Package | Description |
---|---|
oracle.pgx.api |
This package contains the main Java APIs.
|
Modifier and Type | Method and Description |
---|---|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
double learningRate,
double changePerStep,
double lambda,
int maxStep,
int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
double learningRate,
double changePerStep,
double lambda,
int maxStep,
int vectorLength,
VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
Modifier and Type | Method and Description |
---|---|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
double learningRate,
double changePerStep,
double lambda,
int maxStep,
int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
double learningRate,
double changePerStep,
double lambda,
int maxStep,
int vectorLength,
VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph,
EdgeProperty<java.lang.Double> weight,
VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
Copyright © 2015 - 2020 Oracle and/or its affiliates. All Rights Reserved.