17 一般化線形モデル
線形モデリング用の一般化線形モデル(GLM)統計的手法の使用方法を学習します。
17.1 一般化線形モデルとは
一般化線形モデル(GLM)を紹介します。
GLMには、線形モデルのクラスが含まれ、拡張されています。
線形モデルでは、ターゲット(従属変数y)が予測応答値に関係なく一定分散を持つ予測子の値を条件として正規分布するという、一連の制限が仮定される点が最も重要です。線形モデルおよび線形モデルの制限のメリットは、計算が容易なこと、解釈可能なモデルの形式であること、および適合度の質に関する一定の診断情報を計算できる点にあります。
一般化線形モデルは、実際には違反されることが多いこれらの制限を緩和したものです。たとえば、2値(yes/noまたは0/1)応答は、クラス間で同じ分散を持ちません。さらに、線形モデルでの項の合計は、一般的に、極端にネガティブな値と極端にポジティブな値を包含する非常に大きな範囲をとる場合があります。2値応答の例では、場合によっては、応答が[0,1]の範囲内の確率となるようにする必要があります。
一般化線形モデルでは、リンク関数および分散関数という2つのメカニズムを使用して、線形モデルの仮定に違反する応答に対応しています。リンク関数は、線形モデルの単純な形式を維持できるように、ターゲットの範囲を負の無限大から正の無限大の潜在範囲に変換します。分散関数は、予測応答の1つの関数として分散を表現するため、非一定分散の応答(2値応答など)に対応できます。
Oracle Data Miningは、GLMモデルのファミリのうち最もよく使用されている次の2つのアルゴリズムを備えています。これらのアルゴリズムでは、最もよく使用されているリンク関数および分散関数が使用されます。
-
線形回帰: 恒等リンク関数および分散関数(定数1に等しい: 応答値の範囲に対する一定分散)を使用します。
-
ロジスティック回帰: ロジット・リンク関数および2項分散関数を使用します。
17.2 Oracle Data Mining for SQLのGLM
Oracle Data Mining for SQLで一般化線形モデル(GLM)アルゴリズムがどのように実装されているかを学習します。
GLMはパラメトリックなモデリング手法です。パラメトリック・モデルでは、データの分散を仮定します。仮定が満たされる場合、パラメトリック・モデルはノンパラメトリック・モデルよりも効率的になります。
このタイプのモデルの作成では、どの程度仮定が満たされるかを見極めることが課題となります。このため、良質なパラメトリック・モデルを作成するには質の診断が重要です。
17.2.1 解釈性と透明性
モデル詳細およびグローバル詳細を通じてデータの透明性を解釈および理解する方法を学習します。
Oracle Data Miningの一般化線形モデル(GLM)は解釈が容易です。モデルを作成するたびに、多くの統計情報と診断情報が生成されます。透明性も重要な特徴であり、モデルの詳細によって係数の主要特性が説明され、グローバルな詳細によって高水準の統計情報が提供されます。
関連項目
17.2.3 信頼限界
一般化線形モデル(GLM)アルゴリズムによって信頼限界を予測します。
GLMでは、信頼限界を予測できます。GLMでは、各行の確率(分類のみ)および最良推定値の予測に加え、予測値(回帰)または確率(分類)が収まる区間を特定します。区間の幅は、モデルの精度やユーザーが指定した信頼度に応じて変わります。
信頼度は、モデルによって計算される信頼区間内に実際の値が収まることについてのモデルの確からしさを表す尺度です。一般的には、信頼度95%を使用します。たとえば、従業員の収入を$125,000と予測するモデルの場合、収入は95%の確率で$90,000から$160,000の範囲に収まります。Oracle Data Mining for SQLのデフォルトの信頼度は95%ですが、この値は構成可能です。
ノート:
信頼限界は、係数統計情報とともに戻されます。また、PREDICTION_BOUNDS
SQL関数を使用すると、モデルの予測の信頼限界値を取得できます。
17.2.4 リッジ回帰
データの単一性(正確多重共線性)のためのリッジ回帰の使用を理解します。
最良の回帰モデルは、予測子とターゲットとの相関が高く、予測子同士の相関はほとんどないモデルです。多重共線性は、相関関係にある予測子を使用する多変量回帰を説明するための用語です。
リッジ回帰は、多重共線性を補う手法です。Oracle Data Miningは、回帰および分類の両方のマイニング手法に対してリッジ回帰をサポートしています。アルゴリズムは、データに単一性(正確多重共線性)を検出すると、リッジ回帰を自動的に使用します。
単一性に関する情報は、グローバルなモデルの詳細で戻されます。
17.2.4.1 リッジ回帰の構成
構築設定を通じてリッジ回帰を構成します。
