirmative relation)
certainly¡¢possibly ¤Þ¤¿¤ÏƱ¤¸¤Ç¤Ê¤¤½¸¹ç¤ò½ü¤¯½ç°Ì´Ø·¸¡£ÃÇÄêŪ¤Ê´Ø·¸¤Ï¡¢¤¿¤È¤¨¤Ð¡¢a < b ¤Î¤è¤¦¤Ë¡¢²¿¤«¤òÃǸÀ¤¹¤ë´Ø·¸¤Ç¤¹¡£
ÃÇÄêŪ¤Ê´Ø·¸±é»»»Ò (affirmative relational operators)
ÃÇÄêŪ¤Ê´Ø·¸±é»»»Ò¤Ï½¸¹ç¤ÎÍ×ÁǤǤ¹¡£¡§{<, £, ¡á, ³, >}
Äê¿ô¼°
(constant expression)
Fortran ¤Ç¤ÎÄê¿ô¼°¤ÏÊÑ¿ô¤Þ¤¿¤ÏÇÛÎó¤ò´Þ¤ß¤Þ¤»¤ó¡£Äê¿ô¤È¥ª¥Ú¥é¥ó¥É¤Ï´Þ¤á¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£¼° [2, 3] + [4, 5] ¤ÏÄê¿ô¼°¤Ç¤¹¡£X ¤¬ÊÑ¿ô¤Ç¤¢¤ì¤Ð¡¢¼° X + [2, 3] ¤ÏÄê¿ô¼°¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£Y ¤¬Ì¾Á°ÉÕ¤­Äê¿ô¤Ç¤¢¤ì¤Ð¡¢Y + [2, 3] ¤ÏÄê¿ô¼°¤Ç¤¹¡£
ÅÀ (point)
(¶è´Ö¤ÎÂÐΩ³µÇ°¤È¤·¤Æ¤Î) ÅÀ¤Ï¡¢1 ¤Ä¤Î¿ô¤Ç¤¹¡£N ¼¡¸µ¶õ´Ö¤Ç¤Î 1 ¤Ä¤ÎÅÀ¤Ï¡¢n ¼¡¸µ¤Î¥Ù¥¯¥È¥ë x = (x1, . . . , xn)T ¤ò»È¤Ã¤ÆÉ½¤µ¤ì¤Þ¤¹¡£ÅÀ¤È½ÌÂष¤¿¶è´Ö¡¢¤¢¤ë¤¤¤Ï¡¢¶è´Ö¥Ù¥¯¥È¥ë¤ÏƱ¤¸¤â¤Î¤È¹Í¤¨¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£¸·Ì©¤Ë¤Ï¡¢Ç¤°Õ¤Î¶è´Ö¤Ï¤½¤ÎÍ×ÁǤ¬Ê£¿ô¤ÎÅÀ¤Ç¤¢¤ë 1 ¤Ä¤Î½¸¹ç¤Ç¤¹¡£
Æ©ÌÀ¤Ê¥Ç¡¼¥¿·¿
(opaque data type)
Æ©ÌÀ¤Ê¥Ç¡¼¥¿·¿¤ÏÆâÉôŪ¤Ê¶á»÷Ãͤι½Â¤¤ò̤»ØÄê¤Î¤Þ¤Þ¤Ë¤·¤Þ¤¹¡£¶è´Ö¥Ç¡¼¥¿¹àÌÜ¤ÏÆ©ÌÀ¤Ç¤¹¡£¤³¤Î¤¿¤á¡¢¥×¥í¥°¥é¥Þ¤Ï¶è´Ö¥Ç¡¼¥¿¹àÌܤ¬ÆâÉôŪ¤Ë²¿¤«ÆÃÊ̤ÊÊýË¡¤Çɽ¸½¤µ¤ì¤ë¤³¤È¤ò´üÂÔ¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤»¤ó¡£ÁȤ߹þ¤ß¤Î´Ø¿ô INF ¤È SUP ¤Ï¶è´Ö¤Î¹½À®Í×ÁǤؤΥ¢¥¯¥»¥¹¤òÄ󶡤·¤Þ¤¹¡£¼êºî¶È¤ÇǤ°Õ¤ÎÍ­¸ú¤Ê¶è´Ö¤ò¹½ÃÛ¤¹¤ë¤Ë¤Ï¡¢INTERVAL ¹½À®»Ò¤ò»È¤¦¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
