Package | Description |
---|---|
oracle.pgx.api |
This package contains the main Java APIs.
|
Modifier and Type | Method and Description |
---|---|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> MatrixFactorizationModel<ID> |
Analyst.matrixFactorizationGradientDescent(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
Modifier and Type | Method and Description |
---|---|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, double learningRate, double changePerStep, double lambda, int maxStep, int vectorLength, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
<ID> PgxFuture<MatrixFactorizationModel<ID>> |
Analyst.matrixFactorizationGradientDescentAsync(BipartiteGraph graph, EdgeProperty<java.lang.Double> weight, VertexProperty<ID,PgxVect<java.lang.Double>> features)
Matrix factorization can be used as a recommendation algorithm for bipartite graphs
|
Copyright © 2010, 2020 Oracle and/or its affiliates. All Rights Reserved.