Observação:

Crie um Pipeline de Dados em Tempo Real com o Oracle Cloud Infrastructure Big Data Service

Introdução

No mundo atual orientado por dados, as organizações confiam em pipelines de dados eficientes para capturar, processar e analisar dados em tempo real. A Oracle Cloud Infrastructure (OCI) fornece um ecossistema robusto de serviços que podem ser aproveitados para criar um pipeline de dados avançado. Neste tutorial, orientaremos você no processo de criação de um pipeline de dados que aproveite o Oracle Cloud Infrastructure Big Data Service (OCI BDS). O OCI BDS é um serviço baseado em nuvem fornecido pela Oracle que permite aos usuários criar e gerenciar clusters Hadoop, clusters Spark e outros serviços de big data. Utilizaremos uma parte de seu ecossistema que inclui Kafka, Flink, Schema Registry e Trino para construir esse pipeline.

Arquitetura do Pipeline

Ao longo deste tutorial, forneceremos instruções detalhadas e exemplos de código para garantir uma implantação de pipeline de dados perfeita e segura.

Objetivos

Pré-requisitos

Tarefa 1: Criar um Cluster do Oracle Big Data com Kafka/Flink/Schema Registry/Trino ativado

  1. Crie um ambiente BDS (ODH 2.0) no OCI. Para criar o cluster do BDS, consulte Conceitos Básicos de um Cluster do Big Data ODH Não Altamente Disponível.

  2. Faça login no Ambari com o seguinte URL: https://<cluster name>un0-hostname>:7183/ para adicionar serviços Kafka, Flink, registro de esquema e Trino. Informe o nome de usuário e a senha e clique em INSCREVA-SE.

    Login no Ambari

  3. Clique em reticências (...) ao lado de Serviços e selecione Adicionar Serviço.

    Adicionar Serviços

  4. Verifique Kafka, Flink, registro de esquema e Trino e clique em Próximo.

    Escolher Serviços

  5. Se você vir as configurações recomendadas a seguir, clique em PROCEED ANYWAY e, em seguida, clique em DEPLOY.

    Continuar Mesmo assim

  6. Após a instalação, clique em PRÓXIMO e, em seguida, clique em CONCLUIR.

    Depois da próxima instalação

    Após a conclusão da instalação

  7. Reinicie todos os componentes afetados. Clique em reticências (...) ao lado de Serviços, selecione Reiniciar Tudo o Necessário e, após reiniciar, clique em OK.

    Serviços Ambari Start

  8. Faça log-in no nó mestre do cluster do Oracle Big Data Service por meio de um comando SSH ou utilizando putty com o arquivo ppk usando as credenciais do usuário opc. Depois de fazer log-in, eleve suas permissões para o usuário root. Usamos putty para fazer login nos nós.

    sudo su -
    
  9. Execute as etapas a seguir para fazer upload do arquivo jar para que você possa acessar o Kafka com o Flink.

    1. Faça download de lib.zip em qualquer diretório (por exemplo, /tmp) e descompacte-o.

      cd /tmp
      wget https://objectstorage.ap-tokyo-1.oraclecloud.com/p/bhsTSKQYGjbeGwm5JW63Re3_o9o2JOrKiQVi_-6hrQfrB7lGSvA1z5RPyDLy3lpU/n/sehubjapacprod/b/live-lab/o/download/lib.zip
      #unzip lib
      unzip /tmp/lib.zip
      
    2. Execute o comando a seguir para copiar o jar para todos os nós do BDS.

      dcli -C "cp /usr/odh/current/flink/connectors/*kafka*.jar  /usr/odh/current/flink/lib"
      dcli -C "cp /usr/lib/flink/connectors/flink-connector-jdbc-1.15.2.jar  /usr/odh/current/flink/lib"
      dcli -C "cp /usr/odh/current/kafka-broker/libs/kafka-clients-3.2.0.jar  /usr/odh/current/flink/lib"
      su - hdfs
      hadoop fs -put /usr/odh/current/flink/connectors/*.jar /flink/lib/flink-libs/
      hadoop fs -put /usr/odh/current/kafka-broker/libs/kafka-clients-3.2.0.jar /flink/lib/flink-libs/
      hadoop fs -put /tmp/lib/mysql-connector-java-8.0.28.jar /flink/lib/flink-libs/
      
  10. Faça login no Trino usando os comandos a seguir e crie um esquema e uma tabela em que o consumidor do Flink gravará os dados do Avro.