̾Á°ÉÕ¤­Äê¿ô
(named constant)
̾Á°ÉÕ¤­Äê¿ô¤Ï PARAMETER ʸ¤ÎÃæ¤ÇÀë¸À¡¢½é´ü²½¤µ¤ì¤Þ¤¹¡£Ì¾Á°ÉÕ¤­Äê¿ô¤ÎÃͤÏʸ̮¤Ë°Í¸¤·¤Ê¤¤¤Î¤Ç¡¢PARAMETER Àë¸À¤Ç¤Î¥Ç¡¼¥¿¹àÌܤΤè¤êŬÀÚ¤Ê̾Á°¤Ï¡¢¡ÖÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¡×¤Ç¤¹¡£
È¿ÃÇÄêŪ¤Ê´Ø·¸ (anti-affirmative relation)
È¿ÃÇÄêŪ¤Ê´Ø·¸¤Ï true ¤È¤Ê¤ê¤¨¤Ê¤¤¤³¤È¤¬¤é¤Ë¤Ä¤¤¤Æ¤ÎÄĽҤǤ¹¡£½ç°Ì´Ø·¸ ¡â ¤Ï¡¢Fortran ¤Ç¤ÎÍ£°ì¤ÎÈ¿ÃÇÄêŪ¤Ê´Ø·¸¤Ç¤¹¡£
È¿ÃÇÄêŪ¤Ê´Ø·¸±é»»»Ò (anti-affirmative relation operator)
Fortran ¤Î .NE. ¤È /= ±é»»»Ò¤ÏÈ¿ÃÇÄêŪ¤Ê´Ø·¸¤ò¼ÂÁõ¤·¤Æ¤¤¤Þ¤¹¡£certainly¡¢possible¡¢¶è´Ö¥ª¥Ú¥é¥ó¥ÉÍѤν¸¹ç¥Ð¡¼¥¸¥ç¥ó¤Ï¡¢¤½¤ì¤¾¤ì¡¢.CNE.¡¢.PNE.¡¢.SNE.¤Çɽ¤µ¤ì¤Þ¤¹¡£
º¸Â¦¤Î½ªÎ»ÅÀ
(left endpoint)
1 ¤Ä¤Î¶è´Ö¤Îº¸Â¦¤Î½ªÎ»ÅÀ¤Ï¡¢¤½¤ÎºÇÂç²¼¸Â¤Þ¤¿¤Ï²¼¸Â¤ÈƱ¤¸¤Ç¤¹¡£
ʸ̮°Í¸¤Î¶è´ÖÄê¿ô
(context-dependent INTERVAL constant)
ºÇÂçÉýÍ׵ἰ½èÍý¤Î¤â¤È¤Ç¤Î¶è´ÖÄê¿ô¤ÎÆâÉôŪ¤Ê¶á»÷Ãͤϡ¢KTPVmax ¤ÈƱ¤¸ KTPV ¤ò»ý¤Ä±Ô¤¤¶è´Ö¤Ê¤Î¤Çʸ̮°Í¸¤È¤Ê¤ê¤Þ¤¹¡£¼¡¤ÎÁ°Äó¤Ç¡¢¶è´ÖÄê¿ô [a, b] ¤Ë¤Ä¤¤¤Æ¤ÎǤ°Õ¤Î¶á»÷Ãͤò»È¤¦¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
[a,b] ev([a,b]),
¤³¤³¤Ç¤Ï¡¢ev([a,b]) ¤Ï¶è´ÖÄê¿ô [a,b] ¤Î³°ÉôÃͤòɽ¤·¤Þ¤¹¡£Êñ´Þ¤Î°ãÈ¿¤¬¤Ê¤±¤ì¤Ð¡¢Ç¤°Õ¤ÎÆâÉôŪ¤Ê¶á»÷ÃͤòÁªÂò¤¹¤ë¤³¤È¤¬µö¤µ¤ì¤Þ¤¹¡£¤¿¤È¤¨¤Ð¡¢ÆâÉôŪ¤Ê¶á»÷ÃÍ [0.1_4]¡¢[0.1_8] ¤È [0.1_16] ¤Ï¡¢¤¹¤Ù¤Æ¤¬³°ÉôÃÍ ev(0.1) = 1/10 ¤ò»ý¤Á¡¢¤³¤Î¤¿¤á¡¢Êñ´Þ¤ÎÀ©Ìó¤Ë°ãÈ¿¤·¤Þ¤»¤ó¡£ºÇÂçÉýÍ׵ἰ½èÍý¤Î¤â¤È¤Ç¤Ï¡¢KTPVmax ¤ÈƱ¤¸ KTPV ¤ò»ý¤ÄÆâÉôŪ¤Ê¶á»÷Ãͤ¬»ÈÍѤ·¤Þ¤¹¡£