モデルの構築設定を指定すると、リッジ回帰を明示的に有効化できます。リッジ回帰を明示的に有効化する場合、システム生成のリッジ・パラメータを使用するか、独自のパラメータを指定することが可能です。リッジ回帰が自動的に使用される場合、リッジ・パラメータも自動的に計算されます。
構成の選択について次にまとめます。
-
リッジ回帰に関して、アルゴリズムによる自動選択を優先するかどうかを指定します。
-
リッジ・パラメータの値(リッジ回帰を明示的に有効化した場合にのみ使用される)を指定します。
関連項目:
使用可能なモデル設定のリストと解説は、『Oracle Database PL/SQLパッケージおよびタイプ・リファレンス』を参照してください。ノート:
モデル設定と同じ意味でハイパーパラメータという用語も使用されます。17.3 スケーラブルな特徴選択
Oracle Data Miningでは、一般化線形モデルの特徴選択および生成の、高度にスケーラブルで自動化されたバージョンがサポートされます。この機能によって、アルゴリズムのパフォーマンスを向上し、精度と解釈性を改善できます。特徴選択および生成は、線形回帰と2項ロジスティック回帰の両方で使用できます。
17.3.1 特徴選択
特徴選択は、モデルに含まれる用語を選択するプロセスです。モデルに含まれる用語が少ないほど、ユーザーはその意味をより簡単に解釈できます。また、一部の列は、モデルで予測しようとしている値とは関係ないことがあります。このような列を削除すると、モデルの精度を向上できます。
17.3.1.1 特徴選択の構成
特徴選択は、一般化線形モデル用の構築設定です。デフォルトでは無効です。特徴選択用に構成すると、アルゴリズムによって自動的にデフォルトの適切な動作が決定されますが、次の構成オプションも使用できます。
-
特徴選択の基準は、AIC、SBIC、RICまたはα投資のいずれかです。特徴選択の基準がα投資である場合、特徴の許容範囲は厳密または緩和のいずれかです。
-
特徴の最大数を指定できます。
-
特徴は、最終モデルでプルーニングできます。プルーニングは、線形回帰の場合はt統計に、ロジスティック回帰の場合はワルド統計に基づきます。
17.4 GLM用のチューニングと診断
一般化線形モデルの開発のプロセスには、通常は、多数のモデル作成が含まれます。モデルを作成するたびに、モデルの質を判別するために評価できる統計情報が多数生成されます。これらの診断に応じて、モデル設定の変更などを試行できます。
17.4.1 構築設定
一般化線形モデル(GLM)の構築設定を指定します。
構築設定の指定を使用できます。
その他にも、次のような目的で構築設定を使用できます。
-
リッジ回帰の使用を制御します。
-
トレーニング・データ内の欠損値の扱いを指定します。
-
ロジスティック回帰モデルの参照として使用するターゲット値を指定します。
関連項目:
使用可能なモデル設定のリストおよび説明は、DBMS_DATA_MINING - アルゴリズムの設定: 一般化線形モデルを参照してください。ノート:
モデル設定と同じ意味でハイパーパラメータという用語も使用されます。関連項目
17.4.2 診断
一般化線形モデルでは、モデルの質を評価する際に役立つメトリックが多数生成されます。
17.4.2.1 係数統計情報
線形回帰およびロジスティック回帰の係数統計情報について学習します。
線形およびロジスティックの両方の回帰で同じ統計情報のセットが返されますが、データ・マイニング手法に適用されない統計情報はNULLとして返されます。
係数統計情報は、一般化線形モデル(GLM)のモデル詳細ビューによって返されます。
17.4.2.2 グローバルなモデルの統計情報
モデルを説明する高水準の統計情報について学習します。
線形およびロジスティックの両回帰には、モデル全体を説明する高水準の統計情報が個別に戻されます。リッジ回帰が有効な場合、戻されるグローバルな詳細がより少なくなります。
グローバルな統計情報は、一般化線形モデルのモデル詳細ビューによって返されます。
17.5 GLMのソルバー
一般化線形モデル(GLM)アルゴリズムでは、様々なソルバーが適用されます。これらのソルバーは、最適化に様々な方法を採用しています。
GLMアルゴリズムでは、コレスキー、QR、確率的勾配降下(SGD)および(L-BFGSでの)交互方向乗数法(ADMM)の4つの異なるソルバーがサポートされています。コレスキ・ソルバーとQRソルバーは、古典的な分解手法を採用しています。コレスキ・ソルバーは、QRソルバーと比較すると高速ですが、計算の安定性は低下します。QRソルバーは、正則化することなく、よりうまくランク不足の問題を処理します。
