Uses of Class
oracle.pgx.config.mllib.GraphWiseBaseModelConfig.Backend
-
Packages that use GraphWiseBaseModelConfig.Backend Package Description oracle.pgx.config.mllib This package contains APIs to all graph machine learning features of PGX. -
-
Uses of GraphWiseBaseModelConfig.Backend in oracle.pgx.config.mllib
Fields in oracle.pgx.config.mllib declared as GraphWiseBaseModelConfig.Backend Modifier and Type Field Description static GraphWiseBaseModelConfig.Backend
GraphWiseBaseModelConfig. DEFAULT_BACKEND
LibTorchMethods in oracle.pgx.config.mllib that return GraphWiseBaseModelConfig.Backend Modifier and Type Method Description GraphWiseBaseModelConfig.Backend
GraphWiseBaseModelConfig. getBackend()
static GraphWiseBaseModelConfig.Backend
GraphWiseBaseModelConfig.Backend. valueOf(java.lang.String name)
Returns the enum constant of this type with the specified name.static GraphWiseBaseModelConfig.Backend[]
GraphWiseBaseModelConfig.Backend. values()
Returns an array containing the constants of this enum type, in the order they are declared.Constructors in oracle.pgx.config.mllib with parameters of type GraphWiseBaseModelConfig.Backend Constructor Description EdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, GraphWiseBaseModelConfig.Backend backend, java.lang.Integer edgeEmbeddingDim, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, EdgeCombinationMethod edgeCombinationMethod, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
GraphWiseBaseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, GraphWiseBaseModelConfig.Backend backend, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
GraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, boolean fitted, double trainingLoss, int vertexInputFeatureDim, int edgeInputFeatureDim, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
SupervisedEdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer edgeEmbeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedEdgeWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, boolean normalize, java.lang.String edgeTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, EdgeCombinationMethod edgeCombinationMethod, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
SupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetVertexLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, oracle.pgx.config.mllib.SupervisedGraphWiseModelConfig.LossFunction lossFunction, LossFunction lossFunctionClass, BatchGenerator batchGenerator, GraphWisePredictionLayerConfig[] predictionLayerConfigs, java.lang.String vertexTargetPropertyName, LabelMaps labelMaps, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
UnsupervisedEdgeWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer edgeEmbeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetEdgeLabelSets, boolean fitted, double trainingLoss, int inputFeatureDim, int edgeInputFeatureDim, UnsupervisedEdgeWiseModelConfig.LossFunction lossFunction, boolean normalize, GraphWiseBaseModelConfig.Backend backend, EdgeCombinationMethod edgeCombinationMethod, EdgeWiseModelConfig.EdgeWiseConvModelVariant variant, GraphWiseDgiLayerConfig dgiLayerConfig, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
UnsupervisedGraphWiseModelConfig(int batchSize, int numEpochs, double learningRate, double weightDecay, int embeddingDim, java.lang.Integer seed, GraphWiseBaseConvLayerConfig[] convLayerConfigs, boolean standardize, boolean normalize, boolean shuffle, java.util.List<java.lang.String> vertexInputPropertyNames, java.util.List<java.lang.String> edgeInputPropertyNames, java.util.Map<java.lang.String,InputPropertyConfig> vertexInputPropertyConfigs, java.util.Map<java.lang.String,InputPropertyConfig> edgeInputPropertyConfigs, oracle.pgx.config.internal.categorymapping.CategoryMappingConfig categoryMappingConfig, java.util.List<java.util.Set<java.lang.String>> targetVertexLabels, boolean fitted, double trainingLoss, int inputFeatureDim, int inputEdgeFeatureDim, UnsupervisedGraphWiseModelConfig.LossFunction lossFunction, GraphWiseDgiLayerConfig dgiLayerConfig, GraphWiseEmbeddingConfig embeddingConfig, GraphWiseBaseModelConfig.Backend backend, GraphWiseModelConfig.GraphConvModelVariant variant, boolean enableAccelerator, GraphWiseValidationConfig validationConfig)
-