    For HA Cluster
    
    /usr/lib/trino/bin/trino-cli --server <cordinator dns>:7778 --krb5-principal <username> --krb5-keytab-path <path to key tab> trino.service.keytab --krb5-remote-service-name trino --user <username> --truststore-path=/etc/security/serverKeys/truststore.jks
    
    For NON HA Cluster
    
    /usr/lib/trino/bin/trino-cli --server <cordinator dns>:8285
    
    Create Schema
    
    CREATE SCHEMA <catalog>.<schema name> WITH ( LOCATION  = '<object store>/<folder>');
    
    Create table on SCHEMA
    
    CREATE TABLE <catalog>.<schema name>.<table name> (
    name varchar,
    lastname varchar,
    age int,
    email varchar,
    timestamp bigint
    )
    WITH (
    format = 'AVRO',
    avro_schema_url = '<object store>/<avro schema file name>'
    )
    
    

    Observação: siga as etapas para configurar o Hive Metastore para usar a implementação SerdeStorageSchemaReader. É necessário que a Trino consulte dados do armazenamento de objetos do OCI.

  11. Vá para Ambari, Hive, Configuração e Hive-site personalizado. Defina a seguinte propriedade para configurar o Hive Metastore: metastore.storage.schema.reader.impl=org.apache.hadoop.hive.metastore.SerDeStorageSchemaReader.

  12. Crie o bucket do OCI Object Storage para armazenar a saída.

Tarefa 2: Criar um projeto Java Maven usando dependências de POM

Para iniciar o desenvolvimento do pipeline de dados em tempo real, vamos configurar um projeto Java Maven com as dependências necessárias a seguir. Você pode escolher qualquer IDE ou tipo de projeto que se adapte à sua preferência.

<dependencies>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <version>3.8.1</version>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka</artifactId>
      <version>1.15.2</version>
    </dependency>
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka_2.12</artifactId>
      <version>3.2.0</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-java -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-streaming-java</artifactId>
      <version>1.15.2</version>
      <scope>provided</scope>
    </dependency>
    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-core -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-core</artifactId>
      <version>1.15.2</version>
      <scope>provided</scope>
    </dependency>


    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/schema-registry-serdes -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>schema-registry-serdes</artifactId>
      <version>1.0.0</version>
    </dependency>


    <!-- https://mvnrepository.com/artifact/org.apache.avro/avro -->
    <dependency>
      <groupId>org.apache.avro</groupId>
      <artifactId>avro</artifactId>
      <version>1.11.3</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/schema-registry-client -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>schema-registry-client</artifactId>
      <version>1.0.0</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/schema-registry-common -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>schema-registry-common</artifactId>
      <version>1.0.0</version>
    </dependency>


    <dependency>
      <groupId>javax.ws.rs</groupId>
      <artifactId>javax.ws.rs-api</artifactId>
      <version>2.0.1</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/jersey-shaded -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>jersey-shaded</artifactId>
      <version>0.9.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/common-auth -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>common-auth</artifactId>
      <version>1.0.0</version>
    </dependency>


    <!-- https://mvnrepository.com/artifact/com.hortonworks.registries/registry-common-client -->
    <dependency>
      <groupId>com.hortonworks.registries</groupId>
      <artifactId>registry-common-client</artifactId>
      <version>1.0.0</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients -->
    <dependency>
      <groupId>org.apache.kafka</groupId>
      <artifactId>kafka-clients</artifactId>
      <version>3.2.0</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.datatype/jackson-datatype-guava -->
    <dependency>
      <groupId>com.fasterxml.jackson.datatype</groupId>
      <artifactId>jackson-datatype-guava</artifactId>
      <version>2.14.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.datatype/jackson-datatype-joda -->
    <dependency>
      <groupId>com.fasterxml.jackson.datatype</groupId>
      <artifactId>jackson-datatype-joda</artifactId>
      <version>2.14.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.module/jackson-module-parameter-names -->
    <dependency>
      <groupId>com.fasterxml.jackson.module</groupId>
      <artifactId>jackson-module-parameter-names</artifactId>
      <version>2.14.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.datatype/jackson-datatype-jdk8 -->
    <dependency>
      <groupId>com.fasterxml.jackson.datatype</groupId>
      <artifactId>jackson-datatype-jdk8</artifactId>
      <version>2.14.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.datatype/jackson-datatype-jsr310 -->
    <dependency>
      <groupId>com.fasterxml.jackson.datatype</groupId>
      <artifactId>jackson-datatype-jsr310</artifactId>
      <version>2.14.1</version>
    </dependency>
    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.datatype/jackson-datatype-json-org -->
    <dependency>
      <groupId>com.fasterxml.jackson.datatype</groupId>
      <artifactId>jackson-datatype-json-org</artifactId>
      <version>2.14.1</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-annotations -->
    <dependency>
      <groupId>com.fasterxml.jackson.core</groupId>
      <artifactId>jackson-annotations</artifactId>
      <version>2.14.1</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-avro -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-avro</artifactId>
      <version>1.15.2</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-avro-cloudera-registry -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-avro-cloudera-registry</artifactId>
      <version>1.15.1-csa1.8.0.4</version>
    </dependency>

