public class SupervisedGraphWiseModel extends GraphWiseModel<SupervisedGraphWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedGraphWiseModelMetadata,SupervisedGraphWiseModel>
SupervisedGraphWiseModelBuilder for documentation of the hyperparameters.| Modifier and Type | Class and Description |
|---|---|
static class |
SupervisedGraphWiseModel.SupervisedGraphWiseInferenceType |
| Modifier and Type | Field and Description |
|---|---|
static java.lang.String |
ALGORITHM_NAME |
| Constructor and Description |
|---|
SupervisedGraphWiseModel(PgxSession session,
oracle.pgx.api.internal.Core core,
java.util.function.Supplier<java.lang.String> keystorePathSupplier,
java.util.function.Supplier<char[]> keystorePasswordSupplier,
java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor,
oracle.pgx.api.internal.mllib.ModelMetadata modelMetadata) |
SupervisedGraphWiseModel(PgxSession session,
oracle.pgx.api.internal.Core core,
java.util.function.Supplier<java.lang.String> keystorePathSupplier,
java.util.function.Supplier<char[]> keystorePasswordSupplier,
java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor,
oracle.pgx.api.internal.mllib.SupervisedGraphWiseModelMetadata modelMetadata)
This constructor should never be used to get a model.
|
| Modifier and Type | Method and Description |
|---|---|
<ID> PgxFrame |
evaluate(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Blocking version of
evaluateAsync(PgxGraph, Iterable). |
<ID> PgxFrame |
evaluate(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Blocking version of
evaluateAsync(PgxGraph, Iterable). |
<ID> PgxFuture<PgxFrame> |
evaluateAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Evaluates (macro averaged) classification performance statistics for the specified vertices.
|
<ID> PgxFuture<PgxFrame> |
evaluateAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Evaluates (macro averaged) classification performance statistics for the specified vertices.
|
<ID> PgxFrame |
evaluateLabels(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Blocking version of
evaluateLabelsAsync(PgxGraph, Iterable). |
<ID> PgxFrame |
evaluateLabels(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Blocking version of
evaluateLabelsAsync(PgxGraph, Iterable, float). |
<ID> PgxFuture<PgxFrame> |
evaluateLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Evaluates (macro averaged) classification performance statistics for the specified vertices.
|
<ID> PgxFuture<PgxFrame> |
evaluateLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Evaluates (macro averaged) classification performance statistics for the specified vertices.
|
PgxFuture<java.lang.Double> |
fitAsync(PgxGraph graph)
Trains the GraphWise model on the input graph.
|
java.util.Map<?,java.lang.Float> |
getClassWeights()
Gets the class weights
|
LossFunction |
getLossFunctionClass()
Gets the loss function
|
GraphWisePredictionLayerConfig[] |
getPredictionLayerConfigs()
Gets the configuration objects for the prediction layers
|
java.util.List<java.util.Set<java.lang.String>> |
getTargetVertexLabels()
Gets the target vertex labels
|
java.lang.String |
getVertexTargetPropertyName()
Gets the target property name
|
SupervisedGnnExplainer |
gnnExplainer()
Get a GnnExplainer object that can explain this model's predictions.
|
<ID> PgxFrame |
infer(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Blocking version of
inferAsync(PgxGraph, Iterable). |
<ID> PgxFrame |
infer(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Blocking version of
inferAsync(PgxGraph, Iterable). |
<ID> PgxFuture<PgxFrame> |
inferAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Does inference for the specified vertices.
|
<ID> PgxFuture<PgxFrame> |
inferAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Does inference for the specified vertices.
|
<ID> PgxFuture<PgxFrame> |
inferEmbeddingsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Infers the embeddings for the specified vertices.
|
<ID> PgxFrame |
inferLabels(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Blocking version of
inferLabelsAsync(PgxGraph, Iterable). |
<ID> PgxFrame |
inferLabels(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Blocking version of
inferLabelsAsync(PgxGraph, Iterable, float). |
<ID> PgxFuture<PgxFrame> |
inferLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Infers the labels for the specified vertices.
|
<ID> PgxFuture<PgxFrame> |
inferLabelsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices,
float threshold)
Infers the labels for the specified vertices.
