Class Buffer

  • Direct Known Subclasses:
    ByteBuffer

    public abstract class Buffer
    extends Object
    A container for data of a specific primitive type.

    A buffer is a linear, finite sequence of elements of a specific primitive type. Aside from its content, the essential properties of a buffer are its capacity, limit, and position:

    A buffer's capacity is the number of elements it contains. The capacity of a buffer is never negative and never changes.

    A buffer's limit is the index of the first element that should not be read or written. A buffer's limit is never negative and is never greater than its capacity.

    A buffer's position is the index of the next element to be read or written. A buffer's position is never negative and is never greater than its limit.

    Transferring data

    Each subclass of this class defines two categories of get and put operations:

    Relative operations read or write one or more elements starting at the current position and then increment the position by the number of elements transferred. If the requested transfer exceeds the limit then a relative get operation throws a BufferUnderflowException and a relative put operation throws a BufferOverflowException; in either case, no data is transferred.

    Absolute operations take an explicit element index and do not affect the position. Absolute get and put operations throw an IndexOutOfBoundsException if the index argument exceeds the limit.

    Invariants

    The following invariant holds for the position, limit, and capacity values:

    0 <= position <= limit <= capacity

    A newly-created buffer always has a position of zero. The initial limit may be zero, or it may be some other value that depends upon the type of the buffer and the manner in which it is constructed. Each element of a newly-allocated buffer is initialized to zero.

    Clearing, flipping, and rewinding

    In addition to methods for accessing the position, limit, and capacity values, this class also defines the following operations upon buffers:

    • clear() makes a buffer ready for a new sequence of relative put operations: It sets the limit to the capacity and the position to zero.

    • flip() makes a buffer ready for a new sequence of relative get operations: It sets the limit to the current position and then sets the position to zero.

    • rewind() makes a buffer ready for re-reading the data that it already contains: It leaves the limit unchanged and sets the position to zero.

    • slice() creates a subsequence of a buffer: It leaves the limit and the position unchanged.

    Invocation chaining

    Methods in this class that do not otherwise have a value to return are specified to return the buffer upon which they are invoked. This allows method invocations to be chained; for example, the sequence of statements

     b.flip();
     b.position(23);
     b.limit(42);
     
    can be replaced by the single, more compact statement
     b.flip().position(23).limit(42);
     

    Since:
    3.1
    • Method Summary

      All Methods Instance Methods Abstract Methods Concrete Methods 
      Modifier and Type Method Description
      abstract Object array()
      Returns the array that backs this buffer  (optional operation).
      abstract int arrayOffset()
      Returns the offset within this buffer's backing array of the first element of the buffer  (optional operation).
      int capacity()
      Returns this buffer's capacity.
      Buffer clear()
      Clears this buffer.
      Buffer flip()
      Flips this buffer.
      abstract boolean hasArray()
      Tells whether or not this buffer is backed by an accessible array.
      boolean hasRemaining()
      Tells whether there are any elements between the current position and the limit.
      abstract boolean isDirect()
      Tells whether or not this buffer is direct.
      abstract boolean isReadOnly()
      Tells whether or not this buffer is read-only.
      int limit()
      Returns this buffer's limit.
      Buffer limit​(int newLimit)
      Sets this buffer's limit.
      int position()
      Returns this buffer's position.
      Buffer position​(int newPosition)
      Sets this buffer's position.
      int remaining()
      Returns the number of elements between the current position and the limit.
      Buffer rewind()
      Rewinds this buffer.
      abstract Buffer slice()
      Creates a new buffer whose content is a shared subsequence of this buffer's content.
    • Method Detail

      • capacity

        public final int capacity()
        Returns this buffer's capacity.
        Returns:
        The capacity of this buffer.
      • position

        public final int position()
        Returns this buffer's position.
        Returns:
        The position of this buffer.
      • position

        public final Buffer position​(int newPosition)
        Sets this buffer's position.
        Parameters:
        newPosition - The new position value; must be nonnegative and no larger than the current limit.
        Returns:
        This buffer.
        Throws:
        SystemException - with reason code SystemException.ILLEGAL_VALUE if the newPosition is negative or larger than the current limit.
      • limit

        public final int limit()
        Returns this buffer's limit.
        Returns:
        The limit of this buffer.
      • limit

        public final Buffer limit​(int newLimit)
        Sets this buffer's limit. If the position is larger than the new limit then it is set to the new limit.
        Parameters:
        newLimit - the new limit value.
        Returns:
        this buffer.
        Throws:
        SystemException - with reason code SystemException.ILLEGAL_VALUE if newLimit is negative or larger than this buffer's capacity.
      • clear

        public final Buffer clear()
        Clears this buffer. The position is set to zero and the limit is set to the capacity.

