public class Arrays extends Object
The methods in this class all throw a NullPointerException
,
if the specified array reference is null, except where noted.
The documentation for the methods contained in this class includes briefs description of the implementations. Such descriptions should be regarded as implementation notes, rather than parts of the specification. Implementors should feel free to substitute other algorithms, so long as the specification itself is adhered to.
This class is a member of the Java Collections Framework.
Modifier and Type | Method and Description |
---|---|
static <T> List<T> |
asList(T... a)
Returns a fixed-size list backed by the specified array.
|
static int |
binarySearch(byte[] a,
byte key)
Searches the specified array of bytes for the specified value using the
binary search algorithm.
|
static int |
binarySearch(byte[] a,
int fromIndex,
int toIndex,
byte key)
Searches a range of
the specified array of bytes for the specified value using the
binary search algorithm.
|
static int |
binarySearch(char[] a,
char key)
Searches the specified array of chars for the specified value using the
binary search algorithm.
|
static int |
binarySearch(char[] a,
int fromIndex,
int toIndex,
char key)
Searches a range of
the specified array of chars for the specified value using the
binary search algorithm.
|
static int |
binarySearch(double[] a,
double key)
Searches the specified array of doubles for the specified value using
the binary search algorithm.
|
static int |
binarySearch(double[] a,
int fromIndex,
int toIndex,
double key)
Searches a range of
the specified array of doubles for the specified value using
the binary search algorithm.
|
static int |
binarySearch(float[] a,
float key)
Searches the specified array of floats for the specified value using
the binary search algorithm.
|
static int |
binarySearch(float[] a,
int fromIndex,
int toIndex,
float key)
Searches a range of
the specified array of floats for the specified value using
the binary search algorithm.
|
static int |
binarySearch(int[] a,
int key)
Searches the specified array of ints for the specified value using the
binary search algorithm.
|
static int |
binarySearch(int[] a,
int fromIndex,
int toIndex,
int key)
Searches a range of
the specified array of ints for the specified value using the
binary search algorithm.
|
static int |
binarySearch(long[] a,
int fromIndex,
int toIndex,
long key)
Searches a range of
the specified array of longs for the specified value using the
binary search algorithm.
|
static int |
binarySearch(long[] a,
long key)
Searches the specified array of longs for the specified value using the
binary search algorithm.
|
static int |
binarySearch(Object[] a,
int fromIndex,
int toIndex,
Object key)
Searches a range of
the specified array for the specified object using the binary
search algorithm.
|
static int |
binarySearch(Object[] a,
Object key)
Searches the specified array for the specified object using the binary
search algorithm.
|
static int |
binarySearch(short[] a,
int fromIndex,
int toIndex,
short key)
Searches a range of
the specified array of shorts for the specified value using
the binary search algorithm.
|
static int |
binarySearch(short[] a,
short key)
Searches the specified array of shorts for the specified value using
the binary search algorithm.
|
static <T> int |
binarySearch(T[] a,
int fromIndex,
int toIndex,
T key,
Comparator<? super T> c)
Searches a range of
the specified array for the specified object using the binary
search algorithm.
|
static <T> int |
binarySearch(T[] a,
T key,
Comparator<? super T> c)
Searches the specified array for the specified object using the binary
search algorithm.
|
static boolean[] |
copyOf(boolean[] original,
int newLength)
Copies the specified array, truncating or padding with false (if necessary)
so the copy has the specified length.
|
static byte[] |
copyOf(byte[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static char[] |
copyOf(char[] original,
int newLength)
Copies the specified array, truncating or padding with null characters (if necessary)
so the copy has the specified length.
|
static double[] |
copyOf(double[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static float[] |
copyOf(float[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static int[] |
copyOf(int[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static long[] |
copyOf(long[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static short[] |
copyOf(short[] original,
int newLength)
Copies the specified array, truncating or padding with zeros (if necessary)
so the copy has the specified length.
|
static <T> T[] |
copyOf(T[] original,
int newLength)
Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length.
|
static <T,U> T[] |
copyOf(U[] original,
int newLength,
Class<? extends T[]> newType)
Copies the specified array, truncating or padding with nulls (if necessary)
so the copy has the specified length.
|
static boolean |
equals(boolean[] a,
boolean[] a2)
Returns true if the two specified arrays of booleans are
equal to one another.
