Skip Headers
StorageTek Virtual Library Extension Planning Guide

E41530-04
  Go To Table Of Contents
Contents
Go To Index
Index

Previous
Previous
 
Next
Next
 

A VLE Configuration Examples

This appendix contains the following configuration examples (all examples are direct connect, no switch):

"VLE Configuration Examples" shows the VLE GUI screens used for these examples.

VLE GUI Configuration Screens

The following sections describe the VLE GUI configuration screens used to configure the examples in this appendix. For more information on the VLE GUI, see VLE Installation, Configuration, and Service Guide.

Port Card Configuration Tab

Figure A-1 shows the Port Card Configuration tab, which is used in all examples. Assume the default Netmask value and use whatever value you want for the Port's Host Name field. The table for each example provides the IP Address and Check Box (Replication, UUI, Remote) values that correspond to the Interface ID field value.

In Figure A-1:

1 - Currently selected aggregation.

2 - Drag up or down to resize panes.

3 - Drop down selection list of options.

4 - Pool of port interfaces available for aggregations

5 - Interfaces in currently selected aggregation.

6 - Ports greyed out if wrong speed for aggregation.

7 - Move interfaces into and out of aggregations with arrow buttons.

Figure A-1 Port Card Configuration Tab

Surrounding text describes Figure A-1 .

Create New Route/Destination dialog boxes

Figure A-2 and Figure A-3. You use one of these dialog boxes in "Example 3: VLE to VLE Copy".

Figure A-2 Create New Route/Destination dialog box - Remote VLE

Surrounding text describes Figure A-2 .

Figure A-3 Create New Route/Destination dialog box - Remote VLE, Static Route

Surrounding text describes Figure A-3 .

1 - Selection modifies available entry fields

Example 1: One VTSS Connected to One VLE

Figure A-4 Example 1: One VTSS Connected to One VLE

Surrounding text describes Figure A-4 .

As Figure A-4 and Table A-1 show, in this one VTSS to one VLE example, two targets on each IFF card connect to a single port on the VLE, where the IP addresses must match. Note that the third octet of the IP addresses is unique to each IFF card to VLE port connection, so these connections share a unique subnet.

Using two targets on each IFF card optimizes performance, because each target represents a socket, which enables a migrate and a recall to occur simultaneously on the same IFF card. Two targets optimizes performance, there is no performance benefit to assigning more than two targets per IFF card to the same VLE port.

Table A-1 Example 1 Configuration Values

IFF Card and Target

IPIF Value

Interface ID

IP Address

Check Box

Data Connections


IFF0

Target 0

0A:0

igb4

192.168.1.1

Replication

IFF0

Target 1

0A:1

IFF1

Target 0

0I:0

igb8

192.168.2.1

IFF1

Target 1

0I:1

IFF2

Target 0

1A:0

igb16

192.168.4.1

IFF2

Target 1

1A:1

IFF3

Target 0

1I:0

igb12

192.168.3.1

IFF3

Target 1

1I:1

UUI Connections




igb1

192.168.6.1

UUI



igb2

192.168.5.1


Example 2: Four VTSSs Connected to One VLE

Figure A-5 Example 2: Four VTSSs Connected to One VLE

Surrounding text describes Figure A-5 .

As Figure A-5 and Table A-2 show, in this four VTSS to one VLE example, each IFF target to VLE port connection (where the IP addresses must match) is on its own unique subnet, as shown by the different colors for each subnet (UUI connections are shown in blue).

Table A-2 Example 2 Configuration Values

VSM5

IFF Card and Target

IPIF Value

Interface ID

IP Address

Check Box

Data Connections


VTSS1

IFF0

Target 0

0A:0

igb4

192.168.1.1

Replication

IFF1

Target 0

0I:0

igb8

192.168.2.1

IFF2

Target 0

1A:0

igb12

192.168.3.1

IFF3

Target 0

1I:0

igb16

192.168.4.1

VTSS2

IFF0

Target 0

0A:0

igb5

192.168.5.1

IFF1

Target 0

0I:0

igb9

192.168.6.1

IFF2

Target 0

1A:0

igb13

192.168.7.1

IFF3

Target 0

1I:0

igb17

192.168.8.1

VTSS3

IFF0

Target 0

0A:0

igb6

192.168.9.1

IFF1

Target 0

0I:0

igb10

192.168.10.1

IFF2

Target 0

1A:0

igb14

192.168.11.1

IFF3

Target 0

1I:0

igb18

192.168.12.1

VTSS4

IFF0

Target 0

0A:0

igb7

192.168.13.1

IFF1

Target 0

0I:0

igb11

192.168.14.1

IFF2

Target 0

1A:0

igb15

192.168.15.1

IFF3

Target 0

1I:0

igb19

192.168.16.1

UUI Connections





igb1

192.168.17.1

UUI




igb2

192.168.18.1


Example 3: VLE to VLE Copy

Figure A-6 Example 3: VLE to VLE Copy

Surrounding text describes Figure A-6 .