SGDおよび(L-BFGSでの) ADMMソルバーは、大規模データに最適です。SGDソルバーは確率的勾配降下最適化アルゴリズムを採用しており、一方、(L-BFGSでの) ADMMは交互方向乗数法フレームワーク内でBFGS最適化アルゴリズムを使用します。SGDソルバーは高速ですが、パラメータに依存するため、適切な収束を実現するには適切なスケールのデータが必要です。L-BFGSアルゴリズムは、制約のない最適化問題を解決し、SGDよりも安定かつ堅牢です。また、L-BFGSはADMMを組み合せて使用するため、通信コストの低い効率的な分散最適化アプローチが実現します。
17.6 GLM用のデータ準備
一般化線形モデル(GLM)アルゴリズム用のデータの準備について学習します。
自動データ準備(ADP)には、線形およびロジスティックの両回帰に適したデータの変換方法が実装されています。
関連項目:
使用可能なモデル設定のリストおよび説明は、DBMS_DATA_MINING - アルゴリズムの設定: 一般化線形モデルを参照してください。ノート:
モデル設定と同じ意味でハイパーパラメータという用語も使用されます。GLMでADPを使用することをお薦めします。
17.6.1 線形回帰用のデータ準備
一般化線形モデル(GLM)アルゴリズムの自動データ準備(ADP)について学習します。
ADPが有効になっている場合は、このアルゴリズムでは、入力データ・プロパティおよびその他の設定に基づいて変換が選択されます。変換には、量的データに対して次の中から1つ以上を含めることができます。平均値の引き算、標準偏差によるスケール化または相関の変換(1990年Neter他)。量的データに対して相関変換が適用される場合、質的属性にも適用されます。
標準化の前に、質的属性はN-1個の列に展開されます(Nは属性のカーディナリティ)。最頻値(mode)は、展開の変換中に省略されます。タイの最頻値が存在する場合、属性値は英数字の昇順でソートされ、リストの最初の値が展開時に除外されます。展開の変換は、ADPが有効化されているかどうかに関係なく発生します。
質的属性のカーディナリティが高い場合、ここで説明した変換(展開の後に標準化)によって、作成データのサイズが増えることがありますが、これは、結果のデータ表現が稠密であるためです。メモリー、ディスク領域および処理に関する要件を下げるには、代替手段を使用します。これらの事情により、VIF統計は注意して使用する必要があります。
関連項目
関連項目:
-
Neter, J.、Wasserman, W.およびKutner, M.H.共著、『Applied Statistical Models』(Richard D.Irwin, Inc.、Burr Ridge、IL、1990)
17.6.2 ロジスティック回帰用のデータ準備
質的属性はN-1個の列に展開されます(Nは属性のカーディナリティ)。最頻値(mode)は、展開の変換中に省略されます。タイの最頻値が存在する場合、属性値は英数字の昇順でソートされ、リストの最初の値が展開時に除外されます。展開の変換は、自動データ準備(ADP)が有効化されているかどうかに関係なく発生します。
ADPが有効な場合、量的属性は標準偏差でスケーリングされます。この変動性の測度は、原点(平均値ではない)に関して属性ごとに標準偏差として計算されます(Marquardt、1980)。
関連項目:
Marquardt, D.W.著、『A Critique of Some Ridge Regression Methods: Comment』(Journal of the American Statistical Association、Vol. 75、No. 369、1980、pp 87-91)
17.6.3 欠損値
Oracle Data Mining for SQLでは、モデルの構築時または適用時に、自動的に、量的属性の欠損値が平均値に、質的属性の欠損値が最頻値に置換されます。
欠損値のデフォルトの処理を無視するように一般化線形モデル・アルゴリズムを構成できます。ODMS_MISSING_VALUE_TREATMENT
設定を使用すると、欠損値が含まれるトレーニング・データ内の行を、平均値や最頻値に置換するのではなく、アルゴリズムによって削除するように設定できます。ただし、モデルの適用時には、Oracle Data Miningは通常の平均値/最頻値による欠損値置換を実行します。そのため、スコアリングによって生成された統計情報が、モデルの作成によって生成された統計情報と一致しないことがあります。
モデルのスコアリングにおいて欠損値を持つ行を削除する場合、変換の明示的な実行が必要です。作成時と適用時の統計情報を一致させるには、適用操作を実行する前に、NULLが含まれる行をスコアリング・データから削除する必要があります。これは、ビューを作成して実行します。
CREATE VIEWviewname
AS SELECT * fromtablename
WHEREcolumn_name1
is NOT NULL ANDcolumn_name2
is NOT NULL ANDcolumn_name3
is NOT NULL .....
