Index
A
- adaptive algorithm 8.2.6
 - adding ILM policies 
- for Automatic Data Optimization 5.2.2.3
 
 - adding index partitions 4.4.2.9
 - adding multiple partitions 4.4.2.10
 - adding partitions 
- composite hash-partitioned tables 4.4.2.5
 - composite list-partitioned tables 4.4.2.6
 - composite range-partitioned tables 4.4.2.7
 - hash-partitioned tables 4.4.2.2
 - interval-partitioned tables 4.4.2.4
 - list-partitioned tables 4.4.2.3
 - partitioned tables 4.4.2
 - range-partitioned tables 4.4.2.1
 - reference-partitioned tables 4.4.2.8
 
 - ADD PARTITION clause 4.4.2.1
 - ADD SUBPARTITION clause 4.4.2.5.2, 4.4.2.6.2, 4.4.2.7.2
 - ALTER INDEX statement 
- partition attributes 3.3.8
 
 - ALTER SESSION statement
 - ALTER TABLE statement
 - applications
 - asynchronous communication 
- parallel execution servers 8.1.4.5
 
 - asynchronous global index maintenance 
- for dropping and truncating partitions 4.3.2
 
 - asynchronous I/O 8.6.3.3.4
 - Automatic big table caching 
- about 8.3.2
 
 -  Automatic Data Optimization 
- adding ILM policies 5.2.2.3
 - and heat map 5.2
 - DBMS_ILM_ADMIN package 5.2.2.8
 - DBMS_ILM package 5.2.2.8
 - deleting ILM policies 5.2.2.4
 - disabling ILM policies 5.2.2.4
 - ILM ADO parameters 5.2.2.7
 - limitations 5.2.3
 - managing ILM policies 5.2.2.1
 - managing with Oracle Enterprise Manager 5.5
 - monitoring DBA and ILM policy views 5.2.2.9
 - row-level compression tiering 5.2.2.6
 - segment-level compression tiering 5.2.2.5
 - views for ILM policies 5.2.2.9
 
 - Automatic Data Optimization (ADO) 
- for Information Lifecycle Management strategy 5.2.2
 
 - automatic list partitioning 
- creating tables using 4.1.4.3
 
 
C
- COALESCE PARTITION clause 4.4.3.1
 - collections
 - collection tables 
- performing PMOs on partitions 4.1.17.1
 
 - composite hash-hash partitioning 2.3.2.7
 - composite hash-list partitioning 2.3.2.8
 - composite hash partitioned tables 
- creating 4.2.1
 
 - composite hash-partitioned tables 
- adding partitions 4.4.2.5
 
 - composite hash-range partitioning 2.3.2.9
 - composite interval partitioning 
- creating tables using 4.2.2
 
 - composite list-hash partitioning 2.3.2.5
- performance considerations 3.5.4.4
 
 - composite list-list partitioning 2.3.2.6
- performance considerations 3.5.4.5
 
 - composite list-partitioned tables 
- adding partitions 4.4.2.6
 
 - composite list partitioning 
- creating tables using 4.2.3
 
 - composite list-range partitioning 2.3.2.4
- performance considerations 3.5.4.6
 
 - composite partitioned tables 
- creating 4.2
 
 - composite partitioning 2.3.2
 - composite range-* partitioned tables 
- creating 4.2.4
 
 - composite range-hash partitioning 2.3.2.2
- performance considerations 3.5.4.1
 
 - composite range-interval partitioning 
- creating tables using 4.2.2
 
 - composite range-list partitioned tables 
- creating 4.2.4.2.1
 
 - composite range-list partitioning 2.3.2.3
- performance considerations 3.5.4.2
 
 - composite range-partitioned tables 
- adding partitions 4.4.2.7
 
 - composite range-range partitioning 2.3.2.1
- performance considerations 3.5.4.3
 
 - compression 
- partitioning 3.4
 
 - compression table 
- partitioning 3.4
 
 - concurrent execution of union all 8.5.3.14
 - constraints 
- parallel create table 8.5.2.8
 
 - consumer operations 8.1.4.2
 - CREATE INDEX statement
 - CREATE TABLE AS SELECT statement 
- decision support system 8.5.2.2
 
 - CREATE TABLE statement
 - creating hash partitioned tables 
- examples 4.1.3.1
 
 - creating indexes on partitioned tables 
- restrictions 2.5.5
 
 - creating interval partitions 
- INTERVAL clause of CREATE TABLE 4.1.2
 
 - creating partitions 4.1
 - creating segments on demand 
- maintenance procedures 4.1.14.3
 