|
static boolean |
equals(byte[] a,
byte[] a2)
Returns true if the two specified arrays of bytes are
equal to one another.
|
static boolean |
equals(char[] a,
char[] a2)
Returns true if the two specified arrays of chars are
equal to one another.
|
static boolean |
equals(double[] a,
double[] a2)
Returns true if the two specified arrays of doubles are
equal to one another.
|
static boolean |
equals(float[] a,
float[] a2)
Returns true if the two specified arrays of floats are
equal to one another.
|
static boolean |
equals(int[] a,
int[] a2)
Returns true if the two specified arrays of ints are
equal to one another.
|
static boolean |
equals(long[] a,
long[] a2)
Returns true if the two specified arrays of longs are
equal to one another.
|
static boolean |
equals(Object[] a,
Object[] a2)
Returns true if the two specified arrays of Objects are
equal to one another.
|
static boolean |
equals(short[] a,
short[] a2)
Returns true if the two specified arrays of shorts are
equal to one another.
|
static void |
fill(boolean[] a,
boolean val)
Assigns the specified boolean value to each element of the specified
array of booleans.
|
static void |
fill(byte[] a,
byte val)
Assigns the specified byte value to each element of the specified array
of bytes.
|
static void |
fill(char[] a,
char val)
Assigns the specified char value to each element of the specified array
of chars.
|
static void |
fill(double[] a,
double val)
Assigns the specified double value to each element of the specified
array of doubles.
|
static void |
fill(float[] a,
float val)
Assigns the specified float value to each element of the specified array
of floats.
|
static void |
fill(int[] a,
int val)
Assigns the specified int value to each element of the specified array
of ints.
|
static void |
fill(long[] a,
long val)
Assigns the specified long value to each element of the specified array
of longs.
|
static void |
fill(Object[] a,
Object val)
Assigns the specified Object reference to each element of the specified
array of Objects.
|
static void |
fill(short[] a,
short val)
Assigns the specified short value to each element of the specified array
of shorts.
|
static void |
sort(byte[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(byte[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(char[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(char[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(double[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(double[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(float[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(float[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(int[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(int[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(long[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(long[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static void |
sort(Object[] a)
Sorts the specified array of objects into ascending order, according
to the natural ordering of its elements.
|
static void |
sort(Object[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the specified array of objects into
ascending order, according to the
natural ordering of its
elements.
|
static void |
sort(short[] a)
Sorts the specified array into ascending numerical order.
|
static void |
sort(short[] a,
int fromIndex,
int toIndex)
Sorts the specified range of the array into ascending order.
|
static <T> void |
sort(T[] a,
Comparator<? super T> c)
Sorts the specified array of objects according to the order induced by
the specified comparator.
|
static <T> void |
sort(T[] a,
int fromIndex,
int toIndex,
Comparator<? super T> c)
Sorts the specified range of the specified array of objects according
to the order induced by the specified comparator.
|
public static <T> List<T> asList(T... a)
Collection.toArray()
. The returned list
implements RandomAccess
.
This method also provides a convenient way to create a fixed-size list initialized to contain several elements:
List<String> stooges = Arrays.asList("Larry", "Moe", "Curly");
T
- the class of the objects in the arraya
- the array by which the list will be backedpublic static int binarySearch(byte[] a, byte key)
sort(byte[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(byte[] a, int fromIndex, int toIndex, byte key)
sort(byte[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(char[] a, char key)
sort(char[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(char[] a, int fromIndex, int toIndex, char key)
sort(char[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(double[] a, double key)
sort(double[])
method) prior to making this call.
If it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(double[] a, int fromIndex, int toIndex, double key)
sort(double[], int, int)
method)
prior to making this call.
If it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(float[] a, float key)
sort(float[])
method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(float[] a, int fromIndex, int toIndex, float key)
sort(float[], int, int)
method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found. This method considers all NaN values to be
equivalent and equal.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(int[] a, int key)
sort(int[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(int[] a, int fromIndex, int toIndex, int key)
sort(int[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(long[] a, int fromIndex, int toIndex, long key)
sort(long[], int, int)
method)
prior to making this call. If it
is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(long[] a, long key)
sort(long[])
method) prior to making this call. If it
is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forpublic static int binarySearch(Object[] a, int fromIndex, int toIndex, Object key)
sort(Object[], int, int)
method) prior to making this
call. If it is not sorted, the results are undefined.
