本节列出了 prime_pthr.c 的源代码,如下所示:
1 /*
2 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All Rights Reserved.
3 * @(#)prime_pthr.c 1.4 (Oracle) 10/03/26
4 */
5
6 #include <stdio.h>
7 #include <math.h>
8 #include <pthread.h>
9
10 #define THREADS 4
11 #define N 10000
12
13 int primes[N];
14 int pflag[N];
15 int total = 0;
16
17 int is_prime(int v)
18 {
19 int i;
20 int bound = floor(sqrt(v)) + 1;
21
22 for (i = 2; i < bound; i++) {
23 /* no need to check against known composites */
24 if (!pflag[i])
25 continue;
26 if (v % i == 0) {
27 pflag[v] = 0;
28 return 0;
29 }
30 }
31 return (v > 1);
32 }
33
34 void *work(void *arg)
35 {
36 int start;
37 int end;
38 int i;
39
40 start = (N/THREADS) * (*(int *)arg);
41 end = start + N/THREADS;
42 for (i = start; i < end; i++) {
43 if ( is_prime(i) ) {
44 primes[total] = i;
45 total++;
46 }
47 }
48 return NULL;
49 }
50
51 int main(int argn, char **argv)
52 {
53 int i;
54 pthread_t tids[THREADS-1];
55
56 for (i = 0; i < N; i++) {
57 pflag[i] = 1;
58 }
59
60 for (i = 0; i < THREADS-1; i++) {
61 pthread_create(&tids[i], NULL, work, (void *)&i);
62 }
63
64 i = THREADS-1;
65 work((void *)&i);
66
67 for (i = 0; i < THREADS-1; i++) {
68 pthread_join(tids[i], NULL);
69 }
70
71 printf("Number of prime numbers between 2 and %d: %d\n",
72 N, total);
73
74 return 0;
75 }
当代码包含争用情况时,内存访问的顺序是不确定的,因此每次运行的计算结果会不同。prime_omp 和 prime_pthr 程序中的正确答案为 1229。
通过编译并运行示例可以看出,由于代码中存在数据争用,执行 prime_omp 或 prime_pthr 时都会产生不正确且不一致的结果。
在下面的示例中,在提示符下键入命令以编译并运行 prime_omp 程序:
% cc -xopenmp=noopt -o prime_omp prime_omp.c -lm % % ./prime_omp Number of prime numbers between 2 and 10000: 1229 % ./prime_omp Number of prime numbers between 2 and 10000: 1228 % ./prime_omp Number of prime numbers between 2 and 10000: 1180
在下面的示例中,在提示符处键入命令以编译并运行 prime_pthr 程序:
% cc -mt -o prime_pthr prime_pthr.c -lm % % ./prime_pthr Number of prime numbers between 2 and 10000: 1140 % ./prime_pthr Number of prime numbers between 2 and 10000: 1122 % ./prime_pthr Number of prime numbers between 2 and 10000: 1141
请注意每个程序的三次运行结果的不一致性。可能需要运行这些程序三次以上才能看到不一致的结果。
接下来将会检测代码并创建实验,以便可以找出发生数据争用的位置。