 - critical consumer group 
- specifying for parallel statement queuing 8.4.1.5
 
 
D
- data 
- parallel DML restrictions and integrity rules 8.5.3.10
 
 - databases
 - database writer process (DBWn) 
- tuning 8.8.4.6
 
 - data loading 
- incremental in parallel 8.8.7
 
 - data manipulation language
 - data segment compression
 - data warehouses 
- about 6.1
 - advanced partition pruning 6.3.1.2
 - ARCHIVELOG mode for recovery 9.4.1
 - backing up and recovering 9.1
 - backing up and recovering characteristics 9.1.1
 - backing up tables on individual basis 9.4.7
 - backup and recovery 9.3
 - basic partition pruning 6.3.1.1
 - block change tracking for backups 9.4.3
 - data compression and partitioning 6.4.4
 - differences with online transaction processing backups 9.1.1
 - extract, transform, and load for backup and recovery 9.4.6.1
 - extract, transform, and load strategy 9.4.6.2
 - flashback database and guaranteed restore points 9.4.6.5
 - incremental backups 9.4.6.3
 - incremental backup strategy 9.4.6.4
 - leverage read-only tablespaces for backups 9.4.5
 - manageability 6.4
 - manageability with partition exchange load 6.4.1
 - materialized views and partitioning 6.3.4
 - more complex queries 6.2.4
 - more users querying the system 6.2.3
 - NOLOGGING mode for backup and recovery 9.4.6
 - partitioned tables 3.5.1
 - partitioning 6
 - partitioning and removing data from tables 6.4.3
 - partitioning for large databases 6.2.1
 - partitioning for large tables 6.2.2
 - partitioning for scalability 6.2
 - partitioning materialized views 6.3.4.1
 - partition pruning 6.3.1
 - recovery methodology 9.4
 - recovery point object (RPO) 9.3.2
 - recovery time object (RTO) 9.3.1
 - refreshing table data 8.5.3.1.1
 - RMAN for backup and recovery 9.4.2
 - RMAN multi-section backups 9.4.4
 
 - DB_BLOCK_SIZE initialization parameter 
- parallel query 8.6.3.3.2
 
 - DB_CACHE_SIZE initialization parameter 
- parallel query 8.6.3.3.1
 
 - DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter 
- parallel query 8.6.3.3.3
 
 - DBMS_HEAT_MAP package 
- subprograms for Heat MAP 5.2.1.3
 
 - DBMS_ILM_ADMIN package 
- Automatic Data Optimization 5.2.2.8
 
 - DBMS_ILM package 
- Automatic Data Optimization 5.2.2.8
 
 - decision support system (DSS)
 - default partitions 4.1.4.2
 - default subpartition 4.2.4.2.2
 - deferred segments 
- partitioning 4.1.14.1
 
 - degree of parallelism 
- adaptive parallelism 8.2.6
 - automatic 8.2.3
 - between query operations 8.1.4.2
 - controlling with initialization parameters and hints 8.2.5
 - determining for auto DOP 8.2.4
 - in-memory parallel execution 8.3
 - manually specifying 8.2.1
 - parallel execution servers 8.2
 - specifying a limit for a consumer group 8.4.1.4
 
 - DELETE statement 
- parallel DELETE statement 8.5.3.3
 
 - deleting ILM policies 
- for Automatic Data Optimization 5.2.2.4
 
 - direct-path INSERT 
- restrictions 8.5.3.9
 
 - DISABLE_PARALLEL_DML SQL hint 8.5.3.2
 - DISABLE ROW MOVEMENT clause 4.1
 - disabling ILM policies 
- for Automatic Data Optimization 5.2.2.4
 
 - DISK_ASYNCH_IO initialization parameter 
- parallel query 8.6.3.3.4
 
 - distributed transactions 
- parallel DML restrictions 8.5.3.12
 
 - DML_LOCKS 
- parallel DML 8.6.3.2.3.3
 
 - DROP PARTITION clause 4.4.4.1
 - dropping multiple partitions 4.4.4.4
 - dropping partitioned tables 4.5
 - dropping partitions 
- asynchronous global index maintenance 4.3.2
 
 - DSS database 
- partitioning indexes 3.3.7
 
 
E
- ENABLE_PARALLEL_DML SQL hint 8.5.3.2
 - ENABLE ROW MOVEMENT clause 4.1, 4.1.1.2
 - equipartitioning
 - EXCHANGE PARTITION clause 4.4.5.8, 4.4.5.9, 4.4.5.10, 4.4.5.11
 - EXCHANGE SUBPARTITION clause 4.4.5.7
 - exchanging partitions
 - extents 
- parallel DDL statements 8.5.2.6
 
 - extract, transform, and load 
- data warehouses 9.4.6.1
 
 
F
G
H
- hardware-based mirroring 
- very large databases (VLDBs) 10.1.1
 
 - hardware-based striping 
- very large databases (VLDBs) 10.2.1
 
 - hash-partitioned tables 
- adding partitions 4.4.2.2
 
 - hash partitioning 2.3.1.2
 - hash partitions 
- splitting 4.4.13.4
 
 - heap-organized partitioned tables 
- table compression 4.1.12
 
 - HEAT_MAP initialization parameter
 - Heat Map 
- ALL, DBA, USER, and V$ views 5.2.1.2
 - and automatic data optimization 5.2
 - disabling 5.2.1.1
 - enabling 5.2.1.1
 - for Information Lifecycle Management strategy 5.2.1
 - limitations 5.2.3
 - managing with DBMS_HEAT_MAP subprograms 5.2.1.3
 - managing with Oracle Enterprise Manager 5.5
 - viewing tracking information 5.2.1.2
 
 - heat map and automatic data optimization 
- implementing an ILM strategy 5.2
 
 - hints 
- parallel statement queuing 8.4.3
 
 - Hybrid Columnar Compression 
- example 3.4.2
 
 - hybrid partitioned tables
 
I
- I/O
 - ILM 
- See: Information Lifecycle Management
 
 - ILM policies 
- for Automatic Data Optimization 5.2.2.1
 
 - implementing an ILM system
 - In-Database Archiving
 - indexes 
- advanced compression with partitioning 3.3.6
 - creating in parallel 8.8.5
 - global partitioned 6.3.3.3
 - global partitioned indexes 3.3.2
- managing partitions 3.3.2.2
 