|
<ID> PgxFrame |
inferLogits(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Blocking version of
inferLogitsAsync(PgxGraph, Iterable). |
<ID> PgxFuture<PgxFrame> |
inferLogitsAsync(PgxGraph graph,
java.lang.Iterable<PgxVertex<ID>> vertices)
Infers the prediction logits for the specified vertices.
|
void |
store(java.lang.String path,
java.lang.String key)
Blocking version of
storeAsync(String, String). |
void |
store(java.lang.String path,
java.lang.String key,
boolean overwrite)
Blocking version of
storeAsync(String, String). |
PgxFuture<java.lang.Void> |
storeAsync(java.lang.String path,
java.lang.String key)
Stores the GraphWise model in the specified path, with encryption.
|
PgxFuture<java.lang.Void> |
storeAsync(java.lang.String path,
java.lang.String key,
boolean overwrite)
Stores the GraphWise model in the specified path, with encryption.
|
destroy, destroyAsync, fit, getBatchSize, getConfig, getConvLayerConfigs, getEdgeInputFeatureDim, getEdgeInputPropertyNames, getEmbeddingDim, getInputFeatureDim, getLearningRate, getNumEpochs, getSeed, getTrainingLoss, getVertexInputPropertyNames, inferEmbeddings, isFittedpublic static final java.lang.String ALGORITHM_NAME
public SupervisedGraphWiseModel(PgxSession session, oracle.pgx.api.internal.Core core, java.util.function.Supplier<java.lang.String> keystorePathSupplier, java.util.function.Supplier<char[]> keystorePasswordSupplier, java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor, oracle.pgx.api.internal.mllib.ModelMetadata modelMetadata)
public SupervisedGraphWiseModel(PgxSession session, oracle.pgx.api.internal.Core core, java.util.function.Supplier<java.lang.String> keystorePathSupplier, java.util.function.Supplier<char[]> keystorePasswordSupplier, java.util.function.BiFunction<PgxSession,oracle.pgx.api.internal.Graph,PgxGraph> graphConstructor, oracle.pgx.api.internal.mllib.SupervisedGraphWiseModelMetadata modelMetadata)
SupervisedGraphWiseModelBuilder instead.session - PgxSession to which the model is connectedcore - Core to which the model is connectedgraphConstructor - Constructor for a PgxGraphmodelMetadata - Metadata concerning the different hyper-parameters of the GraphWise Modelpublic <ID> PgxFrame evaluate(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
evaluateAsync(PgxGraph, Iterable).
Evaluates (macro averaged) classification performance statistics for the specified vertices.graph - the input graphvertices - the vertices to evaluate the model onpublic <ID> PgxFrame evaluate(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
evaluateAsync(PgxGraph, Iterable).
Evaluates (macro averaged) classification performance statistics for the specified vertices.graph - the input graphvertices - the vertices to evaluate the model onthreshold - decision threshold for classification (unused for regression)public <ID> PgxFuture<PgxFrame> evaluateAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
graph - the input graphvertices - the vertices to evaluate the model onpublic <ID> PgxFuture<PgxFrame> evaluateAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
graph - the input graphvertices - the vertices to evaluate the model onthreshold - decision thresholdpublic <ID> PgxFrame evaluateLabels(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
evaluateLabelsAsync(PgxGraph, Iterable).
Evaluates (macro averaged) classification performance statistics for the specified vertices.graph - the input graphvertices - the vertices to evaluate the model onpublic <ID> PgxFrame evaluateLabels(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
evaluateLabelsAsync(PgxGraph, Iterable, float).
