機械翻訳について

ネットワーク・インフラストラクチャ

ネットワーク接続の場合、Private Cloud Applianceは、必要な高可用性、帯域幅および速度を提供する物理レイヤーに依存します。 これに加えて、ソフトウェア定義スイッチ、ルーター、ゲートウェイおよびトンネルで構成される分散ネットワーク・ファブリックにより、セキュアな分離されたデータ・トラフィックが可能になります - クラウド・リソース間の内部的、およびアプライアンスの外部リソースと外部リソースの両方。

デバイス管理ネットワーク

デバイス管理ネットワークは、すべてのアプライアンス・コンポーネントの管理インタフェースへの内部アクセスを提供します。 これらには1Gbit管理スイッチへのEthernet接続があり、すべては次の各アドレス範囲からIPアドレスを受け取ります:

  • 100.96.0.0/23 - すべてのハードウェア・コンポーネントのOracle Integrated Lights Out Manager (ILOM)サービス・プロセッサのIP範囲

  • 100.96.2.0/23 - すべてのハードウェア・コンポーネントの管理インタフェースのIP範囲

デバイス管理ネットワークにアクセスするには、ワークステーションを1Gbit管理スイッチのポート2に接続し、IPアドレス100.96.3.254を接続されたインタフェースに静的に割り当てます。 または、データ・センターの管理マシン(bastion hostとも呼ばれる)からPrivate Cloud Applianceデバイス管理ネットワークへの永続的な接続を設定できます。 バスチョン・ホストまたは(一時的に)接続されたワークステーションから、接続されているすべてのラック・コンポーネントのILOMおよび管理インタフェースにアクセスできます。 バスチョン・ホストの構成の詳細は、「Oracle Private Cloud Applianceインストレーション・ガイド」「オプションのバスチョン・ホスト・アップリンク」セクションを参照してください。

1Gbit管理スイッチのポート1は、サポート担当者のみが使用できるように予約されています。

データ・ネットワーク

アプライアンスのデータ接続は、リーフ・スパイン・トポロジに似た2レイヤー設計の冗長100Gbitスイッチ上に構築されます。 リーフ・スイッチはラック・ハードウェア・コンポーネントを相互接続しますが、スパイン・スイッチはネットワークのバック・ボーンを形成し、外部トラフィックのパスを提供します。 各リーフ・スイッチは、相互に接続されているすべてのスパイン・スイッチに接続されます。 このトポロジの主な利点は、拡張性とパスの最適化です。 Private Cloud Applianceラックには、2つのリーフ・スイッチと2つのスパイン・スイッチがあります。

データ・スイッチは、ポート当たり最大スループット100Gbitを提供します。 スパイン・スイッチは5つのインター・リンク(500Gbit)を使用し、リーフ・スイッチは各スパインに2つのインター・リンク(200Gbit)および2x2クロス・リンクを使用します。 各サーバー・ノードは、モードで2つの100GビットEthernetポートで構成されるbond0インタフェースを介して、ラック内の両方のリーフ・スイッチに接続されます。 2つのストレージ・コントローラは、4x100Gbit接続を使用してスパイン・スイッチに接続されます。

外部接続の場合、各スパイン・スイッチに5つのポートが予約されます。 アプライアンスとデータセンター・ネットワークの間にアップリンクを確立するために4つのポートを使用できます。データ・トラフィックから管理ネットワークをオプションで分離するために、1つのポートが予約されています。

Private Cloud Applianceと顧客データ・センターの間の接続は、「アップリンク」と呼ばれます。 アプライアンス・ラックの2つのスパイン・スイッチと1つまたは2つのスパイン・スイッチの間の物理ケーブル接続 - 好む - データセンター・インフラストラクチャ内の2つの次レベルのネットワーク・デバイス。 物理的な側面に加えて、アップリンクに対する論理的な側面もあります: アプライアンスと接続先の外部ネットワークとの間のトラフィックのルーティング方法。

各スパイン・スイッチで、データセンター・ネットワークへのアップリンクにポート1-4を使用できます。 10Gbpsまたは25Gbpsの速度の場合、スパイン・スイッチ・ポートはMPO-to-4xLCのブレーク・アウト・ケーブルを使用して分割する必要があります。 40Gbpsまたは100Gbpsの速度では、各スイッチ・ポートが単一のMPO-to-MPOケーブル接続を使用します。 スイッチ・ポートが適切なブレーク・アウト・モードおよび転送速度で構成されるように、初期設定時に正しい接続速度を指定する必要があります。