 - local indexes 3.3.1
 - local partitioned 6.3.3.1
 - manageability with partitioning 6.4.2
 - nonpartitioned 6.3.3.2
 - parallel creation 8.8.5
 - parallel DDL storage 8.5.2.6
 - parallel local 8.8.5
 - partitioned 6.3.3
 - partitioning 3.3
 - partitioning guidelines 3.3.7
 - partitions 1.1
 - updating automatically 4.3.1
 - updating global indexes 4.3.1
 - when to partition 2.1.3.2
 
 - index-organized tables
 - index partitions 
- adding 4.4.2.9
 
 - Information Lifecycle Management 
- about 5.1
 - and HEAT_MAP initialization parameter 5.2.1
 - application transparency 5.1.1
 - assigning classes to storage tiers 5.1.2.2.1
 - auditing 5.1.2.4.4
 - benefits of an online archive 5.1.1.3
 - controlling access to data 5.1.2.3.1
 - creating data access 5.1.2.3
 - creating migration policies 5.1.2.3
 - creating storage tiers 5.1.2.2
 - data retention 5.1.2.4.1
 - defining compliance policies 5.1.2.4
 - defining data classes 5.1.2.1
 - enforceable compliance policies 5.1.1
 - enforcing compliance policies 5.1.2.4
 - expiration 5.1.2.4.5
 - fine-grained 5.1.1
 - heat map and automatic data optimization 5.2
 - immutability 5.1.2.4.2
 - implemented with Automatic Data Optimization 5.2.2
 - implementing a system manually with partitioning 5.4
 - implementing using Oracle Database 5.1.2
 - implementing with Heat Map 5.2.1
 - introduction 5
 - lifecycle of data 5.1.2.1.2
 - limitations 5.2.3
 - low-cost storage 5.1.1
 - moving data using partitioning 5.1.2.3.2
 - Oracle Database, and 5.1.1
 - partitioning 5.1.2.1.1
 - partitioning, and 1.3
 - privacy 5.1.2.4.3
 - regulatory requirements 5.1.1.2
 - striping 10.2.3
 - structured and unstructured data 5.1.1.1
 - time-based information 5
 
 - initialization parameters 
- MEMORY_MAX_TARGET 8.6.3.2
 - MEMORY_TARGET 8.6.3.2
 - PARALLEL_EXECUTION_MESSAGE_SIZE 8.6.3.2.1, 8.6.3.2.2
 - PARALLEL_FORCE_LOCAL 8.6.3.1.1
 - PARALLEL_MAX_SERVERS 8.6.3.1.2
 - PARALLEL_MIN_PERCENT 8.6.3.1.3
 - PARALLEL_MIN_SERVERS 8.1.5, 8.6.3.1.4
 - PARALLEL_MIN_TIME_THRESHOLD 8.6.3.1.5
 - PARALLEL_SERVERS_TARGET 8.6.3.1.6
 - SHARED_POOL_SIZE 8.6.3.1.7
 
 - INSERT statement 
- parallelizing INSERT SELECT 8.5.3.4
 
 - instance groups
 - integrity rules 
- parallel DML restrictions 8.5.3.10
 
 - interval-hash partitioning
 - interval-list partitioning
 - interval partitioned tables 
- dropping partitions 4.4.4.2
 
 - interval-partitioned tables
 - interval partitioning
 - interval-range partitioning 
- creating tables using 4.2.2.3
 
 - interval-reference partitioned tables 
- creating 4.1.6
 
 
L
M
- maintenance operations
 - maintenance operations on partitions 
- filtering 4.3.4
 
 - manageability 
- data warehouses 6.4
 
 - managing data validity 
- Temporal Validity 5.3.2
 
 - managing data visibility 
- In-Database Archiving 5.3.1
 
 - managing ILM policies 
- for Automatic Data Optimization 5.2.2.1
 
 - memory 
- configure at 2 levels 8.6.3.2
 
 - MEMORY_MAX_TARGET initialization parameter 8.6.3.2
 - MEMORY_TARGET initialization parameter 8.6.3.2
 - MERGE PARTITION clause 4.4.6
 - MERGE statement 
- parallel MERGE statement 8.5.3.3
 
 - MERGE SUBPARTITION clause 4.4.6
 - merging multiple partitions 4.4.6.7
 - MINIMUM EXTENT parameter 8.5.2.6
 - mirroring with Oracle ASM 
- very large databases (VLDBs) 10.1.2
 
 - MODIFY DEFAULT ATTRIBUTES clause 4.4.7.2.1
- using for partitioned tables 4.4.7.1.1
 
 - MODIFY DEFAULT ATTRIBUTES FOR PARTITION clause 4.4.7.1.2
- of ALTER TABLE statement 4.4.7.1.3
 
