Pattern Matching for switch Expressions and Statements
A switch
statement transfers control to one of several
statements or expressions, depending on the value of its selector expression. In earlier
releases, the selector expression must evaluate to a number, string or enum
constant, and case labels must be constants. However, in this release, the selector
expression can be any reference type or an int
type but not a
long
, float
, double
, or
boolean
type, and case
labels can have patterns.
Consequently, a switch
statement or expression can test whether its
selector expression matches a pattern, which offers more flexibility and expressiveness
compared to testing whether its selector expression is exactly equal to a
constant.
For background information about pattern matching for
switch
expressions and statements, see JEP 441.
Consider the following code that calculates the perimeter of certain shapes from the section Pattern Matching for the instanceof Operator:
interface Shape { }
record Rectangle(double length, double width) implements Shape { }
record Circle(double radius) implements Shape { }
...
public static double getPerimeter(Shape s) throws IllegalArgumentException {
if (s instanceof Rectangle r) {
return 2 * r.length() + 2 * r.width();
} else if (s instanceof Circle c) {
return 2 * c.radius() * Math.PI;
} else {
throw new IllegalArgumentException("Unrecognized shape");
}
}
You can rewrite this code to use a pattern switch
expression
as follows:
public static double getPerimeter(Shape s) throws IllegalArgumentException {
return switch (s) {
case Rectangle r -> 2 * r.length() + 2 * r.width();
case Circle c -> 2 * c.radius() * Math.PI;
default -> throw new IllegalArgumentException("Unrecognized shape");
};
}
The following example uses a switch
statement instead of a
switch
expression:
public static double getPerimeter(Shape s) throws IllegalArgumentException {
switch (s) {
case Rectangle r: return 2 * r.length() + 2 * r.width();
case Circle c: return 2 * c.radius() * Math.PI;
default: throw new IllegalArgumentException("Unrecognized shape");
}
}
Selector Expression Type
switch
expression matches the selector expression
obj
with type patterns that involve a class type, an enum type, a
record type, and an array type:
record Point(int x, int y) { }
enum Color { RED, GREEN, BLUE; }
...
static void typeTester(Object obj) {
switch (obj) {
case null -> System.out.println("null");
case String s -> System.out.println("String");
case Color c -> System.out.println("Color with " + c.values().length + " values");
case Point p -> System.out.println("Record class: " + p.toString());
case int[] ia -> System.out.println("Array of int values of length" + ia.length);
default -> System.out.println("Something else");
}
}
When Clauses
You can add a Boolean expression right after a pattern label with a
when
clause. This is called a guarded pattern label. The
Boolean expression in the when
clause is called a guard. A value
matches a guarded pattern label if it matches the pattern and, if so, the guard also
evaluates to true. Consider the following example:
static void test(Object obj) {
switch (obj) {
case String s:
if (s.length() == 1) {
System.out.println("Short: " + s);
} else {
System.out.println(s);
}
break;
default:
System.out.println("Not a string");
}
}
You can move the Boolean expression s.length == 1
right
after the the case
label with a when
clause:
static void test(Object obj) {
switch (obj) {
case String s when s.length() == 1 -> System.out.println("Short: " + s);
case String s -> System.out.println(s);
default -> System.out.println("Not a string");
}
}
The first pattern label (which is a guarded pattern label) matches if
obj
is both a String
and of length 1. The second
patten label matches if obj
is a String
of a different
length.
A guarded patten label has the form p
when e
where p is a pattern and e
is a
Boolean expression. The scope of any pattern variable declared in p includes e.
Qualified enum Constants as case Constants
You can use qualified enum
constants as
case
constants in switch
expressions and
statements.