アップリンクは、インストール・チェック・リストの一部として指定した情報に基づいて、システムの初期化中に構成されます。 使用されていないスパイン・スイッチ・アップリンク・ポート(未使用ブレーク・アウト・ポートを含む)は、セキュリティ上の理由から無効になっています。 この表は、サポートされるアップリンク構成をポート数と速度、結果の帯域幅の合計を示しています。

アップリンク速度 スパイン・スイッチごとのアップリンク数 合計帯域幅

10 Gbps

1, 2, 4, 8, または 16

20、40、80、160または320 Gbps

25 Gbps

1, 2, 4, 8, または 16

50、100、200、400、または800 Gbps

40 Gbps

1, 2, または 4

80、160または320 Gbps

100 Gbps

1, 2, または 4

200、400または800 Gbps

構成されているポート数やポート速度に関係なく、スパイン・スイッチとデータセンター・ネットワークの間のアップリンクのトポロジも選択します。 この情報は、ネットワーク管理者がデータ・センター・スイッチでリンク・アグリゲーション(ポート・チャネル)を構成するために重要です。 次の表に、使用可能なオプションを示します。

トポロジ 説明

三角形

三角形のトポロジでは、両方のスパイン・スイッチからのすべてのケーブルが1つのデータセンター・スイッチに接続されます。

四角形

四角形のトポロジでは、2つのデータセンター・スイッチが使用されます。 特定のスパイン・スイッチからのすべてのアウトバウンド・ケーブルが同じデータセンター・スイッチに接続されます。

メッシュ

メッシュ・トポロジでは、2つのデータ・センター・スイッチも使用されます。 四角形トポロジとの違いは、アップリンクがクロス・パターン内に作成される点です。 各スパイン・スイッチからのアウトバウンド・ケーブルはペアで接続されます: 各データセンター・スイッチへの1本のケーブル。

アプライアンスからデータセンター・ネットワークへのアップリンクの物理トポロジは、帯域幅要件および使用可能なデータセンター・スイッチおよびポートによって異なります。 単一のデータ・センター・スイッチに接続すると、三角形のトポロジを選択することになります。 冗長性を高めるには、データセンター・スイッチのペアにアップリンクを分散し、四角形またはメッシュ・トポロジを選択します。 各トポロジでは、最小限の帯域幅から開始でき、必要に応じてスケール・アップできます。 データセンターのスイッチ、トランシーバ、およびケーブルで許可されている場合、最大帯域幅は800 Gbpsです。

次の図は、サポートされているトポロジのサブセットを表しており、アプライアンスをデータセンター・ネットワークに統合するためのリファレンスとして使用できます。 図と注記を使用して、設置に適した配線とスイッチ構成を決定します。


サポートされるアップリンク・トポロジの6つの例を示す図。 例については、次の図のノートで説明します。

アプライアンスとデータ・センター間の論理接続は、すべて第3層に実装されます。 OSIモデル(オープン・システム相互接続モデル)では、レイヤー3はネットワーク・レイヤーと呼ばれ、接続されているデバイス間のトラフィックをルーティングするために、ヘッダー内のソースと宛先のIPアドレス・フィールドを使用します。

Private Cloud Applianceでは、2つの論理接続オプションがサポートされています: 静的ルーティングと動的ルーティングのいずれかを選択する必要があります。 どちらのルーティング・オプションも、3つの物理トポロジすべてでサポートされています。

接続タイプ 説明

静的ルーティング

静的ルーティングが選択されている場合、すべてのエグレス・トラフィックは、データ・センター・ネットワーク・デバイスで構成された単一のデフォルト・ゲートウェイIPアドレスを通過します。 このゲートウェイIPアドレスは、スパイン・スイッチから到達できるように、アプライアンスのアップリンクIPアドレスと同じサブネット内にある必要があります。 データセンター・ネットワーク・デバイスは、2-3899の範囲のVLAN IDでSVI (スイッチ仮想インタフェース)を使用できます。