 - modifying 
- partitioning 4.4.9
 
 - MODIFY PARTITION clause 4.4.7.2.1, 4.4.7.2.2, 4.4.10, 4.4.11.2.2
 - MODIFY SUBPARTITION clause 4.4.7.2.3
 - monitoring
 - MOVE PARTITION clause 4.4.7.2, 4.4.10
 - MOVE SUBPARTITION clause 4.4.7.2, 4.4.10.2
 - multi-column list partitioning 
- creating tables using 4.1.4.4
 
 - multiple archiver processes 8.8.4.5
 - multiple block sizes 
- restrictions on partitioning 4.1.16
 
 - multiple parallelizers 8.1.7
 - multiple partitions
 
N
- NO_STATEMENT_QUEUING 
- parallel statement queuing hint 8.4.3
 
 - NOLOGGING clause 8.8.4.7
 - NOLOGGING mode
 - nonpartitioned indexes 6.3.3.2
 - nonpartitioned tables 
- changing to partitioned tables 4.6
 
 - non-partitioned tables 
- converting to partitioned tables 4.6.2
 
 - nonprefixed indexes 2.5.2, 3.3.1.2
- global partitioned indexes 3.3.2.1
 
 - nonprefixed indexes_importance 3.3.4
 
O
- object types
 - of ALTER TABLE statement 4.4.7.1.2
 - OLTP database
 - Online Transaction Processing (OLTP)
 - operating system statistics 
- monitoring for parallel processing 8.7.4
 
 - operations 
- partition-wise 3.2
 
 - optimization
 - optimizations 
- parallel SQL 8.1.4.1
 
 - ORA_ARCHIVE_STATE 
- In-Database Archiving 5.3.1
 
 - Oracle Automatic Storage Management settings 
- very large databases (VLDBs) 10.4
 
 - Oracle Database File System 
- very large databases (VLDBs) 10.2.6
 
 - Oracle Database Resource Manager 
- managing parallel statement queue 8.4.1
 
 - Oracle Real Application Clusters 
- instance groups 8.1.8
 
 
P
- PARALLEL_DEGREE_POLICY initialization parameter
 - PARALLEL_EXECUTION_MESSAGE_SIZE initialization parameter 8.6.3.2.1, 8.6.3.2.2
 - PARALLEL_FORCE_LOCAL initialization parameter 8.6.3.1.1
 - PARALLEL_MAX_SERVERS initialization parameter 8.6.3.1.2
- parallel execution 8.6.3.1.2
 
 - PARALLEL_MIN_PERCENT initialization parameter 8.6.3.1.3
 - PARALLEL_MIN_SERVERS initialization parameter 8.1.5, 8.6.3.1.4
 - PARALLEL_MIN_TIME_THRESHOLD initialization parameter 8.6.3.1.5
 - PARALLEL_SERVERS_TARGET initialization parameter 8.6.3.1.6
 - PARALLEL clause 8.8.6.1
 - parallel DDL statements 8.5.2
 - parallel delete 8.5.3.3
 - parallel DELETE statement 8.5.3.3
 - parallel DML 
- considerations for parallel execution 8.8.4
 
 - parallel DML and DDL statements 
- functions 8.5.4.2
 
 - parallel DML operations 8.5.3
 - parallel execution 
- about 8, 8.1, 8.1.4
 - adaptive parallelism 8.2.6
 - bandwidth 8.1.1
 - benefits 8.1.1
 - considerations for parallel DML 8.8.4
 - CPU utilization 8.1.1
 - CREATE TABLE AS SELECT statement 8.8.2
 - DB_BLOCK_SIZE initialization parameter 8.6.3.3.2
 - DB_CACHE_SIZE initialization parameter 8.6.3.3.1
 - DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter 8.6.3.3.3
 - default parameter settings 8.6.1
 - DISK_ASYNCH_IO initialization parameter 8.6.3.3.4
 - forcing for a session 8.6.2
 - full table scans 8.1.2
 - functions 8.5.4
 - fundamental hardware requirements 8.1.3
 - I/O 8.1.1
 - I/O parameters 8.6.3.3
 - index creation 8.8.5
 - initializing parameters 8.6
 - in-memory 8.3
 - inter-operator parallelism 8.1.4.2
 - intra-operator parallelism 8.1.4.2
 - massively parallel systems 8.1.1
 - new features ,
 - Oracle RAC 8.1.8
 - parallel load 8.5.5
 - parallel propagation 8.5.5
 - parallel recovery 8.5.5
 - parallel replication 8.5.5
 - parameters for establishing resource limits 8.6.3.1
 - resource parameters 8.6.3.2
 - symmetric multiprocessors 8.1.1
 - TAPE_ASYNCH_IO initialization parameter 8.6.3.3.4
 - tips for tuning 8.8
 - tuning general parameters 8.6.3
 - tuning parameters 8.6
 - using 8
 - when not to use 8.1.2
 
 - parallel execution strategy 
- implementing 8.8.1
 
 - PARALLEL hint 
- UPDATE, MERGE, and DELETE 8.5.3.3
 
 - parallelism
 - parallelization
 - parallel partition-wise joins 
- performance considerations 6.3.2.4
 
 - parallel processing
 - parallel queries 8.5.1
 - parallel query
 - parallel server resources 
- limiting for a consumer group 8.4.1.2
 
