public class SupervisedEdgeWiseModel extends EdgeWiseModel<SupervisedEdgeWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedEdgeWiseModelMetadata,SupervisedEdgeWiseModel>
SupervisedEdgeWiseModelBuilder for documentation of the hyperparameters.| Modifier and Type | Class and Description |
|---|---|
static class |
SupervisedEdgeWiseModel.SupervisedEdgeWiseInferenceType |
| Modifier and Type | Field and Description |
|---|---|
static java.lang.String |
ALGORITHM_NAME |
| Constructor and Description |
|---|
SupervisedEdgeWiseModel(PgxSession session,
oracle.pgx.api.internal.Core core,
java.util.function.Supplier<java.lang.String> keystorePathSupplier,
java.util.function.Supplier<char[]> keystorePasswordSupplier,
java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor,
oracle.pgx.api.internal.mllib.ModelMetadata modelMetadata) |
SupervisedEdgeWiseModel(PgxSession session,
oracle.pgx.api.internal.Core core,
java.util.function.Supplier<java.lang.String> keystorePathSupplier,
java.util.function.Supplier<char[]> keystorePasswordSupplier,
java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor,
oracle.pgx.api.internal.mllib.SupervisedEdgeWiseModelMetadata modelMetadata)
This constructor should never be used to get a model.
|
| Modifier and Type | Method and Description |
|---|---|
PgxFrame |
evaluate(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Blocking version of
evaluateAsync(PgxGraph, Iterable). |
PgxFrame |
evaluate(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Blocking version of
evaluateAsync(PgxGraph, Iterable, float). |
PgxFuture<PgxFrame> |
evaluateAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Evaluates performance statistics for the specified edges.
|
PgxFuture<PgxFrame> |
evaluateAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Evaluates performance statistics for the specified vertices.
|
PgxFrame |
evaluateLabels(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Blocking version of
evaluateLabelsAsync(PgxGraph, Iterable). |
PgxFrame |
evaluateLabels(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Blocking version of
evaluateLabelsAsync(PgxGraph, Iterable, float). |
PgxFuture<PgxFrame> |
evaluateLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Evaluates (macro averaged) classification performance statistics for the specified edges.
|
PgxFuture<PgxFrame> |
evaluateLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Evaluates (macro averaged) classification performance statistics for the specified vertices.
|
PgxFuture<java.lang.Double> |
fitAsync(PgxGraph graph)
Trains the EdgeWise model on the input graph.
|
java.util.Map<?,java.lang.Float> |
getClassWeights()
Gets the class weights
|
java.lang.String |
getEdgeTargetPropertyName()
Gets the edge target property name
|
LossFunction |
getLossFunctionClass()
Gets the loss function
|
GraphWisePredictionLayerConfig[] |
getPredictionLayerConfigs()
Gets the configuration objects for the prediction layers
|
java.util.List<java.util.Set<java.lang.String>> |
getTargetEdgeLabels()
Gets the target vertex labels
|
PgxFrame |
infer(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Blocking version of
inferAsync(PgxGraph, Iterable). |
PgxFrame |
infer(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Blocking version of
inferAsync(PgxGraph, Iterable, float). |
PgxFuture<PgxFrame> |
inferAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Does inference for the specified edges.
|
PgxFuture<PgxFrame> |
inferAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Does the inference for the specified edges.
|
PgxFuture<PgxFrame> |
inferEmbeddingsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Infers the embeddings for the specified edges.
|
PgxFrame |
inferLabels(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Blocking version of
inferLabelsAsync(PgxGraph, Iterable). |
PgxFrame |
inferLabels(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Blocking version of
inferLabelsAsync(PgxGraph, Iterable, float). |
PgxFuture<PgxFrame> |
inferLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Infers the labels for the specified edges.
|
PgxFuture<PgxFrame> |
inferLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges,
float threshold)
Infers the labels for the specified edges.
|
PgxFrame |
inferLogits(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Blocking version of
inferLogitsAsync(PgxGraph, Iterable). |
PgxFuture<PgxFrame> |
inferLogitsAsync(PgxGraph graph,
java.lang.Iterable<PgxEdge> edges)
Infers the prediction logits for the specified edges.
|
void |
store(java.lang.String path,
java.lang.String key)
Blocking version of
storeAsync(String, String). |
void |
store(java.lang.String path,
java.lang.String key,
boolean overwrite)
Blocking version of
storeAsync(String, String). |
PgxFuture<java.lang.Void> |
storeAsync(java.lang.String path,
java.lang.String key)
Stores the GraphWise model in the specified path, with encryption.
|
PgxFuture<java.lang.Void> |
storeAsync(java.lang.String path,
java.lang.String key,
boolean overwrite)
Stores the GraphWise model in the specified path, with encryption.
|
destroy, destroyAsync, fit, getBatchSize, getConfig, getConvLayerConfigs, getEdgeCombinationMethod, getEdgeInputFeatureDim, getEdgeInputPropertyNames, getEmbeddingDim, getInputFeatureDim, getLearningRate, getNumEpochs, getSeed, getTrainingLoss, getVertexInputPropertyNames, inferEmbeddings, isFittedpublic static final java.lang.String ALGORITHM_NAME
public SupervisedEdgeWiseModel(PgxSession session, oracle.pgx.api.internal.Core core, java.util.function.Supplier<java.lang.String> keystorePathSupplier, java.util.function.Supplier<char[]> keystorePasswordSupplier, java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor, oracle.pgx.api.internal.mllib.ModelMetadata modelMetadata)
public SupervisedEdgeWiseModel(PgxSession session, oracle.pgx.api.internal.Core core, java.util.function.Supplier<java.lang.String> keystorePathSupplier, java.util.function.Supplier<char[]> keystorePasswordSupplier, java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor, oracle.pgx.api.internal.mllib.SupervisedEdgeWiseModelMetadata modelMetadata)
SupervisedEdgeWiseModelBuilder instead.session - PgxSession to which the model is connectedcore - Core to which the model is connectedgraphConstructor - Constructor for a PgxGraphmodelMetadata - Metadata concerning the different hyper-parameters of the EdgeWise Modelpublic PgxFrame evaluate(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
evaluateAsync(PgxGraph, Iterable).