As Figure A-6 and the example values in Table A-3 show, in this two VTSSs to two VLEs, VLE to VLE copy example:

  • Each VTSS is connected to the MVS Host (1) and is cross-connected to each VLE for VTSS to VLE copy (4 are the VTSS to VLE TCP/IP connections and 2 is the 1GigE TCP/IP network).

  • The VLEs are connected to each other through a network that includes the 10 GigE switch (3).

Each VTSS, therefore, can migrate a separate VTV copy to each VLE, which provides a redundancy/high availability solution similar to that provided by Clustered VTSS. The default behavior can be that the second copy is made through VLE to VLE connections. To enforce VTSS to VLE migration for the second copy, use the STORCLAS FROMLST parameter. For more information, see Configuring the Host Software for VLE.

Table A-3 Example 3 Configuration Values

VSM5

IFF Card and Target

IPIF Value

VLE, Interface ID

IP Address

Check Box

VLE to VTSS Data Connections

Replication

VTSS1

IFF0 Target 0

0A:0

VLE1, igb4

192.168.1.1

IFF1 Target 0

0I:0

VLE1, igb8

192.168.2.1

IFF2 Target 0

1A:0

VLE1, igb12

192.168.3.1

IFF3 Target 0

1I:0

VLE1, igb16

192.168.4.1

IFF0 Target 1

0A:1

VLE2, igb4

192.168.5.1

IFF1 Target 1

0I:1

VLE2, igb8

192.168.6.1

IFF2 Target 1

1A:1

VLE2, igb12

192.168.7.1

IFF3 Target 1

1I:1

VLE2, igb16

192.168.8.1

VSM5

IFF Card and Target

IPIF Value

VLE, Interface ID

IP Address

Check Box

VLE to VTSS Data Connections


VTSS2

IFF0

Target 0

0A:0

VLE1, igb5

192.168.9.1

Replication

IFF1

Target 0

0I:0

VLE1, igb9

192.168.10.1

IFF2

Target 0

1A:0

VLE1, igb13

192.168.11.1

IFF3

Target 0

1I:0

VLE1, igb17

192.168.12.1

IFF0

Target 1

0A:1

VLE2, igb5

192.168.13.1

IFF1

Target 1

0I:1

VLE2, igb9

192.168.14.1

IFF2

Target 1

1A:1

VLE2, igb13

192.168.15.1

IFF3

Target 1

1I:1

VLE2, igb17

192.168.16.1

VLE to VLE Data Connections





VLE1, ixgbe1

192.168.17.1

Remote




VLE1, ixgbe3

192.168.18.1




VLE2, ixgbe1

192.168.17.2




VLE2, ixgbe3

192.168.18.2

UUI Connections





VLE1, igb1

192.168.19.1

UUI




VLE1, igb2

192.168.20.1




VLE2, igb1

192.168.21.1




VLE2, igb2

192.168.22.1


Example 4: One VTSS Connected to a 3-Node VLE

Figure A-7 Example 4: One VTSS Connected to a Three-Node VLE

Surrounding text describes Figure A-7 .

As the example values in Table A-4 show, in this one VTSS to a 3-Node VLE example:

  • The 10 GigE switch (5) provides an internal network for data exchange between the nodes that make up VLE1 where 2 - Node 1, 3 - Node 2, and 4 - Node 3.

  • To provide redundancy, nodes 1 and 3 both have IFF/IP connections for data exchange with the VTSS and TCP/IP UUI connections to the Mainframe host.

  • Node 3 is a data repository and has no Mainframe host (1) or VTSS connections.

Table A-4 Example 4 Configuration Values

IFF Card and Target

IPIF Value

VLE Node, Interface ID

IP Address

Check Box

Data Connections

Replication

IFF0

Target 0

0A:0

Node 1, igb4

192.168.1.1

IFF0

Target 1

0A:1

IFF1

Target 0

0I:0

Node 1, igb8

192.168.2.1

IFF1

Target 1

0I:1

IFF2

Target 0

1A:0

Node 3, igb4

192.168.3.1

IFF2

Target 1

1A:1

IFF3

Target 0

1I:0

Node 3, igb8

192.168.4.1

IFF3

Target 1

1I:1

UUI Connections




Node 1, igb1

192.168.5.1

UUI



Node 3, igb2

192.168.6.1