 - parallel servers 
- asynchronous communication 8.1.4.5
 
 - parallel SQL
 - parallel statement queue 
- about 8.4
 - grouping parallel statements 8.4.2
 - hints 8.4.3
 - limiting parallel server resources 8.4.1.2
 - managing for consumer groups 8.4.1
 - managing the order of dequeuing 8.4.1.1
 - managing with Oracle Database Resource Manager 8.4.1
 - NO_STATEMENT_QUEUING hint 8.4.3
 - PARALLEL_DEGREE_POLICY 8.4
 - sample scenario for managing parallel statements 8.4.1.6
 - setting order of parallel statements 8.4.1
 - specifying a critical consumer group 8.4.1.5
 - specifying a DOP limit for a consumer group 8.4.1.4
 - specifying a timeout for a consumer group 8.4.1.3
 - STATEMENT_QUEUING hint 8.4.3
 - using BEGIN_SQL_BLOCK to group statements 8.4.2
 
 - parallel update 8.5.3.3
 - parallel UPDATE statement 8.5.3.3
 - parameters 
- Automatic Data Optimization 5.2.2.7
 
 - partial indexes 
- on partitioned tables 2.5.6
 
 - partial partition-wise joins 6.3.2.2
 - PARTITION_START 
- partition pruning 3.1.3
 
 - PARTITION_STOP 
- partition pruning 3.1.3
 
 - Partition Advisor 
- manageability 2.4.1.2
 
 - partition bound 
- range-partitioned tables 4.1.1.1
 
 - PARTITION BY HASH clause 4.1.3
 - PARTITION BY LIST clause 4.1.4
 - PARTITION BY RANGE clause 4.1.1
- for composite-partitioned tables 4.2
 
 - PARTITION BY REFERENCE clause 4.1.5
 - PARTITION clause
 - partitioned external tables 
- creating 4.1.9
 
 - partitioned indexes 
- about 2.5
 - adding partitions 4.4.2.9
 - administration 4
 - composite partitions 2.5.7
 - creating hash-partitioned global 4.1.3.2
 - creating local index on composite partitioned table 4.2.4.1.3
 - creating local index on hash partitioned table 4.1.3.1
 - creating range partitions 4.1.1.3
 - dropping partitions 4.4.4.3
 - key compression 4.1.13
 - maintenance operations 4.3, 4.4
 - maintenance operations that can be performed 4.3
 - modifying partition default attributes 4.4.7.1.3
 - modifying real attributes of partitions 4.4.7.2.4
 - moving partitions 4.4.10.3
 - Online Transaction Processing (OLTP) 7.2.1
 - rebuilding index partitions 4.4.11
 - renaming index partitions/subpartitions 4.4.12.3
 - secondary indexes on index-organized tables 4.1.15.1
 - splitting partitions 4.4.13.7
 - views 4.8
 - which type to use 2.5.1
 
 - partitioned tables 
- adding partitions 4.4.2
 - adding subpartitions 4.4.2.5.2, 4.4.2.6.2, 4.4.2.7.2
 - administration 4
 - coalescing partitions 4.4.3
 - converting to from non-partitioned tables 4.6.2
 - creating automatic list partitions 4.1.4.3
 - creating composite 4.2
 - creating composite interval 4.2.2
 - creating composite list 4.2.3
 - creating hash partitions 4.1.3
 - creating interval-hash partitions 4.2.2.1
 - creating interval-list partitions 4.2.2.2
 - creating interval partitions 4.1.2
 - creating interval-range partitions 4.2.2.3
 - creating list-hash partitions 4.2.3.1
 - creating list-list partitions 4.2.3.2
 - creating list partitions 4.1.4
 - creating list-range partitions 4.2.3.3
 - creating multi-column list partitions 4.1.4.4
 - creating range-hash partitions 4.2.4.1
 - creating range-list partitions 4.2.4.2
 - creating range partitions 4.1.1, 4.1.1.3
 - creating range-range partitions 4.2.4.3
 - creating reference partitions 4.1.5
 - data warehouses 3.5.1
 - DISABLE ROW MOVEMENT 4.1
 - dropping 4.5
 - dropping partitions 4.4.4
 - ENABLE ROW MOVEMENT 4.1
 - exchanging partitions and subpartitions 4.4.5
 - exchanging partitions of a referenced-partition table 4.4.5.4
 - exchanging partitions with a cascade option 4.4.5.12
 - exchanging subpartitions 4.4.5.7, 4.4.5.9, 4.4.5.11
 - filtering maintenance operations 4.3.4
 - FOR EXCHANGE WITH 4.4.5.1
 - global indexes 7.3.2
 - incremental statistics and partition exchange operations 4.4.5
 - index-organized tables 4.1, 4.1.15.1, 4.1.15.2, 4.1.15.3
 - in-memory column store 4.1.7
 - INTERVAL clause of CREATE TABLE 4.1.2
 - interval-reference 4.1.6
 - local indexes 7.3.1
 - maintenance operations 4.4
 - maintenance operations that can be performed 4.3
 - maintenance operations with global indexes 7.3.2
 - maintenance operations with local indexes 7.3.1
 - marking indexes UNUSABLE 4.4.13
 - merging partitions 4.4.6
 - modifying default attributes 4.4.7.1
 - modifying real attributes of partitions 4.4.7.2
 - modifying real attributes of subpartitions 4.4.7.2.3
 - moving partitions 4.4.10
 - moving subpartitions 4.4.10.2
 - multicolumn partitioning keys 4.1.10
 - partition bound 4.1.1.1
 - partitioning columns 4.1.1.1
 - partitioning keys 4.1.1.1
 - read-only status 4.1.8
 - rebuilding index partitions 4.4.11
 - redefining partitions online 4.6.1
 - renaming partitions 4.4.12
 - renaming subpartitions 4.4.12.2
 - splitting partitions 4.4.13
 - truncating partitions 4.4.14
 - truncating partitions with the cascade option 4.4.14.4
 - truncating subpartitions 4.4.14.3
 - updating global indexes automatically 4.3.1
 - views 4.8
 