    <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-redis -->
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-redis_2.10</artifactId>
      <version>1.1.5-hadoop1</version>
    </dependency>

    <dependency>
      <groupId>com.oracle.oci.sdk</groupId>
      <artifactId>oci-java-sdk-redis</artifactId>
      <version>3.26.0</version>
    </dependency>
</dependencies>

Tarefa 3: Criar produtor Java Kafka Avro usando código de amostra e arquivo avsc

Crie o produtor Avro do Java Kafka para seu pipeline de dados usando o código de amostra fornecido e o esquema Avro. Substitua placeholders como your_kafka_bootstrap_servers, your_schema_registry_url, your_kafka_topic e adapte o esquema Avro aos seus valores e estrutura específicos.

Este código servirá como base para o seu produtor Avro, permitindo-lhe produzir dados Avro para o tópico Kafka dentro do seu pipeline de dados em tempo real.

package org.example;
import com.hortonworks.registries.schemaregistry.client.SchemaRegistryClient;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.common.serialization.StringSerializer;
import com.hortonworks.registries.schemaregistry.serdes.avro.kafka.KafkaAvroSerializer;
import org.apache.avro.Schema;
import org.apache.avro.generic.GenericData;
import org.apache.avro.generic.GenericRecord;


import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.util.Collections;
import java.util.Properties;

public class KafkaAvroProducer {
    public static void main(String[] args) {

        String schemaFileName = "ItemTransaction.avsc"; // Provide the path to your Avro schema file
        String topicName = "kafka-flink-avro-1"; // Provide the Kafka topic name

        try {
            //Map<String, Object> config = new HashMap<>();

            // Load producer properties
            Properties producerConfig = new Properties();
            //Map<String, Object> producerConfig = new HashMap<>();
            producerConfig.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "<Kafka server IP/URL>:<Port>");
            producerConfig.putAll(Collections.singletonMap(SchemaRegistryClient.Configuration.SCHEMA_REGISTRY_URL.name(), "http://<Schema Registry IP/URL>:<Port>/api/v1"));
            producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class.getName());
            producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, KafkaAvroSerializer.class.getName());

            // Create a Kafka producer
            Producer<String, GenericRecord> producer = new KafkaProducer<>(producerConfig);
            // Load Avro schema from resources
            Schema schema = loadAvroSchemaFromResources(schemaFileName);
            // Create a sample Avro record
            while (true) {
                GenericRecord avroRecord = new GenericData.Record(schema);
                avroRecord.put("name", "My Name");
                avroRecord.put("lastname", "My Last Name");
                avroRecord.put("age", 10);
                avroRecord.put("email", "a@mail.com");
                avroRecord.put("timestamp", System.currentTimeMillis());

                // Create a Kafka record with a topic and Avro payload
                ProducerRecord<String, GenericRecord> record = new ProducerRecord<>(topicName, avroRecord);

                // Send the message
                producer.send(record);
                // Sleep for 3 seconds before sending the next message
                Thread.sleep(3000);
            }
            //producer.close();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    private static Schema loadAvroSchemaFromResources(String schemaFileName) throws IOException {
        try (InputStream inputStream = KafkaAvroProducer.class.getClassLoader().getResourceAsStream(schemaFileName)) {
            if (inputStream == null) {
                throw new IllegalArgumentException("Schema file not found in resources: " + schemaFileName);
            }
            return new Schema.Parser().parse(inputStream);
        }
    }
}

O formato de mensagem Avro definido pelo arquivo de esquema ItemTransaction.avsc, conforme mostrado abaixo, é armazenado na pasta resources do projeto. É importante destacar que, para serialização e desserialização do Avro, uma classe POJO específica do Java Avro chamada ItemTransaction.java precisa ser gerada para lidar efetivamente com o formato Avro.

