CLUSTER_ID

構文

cluster_id::=

分析構文

cluster_id_analytic::=

mining_attribute_clause::=

mining_analytic_clause::=

関連項目:

mining_analytic_clauseの構文、セマンティクスおよび制限事項の詳細は、分析ファンクションを参照してください。

目的

CLUSTER_IDは、選択内に含まれる各行の最も高確率のクラスタの識別子(ID)を返します。このクラスタIDは、Oracle NUMBERとして返されます。

構文の選択

CLUSTER_IDは、2つの方法のどちらかでデータにスコアを付けます。1つの方法では、データにマイニング・モデル・オブジェクトを適用します。もう1つの方法では、1つ以上の一時マイニング・モデルを作成して適用する分析句を実行して動的にデータをマイニングします。構文または分析構文を選択します。

  • 構文 — 事前に定義されたモデルでデータにスコアを付ける場合は、最初の構文を使用します。クラスタリング・モデルの名前を指定します。

  • 分析構文 — 事前定義されたモデルなしで、データにスコアを付ける場合は、分析構文を使用します。INTO n (nは、計算するクラスタの数)と、mining_analytic_clause (複数のモデル構築のためにデータをパーティション化する必要がある場合に指定します)を含めます。mining_analytic_clauseは、query_partition_clauseorder_by_clauseをサポートします。(「analytic_clause::=」を参照。)

CLUSTER_IDファンクションの構文では、パーティション化されたモデルをスコアリングするときに、オプションのGROUPINGヒントを使用できます。「GROUPINGヒント」を参照してください。

mining_attribute_clause

mining_attribute_clauseは、スコアの予測子として使用する列の属性を特定します。このファンクションが分析構文で起動された場合は、これらの予測子が一時モデルの構築にも使用されます。mining_attribute_clauseは、PREDICTIONファンクションと同様に動作します。(mining_attribute_clause::=を参照。)

関連項目:

ノート:

次に示す例は、Data Miningのサンプル・プログラムからの抜粋です。サンプル・プログラムの詳細は、Oracle Data Miningユーザーズ・ガイドの「付録A」を参照してください。

次の例では、mining_data_apply_v内の顧客がグループ化されているクラスタを一覧表示します。

SELECT CLUSTER_ID(km_sh_clus_sample USING *) AS clus, COUNT(*) AS cnt 
  FROM mining_data_apply_v
  GROUP BY CLUSTER_ID(km_sh_clus_sample USING *)
  ORDER BY cnt DESC;

      CLUS        CNT
---------- ----------
         2        580
        10        216
         6        186
         8        115
        19        110
        12        101
        18         81
        16         39
        17         38
        14         34

分析の例

この例では、共通の特徴に基づいて、顧客のデータベースを4つのセグメントに分割します。このクラスタリングのファンクションは、事前に定義されたクラスタリング・モデルなしでクラスタを計算してスコアを返します。

SELECT * FROM (
     SELECT cust_id,
          CLUSTER_ID(INTO 4 USING *) OVER () cls,
          CLUSTER_DETAILS(INTO 4 USING *) OVER () cls_details
     FROM mining_data_apply_v)
WHERE cust_id <= 100003
ORDER BY 1; 
 
CUST_ID CLS CLS_DETAILS
------- --- -----------------------------------------------------------------------------
 100001   5 <Details algorithm="K-Means Clustering" cluster="5">
            <Attribute name="FLAT_PANEL_MONITOR" actualValue="0" weight=".349" rank="1"/>
            <Attribute name="BULK_PACK_DISKETTES" actualValue="0" weight=".33" rank="2"/>
            <Attribute name="CUST_INCOME_LEVEL" actualValue="G: 130\,000 - 149\,999"
               weight=".291" rank="3"/>
            <Attribute name="HOME_THEATER_PACKAGE" actualValue="1" weight=".268" rank="4"/>
            <Attribute name="Y_BOX_GAMES" actualValue="0" weight=".179" rank="5"/>
            </Details>

 100002   6 <Details algorithm="K-Means Clustering" cluster="6">
            <Attribute name="CUST_GENDER" actualValue="F" weight=".945" rank="1"/>
            <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".856" rank="2"/>
            <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".468" rank="3"/>
            <Attribute name="AFFINITY_CARD" actualValue="0" weight=".012" rank="4"/>
            <Attribute name="CUST_INCOME_LEVEL" actualValue="L: 300\,000 and above" 
               weight=".009" rank="5"/>
            </Details>
 
 100003   7 <Details algorithm="K-Means Clustering" cluster="7">
            <Attribute name="CUST_MARITAL_STATUS" actualValue="NeverM" weight=".862" rank="1"/>
            <Attribute name="HOUSEHOLD_SIZE" actualValue="2" weight=".423" rank="2"/>
            <Attribute name="HOME_THEATER_PACKAGE" actualValue="0" weight=".113" rank="3"/>
            <Attribute name="AFFINITY_CARD" actualValue="0" weight=".007" rank="4"/>
            <Attribute name="CUST_ID" actualValue="100003" weight=".006" rank="5"/>
            </Details>