仮想クラウド・ネットワーク(VCN)内で構成されているすべてのゲートウェイには、外部宛先を目的としたすべてのトラフィックをデフォルト・ゲートウェイのIPアドレスに送信するルート・ルールが自動的に設定されます。

動的ルーティング

動的ルーティングが選択されると、2つのAutonomous Systems間のTCP接続を確立するためにBGP (Border Gateway Protocol)が使用されます: アプライアンス・ネットワークとデータ・センター・ネットワーク。 この構成では、接続の両側に登録済またはプライベートASN (Autonomous System Number)が必要です。 Private Cloud Appliance BGP構成では、デフォルトでASN 136025が使用されます。これは、初期構成中に変更できます。

BGPルーティングの場合、データ・センターの2つのルーティング・デバイスをアプライアンス・ラックの2つのスパイン・スイッチに接続する必要があります。 スパイン・スイッチとデータ・センター・ネットワーク・デバイス間の対応するインタフェース(ポート・チャネル)は同じサブネット内にある必要があります。 ルート・ハンド・オフ・ネットワークとも呼ばれる、ポイント・ツー・ポイント回線ごとに専用の /30サブネットを使用することをお薦めします。 この設定によって、冗長性とマルチパスが提供されます。

動的ルーティングは、両方のスパイン・スイッチが同じデータ・センター・ネットワーク・デバイスに物理的に接続されている三角形のトポロジでもサポートされています。 この構成では、2つのBGPセッションがまだ確立されています: 各スパイン・スイッチから1つ。 ただし、この方法では冗長性のレベルが低下します。

サポートされるルーティング設計

次の表に、データ・センターの物理トポロジおよび実装対象として選択した論理接続に応じてサポートされるルーティング設計を示します。

複数のデバイス(vPCまたはMLAG)間のリンク・アグリゲーションは、静的ルーティングでのみサポートされています。 動的ルーティングを選択すると、リンクアグリゲーションは同じスイッチのポートに制限されます。

メッシュ・トポロジでアップリンクが接続されている場合は、スパイン・スイッチごとに最低2つの物理接続が適用されます。 BGPピアリングを確立するには、2つのサブネットが必要です。 アップリンク・カウントが変更された場合、ポート・チャネルは再構成されますが、専用サブネットは同じままです。

データセンターへのアップリンクは、さまざまなプロトコルを実行して冗長性を確保し、これらのリンクでのリンク障害の検出およびリカバリ時間を短縮します。 これらのプロトコルは、三角形、四角形、またはメッシュ・トポロジで動作します。

アップリンク・プロトコルのスイートには、次のものがあります:

  • 双方向転送検出(BFD)
  • 仮想ルーター冗長プロトコル(VRRP)
  • ホット・スペア・ルーター・プロトコル(HSRP)
  • Equal Cost Multi-Path (ECMP)

それぞれの詳細は、このトピックの次の項を参照してください。

BFD

ほとんどのルーター・ネットワークでは、ルーティング・プロトコルによって送信された「hello」パケットの損失によって、接続の障害が検出されます。 ただし、このメソッドによる検出には1秒以上かかることが多く、高速リンク上のパケットの多くを到達できない宛先にルーティングします。これにより、リンクバッファに負荷がかかります。 「hello」パケット・レートを増やすと、ルーターCPUに負荷をかけます。

BFD (Bidirectional Forwarding Detection)は、障害が発生したリンクの最後にルーターに警告する組み込みのメカニズムで、他のメカニズムよりも早く問題が発生し、バッファやCPUの負荷を軽減します。 BFDは、ルーター間にスイッチまたはハブが存在する場合でも機能します。

BFDは構成を必要とせず、ユーザー設定可能なパラメータもありません。

VRRPv3

仮想ルーター冗長プロトコル・バージョン3 (VRRPv3)は、仮想ルーターの概念を使用して物理ルーターをグループ化し、参加しているホストに1つとして表示されるようにするネットワーク・プロトコルです。 これにより、IPサブネット・ワーク上のデフォルト・ゲートウェイの自動選択によってルーティング・パスの可用性と信頼性が向上します。