ノート:
Oracle Data Miningでは、ネストしたデータの欠損値は、ランダムに欠損している値ではなく、スパース性を示します。
値ODMS_MISSING_VALUE_DELETE_ROW
は、ネストした列を含まない表でのみ有効です。ネストしたデータでこの値を使用すると、例外が発生します。
17.7 線形回帰
線形回帰は、Oracle Data Miningでサポートされている一般化線形モデルの回帰アルゴリズムです。このアルゴリズムでは、ターゲット値の範囲に対する一定分散およびターゲット変換を想定していません。
17.7.1 線形回帰の係数統計情報
一般化線形モデルの回帰モデルでは、次に示す係数統計情報が生成されます。
-
線形係数推定値
-
係数推定値の標準誤差
-
係数推定値のt値
-
t値の確率
-
分散拡大係数(VIF)
-
係数の標準化推定値
-
係数の信頼限界値の下限および上限
17.7.2 線形回帰のグローバルなモデルの統計情報
一般化線形モデルの回帰モデルでは、モデル全体を説明する、次に示す統計情報が生成されます。
-
モデルの自由度。
-
モデルの平方和。
-
モデル平均平方
-
モデルF統計
-
モデルのF値の確率。
-
誤差の自由度。
-
誤差の平方和。
-
誤差平均平方
-
修正された総自由度。
-
修正された総平方和。
-
2乗平均平方根誤差。
-
依存平均
-
変動の係数
-
R2乗
-
調整済R2乗
-
赤池情報量基準
-
Schwarzのベイズ情報量基準
-
予測の推定平均平方誤差
-
HockingのSp統計
-
JP統計(最終予測誤差)。
-
パラメータ数(切片を含む係数の数)。
-
行数
-
モデルが収束したかどうか
-
共分散行列が計算されたかどうか
17.7.3 線形回帰の行の診断情報
線形回帰の場合、診断表には、次の表で説明する列があります。列はすべてNUMBER
ですが、CASE_ID
列のみ、トレーニング・データの型を保持します。
表17-1 GLM回帰モデルの診断表
列 | 説明 |
---|---|
|
ケースID列の値 |
|
ターゲット列の値 |
|
ターゲットについてモデルにより予測された値 |
|
ハット行列の対角要素の値 |
|
誤差の測度 |
|
残差の標準誤差 |
|
スチューデント化された残差 |
|
予測残差 |
|
Cookの距離影響統計 |
17.8 ロジスティック回帰
17.8.2 クラスの重み
構築設定CLAS_WEIGHTS_TABLE_NAME
を使用すると、クラスの重み表の名前を指定できます。クラスの重みは、モデルの作成時にターゲット・クラスの重み付けに影響します。
17.8.3 ロジスティック回帰の係数統計情報
一般化線形モデルの分類モデルでは、次に示す係数統計情報が生成されます。
-
予測子の名前
-
係数推定値
-
係数推定値の標準誤差
-
係数推定値のワルドのカイ2乗値
-
ワルドのカイ2乗値の確率
-
係数の標準化推定値
-
係数の信頼限界値の下限および上限
-
指数係数
-
係数の信頼限界値の上限および下限に対する指数係数
17.8.4 ロジスティック回帰のグローバルなモデルの統計情報
一般化分類モデルの回帰モデルでは、モデル全体を説明する、次に示す統計情報が生成されます。
-
切片のみのモデルの適合度に関する赤池の基準。
-
切片および共変量(予測子)モデルの適合度に関する赤池の基準
-
切片のみのモデルの適合度に関するSchwarzの基準
-
切片および共変量(予測子)モデルの適合度に関するSchwarzの基準
-
切片のみのモデルの-2対数尤度。
-
モデルの-2対数尤度。
-
尤度比の自由度。
-
尤度比のカイ二乗確率値。
-
擬似R2乗(CoxおよびSnell)
-
擬似R2乗(Nagelkerke)
-
依存平均
-
正確な予測の割合。
-
不正確な予測の割合
-
タイの(2つのケースの確率が等しい)割合
-
パラメータ数(切片を含む係数の数)。
-
行数
-
モデルが収束したかどうか
-
共分散行列が計算されたかどうか
17.8.5 ロジスティック回帰の行の診断情報
ロジスティック回帰の場合、診断表には、次の表で説明する列があります。列はすべてNUMBER
ですが、CASE_ID
列およびTARGET_VALUE
列のみ、トレーニング・データの型を保持します。
表17-2 ロジスティック回帰の行の診断表
列 | 説明 |
---|---|
|
ケースID列の値 |
|
ターゲット値の値 |
|
ターゲット値に関連付けられている確率 |
|
ハット行列の対角要素の値 |
|
調整済従属変数に関する残差 |
|
ターゲットの推定標準偏差によってスケーリングされた生の残差 |
|
モデルの全体的な適合度に対する寄与率 |
|
信頼区間の変位診断 |
|
信頼区間の変位診断 |
|
特定の観測値を削除したことによる逸脱度の変化 |
|
ピアソンのカイ2乗の変化 |