Êĺ¿¶è´Ö
(closed interval)
Êĺ¿¶è´Ö¤Ï¤½¤Î½ªÎ»ÅÀ¤ò´Þ¤ß¤Þ¤¹¡£Êĺ¿¶è´Ö¤ÏÊĽ¸¹ç (closed set) ¤Ç¤¹¡£[2, 3] = {z | 2 £ z £ 3}¤Ç¤¢¤ë¶è´Ö¤Ï¤½¤Î½ªÎ»ÅÀ¤¬´Þ¤Þ¤ì¤ë¤Î¤ÇÊĤ¸¤é¤ì¤Æ¤¤¤Þ¤¹¡£¶è´Ö (2, 3) = {z | 2 < z < 3} ¤Ç¤¢¤ë¶è´Ö¤Ï¤½¤Î½ªÎ»ÅÀ¤¬´Þ¤Þ¤ì¤Ê¤¤¤Î¤Ç¡¢³«¤¤¤Æ¤¤¤Þ¤¹¡£f95 ¤Ç¼ÂÁõ¤µ¤ì¤¿¶è´Ö±é»»¤Ï¡¢Êĺ¿¶è´Ö¤À¤±¤ò¼è¤ê°·¤¤¤Þ¤¹¡£
Êĺ¿¿ô³Ø¥·¥¹¥Æ¥à (closed mathematical system)
Êĺ¿¿ô³Ø¥·¥¹¥Æ¥àÆâÉô¤Ç¤Ï¡¢Ì¤ÄêµÁ¤Î±é»»»Ò¥ª¥Ú¥é¥ó¥É¤ÎÁȤ߹ç¤ï¤»¤¬Â¸ºß¤·¤Æ¤Ï¤¤¤±¤Þ¤»¤ó¡£Êĺ¿¥·¥¹¥Æ¥à¤ÎÍ×ÁǤ˴ؤ¹¤ë¤¹¤Ù¤Æ¤ÎÄêµÁºÑ¤ß±é»»¤Ï¤½¤Î¥·¥¹¥Æ¥à¤ÎÍ×ÁǤòÀ¸À®¤·¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£¼Â¿ô¥·¥¹¥Æ¥à¤Ï¡¢¥¼¥í¤Ë¤è¤ë½ü»»¤¬¤½¤Î¥·¥¹¥Æ¥à¤Ç̤ÄêµÁ¤Ê¤Î¤Ç¡¢ÊĤ¸¤é¤ì¤Æ¤¤¤Þ¤»¤ó¡£
ÊĽ¸¹ç (closed set)
ÊĽ¸¹ç¤Ï½¸¹çÆâÉô¤Î¤¹¤Ù¤Æ¤Î½¸ÀÑÅÀ (limit point ¤Þ¤¿¤Ï accumulation point) ¤ò´Þ¤ß¤Þ¤¹¡£¤Ä¤Þ¤ê¡¢½êÍ¿¤Î½¸¹ç S ¤È¥·¡¼¥±¥ó¥¹ ¤Ë¤Ä¤¤¤Æ¡¢S ¤ÎÊÄÊñ¤Ï¡¢ ¤È¤Ê¤ê¤Þ¤¹¡£¤³¤³¤Ç¤Ï¡¢ ¤Ï¥·¡¼¥±¥ó¥¹ {sj} ¤Î½¸ÀÑÅÀ¤òɽ¤·¤Þ¤¹¡£
¼Â¿ô¤Î½¸¹ç¤Ï¡¢- ¤È + ¤ò´Þ¤Þ¤Ê¤¤¤Î¤Ç¡¢³«¤¤¤¿½¸¹ç {z | - < z < +} ¤Ç¤¹¡£³ÈÄ¥¼Â¿ô¤Î½¸¹ç ¤ÏÊĤ¸¤Æ¤¤¤Þ¤¹¡£
ÊÄÊñ¹çÀ®Åù¼° (closure-composition equality)
¼¡¤ÎÅù¼°¤ò»ý¤Ä½êÍ¿¤Î¼° f¡¢g¡¢h ¤Ë¤Ä¤¤¤Æ¡¢
ÊÄÊñ¹çÀ®Åù¼°¤Ï¡¢¼¡¤Î¤³¤È¤ò¼¨¤·¤Þ¤¹¡£
ÅÀ x0 ¤Ç¤Î ¤ÎÊÄÊñ¤Ï¡¢¤½¤Î»Ø¿ô¤ÎÊÄÊñ¤Ç¤¢¤ë ¤È ¤ÈƱ¤¸¤Ç¤¹¡£
Êñ (hull)
¶è´ÖÊñ (interval hull) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
Êñ´Þ½¸¹ç
(containment set)