{
   "type" : "record",
   "name" : "ItemTransaction",
   "namespace": "org.example",
   "fields" : [
      { "name" : "name" , "type" : "string" },
      { "name" : "lastname" , "type" : "string" },
      { "name" : "age" , "type"  : "int" },
      { "name" : "email" , "type" : "string" },
      { "name" : "timestamp" , "type" : "long" }
   ]
}

Construiremos o consumidor do Java Flink para seu pipeline de dados usando o código de amostra fornecido. Substitua placeholders como your_kafka_bootstrap_servers, your_consumer_group_id e your_kafka_topic pelos detalhes específicos da configuração do Kafka.

Este exemplo de código configura um consumidor do Flink Kafka dentro do ambiente do Flink, permitindo que você processe o fluxo de entrada do Kafka. Personalize a lógica de processamento conforme necessário para o pipeline de dados.

package org.example;

import com.hortonworks.registries.schemaregistry.client.SchemaRegistryClient;
import com.hortonworks.registries.schemaregistry.serdes.avro.kafka.KafkaAvroDeserializer;
import org.apache.avro.generic.GenericRecord;
import org.apache.flink.api.common.functions.ReduceFunction;
import org.apache.flink.api.common.functions.RichMapFunction;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple1;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.core.fs.Path;
import org.apache.flink.formats.avro.AvroOutputFormat;
import org.apache.flink.formats.avro.registry.cloudera.ClouderaRegistryKafkaDeserializationSchema;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;

import java.util.Collections;
import java.util.Properties;

public class KafkaAvroFlinkConsumer {
    public static void main(String[] args) throws Exception {
        String topicName = "kafka-flink-avro-1"; // Same Kafka topic as the producer
        Properties consumerConfig = new Properties();
        consumerConfig.put(ConsumerConfig.GROUP_ID_CONFIG, "flink-group-id");
        consumerConfig.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "<Kafka server Ip/Url>:<Port>");
        consumerConfig.putAll(Collections.singletonMap(SchemaRegistryClient.Configuration.SCHEMA_REGISTRY_URL.name(), "<Schema Regitry Ip/Utl>:<Port>/api/v1"));
        consumerConfig.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class.getName());
        consumerConfig.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, KafkaAvroDeserializer.class.getName());
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // Create a Flink Kafka consumer with the custom Avro deserialization schema
        FlinkKafkaConsumer<ItemTransaction> kafkaConsumer = new FlinkKafkaConsumer<>(
                topicName,
                ClouderaRegistryKafkaDeserializationSchema
                        .builder(ItemTransaction.class)
                        .setRegistryAddress("http://<Schema Registry Ip/url>:<Port>/api/v1")
                        .build(),
                consumerConfig
        );

        // Add the Kafka consumer to the Flink environment
        DataStream<ItemTransaction> avroStream = env.addSource(kafkaConsumer);

        KeyedStream<ItemTransaction, Tuple1<String>> keyedStream = avroStream.keyBy(new KeyExtractor());

        // Process and write output using DynamicOutputPathMapper
        DataStream<Tuple2<String, Long>> windowedCounts = keyedStream
                .window(TumblingProcessingTimeWindows.of(Time.minutes(1)))
                .reduce(new ReduceFunction<ItemTransaction>() {
                    @Override
                    public ItemTransaction reduce(ItemTransaction item1, ItemTransaction item2) throws Exception {
                        return item1; // You can modify the reduce logic as needed
                    }
                })
                .map(new DynamicOutputPathMapper())
                .keyBy(0)
                .sum(1);

        windowedCounts.print();

        // Print Avro records for processing
        avroStream.print();

        env.execute("KafkaAvroFlinkConsumer");
    }

    public static class KeyExtractor implements KeySelector<ItemTransaction, Tuple1<String>> {
        @Override
        public Tuple1<String> getKey(ItemTransaction item) {
            return new Tuple1<>(item.getName().toString());
        }
    }

