|
Oracle Fusion Middleware Java API Reference for Oracle Real-Time Decisions 11g Release 1 (11.1.1) E17787-02 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||
public interface PredictorInterface
Used by ILS code to query Prediction Models.
| Method Summary | |
|---|---|
void |
flushLearningBuffer()Flushes learning buffers |
int |
getApplicationMappingId() |
void |
getExpectedValues(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, SDDoubleArray values)Returns predicted numeric values for a set of values of partitioning attributes specified by an output filter. |
void |
getExpectedValues(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, SDDoubleArray values, SDDoubleArray standardDeviations)Returns predicted numeric values and their standard deviations for a set of values of partitioning attributes specified by an output filter. |
void |
getLikelihoods(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, SDDoubleArray likelihoods, boolean relaxed)Returns predicted likelihoods for a set of values of target and partitioning attributes specified by an output filter. |
void |
getLikelihoods(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, SDDoubleArray likelihoods, SDDoubleArray standardDeviations, boolean relaxed)Returns predicted likelihoods for a set of values of target and partitioning attributes specified by an output filter. |
int |
getModelCount(ModelInterface model, ValueFilter[] outputFilter, ModelCount modelCount) |
float |
getModelError(ModelInterface model, ValueFilter[] outputFilter, ModelError modelError) |
float |
getModelLift(ModelInterface model, ValueFilter[] outputFilter, ModelLift modelLift) |
float |
getModelQuality(ModelInterface model, ValueFilter[] outputFilter) |
void |
getMostLikelyValues(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, int outputAttributeId, int n, SDStringArray values, SDDoubleArray likelihoods)Returns predicted most likely values of a given attribute. |
java.lang.String |
getStudyName() |
PredictionContribution[][] |
getWhy(ModelInterface model, InputProvider input, ValueFilter[] outputFilter, int topN)Returns a list of attribute values that contribute the most to the model score. |
void |
learn(ModelInterface[] models, InputProvider inputProvider, LearningRecordWriterFactoryInterface learningRecordWriterFactory, long msTimestamp)Supplies learning information to the Prediction Engine. |
void |
learn(ModelInterface[] models, InputProvider inputProvider, long msTimestamp)Supplies learning information to the Prediction Engine. |
void |
learn(ModelInterface[] models, InputProvider inputProvider, SessionInterface session, long msTimestamp)Supplies learning information to the Prediction Engine. |
void |
loadModels()Loads new models if available. |
ValueFilter[] |
makeExplicitFilter(ModelInterface model, ValueFilter[] filter)Creates an explicit representation of a filter by filling in missing values, numeric intervals and missing sub-filters. |
| Method Detail |
|---|
void getLikelihoods(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
SDDoubleArray likelihoods,
boolean relaxed)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.likelihoods - an array of predicted likelihoods.relaxed - if this flag is true, then the model will return a likelihood prediction even if the prediction accuracy is very low. Otherwise, when prediction accuracy is low, the model will return Double.NaN.
void getLikelihoods(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
SDDoubleArray likelihoods,
SDDoubleArray standardDeviations,
boolean relaxed)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.likelihoods - output an array of predicted likelihoods.standardDeviations - output an array of estimated standard deviations of likelihoods.relaxed - if this flag is true, then the model will return a likelihood prediction even if the prediction accuracy is very low. Otherwise, when prediction accuracy is low, the model will return Double.NaN.
PredictionContribution[][] getWhy(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
int topN)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.topN - number of top input score contributions to return.
void getExpectedValues(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
SDDoubleArray values)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.values - an array of predicted expected values.
void getExpectedValues(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
SDDoubleArray values,
SDDoubleArray standardDeviations)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.values - an array of predicted expected values.standardDeviations - an array of predicted standard deviations.
void getMostLikelyValues(ModelInterface model,
InputProvider input,
ValueFilter[] outputFilter,
int outputAttributeId,
int n,
SDStringArray values,
SDDoubleArray likelihoods)
model - a model object in the application.input - an input provider object.outputFilter - a filter specifying what predictions are requested.outputAttributeId - ID of an attribute to return most likely values for.n - a requested number of most likely values.values - an array of returned most likely values.
ValueFilter[] makeExplicitFilter(ModelInterface model,
ValueFilter[] filter)
model - a model object in the application.filter - a filter to make explicit. This object is not changed by the method.
void learn(ModelInterface[] models,
InputProvider inputProvider,
long msTimestamp)
models - an array of models that the learning applies to.inputProvider - an input provider object responsible for providing values of input, partitioning and target attributes except the ones provided by the model object themselves.msTimestamp - timestamp in milliseconds.void flushLearningBuffer()
void loadModels()
java.lang.String getStudyName()
int getApplicationMappingId()
void learn(ModelInterface[] models,
InputProvider inputProvider,
LearningRecordWriterFactoryInterface learningRecordWriterFactory,
long msTimestamp)
models - an array of models that the learning applies to.inputProvider - an input provider object responsible for providing values of input, partitioning and target attributes except the ones provided by the model object themselves.learningRecordWriterFactory - used to write learning records either with autoFlush (for interactive sessions) or with manual flush (for batch sessions).msTimestamp - timestamp in milliseconds.
void learn(ModelInterface[] models,
InputProvider inputProvider,
SessionInterface session,
long msTimestamp)
Called from generated code.
models - an array of models that the learning applies to.inputProvider - an input provider object responsible for providing values of input, partitioning and target attributes except the ones provided by the model object themselves.session - Contains a factory used to write learning records either directly to the learning table (for interactive sessions) or to the batch frameworks learning sandbox (for batch sessions).msTimestamp - timestamp in milliseconds.
int getModelCount(ModelInterface model,
ValueFilter[] outputFilter,
ModelCount modelCount)
ChoiceModelInterface.getChoiceModelCount(ModelCount, String), ChoiceEventModelInterface.getChoiceEventModelCount(ModelCount, String, String)
float getModelQuality(ModelInterface model,
ValueFilter[] outputFilter)
ChoiceModelInterface.getChoiceModelQuality(String), ChoiceEventModelInterface.getChoiceEventModelQuality(String, String)
float getModelLift(ModelInterface model,
ValueFilter[] outputFilter,
ModelLift modelLift)
ChoiceModelInterface.getChoiceModelLift(ModelLift, String), ChoiceEventModelInterface.getChoiceEventModelLift(ModelLift, String, String)
float getModelError(ModelInterface model,
ValueFilter[] outputFilter,
ModelError modelError)
ChoiceModelInterface.getChoiceModelError(ModelError, String), ChoiceEventModelInterface.getChoiceEventModelError(ModelError, String, String)
|
Oracle Fusion Middleware Java API Reference for Oracle Real-Time Decisions 11g Release 1 (11.1.1) E17787-02 |
|||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | |||||||||