VRRPv3を指定すると、プライマリ/アクティブおよびセカンダリ/スタンバイ・ルーターが1つの仮想ルーターとして機能します。 この仮想ルーターは、VRRPv3に参加しているサブネット上の任意のホストのデフォルト・ゲートウェイになります。 グループ内の1つの物理ルーターが、パケット転送のプライマリ/アクティブのルーターになります。 ただし、このルーターに障害が発生した場合、グループ内の別の物理ルーターが転送ロールを引き継ぎ、ルーター構成に冗長性を追加します。 VRRPv3 "network"はローカル・サブネットに制限され、ローカル・サブネットを超えるルートは通知されません。

HSRP

Ciscoルーターでは、多くの場合、プロトコル(HSRP)と呼ばれる冗長プロトコルを使用してルーターの可用性を向上させます。 VRRPのメソッドと同様に、HSRPは物理ルーターを単一の仮想ルーターにグループ化します。 物理的なデフォルト・ルーターに障害が発生すると、別のルーターがHSRPを使用して、ホスト・デバイスにストレスをかけずにパケットのデフォルトの転送を引き継ぐことになります。

ECMP

Equal Cost Multi-Path (ECMP)は、特に多くの冗長リンクを持つより複雑なネットワークで、ネットワーク帯域幅をより効果的に使用する方法です。

通常、別の宛先ネットワークへの複数のルーター・パスを持つルーター・ネットワークは、ゲートウェイ・ルーターへの1つのアクティブなルートを「最適な」パスとして選択し、障害発生時にほかのパスをスタンバイとして使用します。 使用するネットワーク・ゲートウェイ・ルーターへのパスに関するディシジョンは、通常、ルーティング・プロトコルのパースペクティブから「コスト」によってディシジョンされます。 ネットワーク・ゲートウェイに到達するための複数のリンクのコストが等しい場合、ルーターは条件に基づいて1つを選択します。 これにより、ルーティングのディシジョンが容易になりますが、選択されていないパスのネットワーク・リンクがアイドル状態になるため、ネットワーク帯域幅が無駄になります。

ECMPは、複数のパス・リンクで同じコストでトラフィックを送信できるため、ネットワーク帯域幅をより効率的に使用できます。

管理ネットワーク

セキュリティ要件が高まる環境では、オプションで管理アプライアンスへのアクセスをデータ・トラフィックから分離できます。 管理ネットワークは、アプライアンス管理操作のための専用のセキュアなネットワーク・パスを提供することによって、構成および管理トラフィックをデータ・ネットワーク上の操作アクティビティと物理的に分離します。 この構成では、「サービス・エンクレーブ」全体には管理ネットワークを介してのみアクセスできます。 これには、モニタリング、メトリック収集およびアラート・サービス、APIサービスおよびすべてのコンポーネント管理インタフェースも含まれます。

管理ネットワークを設定するには、次レベルのデータセンター・ネットワーク・デバイスからアプライアンス内の各スパイン・スイッチ上のポート5への追加のEthernet接続が必要です。 管理ネットワーク内では、スパイン・スイッチはそれぞれ1つのIPアドレスと、2つの間で共有される仮想IPを持つ必要があります。 トラフィックをルーティングするにはデフォルト・ゲートウェイが必要であり、NTPおよびDNSサービスを有効にする必要があります。 管理ノードには、管理ネットワークでホスト名とIPアドレスを割り当てる必要があります - それぞれ1つずつ、3つすべてで1つずつ共有されます。

静的ルーティングと動的ルーティングの両方で別の管理ネットワークを使用できます。 VLANの使用がサポートされていますが、静的ルーティングと組み合わせると、VLAN IDがデータ・ネットワーク用に構成されたものと異なる必要があります。

予約済ネットワーク・リソース

Private Cloud Applianceのネットワーク・インフラストラクチャおよびシステム・コンポーネントでは、内部操作に多数のIPアドレスと複数のVLANが必要です。 顧客データ・センターで使用されているアドレスと、仮想クラウド・ネットワーク(VCN)で構成されたCIDR範囲との競合を回避することが重要です。

これらのIPアドレス範囲は、Private Cloud Applianceによって内部使用のために予約されています:

予約済IPアドレス 説明

共有アドレス領域のCIDRブロック

IP範囲100.64.0.0/10,を持つ共有アドレス・スペースは、顧客構内機器をインターネット・サービス・プロバイダのコア・ルーターに接続するために実装されました。