    // Custom Avro deserialization schema

    public static class DynamicOutputPathMapper extends RichMapFunction<ItemTransaction, Tuple2<String, Long>> {
        private long windowCount = 0;
        private transient AvroOutputFormat<ItemTransaction> avroOutputFormat;
        private transient int subtaskIndex;

        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            subtaskIndex = getRuntimeContext().getIndexOfThisSubtask();
        }

        @Override
        public void close() throws Exception {
            if (avroOutputFormat != null) {
                avroOutputFormat.close();
                avroOutputFormat = null;
            }
        }

        @Override
        public Tuple2<String, Long> map(ItemTransaction item) throws Exception {
            // Increment the window count
            windowCount++;

            // Generate a dynamic output path based on the window count and subtask index
            String dynamicOutputPath = "oci://flink-output@orasenatdctocloudcorp01/output" + windowCount + "_" + subtaskIndex + ".txt";

            // Initialize or update the AvroOutputFormat
            if (avroOutputFormat == null) {
                avroOutputFormat = new AvroOutputFormat<>(new Path(dynamicOutputPath), ItemTransaction.class);
                avroOutputFormat.configure(null);
                avroOutputFormat.open(subtaskIndex, getRuntimeContext().getNumberOfParallelSubtasks());
            } else if (!dynamicOutputPath.equals(avroOutputFormat.getOutputFilePath())) {
                avroOutputFormat.close();
                avroOutputFormat.setOutputFilePath(new Path(dynamicOutputPath));
                avroOutputFormat.open(subtaskIndex, getRuntimeContext().getNumberOfParallelSubtasks());
            }

            // Write the item using AvroOutputFormat
            avroOutputFormat.writeRecord(item);

            return new Tuple2<>("Window Count", 1L);
        }
    }
}

Tarefa 5: Implantar e Executar os jars de Aplicativos

Você criou o produtor do Java Kafka Avro e o consumidor do Flink. É hora de implantar e executar esses aplicativos em seus clusters do OCI BDS. Implante o jar no cluster do Hadoop e use os comandos a seguir para executar o Produtor e o Consumidor.

sudo -u flink  /usr/odh/current/flink/bin//flink run -m yarn-cluster -yD classloader.check-leaked-classloader=false -c <Main Class Name> <Path/To/Jar>/<Jar Name>
sudo -u flink  /usr/odh/current/flink/bin//flink run -m yarn-cluster -yD classloader.check-leaked-classloader=false -c <Main Class Name> <Path/To/Jar>/<Jar Name>

Tarefa 6: Verificar se o tópico está registrado no Schema Registry

Antes de continuar, é essencial verificar se o tópico do Kafka que você está usando em seu pipeline de dados está registrado no Schema Registry. Podemos ver que o esquema está registrado com o nome do tópico usado no aplicativo produtor.

Regulação do esquema

Seu job do Flink está sendo executado no cluster do BDS, vamos monitorar seu progresso por meio da interface do usuário Web do Flink e validar os dados processados armazenados no Object Storage.

Interface de usuário web Flink

Saída do Object Storage

Tarefa 8: Consultar Dados Avro usando Trino

O Trino, um mecanismo de consulta SQL distribuído de código aberto, pode ser usado para consultar dados Avro perfeitamente. Certifique-se de que o Trino esteja instalado e configurado em seu ambiente. Obtenha os detalhes de conexão necessários, como o URL do coordenador do Trino. Abra um terminal do BDS e inicie a CLI do Trino usando o comando. Use a CLI do Trino para executar consultas SQL nos dados Avro, conforme mostrado na imagem a seguir.

Dados Avro da Consulta Trino

Próximas Etapas

Este tutorial fornece um guia abrangente para criar um pipeline de dados em tempo real na OCI usando o Big Data Service, integrando serviços essenciais para produzir, processar e consultar dados da Avro com eficiência. Com objetivos claros, instruções e reforço positivo, você está bem equipado para construir e otimizar seu próprio pipeline de dados em tempo real.

Agradecimentos

Mais Recursos de Aprendizagem

Explore outros laboratórios em docs.oracle.com/learn ou acesse mais conteúdo de aprendizado gratuito no canal Oracle Learning YouTube. Além disso, visite education.oracle.com/learning-explorer para se tornar um Oracle Learning Explorer.

Para obter a documentação do produto, visite o Oracle Help Center.