34.1 データ要件
Oracle Machine Learningのデータの保存方法と表示方法について説明します。
機械学習の操作には、1つの表またはビュー内で定義されたデータが必要です。各レコードの情報は別個の行に格納する必要があります。このデータ・レコードは一般的にケースと呼ばれます。各ケースは、必要に応じて一意のケースIDで識別されます。表またはビュー自体は、ケース表と呼ばれます。
機械学習に使用できる表の一例として、SHスキーマのCUSTOMERS表が挙げられます。各顧客のすべての情報は、1つの行に格納されています。CUST_ID列にケースIDが格納されます。次の例に示されている行は、SH.CUSTOMERSから選択されています。
ノート:
Oracle Machine Learningには、すべての種類のモデルに単一レコード・ケースのデータが必要です。ただし、ネイティブ・トランザクショナル・データで構築できる相関モデルを除きます。
例34-1 ケース表の例
SQL> select cust_id, cust_gender, cust_year_of_birth,
cust_main_phone_number from sh.customers where cust_id < 11;
CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1 M 1946 127-379-8954
2 F 1957 680-327-1419
3 M 1939 115-509-3391
4 M 1934 577-104-2792
5 M 1969 563-667-7731
6 F 1925 682-732-7260
7 F 1986 648-272-6181
8 F 1964 234-693-8728
9 F 1936 697-702-2618
10 F 1947 601-207-4099関連トピック
34.1.1 列のデータ型
ケース表の列データの様々なタイプについて理解します。
ケース表の列には、各ケースを説明する属性が含まれます。例34-1で、属性はCUST_GENDER、CUST_YEAR_OF_BIRTHおよびCUST_MAIN_PHONE_NUMBERです。属性は、教師ありモデルの予測子または教師なしモデルの記述子です。ケースIDのCUST_IDは、特別な属性として表示できます(これは予測子または記述子ではありません)。
OML4SQLは、標準のOracleデータ型と次のコレクション型をサポートしています。
DM_NESTED_CATEGORICALSDM_NESTED_NUMERICALSDM_NESTED_BINARY_DOUBLESDM_NESTED_BINARY_FLOATS
34.1.3 スコアリング要件
Oracle Machine Learning for SQLでのスコアリングの実行方法を学習します。
ほとんどの機械学習のモデルは、スコアリングというプロセスで別個のデータに適用できます。Oracle Machine Learning for SQLは、分類、回帰、異常検出、クラスタリングおよび特徴抽出のスコアリング操作をサポートします。
スコアリング・プロセスでは、スコアリング・データ内の列名と、モデルの作成に使用された列の名前とがマッチングされます。スコアリング・プロセスでは、スコアリング・データ内にすべての列が存在している必要はありません。データ型が一致しない場合、OML4SQLでは型の強制が試行されます。たとえば、PRODUCT_RATINGという列がトレーニング・データ内ではVARCHAR2型であり、スコアリング・データ内ではNUMBER型である場合、OML4SQLは実質的にTO_CHAR()関数を適用することで型を変換します。
テスト・データまたはスコアリング・データ内の列には、作成データ内の対応する列と同じ変換を行う必要があります。たとえば、作成データ内のAGE列が数値から値CHILD、ADULTおよびSENIORに変換された場合、スコアリング・データ内のAGE列にも同じ変換を実行して、モデルが適切に評価できるようにする必要があります。
ノート:
OML4SQLでは、ユーザー指定の変換指示をモデルに埋め込んで、その指示をモデルの適用時に再適用できます。変換指示がモデルに組み込まれているときは、テスト・データセットまたはスコアリング・データセットに対してその変換指示を指定する必要はありません。
OML4SQLは、自動データ準備(ADP)もサポートしています。ADPを有効にすると、アルゴリズムで必要とされる変換が自動的に実行され、ユーザーが指定した変換とともにモデル内に組み込まれます。
関連項目:
自動データ変換と組込みのデータ変換の詳細は、「自動データ準備」および「モデルへの変換の組込み」を参照してください