Uses of Class
oracle.pgx.config.mllib.inputconfig.InputPropertyConfig
-
Packages that use InputPropertyConfig Package Description oracle.pgx.api.mllib This package contains graph machine learning tools for use with PGX.oracle.pgx.config.mllib This package contains APIs to all graph machine learning features of PGX.oracle.pgx.config.mllib.inputconfig -
-
Uses of InputPropertyConfig in oracle.pgx.api.mllib
Methods in oracle.pgx.api.mllib with parameters of type InputPropertyConfig Modifier and Type Method Description SelfWiseModelBuilder. setEdgeInputPropertyConfigs(InputPropertyConfig... propertyConfigs)Set edge input property configs.SelfWiseModelBuilder. setVertexInputPropertyConfigs(InputPropertyConfig... propertyConfigs)Set vertex input property configs. -
Uses of InputPropertyConfig in oracle.pgx.config.mllib
Methods in oracle.pgx.config.mllib that return types with arguments of type InputPropertyConfig Modifier and Type Method Description java.util.Map<java.lang.String,InputPropertyConfig>GraphWiseBaseModelConfig. getEdgeInputPropertyConfigs()java.util.Map<java.lang.String,InputPropertyConfig>GraphWiseBaseModelConfig. getVertexInputPropertyConfigs()Methods in oracle.pgx.config.mllib with parameters of type InputPropertyConfig Modifier and Type Method Description voidGraphWiseBaseModelConfig. setEdgeInputPropertyConfigs(InputPropertyConfig... edgeInputPropertyConfigs)voidGraphWiseBaseModelConfig. setVertexInputPropertyConfigs(InputPropertyConfig... vertexInputPropertyConfigs)Constructor parameters in oracle.pgx.config.mllib with type arguments of type InputPropertyConfig Constructor Description EdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, GraphWiseBaseModelConfig.Backend backend, java.lang.Integer edgeEmbeddingDim, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, EdgeCombinationMethod edgeCombinationMethod, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)GraphWiseBaseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, GraphWiseBaseModelConfig.Backend backend, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)GraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)SupervisedEdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer edgeEmbeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedEdgeWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, boolean normalize, java.lang.String edgeTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, EdgeCombinationMethod edgeCombinationMethod, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)SupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, java.lang.String vertexTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)UnsupervisedEdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer edgeEmbeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, UnsupervisedEdgeWiseModelConfig.LossFunction lossFunction, boolean normalize, GraphWiseBaseModelConfig.Backend backend, EdgeCombinationMethod edgeCombinationMethod, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, GraphWiseDgiLayerConfig dgiLayerConfig, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseEmbeddingConfig embeddingConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig) -
Uses of InputPropertyConfig in oracle.pgx.config.mllib.inputconfig
Subclasses of InputPropertyConfig in oracle.pgx.config.mllib.inputconfig Modifier and Type Class Description classCategoricalPropertyConfigConfiguration class for categorical feature handling.classContinuousPropertyConfigConfiguration class for continuous feature handling.classEmbeddingTableConfigConfiguration class for handling categorical feature using embedding table method.classOneHotEncodingConfigConfiguration class for handling categorical feature using one hot encoding method.Constructors in oracle.pgx.config.mllib.inputconfig with parameters of type InputPropertyConfig Constructor Description InputPropertyConfig(InputPropertyConfig otherConfig)
-