public class UnsupervisedGraphWiseModelConfig extends GraphWiseModelConfig
UnsupervisedGraphWiseModel
. See UnsupervisedGraphWiseModel
for a description of the hyperparameters.Modifier and Type | Class and Description |
---|---|
static class |
UnsupervisedGraphWiseModelConfig.LossFunction |
GraphWiseModelConfig.GraphConvModelVariant
GraphWiseBaseModelConfig.Backend
Modifier and Type | Field and Description |
---|---|
static GraphWiseDgiLayerConfig |
DEFAULT_DGI_LAYER_CONFIG
one default initialized config (See
GraphWisePredictionLayerConfig ) |
static UnsupervisedGraphWiseModelConfig.LossFunction |
DEFAULT_LOSS_FUNCTION
|
DEFAULT_MODE
DEFAULT_BACKEND, DEFAULT_BATCH_SIZE, DEFAULT_CONV_LAYER_CONFIGS, DEFAULT_EMBEDDING_DIM, DEFAULT_LEARNING_RATE, DEFAULT_NUM_EPOCHS, DEFAULT_SEED, DEFAULT_SHUFFLE, DEFAULT_STANDARDIZE, DEFAULT_WEIGHT_DECAY, SUPPORTED_INPUT_TYPES
Constructor and Description |
---|
UnsupervisedGraphWiseModelConfig() |
UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant) |
UnsupervisedGraphWiseModelConfig(UnsupervisedGraphWiseModelConfig source) |
Modifier and Type | Method and Description |
---|---|
GraphWiseDgiLayerConfig |
getDgiLayerConfig() |
UnsupervisedGraphWiseModelConfig.LossFunction |
getLossFunction() |
boolean |
isRegression() |
void |
setDgiLayerConfig(GraphWiseDgiLayerConfig dgiLayerConfig) |
void |
setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction lossFunction) |
getTargetVertexLabelSets, getVariant, setTargetVertexLabels, setTargetVertexLabelSets, setVariant
getBackend, getBatchSize, getConvLayerConfigs, getEdgeInputFeatureDim, getEdgeInputPropertyNames, getEmbeddingDim, getInputFeatureDim, getLearningRate, getNumEpochs, getSeed, getTrainingLoss, getVertexInputPropertyNames, getWeightDecay, isFitted, isShuffle, isStandardize, setBatchSize, setConvLayerConfigs, setEdgeInputFeatureDim, setEdgeInputPropertyNames, setEmbeddingDim, setFitted, setInputFeatureDim, setLearningRate, setNumEpochs, setSeed, setShuffle, setStandardize, setTrainingLoss, setVertexInputPropertyNames, setWeightDecay
public static final GraphWiseDgiLayerConfig DEFAULT_DGI_LAYER_CONFIG
GraphWisePredictionLayerConfig
)public static final UnsupervisedGraphWiseModelConfig.LossFunction DEFAULT_LOSS_FUNCTION
public UnsupervisedGraphWiseModelConfig()
public UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant)
public UnsupervisedGraphWiseModelConfig(UnsupervisedGraphWiseModelConfig source)
public GraphWiseDgiLayerConfig getDgiLayerConfig()
public UnsupervisedGraphWiseModelConfig.LossFunction getLossFunction()
public boolean isRegression()
public final void setDgiLayerConfig(GraphWiseDgiLayerConfig dgiLayerConfig)
public final void setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction lossFunction)