IPアドレスを管理インタフェースおよびハードウェア・コンポーネントのILOM (Oracle Integrated Lights Out Manager)に割り当てるには、2つのCIDRブロックが内部使用のために予約されています: 100.96.0.0/23および100.96.2.0/23。

クラスEアドレス範囲のCIDRブロック

クラスEは、クラス・フル・ネットワーク・アドレス指定アーキテクチャで、240.0.0.0から255.255.255.255までの32ビットIPv4アドレス空間の一部です。 その時点では、将来の使用のために予約されているため、パブリック・インターネットでは使用できません。

物理100Gbit接続を介したすべてのインフラストラクチャ・ネットワーキングのアドレス指定要件に対応するため、253.255.0.0/16サブネット全体が予約されます。 IPアドレスをネットワーク関数またはタイプ別にグループ化するために、さらに複数のCIDRブロックに分割されます。

253.255.0.0/16範囲内の様々なCIDRブロックは、マイクロサービスを実行しているKubernetesコンテナ、仮想スイッチ、ルーターおよびゲートウェイ(VCNデータ・ネットワーク、ハイパーバイザ、アプライアンス・シャーシ・コンポーネントなど)のIPアドレスを割り当てるために使用されます。

ローカルCIDRブロックのリンク

リンク・ローカル・アドレスは、169.254.0.0/16 IP範囲に属し、ホスト・ネットワーク・セグメント内の接続にのみ有効です。これは、アドレスはそのネットワーク・セグメントの外部で一意であることが保証されないためです。 リンク・ローカルのソース・アドレスまたは宛先アドレスを持つパケットは、ルーターによって転送されません。

リンク・ローカルCIDRブロック169.254.239.0/24,およびIPアドレス169.254.169.254は、DNSリクエスト、コンピュート・インスタンスのメタデータ転送、クラウド・サービス・エンドポイントなどの機能用に予約されています。

すべてのVCNトラフィック - あるVCNから別のVCNへ、さらにVCNと外部リソースの間 - 100Gbit接続にまたがり、VLAN 3900によって伝送されます。 サーバー管理に関連するトラフィックはVLAN 3901によって伝送されます。 より高いIDを持つすべてのVLANは内部使用のために予約され、VLAN 1はタグなしトラフィックのデフォルトです。 残りのVLAN範囲2-3899は、お客様が使用可能です。

Oracle Exadata統合

オプションで、Private Cloud ApplianceOracle Exadataと統合して、コンピュート容量とデータベース最適化の高パフォーマンスな組合せを実現できます。 この構成では、データベース・ノードはPrivate Cloud Applianceのスパイン・スイッチの予約済ポートに直接接続されます。 スパイン・スイッチごとに4つの100Gbitポートが予約され、4x25Gbitブレーク・アウト・ポートに分割され、合計で最大32のケーブル接続が実現されます。 各データベース・ノードは両方のスパイン・スイッチに直接接続されています。つまり、最大16個のデータベース・ノードをアプライアンスに接続できます。 異なるOracle Exadataラックからデータベース・ノードに接続できます。

ケーブル接続が確立されると、管理者は、接続されたデータベース・ノードと一連のコンピュート・インスタンス間のトラフィックを有効にする「Exadataネットワーク」を構成します。 次の前提条件が適用されます:

  • Exadataネットワークは、オンプレミス・ネットワークのサブネットと重複できません。

  • データベース・ノードに接続するコンピュート・インスタンスを含むVCNには、動的ルーティング・ゲートウェイ(DRG)が構成されている必要があります。

  • 関連するサブネット・ルート表には、Exadataネットワークとの間のトラフィックを許可するルールが含まれている必要があります。

Exadataネットワーク構成によって、公開されているExadataクラスタとそれらのクラスタにアクセスできるサブネットが決まります。 アクセスは、Exadataクラスタごと、およびコンピュート・サブネットごとに有効化または無効化できます。 また、Exadataネットワークはアプライアンスの外部ネットワークを介して公開できるため、オンプレミス・ネットワーク内の他のリソースは、アプライアンスのスパイン・スイッチを介してデータベース・ノードに接続できます。 Exadataネットワーク構成は、「サービスCLI」を使用して作成および管理されます。