 - partition exchange load 
- manageability 6.4.1
 
 - partition granules 8.1.4.3.2
 - partitioning 
- about 1.1
 - administration of indexes 4
 - administration of tables 4
 - advanced index compression 3.3.6
 - advantages 1.1
 - availability 2.2.3, 3
 - basics 2.1.1
 - benefits 2.2
 - bitmap indexes 3.4.1
 - collections in XMLType and object data 2.1.11
 - composite 2.3.2
 - composite list-hash 2.3.2.5
 - composite list-list 2.3.2.6
 - composite list-range 2.3.2.4
 - composite range-hash 2.3.2.2
 - composite range-list 2.3.2.3
 - composite range-range 2.3.2.1
 - concepts 2
 - creating a partitioned index 4.1
 - creating a partitioned table 4.1
 - creating indexes on partitioned tables 2.5.5
 - databases, and 1.4
 - data segment compression 3.4, 3.4.1
 - data segment compression example 3.4.2
 - data warehouses 6
 - data warehouses and scalability 6.2
 - default partition 4.1.4.2
 - default subpartition 4.2.4.2.2
 - deferred segments 4.1.14.1
 - EXCHANGE PARTITION clause 4.4.5.2
 - exchanging a hash partitioned table 4.4.5.6
 - exchanging a range partitioned table 4.4.5.10
 - exchanging interval partitions 4.4.5.3
 - extensions 2.4
 - global hash partitioned indexes 2.5.3.2
 - global indexes 3.3.2
 - global nonpartitioned indexes 2.5.4
 - global partitioned indexes 2.5.3
 - global range partitioned indexes 2.5.3.1
 - guidelines for indexes 3.3.7
 - hash 2.3.1.2
 - Hybrid Columnar Compression example 3.4.2
 - indexes 2.1.3.2, 2.5, 3.3
 - index-organized tables 2.1.4, 4.1, 4.1.15.1, 4.1.15.2, 4.1.15.3
 - Information Lifecycle Management 2.1.6
 - Information Lifecycle Management, and 1.3
 - interval 2.4.1.1, 2.4.1.2
 - interval-hash 4.2.2.1
 - interval-list 4.2.2.2
 - interval-range 4.2.2.3
 - key 2.1.2
 - key extensions 2.4.2
 - list 2.3.1.3, 4.4.8.1, 4.4.8.2
 - list-hash 4.2.3.1
 - list-list 4.2.3.2
 - list-range 4.2.3.3
 - LOB data 2.1.8
 - local indexes 3.3.1
 - local partitioned indexes 2.5.2
 - maintaining partitions 4.4
 - maintenance procedures for segment creation 4.1.14.3
 - manageability 2.2.2, 3
 - manageability extensions 2.4.1
 - manageability with indexes 6.4.2
 - managing partitions 3.3.2.2
 - modifying attributes 4.4.7
 - modifying list partitions 4.4.8
 - modifying the strategy 4.4.9
 - new features ,
 - nonprefixed indexes 3.3.1.2, 3.3.2.1, 3.3.4
 - Online Transaction Processing (OLTP) 7
 - overview 2, 2.1
 - partial indexes on partitioned tables 2.5.6
 - Partition Advisor 2.4.1.2
 - partitioned indexes on composite partitions 2.5.7
 - partition-wise joins 2.2.1.2
 - performance 2.2.1, 3, 3.5
 - performance considerations 3.5
 - performance considerations for composite 3.5.4
 - performance considerations for composite list-hash 3.5.4.4
 - performance considerations for composite list-list 3.5.4.5
 - performance considerations for composite list-range 3.5.4.6
 - performance considerations for composite range-hash 3.5.4.1
 - performance considerations for composite range-list 3.5.4.2
 - performance considerations for composite range-range 3.5.4.3
 - performance considerations for hash 3.5.2
 - performance considerations for interval 3.5.5
 - performance considerations for list 3.5.3
 - performance considerations for range 3.5.6
 - performance considerations for virtual columns 3.5.7
 - placement with striping 10.2.4
 - prefixed indexes 3.3.1.1, 3.3.2.1
 - pruning 2.2.1.1, 3.1
 - range 2.3.1.1
 - range-hash 4.2.4.1
 - range-list 4.2.4.2
 - range-range 4.2.4.3
 - reference 2.4.2.1
 - removing data from tables 6.4.3
 - restrictions for multiple block sizes 4.1.16
 - segments 4.1.14
 - single-level 2.3.1
 - strategies 2.3, 3.5
 - subpartition templates 4.2.5
 - system 2.1.5, 2.4, 2.4.1, 2.4.2
 - tables 2.1.3, 2.1.3.1
 - truncating segments 4.1.14.2
 - type of index to use 2.5.1
 - very large databases (VLDBs), and 1.2
 - virtual columns 2.4.2.2
 