        Invoke this method before using a sequence of put operations to fill this buffer. For example:

         buf.clear(); // Prepare buffer for reading
         in.read(buf); // Read data
         

        This method does not actually erase the data in the buffer, but it is named as if it did because it will most often be used in situations in which that might as well be the case.

        Returns:
        This buffer.
      • flip

        public final Buffer flip()
        Flips this buffer. The limit is set to the current position and then the position is set to zero.

        After a sequence of put operations, invoke this method to prepare for a sequence of relative get operations. For example:

         buf.put(magic); // Prepend header
         in.read(buf); // Read data into rest of buffer
         buf.flip(); // Flip buffer
         out.write(buf); // Write header + data
         

        This method is often used in conjunction with the compact method when transferring data from one place to another.

        Returns:
        This buffer.
      • rewind

        public final Buffer rewind()
        Rewinds this buffer. The position is set to zero.

        Invoke this method before a sequence of get operations, assuming that the limit has already been set appropriately. For example:

         out.write(buf); // Write remaining data
         buf.rewind(); // Rewind buffer
         buf.get(array); // Copy data into array
         

        Returns:
        this buffer.
      • remaining

        public final int remaining()
        Returns the number of elements between the current position and the limit.
        Returns:
        The number of elements remaining in this buffer.
      • hasRemaining

        public final boolean hasRemaining()
        Tells whether there are any elements between the current position and the limit.
        Returns:
        true if, and only if, there is at least one element remaining in this buffer.
      • isReadOnly

        public abstract boolean isReadOnly()
        Tells whether or not this buffer is read-only.
        Returns:
        true if, and only if, this buffer is read-only
      • hasArray

        public abstract boolean hasArray()
        Tells whether or not this buffer is backed by an accessible array.

        If this method returns true then the arrayOffset methods may safely be invoked.

        Returns:
        true if, and only if, this buffer is backed by an array and is not read-only
      • array

        public abstract Object array()
        Returns the array that backs this buffer  (optional operation).

        This method is intended to allow array-backed buffers to be passed to native code more efficiently. Concrete subclasses provide more strongly-typed return values for this method.

        Modifications to this buffer's content will cause the returned array's content to be modified, and vice versa.

        Invoke the hasArray method before invoking this method in order to ensure that this buffer has an accessible backing array.

        Returns:
        The array that backs this buffer
        Throws:
        ReadOnlyBufferException - If this buffer is backed by an array but is read-only
        SystemException - with reason code SystemException.ILLEGAL_USE if this buffer is not backed by an accessible array
      • arrayOffset

        public abstract int arrayOffset()
        Returns the offset within this buffer's backing array of the first element of the buffer  (optional operation).

        If this buffer is backed by an array then buffer position p corresponds to array index p + arrayOffset().

        Invoke the hasArray method before invoking this method in order to ensure that this buffer has an accessible backing array.

        Returns:
        The offset within this buffer's array of the first element of the buffer
        Throws:
        ReadOnlyBufferException - If this buffer is backed by an array but is read-only
        SystemException - with reason code SystemException.ILLEGAL_USE if this buffer is not backed by an accessible array
      • isDirect

        public abstract boolean isDirect()
        Tells whether or not this buffer is direct.
        Returns:
        true if, and only if, this buffer is direct
      • slice

        public abstract Buffer slice()
        Creates a new buffer whose content is a shared subsequence of this buffer's content.

        The content of the new buffer will start at this buffer's current position. Changes to this buffer's content will be visible in the new buffer, and vice versa; the two buffers' position and limit values will be independent.

        The new buffer's position will be zero, its capacity and its limit will be the number of elements remaining in this buffer. The new buffer will be direct if, and only if, this buffer is direct, and it will be read-only if, and only if, this buffer is read-only.

        Returns:
        The new buffer