(If the range contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the range contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forClassCastException
- if the search key is not comparable to the
elements of the array within the specified range.IllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(Object[] a, Object key)
sort(Object[])
method) prior to making this call.
If it is not sorted, the results are undefined.
(If the array contains elements that are not mutually comparable (for
example, strings and integers), it cannot be sorted according
to the natural ordering of its elements, hence results are undefined.)
If the array contains multiple
elements equal to the specified object, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forClassCastException
- if the search key is not comparable to the
elements of the array.public static int binarySearch(short[] a, int fromIndex, int toIndex, short key)
sort(short[], int, int)
method)
prior to making this call. If
it is not sorted, the results are undefined. If the range contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static int binarySearch(short[] a, short key)
sort(short[])
method) prior to making this call. If
it is not sorted, the results are undefined. If the array contains
multiple elements with the specified value, there is no guarantee which
one will be found.a
- the array to be searchedkey
- the value to be searched forpublic static <T> int binarySearch(T[] a, int fromIndex, int toIndex, T key, Comparator<? super T> c)
sort(T[], int, int, Comparator)
method) prior to making this call.
If it is not sorted, the results are undefined.
If the range contains multiple elements equal to the specified object,
there is no guarantee which one will be found.T
- the class of the objects in the arraya
- the array to be searchedfromIndex
- the index of the first element (inclusive) to be
searchedtoIndex
- the index of the last element (exclusive) to be searchedkey
- the value to be searched forc
- the comparator by which the array is ordered. A
null value indicates that the elements'
natural ordering should be used.ClassCastException
- if the range contains elements that are not
mutually comparable using the specified comparator,
or the search key is not comparable to the
elements in the range using this comparator.IllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0 or toIndex > a.length
public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c)
sort(T[], Comparator)
method) prior to making this call. If it is
not sorted, the results are undefined.
If the array contains multiple
elements equal to the specified object, there is no guarantee which one
will be found.T
- the class of the objects in the arraya
- the array to be searchedkey
- the value to be searched forc
- the comparator by which the array is ordered. A
null value indicates that the elements'
natural ordering should be used.ClassCastException
- if the array contains elements that are not
mutually comparable using the specified comparator,
or the search key is not comparable to the
elements of the array using this comparator.public static boolean[] copyOf(boolean[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static byte[] copyOf(byte[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static char[] copyOf(char[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static double[] copyOf(double[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static float[] copyOf(float[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static int[] copyOf(int[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static long[] copyOf(long[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static short[] copyOf(short[] original, int newLength)
original
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static <T> T[] copyOf(T[] original, int newLength)
T
- the class of the objects in the arrayoriginal
- the array to be copiednewLength
- the length of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullpublic static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType)
U
- the class of the objects in the original arrayT
- the class of the objects in the returned arrayoriginal
- the array to be copiednewLength
- the length of the copy to be returnednewType
- the class of the copy to be returnedNegativeArraySizeException
- if newLength is negativeNullPointerException
- if original is nullArrayStoreException
- if an element copied from
original is not of a runtime type that can be stored in
an array of class newTypepublic static boolean equals(boolean[] a, boolean[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(byte[] a, byte[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(char[] a, char[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(double[] a, double[] a2)
Two doubles d1 and d2 are considered equal if:
new Double(d1).equals(new Double(d2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0d unequal to -0.0d.)
a
- one array to be tested for equalitya2
- the other array to be tested for equalityDouble.equals(Object)
public static boolean equals(float[] a, float[] a2)
Two floats f1 and f2 are considered equal if:
new Float(f1).equals(new Float(f2))(Unlike the == operator, this method considers NaN equals to itself, and 0.0f unequal to -0.0f.)