 - partitioning and data compression 
- data warehouses 6.4.4
 
 - partitioning and materialized views 
- data warehouses 6.3.4
 
 - partitioning columns 
- range-partitioned tables 4.1.1.1
 
 - partitioning keys 
- range-partitioned tables 4.1.1.1
 
 - partitioning materialized views 
- data warehouses 6.3.4.1
 
 - partitioning of XMLIndex 
- binary XML tables 4.1.17.2
 
 - partition maintenance operations 7.3.1, 7.3.2
 - partition pruning 
- about 3.1
 - benefits 3.1.1
 - collection tables 3.1.7.3
 - data type conversions 3.1.7.1
 - dynamic 3.1.5
 - dynamic with bind variables 3.1.5.1
 - dynamic with nested loop joins 3.1.5.4
 - dynamic with star transformation 3.1.5.3
 - dynamic with subqueries 3.1.5.2
 - function calls 3.1.7.2
 - identifying 3.1.3
 - information for pruning 3.1.2
 - PARTITION_START 3.1.3
 - PARTITION_STOP 3.1.3
 - static 3.1.4
 - tips and considerations 3.1.7
 - with zone maps 3.1.6
 
 - partitions 1.1
- advanced index compression 3.3.6
 - equipartitioning
 - global indexes 3.3.2, 6.3.3.3
 - guidelines for partitioning indexes 3.3.7
 - indexes 3.3
 - local indexes 3.3.1, 6.3.3.1
 - nonprefixed indexes 2.5.2, 3.3.1.2, 3.3.4
 - on indexes 6.3.3
 - parallel DDL statements 8.5.2.1
 - physical attributes 3.3.8
 - prefixed indexes 3.3.1.1
 
 - PARTITIONS clause 
- for hash partitions 4.1.3
 
 - partition-wise joins 3.2
 - partition-wise operations 3.2
 - performance
 - predicates 
- index partition pruning 3.3.5
 
 - prefixed indexes 3.3.1.1, 3.3.3
- partition pruning 3.3.5
 
 - processes 
- memory contention in parallel processing 8.6.3.1.2
 
 - process monitor process (PMON) 
- parallel DML process recovery 8.5.3.7.2
 
 - producer operations 8.1.4.2
 - pruning partitions
 
R
- range-hash partitioning
 - range-list partitioning
 - range-partitioned tables
 - range partitioning 2.3.1.1
 - range-range partitioning 
- creating tables using 4.2.4.3
 
 - read-only status 
- tables, partitions, and subpartitions 4.1.8
 
 - read-only tablespaces 
- performance considerations 3.5.8
 
 - REBUILD PARTITION clause 4.4.10.3, 4.4.11.2.1
 - REBUILD UNUSABLE LOCAL INDEXES clause 4.4.11.2.2
 - recovery 
- parallel DML operations 8.5.3.7
 
 - reference-partitioned tables 
- adding partitions 4.4.2.8
 
 - reference partitioning
 - RENAME PARTITION clause 4.4.12.1, 4.4.12.3.1
 - RENAME SUBPARTITION clause 4.4.12.2
 - replication 
- restrictions on parallel DML 8.5.3.9
 
 - resources
 - restrictions
 - ROW ARCHIVAL VISIBILITY 
- In-Database Archiving 5.3.1
 
 - row-level compression tiering 
- Automatic Data Optimization 5.2.2.6
 
 - row movement clause for partitioned tables 4.1
 
S
- scalability
 - scalability and manageability 
- very large databases (VLDBs) 10.3
 
 - scans 
- parallel query on full table 8.1.2
 
 - segment-level compression tiering 
- Automatic Data Optimization 5.2.2.5
 
 - segments
 - sessions 
- enabling parallel DML operations 8.5.3.2
 
 - session statistics 
- monitoring for parallel processing 8.7.2
 
 - SET INTERVAL clause 4.4.2.4
 - SHARED_POOL_SIZE initialization parameter 8.6.3.1.7
 - single-level partitioning 2.3.1
 - skewing parallel DML workload 8.1.6
 - SORT_AREA_SIZE initialization parameter 
- parallel execution 8.6.3.2.1.2
 
 - space management
 - SPLIT PARTITION clause 4.4.2.1, 4.4.13
 - SPLIT PARTITION operations 
- optimizing 4.4.13.9
 
 - SPLIT SUBPARTITION  operations 
- optimizing 4.4.13.9
 
 - splitting multiple partitions 4.4.13.8
 - splitting partitions and subpartitions 4.4.13
 - SQL statementsSQL statements
 - STATEMENT_QUEUING 
- parallel statement queuing hint 8.4.3
 
 - statistics 
- operating system 8.7.4
 
 - storage
 - STORAGE clause 
- parallel execution 8.5.2.5
 
 - storage management 
- very large databases (VLDBs) 10
 
 - STORE IN clause 
- partitions 4.2.4.1.2
 
 - stripe and mirror everything 
- very large databases (VLDBs) 10.3.1
 
 - striping
 - striping with Oracle ASM 
- very large databases (VLDBs) 10.2.2
 
 - SUBPARTITION BY HASH clause 
- for composite-partitioned tables 4.2
 
 - SUBPARTITION clause 4.4.2.5.1, 4.4.2.6.1, 4.4.2.7.1, 4.4.13.4
- for composite-partitioned tables 4.2
 