Consider the following switch
expression whose selector expression is an
enum
type:
public enum Standard { SPADE, HEART, DIAMOND, CLUB }
static void determineSuitStandardDeck(Standard d) {
switch (d) {
case SPADE -> System.out.println("Spades");
case HEART -> System.out.println("Hearts");
case DIAMOND -> System.out.println("Diamonds");
default -> System.out.println("Clubs");
}
}
In the following example, the type of the selector expression is an
interface that's been implemented by two enum
types. Because the type
of the selector expression isn't an enum
type, this
switch
expression uses guarded patterns instead:
sealed interface CardClassification permits Standard, Tarot {}
public enum Standard implements CardClassification
{ SPADE, HEART, DIAMOND, CLUB }
public enum Tarot implements CardClassification
{ SPADE, HEART, DIAMOND, CLUB, TRUMP, EXCUSE }
static void determineSuit(CardClassification c) {
switch (c) {
case Standard s when s == Standard.SPADE -> System.out.println("Spades");
case Standard s when s == Standard.HEART -> System.out.println("Hearts");
case Standard s when s == Standard.DIAMOND -> System.out.println("Diamonds");
case Standard s -> System.out.println("Clubs");
case Tarot t when t == Tarot.SPADE -> System.out.println("Spades or Piques");
case Tarot t when t == Tarot.HEART -> System.out.println("Hearts or C\u0153ur");
case Tarot t when t == Tarot.DIAMOND -> System.out.println("Diamonds or Carreaux");
case Tarot t when t == Tarot.CLUB -> System.out.println("Clubs or Trefles");
case Tarot t when t == Tarot.TRUMP -> System.out.println("Trumps or Atouts");
case Tarot t -> System.out.println("The Fool or L'Excuse");
}
}
However, switch
expressions and statements allow qualified
enum
constants, so you could rewrite this example as follows:
static void determineSuitQualifiedNames(CardClassification c) {
switch (c) {
case Standard.SPADE -> System.out.println("Spades");
case Standard.HEART -> System.out.println("Hearts");
case Standard.DIAMOND -> System.out.println("Diamonds");
case Standard.CLUB -> System.out.println("Clubs");
case Tarot.SPADE -> System.out.println("Spades or Piques");
case Tarot.HEART -> System.out.println("Hearts or C\u0153ur");
case Tarot.DIAMOND -> System.out.println("Diamonds or Carreaux");
case Tarot.CLUB -> System.out.println("Clubs or Trefles");
case Tarot.TRUMP -> System.out.println("Trumps or Atouts");
case Tarot.EXCUSE -> System.out.println("The Fool or L'Excuse");
}
}
Therefore, you can use an enum
constant when the type of the selector
expression is not an enum
type provided that the enum
constant's name is qualified and its value is assignment-compatible with the type of the
selector expression.
Pattern Label Dominance
switch
block. In addition, the compiler raises an
error if a pattern label can never match because a preceding one will always match
first. The following example results in a compile-time error:
static void error(Object obj) {
switch(obj) {
case CharSequence cs ->
System.out.println("A sequence of length " + cs.length());
case String s -> // error: this case label is dominated by a preceding case label
System.out.println("A string: " + s);
default -> { break; }
}
}
The first pattern label case CharSequence cs
dominates the second pattern label case String s
because every
value that matches the pattern String s
also matches the pattern
CharSequence cs
but not the other way around. It's because
String
is a subtype of CharSequence
.
A pattern label can dominate a constant label. These examples cause compile-time errors:
static void error2(Integer value) {
switch(value) {
case Integer i ->
System.out.println("Integer: " + i);
case -1, 1 -> // Compile-time errors for both cases -1 and 1:
// this case label is dominated by a preceding case label
System.out.println("The number 42");
default -> { break; }
}
}
enum Color { RED, GREEN, BLUE; }
static void error3(Color value) {
switch(value) {
case Color c ->
System.out.println("Color: " + c);
case RED -> // error: this case label is dominated by a preceding case label
System.out.println("The color red");
}
}
Note:
Guarded pattern labels don't dominate constant labels. For example: static void testInteger(Integer value) {
switch(value) {
case Integer i when i > 0 ->
System.out.println("Positive integer");
case 1 ->
System.out.println("Value is 1");
case -1 ->
System.out.println("Value is -1");
case Integer i ->
System.out.println("An integer");
}
}
Although the value 1
matches both the guarded pattern label
case Integer i when i > 0
and the constant label case
1
, the guarded pattern label doesn't dominate the constant label.
Guarded patterns aren't checked for dominance because they're generally undecidable.