a
- one array to be tested for equalitya2
- the other array to be tested for equalityFloat.equals(Object)
public static boolean equals(int[] a, int[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(long[] a, long[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(Object[] a, Object[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static boolean equals(short[] a, short[] a2)
a
- one array to be tested for equalitya2
- the other array to be tested for equalitypublic static void fill(boolean[] a, boolean val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(byte[] a, byte val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(char[] a, char val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(double[] a, double val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(float[] a, float val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(int[] a, int val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(long[] a, long val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void fill(Object[] a, Object val)
a
- the array to be filledval
- the value to be stored in all elements of the arrayArrayStoreException
- if the specified value is not of a
runtime type that can be stored in the specified arraypublic static void fill(short[] a, short val)
a
- the array to be filledval
- the value to be stored in all elements of the arraypublic static void sort(byte[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(byte[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(char[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(char[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(double[] a)
The <
relation does not provide a total order on all double
values: -0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: -0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(double[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
The <
relation does not provide a total order on all double
values: -0.0d == 0.0d
is true
and a Double.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Double.compareTo(java.lang.Double)
: -0.0d
is treated as less than value
0.0d
and Double.NaN
is considered greater than any
other value and all Double.NaN
values are considered equal.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(float[] a)
The <
relation does not provide a total order on all float
values: -0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: -0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(float[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
The <
relation does not provide a total order on all float
values: -0.0f == 0.0f
is true
and a Float.NaN
value compares neither less than, greater than, nor equal to any value,
even itself. This method uses the total order imposed by the method
Float.compareTo(java.lang.Float)
: -0.0f
is treated as less than value
0.0f
and Float.NaN
is considered greater than any
other value and all Float.NaN
values are considered equal.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(int[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(int[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(long[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(long[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static void sort(Object[] a)
Comparable
interface. Furthermore, all elements in the array must be
mutually comparable (that is, e1.compareTo(e2)
must
not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
a
- the array to be sortedClassCastException
- if the array contains elements that are not
mutually comparable (for example, strings and integers)IllegalArgumentException
- (optional) if the natural
ordering of the array elements is found to violate the
Comparable
contractpublic static void sort(Object[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to index toIndex
, exclusive.
(If fromIndex==toIndex
, the range to be sorted is empty.) All
elements in this range must implement the Comparable
interface. Furthermore, all elements in this range must be mutually
comparable (that is, e1.compareTo(e2)
must not throw a
ClassCastException
for any elements e1
and
e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
a
- the array to be sortedfromIndex
- the index of the first element (inclusive) to be
sortedtoIndex
- the index of the last element (exclusive) to be sortedIllegalArgumentException
- if fromIndex > toIndex
or
(optional) if the natural ordering of the array elements is
found to violate the Comparable
contractArrayIndexOutOfBoundsException
- if fromIndex < 0
or
toIndex > a.length
ClassCastException
- if the array contains elements that are
not mutually comparable (for example, strings and
integers).public static void sort(short[] a)
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedpublic static void sort(short[] a, int fromIndex, int toIndex)
fromIndex
, inclusive, to
the index toIndex
, exclusive. If fromIndex == toIndex
,
the range to be sorted is empty.
Implementation note: The sorting algorithm is a Dual-Pivot Quicksort by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm offers O(n log(n)) performance on many data sets that cause other quicksorts to degrade to quadratic performance, and is typically faster than traditional (one-pivot) Quicksort implementations.
a
- the array to be sortedfromIndex
- the index of the first element, inclusive, to be sortedtoIndex
- the index of the last element, exclusive, to be sortedIllegalArgumentException
- if fromIndex > toIndex
ArrayIndexOutOfBoundsException
- if fromIndex < 0
or toIndex > a.length
public static <T> void sort(T[] a, Comparator<? super T> c)
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the array).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
T
- the class of the objects to be sorteda
- the array to be sortedc
- the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.ClassCastException
- if the array contains elements that are
not mutually comparable using the specified comparatorIllegalArgumentException
- (optional) if the comparator is
found to violate the Comparator
contractpublic static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c)
fromIndex
, inclusive, to index
toIndex
, exclusive. (If fromIndex==toIndex
, the
range to be sorted is empty.) All elements in the range must be
mutually comparable by the specified comparator (that is,
c.compare(e1, e2)
must not throw a ClassCastException
for any elements e1
and e2
in the range).
This sort is guaranteed to be stable: equal elements will not be reordered as a result of the sort.
T
- the class of the objects to be sorteda
- the array to be sortedfromIndex
- the index of the first element (inclusive) to be
sortedtoIndex
- the index of the last element (exclusive) to be sortedc
- the comparator to determine the order of the array. A
null
value indicates that the elements'
natural ordering should be used.ClassCastException
- if the array contains elements that are not
mutually comparable using the specified comparator.IllegalArgumentException
- if fromIndex > toIndex
or
(optional) if the comparator is found to violate the
Comparator
contractArrayIndexOutOfBoundsException
- if fromIndex < 0
or
toIndex > a.length
Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. Use of this specification is subject to license terms.