Evaluates performance statistics for the specified edges.graph - the input graphedges - the edges to evaluate the model onpublic PgxFrame evaluate(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
evaluateAsync(PgxGraph, Iterable, float).
Evaluates performance statistics for the specified edges.graph - the input graphedges - the edges to evaluate the model onthreshold - decision thresholdpublic PgxFuture<PgxFrame> evaluateAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
graph - the input graphedges - the edges to evaluate the model onpublic PgxFuture<PgxFrame> evaluateAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
graph - the input graphedges - the edges to evaluate the model onthreshold - decision threshold for classification (unused for regression)public PgxFrame evaluateLabels(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
evaluateLabelsAsync(PgxGraph, Iterable).
Evaluates (macro averaged) classification performance statistics for the specified edges.graph - the input graphedges - the edges to evaluate the model onpublic PgxFrame evaluateLabels(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
evaluateLabelsAsync(PgxGraph, Iterable, float).
Evaluates (macro averaged) classification performance statistics for the specified edges.graph - the input graphedges - the edges to evaluate the model onthreshold - decision thresholdpublic PgxFuture<PgxFrame> evaluateLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
graph - the input graphedges - the edges to evaluate the model onpublic PgxFuture<PgxFrame> evaluateLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
graph - the input graphedges - the edges to evaluate the model onthreshold - decision threshold for classification (unused for regression)public PgxFuture<java.lang.Double> fitAsync(PgxGraph graph)
fitAsync in class EdgeWiseModel<SupervisedEdgeWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedEdgeWiseModelMetadata,SupervisedEdgeWiseModel>graph - input graph to fit on.public java.util.Map<?,java.lang.Float> getClassWeights()
public java.lang.String getEdgeTargetPropertyName()
public LossFunction getLossFunctionClass()
public GraphWisePredictionLayerConfig[] getPredictionLayerConfigs()
public java.util.List<java.util.Set<java.lang.String>> getTargetEdgeLabels()
public PgxFrame infer(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
inferAsync(PgxGraph, Iterable).
Does inference for the specified edges.graph - the input graphedges - the edges to do inference forpublic PgxFrame infer(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
inferAsync(PgxGraph, Iterable, float).
Does inference for the specified edges.graph - the input graphedges - the edges to do inference tothreshold - decision thresholdpublic PgxFuture<PgxFrame> inferAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
graph - the input graphedges - the edges to do inference topublic PgxFuture<PgxFrame> inferAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
graph - the input graphedges - the edges to do inference forthreshold - decision threshold for classification (unused for regression)public PgxFuture<PgxFrame> inferEmbeddingsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
inferEmbeddingsAsync in class EdgeWiseModel<SupervisedEdgeWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedEdgeWiseModelMetadata,SupervisedEdgeWiseModel>graph - the input graphedges - the edges to produce embeddings topublic PgxFrame inferLabels(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
inferLabelsAsync(PgxGraph, Iterable).
Infers the labels for the specified edges.graph - the input graphedges - the edges to produce labels forpublic PgxFrame inferLabels(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
inferLabelsAsync(PgxGraph, Iterable, float).
Infers the labels for the specified edges.graph - the input graphedges - the edges to produce labels tothreshold - decision thresholdpublic PgxFuture<PgxFrame> inferLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
graph - the input graphedges - the vertices to produce labels topublic PgxFuture<PgxFrame> inferLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges, float threshold)
graph - the input graphedges - the edges to produce labels forthreshold - decision threshold for classification (unused for regression)public PgxFrame inferLogits(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
inferLogitsAsync(PgxGraph, Iterable).
Infers the prediction logits for the specified edges.graph - the input graphedges - the edges to produce logits forpublic PgxFuture<PgxFrame> inferLogitsAsync(PgxGraph graph, java.lang.Iterable<PgxEdge> edges)
graph - the input graphedges - the edges to produce logits forpublic void store(java.lang.String path,
java.lang.String key)
throws java.util.concurrent.ExecutionException,
java.lang.InterruptedException
storeAsync(String, String).
Calls storeAsync(String, String) and waits for the returned PgxFuture to complete.java.lang.InterruptedException - if the caller thread gets interrupted while waiting for completion.java.util.concurrent.ExecutionException - if any exception occurred during asynchronous execution. The actual exception will
be nested.public void store(java.lang.String path,
java.lang.String key,
boolean overwrite)
throws java.util.concurrent.ExecutionException,
java.lang.InterruptedException
storeAsync(String, String).
Calls storeAsync(String, String) and waits for the returned PgxFuture to complete.java.lang.InterruptedException - if the caller thread gets interrupted while waiting for completion.java.util.concurrent.ExecutionException - if any exception occurred during asynchronous execution. The actual exception will
be nested.public PgxFuture<java.lang.Void> storeAsync(java.lang.String path, java.lang.String key) throws java.util.concurrent.ExecutionException, java.lang.InterruptedException
path - path to store the modelkey - the encryption key, or null if no encryption should be used.java.util.concurrent.ExecutionExceptionjava.lang.InterruptedExceptionpublic PgxFuture<java.lang.Void> storeAsync(java.lang.String path, java.lang.String key, boolean overwrite)
path - path to store the modelkey - the encryption key, or null if no encryption should be used.