Consequently, you should order your case labels so that constant labels appear
first, followed by guarded pattern labels, and then followed by nonguarded pattern
labels:
static void testIntegerBetter(Integer value) {
switch(value) {
case 1 ->
System.out.println("Value is 1");
case -1 ->
System.out.println("Value is -1");
case Integer i when i > 0 ->
System.out.println("Positive integer");
case Integer i ->
System.out.println("An integer");
}
}
Type Coverage in switch Expressions and Statements
As described in Switch Expressions, the switch
blocks of switch
expressions and switch
statements, which use pattern or
null
labels, must be exhaustive. This means that for all possible
values, there must be a matching switch
label. The following
switch
expression is not exhaustive and generates a compile-time
error. Its type coverage consists of the subtypes of String
or
Integer
, which doesn't include the type of the selector expression,
Object:
static int coverage(Object obj) {
return switch (obj) { // Error - not exhaustive
case String s -> s.length();
case Integer i -> i;
};
}
However, the type coverage of the case label default
is all
types, so the following example compiles:
static int coverage(Object obj) {
return switch (obj) {
case String s -> s.length();
case Integer i -> i;
default -> 0;
};
}
The compiler takes into account whether the type of a selector expression is
a sealed class. The following switch
expression compiles. It doesn't
need a default
case label because its type coverage is the classes
A
, B
, and C
, which are the only
permitted subclasses of S
, the type of the selector expression:
sealed interface S permits A, B, C { }
final class A implements S { }
final class B implements S { }
record C(int i) implements S { } // Implicitly final
...
static int testSealedCoverage(S s) {
return switch (s) {
case A a -> 1;
case B b -> 2;
case C c -> 3;
};
}
The compiler can also determine the type coverage of a
switch
expression or statement if the type of its selector
expression is a generic sealed class. The following example compiles. The only permitted
subclasses of interface I
are classes A
and
B
. However, because the selector expression is of type
I<Integer>
, the switch
block requires only
class B
in its type coverage to be exhaustive:
sealed interface I<T> permits A, B {}
final class A<X> implements I<String> {}
final class B<Y> implements I<Y> {}
static int testGenericSealedExhaustive(I<Integer> i) {
return switch (i) {
// Exhaustive as no A case possible!
case B<Integer> bi -> 42;
};
}
The type of a switch
expression or statement's selector
expression can also be a generic record. As always, a switch
expression
or statement must be exhaustive. The following example doesn't compile. No match for a
Pair
exists that contains two values, both of type
A
:
record Pair<T>(T x, T y) {}
class A {}
class B extends A {}
static void notExhaustive(Pair<A> p) {
switch (p) {
// error: the switch statement does not cover all possible input values
case Pair<A>(A a, B b) -> System.out.println("Pair<A>(A a, B b)");
case Pair<A>(B b, A a) -> System.out.println("Pair<A>(B b, A a)");
}
}
The following example compiles. Interface I is sealed. Types C and D cover all possible instances:
record Pair<T>(T x, T y) {}
sealed interface I permits C, D {}
record C(String s) implements I {}
record D(String s) implements I {}
static void exhaustiveSwitch(Pair<I> p) {
switch (p) {
case Pair<I>(I i, C c) -> System.out.println("C = " + c.s());
case Pair<I>(I i, D d) -> System.out.println("D = " + d.s());
}
}
If a switch
expression or statement is exhaustive at
compile time but not at run time, then a MatchException
is
thrown. This can happen when a class that contains an exhaustive switch
expression or statement has been compiled, but a sealed hierarchy that is used in the
analysis of the switch
expression or statement has been subsequently
changed and recompiled. Such changes are migration incompatible and may lead to a
MatchException being thrown when running the
switch
statement or expression. Consequently, you need to recompile
the class containing the switch
expression or statement.
Consider the following two classes ME
and
Seal
:
class ME {
public static void main(String[] args) {
System.out.println(switch (Seal.getAValue()) {
case A a -> 1;
case B b -> 2;
});
}
}
sealed interface Seal permits A, B {
static Seal getAValue() {
return new A();
}
}
final class A implements Seal {}
final class B implements Seal {}
The switch
expression in the class ME
is
exhaustive and this example compiles. When you run ME
, it prints the
value 1
. However, suppose you edit Seal
as follows and
compile this class and not
ME
:
sealed interface Seal permits A, B, C {
static Seal getAValue() {
return new A();
}
}
final class A implements Seal {}
final class B implements Seal {}
final class C implements Seal {}
When you run ME
, it throws a MatchException:
Exception in thread "main" java.lang.MatchException
at ME.main(ME.java:3)
Inference of Type Arguments in Record Patterns
The compiler can infer the type arguments for a generic record pattern in
all constructs that accept patterns: switch
statements,
instanceof
expressions, and enhanced for
statements.