¼° h ¤ÎÊñ´Þ½¸¹ç cset(h, {x}) ¤Ï¡¢h ¤¬Ç¤°Õ¤Î¹çÀ® f({x}) = g(h({x}), {x}) ¤Î¹½À®Í×ÁǤȤ·¤Æ»È¤ï¤ì¤ë¤È¡¢Êñ´Þ¤ÎÀ©Ìó¤Ë°ãÈ¿¤·¤Ê¤¤ºÇ¾®¤Î½¸¹ç¤È¤Ê¤ê¤Þ¤¹¡£
For h(x, y) = x ÷ y ¤Ë¤Ä¤¤¤Æ¤Ï¡¢
cset(h, {(+, +)}) = [0, +] ¤È¤Ê¤ê¤Þ¤¹¡£
cset(expression, set) ¤â»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
Êñ´Þ½¸¹ç¤ÎƱÃÍ (containment set equivalent)
Êñ´Þ½¸¹ç¤Î¤É¤ÎÉôʬ¤âƱ¤¸¤Ç¤¢¤ë¾ì¹ç¡¢2 ¤Ä¤Î¼°¤ÏÊñ´Þ½¸¹ç¤ÎƱÃͤǤ¹¡£
Êñ´Þ½¸¹ç¤Îɾ²ÁÍýÏÀ
(containment set evaluation theorem)
eval(f, {x}) ¤¬¡¢¸Ä¡¹¤Î¹½À®Í×ÁǤÎÊÄÊñ¤ò»È¤Ã¤Æ¡¢±é»»¡¢´Ø¿ô¡¢¤¢¤ë¤¤¤Ï¡¢´Ø·¸¤ÎÃͤΤ¤¤º¤ì¤Ç¤¢¤Ã¤Æ¤â²¼°Ì¼°¤ÎÃͤò·×»»¤¹¤ë¡¢¼° f ¤Î¥³¡¼¥É¥ê¥¹¥È¤Îɾ²Á¤òɽ¤¹¤â¤Î¤È¤·¤Þ¤¹¡£¤³¤Î¾ì¹ç¡¢f ¤¬´Ø¿ô¤Ç¤¢¤Ã¤Æ¤â´Ø·¸¤Ç¤¢¤Ã¤Æ¤â¡¢¼°f({x}) = f({x1} {xn}) ¤¬Í¿¤¨¤é¤ì¤ë¤È¡¢¤¹¤Ù¤Æ¤Î ¤Ë¤Ä¤¤¤Æ¡¢cset(f, {x0}) eval(f, {x0}) ¤È¤Ê¤ê¤Þ¤¹¡£
Êñ´Þ½¸¹ç¤ÎÊÄÊñ¹±Åù¼°(containment set closure identity)
n ¸Ä¤ÎÊÑ¿ô¤ÎǤ°Õ¤Î¼° f({x}) = f({x1} {xn}) ¤ÈÅÀ x0 ¤¬Í¿¤¨¤é¤ì¤ë¤È¡¢ÅÀ x0¤Ç¤Î f ¤ÎÊÄÊñ¤Ï¡¢cset(f, {x0}) = f({x0}) ¤È¤Ê¤ê¤Þ¤¹¡£
Êñ´Þ¤Î¼ºÇÔ
(containment failure)
Êñ´Þ¤Î¼ºÇԤϡ¢Êñ´Þ¤ÎÀ©Ìó¤òËþ¤¿¤»¤Ê¤¤¼ºÇԤǤ¹¡£¤¿¤È¤¨¤Ð¡¢[1]/[0] ¤¬ [empty] ¤Ç¤¢¤ë¤ÈÄêµÁ¤µ¤ì¤ë¤È¡¢Êñ´Þ¤Î¼ºÇԤȤʤê¤Þ¤¹¡£¤³¤ì¤Ï¡¢ ¤Ç¤Ê¤¤ Y ¤Ç¤¢¤ë X=[0]¤È Y ¤Ë¤Ä¤¤¤Æ¡¢¼¡¤Î¤è¤¦¤Ê¶è´Ö¼°¤òÁÛÄꤹ¤ì¤Ð³Îǧ¤¹¤ë¤³¤È¤¬¤Ç¤­¤Þ¤¹¡£
ºÇ½é¤Î¼°¤ÎÊñ´Þ½¸¹ç¤Ï [0] ¤Ç¤¹¡£¤·¤«¤·¡¢[1]/[0] ¤¬ [empty] ¤Ç¤¢¤ë¤ÈÄêµÁ¤µ¤ì¤ë¤È¡¢2 ÈÖÌܤμ°¤â¤Þ¤¿ [empty] ¤È¤Ê¤ê¤Þ¤¹¡£¤³¤ì¤Ï¡¢Êñ´Þ¤Î¼ºÇԤǤ¹¡£