 - SUBPARTITIONS clause 4.4.2.5.1, 4.4.13.4
- for composite-partitioned tables 4.2
 
 - subpartition templates 4.2.5
- modifying 4.3.3
 
 - subqueries 
- in DDL statements 8.5.2.2
 
 - system monitor process (SMON) 
- parallel DML system recovery 8.5.3.7.3
 
 - system partitioning 2.1.5
 - system statistics 
- monitoring for parallel processing 8.7.3
 
 
T
- table compression 
- partitioning 4.1.12
 
 - table queues 
- monitoring parallel processing 8.7.1.7
 
 - tables 
- creating and populating in parallel 8.8.2
 - creating composite partitioned 4.2
 - full partition-wise joins 3.2.1, 6.3.2.1
 - historical 8.5.3.1.4
 - index-organized, partitioning 4.1.15
 - parallel creation 8.5.2.2
 - parallel DDL storage 8.5.2.6
 - partial partition-wise joins 3.2.2, 6.3.2.2
 - partitioning 2.1.3
 - partitions 1.1
 - refreshing in data warehouse 8.5.3.1.1
 - STORAGE clause with parallel execution 8.5.2.5
 - summary 8.5.2.2
 - when to partition 2.1.3.1
 
 - tables for exchange 
- with partitioned tables 4.4.5.1
 
 - TAPE_ASYNCH_IO initialization parameter 
- parallel query 8.6.3.3.4
 
 - temporal validity 
- creating a table with 5.3.3
 
 - Temporal Validity
 - temporary segments 
- parallel DDL 8.5.2.6
 
 - time-based information 
- Information Lifecycle Management 5
 
 - transactions 
- distributed and parallel DML restrictions 8.5.3.12
 
 - triggers
 - TRUNCATE PARTITION clause 4.4.14, 4.4.14.1, 4.4.14.1.1
 - TRUNCATE SUBPARTITION clause 4.4.14.3
 - truncating multiple partitions 4.4.14.2
 - truncating partitions
 - truncating segments 
- partitioning 4.1.14.2
 
 - two-phase commit 8.6.3.2.3.1
 - types of parallelism 8.5
 
V
- V$PQ_SESSTAT view 
- monitoring parallel processing 8.7.1.6
 
 - V$PQ_TQSTAT view 
- monitoring parallel processing 8.7.1.7
 
 - V$PX_BUFFER_ADVICE view 
- monitoring parallel processing 8.7.1.1
 
 - V$PX_PROCESS_SYSSTAT view 
- monitoring parallel processing 8.7.1.5
 
 - V$PX_PROCESS view 
- monitoring parallel processing 8.7.1.4
 
 - V$PX_SESSION view 
- monitoring parallel processing 8.7.1.2
 
 - V$PX_SESSTAT view 
- monitoring parallel processing 8.7.1.3
 
 - V$RSRC_CONS_GROUP_HISTORY view 
- monitoring parallel processing 8.7.1.8
 
 - V$RSRC_CONSUMER_GROUP view 
- monitoring parallel processing 8.7.1.9
 
 - V$RSRC_PLAN_HISTORY view 
- monitoring parallel processing 8.7.1.11
 
 - V$RSRC_PLAN view 
- monitoring parallel processing 8.7.1.10
 
 - V$RSRC_SESSION_INFO view 
- parallel statement queuing metrics 8.7.1.12
 
 - V$RSRCMGRMETRIC view 
- parallel statement queuing statistics 8.7.1.13
 
 - V$SESSTAT view 8.7.4
 - V$SYSSTAT view 8.8.4.6
 - valid-time period 
- Temporal Validity 5.3.2
 
 - very large databases (VLDBs) 
- about 1
 - backing up and recovering 9
 - backup tools 9.2.3
 - backup types 9.2.2
 - bigfile tablespaces 10.2.5
 - database structures for recovering data 9.2.1
 - hardware-based mirroring 10.1.1
 - hardware-based striping 10.2.1
 - high availability 10.1
 - introduction 1
 - mirroring with Oracle ASM 10.1.2
 - new features ,
 - Oracle Automatic Storage Management settings 10.4
 - Oracle Backup and Recovery 9.2
 - Oracle Database File System 10.2.6
 - Oracle Data Pump 9.2.3, 9.2.3.2
 - Oracle Recovery Manager 9.2.3.1
 - partitioning, and 1.2
 - performance 10.2
 - physical and logical backups 9.2.2
 - RAID 0 striping 10.2.1.1
 - RAID 1 mirroring 10.1.1.1
 - RAID 5 mirroring 10.1.1.2
 - RAID 5 striping 10.2.1.2
 - RMAN 9.2.3
 - scalability and manageability 10.3
 - storage management 10
 - stripe and mirror everything 10.3.1
 - striping with Oracle ASM 10.2.2
 - user-managed backups 9.2.3, 9.2.3.3
 
 - views
 - views for ILM policies 
- Automatic Data Optimization 5.2.2.9
 
 - virtual column-based partitioning
 - virtual column partitioning 
- performance considerations 3.5.7
 
 - VLDBs 
- very large databases 1