Evaluates (macro averaged) classification performance statistics for the specified vertices.graph - the input graphvertices - the vertices to evaluate the model onthreshold - decision threshold for classification (unused for regression)public <ID> PgxFuture<PgxFrame> evaluateLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
graph - the input graphvertices - the vertices to evaluate the model onpublic <ID> PgxFuture<PgxFrame> evaluateLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
graph - the input graphvertices - the vertices to evaluate the model onthreshold - the decision thresholdpublic PgxFuture<java.lang.Double> fitAsync(PgxGraph graph)
fitAsync in class GraphWiseModel<SupervisedGraphWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedGraphWiseModelMetadata,SupervisedGraphWiseModel>graph - input graph to fit on.public java.util.Map<?,java.lang.Float> getClassWeights()
public LossFunction getLossFunctionClass()
public GraphWisePredictionLayerConfig[] getPredictionLayerConfigs()
public java.util.List<java.util.Set<java.lang.String>> getTargetVertexLabels()
public java.lang.String getVertexTargetPropertyName()
public SupervisedGnnExplainer gnnExplainer()
public <ID> PgxFrame infer(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
inferAsync(PgxGraph, Iterable).
Does inference for the specified vertices.graph - the input graphvertices - the vertices to do inference onpublic <ID> PgxFrame infer(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
inferAsync(PgxGraph, Iterable).
Does inference for the specified vertices.graph - the input graphvertices - the vertices to do inference onthreshold - decision threshold for classification (unused for regression)public <ID> PgxFuture<PgxFrame> inferAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
graph - the input graphvertices - the vertices to do inference onpublic <ID> PgxFuture<PgxFrame> inferAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
graph - the input graphvertices - the vertices to do inference onthreshold - decision threshold for classification (unused for regression)public <ID> PgxFuture<PgxFrame> inferEmbeddingsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
inferEmbeddingsAsync in class GraphWiseModel<SupervisedGraphWiseModelConfig,oracle.pgx.api.internal.mllib.SupervisedGraphWiseModelMetadata,SupervisedGraphWiseModel>graph - the input graphvertices - the vertices to produce embeddings topublic <ID> PgxFrame inferLabels(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
inferLabelsAsync(PgxGraph, Iterable).
Infers the labels for the specified vertices.graph - the input graphvertices - the vertices to produce labels topublic <ID> PgxFrame inferLabels(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
inferLabelsAsync(PgxGraph, Iterable, float).
Infers the labels for the specified vertices.graph - the input graphvertices - the vertices to produce labels tothreshold - decision threshold for classification (unused for regression)public <ID> PgxFuture<PgxFrame> inferLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
graph - the input graphvertices - the vertices to produce labels topublic <ID> PgxFuture<PgxFrame> inferLabelsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices, float threshold)
graph - the input graphvertices - the vertices to produce labels tothreshold - decision threshold for classification (unused for regression)public <ID> PgxFrame inferLogits(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
inferLogitsAsync(PgxGraph, Iterable).
Infers the prediction logits for the specified vertices.graph - the input graphvertices - the vertices to produce logits topublic <ID> PgxFuture<PgxFrame> inferLogitsAsync(PgxGraph graph, java.lang.Iterable<PgxVertex<ID>> vertices)
graph - the input graphvertices - the vertices to produce logits topublic void store(java.lang.String path,
java.lang.String key)
throws java.util.concurrent.ExecutionException,
java.lang.InterruptedException
storeAsync(String, String).
Calls storeAsync(String, String) and waits for the returned PgxFuture to complete.java.lang.InterruptedException - if the caller thread gets interrupted while waiting for completion.java.util.concurrent.ExecutionException - if any exception occurred during asynchronous execution. The actual exception will
be nested.public void store(java.lang.String path,
java.lang.String key,
boolean overwrite)
throws java.util.concurrent.ExecutionException,
java.lang.InterruptedException
storeAsync(String, String).
Calls storeAsync(String, String) and waits for the returned PgxFuture to complete.java.lang.InterruptedException - if the caller thread gets interrupted while waiting for completion.java.util.concurrent.ExecutionException - if any exception occurred during asynchronous execution. The actual exception will
be nested.public PgxFuture<java.lang.Void> storeAsync(java.lang.String path, java.lang.String key) throws java.util.concurrent.ExecutionException, java.lang.InterruptedException
path - path to store the modelkey - the encryption key, or null if no encryption should be used.java.util.concurrent.ExecutionExceptionjava.lang.InterruptedExceptionpublic PgxFuture<java.lang.Void> storeAsync(java.lang.String path, java.lang.String key, boolean overwrite)
path - path to store the modelkey - the encryption key, or null if no encryption should be used.