public class UnsupervisedGraphWiseModelConfig extends GraphWiseModelConfig
UnsupervisedGraphWiseModel. See UnsupervisedGraphWiseModel for a description of the hyperparameters.| Modifier and Type | Class and Description |
|---|---|
static class |
UnsupervisedGraphWiseModelConfig.LossFunction |
GraphWiseModelConfig.GraphConvModelVariantGraphWiseBaseModelConfig.Backend| Modifier and Type | Field and Description |
|---|---|
static GraphWiseDgiLayerConfig |
DEFAULT_DGI_LAYER_CONFIG
one default initialized config (See
GraphWisePredictionLayerConfig) |
static UnsupervisedGraphWiseModelConfig.LossFunction |
DEFAULT_LOSS_FUNCTION
|
DEFAULT_MODEDEFAULT_BACKEND, DEFAULT_BATCH_SIZE, DEFAULT_CONV_LAYER_CONFIGS, DEFAULT_EMBEDDING_DIM, DEFAULT_LEARNING_RATE, DEFAULT_NUM_EPOCHS, DEFAULT_SEED, DEFAULT_SHUFFLE, DEFAULT_STANDARDIZE, DEFAULT_WEIGHT_DECAY, SUPPORTED_INPUT_TYPES| Constructor and Description |
|---|
UnsupervisedGraphWiseModelConfig() |
UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant) |
UnsupervisedGraphWiseModelConfig(UnsupervisedGraphWiseModelConfig source) |
| Modifier and Type | Method and Description |
|---|---|
GraphWiseDgiLayerConfig |
getDgiLayerConfig() |
UnsupervisedGraphWiseModelConfig.LossFunction |
getLossFunction() |
boolean |
isRegression() |
void |
setDgiLayerConfig(GraphWiseDgiLayerConfig dgiLayerConfig) |
void |
setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction lossFunction) |
getTargetVertexLabelSets, getVariant, setTargetVertexLabels, setTargetVertexLabelSets, setVariantgetBackend, getBatchSize, getConvLayerConfigs, getEdgeInputFeatureDim, getEdgeInputPropertyNames, getEmbeddingDim, getInputFeatureDim, getLearningRate, getNumEpochs, getSeed, getTrainingLoss, getVertexInputPropertyNames, getWeightDecay, isFitted, isShuffle, isStandardize, setBatchSize, setConvLayerConfigs, setEdgeInputFeatureDim, setEdgeInputPropertyNames, setEmbeddingDim, setFitted, setInputFeatureDim, setLearningRate, setNumEpochs, setSeed, setShuffle, setStandardize, setTrainingLoss, setVertexInputPropertyNames, setWeightDecaypublic static final GraphWiseDgiLayerConfig DEFAULT_DGI_LAYER_CONFIG
GraphWisePredictionLayerConfig)public static final UnsupervisedGraphWiseModelConfig.LossFunction DEFAULT_LOSS_FUNCTION
public UnsupervisedGraphWiseModelConfig()
public UnsupervisedGraphWiseModelConfig(int batchSize,
int numEpochs,
double learningRate,
double weightDecay,
int embeddingDim,
java.lang.Integer seed,
GraphWiseConvLayerConfig[] convLayerConfigs,
boolean standardize,
boolean shuffle,
java.util.List<java.lang.String> vertexInputPropertyNames,
java.util.List<java.lang.String> edgeInputPropertyNames,
java.util.List<java.util.Set<java.lang.String>> targetVertexLabels,
boolean fitted,
double trainingLoss,
int inputFeatureDim,
int inputEdgeFeatureDim,
UnsupervisedGraphWiseModelConfig.LossFunction lossFunction,
GraphWiseDgiLayerConfig dgiLayerConfig,
GraphWiseBaseModelConfig.Backend backend,
GraphWiseModelConfig.GraphConvModelVariant variant)public UnsupervisedGraphWiseModelConfig(UnsupervisedGraphWiseModelConfig source)
public GraphWiseDgiLayerConfig getDgiLayerConfig()
public UnsupervisedGraphWiseModelConfig.LossFunction getLossFunction()
public boolean isRegression()
public final void setDgiLayerConfig(GraphWiseDgiLayerConfig dgiLayerConfig)
public final void setLossFunction(UnsupervisedGraphWiseModelConfig.LossFunction lossFunction)