In the following example, the compiler infers MyPair(var s, var
i)
as MyPair<String, Integer>(String s, Integer
i)
:
record MyPair<T, U>(T x, U y) { }
static void recordInference(MyPair<String, Integer> p){
switch (p) {
case MyPair(var s, var i) ->
System.out.println(s + ", #" + i);
}
}
See Record Patterns for more examples of inference of type arguments in record patterns.
Scope of Pattern Variable Declarations
As described in the section Pattern Matching for the instanceof Operator, the scope of a pattern variable is the places where the program can
reach only if the instanceof
operator is true
:
public static double getPerimeter(Shape shape) throws IllegalArgumentException {
if (shape instanceof Rectangle s) {
// You can use the pattern variable s of type Rectangle here.
} else if (shape instanceof Circle s) {
// You can use the pattern variable s of type Circle here
// but not the pattern variable s of type Rectangle.
} else {
// You cannot use either pattern variable here.
}
}
In a switch
expression or statement, the scope of a pattern
variable declared in a case
label includes the following:
- The
when
clause of thecase
label:static void test(Object obj) { switch (obj) { case Character c when c.charValue() == 7: System.out.println("Ding!"); break; default: break; } } }
The scope of pattern variable
c
includes thewhen
clause of thecase
label that contains the declaration ofc
. -
The expression, block, or
throw
statement that appears to the right of the arrow of thecase
label:static void test(Object obj) { switch (obj) { case Character c -> { if (c.charValue() == 7) { System.out.println("Ding!"); } System.out.println("Character, value " + c.charValue()); } case Integer i -> System.out.println("Integer: " + i); default -> { break; } } }
The scope of pattern variable
c
includes the block to the right ofcase Character c ->
. The scope of pattern variablei
includes theprintln
statement to the right ofcase Integer i ->
. -
The
switch
-labeled statement group of acase
label:static void test(Object obj) { switch (obj) { case Character c: if (c.charValue() == 7) { System.out.print("Ding "); } if (c.charValue() == 9) { System.out.print("Tab "); } System.out.println("character, value " + c.charValue()); default: // You cannot use the pattern variable c here: break; } }
The scope of pattern variable
c
includes thecase Character c
statement group: the twoif
statements and theprintln
statement that follows them. The scope doesn't include thedefault
statement group even though theswitch
statement can execute thecase Character c
statement group, fall through thedefault
label, and then execute thedefault
statement group.Note:
You will get a compile-time error if it's possible to fall through a case label that declares a pattern variable. The following example doesn't compile:static void test(Object obj) { switch (obj) { case Character c: if (c.charValue() == 7) { System.out.print("Ding "); } if (c.charValue() == 9) { System.out.print("Tab "); } System.out.println("character"); case Integer i: // Compile-time error System.out.println("An integer " + i); default: System.out.println("Neither character nor integer"); } }
If this code were allowed, and the value of the selector expression,
obj
, were aCharacter
, then theswitch
statement can execute thecase Character c
statement group and then fall through thecase Integer i
label, where the pattern variablei
would have not been initialized.
Null case Labels
switch
expressions and switch
statements used to throw a NullPointerException
if the value of the
selector expression is null
. Currently, to add more flexibility, a
null
case label is available:
static void test(Object obj) {
switch (obj) {
case null -> System.out.println("null!");
case String s -> System.out.println("String");
default -> System.out.println("Something else");
}
}
This example prints null!
when obj
is
null
instead of throwing a
NullPointerException
.
You may not combine a null
case label with anything but a
default
case label. The following generates a compiler error:
static void testStringOrNull(Object obj) {
switch (obj) {
// error: invalid case label combination
case null, String s -> System.out.println("String: " + s);
default -> System.out.println("Something else");
}
}
However, the following compiles:
static void testStringOrNull(Object obj) {
switch (obj) {
case String s -> System.out.println("String: " + s);
case null, default -> System.out.println("null or not a string");
}
}
If a selector expression evaluates to null
and the
switch
block does not have null
case label, then a
NullPointerException
is thrown as normal. Consider the following
switch
statement:
String s = null;
switch (s) {
case Object obj -> System.out.println("This doesn't match null");
// No null label; NullPointerException is thrown
// if s is null
}
Although the pattern label case Object obj
matches objects
of type String, this example throws a
NullPointerException
. The selector expression evaluates to
null
, and the switch
expression doesn't contain a
null
case label.