Êñ´Þ¤ÎÀ©Ìó
(containment constraint)
½ÌÂष¤¿¶è´Ö [x] ¤Ç¤Î¼° f ¤Î¶è´Ö¤Îɾ²Á f([x]) ¤Ë´Ø¤¹¤ëÊñ´Þ¤ÎÀ©Ìó¤Ï¡¢¼¡¤Î¤è¤¦¤Ë¤Ê¤ê¤Þ¤¹¡£
f([x]) cset(f,{x}),
¤³¤³¤Ç¤Ï¡¢cset(f,{x}) ¤Ï f([x]) ¤¬´Þ¤Þ¤Ê¤±¤ì¤Ð¤Ê¤é¤Ê¤¤¤¹¤Ù¤Æ¤Î²Äǽ¤ÊÃͤÎÊñ´Þ½¸¹ç¤òɽ¤·¤Þ¤¹¡£Êñ´Þ½¸¹ç¤Ï¡¢(x ÷ y, {(1, 0)}) = {-, +}¤Ç¤¹¤«¤é¡¢[1] / [0] = hull({-, +}) = [-, +]¤È¤Ê¤ê¤Þ¤¹¡£Êñ´Þ½¸¹ç (containment set)¤â»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
±¦Â¦¤Î½ªÎ»ÅÀ
(right endpoint)
ºÇ¾®¾å¸Â (supremum(plural, suprema)) ¤ò»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
Í­¸ú¤Ê¶è´Ö·ë²Ì
(valid interval result)
1 ¤Ä¤ÎÍ­¸ú¤Ê¶è´Ö·ë²Ì [a, b] ¤Ï¡¢¼¡¤Î 2 ¤Ä¤ÎÍ×·ï¤òËþ¤¿¤µ¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£

  • a b
  • [a, b] ¤ÏÊñ´Þ¤ÎÀ©Ìó¤Ë°ãÈ¿¤·¤Æ¤Ï¤¤¤±¤Þ¤»¤ó¡£
Í­¸þ¤Î´Ý¤á
(directed rounding)
Í­¸þ¤Î´Ý¤á¤ÏÆÃÊ̤ʸþ¤­¤ò»ý¤Ä´Ý¤á¤Ç¤¹¡£¶è´Ö±é»»¤Îʸ̮¤Ç¤Ï¡¢´Ý¤áÀÚ¤ê¾å¤²¤Ï + Êý¸þ¤Î¡¢´Ý¤áÀڤ겼¤²¤Ï - Êý¸þ¤Î¸þ¤­¤ò»ý¤Á¤Þ¤¹¡£Í­¸þ¤Î´Ý¤á¤ÏÌð°õ¢­¤È¢¬¤Ë¤è¤êµ­¹æ²½¤µ¤ì¤Þ¤¹¡£¤³¤Î¤¿¤á¡¢¾®¿ô 5 ·å¤Î»»½Ñ¤ò»È¤¦¾ì¹ç¡¢¢¬ 2.00001 = 2.0001 ¤Î¤è¤¦¤Ë¤Ê¤ê¤Þ¤¹¡£Í­¸þ¤Î´Ý¤á¤Ï¡¢¥³¥ó¥Ô¥å¡¼¥¿¾å¤ÇÊñ´Þ¤ÎÀ©Ìó¤Ë°ãÈ¿¤¹¤ë¤³¤È¤¬¤Ê¤¤¤è¤¦¡¢¶è´Ö»»½Ñ¤Î¼ÂÁõ¤Ç»ÈÍѤ·¤Þ¤¹¡£
ÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô
(read-only variable)
ÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¤Ïɸ½à Fortran ¤ÇÄêµÁºÑ¤ß¤Î¹½À®³µÇ°¤Ç¤Ï¤¢¤ê¤Þ¤»¤ó¡£¤·¤«¤·¡¢¤½¤ì¤Ç¤âÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¤Ï°ìÅÙ½é´ü²½¤µ¤ì¤¿¸å¤ÏÊѹ¹¤Ç¤­¤Ê¤¯¤Ê¤ê¤Þ¤¹¡£¶è´Ö¥µ¥Ý¡¼¥È¤Î¤Ê¤¤É¸½à Fortran ¤Ç¤Ï¡¢Ì¾Á°ÉÕ¤­Äê¿ô¤ÈÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¤ò¶èÊ̤¹¤ëɬÍפ¬¤¢¤ê¤Þ¤»¤ó¡£¤·¤«¤·¡¢ºÇÂçÉýÍ׵ἰ½èÍý¤ÏÄê¿ô¤Î³°ÉôÃͤò»È¤¦¤Î¤Ç¡¢ÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¤È̾Á°ÉÕ¤­Äê¿ô¤ò¶èÊ̤·¤Ê¤±¤ì¤Ð¤Ê¤ê¤Þ¤»¤ó¡£f95 ¤Î¼ÂÁõ¤Ç¤Ï¡¢PARAMETER Àë¸À¤ÎÃæ¤Ç½é´ü²½¤µ¤ì¤ëµ­¹æÌ¾¤ÏÆÉ¤ß¼è¤êÀìÍÑÊÑ¿ô¤È¤Ê¤ê¤Þ¤¹¡£
¥ê¥Æ¥é¥ëÄê¿ô
(literal constant)
f95 ¤Ç¤Ï¡¢¶è´Ö¥ê¥Æ¥é¥ëÄê¿ô¤Ï¡¢Äê¿ô¤Î³°ÉôÃͤòÄêµÁ¤¹¤ë¤¿¤á¤Ë»ÈÍѤµ¤ì¤ëʸ»úÎó¤Ç¤¹¡£
¥ê¥Æ¥é¥ëÄê¿ô¤Î³°ÉôÃÍ
(literal constant's external value)
f95 ¤Ç¤Ï¡¢¥ê¥Æ¥é¥ëÄê¿ô¤Î³°ÉôÃͤÏÄê¿ô¤Îʸ»úÎó¤Ë¤è¤êÄêµÁ¤µ¤ì¤¿¿ô³Ø¾å¤ÎÃͤǤ¹¡£³°ÉôÃÍ (external value)¤â»²¾È¤·¤Æ¤¯¤À¤µ¤¤¡£
¥ê¥Æ¥é¥ëÄê¿ô¤ÎÆâÉôŪ¤Ê¶á»÷ÃÍ
(literal constant's internal approximation)
f95¤Ç¤Ï¡¢ÆâÉôŪ¤Ê¥ê¥Æ¥é¥ëÄê¿ô¤ÎÆâÉôŪ¶á»÷Ãͤϡ¢Äê¿ô¤Î³°ÉôÃͤò´Þ¤à±Ô¤¤¥Þ¥·¥óɽ¸½²Äǽ¤Ê¶è´Ö¤Ç¤¹¡£
Îã³° (exception)
IEEE754 ÉâÆ°¾®¿ôÅÀɸ½à¤Ç¤Ï¡¢¥¼¥í¤Ë¤è¤ë½ü»»¤Î¤è¤¦¤Ê̤ÄêµÁ¤Î±é»»¤ò¼Â¹Ô¤·¤è¤¦¤È¤¹¤ë¤È¡¢Îã³°¤¬È¯À¸¤·¤Þ¤¹¡£
Ï¢·ë½¸¹ç
(connected set)
2 ¤Ä¤ÎÃͤò´Þ¤à¡¢2 ¤Ä¤ÎÃʹ֤οô¤ÎÏ¢·ë½¸¹ç a £ b ¤Ï¡¢a ¤È b ¤ò´Þ¤à a¡¢b ´Ö¤Î¤¹¤Ù¤Æ¤ÎÃͤò´Þ¤ß¤Þ¤¹¡£

¥µ¥ó¡¦¥Þ¥¤¥¯¥í¥·¥¹¥Æ¥à¥º³ô¼°²ñ¼Ò
Copyright information. All rights reserved.
¥Û¡¼¥à   |   Ìܼ¡   |   Á°¥Ú¡¼¥¸¤Ø   |   ¼¡¥Ú¡¼¥¸¤Ø   |   º÷°ú